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Abstract: Relationships between drought indices and fire danger outputs are examined to
(1) incorporate fire risk information into the National Integrated Drought Information System
California–Nevada Drought Early Warning System and (2) provide a baseline analysis for application
of drought indices into a fire risk management framework. We analyzed four drought indices that
incorporate precipitation and evaporative demand (E0) and three fire indices that reflect fuel moisture
and potential fire intensity. Seasonally averaged fire danger outputs were most strongly correlated to
multi-scalar drought indices that use E0 (the Evaporative Demand Drought Index (EDDI) and the
Standardized Precipitation Evapotranspiration Index (SPEI)) at approximately annual time scales that
reflect buildup of antecedent drought conditions. Results indicate that EDDI and SPEI can inform
seasonal fire potential outlooks at the beginning of summer. An E0 decomposition case study of
conditions prior to the Tubbs Fire in Northern California indicate high E0 (97th percentile) driven
predominantly by low humidity signaled increased fire potential several days before the start of
the fire. Initial use of EDDI by fire management groups during summer and fall 2018 highlights
several value-added applications, including seasonal fire potential outlooks, funding fire severity
level requests, and assessing set-up conditions prior to large, explosive fire cases.
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1. Introduction

Wildfire activity is directly linked to variations in weather and climate [1,2], and a number
of studies have examined the link between drought indicators and wildfire occurrence in the
western U.S. [3–5]. A drying trend has been observed in the southwestern U.S. over the past
several decades [6,7] and instrumental records show the 2012–2015 period as one of the driest in
California–Nevada (CA–NV) historical records [8–10] with compounding severe drought impacts
driven by elevated temperatures resulting from climate change [11,12]. Western U.S. wildfires are
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becoming larger in recent decades in terms of area burned [7], with 15 of the top 20 largest wildfires in
California’s history occurring in the 21st century [13].

A requirement for large and destructive wildfires is abundant masses of fuels (dead and live
vegetation) that are sufficiently dry to burn at high intensity and spread quickly. This is the most
prominent link between drought and wildfire—drying at both climate and weather time scales critically
affects the amount of moisture contained in available fuels. At climate time scales (i.e., ~one month
to several years) meteorological drought can be considered the primary factor in drying of fuels
through accumulated precipitation deficits and a simple lack of available water to support healthy
vegetation in the plant water balance. These drying effects become more severe and accelerated
during periods of above average temperatures when increased evapotranspiration (ET) leads to
increased vegetative stress. A Mediterranean climate prevails over CA–NV (this is more pronounced
in California) with a distinct dry season for about half of the year. This seasonal pattern leads to
a climatological drying of fuels and high fire potential nearly every year that peaks during late
summer into early fall. Climate enables fire and weather drives fire. Persistent hot, dry, and windy
conditions clearly increase fire potential, but even short-term (1–2 weeks) periods of anomalous high
temperature and low atmospheric moisture can lead to flash drying of fuels and a rapid increase in fire
potential. The climate and weather patterns of the region, both California and Nevada are fire-prone
environments with substantial wildland–urban interface communities, highlight the value of having
an improved understanding of the relationships between drought and wildfire; more specifically, an
understanding of how drought indices are related to fire danger outputs, both used by the public and
fire management.

During the California dry season, lack of precipitation is a dominant factor for fuel drying, but fire
weather (daily time scales out to patterns that can persist for several weeks) is more important for
driving severe and extreme fire. Hot temperature, low humidity, and near-surface high wind speed
are key fire weather variables. These elements can lead to flash drying of fuels early or late in the dry
season and add stress to larger live fuels (i.e., large brush and timber). Impacts from short-term drying
conditions and extended drought can have acute effects on fire growth due to the reduction in fuel
moisture, devolving into extreme fire conditions that can be deadly [14]. Yet little research has been
conducted on how drought information relates to fuel moisture and other measures of fire danger.

Many drought indices are driven by standard climate variables of precipitation and/or
temperature, but more recent developments include variables that express conditions at the land
surface–atmosphere interface, such as vegetation health [15], soil moisture [16,17], actual ET [18],
and evaporative demand (E0) [19–21]. These biophysical variables have also shown stronger
correlations to forested area burned in the western U.S. compared to just temperature or precipitation,
and the strongest relationships in northern California and the Southwest were found using E0 [22].
Physically based E0 methods use temperature, humidity, wind speed, and solar radiation: These are
also the key variables used for computing national fire danger outputs.

This study examines connections between drought indices, based on standard and biophysical
climate variables, and National Fire Danger Rating System outputs. One relevant use of this
information is to help inform inputs for product generation such as the Predictive Services’ [23]
significant fire potential outlooks that are currently issued at both weather and seasonal time scales.
We chose to relate drought indices to fire danger outputs instead of actual fire occurrence because
fire danger, representing the potential fire as related to climate and weather, is used daily by all fire
management groups for planning purposes, and the public has familiarity with fire danger such as via
roadside Smokey the Bear signs.

A correlation analysis was conducted using drought and fire danger outputs in CA–NV using
wildland fire-management regions to answer several research questions:

• Which drought index, or combination of indices, is most strongly related to fire danger outputs?
• For multi-scalar drought indices, what time scales relate best to fire danger outputs?
• Do strong correlations exist at lag times useful for predictive purposes of fire potential?
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An overarching question is what are the relationships between common drought indices and
National Fire Danger Rating System (NFDRS) outputs to help understand what drought indices
might complement NFDRS, or even be integrated into NFDRS. Further, as climate is an enabler of
fire, understanding the correlation between longer monthly to seasonal scale drought indices and
shorter-term NFDRS outputs allows for a more complete picture of fire potential from short-term to
seasonal scales.

Additionally, in this paper, a case study is described using a recent large and destructive wildfire
in northern California to highlight the potential use of E0-decomposition methods to identify the
drivers and early onset of increased fire potential. This provides for examining the primary E0 factors
most influencing fuels conditions prior to an ignition event.

2. Study Area

The study was conducted over California and Nevada in the western U.S. Recently, the National
Integrated Drought Information System (NIDIS) began development of the California–Nevada Drought
Early Warning System (CA–NV DEWS) [24] with a goal of providing information on drought and
wildfire to CA–NV DEWS stakeholders and the wildland fire management community. Predictive
Service Areas (PSAs), spatial boundaries used by Predictive Services for wildland fire activity
monitoring and forecasting, were used as spatial averaging domains for all indices.

Figure 1 shows the seasonal distribution of the total number of large wildfires (>1000 acres) for
each PSA over the period 1984–2015. Fire count data is from the Monitoring Trends in Burn Severity
database [25]. A clear seasonal cycle in fire can be seen with most fires occurring during the summer
(the climatological dry season). However, large wildfires can occur during any season, particularly in
California. As a case in point: Two extreme wildfire events occurred during October and December of
2017 [26,27] and two more during November of 2018 [13]. These events emphasize the need to conduct
fire-related studies during all periods of the year, and not just the dry season.
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3. Data and Methods

3.1. Climate Data

All derived indices in this study were calculated using the University of Idaho’s gridded
meteorological data (gridMET) [28]. The gridMET data cover the contiguous U.S. at a 4-km spatial
resolution and daily temporal resolution. For this study, the 1979–2015 period was used for the
correlation analysis and 2017 data were used for the case study. gridMET has recently become a
popular tool for fire-related studies due to its high space–time resolution and availability of additional
fire-related variables, including humidity, wind speed, and solar radiation.

3.2. Drought Indices

Four established drought indices were used in this study. The Palmer Drought Severity Index
(PDSI) [29] has historically been one of the most heavily used indices for drought monitoring. The PDSI
relies on precipitation and E0 as inputs to a simplified soil–water balance and is considered a good
indicator of soil moisture at time scales of about 9–12 months or longer [19]. PDSI calculations are
made as part of the gridMET archive and were downloaded for the period 1979–2015. Traditionally,
PDSI is calculated monthly, but gridMET PDSI uses a modified formula to estimate values at 10-day
time steps [30]. The American Society for Civil Engineers standardized reference ET [31] computed
from temperature, wind speed, humidity, and solar radiation was used for E0 in the gridMET PDSI,
and all other E0-based drought indices described below.

The Standardized Precipitation Index (SPI) [32] is based only on precipitation and was the first
drought index to allow for drought time scales to be defined by the user. The Standardized Precipitation
Evapotranspiration Index (SPEI) [19] is a variation of the SPI that incorporates E0 and examines the
accumulated difference between precipitation and E0. The Evaporative Demand Drought Index
(EDDI) [20,21] looks only at E0, which has been shown to signal the onset of rapid drying and flash
drought before other indicators such as precipitation, soil moisture, and actual ET [21,33,34]. A key
advantage of multiscalar drought indices is the ability to link different durations of drought to other
natural processes such as hydroclimatic variability [35–37], ecological indicators [38], and wildland
fire fuel moisture. Precipitation and E0 data were based on gridMET for our study period, and
SPI, SPEI, and EDDI were computed using a non-parametric plotting position-based probability
approach [39,40]. Seventeen drought index time scales were examined in this study: 1- to 3-week, 1- to
12-, 15-, and 18-month.

3.3. Fire Danger Outputs

Fire-management agencies rely heavily on National Fire Danger Rating System outputs
(NFDRS) [41] for operational monitoring and wildland fire assessments. The following three NFDRS
indices were used in this study: 100-h fuel moisture, 1000-h fuel moisture, and the Energy Release
Component (ERC). These indices are computed using the fire weather variables of precipitation,
temperature, humidity, solar radiation, and wind speed. The 100- and 1000-h fuel moisture indices
estimate dead fuel moisture at 2.5–7.6 cm and 7.6–20.3 cm diameters, respectively, while the ERC
is an energy measure of the combined effects of fire intensity and dead and live fuel moisture [41].
All fire danger outputs are computed as part of the gridMET archive and were downloaded for the
study period.

3.4. Correlation Analysis

A correlation analysis was performed to establish basic relationships between fire danger outputs
and drought indices. For each PSA in CA–NV, fire danger outputs were first averaged spatially across
the entire PSA and then averaged temporally over each season in each year, resulting in four 37-year
time series for each index: Winter (December–February), spring (March–May), summer (June–August),
and fall (September–November). For drought indices, PDSI and gridMET precipitation and E0 were
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averaged over each PSA. Spatially averaged gridMET variables were then used to compute SPI,
SPEI, and EDDI time series at 17 different time scales ranging from 1-week to 18-month. A Pearson
correlation was then calculated between seasonally averaged fire danger and daily drought indices
for each time scale. Correlations between drought index values and seasonal average fire-danger
outputs were calculated beginning on the last day of each season (28 February, 31 May, 31 August,
and 30 November) and then lagged daily (every 10 days for PDSI) out to the first day of each season.
In this paper, we define “lag” as the time from the end of a timescale for a drought index to the end
of the timescale for a fire danger output. For example, comparing a 3-month SPEI on June 1 to a
summer-long ERC on August 31 represents a 91-day lag, as the end of the ERC period occurs 91 days
after the end of the SPEI period. Daily lag analysis was done to find any lags associated with maximum
correlations and to look for potential predictability of fire danger in antecedent drought conditions
through drought index memory. First, the maximum correlations found were documented along with
the associated drought index time scale (EDDI, SPEI, and SPI) and lag time in days. This answers the
questions of which of the 17 different time scales are associated with maximum correlation. Second,
the correlation at the start of each season (~90-day lag) was obtained along with the time scale that
resulted in that greatest start of season correlation.

3.5. Case Study: Tubbs Fire Evaporative Demand Decomposition

On 9 October 2017 a series of large and destructive wildfires ignited in California north of the San
Francisco Bay with rapid spread driven by a severe north wind event. The Tubbs Fire was the most
destructive of these fires and resulted in 5636 structures destroyed and 22 fatalities [27]. Following
the approach in Hobbins [42], anomalies in E0 were decomposed to provide the contribution from the
anomaly in each of its four drivers (temperature, specific humidity, wind speed, and downwelling
solar radiation). We used spatially-averaged E0 data from Sonoma County, California, at the 2-week
time scale (14-day running sum) to identify the dominant drivers of E0 leading up to and during the
Tubbs Fire.

4. Results

4.1. Correlation Analysis

An example for the Northern Sierra, California PSA using summer average 1000 fuel moisture
(fm-1000) is presented in Figure 2 to guide the reader on the methods used to c-hr reate subsequent
Figures 3–7 based on drought index time scale and lag. Maximum R2 (mapped in Figure 3) for EDDI
(Figure 2a) is 0.86 at a 3-month time scale (mapped in Figure 4) and a 33-day lag (mapped in Figure 5).
Similarly, the maximum R2, associated time scale, and associated lag for SPEI (Figure 2b), and SPI
(Figure 2c) were mapped spatially by PSA in Figure 3. The plume of higher correlations extending
back from the end of August indicates drought index memory in relation to fire danger (fm-1000 in this
case) and highlights potential predictability of the fire-danger outputs at the start of the season (1 June
in this case). Start of season maximum R2 was 0.58 for EDDI (Figure 2a), 0.40 for SPEI (Figure 2b), and
0.34 for SPI (Figure 2c), and these are mapped spatially by PSA in Figure 6. Time scales associated
with maximum start of season R2 were 6-month (December–May) for EDDI, 2-month (April–May) for
SPEI, and 11-month (July–May) for SPI, and these are mapped spatially by PSA in Figure 7.

Maximum correlations between the four drought indices and seasonal fm-1000 (summarized
results for ERC and 100-hr fuel are shown in Tables S1 and S2) are shown in Figure 3. Seasonally,
only minor variations in R2 were found with spring showing the strongest relationships (domain mean
R2; Table 1) for all drought indices. When considering CA–NV average R2 across all PSAs, the SPEI
and EDDI consistently show the strongest relationships (with the exception of winter, when SPI had
a greater R2 than EDDI) and often accounted for >80% of the fm-1000 variance at individual PSAs,
followed by SPI. PDSI demonstrated the weakest relationships across all seasons.
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Figure 2. Average summer 1000-hr fuel moisture correlated to (a) the Evaporative Demand Drought
Index (EDDI), (b) the Standardized Precipitation Evapotranspiration Index (SPEI), and (c) the
Standardized Precipitation Index (SPI) at the Northern Sierra Nevada, California PSA. Vertical axis
indicates drought index time scale in weeks (wk) or months (m) and horizontal axis shows the drought
index ending day for the correlation. The zero-day lag is indicated at 31 August and the start of season
lag (~90-day) is indicated at 1 June.

Overall, timescales of three to five months were most commonly associated with the maximum
correlations (Figure 4). Substantial variability can be found at the PSA level and also between different
indices and different seasons. For example, during the fall, maximum correlations mostly corresponded
to 3- and 4-month time scales with EDDI (Figure 4d), but for SPEI (Figure 4e) maximum correlations at
many PSAs in central and northern California corresponded to 5-month to 7-month timescales and to
2-month timescales in northern Nevada. In winter, maximum correlations corresponded to 8-month to
10-month timescales for SPEI (Figure 3h) and SPI (Figure 4i) in several central California and western
Nevada PSAs.

Lag times associated with maximum correlations to fm-1000 (maximum correlations shown in
Figure 3) are shown in Figure 5. Generally, lags of less than 10 days were found with some variability
at the PSA level. Most notably lags of 50–60 days were found with EDDI, SPEI, and SPI during the
summer (Figure 5a–c, respectively), lags of 40–50 days with SPI during fall (Figure 5g), and lags of
30–60 days with EDDI (Figure 5m), SPEI (southeast California and southern Nevada only; Figure 5n),
SPI (southeast California only; Figure 5o), and PDSI (Lower Deserts PSA only; Figure 5p).

Daily lag correlations revealed that maximum correlations almost always occurred within the
target season (lags < 90 days) and often close to the end of the target season (Figure 5). However,
looking at the lag correlations matrices revealed substantial memory in the drought indices with
strong correlations often beyond the 90-day lag (Figure 2). Figure 6 shows correlations for the 90-day
(approximately one season) lag to highlight potential windows of seasonal fire danger predictability
by drought indices. Summer showed the strongest correlations across the entire region with EDDI
(Figure 6a; domain mean R2 = 0.50, Table 1) and SPEI (Figure 6b; domain mean R2 = 0.47, Table 1)
again most frequently having the highest R2. EDDI summer correlations were strongest in California
with several PSAs above 0.6 R2 and a peak of 0.65 at the Upper Deserts PSA (Figure 6a). For SPEI in
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summer, the Northeast Nevada PSA had the strongest correlation with an R2 of 0.63, while R2 in most
of central and northeast Nevada was above 0.5 (Figure 6b). Fairly strong relationships were also found
in spring with EDDI (Figure 6m), SPEI (Figure 6n), and SPI (Figure 6o), but limited primarily to the
southernmost PSAs where several locations had R2 values between 0.5 and 0.69. Winter (Figure 6i–l)
and fall (Figure 6e–h) correlations were weak overall with the exception of a few PSAs where EDDI,
SPEI, and SPI were able to explain about 30–40% of the seasonal fm-1000 variability.

Timescales associated with maximum 90-day lag correlations are displayed in Figure 7. Overall,
these timescales are much different than those shown in Figure 3, which primarily are associated with
much shorter lags. Summer correlations corresponded mostly to longer time scales of 10–15 months
for most PSAs. Notably shorter time scales were found in much of central and northern California for
all three drought indices. For spring, the southern PSAs (where moderate correlations were found)
time scales of maximum correlation were much shorter—mostly in the range of 1–3 months. Given the
weak relationships found in fall and winter (Figure 6), little value or physical meaning should be given
to the associated time scales.

Climate 2019, 7, x FOR PEER REVIEW 7 of 15 

 

(approximately one season) lag to highlight potential windows of seasonal fire danger predictability 
by drought indices. Summer showed the strongest correlations across the entire region with EDDI 
(Figure 6a; domain mean R2 = 0.50, Table 1) and SPEI (Figure 6b; domain mean R2 = 0.47, Table 1) 
again most frequently having the highest R2. EDDI summer correlations were strongest in California 
with several PSAs above 0.6 R2 and a peak of 0.65 at the Upper Deserts PSA (Figure 6a). For SPEI in 
summer, the Northeast Nevada PSA had the strongest correlation with an R2 of 0.63, while R2 in most 
of central and northeast Nevada was above 0.5 (Figure 6b). Fairly strong relationships were also 
found in spring with EDDI (Figure 6m), SPEI (Figure 6n), and SPI (Figure 6o), but limited primarily 
to the southernmost PSAs where several locations had R2 values between 0.5 and 0.69. Winter (Figure 
6i–l) and fall (Figure 6e–h) correlations were weak overall with the exception of a few PSAs where 
EDDI, SPEI, and SPI were able to explain about 30–40% of the seasonal fm-1000 variability. 

Timescales associated with maximum 90-day lag correlations are displayed in Figure 7. Overall, 
these timescales are much different than those shown in Figure 3, which primarily are associated with 
much shorter lags. Summer correlations corresponded mostly to longer time scales of 10–15 months 
for most PSAs. Notably shorter time scales were found in much of central and northern California 
for all three drought indices. For spring, the southern PSAs (where moderate correlations were found) 
time scales of maximum correlation were much shorter—mostly in the range of 1–3 months. Given 
the weak relationships found in fall and winter (Figure 6), little value or physical meaning should be 
given to the associated time scales. 

 
Figure 3. Maximum R2 of each drought index with the seasonal 1000-hr fuel moisture fire danger 
output by season across the period 1979–2015 for each PSA in California and Nevada. Drought indices 
include (a,e,i,m) EDDI, (b,f,j,n) SPEI, (c,g,k,o) SPI, and (d,h,l,p) PDSI and seasons include (a,b,c,d) 
summer, (e,f,g,h) fall, (i,j,k,l) winter, and (m,n,o,p) spring. 

Figure 3. Maximum R2 of each drought index with the seasonal 1000-hr fuel moisture fire danger
output by season across the period 1979–2015 for each PSA in California and Nevada. Drought indices
include (a,e,i,m) EDDI, (b,f,j,n) SPEI, (c,g,k,o) SPI, and (d,h,l,p) PDSI and seasons include (a,b,c,d)
summer, (e,f,g,h) fall, (i,j,k,l) winter, and (m,n,o,p) spring.
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Table 1. California–Nevada domain-average maximum R2 between seasonally averaged fm-1000 and
drought indices.

Maximum R2

All Lags 90-Day Lag

Summer
EDDI 0.78 0.5
SPEI 0.81 0.47
SPI 0.65 0.38

PDSI 0.59 0.32

Fall
EDDI 0.73 0.23
SPEI 0.77 0.22
SPI 0.66 0.19

PDSI 0.5 0.11

Winter
EDDI 0.7 0.28
SPEI 0.83 0.29
SPI 0.77 0.29

PDSI 0.59 0.08

Spring
EDDI 0.83 0.32
SPEI 0.87 0.37
SPI 0.77 0.33

PDSI 0.66 0.21
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(a,b,c) summer, (d,e,f) fall, (g,h,i) winter, and (j,k,l) spring.
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Figure 6. Start of season (90-day lag) R2 of each drought index with the seasonal 1000-hr fuel moisture
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which climbs again through the day of the fire ignition (8 October) and afterwards. On the day of 
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4.2. Evaporative Demand Attribution Leading Up to the Tubbs Fire

To illustrate the relationship of the drivers of E0 and developing fire potential, Figure 8 tracks the
development of the E0 anomaly and the contributions from each of its drivers across Sonoma County,
California from mid-August through the end of October, 2018, covering the period of eight weeks
prior to three weeks following the ignition of the Tubbs Fire. To minimize the noise of day-to-day
weather patterns, all variables are aggregated over a two-week window moving forward daily. E0 is
elevated above its climatological mean throughout the period, with two notable spikes of E0 percentiles
elevated above 90% for extended periods. The first spike occurred from 31 August until 5 September
(prior to the fire outbreak): Its greatest early contribution was from above-normal temperatures, with
the effects of the other drivers acting to mitigate the rise in E0 for at least part of the time—particularly
humidity, which remained above normal. During the first two weeks of September, the above-normal
temperatures abate, leading to a declining, though still positive, E0 anomaly. However, the mitigating
effects of above-normal humidity and below-normal wind speeds and solar radiation all reverse during
this period to leave E0 near normal for the second half of September. After this point, temperature
remains near normal, but the combined effects of now-below-normal humidity and above-normal
wind speed and solar radiation dominate the E0 anomaly, which climbs again through the day of the
fire ignition (8 October) and afterwards. On the day of ignition, E0 reaches its second spike when it
exceeds its 95th percentile. This indicates that near-surface moisture was decreasing and a drying of
the air mass was taking place even during a period of temperatures declining to near-normal values.
It is also worth noting that wind speed had the largest contributions during the onset of the second
spike from 29 September through 2 October. These patterns are suggestive of an important role of
rapid (flash) meteorological impacts on fuels.
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Figure 8. Attribution of evaporative demand (E0) anomaly prior to and during the Tubbs Fire in
Sonoma County, California, into contributions from each of its meteorological and radiative drivers.
The 2-week E0 anomaly (black line) is spatially averaged across Sonoma County. The contributions
from each of its drivers are shown as colored lines (temperature (T) in red, specific humidity (Q) in blue,
downwelling shortwave radiation (Rd) in purple, wind speed (U2) in green); percentiles of 2-week
E0 are shown in dashed grey (right-hand axis); and the ignition date of the Tubbs Fire is shown as a
vertical brown line.

5. Discussion

Findings from the maximum correlation analysis (Figure 3) demonstrate that the multi-scalar
drought indices that incorporate E0 (EDDI and SPEI) typically have the strongest relationships to
fire danger outputs. This is not a surprising finding given that fire danger outputs are computed
with the same inputs as EDDI and SPEI, but it emphasizes an opportunity to take advantage of
the multi-scalar features of EDDI and SPEI to incorporate antecedent drought information into fire
management. That is, multi-scalar drought indices could serve to complement the existing NFDRS
daily derived outputs. One exception to EDDI having the strongest relationships was winter, when SPI
is better correlated than EDDI, which is most likely due to the fact that most of the annual precipitation
in the region (especially in California) falls during the winter. Precipitation is much more limited
during the warm-season months of April through September, and evaporative dynamics—driven by
high temperatures, high wind, and low humidity—have a greater effect on drying of fuel moisture.
The PDSI, which consistently showed the weakest relationships, also incorporates E0 but uses a much
different model than EDDI and SPEI to depict drought, and has a static time scale of about 9–12 months
that is clearly too long to reflect seasonal changes in fuel moisture.

Of the three fire danger outputs tested, the strongest correlations to drought indices were most
often found with fm-1000, although in some cases, at the PSA and domanin average scale, fm-100 or
ERC had stronger correlations. The fm-1000 inherently has some climate and drought memory, given
the larger diameter vegetation (compared to fm-100) and the approximately 42 days (1000 hours)
it takes the fuel particle to reach two thrids of the way to equilibrium with its local environment.
However, all three fire danger outputs were averaged seasonally for this analysis, removing the higher
frequency signals found in the daily ERC and fm-100, leading to stronger relationships with seasonal
or longer drought time scales.

One application of drought indices that are strongly linked to fuel moisture is input for wildland
fire outlooks. In the United States, Predictive Services issues monthly a National Significant Wildland
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Fire Potential Outlook [43] for fire management strategic planning and decision making. The drought
index lag correlations described here offer potential for informing fire outlook products. This is
most apparent in summer when EDDI and SPEI will likely provide the best results. A refinement
of the correlations could be to develop statistical regression models at the PSA level based on the
best combinations of drought indices to predict fuel moisture and fire potential. A combination of
drought indices is suggested since large variability was found when looking at individual PSAs and
there was not a single drought index “champion” for the entire region. A statistical model could help
improve summer outlooks given the poor skill currently found in seasonal dynamical precipitation
forecasts [44–47] and since precipitation plays only a minor role in fire danger during the summer in
CA–NV. The connection between E0 and fire danger outputs also highlights the possibility of using
seasonal E0 forecasts as a tool for fire potential, which have been shown to provide better skill than
precipitation forecasts in the U.S. [47].

Results from the E0 attribution highlight the potential to use this method as a tool to monitor
set-up conditions that are conducive to explosive fire growth and behavior, as was seen with the Tubbs
Fire. Further examination of this methodology may show climatological signatures of fire weather in
E0 and its drivers that are typical to a particular region and season; this may prove to be of predictive
use to fire managers. Our correlation analysis focused on seasonal time scales, but the attribution
example shows the potential for using E0 and EDDI as tools for guidance in short-term products such
as the Predictive Services’ 7-day Significant Fire Potential outlooks. Notably, the drying of the air mass
that began in mid-September and the steady increase in specific humidity contributions (becoming
the dominant driver several days before the fire began) to the E0 anomaly, combined with positive
contributions from wind speed, could be seen as an early warning signal for increased fire potential
when used in conjunction with many of the other indicators that were also signaling extreme fire
potential in the days leading up to the Tubbs Fire [28]. One case study greatly limits the confidence
in using this type of information for fire risk, and more work is needed looking at E0 and EDDI for
prediction of short-term fire potential.

6. Conclusions

Strong relationships exist between all drought indices and fire danger outputs tested at all seasons
and at most PSAs. Drought indices that incorporate E0 and are multi-scalar (i.e., EDDI and SPEI)
typically were found to have the strongest correlations to fire danger outputs. This suggests that
seasonally (3- to 4-month EDDI, SPEI, and SPI), more severe drought conditions will be coincident
will dryer fuel moisture and greater fire danger. Some predictive potential exists for start of season
fire potential outlooks using drought indices, but is restricted to summer (entire region) and spring
(southern PSAs) with EDDI and SPEI providing the most value. Time scales associated with start of
season lag correlations indicate that antecedent drought conditions from the previous fall and winter
play a strong role in determining summer fuel moisture and fire danger in CA–NV.

To advance the understanding of and value added by using drought indices for fire management,
real world testing and application is the next needed step. A partnership between Predictive Services
in northern California and the team of researchers who conducted this study has been established,
and beta-testing of EDDI as a management tool was performed during summer and fall of 2018. Initial
feedback indicates that EDDI was useful in determining set-up conditions prior to the Carr Fire (23 July)
near Redding, California, and Camp Fire (8 November) in Paradise, California [48,49]. Both fires were
among the top 20 largest in California history and the Camp Fire was by far the most destructive
in history with 85 deaths and nearly 19,000 structures destroyed [13]. Two specific applications of
EDDI included using operational EDDI maps to replace the U.S. Drought Monitor (USDM) [50] in
U.S. Forest Service Region 5 severity funding requests (requests are made throughout each fire season
during periods with potential for abnormally severe fire behavior) and use of EDDI graphics in North
Ops Predictive Services’ seasonal fire potential outlooks. The USDM does not explicitly consider fire
potential and was not designed to be used operationally by fire managers, but project stakeholders
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consistently pointed to using the USDM as the primary tool to assess drought conditions related to
fire potential. This is largely due to lack of training or engagement describing proper tools that more
accurately depict drought relationships to fire potential at various time scales. This project highlights a
value of connecting drought researchers to the fire management community.

Several web-based applications have been developed recently that can provide continental
U.S.-wide access to drought and fire danger outputs in near real-time, including the Google
Earth Engine [51] cloud computing tool Climate Engine [52], the West Wide Drought Tracker [53],
and NOAA’s operational EDDI tools [54]. These tools can be used with guidance from this analysis
and feedback from stakeholders to build the drought–fire connection capacity in the CA–NV DEWS.
Further studies in other regions, more research linking short-term drought (i.e., sub-monthly drought
index time scales) to real-time fire potential (i.e., flash drying of fuels) and behavior, and applied
stakeholder testing outside of northern California is needed and encouraged to successfully expand
the application of drought information for operational fire management purposes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2225-1154/7/4/52/s1,
Table S1: California–Nevada domain-average maximum R2 between seasonally averaged 1000-hr fuel moisture
and drought indices, Table S2: California–Nevada domain-average maximum R2 between seasonally averaged
1000-hr fuel moisture and drought indices.
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