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Abstract 

Making connections between content knowledge and given information is a critical part of 

solving complex problems. This study explores the influence of a variety of factors on student 

academic success in an introductory genetics course using statistical modeling. A student’s use 

of logical reasoning while solving genetics problems, completion of practice problems, and 

performance on a genetics content knowledge pre-test were all found to be significantly 

predictive of the student’s academic success on the course final examination in linear regression 

modeling. Data were collected from undergraduate biology students (N = 230) enrolled in an 

introductory genetics course at the University of Colorado Boulder. During the semester, 

students answered nine open-response questions in which they were asked to self-document their 

problem-solving processes. These processes were coded for specific components of problem 

solving established in prior studies. Using linear regression modeling, it was found that students 

who frequently made logical connections between information in a problem and their process of 

reaching an answer (i.e., reasoning) had better final examination performance on average than 

other students. These “high reasoning” students had on average higher performance on both mid-

semester and final examination than students who reasoned less frequently. The findings of this 

study suggest that reasoning behaviors during problem solving have impacts independent of 

student practice and prior genetics knowledge on student academic performance. This study also 

suggests that promoting reasoning behaviors in genetics students could benefit their problem-

solving abilities and success in introductory genetics courses.  

Introduction 

The importance of conducting biology education research is emphasized by the popularity of 

biological science fields as undergraduate majors. The National Science Board reported in 2017 

that 121,742 bachelor’s degrees were awarded in biological science fields in the United States 

(National Science Board, 2019). This makes U.S. undergraduates in biological sciences the 

single largest population of science majors. Though not all students who graduate with a degree 

in the biological sciences will enter into a related profession, they likely still encounter 

challenging problems where their education in the field can be of use, such as making personal 

medical decisions. Therefore, it is important to help biology students develop skills that will 

make them competent problem solvers in their specific fields and their lives.  Researchers have 

identified methods that connect a knowledge base to a problem-solving task, such as providing 

students immediate feedback on their problem solving, as some of the most successful 

interventions to improve a student’s problem-solving performance (Taconis, Ferguson‐Hessler, 

& Broekkamp, 2001). The further development of methods to improve problem solving in 

undergraduate biology takes into consideration the work done in the field of physics education 

research (PER) over the past 40 years. As suggested by (Hoskinson, Caballero, & Knight, 2013) 

scholars in the field of biology education research (BER) may be able to adopt aspects of 

research-supported approaches because both fields deal with problem-solving that involves 

making predictions about complex systems. 

Researchers in the field of PER have long been interested in the differences in the ways experts 

and novices solve physics problems. They have focused on how to improve instruction in 

physics courses so that students can succeed in solving complex physics problems (Redish & 

Steinberg, 1999). Much of this work began in an effort to determine the differences between 

experienced and inexperienced problem-solvers in physics. Assessing how expert and novice 



problem solvers represent physics problems using their domain-specific knowledge has revealed 

differences in the ways an individual applies knowledge to the problem at hand (Chi, Feltovich, 

& Glaser, 1981). Researchers determined that while experts abstracted the principles of the 

problems, novices based their approaches on the literal details in the problems. These types of 

investigations led others to work on describing scientific methods to approach the improvement 

of teaching in science (Reif, 1986). They proposed that the problem-solving process to reach an 

answer could often reveal far more about the student than the answer itself.  

Informed by their colleagues in PER, contemporaries in the field of BER worked to characterize 

the domain-specific processes utilized by students and experts in the biological sciences. A pair 

of researchers investigated the differences between expert and novice approaches to solving 

problems in classical genetics (Smith & Good, 1984). They also supported the view that an 

individual’s problem-solving process may be more important than their answer to the specific 

problem. The studies in both fields found that many of the differences between novice and expert 

problem-solving came down to how the experts perceived and represented the problem. The 

BER group compared undergraduates (novices) to graduate students and instructors (experts) as 

they solved genetics problems out loud. They discussed that problem-solving expertise appears 

to exist as a continuum that is dependent on a variety of factors. One of their key results was that 

successful problem-solvers understood that the solution could be found through logical 

connections of the information provided in the problem. Another key result was that 

unsuccessful problem-solvers did not recognize that problem solving requires more than the 

memorization of concepts related to the problem. While an understanding of the concepts 

underlying problems is important, so too are the skills needed to connect those specific concepts 

to information and evidence provided by a problem (i.e., reasoning skills). 

Researchers became particularly interested in studying how student reasoning was involved in 

how students understood and solved genetics problems (Cavallo, 1996). They found that 

reasoning ability predicts student achievement in solving genetics problems. Other researchers 

have identified that student reasoning plays an important role in student discussions during in-

class problem-solving exercises (Knight et al., 2013). They focused on how students used 

reasoning during group discussions in an upper-division developmental biology course. The data 

suggested that during discussions of clicker questions, students discussed their answers by 

sharing reasoning and evidence for their ideas. When the instructor cued students to use more 

reasoning, the researchers observed students using and sharing more reasoning.  

In order to gauge student understanding of core concepts in introductory genetics courses a 

genetics concept assessment (GCA) was developed (Smith, Wood, & Knight, 2008). The 

assessment was designed to be taken by students as a pre-test and then as a post-test in order to 

measure student learning gains. The GCA consists of multiple-choice questions covering a range 

of fundamental topics in genetics. This assessment has allowed researchers to better understand 

the concepts with which students struggle the most in introductory genetics courses (Smith & 

Knight, 2012). It also allows researchers and instructors to identify student learning in genetics 

concepts which are particularly challenging for students. This information is useful when 

designing studies around student problem solving on specific topics in genetics. 

More recent studies have focused on methodologies to capture a student’s written step-by-step 

descriptions of their problem-solving process as they solve a multiple-choice biology problem 

(Prevost & Lemons, 2016). The researchers were able to examine the students’ written 



descriptions of their problem-solving to characterize specific procedures used by the students. 

They found that domain-specific problem-solving procedures were associated with student 

success in multiple-choice problem-solving. Their data also showed that students used more 

domain-specific procedures that they categorized at a higher level on Bloom’s taxonomy. One of 

the limitations they acknowledged is that multiple-choice problems do not always bring out all 

the aspects of critical thinking used by biologists. 

There has been growing interest in using statistical models to better understand how student 

reasoning along with measures of academic preparedness predict success in undergraduate 

introductory biology courses. A recent study showed relationships between a student’s scientific 

reasoning ability, ACT math score and their performance in an introductory biology course using 

logistic regression modeling (Thompson et al., 2018). The authors acknowledged that one of 

their major limitations was that they did not collect other types of student data to generate a 

holistic model of factors contributing to student success. The present study aimed to incorporate 

student demographic and academic data into the statistical models in order to generate a more 

complete understanding of how student reasoning and other factors predict academic success. 

This study examines student success in solving genetics problems through statistical modeling of 

student self-documented reasoning frequency in single answer constructed response questions. 

The study seeks to characterize the relationships between academic success in genetics and the 

use of reasoning during problem solving for individual genetics students. This research provides 

genetics instructors with evidence that student reasoning plays an important role in student 

academic success in genetics. If instructors had a better understanding of the academic benefits 

students gain when applying reasoning to problems, they might be more likely to emphasize 

reasoning in the problem-solving process.  

Methods 

Data Collection 

At the beginning of the course, the students were given an optional survey containing a pre-test 

on genetics concepts (the Genetics Concept Assessment, GCA), a demographics survey, and a 

consent form for the research project. Students who consented to participate in the study agreed 

to the following data being collected for use in the research project: pre-GCA scores, 

demographic information (Table 2), quiz scores, course section enrollment (Table 2), co-seminar 

enrollment status, documented step-by-step problem-solving question responses, attendance data, 

extra credit practice problem completion, final exam score, and final course grade. Student data 

were collected as part of a larger study on student problem solving in genetics at the University 

of Colorado Boulder (IRB #16-0511 and #15-0380; PI: J. Knight). All student data were de-

identified with random unique identifiers. Over the course of the semester, students were given 

the opportunity to practice their problem solving by completing eight extra credit documented 

step-by-step problem-solving questions on their homework assignments. A record of the number 

of questions a student attempted was kept with the de-identified student data as a practice 

measurement out of eight. Students were given examples of step-by-step problem-solving 

documentation during these extra credit practice problems (Figure 1). 

Over the semester six quizzes and a final exam were administered to the students. The 

documented problem-solving questions on the quizzes were administered online and the student 

responses were collected and de-identified from the submission data. The eight topics chosen for 



these questions were: Short Tandem Repeat (STR) analysis, genetic mutations, probability, 

gel/pedigree analysis, nondisjunction, recombination, Restriction Fragment Length 

Polymorphism (RFLP) analysis, and X-inactivation. The topics were chosen to cover a wide 

variety of core content areas covered in the course. These topics were spread out on the six 

quizzes taken by the students during the semester. Student scores for these six quizzes and the 

final examination were collected and added to the de-identified student data. The documented 

problem-solving question on the final examination contained a combination of the probability 

and gel/pedigree topics. Four of the quizzes and the final exam contained one single correct 

answer constructed response question that asked students to document their step-by-step process 

as they solved the problem (Figure 2). Quizzes three and four each contained two of these 

problem-solving process documentation questions on different topics: probability and 

gel/pedigree, nondisjunction and recombination, respectively. These questions were graded 

based on the correctness of a student’s final answer and for completion credit based on the 

student’s completion of the step-by-step documentation (Figure 3).  

 

Figure 1. Example of a documented step-by-step problem-solving process given to students on their extra credit 

homework assignments (Avena & Knight, 2019). 

 



 

Figure 2. Problem-solving probability question given to students on quiz 3. Students were asked to provide a single 

correct answer to the question and to document their step-by-step process for solving the problem. 

Figure 3. Example of student documentation of a step-by-step process for solving the probability question given on 

quiz 3. 

The topic for the documented problem-solving question on the final exam was a combination of 

both the probability and gel/pedigree analysis topics. The documented solutions were collected 

and de-identified directly from copies of the student final examinations. The final examination 

consisted of 125 points, 48 of the points were from the 24-multiple choice GCA questions and 77 

points were from instructor generated items. A post-GCA measurement was calculated to 

represent the student’s percent score for the GCA questions on the final examination. A final 

examination instructor generated item component percent (FELP) measurement was calculated 

to represent the student’s percent score for the instructor generated items on the final 

examination.  

After the end of the Spring 2019 term, students who had indicated that they were interested in 

being interviewed were contacted and asked to participate in an individual interview with a 

member of the research team. Students who participated in the interviews were compensated for 

1. Read the problem 

2. See who is affected and recognize that PKU is autosomal recessive. 

3. Realize that II-3 is not homozygous recessive so he has to have a homozygous dominant or 

heterozygous genotype.  

4. See that II-4 is affected so her genotype is homozygous recessive 

5. Realize that I-1 and I-2 are heterozygous because II-1 is affected. 

6. That means that II-3 has a 2/3 chance of being a carrier of the gene.  

7. If II-3 is a carrier for PKU the child of II-3 and II-4 has a 1/2 chance of getting the disease. 

8. Because these are independent events these probabilities need to be multiplied because II-3 

needs to be a career. The recessive (II-4) and heterozygous (II-3) parental cross needs to result in 

an affected individual so the chance of the child being affected is 2/3 times 1/2 which makes the 

probability the child is affected 1/3. 



their time with $15 gift cards. Five students agreed to participate in hour-long interviews with 

members of the research team. The interviews were recorded and then transcribed using the 

Otter.ai text to speech web application. Interviewed students were asked to verbally document 

their problem-solving process as they solved genetics problems on topics covered in the course. 

The students were then asked what problem-solving processes they thought they had used while 

solving the problem and to define the problem-solving process in their own words. The students 

were also asked to look at one of their documented step-by-step responses to a problem-solving 

question during the Spring 2019 semester and tell the interviewer how well they felt their 

documented response accurately represented their thought process at the time. Students were 

given the opportunity to discuss aspects of their thought process that they thought may not have 

been well represented by the written documentation. 

Documented Problem-Solving Response Coding 

Once student documented step-by-step problem-solving process response data were collected 

and de-identified the responses were coded for problem-solving processes and content errors. 

Student documented problem-solving responses were coded for a variety of problem-solving 

processes (Table 1). Only the “reason correct” and “reason incorrect” process codes were coded 

for the number of reasoning statements the student made in their documented problem-solving. 

All other problem-solving process codes were coded as a binary for the presence or absence of 

coded process within the student’s response. A total of 2,070 student responses included in the 

analysis were coded by between 2 and 5 raters with an average inter-rater agreement of 87.9% 

and an agreement range between 83.5% and 93.3% on 159 items. 

Table 1. Coding scheme used to code student self-documentation of step-by-step problem-

solving* 

Process Code Description  Example** 

Reason Correct  

(number of uses) 
Student provides a correct or 
logical rationale for a 
statement/conclusion. 

“Realize that I-1 and I-2 are 
heterozygous because II-1 is 
affected.” 

Reason Incorrect  

(number of uses) 
Student provides an incorrect 
or illogical rationale for a 
statement/conclusion. 

“II-3 must be a carrier for 

PKU because both of their 

parents are heterozygous.” 

Long-term plan  

(presence or absence) 

Student provides a multistep 

plan of how they will solve 

the problem. Followed by a 

documented execution of at 

least some of the steps in this 

plan. 

First, I will determine the 

genotypes of grandparents I-1 

and I-2 then I will determine 

the probability that II-3 is a 

carrier for PKU. I will then 

use that information to 

determine the probability that 

the child of II-3 and II-4 has 

PKU.  

 



(student then proceeds to 

document the execution of 

some of these steps) 

Short-term plan 

(presence or absence) 

Student provides a statement 

of intended action followed 

up by a documented 

execution of the planned 

action. 

Next, I need to determine the 

probability that II-3 is a 

carrier for PKU. 

 

(student then documents that 

they executed their planned 

next step) 

Eliminate  

(presence or absence) 

Student rules out a possible 

final answer to the question. 

The probability that II-3 and 

II-4’s child has PKU cannot 

be 0… 

(typically followed by 

reasoning) 

 

Check 

(presence or absence)  

Checking or confirming a 

conclusion, approach or 

incorrect (must be reflective). 

Looking back on the 

information in the pedigree I 

noticed that one of my initial 

calculations was incorrect. 

*Based on a table included in (Avena et al., Submitted) 

**Examples used are specifically for the quiz 3 problem-solving question shown above (Figure 2). 

Data Analysis 

Problem-solving process data from the coding of responses, surveys, and course data were 

organized and analyzed using the R programming language version 3.5.1 (R Core Team, 2017). 

Measurements for average correct and incorrect reasoning use were calculated based on the 

number of reasoning codes for each student on the eight documented step-by-step problem-

solving quiz questions. Measurements for the proportion of use for the short-term planning, long-

term planning, checking and eliminating processes were also calculated based on the number of 

documented step-by-step problem-solving student responses in which they were coded. To 

potentially capture change on questions with similar content, a measurement for the student’s 

change in correct reasoning use over the semester was calculated based upon the difference 

between the average of the student’s reasoning on the two coded quiz 3 documented problem-

solving questions and the final examination problem-solving question. The three outcome 

variables used to represent student academic success at the end of the semester were the total 

final exam percent (FEP), FELP and post-GCA measures for each student. The problem-solving 

process measurements were used along with the student practice on extra credit problems, and 

pre-GCA data as predictor variables first in simple linear regression (SLR) models (N = 199). 

The variables that were statistically significant predictors of the outcome variables were then 

used in multiple linear regression (MLR) models (N = 199) for the same outcome variables along 

with course section enrollment, co-seminar enrollment, class standing, sex, and demographic 

data variables. The average performance of each reasoning-based student group on individual 

quizzes and end of semester assessments was then compared between groups via Welch two-

sample t-tests. 



Setting and Participants 

Participants in this study were 230 undergraduate students between the ages of 18 and 35 

enrolled in two large lecture sections of a lower-division introductory genetics course during the 

Spring 2019 semester term at the University of Colorado Boulder. The course is an introductory 

genetics course taken primarily by a variety of first-year biological science majors. The course 

covers topics in transmission genetics, molecular genetics, and population genetics. Each of the 

two lecture sections of the course was taught by a different instructor. Both instructors used the 

same lecture slides, course materials, and gave the same assessments to their students. An 

optional genetics co-seminar course associated with the main lecture courses is taught 

contemporaneously and provides students with additional practice solving genetics problems. 

During the study period, 37.4% (86) of the study participants were enrolled in both the main 

genetics course and genetics co-seminar course. Of the 321 students who consented to participate 

in the study, 230 completed all nine documented step-by-step problem-solving questions given 

throughout the semester. Only the data from these 230 students were used in the analysis in the 

study. 

Table 2. Participant demographics based on optional beginning of semester survey* 

Course Section Enrolled (n=230) Course Section 1 Course Section 2 

54% (124) 46% (106) 

Sex (n= 202)  Male Female 

22% (45) 78% (157) 

Class Standing 

(n= 203) 

Freshmen Sophomore Junior Senior 5th year 

student 

Other 

61% 

(123) 

19% (38) 11% 

(23) 

4% (8) 1% (2) 4% (9) 

Race/Ethnicity 

(n= 212) 

White Asian Historically 

Underserved Groups** 

66% (140) 11% (23) 23% (49) 
*Students who did not select a choice for a demographic question were omitted from the data shown in this table (Sex n=28, Class Standing n= 

27, Race Ethnicity n=18).                                    

 ** Includes students who self-identified as Black or African American, Hispanic, American Indian or Alaskan Native, Hawaiian or Other Pacific 

Islander or some combination of those selections.  

Results 

Distribution of Problem-Solving Process Use and Academic Measurements  

The distribution of the average correct reasoning measurements for individual students showed a 

slightly positively skewed distribution with most students providing 1-2 correct reasoning 

statements per documented problem-solving process and a few students providing more than 3 

(Figure 4). The distribution of the average incorrect reasoning measurements for individual 

students showed a positively skewed distribution with most students providing 0 incorrect 

reasoning statements per documented problem-solving process and a few students providing 1-2 

over the 8 quizzes. (Figure 4) All other problem-solving processes coded on student responses 

were seen in a small proportion of responses (Table 3). The change in correct reasoning use 



measurement showed a distribution centered around -.51 with many students using fewer correct 

reasoning statements on the final examination than they had on quiz 3 (Figure 5). The end of 

semester outcome variables all showed symmetric distributions with similar ranges centered 

between 70 and 73 percent (Figure 6).   

 

Figure 4. Boxplots showing the distribution of average correct and average incorrect reasoning use for study 

participants (N = 230). The average correct reasoning distribution had a mean of 1.77 average correct reasoning 

statements and a median of 1.75 average reasoning statements. The average incorrect reasoning distribution had a 

mean of .16 average incorrect reasoning statements and a median of 0.13 average reasoning statements. 

 

Table 3. Percentage of student responses coded for other problem-solving processes 

Coded Problem-Solving Process Percentage of Responses with Process Code 

(number of responses out of 2070) 

Short-Term Planning 19.68% (408) 

Long-Term Planning .92% (19) 

Eliminate 18.10% (375) 

Check 3.15% (65) 



 

 

 

 

Figure 5. Histogram showing the distribution of correct reasoning use change between quiz 3 and the final exam for 

study participants (N = 230). On average students used .51 fewer correct reasoning statements on the final 

examination than they did on the quiz 3 questions.   

 



  

 

Figure 6. Boxplots showing the distribution of end of semester academic success measurements FEP, FELP, and 

post-GCA for study participants (N = 230). The average total final examination percent (FEP) was 70.7. The average 

instructor generated final examination percent (FELP) was 71.6. The average GCA component final examination 

percent (post-GCA) was 69.2.  

 

Simple Linear Regression Models for Academic Success Outcome Variables 

No significant predictive relationships were found between the planning (short and long term), 

checking or eliminating process measurement variables, independently, and any of the three 

academic success outcome variables The following were all significantly predictive (p<.001), in 

individual models (N = 199), of final exam percent: correct and incorrect reasoning, practice 

problem completion and pre-GCA measurement variables (Figure 7). The SLR model using the 

correct reasoning measurement variable to predict total final examination showed a significant 

positive correlation (r = .49) between a student’s use of correct reasoning and their final 

examination score (Figure 7A). The SLR model using the incorrect reasoning measurement 

variable to predict total final examination showed a significant negative correlation (r = -.51) 

between a student’s use of incorrect reasoning and their final examination score (Figure 7B). The 

SLR model using the practice problem completion measurement variable to predict total final 

examination showed a significant positive correlation (r = .53) between a student’s completion of 

practice problems and their final examination score (Figure 7C). The SLR model using the pre-

GCA percent measurement variable to predict total final examination showed a significant 

positive correlation (r = .45) between a student’s pre-test score and their final examination score 

(Figure 7D). 



 

 

 

Figure 7. Plots of SLR models predicting total final exam percent. Average correct reasoning measure shows a 

significant positive relationship (β= 9.993, t = 7.848, p <.001) with total final exam percent (A). Average incorrect 

reasoning measure shows a significant negative relationship (β= -38.170, t = -8.28, p <.001) with total final exam 

percent (B). Number of extra credit practice problems measure shows a significant positive relationship (β= 3.184, t 

= 8.853, p <.001) with total final exam percent (C). Pre-GCA measure shows a significant positive relationship (β= 

.444, t = 6.993, p <.001) with total final exam percent (D) Regression line predictions are plotted in blue for total 

final exam percent (N = 199). Shaded regions represent 95 percent confidence intervals for regression line 

predictions. 

 

Multiple Linear Regression Models for Academic Success Outcome Variables  

The first MLR model for the FEP measurement (N = 199) produced statistically significant 

estimates for a student’s final examination percentage (Table 4). The model indicated that 

average correct reasoning, average incorrect reasoning, practice problems completed, and pre-



GCA as significant predictors. The second MLR model for the FELP measurement (N =199) 

produced statistically significant estimates for a student’s final examination instructor generated 

item percent (Table 4). The model indicated that average correct reasoning, average incorrect 

reasoning, practice problems, and pre-GCA score as significant predictors. The third MLR model 

for the post-GCA measurement (N = 199) produced statistically significant estimates for a 

student’s final examination GCA item percentage (Table 4). The three models indicated that 

average correct reasoning, average incorrect reasoning, practice problems completed, and pre-

GCA score as significant predictors for the student’s score on all components of the final 

examination.  

Table 4. MLR models predicting academic success outcome variables 

 Model 1: Outcome 

FEP 

Model 2: Outcome 

FELP 

Model 3: Outcome 

Post-GCA  

Model Adjusted R2 .56*** .49*** .5*** 

Average correct 

reasoning  

4.94*** 5.92*** 3.37*** 

Average incorrect 

reasoning  

-21.54*** -21.18*** -22.11*** 

Practice problems 

completed  

2*** 1.76*** 2.39*** 

Pre-GCA  .263*** .2** .37*** 

Unstandardized β reported for each predictor in the model. ***p<.001, **p<.01, *p<.05 

Academic Performance of Students Grouped by Average Correct Reasoning  

Students were grouped by their average correct reasoning measurement from their documented 

problem-solving on quizzes during the semester. These groups were designated as high 

intermediate and low reasoning. The high reasoning group consisted of students with an average 

reasoning measurement above one standard deviation from the class average (N = 31). The 

intermediate reasoning group consisted of students with an average reasoning measurement 

within one standard deviation from the class average (N = 158). The low reasoning group 

consisted of students who had an average reasoning measurement below one standard deviation 

from the class average (N = 41). Students in the high reasoning group had significantly higher 

average scores on all components of the final examination than students in either the 

intermediate or low reasoning groups (Figure 8). Students in the intermediate reasoning groups 

had significantly higher average scores on all components of the final examination than students 

in the low reasoning group. Students in the high reasoning group also had significantly higher 

average quiz scores than students in either the intermediate or low reasoning groups across all six 

quizzes during the semester (Figure 9). Students in the intermediate reasoning group had 

significantly higher average quiz scores than students in the low reasoning group for every quiz 

except quiz 2.  

 

 



 

Figure 8. Average percent score on components of the final assessment for students grouped by the average number 

of correct reasoning statements they made across the semester. High reasoning group (green) included students (N = 

31) who had average reasoning above one standard deviation (average number of correct reasoning statements > 

2.51). Intermediate reasoning group (orange) included students (N = 158) who had average reasoning within one 

standard deviation (2.51 > average number of correct reasoning statements > 1.03). Low reasoning group (blue) 

included students (N = 41) who had average reasoning below one standard deviation (average number of correct 

reasoning statements < 1.03). Standard error is plotted on each bar in the graph. Welch two-sample t-tests were used 

to test the significance of the differences between group scores  

 

 

Figure 9. Average percent score on quizzes for students grouped by the average number of correct reasoning 

statements they made across the semester. High reasoning group (green) included students (N = 31) who had 



average reasoning above one standard deviation (average number of correct reasoning statements > 2.51). 

Intermediate reasoning group (orange) included students (N = 158) who had average reasoning within one standard 

deviation (2.51 > average number of correct reasoning statements > 1.03). Low reasoning group (blue) included 

students (N = 41) who had average reasoning below one standard deviation (average number of correct reasoning 

statements < 1.03). Standard error is plotted on each bar in the graph. Welch two-sample t-tests were used to test the 

significance of the differences between group scores. 

 

Student Definitions and Perceptions of Problem-Solving Processes from Interviews 

Five female students participated in interviews after the completion of the semester (Table 5). As 

the students worked through genetics questions interviewers recorded the student’s use of 

planning, reasoning and checking problem-solving processes. The use of the reasoning process 

was observed in all five of the students interviewed, the planning process was observed in four of 

the five, while the checking process was only observed in two of the students. When asked to 

define the process of reasoning students described it as the way they thought through solving a 

problem. Student 1 defined the process of reasoning as “an explanation for why you think what 

you think”, Student 2 defined it as “thinking through everything and trying to find things to 

backup all of the answers or steps that you come to”. When asked to define the process of 

planning students described it as a method to map out or organize the information needed to 

solve a problem. Student 1 defined the process of planning as a way to “map out what you're 

going to do before you do it”, Student 5 defined it as “laying out like a rough sketch of what I'm 

going to do”. When asked to define the process of checking students described it as the way they 

made sure all of the information in the problem aligned with their selected answer. Student 5 

defined the process of checking as when “[I] go back and even information that I don't need to 

solve the problem, putting that in and making sure that that lines up with everything else”. Most 

of the interviewed students said that they thought they had been using both reasoning and 

planning prior to beginning the genetics course. They also described that it was a fundamental 

part of their problem-solving process. When the students were asked to look back at their own 

documented problem-solving responses, some discussed that they may have been doing certain 

things uncaptured by their self-documentation. Student 1 discussed a lack of planning in their 

self-documentation: “I guess I like to plan it before I do it, but I guess I didn't think about writing 

down that I planned it”. Student 3 mentioned that they felt there were some things they did that 

they did not write down when solving the problem: “I probably would have been thinking like 

the steps of meiosis in my head to try to figure it out”. 

Table 5. Interviewed student data* 

Student Final 

Examination 

Score 

Pre-

GCA 

Score 

Number of 

Practice 

Problems 

Completed 

Average 

Correct 

Reasoning 

Use 

Average 

Incorrect 

Reasoning 

Use 

Planning 

Process 

Percentage 

Checking 

Process 

Percentage  

1 91.2 54.2 8 2.25 0.25 0% 11% 

2 91.2 45.8 1 2.5 0 33.3% 0% 

3 76.8 20.8 6 Student did not complete all documented problem-

solving questions on quizzes 



4 58.4 20.8 8 Postbaccalaureate student excluded from main 

dataset 

5 90 37.5 8 Student enrolled in course section not included in 

main dataset 
*All students interviewed had completed the course with the same materials but not all were included in statistical modeling and data analysis due 

to failure to meet dataset inclusion criteria. 

Discussion 

Importance of Academic Preparedness and Content Practice in Student Academic Success 

Numerous factors impacted the academic success of individual students in the course as 

demonstrated by the regression modeling of data collected from the students. These models 

highlighted key factors that had significant impacts on how students performed on the final 

examination. The regression models show that a student’s prior knowledge of genetics concepts 

measured in the GCA assessment does have a significant relationship with their final exam 

performance. A recent study found prior knowledge to be correlated with academic performance 

for both biology and physics undergraduate students (Binder et al., 2019). It has also been shown 

that students who appear to have deficits in genetics content knowledge are more likely to make 

content specific errors when trying to solve complex genetics problems (Avena & Knight, 2019).  

Although student prior knowledge about genetics concepts was gauged by the GCA assessment 

at the beginning of the semester there was no measurement of a student’s prior academic success. 

A measurement of a student’s high school GPA or first-semester college GPA might have 

provided some additional information on a student’s general preparedness and success as a 

student before they enrolled in the genetics course. This type of measurement could have been 

used to control for additional variance in overall academic performance on the final examination. 

The number of optional practice problems a student completed was also shown to be a 

significant predictor of how well they would do on their final examination.  Previous studies 

have shown that practice test-taking not only improves a student’s current understanding of the 

material but also increases how well they are able to retain that information for use on later 

examinations (Roediger & Karpicke, 2006; Avena & Knight, 2019).  Analysis of these two 

factors suggests that a student’s academic success is related to their prior knowledge of genetics 

concepts and the number of genetics practice problems they completed. 

Importance of Reasoning During Problem-Solving in Student Academic Success 

The study showed significant associations between academic success and aspects of the student 

problem-solving process. The linear regression models generated from the student data suggest 

that a student’s effective use of reasoning plays an important role in their overall success in the 

genetics course. These reasoning problem-solving variables were significant even in the presence 

of the other preparedness and practice variables mentioned above. This provides evidence that 

the reasoning a student is doing when they solve problems can have an independent effect on 

their academic success. The average correct reasoning frequency measurement had positive 

correlations with total final exam percent while the average incorrect reasoning frequency 

measurement had negative correlations with total final exam percent. This suggests that the 

application of valid and logical reasoning to problem-solving had a positive impact on a student’ 

s success in the genetics course. Previous work on student problem solving in genetics on a 

previous semester of the same course had shown that the process of reasoning during problem 



solving was a major predictor of correctness on the problem (Avena et al., Submitted). Other 

work done on the relationship between student argumentation practices while drawing from 

multiple sources of information and the student’s ability to build their explanations of the genetic 

interactions they were examining supports the importance of reasoning in student academic 

success (Ageitos et al., 2019).  

Another finding of this study was that the student’s use of reasoning was a significant predictor 

of performance on both the instructor generated and GCA items on the final examination. The 

unstandardized β prediction for the average correct reasoning predictor variable was larger in the 

model predicting instructor generated item score (5.92) than it was in the model predicting GCA 

item score (3.37). This suggests that further investigation of associations between student 

reasoning and academic performance on different types of genetics questions could prove 

interesting. This study suggests that the amount of reasoning used to work through genetics 

problems is highly significant in a student’s summative performance in an introductory genetics 

course. An earlier study examined the importance of student reasoning ability in eleventh-grade 

students and found that the reasoning measurements accounted for a significant portion of 

student understanding of genetics concepts (Kılıç & Sağlam, 2014). When students in the current 

study were grouped by their reasoning use, significant differences in academic performance were 

observed between all groups for all components of the final examination and almost all quizzes. 

This suggests that reasoning is critical for the success of students learning to solve complex 

problems in genetics. 

Complexities in Measuring the Problem-Solving Process of Reasoning 

In past studies, researchers have focused on how student reasoning influences student 

perceptions of self-efficacy and achievement in introductory biology (Lawson et al., 2007). The 

authors examined trends in student reasoning and self-efficacy, finding that both increased over 

the course of the semester. The current study examined how student’s use of correct reasoning on 

their documented problem-solving changed between the two questions they were given on quiz 3 

and the question they were given on the final examination. These comparison points were chosen 

to best control for the impact of question content on reasoning because the final examination 

question was a combination of the two topics from the quiz 3 questions. No significant increase 

in reasoning use coded on questions given to students on quiz 3 and the final examination was 

found. This could be partially due to the significant time limitations placed on the students when 

they had to complete their documented problem-solving while taking the in-class final 

examination. In contrast, the students were able to complete their documented problem-solving 

for the quiz questions on the online portion of each quiz. If reasoning measurements had been 

compared between quizzes with similar questions at the beginning and end of the semester, we 

may have observed an average increase in reasoning use instead of a small decrease. 

The questions students were asked to answer during the study were all questions with only one 

correct answer. Although the questions did allow students to construct their own answers and 

allowed the students more latitude in their answers than multiple choice questions, the questions 

used still only had single correct answers. It is possible that the nature of the question being 

asked has some impact on the type and or amount of reasoning observed in the students. If 

students were allowed to fully construct their responses with a small range of correct answers, 

we may have seen a different distribution of reasoning. This idea is supported by a recent study 

on the impact of situational features of reasoning tasks in genetics (Shea et al., 2015). The 



authors discussed a model for understanding what they called genetics literacy which includes 

student argumentation ability, content knowledge use and the connection between the two. The 

content knowledge of genetics literacy was the component the present study aimed to capture 

using the GCA. The connection between argumentation and content knowledge was the 

component that the present study aimed to measure by coding student connections between 

evidence and claims as reasoning. A measurement of argumentation ability or complexity of 

student reasoning could have been useful in more holistically capturing the process of student 

reasoning.   

The measurements of student reasoning during problem-solving in this study relied only on a 

measurement of reasoning frequency. This limited the information about a student’s reasoning 

behavior that was incorporated into the reasoning problem-solving process measurement. A 

measurement of the quality, complexity and or clarity of the student’s reasoning would have 

provided additional information about how the student was using reasoning as they solved the 

genetics problems. Prior studies on student reasoning during in-class discussions have used 

quality of reasoning measurements within group contexts to investigate how instructional cues 

can promote student reasoning (Knight et al., 2013; Knight et al., 2015). This study did not use a 

quality of reasoning metric due to difficulty in the construction of a reliable measure of rating 

quality of individual student reasoning across a wide range of questions on different genetics 

topics. The generation of a quality of reasoning metric that could be standardized to each 

question could have been useful in assessing student reasoning in combination with the 

frequency of reasoning measurement. An understanding of how students use different levels of 

reasoning may better describe how a student’s reasoning during their problem-solving relates to 

their solution to the problem. 

Limitations 

Due to the limited sample size, and sampling from a single semester the results of this study may 

not be entirely representative of students across different semesters of the genetics course or of 

students enrolled in genetics courses at different universities. Investigation of data from multiple 

semesters of the genetics course at the University of Colorado Boulder would provide additional 

support to the results of this study. The problem-solving process measurements relied on the 

students accurately documenting their own internal problem-solving processes. The data from 

the interviews conducted with students suggest that certain problem-solving processes such as 

planning may not be self-documented reliably by the students. While the students could have 

been deciding on what steps they would have to take internally they may not have written down 

these steps in their self-documentation. Both interviewed Students 1 and 2 discussed parts of the 

problem-solving process they believed they had done while solving the problem that were absent 

from their written self-documentation. This suggests that the student self-documentation may be 

under capturing or missing certain aspects of the student problem-solving process. The relatively 

low frequency of planning and checking codes in student responses supports this idea. It is 

possible that certain components of the problem-solving process are more difficult for students to 

document because they are so intuitive. Changes to the documented problem-solving question 

prompts or could have resulted in better capture of the planning and checking process by more 

directly prompting students to think about those processes. 

Implications for Genetics Instruction 



Instructors are unable to control how much a student already knows about genetics topics, how 

prepared they are for their coursework in general, or how much they practice with the course 

material on their own time. However, instructors may be able to encourage the use of reasoning 

during problem-solving by showing students how to utilize reasoning during class time. The data 

suggest that the amount of reasoning a student uses when solving problems can have an 

independent impact on student performance on the final examination. The study suggests that 

genetics instructors could have significant impacts on how students perform in their course by 

helping their students increase their reasoning use during problem solving. The data suggest that 

this improvement in performance based on reasoning behavior may be independent of a student’s 

prior knowledge of genetics content and the amount of practice the student completes. A past 

study suggested that statistical modeling of student performance and reasoning may allow 

instructors to assist their students in recognizing effective problem-solving strategies (Stevens et 

al., 2005). A better understanding of how components of the student problem-solving process 

relate to student academic performance could help instructors promote problem-solving 

behaviors in their students. Instructors who are able to foster the importance of justifying claims 

answers with reasoning may be able to provide their students a significant increase in academic 

performance. 
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