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Abstract 

 

With the explosive growth in cryptocurrencies over the last couple of years, the cost of 

mining these technologies (the process through which users devote CPU power to operate the 

underlying blockchains) have similarly exploded. This paper examines one overarching question 

regarding this issue – what factor or factors explain the geographic distribution of cryptocurrency 

nodes (mining operations) across the world? In exploring this question, this research considers 

electricity price, internet access, Tor network relays, and others. Using node distribution data for 

Bitcoin and Ethereum – the two largest cryptocurrencies – this paper analyzes cross-sectional 

and panel data regression models, and establishes that electricity price has not played a 

significant role in this distribution up to this point, and concludes that the historical association 

between Tor relays and Bitcoin use has had a much greater impact. Lastly, this paper discusses 

the broader implications of its findings, and the potential areas of research for further 

understanding of this field. 

 

 

 



Brown 3 
 

ACKNOWLEDGEMENTS 

In the initial development of this paper, great insight and advice as to potential literature 

and data sources to draw off of were suggested by Giri Subramaniam, a graduate assistant at the 

Federal Reserve of Boston inside the Consumer Payments Research Division. 

Throughout the paper, in order to collect all data for Bitcoin and Ether nodes, Karl Roos, 

a friend and colleague, provided immense technical assistance in writing all necessary code to 

scrape the data used in this paper. Without his assistance, this research would not have been 

possible. 

This paper thanks both Giri and Karl for their immense help in developing and 

conducting the research examined in this paper. 

 

 

 

 

 

 

 

 

 

 



Brown 4 
 

TABLE OF CONTENTS 

 
Abstract ......................................................................................................................................................... 2 

Acknowledgements ....................................................................................................................................... 3 

Table of Contents .......................................................................................................................................... 4 

Introduction ................................................................................................................................................... 5 

Background Definitions ................................................................................................................................ 6 

Literature Review .......................................................................................................................................... 7 

Data ............................................................................................................................................................. 10 

Cross-Sectional .............................................................................................................................. 10 

Panel............................................................................................................................................... 12 

Methodology ............................................................................................................................................... 13 

Results ......................................................................................................................................................... 15 

Cross Sectional: Electricity Price and Internet Access .................................................................. 15 

Cross Sectional: Tor Relay ............................................................................................................ 17 

Panel: Tor Relay ............................................................................................................................ 20 

Discussion ................................................................................................................................................... 22 

Limitations ..................................................................................................................................... 22 

Discussion of Sign Flip .................................................................................................................. 23 

Broader Discussions....................................................................................................................... 25 

Conclusion .................................................................................................................................................. 26 

References ................................................................................................................................................... 28 

Tables and Figures ...................................................................................................................................... 30 

 

 

 

 

 

 

 



Brown 5 
 

INTRODUCTION 

Within the months leading up to the publication of this paper, numerous reports have 

taken into question whether – due to the astronomical energy usage and cost of mining Bitcoin – 

cryptocurrencies are a sustainable technology. Using electricity price data and cryptocurrency 

node data across countries, this paper establishes the extent to which electricity price influences 

the prevalence of cryptocurrencies nodes within a country. Originally, this paper intended to 

answer one question: How does the effect of electricity price on node count depend on the level 

of internet access within a given country? However, as we will see later, electricity prices do not 

significantly explain the presence of nodes. Thus, a search for significant drivers in node count 

led to a second research question: How do the number of Tor network relays affect the number of 

cryptocurrency nodes within a given country? Both research questions provide interesting 

insights into the geographic distribution of Bitcoin and Ethereum nodes. 

 The issue of electricity cost in Bitcoin mining has been a recurring and persistent point of 

debate in cryptoeconomic discourse. To place the scale of Bitcoin electricity use in perspective, a 

recent report found that the one-year electricity consumption of the Bitcoin network was, 

“…commensurate with CO2 emissions of 20 megatonnes – or roughly 1m transatlantic flights.” 

(Hern, 2018) With annual electricity usage encompassing the total usage of some G20 countries, 

the feasibility of the Bitcoin network – both in terms of cost and environmental degradation – has 

come into question. 

 Despite the looming and inevitable electricity problem that exists within the 

cryptoeconomic sphere, the literature regarding this issue is sparse, as most literature has delved 

into valuation methods for cryptocurrencies. Several notable papers, however, provide a baseline 

for this research. First, Athey et. al. (2016) constructs a theoretical adoption model of Bitcoin, 
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and touches somewhat on geographic distribution and use. Second, Hayes (2017) examines 

electricity price with regards to cryptocurrencies. The paper, however, considers electricity price 

solely as a valuation method for price predictions. As research in this field is relatively scarce, 

this paper will contribute to the cryptoeconomic field in three ways: first, it establishes that 

electricity price, up to this point, has played an insignificant role in the geographic distribution of 

Bitcoin and Ether nodes. Second, it posits that the most significant driver in node distribution has 

been Tor network relays, which suggests that distribution up to this point has had much more to 

do with historical ties than rational economic decisions. Lastly, drawing upon both initial 

findings, this paper offers insight as to when or whether electricity price might play a role in 

distribution in the future. 

BACKGROUND DEFINITIONS 

 As cryptoeconomics is a very new field, a background section separate from an 

introduction was deemed necessary to define key words and ideas mentioned throughout this 

paper.  

Cryptocurrency: “a digital currency in which encryption techniques are used to regulate 

the generation of units of currency and verify the transfer.” (Oxford Dictionary, 2018) 

Bitcoin: the largest by market capitalization and generally deemed the first 

cryptocurrency, it was created in 2008 by a person or persons using the pseudonym 

“Satoshi Nakamoto”. (Nakamoto, 2008) 

Ether: the second largest cryptocurrency by market capitalization, Ether was created in 

2015 with several unique features separate from Bitcoin. Ether is the currency of 

Ethereum, the underlying blockchain. 
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Blockchain: the underlying technology on which cryptocurrencies operate – “a digitized, 

decentralized, public ledger of all cryptocurrency transactions.” (Investopedia, 2018) 

Bitcoin and Ether operate on separate blockchains. 

Mining: the process through which transactions are verified on the blockchain through 

the operation of “nodes”, where individuals devote CPU power to verify transactions, and 

in turn receive transactional fees and “mine” additional units of the associated 

cryptocurrency as they are created. 

Tor: an anonymized internet browser developed by the US military in the 1990s, where 

the identity and location of individuals using the browser are masked. 

Tor relay: essentially a “node” of the Tor network. Thousands of Tor relays across the 

world anonymize the IP address of an individual using the Tor browser by bouncing the 

IP address across a randomized selection of relays using high levels of cryptography. 

 Additional terms will be presented as they arise in the research, and the terms will be 

covered more extensively where necessary, but a general understanding of the above terms helps 

present an idea of the general cryptoeconomic ecosystem. 

LITERATURE REVIEW 

Within the field of cryptoeconomic research, literature can be divided into four broad 

categories: financial analysis, political and regulatory affairs, technology flaws and applications, 

and macroeconomic analysis. The first category, financial analysis, deals mostly with research 

involving pricing predictions, although other financial characteristics of cryptocurrency – 

especially volatility – have been extensively examined. Political and regulatory affairs are 

primarily related with the intersection of government and cryptocurrencies/blockchain 
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technology – how taxing structures might look and whether governments might oppose digital 

currencies. Technology research in this field delves into some of the supposed flaws behind 

blockchain technology – vulnerability to hacks, for instance – and the different applications of 

blockchain technology. Lastly, macroeconomic research into cryptocurrencies deals with a much 

larger scope – macroeconomic implications of cryptoeconomic growth including impacts on 

international monetary flows, effects on workforces and productivity, and the different 

characteristics of large-scale use for cryptocurrencies. 

 Predicting value in cryptocurrencies is the most extensively-studied area in this field. 

Studies have concluded that traditional pricing mechanisms for other assets – equities, for 

instance – are vastly different than predictive algorithms for cryptocurrencies, as digital 

currencies don’t publish financial statements upon which to base value. Because of this, research 

in this field has delved into several different predictors for cryptocurrency price.  One such paper 

structured a pricing model based on mining, in which the model could predict (with some degree 

of success) the price of 66 different cryptocurrencies using “the level of competition in the 

network of producers, the rate of unit production, and the difficulty of algorithm used to “mine” 

for the cryptocurrency.” (Hayes, 2017) Further valuation models have taken other factors into 

account, such as the volume of cryptoeconomic-related media mentions (Polasik et al., 2015). 

Along with pricing and valuation models, other papers have studied in-depth the volatility of 

cryptocurrency prices. For instance, the volume of cryptocurrency transacted as a predictor of 

volatility (Balcilar et. al,  2016) and a GARCH volatility analysis  as a means to classify Bitcoin 

in an asset class (Dyhrberg, 2015) are two preeminent papers in the field. 

 The potential flaws of blockchain technology were first examined in the paper which 

created this entire field, “Bitcoin: a peer-to-peer electronic cash system” (Nakamoto, 2008). (The 
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author (or authors) of this paper, Satoshi Nakamoto, used a pseudonym to develop what is now 

Bitcoin). Other potential flaws and specific applications of blockchain technology (such as smart 

contracts and crypoeconomic financial transactions) and proposed future applications (such as 

digital identities) have been examined. (Pilkington, 2015)  

Regulatory research into cryptocurrencies is a quickly-expanding field. Digital asset 

exchange regulations (Pieters & Vivanco, 2017), along with effects of these technologies on 

government functions such as monetary policy and central bank seigniorage (Committee on 

Payments and Market Infrastructures, 2015), have been two areas of thorough examination.  Tax 

implications have been a controversial area within cryptoeconomic research, but the current state 

of government cryptoeconomic tax policies, along with routes in which these policies may 

follow, have been examined by Akins et. al, 2015. Since this paper, however, a variety of new 

regulatory legislation has been introduced, so further research into this field is necessary.  

 Macroeconomic analysis primarily explores the growth of cryptocurrencies and 

blockchain technology and the methods in which these technologies are being used. This is also 

the field to which this paper contributes. Adoption of cryptocurrencies – both empirically and 

theoretically – has been extensively covered (Athey et. al, 2016), and closely relates to the 

research conducted in this paper. Athey’s paper further examines aspects such as geographic 

cryptocurrency use, which is further explored through the research in this paper. User 

characteristics have also been analyzed through the analysis of Google Trends data (Yelowitz & 

Wilson, 2015). Along with uses, this field has developed research into the economic growth 

these technologies have – and could – facilitate. For instance, the use of cryptocurrencies in 

developing countries for stability and regional payments has been explored (Magee, 2015). 

Furthermore, the growth of cryptocurrencies in different functions – for example, payments and 
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wallets (virtual “bank accounts”) – along with the growing number of users and even careers 

within the field, has been explored in great detail. (Hileman & Rauchs, 2017) This paper 

combines aspects from each of the aforementioned papers to delve further into the examinations 

of adoption, use, and distribution. 

 Cryptoeconomics is a quickly-growing field, and finance, technology, politics, and 

macroeconomic analysis have been areas of extensive research, even if Bitcoin has existed only 

for nine years. The research conducted in this paper will likely touch on each of the four 

categories in varying degrees, however, macroeconomic analysis is surely the category in which 

this paper will contribute most extensively. Branching off some of the geographic analyses 

performed in papers such as Athey et. al (2016) through the utilization of blockchain node data 

is, by my knowledge, a first-of-its-kind look into these technologies.  

DATA 

Cross-Sectional: 

Data for this research has been obtained from a variety of sources. The Bitcoin node and 

Ether node data are of most critical importance. To obtain Bitcoin data, Karl Roos (mentioned 

under the “Acknowledgements” section) provided immense technical assistance, and wrote 

scripts to gather this data from earn.com, a popular bitcoin website which, as a side project, 

created bitnodes.earn.com, from which the relevant data was scraped. Roos summarized the 

method for scraping this data: “Earn.com has a project aimed at cataloguing all the Bitcoin nodes 

in the world over time – their method of doing this is by pinging nodes on the Bitcoin network at 

a specific time (snapshot). They then log the IP and attach meta data (geo IP information for 

example). Our method for obtaining the data was to build a script that utilized the open API to 
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first list all the available snapshots and then download them, they currently publish the previous 

180 days with a granularity of roughly every 5-6 minutes which means a total of about 46,000 

files.” From these 46,000 files, 200 were sampled over the 180-day time frame and compiled to 

construct a list of average number of nodes per country. Similarly, for Ether data, Roos wrote 

another script, this time compiling data from ethernodes.org, another blockchain data aggregator. 

Due to the lack of variation in node count across the 180-day timeframe analyzed for Bitcoin, 

only the most recent snap shot was scraped for Ether data (around mid-January 2018). (Figures 1 

& 2 display a geographical density map of the current distribution of nodes.) 

Once the Bitcoin and Ether data were complete, data for other variables were relatively 

simple to collect. The primary variables of interest in the initial regressions are electricity price 

(a measure of electricity cost, in cents, per kilowatt hour) and internet access (the proportion of 

people with access to the internet within a country). Electricity price data is sourced from 

Wikipedia, as minimal data is available. However, per the article, the price data is collected from 

official government sources. Internet access data, along with bank account (the proportion of a 

country with a bank account), real GDP (real GDP of the country in 2010 dollars), GDP growth 

(one-year growth of the country’s GDP), and population (population of the country) data are 

sourced from the World Bank – these data sets are from 2016. Innovation scores (a country’s 

Global Innovation Index) are sourced from the World Intellectual Property Association, also 

from 2016.  

In the second set of cross-sectional regressions, the primary variable of interest is the 

number of Tor network relays per country. The Tor relay data is obtained from Tor Metrics, the 

publicly-available dataset on Tor use provided by the Tor Foundation. (Figure 3 displays a 

density map of the current distribution of Tor relays). The only other additional dataset to the 
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second set of cross-sectional regressions is a liberty index which estimated – on a scale of 1 to 10 

– the degree of personal liberties enjoyed in each country. This index was sourced from the Cato 

Institute and created in 2016. A summary of cross-sectional data, listing averages, ranges, 

expected signs and other relevant information is listed below: 

Table 1: Cross-Sectional Data Descriptive Statistics 

Cross Sectional Data      

Variable Unit Mean Min Max 

Expected 

Sign 

Index 

Range 

bitNode node 182.05 2 3061 N/A N/A 

ethNode node 493.82 6 8470 N/A N/A 

elecPrice cents/kwh 16.91 4 41.8 ( - ) N/A 

internet proportion 0.67 0.11 0.96 ( + ) N/A 

torRelay relay 37.2K 381 489.4K ( + ) N/A 

innovate (index) 43.45 21.9 63.8 ( + ) 0 to 70 

gdpReal 

2010 

USD 1.240T 7.33B 16.9T ( + ) N/A 

gdpGrowth % 2.52 -3.59 7.11 ( + ) N/A 

pop person 101.2M 1.950M 1.409B ( + ) N/A 

liberty (index) 7.5 5.37 8.88 ( + ) 0 to 10 

 

Panel Analysis: 

 Data on cryptocurrency node distribution across time is extremely scarce. To obtain this 

data, an exhaustive search led to a script repository on a popular code-sourcing website, GitLab. 

Again, Karl Roos provided immense assistance in successfully cloning and running this code, 

and Bitcoin node data per country was obtained for the years 2013-2016. The Bitcoin panel 

dataset includes any countries which had at least one Bitcoin node for one or more years within 

the time frame under consideration. Unfortunately, as Bitcoin is relatively older than Ethereum 

(Bitcoin being founded in 2008, Ethereum in 2015), node data across time for Ether is 

unavailable. 
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 Several additional variables are included in the panel set, all for the years 2013-2016. 

Data on democratic standing (with countries being ranked from -10 to 10) is sourced from the 

Polity Project, data on the degree of economic freedoms enjoyed per country is sourced from the 

Heritage Foundation (the index ranging from 0 to 100, with higher scores corresponding to more 

economic freedoms), and a corruption index is sourced from Transparency International (also 

from 0 to 100, with higher scores corresponding to higher levels of corruption). Lastly, an index 

examining the extent of money laundering in the country is later included, this index being 

sourced from Basel Governance (scores ranging from 1 to 10, with higher scores corresponding 

to higher degrees of laundering activity). A summary of relevant descriptive statistics for the 

panel data is listed below: 

Table 2: Panel Data Descriptive Statistics 

Panel Data       

Variable Unit Mean Min Max 

Expected 

Sign 

Index 

Range 

torRelay relay 24.5K 66 424.5K ( + ) N/A 

internet % 65.81 12 97.49 ( + ) N/A 

innovate (index) 43.65 23.1 68.3 ( + ) 0 to 70 

gdpReal 

2010 

USD 919.0B 4.3B 16.9B ( + ) N/A 

gdpGrowth % 2.74 -9.77 25.56 ( + ) N/A 

pop person 72.3M 423K 1.38B ( + ) N/A 

polity (index) 6.48 -10 10 ( + ) -10 to 10 

econFreedom (index) 65.93 40.27 9.01E+01 ( + ) 0 to 100 

corruption (index) 53.86 24 92 ( + ) 0 to 100 

launder (index) 5.21 2.51 8.61 ( + ) 0 to 10 

 

METHODOLOGY 

To conduct the initial regressions, the primary variable of interest in predicting node 

count for both Bitcoin and Ether is an interaction term between electricity price and internet 
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access. (Figures 4 & 5 display scatterplots of the relationship between electricity price and 

nodes). Through the interaction of electricity price and internet access, the initial regressions 

seek to examine under which conditions electricity price is significant. The initial regression is as 

follows: 

nodes*ᵢ = β₀ + β₁[elecPriceᵢ x internetᵢ] + β₂elecPriceᵢ + β₃internetᵢ + β₄innovateᵢ + 

β₅bankAccountᵢ + β₆log(popᵢ) + β₇log(realGDP)ᵢ + β₈gdpGrowthᵢ + ԑᵢ  

(*where nodes refers to either Bitcoin or Ether nodes) 

As mentioned previously, several variations of the initial cross-sectional regressions 

examining electricity price yield insignificant results. As such, two new cross-sectional 

regressions (one for Bitcoin and one for Ether) are constructed to find a more significant 

predictor of node count, this time examining Tor network relays. A Tor relay can be thought of 

like a Bitcoin node – individuals across the world can set up a Tor relay wherever internet is 

available. For the Tor network to operate successfully, many of these relays are necessary, as an 

individual will access the internet via Tor, and Tor will then reroute the individual’s IP address 

(and thus location) across a randomized number and pathway of relay locations. This makes 

tracking the individual’s activity and location incredibly difficult, almost impossible.  

Tor is the primary method to access the Deep Web – a “hidden” underlayer of the internet 

for which pages are not indexed by search engines. As Tor provides an anonymous, encrypted 

way to access the internet, it is often used to access illegal marketplaces on the Deep Web, where 

guns, drugs, counterfeit documents, and any number of illegal goods and services are available 

for purchase. Many times, Bitcoin is the easiest way to pay for these goods and services, which 

suggests a causal relationship of Tor relays on Bitcoin nodes. The cross-sectional regression 

examining Tor relays is listed below: 
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nodesᵢ = β₀ + β₁torRelayᵢ + β₂elecPriceᵢ + β₃internetᵢ + β₄innovateᵢ + β₅bankAccountᵢ + 

β₆log(popᵢ) + β₇log(realGDP)ᵢ + β₈gdpGrowthᵢ + β₉[elecPriceᵢ x internetᵢ] + ԑᵢ 

After conducting the cross-sectional analysis, a panel model is constructed for Bitcoin, 

modeling a four-year period (2013-2016). In this analysis, the primary variable of interest is Tor 

relays. As will be discussed later, Tor relays significantly affects the number of nodes. Other 

controls are employed, including freedom (a ranking of socioeconomic freedoms enjoyed by 

countries and developed by the Cato Institute, 2016), which is included to isolate the effect of 

Tor relays on Bitcoin nodes. The reasoning behind this inclusion stemmed from Athey et. al.’s 

(2016) research, which identified three main Bitcoin user groups: libertarians, criminals, and 

traders. As libertarianism and Tor use can often go hand-in-hand, the freedom index is included 

to separate these effects. 

RESULTS 

Cross-Sectional: Electricity Price and Internet Access 

In the initial phase of this paper, the significance of electricity price – dependent on a 

given level of internet access – is the variable of primary interest. However, neither electricity 

price, nor the interaction between electricity price and internet, proved significant. For example, 

the average proportion of internet access through all countries in this sample is 0.67. Taking the 

interaction term coefficient (-44.28), multiplying this by the 0.67 internet average, and adding 

the standalone electricity price coefficient (29.4) shows that, at this level of internet access, a 

one-cent increase in electricity price corresponds to a 0.26 decrease in the number of Bitcoin 

nodes. (See Table 3, Regression 1) The sign of the interaction term coefficient is interesting. 

Both electricity price and internet access have positive (non-significant) coefficients, but the 
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effect of electricity price on node count given an increase in internet access had a negative effect, 

suggesting that the sign of the effect of electricity price on node count changed depending on 

some threshold for internet access. To calculate this threshold, we examined the derivative of the 

first regression with respect to electricity price, assigned s to represent some threshold internet 

value, and set the equation equal to zero (shown below). 

0 = (-44.28)s + 29.4 

For Bitcoin nodes, this threshold is 66.4% -- countries with internet access values above 

this experienced negative effects of electricity price on node count, and countries with internet 

access values below this experienced positive effects of electricity price on node count. More 

broadly speaking, this suggests that node agents in developed countries (with higher internet 

levels) are more inclined to be adversely responsive to increases in electricity prices, while 

developing countries are less likely to diminish node operations based on electricity price 

increases. Although electricity price and internet access had insignificant effects in this 

regression, the R-squared is fairly high, with 30.93% of the variation in Bitcoin nodes being 

explained by the regression, likely due to the fact that the innovation index is significant at the 

5% level, and population is significant at the 10% level. (See Table 3, Regression 1) 

 Results are similar in initial cross-section Ether models. At the same average internet 

access level of 67%, by taking the interaction term coefficient (-204.29), multiplying this by the 

0.67 internet average, and adding the standalone electricity price coefficient (121.12), we find 

that a one-cent increase in electricity price corresponds to a 15.75 decrease in Ether node count. 

(See Table 4, Regression 1) This time, the coefficient is significant, but at the lowest level 

(10%). Though the interaction effect is greater in the Ether model, electricity prices in the sample 

only range from 4 to 42 cents per kwh, so a one-cent increase represents a substantial price 
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increase. Again, both electricity price and internet access on their own have positive effects on 

Ether node count, but the interaction term between the two variables had a negative effect. The 

threshold of internet access for the Ether regression for which positive and negative effects of 

electricity price are centered, calculated using the same methods as in the Bitcoin node model, is 

59.3%. The adjusted R-squared in this model is 35.9%, this time with the innovation index being 

significant at the 1% level, and population significant at the 5% level. (See Table 4, Regression 

1) 

 Although the interaction between electricity price and internet access met some level of 

statistical significance in the Ether models, this interaction is not statistically significant in the 

Bitcoin model, and not nearly as significant as initially expected. This statistical insignificance of 

electricity price led to another question – if electricity price isn’t a significant predictor of node 

count, what is? The significance of the innovation index and population are, for the most part, 

uninteresting, as their influence is self-explanatory. More technologically-sound countries and 

more populous countries will likely have greater counts of both Bitcoin and Ether nodes.  

Cross-Sectional: Tor Relay 

There is much literature regarding Bitcoin user groups, and specifically those in the 

“illegal activity” group. Foley et. al. (2018) estimated that around $72 billion in illegal activity is 

processed with Bitcoin each year. Athey et. al (2016) similarly recognized the extensive use of 

Bitcoin to participate in laundering and illegal activity. The extensive literature covering Bitcoin 

and its relation to illegal activity prompted a second set of models, this time using Tor network 

relays as a predictor of Bitcoin and Ether nodes. Tor is an anonymized internet browser which 

masks the profile and location of an individual. Using the Tor browser, an individual can access 

the so-called “Dark Web” and purchase drugs, weapons, counterfeit documents, and various 
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illegal goods and services. As discussed briefly in the background section of this paper, a Tor 

Relay can be thought of akin to a node – dispersed around the globe, operated by individuals, 

and used to operate the Tor network. The more Tor relays in the world, the more secure the Tor 

network. After an extensive review of the literature concerning illegal Bitcoin activity and the 

utilization of Tor to facilitate this activity, the second set of cross sectional regressions analyzed 

the effect of Tor relays on Bitcoin and Ether node count. 

The results of these new models establish the significance of Tor relays in node count. To 

preface these results, Bitcoin node count in this regression ranged from 2 to 3,061, Ether node 

count from 6 to 8,740, and Tor relay count from 381 to 489,483. A 10-relay increase in Tor 

relays, for example, led to a 0.036 increase in the number of Bitcoin nodes in a country. The 

positive sign of this coefficient was expected, and the coefficient is significant at the 0.1% level. 

Similarly, with Ether, a ten-node increase in Tor relays corresponds to a 0.089 increase in the 

number of Ether nodes in a country, a value significant at the 0.1% level. Both models yield high 

R-squared values, with 64.09% and 64.85% of the variation in Bitcoin and Ether node count 

being explained by the regression. Interestingly, the positive signs on electricity price and 

internet access in the previous set of regression become negative in the Tor relays regressions, 

suggesting that the coefficient were positively biased until the inclusion of Tor relay accounted 

for this positive association. The innovation index is again positive and significant at the 1% 

level in both regressions, while population is positive and significant at the 10% level only in the 

Ether regression. (See Tables 3 & 4, Regression 2) 

 Although Tor relays proved to have a very significant role in node count, another set of 

regressions are modeled to validate these effects. In conducting the next set of regressions, we 

supposed that a significant portion of Tor users are – as literature has discussed – libertarians 
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(see Athey et. al, 2016). Perhaps Tor relay by itself isn’t a good predictor of node count, because 

it captures the effect of libertarians on node count. To isolate these effects, we ran another set of 

regressions – identical to the Tor relay models – however, this time including a country-specific 

liberty index developed by the CATO Institute (a libertarian think-tank). Actual data on the 

number or proportion of libertarians per country would have likely been more relevant, however, 

this data is not available. These models do not alter our original findings of the significance of 

Tor relay. The coefficient of Tor on Bitcoin node count changed from 0.036 to 0.037, while 

remaining significant at the 0.1% level. Similarly, the coefficient of Tor on Ether node count 

changed from 0.089 to 0.091, still remaining significant at the 0.1% level. The R-squared values 

increased slightly, with 67.17% and 67.86% of the variation in Bitcoin and Ether node count, 

respectively, being explained by the variables under consideration. (See Tables 3 & 4, 

Regression 3) 

 The initial cross-sectional results provide great insight into the distribution of Bitcoin and 

Ether nodes – namely, they demonstrate that electricity price doesn’t matter in this distribution, 

or at least it hasn’t mattered up to this point. Furthermore, these results demonstrate that Tor 

relays play a very significant role in this distribution. After the cross-sectional regressions were 

completed, an exhaustive search for node count data over a period of years led to the discovery 

of Bitcoin node data from the years 2013-2018. Unfortunately, most of the variables included in 

the cross-sectional regressions only contained data through 2016, and no such data was available 

for Ether, so a panel of data was constructed examining Bitcoin node for the years 2013 through 

2016. The two main panel analyses (OLS and fixed effects) are listed below. 
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OLS: 

nodesᵢ,ₜ = β₀ + β₁torRelay ᵢ,ₜ  + β₂elecPrice ᵢ,ₜ  + β₃internet ᵢ,ₜ  + β₄innovate ᵢ,ₜ  + 

β₅bankAccount ᵢ,ₜ  + β₆log(pop ᵢ,ₜ) + β₇log(realGDP ᵢ,ₜ) + β₈gdpGrowth ᵢ,ₜ + ԑ ᵢ,ₜ  

Fixed Effects: 

nodesᵢ,ₜ = β₀ + β₁torRelay ᵢ,ₜ  + β₂elecPrice ᵢ,ₜ  + β₃internet ᵢ,ₜ  + β₄innovate ᵢ,ₜ  + 

β₅bankAccount ᵢ,ₜ  + β₆log(pop ᵢ,ₜ) + β₇log(realGDP ᵢ,ₜ) + β₈gdpGrowth ᵢ,ₜ + α ᵢ +  

δ ₜ + ԑ ᵢ,ₜ 

Panel: Tor Relay 

 The first regression ran is an OLS on the panel data, and it yields results similar to the 

cross-sectional regressions. Tor relay has a positive and significant at the 0.1% level. This time, 

however, a 10-relay increase leads to a 0.001 increase in the number of Bitcoin nodes, which is 

noticeably smaller than the magnitudes derived previously. The innovation index is positive and 

significant at the 0.1% level, and population is again significant at the 1% level. The R-squared 

is slightly lower than in our previous results, with 28.93% of the variation in Bitcoin nodes 

across the period 2013-2016 being explained. (See Table 5, Regression 1) 

 In addition to the OLS regression, a Fixed Effects model is regressed, examining both 

country and time fixed effects. These results present an interesting twist – after country and time-

fixed effects are taken into account, the sign of the coefficient on Tor relay switches. Now, a 10-

relay increase corresponds to a .002 decrease in the number of Bitcoin nodes in a country, a 

value still statistically significant at the 0.1% level. The innovation index is significant at the 5% 

level. (See Table 5, Regression 2) 
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 The sign flip of Tor relays brought about further research into why this is the case. In an 

attempt to identify an omitted variable (which is positively associated with both Tor relays and 

Bitcoin nodes), a second two-way fixed effects model is constructed. In this model, several new 

country-specific indices are included. Polity scores, developed by the Polity Project, measure a 

country’s democratic standing and are included to examine whether government institutions can 

explain both nodes and relays. An economic freedom index is similarly included, with the 

reasoning that greater levels of economic freedom will correspond with more Bitcoin nodes and 

Tor relays. Lastly, both a corruption index and a money-laundering index are included – both of 

these indices are included as an extension of Athey et. al. (2016) and other literature, which 

identify illegal activity as a major proportion of Bitcoin and Tor use. 

 This model fails to adjust the negative coefficient on Tor relay. Neither democratic 

standing, economic freedoms, corruption, or laundering captured the negative effects. In this 

model, a 10-relay increase in Tor corresponds to a .003 decrease in the number of Bitcoin nodes 

in a country, a value statistically significant at the 0.1% level. The innovation index and real 

GDP are significant at the 5% level, and only the economic freedom index has a statistically 

significant effect, which was positive and significant at the 10% level. (See Table 5, Regression 

3) 

 Extensive robustness checks attempting to explain the sign flip of Tor relays in the fixed 

effects models fail to successfully redistribute any significance or sign. When country fixed 

effects are included, the sign on Tor relay changes from positive to negative, while still retaining 

its significance at the 0.1% level. This suggests that the initial regressions in the paper are 

biasing the effect of Tor relays to be positive, akin to an omitted variable bias. In short, Tor 

relays are proxying for some unobserved, time-invariant, country-specific characteristic which is 
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positively correlated to Bitcoin nodes and Tor relays. The robustness model (see Table 5, 

Regression 3) attempts to identity this characteristic through the inclusion of four additional 

indices. Admittedly, these indices are not time invariant. However, the model fails to identify the 

characteristic. 

DISCUSSION 

Limitations: 

Using node distribution data for Bitcoin and Ethereum, this paper has shown that, 

contrary to popular belief, electricity price has not played a significant role in the distribution of 

nodes. However, three factors are limiting to this claim. First, data regarding electricity price was 

only available from Wikipedia, and although per the article each country estimate was obtained 

from official government sources, the nature of this source could have skewed the effects of 

electricity price upon node distribution in any number of directions. Most likely, the electricity 

price data for small or developing countries are misrepresented or inaccurate, however it is 

impossible to discern in which direction this misrepresentation may be biased. Second, the 

technologies examined in this paper are incredibly new, so historical trends are not definitive. 

The initial set of regressions examining electricity price are cross-sectional, and even the panel 

regressions examining the effect of Tor network relays upon node distribution, although more 

extensive in data than the cross-sectional regressions, still only examine the period 2013-2016. 

Extensive data on geographical node distribution, at this point in time, does not exist, so the 

actual effect of electricity price on node distribution should be examined later in time, perhaps in 

five to ten years, when historical trends and effects are observable. 
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Lastly, this paper recognizes that there is a possibility of reverse causality, in which 

Bitcoin nodes might explain Tor relays, instead of Tor relays explaining Bitcoin nodes, which 

would result in an endogeneity problem within the regressions conducted. The research in this 

paper relies on this endogeneity not existing, although it does not discount this potential. 

However, this paper has demonstrated a clear statistical relationship of Tor relays explaining the 

number of Bitcoin nodes, and in a historical sense, the Tor network has existed since the mid 

1990s, and with Bitcoin being created in 2008, this reverse causality is very unlikely. In order to 

mathematically discount this potential endogeneity, we conducted a regression to identify an 

instrumental variable, Z, which would explain Tor relays but not Bitcoin nodes. A lack of time to 

pursue this inquiry yielded no significant conclusions. However, polity scores had a significant 

effect on the number of Tor relays, with a one-point increase in the polity score for a country 

corresponding to an 1885.71 increase in the number of Tor relays, a value statistically significant 

at the 1% level. As established in the previous regressions, polity scores did not have a 

significant effect on Bitcoin nodes, so further research into whether polity scores might function 

as Z for an instrumental variable regression is necessary. A summary of the regression explaining 

Tor relays as a function of the variables within this paper is listed in Table 6. 

Discussion of Sign Flip: 

This paper initially expected the electricity price to have a negative effect on node count, 

which was partly true, but only given certain internet level thresholds discussed previously. 

Furthermore, this research expected Tor relays to have a positive effect on node count, and 

although this effect was realized in the cross-sectional Tor relay models (and even the OLS panel 

data model), once country fixed effects were taken into account, the effect of Tor relay on 
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Bitcoin node count became negative. The OLS, time and country fixed effects, and time fixed 

effects – along with each regression’s respective sign on Tor relays, are listed below: 

OLS: Tor relay sign ( + )  

Yᵢ,ₜ = α + βxᵢ,ₜ + ԑᵢ,ₜ 

Country and Time Fixed Effects: Tor relay sign ( - ) 

Yᵢ,ₜ = α + βxᵢ,ₜ + δ ₜ + θ ᵢ +  ԑᵢ,ₜ 

 Time Fixed Effects: Tor relay sign ( + ) 

Yᵢ,ₜ = α + βxᵢ,ₜ + δ ₜ +  ԑᵢ,ₜ 

When country fixed effects, θ ᵢ, are taken into account, the sign of Tor relay changes to 

negative. Robustness checks attempting to reexamine this sign fail to yield different results, 

which suggests that the true effect of Tor relays on node count is in fact negative. Some 

unobserved, time-invariant, country-specific characteristic – which is positively related to both 

Tor relays and Bitcoin nodes – is being captured by the positive coefficient on Tor relays in the 

OLS and time-fixed effect panel models. Put another way, it is the variation in Tor relays across 

countries that produces the positive relation between the number of Tor relays and the number of 

Bitcoin nodes observed in the OLS and cross-sectional regressions. In contrast, it is the time 

variation within countries that produces the positive relation between the number of Tor relays 

and the number of Bitcoin nodes observed in the fixed effect regression. As the regression 

attempting to identify this characteristic with the additional indices failed to do so, and 

insufficient time inhibited further research into what this unobserved, time-invariant, country-

specific characteristic might be, further research into this identification is necessary. 
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The mostly likely proposition for why Tor relays could have a negative effect on Bitcoin 

node count relates to the differences in the nature of secrecy in operating these technologies. 

People are very likely to be secretive of whether or not they are operating a Bitcoin node. Nodes 

are very expensive to create, and it is widely recommended not only to be secretive of operating 

a node, but even to be discrete about owning any cryptocurrency at all, due to the historical 

trends of cryptocurrency hacks. (Running, 2009) Tor relays, on the other hand, are likely to be 

much less discrete. The Tor Network details instructions on their website on how to operate a 

Tor relay, and explicitly advises those who do so to notify their internet service provider of the 

operation. (Legal FAQ, 2014) Because of the differences in privacy of Bitcoin nodes and Tor 

relays, we propose that individuals operating a Tor relay are less likely to operate a Bitcoin node. 

An individual might operate a Bitcoin node and use the Tor network, or operate a Tor relay and 

use Bitcoin for transactions, but due to the different natures of discretion with these technologies, 

an individual is unlikely to operate both a Tor relay and a Bitcoin node. 

Broader Discussion:  

The broader implications of this research are several. First, the fact that electricity price 

has not played a significant role up to this point in time is significant – it suggests that the 

distribution of these nodes is irrational, and Tor relays have contributed to this node distribution 

in a more significant manner. This suggests that mining is still an infant industry (Bitcoin was 

created only ten years ago), and the current distribution is akin to a “Gold 

Rush” – individual agents, regardless of location or costs, are scrambling to set up mining 

operations due to the astronomical price increases, hoping to make a fortune. Over time, mining 

operations are likely to be consolidated. This will occur for two reasons: first, the current capital 

costs of setting up mining rigs are immense, as extreme demand increase for computer graphics 



Brown 26 
 

cards (the electrical components used to create mining rigs) has caused a worldwide scarcity and 

associated price increases – more than doubling over the last year. (Martindale, 2018) Second, 

there will be diminishing marginal returns to mining Bitcoin as time goes on. This will be due to 

two causes: first, a continual growth in the number of Bitcoin users over time will continue to 

backlog network transactions, and cause the time to mine one coin to increase (and thus increase 

cost to mine one coin). Second, the rate at which new Bitcoins are created is programmed to 

issue less and less coins each year, issuing the very last Bitcoin around the year 2121. Large 

fixed costs, growing use, and slowing coin issuance will incentivize the consolidation of mining 

operations, where economies of scale make mining more profitable. 

 Once mining operations are consolidated and the “Gold Rush” nature of mining has 

ended, these consolidated operations will locate in places where electricity prices are low and 

internet availability is high. This paper projects Iceland to become the cryptocurrency mining 

center of the world for three reasons: first, electricity costs are minimal due to the sole use of 

geothermal and hydroelectric power. Second, Iceland has fast, widespread internet access, being 

the only country in this sample which has an internet access proportion of 100%. Lastly, along 

with the cost of electricity to mine, the cost to cool mining rigs is equally astronomical. A mining 

operation in Dubai, for example, might cost twice as much to operate compared to one in 

Iceland, with average summer temperatures of 96 and 53.5 degrees Fahrenheit, respectively. 

(Climate of Dubai, 2018) (Climate of Iceland, 2018) The consolidation of mining operations and 

the future significance of electricity price are two areas which require more research. 

CONCLUSION 

  This paper concludes that electricity price has not played a significant role in node 

distribution up to this point, but rather that Tor relays have played a much more significant role 
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in this distribution. However, we also propose that the significance of electricity price in 

distribution is likely to increase each year, and further research into this increasing significance 

is necessary. As more data on node distribution around the world becomes available over time, 

the significance of electricity price might be manifested. Two specific areas of this paper which 

require more research are the identification of both the instrumental variable term, Z, and the 

unobserved, time-invariant, country specific characteristic responsible for the sign flip of the 

coefficient on Tor relays. Through this additional research, the potential endogeneity existing as 

a result of reverse causality will be discounted, and the characteristic which initiated the sign flip 

on Tor relays will be identified, providing a further understanding of the current distribution of 

Bitcoin and Ether nodes. 

Cryptocurrencies have exploded in popularity and market capitalization within the last 

few years, and the electricity costs associated with this explosion have similarly skyrocketed. 

However, despite the massive electricity costs associated with mining, this paper has concluded 

that these costs have not played a significant role in Bitcoin and Ether node distribution up to this 

point. This research has provided the first academic look into the significance of electricity 

prices in mining operations, and has provided thorough analyses of the true drivers in Bitcoin 

and Ether node distribution around the world. 
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Tables and Figures: 

Table 3: Bitcoin Cross-Sectional 

Bitcoin Cross-Sectional  
  

Regression 1 2 3 

Variables:  
  

elecPrice 

29.4 

(32.41) 

-1.21 

(23.81) 

-15.92 

(26.54) 

internet 

591.06 

(1044.42) 

-948.4 

(787.7) 

-951.6 

(782.5) 

innovate 

35.99** 

(13.6) 

31.92*** 

(9.82) 

23.35** 

(10.21) 

log(gdpReal) 

-119.22 

(136.11) 

-97.9 

(98.2) 

-135.8 

(98.96) 

gdpGrowth 

-48.08 

(37.29) 

-43.38 

(26.9) 

-48.78* 

(26.71) 

log(pop) 

250.78* 

(141.63) 

143.6 

(103.4) 

220** 

(107.3) 

elecPrice x internet 

-44.28 

(43.39) 

11.17 

(32.38) 

21.47 

(33.69) 

torRelay (10) 

N/A 
0.036**** 

(0.056) 

0.037**** 

(0.005) 

liberty 
N/A N/A 

196.1** 

(83.93) 

 
   

Observations 55 55 55 

Adjusted R-squared 0.3093 0.6409 0.6717 

Signif. Codes: *(0.1), **(0.05), ***(0.01), ****(0.001) 
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Table 4: Ether Cross-Sectional 

 

Ether Cross-Sectional   
 

Regression 1 2 3 

Variables: 
  

 

elecPrice 

121.12 

(81.75) 

45.78 

(61.46) 

-8.81 

(68.53) 

internet 

3075.62 

(2634.76) 

-712.7 

(2033) 

-1010 

(2021) 

innovate 

98.31*** 

(34.30) 

88.28*** 

(25.35) 

65.33** 

(26.36) 

log(gdpReal) 

-390.13 

(343.38) 

-337.7 

(253.4) 

-395.4 

(255.5) 

gdpGrowth 

-123.34 

(94.08) 

-111.8 

(69.43) 

-395.4 

(255.5) 

log(pop) 

783.78** 

(357.29) 

520.1* 

(266.8) 

675.4** 

(277) 

elecPrice x internet 

-204.29* 

(109.47) 

-67.84 

(83.56) 

-23.99 

(86.99) 

torRelay 
N/A 

.089**** 

(0.014) 

0.091**** 

(0.001) 

liberty 
N/A N/A 

499** 

(216.7) 

 
  

 

Observations 55 55 55 

Adjusted R-squared 0.354 0.6485 0.6786 

Signif. Codes: *(0.1), **(0.05), ***(0.01), ****(0.001) 
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Table 5: Panel 

 

Panel Regressions    

Regression 1 2 3 

Variables:    

torRelay (10) 

0.001**** 

(0.0003) 

-.0.003**** 

(0.0004) 

-0.003**** 

(0.0004) 

internet 

-0.12 

(0.12) 

0.23 

(0.31) 

0.24 

(0.34) 

innovate 

0.9**** 

(0.23) 

-1.46** 

(0.65) 

-1.75** 

(0.74) 

log(gdpReal) 

-2.36 

(2.49) 

-61.59* 

(31.76) 

-85.76** 

(35.95) 

gdpGrowth 

0.16* 

(0.42) 

0.47 

(0.43) 

0.57 

(0.46) 

log(pop) 

6.42** 

(2.63) 

88.0 

(89.63) 

106.99 

(95.61) 

polity 
N/A N/A 

-0.49 

(1.10) 

econFreedom 
N/A N/A 

1.74* 

(1.01) 

corruption 
N/A N/A 

0.34 

(0.54) 

launder 
N/A N/A 

-3.19 

(3.28) 

        

Country Fixed Effects No Yes Yes 

Time Fixed Effects No Yes Yes 

Observations 77 77 77 

Adjusted R-squared 0.2893 0.2354* 0.2548* 

Signif. Codes: *(0.1), **(0.05), ***(0.01), ****(0.001)  

(*Regressions 2 & 3 show R-squared)   
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Table 6: Explaining Tor 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6: Explaining Tor

Regression OLS

Variables:

internet

322.88

(302.58)

innovate

1086.63*

(629.75)

log(gdpReal)

5834.66

(6218.42)

gdpGrowth

-2243.59**

(991.09)

log(pop)

11,203.49*

(6658.06)

polity

1885.71***

(587.6)

econFreedom

65.45

(513.67)

corruption

-382.24

(352.49)

launder

4770.52

(3501.52)

Observations 77

Adjusted R-squared 0.3237

Signif. Codes: *(0.1), **(0.05), ***(0.01), ****(0.001)
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Figure 1: Bitcoin Node Distribution 

 

 

 

Figure 2: Ether Node Distribution 
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Figure 3: Tor Relay Distribution 

 

 

 

Figure 4: Electricity Price and Bitcoin Nodes 
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Figure 5: Electricity Price and Ether Nodes 
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