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Oxygen Isotope Effect in High Temperature

Superconductors

Samantha Rubeck

Abstract

Conventional superconductivity is described by its interactions of electrons through

a specific vibrational mode called phonons. For high temperature superconductors

(HTS), the mechanism which explains its superconductivity is still unknown. Vari-

ous measurement techniques have been established to study the mechanism behind

HTS including looking at the effect of altering the mass of oxygen in the copper-

oxide planes of cuprate crystal lattices from 16 g/mol to 18 g/mol, also known as

the isotope effect. While the results of previous experiments are still inconclusive,

I aim to investigate this effect using magnetometry, Raman spectroscopy, and laser

angle resolved photoemission spectroscopy (ARPES) in order to find evidence for a

particular pairing mechanism.
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Chapter 1

Introduction

Superconductivity is a branch of condensed matter physics that was first discovered

by Heike Kamerlingh Onnes in 1911 [Onn11]. Since then, many types of supercon-

ductors have been studied yet there are many aspects of superconductor properties

that are not well understood. One area where this is prominent is in a class of

materials called high-temperature superconductors (HTS). These quantum materi-

als have been studied extensively both experimentally and theoretically but experts

in the field have yet to reach a consensus on the underlying physics of the exotic

phenomenon [Dou08].

In recent years, there have been many technological advances that have the abil-

ity to make a large impact in understanding HTS. One such advancement is low

energy, laser angle-resolved photoemission spectroscopy (ARPES). This technique

is used to explain the interaction between the electrons and the atoms in a solid. In

this specific experiment, laser-ARPES, along with Raman spectroscopy and mag-

netometry, will measure the effect of oxygen isotope substitution (O16 to O18) in

cuprate materials.

1.1 Conventional Superconductors

There are two main properties that define a superconductor: perfect conductiv-

ity and perfect diamagnetism [Sjö01]. Perfect conductivity is the feature that led
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1.1. CONVENTIONAL SUPERCONDUCTORS

Kamerlingh Onnes to note that some materials transition to a superconducting state

at a certain critical temperature. This enables electrons in a material to flow with

zero resistivity (Figure 1.1). Therefore these materials do not produce losses of

energy [Onn11].

Perfect diamagnetism, discovered by Meissner and Ochsenfeld in 1933 [MO33],

is the property where there is complete magnetic expulsion in the material. In other

words, B = 0 in the bulk of the material. If a magnetic field is applied to a material

below the critical temperature value where the sample becomes superconducting,

Tc, screening currents on the surface of the material are induced in order to expel

all magnetic flux from the interior. If a magnetic field is applied above Tc, then the

magnetic field is expelled from the interior of the material as it is cooled through Tc

[Sjö01]. The screening currents that arise flow to produce a magnetic field that is

equal in magnitude and opposite in direction to the applied field allowing the fields

to cancel. Therefore it is the rise of these screening currents that expel the magnetic

field from the interior (Figure 1.1). This is known as the Meissner Effect.

Figure 1.1: a) This is data that experimentally proves perfect conductivity. As the
material transitions into the superconducting state (by being cooled) the resistance
in the material drops to zero. b) This image represents perfect diamagnetism in
the superconducting state (T<Tc) due to currents produced on the surface of the
material. [Hof03]
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1.1. CONVENTIONAL SUPERCONDUCTORS

1.1.1 BCS Theory

So what is the underlying mechanism that causes superconductors to exhibit such

unique and mysterious properties? In 1957, John Bardeen, Leon Cooper, and John

Robert Schrieffer developed what is now known as the BCS theory of supercon-

ductivity, which eventually won them the Nobel Prize in 1972 [BCS57]. This the-

ory succeeded in explaining many material properties of superconductors such as

the band gap, heat capacity, and Tc. The building block of this theory relies on

electron-electron interactions which form quasiparticles that are known as cooper

pairs [BCS57].

Electrons, a spin-1
2

particle (fermion), in a solid determine the main properties

of a material. In conductors, once the valence electrons of the lattice structure have

enough energy to get out of the ground state (i.e. they have more energy than the

band gap), a ”sea of electrons” forms. The resistance associated with conductors

forms due to these electrons scattering off of the lattice structure, impurities, and

other features of the material. When two electrons pair up though, as they do for

superconductivity, the resulting system acts like an integer spin particle (boson).

Since bosons do not obey the Pauli Exclusion Principle, it is energetically favorable

for electrons to be in the same quantum mechanical ground state [Roh94] This means

that these Cooper pairs are condensates that have the same wave function and can

move through a lattice with the same momentum without scattering (zero electrical

resistance).

Cooper pairing, as explained by BCS theory, forms due to vibrational modes in

the lattice structure (one might think of masses on springs where the masses are

the atoms and the springs are the bonds between atoms). These modes of vibration

are called phonons. Phonons are a type of vibration that mediate sound waves in

solids. The phonons cause regions of the lattice structure to be more positive than

other regions. This provides an attractive force that is stronger than the Coulomb

repulsion of near-by electrons resulting in these electrons, which have equal but

opposite momentum, to pair (Figure 1.2) [Frö50]. Once again, it is energetically
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1.1. CONVENTIONAL SUPERCONDUCTORS

favorable to allow these electrons to pair since the energy required to scatter the

paired electrons (determined by the size of the superconducting gap) is very large

at the Fermi surface (described in more detail later in the chapter) [Hof03].

Figure 1.2: A phonon brings two positive ions closer together and makes that region
of space more positive than surrounding regions. This attracts electrons of opposite
spin and momentum to occupy the same space (i.e. paring). [Dou08]

The two of the most important outcomes of BCS theory are its prediction of the

energy gap and its ability to explain the experimentally seen isotope effect (see sub-

section ”Isotope Effect”) [Hof03]. In solids, each material has an associated energy

gap that needs to be overcome for the electron to not be bound. By understanding

these microscopic electronic properties, macroscopic features can then be explained.

In BCS theory, the superconductor’s band gap (at zero temperature) is predicted

to be

∆(T → 0) ≈ 1.75 kBTc (1.1)

where kB is Boltzmann’s constant.

At temperatures approaching Tc the size of the gap is predicted to be

∆(T → Tc) ≈ 3.2 kBTc
√

1− (T/Tc) (1.2)

These equations show that the superconducting gap, which depicts how electrons
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1.1. CONVENTIONAL SUPERCONDUCTORS

are bound to the lattice, approaches zero near Tc and a maximum value at T=0

K. This is important because it shows that above the superconducting transition

temperature, there is no gap and therefore the properties of electrons in the material

before it super-conducts is distinct from the electron properties below Tc [BCS57].

The dependence of the superconducting gap as a function of temperature given

by Equation 1.1 and Equation 1.2 was also experimentally proven by Sutton and

Townsend (seen in Figure 1.3). At the critical temperature, there is no supercon-

ducting gap and as T approaches zero, the normalized gap amplitude approaches

its maximum value. This is important because it shows that there is a universal

temperature dependence on the size of the gap, regardless of the material [Bla92].

Figure 1.3: Experimental data of the superconducting gap for a variety of material
and BCS predictions. This shows the existence of a universal temperature depen-
dence on gap size. [TS62]

The BCS theory also reproduces the isotope effect, which is the experimental

technique used to relate critical temperature and mass. Specifically, the critical

temperature is inversely proportional to the mass of the isotope used in the material

[Rey+50].
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1.1. CONVENTIONAL SUPERCONDUCTORS

The choice of isotope affects the frequency of lattice vibrations. This effect

suggests that superconductivity is related to vibrations of the lattice, which is in-

corporated in BCS theory (where lattice vibrations act as the binding mechanism

of electrons in a Cooper pair).

1.1.2 Isotope Effect

The fact that a change in isotope affects the frequency of lattice vibrations can be

explained using Einstein’s model of solids on a spring [Sim13]. In this model atoms

are treated like masses on springs, each of which has a frequency of

ω0 =

√
k

m
(1.3)

Therefore by changing the mass of the system, the frequency of lattice vibrations

also change.

The macroscopic property, Tc, also has a dependence on the masses in the lattice

which implies that phonon vibrations offer a good explanation of underlying super-

conducting properties. For example, by substituting mercury-202 with mercury-198,

the Tc increased proving the dependence of superconductivity on lattice vibrations

(reference Figure 1.4) [Max50].

This relation can be written as:

Tc ∝M−α (1.4)

In conventional superconductors, the alpha factor in Equation 1.4 is experimen-

tally measured and theoretically predicted (by BCS theory) to be approximately

0.5. In HTS, the alpha factor varies greatly and is dependent on the doping of the

material and its temperature [Ami11].
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1.2. HIGH TEMPERATURE SUPERCONDUCTORS

Figure 1.4: Experimental data of the isotope effect using various isotopes of mercury.
[Dou08]

1.2 High Temperature Superconductors

When Georg Bednorz and Alex Müller first discovered high temperature super-

conductivity (materials having a Tc above 30K) in 1986 [BM86], the seemingly

understood phenomenon produced a plethora of new research. Since BCS theory

predicted a critical temperature upper limit of 30K, these higher temperature ma-

terials could not be explained by this widely accepted theory [BCS57]. Experts

in the field needed a new way to explain this groundbreaking phenomenon. The

most obvious step is to look for phonons using the isotope effect. Thus far though,

isotope effect experiments have been inconclusive. Research using angle resolved

photoemission spectroscopy (ARPES) [Gwe+04], SQUID and torque magnetome-

try and X-ray absorption near edge spectroscopy (XANES) [Zha+97][ZKC01], and

other techniques point towards a phonon mode interaction in the electronic struc-

ture of HTS. Other experimental and theoretical [Sca99][USG04] techniques such

as inelastic neutron scattering [CSB99][USG04] and infrared spectroscopy [CSB99]

looked at the transport and nuclear resonances and found that they coincide with

spin fluctuations associated with magnetic excitations [Dai+99]. There was even an
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1.2. HIGH TEMPERATURE SUPERCONDUCTORS

experiment done using infrared spectra which concluded that the pairing mechanism

is neither magnetic resonance nor phonons [HTG04].

One of the reasons that this has been so difficult to study is due to the fact that

there is not a symmetric pairing potential across the Fermi surface of these materials

(described in more detail in the following section). In conventional superconductivity

the pairing potential is symmetric (s-wave gap). In HTS the pairing potential is not

symmetric so electrons traveling along one direction in the crystal feel a different

pairing potential than electrons traveling in another direction (d-wave gap) [Hof03].

Another issue in understanding these materials is that everything in the system

is highly correlated [She+02]. Changing one aspect of the material (like doping or

removing an electron) changes how all the other electrons interact in the system.

This creates a situation where probing properties of HTS in itself changes the system

instead of just studying the system.

1.2.1 Cuprate Structure

One of the most common materials to study in isotope experiments is Bi2Sr2CaCu2O8+x

(BSCCO). These materials, also known as cuprates, contain copper oxide layers that

play a pertinent role in this quantum phenomenon. More specifically, they are the

layers where superconductivity occurs. In other words, cooper pairs and the Meiss-

ner current loops both form on these layers. The greater the number of copper oxide

layers in a material, the larger the value of Tc [Che+07] The samples used in this

isotope experiment are optimally doped BSCCO-2212 with two copper oxide (Cu-O

layers (see Figure 1.5). It is the oxygen in these layers that get substituted from a

mass of 16 g/mole to a mass of 18 g/mole. This is important because if there is a

shift in electronic properties due to the mass substitution, then we can attribute it

to phonons in the Cu-O layers, where the mass was substituted.

A universal property of HTS is its Fermi surface (Figure 1.5). The Fermi surface

is a cut of the momentum space at the Fermi energy [Sim13] which is the energy

point that separates unfilled orbitals and filled orbitals at zero kelvin [Sim13]. The
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1.2. HIGH TEMPERATURE SUPERCONDUCTORS

Figure 1.5: a) These are the basic lattice structures of BSCCO. This shows the
dependence of critical temperature on the number of Cu-O layers. In this experiment
we are using Bi2212 (the middle structure). b) This is the 2D Fermi surface of
BSCCO. [Dou08]

important thing to note about BSCCO Fermi surface is its high symmetry direc-

tions [Dou08] which have relations to the superconducting gap. This includes the

nodal direction (ΓY) and the antinodal direction (ΓM). It was shown that along

the node, the superconducting gap goes to zero and along the antinode it goes to a

maximum value [She+93]. Note that this Fermi surface is only a 2D cut rather than

a full 3D surface. This is due to the fact that we can treat BSCCO as a quasi-2D

structure since the conduction occurs only in the Cu-O planes. Therefore the z-axis

momentum in the Fermi surface is not needed.
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Chapter 2

Experimental Design

In order to understand the electronic mechanisms in HTS, we must first characterize

each sample and then proceed to probe its electronic properties. The experimen-

tal approach to this is threefold: magnetometry (determines critical temperature),

Raman spectroscopy (verifies isotope substitution on phonon modes), and laser an-

gle resolved photoemission spectroscopy(maps out momentum and energy space to

study electronic interactions in the lattice). This section will focus on these three

techniques as well as the advantages that they offer for studying the isotope shift.

2.1 Magnetometry

Magnetometry, first invented by Carl Friedrich Gauss in 1833 [Mal07], is a method

used to map out magnetic field lines both in terms of strength and direction. In

the Dessau Group magnetometry is used to study the critical temperature, Tc, of

HTS. The magnetometer used in this experiment, which is a home-made device,

employs the method of mutual inductance. The physical setup of this device uses

two coils, each on opposite sides of the sample parallel to the sample’s x-y plane

(see Figure 1.5). On one side is the driver coil, which has an AC current. This

AC current produces an AC magnetic field. The other coil is the pick-up coil. This

coil generates a current due to this AC magnetic field. When the sample that is

wedged between these two coils is in the normal state, the magnetic field penetrates
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2.1. MAGNETOMETRY

the sample. In other words there is magnetic flux through the superconductor. The

pick-up coil detects this magnetic coil and produces an output current. When the

sample is in the superconducting state the Meissner effect takes over and expels the

magnetic field generated by the driver coil from the sample. This shielding prevents

the AC field from reaching the pick-up coil and in turn prevents the pick-up coil

from producing a current. In theory, if the sample was infinitely long, the pick-up

coil signal would drop to zero. Due to the fact that these samples are of finite size

and that often the sample is smaller then the radius of the coils, some of the signal

still gets detected by the pick-up coil. Therefore when Tc is reached we see a drop in

signal and the size of this drop is proportional to the size of the sample. Note that

this magnetometer only measures the magnitude of the magnetic field as derived

from the pick-up current and not the direction of the field.

There are several advantages to using the method of mutual inductance as op-

posed to other techniques such as resistivity measurements. Most importantly, it

does not damage the sample because there is no direct electrical contact. Another

advantage is that it examines the sample more uniformly than other methods. This

is because the super-currents that create the Meissner effect must flow around a

large outer layer in order for the drop in signal to be observed [Mye93].

Figure 2.1 shows the layout of the magnetometer. Within the removable insu-

lating square piece lies one of the coils while the other lies in an insulating square

at the base of rod. The sample gets placed in-between this removable square and

the rod. Next to the coils lies the heater and the diode. The heater is used to vary

the temperature of the sample at different speeds from both low to high and high

to low temperatures. The diode measures the temperature on the copper base of

the magnetometer. The diode used is a semiconductor junction that measures tem-

perature by detecting a change in voltage along the forward direction of the diode.

One advantage to using diodes to measure temperature is that they have a nearly

linear relationship between temperature and voltage applied [GK12]. Originally, it

was assumed that the temperature at the diode is equivalent to the temperature of
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2.1. MAGNETOMETRY

the sample (which is located 15mm below the diode). This is incorrect and implies

that the diode is not always measuring an accurate Tc value.

Figure 2.1: Figure made by Justin Griffith. The position of the driver coil and
pick-up coil are not necessarily in this order. The rod that holds the these elements
is made out of copper (used for its high thermal conductivity at cold temperatures).

Figure 2.2 shows a zoomed in view of the coil/sample setup. Note that the x-y

plane of the sample and the magnetic field are perpendicular to each other. This

allows for the maximum value of Meissner currents to form in the copper oxide

planes.

Before the sample is placed in the magnetometer, it is first put in a magnetometer

packet. The magnetometer packet is composed of lens tissue that is folded into a

pocket which is then sealed by tape. This packet acts as protection from dirt and

other surface damages that might otherwise occur.

16



2.1. MAGNETOMETRY

Figure 2.2: This image shows the sample placement in terms of the driver and pickup
coil.

2.1.1 Uncertainties in Magnetometry

Hysteresis

There are two ways of defining hysteresis. One is that there is a dependence of

a system on its past. This is considered a type of ”memory” where if the input

alternately increases and decreases, the output produces a hysteresis loop. This is

an intrinsic explanation of hysteresis and is exemplified in the magnetic relaxation

of vorticies (when HTS are above a critical magnetic field Hc). This would also

cause energy dissipation and in turn, a hysteresis effect [Sjö01]. This critical field

value is several orders of magnitude larger than the magnetic field produced by the

magnetometer therefore vorticies are not the source of hysteresis in this experiment.

An alternate way to define hysteresis is extrinsically. This kind of hysteresis

represents a lag between the input and the output due to its environment. The

magnetometry measurements in this experiment exhibit this type of hysteresis. In

our case, the hysteresis is due to a gradient of thermal conductivity (a material’s

ability to conduct heat) between the sample and the diode.

The hysteresis in this setup is due to thermal effects. Since the sample is in
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2.1. MAGNETOMETRY

a thermally isolated packet, the thermal syncing between the sample and diode

has decreased. So as the sample becomes superconducting, there is a difference in

the actual temperature that the sample is experiencing and the temperature that

the diode is reading. When the sample is being ramped down, the diode reads a

temperature that is colder than the actual Tc value. When the sample is being

ramped up, the diode reads a temperature that is warmer than the actual Tc value.

We see that the sample lags behind the heater/diode because the heater and diode

are thermally connected (on the same copper rod) as compared to their connection

to the sample. In other words, this lag occurs because the sample is not thermally

sunk to the copper rod.

The faster the ramping done by the heater, the larger the hysteresis effect. Since

the hysteresis is set by the thermal conductivity of the copper rod, when you ramp

the system faster, a larger thermal gradient gets built up between the copper and

the thermally isolated sample. This in turn creates a large hysteresis effect. As the

ramping slows down, the thermal gradient gets smaller and the hysteresis decreases.

The relationship between ramping speed and hysteresis size is shown in Figure 2.3,

which uses a linear fit for lack of a better model.

Figure 2.3: This is a graph of the width of the hysteresis curves plot against its
ramping speed. This data was then fit to a linear model.
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2.2. RAMAN SPECTROSCOPY

Figure 2.4: This is the data collected when ramping one sample at several different
rates: 1K/min, 0.5K/min, and 0.1K/min. The arrows indicate the direction of the
ramping.

The real value of Tc lies inside the hysteresis curves shown in Figure 2.4. This can

be calculated by taking the average of the temperature values at the same voltage.

For this experiment, all samples were ramped at 0.1 K/min in order to reduce the

error seen from the hysteresis effect.

2.2 Raman Spectroscopy

Theory

Raman spectroscopy is a material measurement technique based off of the Raman

effect. The Raman effect occurs when light waves interact with a crystalline lattice,

and in turn the polarization of the lattice’s electrons as well as the bonds between

atoms. This effect comes about through inelastic light scattering. More specifically,

a photon will interact with a lattice and cause it to be in a ”virtual state” [Col12].

This virtual state is not a full absorption of the photon. Instead, it is a pertur-

bation of the molecule which excites or de-excites vibrational or rotational energy

states [Col12]. Therefore, it is considered an inelastic scattering process since a

non-resonant photon is scattering the vibrational/rotational modes of the molecules
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2.2. RAMAN SPECTROSCOPY

instead of absorbing its energy. If the molecule scatters with the same energy (elas-

tic scattering), it is called Rayleigh scattering. If the energy of the incident photon

gets stored/released as either vibration or rotations in the molecule then that en-

ergy difference will be seen in the output of the scattered light. This means that

the scattered light has a shift in wavelength. If the scattered light has lower energy

than the incident photons it is a Stokes Raman scattering. If the scattered light has

higher energy than the incident photons it is a anti-Stokes Raman scattering (see

Figure 2.5).

Figure 2.5: This depicts the transitional state excitation that occurs during Raman
spectroscopy. There is one elastic scattering effect (Rayleigh) and two inelastic
scattering effects (Stokes and Anti-Stokes).

This experimental technique is extremely useful in studying materials since it

allows us to probe the lattice without damaging the sample. Raman spectroscopy

can be used to characterize materials, measure temperature, find crystallographic

orientation, among many other things [Dou08]. In this experiment, we use Raman

Spectroscopy as a method of characterizing the phonon vibrational modes in the

lattice. A given solid will have phonon modes that are characteristic of that specific

lattice structure and the impurities in the sample. In addition, Raman spectroscopy

can be used to observe other low frequency excitations of the solid, such as plasmons,

magnons, and superconducting gap excitations [Dou08].
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2.2. RAMAN SPECTROSCOPY

This is especially useful in studying the isotope effect since the oxygen-18 sub-

stitution into the lattice structure is not ideal and not consistent between different

batches. Therefore, knowing the phonon modes of the oxygen-16 sample and that

of the oxygen-18 sample we can verify what percentage of oxygen that was actually

substituted [Hew+99]. This percentage is important in understanding the electronic

properties of the material in ARPES as well as explaining the Tc shift from magne-

tometry.

It is conventional for Raman shifts to be measured in units of inverse length

(cm−1). This can easily can easily be converted to energy as needed. To convert

between spectral wavelength and wavenumber shift in the Raman spectrum, the

following is used:

∆w =
(

1

λ0
− 1

λ1

)
(2.1)

where ∆w is the Raman shift in wavenumber, λ0 is the incoming excitation

wavelength, and λ1 is the outgoing Raman spectrum wavelength [Col12].

Experimental Setup

In a typical Raman experiment, a polarized laser beam (circularly polarized in our

case) is focused onto a sample, and the scattered light is collected and dispersed

by a high-resolution spectrometer to obtain the frequency spectrum. Since the

Stokes/Anti-Stokes Raman effect occurs when the incident laser wavelength is not

on resonance with the lattice vibrations, various filters must be used to reject all

the light that is on resonance. This is especially important because the inelastic

scattered Raman light is very weak compared to the elastic Rayleigh scattering (on

the order of 107 times less powerful) [GLA]. Therefore the spectrometers must have

good background light rejection and sensitive detectors.

In this experimental setup (Figure 2.6), the excitation source is a 532 nm Argon

ion laser (at approximately 20 mW). A lens collects the scattered light and focuses

it into the entrance slit of a triple spectrometer. This spectrometer consists of three
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2.3. ANGLE RESOLVED PHOTOEMISSION SPECTROSCOPY (ARPES)

sections, each of which has a diffraction grating. In the first two sections stray

light is rejected by the gratings. In the last section the light is dispersed by the final

grating and gets detected by a charge-coupled device, CCD. The resolution achieved

by this setup is about 1 cm−1.

Figure 2.6: Block diagram of the Raman spectrometer setup.

2.3 Angle Resolved Photoemission Spectroscopy

(ARPES)

Angle resolved photoemission spectroscopy is an experimental technique that stud-

ies electronic properties of solids, specifically the energy and momentum space of

electrons in a lattice. Both energy and momentum are conserved in this system and

this allows us to study the probability that a particle with a certain momentum has

a specific energy. This probability is called the spectral function and it is related

to the Heisenberg uncertainty principle [EV15]. The spectral function describes the

distribution of an electron’s uncertainty in a specific state of the band structure.

The basic theory behind ARPES is based on Einstein’s photoelectric effect

[Ein05]. The process of photoemision occurs when a photon interacts with the

electrons in a material. The electrons absorb the energy of the incoming photon

and get emitted from the material as a photoelectron. The energy of the photo-

electron is therefore dependent on the energy of the incoming photon and the work

function (the amount of energy needed for an electron to escape from its parent

22



2.3. ANGLE RESOLVED PHOTOEMISSION SPECTROSCOPY (ARPES)

atom) [Dou08].

More specifically:

Ekinetic = h̄ω − |Ei| − Φ (2.2)

Here Ekinetic is the kinetic energy of the emitted photo-electrons, h̄ω is the energy

of the incoming photon, |Ei| is the initial energy of the electron in the solid (the

amount of energy needed to bring an electron to the Fermi level), and Φ is the work

function of the solid. Properties of materials are mainly determined by the electrons

that are close to the Fermi energy. So by studying the energy of these emitted

photo-electrons, we can see the number of states per energy that can be occupied

at each energy level (also known as the density of states) [Sim13].

By analyzing the angles of emission from the surface (defined in Figure 2.7) we

can also get information about the momentum of electrons in the crystal. This

relationship can be seen in Equation 2.3 [DHS03]:

p =
√

2mEkinetic ∗ (sinθ · k̂x + cosθ ∗ sinφ · k̂y) (2.3)

Figure 2.7: Photoelectron emission angles Φ and θ. [SN14]

The momentum resolution allows us to look at the anisotropic properties of
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solids that are determined by the low energy electron band [Dou08]. The electron

information that we get from measuring the emission angle (Figure 2.7) tells us the

momentum of electrons that live in the x-y lattice plane. In other words, it is only

the momentum information of electrons in the Cu-O planes which is useful since

this is the layer that is responsible for superconductivity. This is one of the reasons

why the method of ARPES is so useful in studying these materials. ARPES works

best on studying 2D surfaces and we can treat BSCCO as a quasi-2D material (i.e.

just the copper-oxide planes).

2.3.1 Synchrotron ARPES

Throughout the field, ARPES is most commonly performed at synchrotron facilities.

These facilities produce light by accelerating high energy electrons around a ring.

These electrons then go through a series of magnets with alternating pole directions

called undulators. Since electrons have charge, the alternating north and south poles

of the magnets cause the electrons to oscillate which produces light radiation. This

light is the final synchrotron light used to study the materials.

There are several advantages to using synchrotron light beams. First off, they

have a wide range of tunable photon energy. At some facilities this range can be

as drastic as 9 eV light to 100 eV light [Dou08]. This is useful specifically when

studying the antinode which requires photons with larger momenta to reach the

edge of the Fermi surface (see Laser ARPES section). Another useful feature is the

tunable polarization of the light. By changing the directions of the undulators we

can get both linearly and circularly polarized light [Kim08].

2.3.2 Laser ARPES

Although synchrotron light is important to study HTS, there are several disadvan-

tages to using these facilities. Trips to synchrotron facilities are time consuming

and expensive. They also use high energy photons. Therefore, a complementary

technique is to use laser light. The Dessau lab has a home-built ARPES setup that
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uses low energy laser light instead of synchrotron beams. Using low energy lasers

(7 eV) as a photon source has several important advantages over the traditional

synchrotron technique.

Most importantly, lasers provide a higher flux of lower energy photons which

gives better resolution in both momentum and energy (see Figure 2.8). Lasers

also provide a cheaper alternative to synchrotron trips as well as an easier way to

change properties of the incoming photons (i.e. polarizations) with just a few optics

[Dou08]. Laser ARPES also allows better resolution over shorter time periods (more

flux/count rate of electrons). This is important because materials degrade in ultra

high vacuum (UHV). The faster the measurements can be taken, the less damage

to each sample.

Figure 2.8: Experimental resolution of the spectral function using three different
energy light sources. The improvement on resolution is visibly significant when a 6
eV laser is used to probe the system instead of 20-50 eV synchrotron light. [Kor+05]

Another advantage to using low energy laser ARPES is decreased surface sensi-
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tivity. Looking at Figure 2.9 we see that at smaller energies (6eV) the mean free

path of photons is larger than the mean free path at higher energies (20-50 eV).

Therefore at lower energies, these photons travel farther into the sample and the

photoelectrons emitted represent the properties of electrons from the bulk of the

sample. All of this indicates that these measurements are less surface sensitive than

synchrotron ARPES so the surface quality of the samples does not effect the spectra

of electron states as much.

Figure 2.9: As kinetic energy of light in solid decreases, the mean free path in the
solid increases. This is important because we can study electrons in the bulk of
material so surface effects matter less. [SD79] [Dou08]

Although the momentum resolution is improved using laser ARPES, the amount

of momentum space measured decreases (Figure 2.10). When there is less photon

energy, we see less of the Fermi surface. The momentum space that we do see is

better resolved but we see less of it than if we were to use high energy photons.

This is a problem when studying the isotope effect because the 7 eV photons do

not have enough energy to study the antinode portion of the Fermi surface. So we
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can not compare the electron velocity, superconducting gap, and other properties

along both the node and the antinode. In order to study the antinode, we need to

use synchrotron energies but this reintroduces the poor resolution of high energy

photons which prevent us from seeing isotope effect.

Figure 2.10: This is a visual of the trade-off between better momentum resolution
and studying a larger momentum area. a) shows more momentum resolution but
the area studied does not cover the full Fermi surface. b) shows less resolution but
measurements are taken throughout the entire Fermi surface. [Dou08]

2.3.3 Experimental Setup

There are three main components to the laser ARPES setup.

Sample Manipulator

The sample manipulator has 5 axis manipulation - 3 translational and 2 ro-

tational degrees of freedom. This allows for a more precise alignment of the

sample lattice structure with respect to the incoming photons. This is impor-

tant because alignment is very sensitive and the better we can align the crystal

structure with the experimental setup the more accurately we can make cuts

in the Fermi surface.

Sample Chamber

Once the sample is mounted on the sample manipulator, it is placed in the
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Figure 2.11: 5-axis manipulator which allows us to move in the x, y, z, φ, and θ
directions. This helps us achieve better sample alignment. [Dou08]

sample chamber which is held at ultra-high vacuum (10−11 Torr). The sample

is cleaved in situ to provide a clean surface. BSCCO will naturally cleave in

between the Bi-O layers due to weaker Van der Waal forces in these layers

[Dou08].

Electron Analyzer

Once the photo-electrons leave the sample, they travel with a certain momen-

tum and energy to a hemispherical analyzer. This analyzer has a 30 degree

momentum window with resolutions of 0.1 degree and 1 meV [Dou08]. The

analyzer consists of two concentric hemispheres with a voltage difference be-

tween the hemispheres. By varying the voltage between the hemispheres a

certain energy window of electrons is allowed to pass through to the other side

of the hemisphere. If the electrons are not in this window of allowable energies

they will collide with the outer wall (if they have too much energy) or with the

inner wall (if they have too little energy). If an emitted photoelectron passes

through the hemispheres it then hits a detector which magnifies the electron

signal. The magnified signal then gets counted with a CCD. The output signal
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gives us information on the angle and energy of the electron which can be be

converted to a kinetic energy and momentum picture of the sample’s spectral

function.

Figure 2.12: Hemispherical analyzer diagram showing how electrons of different
energies pass through the analyzer onto a detector that outputs momentum and
energy information [Dou08].
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Results

3.1 Magnetometry Data

Figure 3.1 shows magnetometry data measured for two different batches (batch 13

and batch 16) of isotope samples, each of which were grown/substituted indepen-

dently. Since the growing/substitution process is not perfect, there will be discrep-

ancies (of shift values) between batches of the same material. Each sample was

measured multiple times and Tc was calculated at various points along the curve,

specifically at 0.8, 0.5, 0.2 of the maximum amplitude. This data shows just how

much Tc varies between batches and within each sample itself. Each Tc curve is not

uniform across the transition width. This has to do with the fact that these samples

are not perfect. They have many impurities which can cause small sub-regions of

the sample to super-conduct at slightly different temperatures than other regions.

This determines the transition width of the sample. In both of these batches we see

that the Tc at half the amplitude have values that are closer to Tc measurements at

the top of the transition showing that the transition is less defined at lower parts of

the transitioning phase.

There is also a significant difference in the isotope shift between batches, with

batch 16’s shift being approximately 0.5 K larger than batch 13’s shift. This in-

dicates that the amount of oxygen substituted is not equal between batches of the

same material. By analyzing this difference and comparing it to both Raman and
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ARPES spectra, we will be able to develop a good characterization of the oxygen

isotope effect.

Within these measurements, there is random error from the magnetometer. This

uncertainty is approximately ±0.06 K for one standard deviation. Although this

error has an effect on our measurements (especially since the expected isotope shift

is only 0.5K) [Dou08], we can still make the claim that regardless of error, batch 16

has a larger shift than batch 13.

Figure 3.1: a) An example of normalized output data from the magnetometer.
The macroscopic width and slope of the curve gives us insight to the microscopic
properties in the material. Points at 0.8, 0.5, and 0.2 of the maximum amplitude
were statistically analyzed and used to look at the isotope shift. b) The critical
temperature isotope shift seen in batch 13 at 0.8, 0.5, and 0.2 of the maximum
amplitude. c) The critical temperature isotope shift seen in batch 16 at 0.8, 0.5,
and 0.2 of the maximum amplitude.

3.2 Raman Spectroscopy Data

The scattered energy that was added or taken away from the molecular vibrations

due to Raman scattering occurs at a well defined frequency. Due to the fact that

the molecule is interacting with its surroundings, however, each subset of molecules
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will vibrate with a slightly different frequency. The result of this interaction is seen

in the line shape of the Raman spectra. Instead of seeing a single perfectly defined

peak, we see a broader peak encompassing a finite range of energies. The shape

of the peaks gives us a lot of information on the molecular structure in the lattice.

Each peak is a sum of all the individual vibrations and the exact frequency of these

vibrations is dependent on its interactions with its neighbors [Bra07].

In each mode there are also two relaxation times that contribute to the linewidth.

One is the time it takes for the vibrations to no longer be excited. The other is the

time that it takes for the vibrational coherence of lattice movements to fade and in

turn cause the vibrations to interfere with each other [Bra07]. In terms of this, the

linewidth of Raman spectra can broaden if there is a large range of frequencies in

the system.

Both of these aspects play a role in the isotope substitution experiment. Since

not all the oxygen gets substituted, some oxygen-16 will still show up in Raman

measurements. The summing of the two O16 and O18 frequencies produce a widen-

ing of the linewidth. Simultaneously, there will also be a shorter coherence lifetime

since more than one frequency is involved. This also contributes to the shape of the

linewidth.

Theoretically, from the simplest mass-spring model we expect an energy decrease

of 3 meV, with the oxygen-18 material having a lower energy. Figure 3.2 shows the

stokes Raman spectra of an oxygen-16 and oxygen-18 sample from two different

batches. In batch 16, there is an energy decrease of 3.5 meV and a linewidth

broadening of 0.08 meV. In batch 13, there is an energy decrease of 3.24 meV and

a linewidth broadening of 0.58 meV.

3.3 ARPES Data

In ARPES spectra, there are several identifying features of the electronic properties

that describe the HTS system. For nodal data, the identifying feature is a kink

in the energy dispersion at approximately 70 meV binding energy. The energy
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Figure 3.2: a) Raman spectroscopy data from batch 16 fit to a Lorentzian. b)Raman
spectroscopy data from batch 13 fit to a Lorentzian.

kink represents the point at which the electrons are strongly interacting. Above

this energy kink the dispersion band takes on a wider shape. This is due to the

fact that electrons near the Fermi surface are strongly interacting quasiparticles

that are ”dressed” with more mass. Since these electrons have more mass, the

energy dispersion widens. Therefore when a heavier mass is introduced in an isotope

substitution, the frequency of the phonon vibration decreases (see Raman spectra)

and manifests as a shift in the kink energy. In the oxygen-18 material, the kink is

predicted to be 3 meV smaller than in the oxygen-16 material [Dou08]. This shift

shows that electrons at smaller binding energies (i.e. near the Fermi surface) see the

isotope shift and are in turn interacting with phonons.
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Figure 3.3: a) A fit of the lineshape of the 70 meV kink energy at two different cuts
on the node for both O18 and O16 samples. These samples were taken from batch
13. No shift in kink energy is seen due to isotope substitution. Note, this data was
collected and analyzed by Xiaoqing Zhou and Haoxiang Li. b)Previous experimental
data showing a 3.4 meV kink shift due to isotope substitution [Dou08].

The ARPES data in Figure 3.3 measured isotope samples from batch 13 using

9eV synchrotron light and measured the 70 meV kink dispersion relation at two

different cuts on the node. The resolution of this beamline setup was 5 meV and

0.15 degrees. In past experiments, the isotope shift at the 70 meV kink was measured

to be approximately 3.4 meV [Dou08]. In this data though, we do not see a kink

shift with the isotope substitution as shown in past experiments.

Figure 3.4 is a graph of the superconducting gap energy at different cuts along

the node. This data shows the d-wave nature of the Fermi surface. As you move

farther from the node the superconducting gap gets very large (almost 25 meV at

20 degrees from the node). For comparison, in conventional superconductivity the

size of the gap was approximately 6 meV [Uch+03]. At the node (0 degrees in

Figure 3.4), the gap goes to zero as expected.
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Figure 3.4: This is a measurement of the superconducting gap, ∆, at various angles
from the node. The anisotropic gap size shows the d-wave symmetry of BSCCO
Fermi surface. Note, this data was collected and analyzed by Xiaoqing Zhou and
Haoxiang Li.

At the antinode, past experiments have shown that there is a 4 meV shift of the

gap size with the Oxygen-16 isotope having a larger gap [Dou08]. This synchrotron

data fails to reproduce that. In fact it is showing the opposite direction with the

oxygen-18 slightly larger than the oxygen-16 gap. Also, the gap size itself seems to

vary very little with isotope substitution as compared to the previous 4 meV shift

seen.
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Conclusion

4.1 Discussion of Results

From the Raman spectroscopy and magnetometry data we are able to characterize

the oxygen substitution in terms of a macroscopic superconductor phenomenon (Tc).

We see that the direction and relative size of the O16 to O18 shift in the Raman data

does not disagree with the magnetometry data. Batch 13 had a smaller Tc shift,

smaller phonon frequency shift, and a larger phonon peak broadening than batch

16 indicating that batch 13 might have a smaller amount of oxygen-18 in its lattice

structure. This is useful information because it reaffirms that our characterization

techniques are complementing each other.

In the ARPES spectra (two batch 13 samples) no kink shift was seen. This result

could be due to several factors: the physics of isotope shifts at the kink is not well

understood, the samples were not well aligned, and there might be some sample to

sample variation that is not being accounted for.

Although the experiments done in the past have shown a 3 meV isotope shift at

the kink, these results have been difficult to reproduce in experiments since then.

Therefore, the 3 meV expectation of these measurements may not be correct. On

the other hand, if the lack of a shift is due to an experimental effect, such as sample

alignment, replicating this data with the same samples should improve our analysis.

The gap size data has similar results as the kink shift and therefore can be
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attributed to similar errors. The gap oxygen shift is very small and in the wrong

direction (i.e. the O18 gap has slightly larger energy far from the node than the

O16 gap) compared to expected results. This most likely points to an alignment or

sample error.

4.2 Future Work

In the future there are many directions in which this experiment can go. Three

of the most obvious are using laser ARPES on samples that were studied at the

synchrotron (batch 13), studying the tomographic density of states, and measuring

the doping dependence of the isotope shift.

Using laser ARPES we can remeasure batch 13 samples to see if we still see

no kink shift. We can also study the temperature dependence of the electronic

properties. This is called tomographic density of states. In other words, the gap size

and the energy required to scatter the cooper pairs are measured across a continuum

of temperatures ranging from well below to well above Tc. The temperature where

the gap and scattering length meet should match the value of Tc measured from the

magnetometer [Reb+13].

Finally, we can look at the doping dependence of these materials. Since the elec-

tronic properties HTS are highly dependent on the doping of the material, running a

similar experiment on under-doped and over-doped BSCCO materials (as compared

to the optimally doped samples in this experiment) will give us further insight in

fully understanding the microscopic properties of these exotic materials.
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