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1 Introduction

The Nadaraya-Watson nonparametric regression estimator (Nadaraya, 1964; Watson, 1964) is perhaps the

most used and studied smoothing procedure. Despite its popularity, there are few explicit derivations of

the structure and order of its bias in the existing literature. Fan (1992) and Scott (2015) give approximate

expressions for its bias, but do not explicitly study its asymptotic behavior. Ziegler (2001) gives an exact

expression when the regressand Y is bounded or has finite second moment, but does not consider the

benefits regression differentiability can bring in terms of faster convergence results of the bias expressions as

the sample size n→∞.

Glad (1998) gives strong and exact results, obtaining faster convergence rates than Ziegler using differen-

tiability assumptions. However, the arguments used in her proof are not explicit. In particular, Glad relies

on the estimator being almost surely (a.s.) bounded, but since there is no assumption that the regression

error is a.s. bounded, it is not clear that such a bound on the estimator exists. Another part of her argument

rests on a random variable with variance decaying at an O(n−1) rate. The numerator in the expression that

defines the Nadaraya-Watson estimator is then substituted for such arbitrary random variable. But later

an expression for the variance of the numerator is given which decays at an O((nhn)−1) rate, where hn is

a nonstochastic bandwidth. Since hn → 0 this rate is slower than the required O(n−1), and thus it is not

clear that the substitution is warranted in her proof.

Mack and Müller (1988) gives a result matching Scott (2015) and cites Rosenblatt (1969), but the latter

does not even have the result, never mind provide a thorough proof. Sources including Chu and Marron

(1991), Collomb (1977), Jennen-Steinmetz and Gasser (1988), and Schimek (2013) cite or have citations

leading to Collomb (1976). Seemingly inexplicably, despite drawing on the same source, they give different

results. Their orders range over O( 1√
nh

), O( 1
nh ), and O( 1

(nh)2 ). Unfortunately, Collomb’s 1976 dissertation

is difficult to obtain, having been published only in France, and was unavailable in time to be examined in

this paper.

These deficiencies in the extant literature have prompted us to revisit the asymptotic bias of the Nadaraya-
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Watson estimator with the aim of providing a thorough proof. We assume regression differentiability, as in

Glad (1998), but relax the assumption of finite conditional variance of the regression error by only assuming

that its conditional expectation equals zero. Therefore, our result can be applied in some situations where

Ziegler’s result cannot. We provide a proof for the multivariate regression case, which many of the papers

mentioned above do not include. In the single variable case, aside from the relaxed assumption above and

some other minor modifications, our result matches that of Glad (1998).

We first present the model in section 2, then give our result in Theorem 2.1. Unfortunately, this proof is

not complete. A bound for one of the terms has not yet been derived thoroughly. In subsection 2.1 we show

the most extensive attempt so far, which highlights some of the issues, and then we present some avenues

to complete the proof.

2 Model, estimator and results

We consider a sequence of independent and identically distributed random vectors {(Yi X ′i)′}ni=1 where

Xi ∈ RD, D ∈ N, is a vector of regressors and Yi ∈ R is a regressand. The Nadaraya-Watson estimator for

the regression E(Yi|Xi = x) ≡ m(x) is given by

m̂(x) =
An(x)

Bn(x)
for Bn(x) 6= 0, (2.1)

where An(x) = 1
n det(Hn)

∑n
i=1K

(
H−1n (Xi − x)

)
Yi, Bn(x) = 1

n det(Hn)

∑n
i=1K

(
H−1n (Xi − x)

)
,

Hn = diag{hd,n}Dd=1 with hd,n > 0 for all d and n, and K is a multivariate kernel function.1 In what

follows it is convenient to use multi-index notation. Let v, α ∈ RD where the components of α, denoted

by αi ∈ {0, 1, 2, · · · }. We define vα = vα1
1 · · · v

αD

D , |α| =
∑D
i=1 αi, α! = α1! · · ·αD! and for a sufficiently

differentiable arbitrary function g, Dαg(x) =
∂|α|g(x)

∂xα1
1 ...∂xαD

D

.

Theorem 2.1. Let f be the marginal density of X1, and assume that f(x) > C > 0. In addition, assume:

1. All partial derivatives of m and f up to order 3 exist and are uniformly bounded,

2. E(m(X1)) <∞,

1Specific constraints on K and Hn that are needed in our results will be given in the theorem statement
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3. K(α) =
∏D
d=1 k(αd), where k compactly supported, 0 ≤ k(γ) ≤ C,

∫
k(γ)dγ = 1,

∫
αk(α)dα = 0 and

µ2 ≡
∫
γ2k(γ)dγ <∞.

4. hd,n → 0 ∀d, ndet(Hn)→∞.

Then,

E(m̂(x))−m(x) =
µ2

2

D∑
i=1

h2i,n

(
2Dim(x)Dif(x)

f(x)
+D2

im(x)

)
+O

(
tr(H3

n) +
tr(H2

n)

ndet(Hn)

)
. (2.2)

If we replace third order derivatives by fourth order derivatives, the tr(H3
n) term in the stated order, and in

the proof, becomes tr(H4
n).

Proof. Let a = (a1 a2)′ and for a2 6= 0 let g(a) = a1/a2. Note that Dαg(a) exists for all α. Hence, for

a, b ∈ S where S is an open and convex subset of R2, with a ∈ S implies a2 6= 0, by Taylor’s Theorem we

have

g(a) =
∑

|α|≤k−1

1

α!
(a− b)αDαg(b) + k

∑
|α|=k

1

α!
(a− b)α

∫ 1

0

(1− t)k−1Dαg(b+ t(a− b))dt.

Under the assumptions on the kernel k, Hn and f , E(Bn(x)) → f(x) > C > 0. Thus, for sufficiently large

n, E(Bn(x)) > C > 0 and we put bn(x) =

(
E(An(x))
E(Bn(x))

)
. Since the definition of m̂(x) requires Bn(x) 6= 0 we

put an(x) =

(
An(x)
Bn(x)

)
. Thus, for sufficiently large n

m̂(x) = g (an(x)) =
∑

|α|≤k−1

1

α!
(an(x)− bn(x))αDαg(bn(x))

+ k
∑
|α|=k

1

α!
(an(x)− bn(x))α

∫ 1

0

(1− t)k−1Dαg(bn(x) + t(an(x)− bn(x)))dt.

Taking expectations on both sides and expanding the multi-index sum, we have

E(m̂(x)) =
E(An(x))

E(Bn(x))
− 1

(E(Bn(x)))2
Cov(An(x), Bn(x)) + 2

E(An(x))

(E(Bn(x)))3
V (Bn(x)) + · · ·

+ (−1)k−2(k − 2)!
1

(E(Bn(x)))k−1
E
(

(An(x)− E(An(x)))(Bn(x)− E(Bn(x)))k−2
)

+ (−1)k−1(k − 1)!
E(An(x))

(E(Bn(x)))k
E
(

(Bn(x)− E(Bn(x)))k−1
)

+ (−1)k−1k!E

(
(Bn(x)− E(Bn(x)))k−1

∫ 1

0

(1− t)k−1 An(x)− E(An(x))

(E(Bn(x)) + t(Bn(x)− E(Bn(x))))k
dt

)
+ (−1)kkk!E

(
(Bn(x)− E(Bn(x)))k

∫ 1

0

(1− t)k−1 E(An(x)) + t(An(x)− E(An(x)))

(E(Bn(x)) + t(Bn(x)− E(Bn(x))))k+1
dt

)
.
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We first consider

Rn,1(x) = (−1)k−1k!E

(
(Bn(x)− E(Bn(x)))k−1

∫ 1

0

(1− t)k−1 An(x)− E(An(x))

(E(Bn(x)) + t(Bn(x)− E(Bn(x))))k
dt

)
.

Letting Cn(x) = 1
ndet(Hn)

∑n
i=1K

(
H−1n (Xi − x)

)
m(Xi) we note that by the law of iterated expectations

and the triangle inequality

Rn,1(x) = (−1)k−1k!E
(
(Cn(x)− E(Cn(x))(Bn(x)− E(Bn(x)))k−1

×
∫ 1

0

(1− t)k−1 1

(E(Bn(x)) + t(Bn(x)− E(Bn(x))))k
dt

)
|Rn,1(x)| ≤ (−1)k−1k!E

(
|Bn(x)− E(Bn(x))|k−1

∫ 1

0

Bn(x)|Cn(x)/Bn(x)−m(x)|
|E(Bn(x)) + t(Bn(x)− E(Bn(x)))|k

dt

+ |Bn(x)− E(Bn(x))|k−1
∫ 1

0

|E(Cn(x))|+Bn(x)|m(x)|
|E(Bn(x)) + t(Bn(x)− E(Bn(x))|k

dt

)
Letting hn = (h1,n · · · hD,n)′ and x̄j = λXj + (1 − λ)x for some λ ∈ (0, 1), by Taylor’s Theorem and the

Triangle Inequality,

|Cn/Bn −m(x)| ≤ 1

Bn(x)

1

ndet(Hn)

∑
1≤|α|≤2

1

α!
|Dαm(x)|

n∑
i=1

K
(
H−1n (Xi − x)

)
hαn|H−1n (Xi − x)α|

+
1

Bn(x)

1

ndet(Hn)

∑
|α|=3

1

α!
|Dαm(x̄)|

n∑
i=1

K
(
H−1n (Xi − x)

)
hαn|H−1n (Xi − x)α|

≤ C
∑

1≤|α|≤3

hαn.

The last inequality follows from the uniform bound on all partial derivatives of m up to order 3 and the

compact support of K. Also, by the Triangle Inequality and the assumption that E|m(X)| <∞ we have

E|Cn(x)| ≤
∫
K(γ)|m(x+Hnγ)|f(x+Hnγ)dγ → |m(x)|f(x) as n→∞,

which implies that E|Cn(x)| is bounded. Thus,

|Rn,1(x)| ≤ CE
(∫ 1

0

1

|(1− t)E(Bn) + tBn|k
dt|Bn − E(Bn)|k−1 +

∫ 1

0

Bn
|(1− t)E(Bn) + tBn|k

dt|Bn − E(Bn)|k−1
)

≤C

(∫ (∫ 1

0

1

|(1− t)E(Bn) + tBn|k
dt

)2

f(α)dα

)1/2(∫
(Bn − E(Bn))2k−2f(α)dα

)1/2

+ C

(∫
B4
nf(α)dα

)1/4(∫ (∫ 1

0

1

|(1− t)E(Bn) + tBn|k
dt

)4

f(α)dα

)1/4

·

(∫
(Bn − E(Bn))2k−2f(α)dα

)1/2
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where the last inequality follows by multiple applications of the Cauchy-Schwarz inequality. The fourth

moment of Bn is bounded by an argument similar to that for the first moment. Next,

∫ 1

0

1

|(1− t)E(Bn) + tBn|k
dt =

∫ 1

0

1

((1− t)E(Bn) + tBn)k
dt

since Bn is positive, and then,

∫ 1

0

1

((1− t)E(Bn) + tBn)k
dt =

∑k−2
i=0 E(Bn)iBk−2−in

(k − 1)E(Bn)k−1Bk−1n

by direct integration. Note that the powers in the numerator are smaller than those in the denominator, so

one can expand the sum and cancel, leaving
∑k−1
i=1

1

(k−1)E(Bn)iB
k−i
n

. For sufficiently large n, since E(Bn) is

bounded away from 0 by C > 0 and non-stochastic, we can replace it with min(C,Ck−1) = C1, making the

entire sum larger. Finally,
k−1∑
i=1

1

(k − 1)C1B
k−i
n

≤ 1

C1
max(1/Bn, 1/B

k−1
n ).

If Bn ≥ 1, in which case the maximum is 1/Bn, this is bounded by 1/C1. Otherwise the maximum is

1/Bk−1n . We examine bounding the expectation of this term in subsection 2.1. In the rest of this section we

assume it is bounded.

Similar arguments apply to the second remainder term, noting that we can separate E(An)+t(An−E(An))

into two pieces, E(An) which does not depend on t and t(An −E(An)). Since t is bounded over its domain

of integration [0, 1], this reduces to an expression like the first remainder term.

Thus, we are left with obtaining the decay rate of
∫

(Bn−E(Bn))2kf(α)dα. We will show that by choosing

k, it can be made to decay faster than (ndet(Hn))l for any l. Note that the case where the exponent is

2k− 2 will follow likewise. For notational simplicity, in the following we replace 2k with k alone, noting that

it is even.

Bn − E(Bn) =
1

n det(Hn)

n∑
i=1

(
K

(
H−1n (Xi − x)

)
− E

(
K

(
H−1n (Xi − x)

)))
=

1

ndet(Hn)

n∑
i=1

Gi.

By the Multinomial Theorem, (Bn − E(Bn))k = 1
(n det(Hn))k

∑
k1+...+kn=k

k!
k1!...kn!

Gk11 ...G
kn
n , where the ki are

nonnegative integers. Note that k!
k1!...kn!

≤ k!. We separate terms and then group them by combinations
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of values of ki. First, suppose ki = 1. Then E(Gi) can be factored out of the rest of the expectation by

independence. But E(Gi) = 0, so all terms in the multinomial sum where any ki = 1 are 0.

Consider the terms where ki ≥ 2 or ki = 0 ∀i. Fix the values but not the permutations of ki. Then let

S = {k1, ..., kn} be a particular permutation of ki with those fixed values, and let r = |S|. Noting we have

at most n!
(n−r)! < nr terms,

C

∫
1

(n det(Hn))k

∑
k1+...+kn=k

n∏
i=1

Gkii f(α)dα ≤ C 1

(ndet(Hn))k

∑
k1+...+kn=k

n∏
i=1

∫
|Gkii |f(α)dα

≤ C
1

(ndet(Hn))k−r

∏
ki∈S

∫
|Gkii |f(x+Hnγ)dγ

= O((ndet(Hn))−(k−r))

Note that we use independence for the first inequality and the identical distribution assumption for the

second. The order uses the fact that the Gi are bounded. r is at most k/2 since every nonzero ki ≥ 2. The

number of different sets of values of ki is bounded independent of n by

(
2k − 1
k − 1

)
. Thus, by choosing k, the

whole remainder can be made to decay faster than any fixed decay rate.

Next, consider the terms of order 2 or greater. Call the order d, so they have the form

C1
1

E(Bn)d

∫
(Bn − E(Bn))d−1(An − E(An))dP + C2

E(An)

E(Bn)d+1

∫
(Bn − E(Bn))ddP

The first term corresponds to taking the derivative of the denominator d times. The second term corresponds

to taking the derivative of the numerator once and the derivative of the denominator d − 1 times. The

numerator derivative can be permuted d ways. Therefore, C1 = −C2. We multiply the first term by E(Bn)
E(Bn)

for a common denominator and factor out the constant and denominator, looking only at the rest (as before,

the denominator is bounded away from 0).

By Taylor’s Theorem, conditioning on the Xi,

E(An) = (mf)(x) +
1

2

D∑
i=1

h2i,n(D2
i (mf)(x))µ2 +O(tr(H3

n))

and

E(Bn) = f(x) +
1

2

D∑
i=1

h2i,n(D2
i f(x))µ2 +O(tr(H3

n)).
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Note that these expansions are the same except for the m and its derivatives in the former. Then,

E(Bn)

∫
(Bn − E(Bn))d−1(An − E(An))dP − E(An)

∫
(Bn − E(Bn))ddP

= E(Bn)

∫
(Bn − E(Bn))d−1(An)dP − E(An)

∫
(Bn − E(Bn))d−1(Bn)dP

= E(Bn)

∫
AnB

d−1
n − (d− 1)AnB

d−2
n E(Bn) + ...±AnE(Bn)d−1dP

− E(An)

∫
BnB

d−1
n − (d− 1)BnB

d−2
n E(Bn) + ...±BnE(Bn)d−1dP.

For the first integral, this gives (after conditioning) terms of form

E(Bn)t
∫

(ndet(Hn))−rKd−t(γ)m(x+Hnγ)f(x+Hnγ)dγ,

where t corresponds to the term in question and r depends, similar to the remainder, on indices and inde-

pendence. The order is at worst O((n det(Hn))−1) (from r = 1, corresponding to a second moment). The

second integral has the same form without the m.

We take a Taylor expansion of (mf)(x+Hnγ) to order 3 remainder of each term. The first order part is 0

by symmetry of K; the second and third order parts are O
(

1
n det(Hn)

)
O(tr(H2

n)) and O
(

1
n det(Hn)

)
O(tr(H3

n))

respectively. Therefore, everything is O(
tr(H2

n)
n det(Hn)

) if the 0th order parts are. The 0th order parts are already

O( 1
n det(Hn)

). Therefore when multiplied by E(Bn) or E(An) respectively, the second order and beyond

terms of those expectations give O(
tr(H2

n)
n det(Hn)

) or better. The 0th order terms of those expectations differ by

a factor of m. Since the 0th order parts of the integral also differ by a factor of m, in the opposite order

and with opposite sign, they cancel. Thus in the original Taylor expansion, everything of order 2 or higher,

including the remainder, is O(
tr(H2

n)
n det(Hn)

).

Finally, consider E(An)
E(Bn)

=
(mf)(x)+ 1

2

∑D
i=1 h

2
i,n(D

2
i (mf)(x))µ2+O(tr(H3

n))

f(x)+ 1
2

∑D
i=1 h

2
i,n(D

2
i f(x))µ2+O(tr(H3

n))
. First, because 1

1+c = (1− c)− c2

1+c ,

we can apply this repeatedly to the denominator as a convergent power series with order better than its

first term and eliminate the O(tr(H3
n)) term there (leaving it in the numerator). Note D2

i (mf) = mD2
i f +
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2DimDif + fD2
im. Then,

E(An)

E(Bn)
=

(mf)(x) + 1
2

∑D
i=1 h

2
i,n(D2

i (mf)(x))µ2 +O(tr(H3
n))

f(x) + 1
2

∑D
i=1 h

2
i,n(D2

i f(x))µ2

=
(mf)(x) + 1

2

∑D
i=1 h

2
i,n(mD2

i f + 2DimDif + fD2
im)(x)µ2

f(x) + 1
2

∑D
i=1 h

2
i,n(D2

i f(x))µ2

+O(tr(H3
n))

= m(x) +
1

2

D∑
i=1

h2i,nµ2

(
2(DimDif)(x)

f(x)
+D2

im(x)

)
+O(tr(H3

n))

where the last equality uses another application of the 1
1+c identity. Thus, the bias is

µ2

2

D∑
i=1

h2i,n

(
2(DimDif)(x)

f(x)
+D2

im(x)

)
+O

(
tr(H3

n) +
tr(H2

n)

n det(Hn)

)
.

2.1 Bounding E(1/Bk
n)

Unfortunately, we have not yet bounded this term successfully. Here, we outline the main attempt so far,

followed by some other ideas. We start by stating two related results that are used:

Lemma 1. Let a0,n = 0 and let amn, m ≥ 1 and n ≥ 1, be a positive double sequence that is monotone

increasing in m. Suppose also the difference cmn = amn − am−1,n is monotone increasing in n. Then the

limit can be taken in either order, that is,

lim
n→∞

lim
m→∞

amn = lim
m→∞

lim
n→∞

amn

Proof. Because amn is monotone increasing in m, cmn ≥ 0. Let µ be the counting measure. Since cmn

is monotone increasing in n, by the monotone convergence theorem, lim
n→∞

∫
cmndµ =

∫
lim
n→∞

cmndµ. This

integral is an infinite sum, so

lim
n→∞

lim
m→∞

m∑
q=0

cqn = lim
m→∞

lim
n→∞

m∑
q=0

cqn

Every term in the sum cancels except the first and last. The first is 0 as defined, and the last is amn. So

the limits can be interchanged.
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Corollary 2.1.1. Suppose amn is a double sequence as above, but now the difference cmn is monotone

decreasing in n. If lim
m→∞

am,1 exists, then we can again take the limits in either order. In addition, if cmn is

always negative, we can still swap the limit (by factoring out −1).

Proof. This follows like Lemma 1 by a standard corollary for decreasing sequences to the monotone conver-

gence theorem. To apply this corollary, the first term in the monotone sequence must be integrable. This

requires the additional condition on the limit of am,1.

We now attempt to deal with E(1/Bkn) using an identity from the integral of an exponential function,

lim
n→∞

E

(
1

Bkn

)
= lim
n→∞

E

(
lim
m→∞

∫ bm

0

e−λB
k
ndλ

)

where bm →∞ monotonically as m→∞. The inner integral is monotonically increasing in m and positive,

so by the monotone convergence theorem,

lim
n→∞

E

(
lim
m→∞

∫ bm

0

e−λB
k
ndλ

)
= lim
n→∞

lim
m→∞

E

(∫ bm

0

e−λB
k
ndλ

)

= lim
n→∞

lim
m→∞

∫ bm

0

E
(
e−λB

k
n

)
dλ

= lim
n→∞

lim
m→∞

amn

where the second equality follows by Tonelli’s theorem. Note amn is positive and increasing in m. Let

cmn = amn − am−1,n. Without loss of generality, let the indexing start for cmn start at n = m = 1 and set

a0,n = 0. By Taylor’s Theorem e−λB
k
n =

∑∞
i=0

(−λBk
n)

i

i! . Note that taking the absolute value of each term

gives the series for eλB
k
n , so this sum is absolutely convergent. Therefore, Fubini’s Theorem,

cmn =

∫ bm

bm−1

E
(
e−λB

k
n
)
dλ =

∫ bm

bm−1

∞∑
i=0

(−1)i
E(Bkin )

i!
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We now examine E(Bkin ) = E(Brn), with r = 2, 3, .... Suppose n ≥ r. Then,

E(Brn) =
1

(ndet(Hn))r
E

(∑
|α|

r!

α!
Kα1

(
H−1(X1 − x)

)
· · ·Kαn

(
H−1(Xn − x)

))

=
n

(ndet(Hn))r

∫
Kr(H−1n (α− x))f(α)dα

+
n(n− 1)r!

(r − 1)!(ndet(Hn))r

∫
Kr−1(H−1n (α− x))f(α)dα

∫
K(H−1n (α− x))f(α)dα

+ · · ·+ n(n− 1) · · · (n− r + 1)

(ndet(Hn))r

(∫
K(H−1n (α− x))f(α)dα

)r
=

1

(ndet(Hn))k−1

∫
K(γ)f(x+Hnγ)dγ + · · ·+

(∫
K(γ)f(x+Hnγ)dγ

)r
+O(n−1)

where the second equality uses the fact the Xi are i.i.d., and the third is by substitution. The O(n−1)

accounts for the mismatch between the factors of form n(n − 1)(n − 2)... in the numerators and nr in the

denominator. Once more, by Taylor’s Theorem,

f(x+Hnγ) = f(x) +
∑
|α|=1,2

1

α!
(Hnγ)αDαf(x) +

∑
|α|=3

1

α!
(Hnγ)αDαf(x+ ζHnγ)

for some ζ ∈ [0, 1]. Suppose we make an additional assumption that the order of decay rates is fixed. For

example, suppose each hi,n is a function of form hi,n = Cin
−v, v > 0. Let h∗n be the slowest decaying hi,n

(i = 1, ..., d), let hn = (h1,n ... hD,n), and let ∇2f(x) = diag{∂
2f(x)
∂x2

d
}Dd=1. Substituting in E(Brn) above,

E(Brn) = fr(x) +
r

2
hTnf

r−1(x)∇2f(x)hn +O((h∗n)3) +O(n−1)

Note that the big-O terms depend on r, but the coefficients involving r in those terms do not exceed r!,

and the powers of f(x) do not exceed fr(x). Add the additional assumption that nh2d,n → ∞ ∀d. Then

we can rewrite the O(n−1) term as O((h∗n)2ψn) with a sequence ψn → 0 monotonically. Thus, there exists

N1 > r! such that for n > N1, the change in the second term when incrementing from n to n+ 1 dominates

the change in the big-O terms. Because the ordering of decay rates is fixed by assumption 4, there exists

N2 > N1 such that for all n > N2, the change in the second term is monotonic.

Now consider
∑∞
i=0(−1)i

E(Bki
n )
i! . We truncate the sum as

∑gq
i=0(−1)i

E(Bki
n )
i! , where gq is the sequence

of odd integers 1, 3, 5, .... Now,
∑gq
i=0

wi

i! has derivative Sq(w) =
∑gq−1
i=0

wi

i! , and since gq is odd, gq − 1 is

even. For w < 0, consider the terms present in the exponential function that are missing in Sq. The first
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term has odd power. If we factor that term out, we get a product of that term and the normal exponential

function
∑∞
i=0

xi

i! . The exponential function is positive, and the other factor is negative for all w < 0. So

their product is negative. Now, if Sq took on a negative value for some w and some q, then Sq plus the

missing terms would also be negative. But Sq plus missing terms is again the exponential function, so it

cannot be negative. Therefore Sq(w) must be nonnegative for all q and all w < 0. Since the derivative is

nonnegative,
∑gq
i=0

wi

i! is monotonic in w. Since the composition of two monotone functions is also monotone,∑gq
i=0

(−λBk
n)

i

i! is monotonic in n.

Suppose we add two more terms to the truncated sum, that is, we go from gq to gq + 2. For some Q,

and q > Q, the sum of these two terms is positive: the first term is positive, and it is larger in magnitude

than the second because the factorial in the denominator dominates the polynomial in the numerator. So

the sum
∑gq
i=0(−1)i

E(Bki
n )
i! is eventually monotone increasing in q.

We now try to put these results together to show that

lim
n→∞

lim
m→∞

∫ bm

0

lim
q→∞

gq∑
i=0

(−λ)iE(Bkin ))

i!
dλ = lim

m→∞

∫ bm

0

lim
q→∞

gq∑
i=0

(−λ)i lim
n→∞

E(Bkin ))

i!
dλ

First, we take the limit in q out. It goes outside the dλ integral by dominated convergence, since it is

dominated by its limit, which is integrable on the compact integration domain (m here is fixed). Next, the

whole function is increasing in q (by above). The difference in q is the last two terms, whose sum as above

is positive, and therefore increasing in m because of the larger integration domain. So by Lemma 1, we can

interchange the limit in q and the limit in m. However, after taking m inside, integrating and taking the

limit in m gives infinity. So this does not seem to work.

2.1.1 Other Possibilities

It is possible that there is nonetheless a way to swap the limits in n and m. Aside from mistakes in the above,

a tighter bound might replace one of the inequalities and permit the swap. This would complete the proof.

However, given the number of limits, integrals, and Taylor expansions involved, and the past attempts, if

there is a solution here at all it is difficult to obtain.

The most promising route at the moment seems to be to explore the identity used by Ziegler (2001):
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E
(A
B

)
=
E(A)

E(B)
− 1

(E(B))2
E(A(B − E(B))) +

1

(E(B))2
E
(A
B

(B − E(B))2
)

There are two possibilities here. Since Ziegler doesn’t use differentiability assumptions, it is possible that

by using that identity directly but modifying other parts of Ziegler’s proof, likely by using Taylor expansions

to directly incorporate the differentiability, one could get a better result than Ziegler does. The second

possibility is related to the order k of the expansion in Theorem 2.1 above. The arbitrary order ensures that

the remainder decays fast enough not to conflict with decay in other terms. If one could increase the order

of this identity, or perhaps derive a general version, it might be possible to improve on Ziegler’s order or

relax his assumptions, perhaps even without assuming differentiability.

Another avenue to investigate is a simulation to try to pin down the actual order. Such a simulation

could not be used as any sort of proof. But since there is disagreement in the literature on the actual order,

a simulation could show what result to aim for, and head off fruitless attempts to prove a nonexistent faster

convergence.

3 Conclusion

In this note we attempt to provide an expression for the unconditional bias of the traditional Nadaraya-

Watson estimator for a multivariate regression. Our proof clarifies some issues in the literature. Besides

their importance from a purely technical perspective, these issues are important to address in developing

alternatives to the Nadaraya-Watson estimator that try to reduce the leading terms of the bias. Unfortu-

nately, we have so far been unable to complete the proof. However, some ideas that may lead to resolving

the remaining problems are presented above, and we are hopeful that developing them further will lead to a

complete proof.
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