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ABSTRACT
Recent advances have allowed for greater investigation into microbial regulation of
mercury toxicity in the environment. Inwetlands in particular, dissolved organicmatter
(DOM) may influence methylmercury (MeHg) production both through chemical
interactions and through substrate effects on microbiomes. We conducted microcosm
experiments in two disparate wetland environments (oligotrophic unvegetated and
high-C vegetated sediments) to examine the impacts of plant leachate and inorganic
mercury loadings (20 mg/L HgCl2) on microbiomes and MeHg production in the St.
Louis River Estuary. Our research reveals the greater relative capacity for mercury
methylation in vegetated over unvegetated sediments. Further, our work shows how
mercury cycling in oligotrophic unvegetated sediments may be susceptible to DOM
inputs in the St. Louis River Estuary: unvegetated microcosms receiving leachate pro-
duced substantially more MeHg than unamended microcosms. We also demonstrate
(1) changes inmicrobiome structure towardsClostridia, (2) metagenomic shifts toward
fermentation, and (3) degradation of complexDOM; all of which coincide with elevated
net MeHg production in unvegetated microcosms receiving leachate. Together, our
work shows the influence of wetland vegetation in controlling MeHg production in
the Great Lakes region and provides evidence that this may be due to both enhanced
microbial activity as well as differences in microbiome composition.
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INTRODUCTION
Mercury methylation in anoxic sediments is central to the bioaccumulation of mercury in
plant and animal tissue (Benoit et al., 2003;Morel, Kraepiel & Amyot, 1998; Ullrich, Tanton
& Abdrashitova, 2001) and poses a significant environmental and human health concern
in the freshwater wetlands of the Great Lakes region (Branfireun et al., 1999; Harmon
et al., 2005; Jeremiason et al., 2006). Dissolved organic matter (DOM) has been a focus of
geochemical investigations for decades, and both positive and negative interactions between
DOM and mercury methylation—principally, a microbial transformation (Hsu-Kim et al.,
2013; Paranjape & Hall, 2017)—have been demonstrated under contrasting environmental
conditions (Graham, Aiken & Gilmour, 2013; Hsu-Kim et al., 2013; Ravichandran, 2004).
Further, recent discoveries in microbial ecology of mercury methylation have highlighted
the complex roles of diversemicrobial communities in drivingmercury cycling. Yet linkages
among DOM cycling, sediment microbiomes that directly mediate mercury methylation,
and MeHg production remain poorly described.

Dissolved organic matter is comprised of various classes of organic compounds
(primarily organic acids) with a wide range of molecular weights and aromaticities
(Lambertsson & Nilsson, 2006;Wetzel, 1992). DOM concentrations are elevated in wetlands
relative to other freshwater systems (>10 mg/L), and the humic fraction derived from
plant leachate predominates (Fellman, Hood & Spencer, 2010). With respect to mercury
cycling in wetlands, mercury methylation is impacted both by binding properties of the
humic DOM fraction, resulting either in increased dissolution of inorganic mercury
complexes or in physical inhibition of mercury bioavailability (Drexel et al., 2002; Haitzer,
Aiken & Ryan, 2002; Waples et al., 2005), and by the provisioning of organic substrate for
microbial activity (Hsu-Kim et al., 2013; King et al., 2000; Lambertsson & Nilsson, 2006).
Since mercury methylation is strongly impacted by DOM, environments such as the Great
Lakes’ St. Louis River estuary, which contains areas of both vegetated and unvegetated
sediments,may also showdifferences in the capacity forMeHg production across vegetation
gradients that exhibit pronounced differences in DOM content.

Beyond the interaction of DOM and mercury and the influence of DOM on microbial
activity, numerous studies have shown that microbiome composition itself is influenced
by DOM quantity and/or quality (Docherty et al., 2006; Forsström, Roiha & Rautio, 2013;
Graham et al., 2016a; Graham et al., 2017; Pernthaler, 2013; Stegen et al., 2016), and such
changes in environmental microbiomes alter biogeochemistry (Graham et al., 2016a;
Graham et al., 2017;Graham et al., 2016b). The composition of microbial communities has
recently gained increased attention with regard to mercury cycling due to the discovery
of the hgcAB gene cluster, which has allowed investigations into the microbial ecology of
mercury cycling (Boyd et al., 2017; Gilmour et al., 2013; Gionfriddo et al., 2016; Paranjape
& Hall, 2017; Parks et al., 2013; Rani et al., 2015; Rothenberg et al., 2016; Schwartz et al.,
2016). Such work has increased knowledge on the microbiology of mercury methylation,
expanding potential microorganisms mediating methylation beyond sulfate-reducing
bacteria (Compeau & Bartha, 1985; Hsu-Kim et al., 2013), iron-reducing bacteria (Kerin
et al., 2006) and methanogens (Hamelin et al., 2011). For example, Gilmour et al. (2013)
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have identified five clades of putative methylators, including new clades of syntrophic and
Clostridial organisms.

In this study, we examine the influence of DOM from plant leachate on net
methylmercury (MeHg) production in a contaminated freshwater estuary at the base
of Lake Superior. First, we describe net MeHg production in environments exhibiting high
(vegetated sediments) and low (unvegetated sediments) DOM concentration. These two
contrasting sediment types are widely found in the environment. We hypothesize that both
DOM quantity and quality influence mercury methylation through two different pathways,
(1) by regulating microbial activity and (2) by shifting bacterial community composition,
and therein the metabolic diversity of mercury methylators. We test this hypothesis across
chemically distinct sediments associated with unvegetated (oligotrophic, low-C) and
vegetated (high-C) environments. We used a microcosm experiment to monitor changes
in sedimentmicrobiomes, DOM chemical quality, and netMeHg production in response to
additions of leachate from overlying plant material and to high levels of inorganic mercury.
In total, this work delineates a broad view of how vegetated vs. unvegetated sediments in
the Great Lakes’ St. Louis River Estuary may have different capacities for the cycling of
mercury.

METHODS
Field site
The St. Louis River Estuary is home to the largest US port on the Great Lakes and covers
roughly 12,000 acres of wetland habitat directly emptying into Lake Superior. Mining
in the headwaters, industrial discharge in the port, and atmospheric deposition have
left a legacy of mercury contamination in the sediment. We obtained sediment samples
from nearshore vegetated (Zizania palustris (wild rice), 46◦40.855′N, 91◦59.048′W) and
unvegetated (46◦41.918′N, 92◦0.123′W) patches in Allouez Bay and fresh wild rice plant
matter from nearby Pokegama Bay (46.683448◦N, 92.159261◦W). The purpose of this
design was to obtain sediment from locations in close proximity to each other and to
minimize our ecological impact on sensitive wild rice patches by gathering plant material
from a larger nearby vegetation patch. The overlying water column was <1 m at each
location. Both habitats are clay-influenced embayments that drain an alluvial clay plain
created by deposition during the retreat of the last glaciation approximately 10,000 years BP.

Experimental design
A total of 20 anoxic microcosms were constructed in September 2013 to investigate
relationships between DOM cycling, sediment microbiomes, and mercury methylation.
Microcosms were constructed in 500-mL airtight glass mason jars and stored at room
temperature in the dark inMylar bags with oxygen-absorbing packets between subsampling
to maintain anoxia. Sediment was obtained in 250-mL amber Nalgene bottles from the top
10 cm of sediment (grab samples) using a block sampling design described in Supplemental
Information 1. Leachate was extracted using 1 g dried, ground plant matter:20 mL of
Nanopure water, shaken for 1 hr, rested for 4 hr, and filtered throughWhatman 0.7µmGFF
filters (Whatman Incorporated, Florham Park, NJ, USA). All materials (except filters) were
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acid washed, and filters were combusted to remove residual C. The chemical composition
of leachate is available in Supplemental Information 1. Our experiment was designed to
promote microbial MeHg production (1) by adding an abundance of inorganic mercury.
(2) taking reasonable measures tominimize abiotic photo-methylation and -demethylation
(Morel, Kraepiel & Amyot, 1998), and (3) sustaining a low redox environment for inhibiting
demethylation (Compeau & Bartha, 1984). We acknowledge that we did not eliminate all
potential demethylation activity from our microcosms, and we refer to changes in MeHg
as ‘net MeHg production’ to reflect possible demethylation (consistent with other recent
work, Schwartz et al., 2016). All experimental set up and sample processing was conducted
in an anaerobic glovebox containing 85% N2, 5% CO2, and 10% H2 gas mix at the USGS
in Boulder, CO. Jars were degassed in the glovebox for 48 hr prior to experimentation to
remove oxygen.

A full-factorial design was employed with two environments (vegetated and unvegetated
sediment) and two treatments (plant leachate and Nanopure water). Sediments were
homogenized via mixing but unsieved to maintain environment characteristics. Large
roots (>1 cm) were infrequent and removed to lessen heterogeneity among replicates.
Each microcosm received 100 g wet sediment and 250 mL solution consisting either of
leachate at 100 mg/L (∼5× natural concentrations to mimic a loading event) and HgCl2 at
20 mg/L (50 µg/g wet sediment) in Nanopure water (leachate replicates) or solely of HgCl2
at 20 mg/L in nanopure water (no leachate replicates). The purpose of HgCl2 addition
at high concentration was to counteract initial differences in mercury, minimize HgCl2
inaccessibility due to abiotic organo-metal interactions, and provide substrate for the
duration of the experiment. HgCl2 concentrations were elevated to extreme levels (1,000×
ambient concentration), reflecting a convention in ecological change literature to stress
ecosystems and eliminate substrate limitation with high levels of nutrients to assist in
deciphering mechanistic controls over a process of interest. Because we were interested in
the ability of microorganism to generate methylmercury when given an unlimited supply
of inorganic mercury, we did not parse the origin of MeHg (i.e., frommercury originally in
the sediment vs. from added substrate). Although we added more HgCl2 than is common
in mercury-DOM literature, we note that (1) the duration of experiment was long relative
to other studies (28 days vs. <24 hr in many studies); (2) DOM concentrations are high
in the St. Louis River Estuary (>20 mg/L in the water column), and (3) added HgCl2
concentrations were of comparable magnitude to some microcosm experiments of similar
design (Harris-Hellal et al., 2009; Ruggiero et al., 2011; Zhou et al., 2012). Though we did
not directly assess microbial activity, we estimate minimal dosage effects as communities
without leachate did not change through time in unvegetated microcosms and only slightly
changed through time in vegetated microcosms (R2 = 0.19, see results and Fig. S1).
Microcosms were incubated for 28 days, and subsamples of sediment and water were taken
every seven days for analysis of sediment microbiomes and DOM characteristics.

Sediment chemistry and mercury methylation
Percent carbon and nitrogen, NO−3 /NO

−

2 , NH
+

4 , total particulate organic carbon (TPOC),
total dissolved nitrogen (TDN), and pH were determined on pre-incubation sediments, as
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described in Supplemental Information 1. For total- and methylmercury analysis, initial
(day 0) and final (day 28) subsamples were frozen at−70 ◦C, freeze-dried, and sent on dry
ice to the USGS Mercury Lab in Middleton, WI for analysis by aqueous phase ethylation,
followed by gas chromatographic separation with cold vapor atomic fluorescence detection
(Method 5A-8), acid digestion (Method 5A-7), and QA/QC. Mercury analyses were
performed on three of five replicates for each environment and microcosm type. All other
analyses were performed on five replicates, except for no unvegetated microcosms without
leachate beyond day 0 (n = 4, one replicate destroyed during experiment).

Dissolved organic matter characteristics
Aqueous subsamples fromwater overlying sediments were collected at 7-day intervals (days
0, 7, 14, 21, and 28) to determine non-purgeable organic carbon (NPOC) concentration and
specific UV absorbance at 254 nm (SUVA254) as well characteristics of the optically active
DOM pool (mostly associated with humic DOM fraction), as described in Supplemental
Information 1. We calculated the fluorescence index (FI) to determine the relative
contribution of microbial vs. terrestrial matter to the DOM pool, the humic index (HIX) to
identify large aromatic compounds consistent with humic material, and the freshness index
to determine the availability of labile carbon (Fellman, Hood & Spencer, 2010; Gabor et al.,
2014a) using MATLAB software (2013a; The MathWorks, Natick, MA, USA) according to
Gabor et al. (2014b).

Microbial DNA extraction, 16S rRNA amplicon, and metagenomic
shotgun sequencing
DNA from each sediment subsample was extracted using the MO Bio Power Soil DNA
Extraction kit (MO BIO Laboratories, Carlsbad, CA, USA), as described in Knelman
et al. (2017), Knelman et al. (2015) and Castle et al. (2016). The region encoding the V4
fragment of the 16S rRNA gene was amplified with the primers 515F/806R, using the PCR
protocol described by the Earth Microbiome Project (Caporaso et al., 2012) (Supplemental
Information 1). The final multiplexed DNA samples were sequenced at CU-Boulder
(BioFrontiers Institute, Boulder, CO) on an Illumina MiSeq with the MiSeq Reagent Kit
v2, 300 cycles (Illumina, Cat. # MS-102-2002) to generate 2 × 150-bp paired-end reads.
Sequences are available at https://figshare.com/articles/Sequences/5833935. In addition,
3 unvegetated leachate replicates at day 0 (before leachate addition) and day 28 were
sent to the Joint Genome Institute (JGI) for shotgun metagenomic sequencing on the
Illumina HiSeq platform. Sequences are available at img.jgi.doe.gov under GOLD Study
ID ‘Gs0113736’.

To examine shifts in bacterial community composition that may relate to mercury
cycling, we located 90 of 142 (65%)microbial strains that have been identified as containing
the hgcAB gene cluster (listed by Oak Ridge National Laboratory (ORNL), http://www.esd.
ornl.gov/programs/rsfa/data/PredictedMethylators/PredictedMethylators_20160420.pdf)
with available complete or partial 16S rRNA gene sequences in theNCBIGenBank database.
While our database was not exhaustive and sub-OTU level sequence variation (97%) may
impact an organism’s methylation potential, the purpose of this analysis was to identify
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possible methylating OTUs of interest, and the represented sequences spanned all clades of
methylators (Fig. S2).We created a closed-reference database of these sequences and picked
OTUs against this database in QIIME to discern a reduced set of potential methylating
taxa present in our samples. This highlighted taxa that are known to contain methylating
organisms. We assessed how such taxa shift in response to DOM addition across the two
sediment types and may correspond with changes in mercury methylation.

Sequence analysis
Partial 16S rRNA genes were filtered for sequence length and minimum quality score in
the UPARSE pipeline (Edgar, 2013) and OTUs were assigned using QIIME (Caporaso et
al., 2010) (Supplemental Information 1). Metagenomic shotgun sequences were assembled
and classified against the protein families database (Pfam) (Finn et al., 2013), Clusters of
Orthologous Groups of proteins (COG) (Tatusov et al., 2003), and Kyoto Encyclopedia of
Genes andGenomes (KEGG) (Kanehisa & Goto, 2000) by JGI via the IMGdatabase pipeline
(Markowitz et al., 2012). In addition, a BLAST database was constructed from all hgcA and
hgcB gene sequences available in GenBank. A BLASTX search was conducted against this
database to identify taxonomic affiliation of methylators in our samples; however, our
query resulted in no matches, likely due to inadequate sequencing depth.

Statistical analysis
All analyses, unless otherwise noted, were conducted using the R software platform.
Shapiro–Wilk tests were used to verify normality and assess the appropriateness of
parametric vs. non-parametric tests. Multivariate sediment properties (e.g., sediment
geochemistry) were compared across environments at day 0 with Hotelling’s T-square Test
and post hoc Student’s t -tests. MeHg production was calculated by subtracting day 0 from
day 28MeHg concentrations; values below detection limit were assigned the detection limit
as a value for a conservative estimate of change. MeHg production was compared across
groups using ANOVA. Changes in DOM indices (FI, freshness, HIX) through time (days 0,
7, 14, 21, and 28) in each sample group were assessed with linear and quadratic regressions.
DOM samples with SUVA254 >7 were removed due to fluorescence interference from
inorganic molecules. Comparisons of DOM indices between data subsets were conducted
with ANOVA and post hoc Tukey HSD.

Microbial community dissimilarity matrices based on 16S rRNA sequences were
constructed using the weighted UniFrac method in QIIME (Lozupone et al., 2011). Alpha
diversity for each sample was assessed using the PD whole tree metric in QIIME. Changes
in community structure through time (days 0, 7, 14, 21, 28) were assessed with ANOSIM
in QIIME. Differences in alpha diversity at day 0 were assessed using unpaired one-way
Student’s t -tests. Relative abundances of major clades were assessed between vegetated and
unvegetated environments at day 0 and changes in clades through time (days 0, 7, 14, 21,
28) were assessed using non-parametric Kruskal–Wallis tests with FDR-correct P values.
SIMPER analysis was conducted using the ‘vegan package’ to identify OTUs associated
with community dissimilarity between days 0 and 28 in microcosms receiving leachate.

To focus our analysis of microbiome composition on taxa that may contain methylating
bacteria, we used one-sided Mann–Whitney U tests to identify clades of organisms on

Graham et al. (2018), PeerJ, DOI 10.7717/peerj.4575 6/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.4575#supp-1
http://dx.doi.org/10.7717/peerj.4575#supp-1
http://dx.doi.org/10.7717/peerj.4575


ORNL’s list of potential methylators that changed through time. We build upon previous
work by Rothenberg et al. (2016), who examined genus-level changes in knownmethylating
clades, and Rani et al. (2015), who examined only methylating Deltaproteobacteria at the
OTU level, by targeting all microorganisms identified by ORNL at the OTU level. We
present results as changes in percent relative abundance rather than fold-change due to the
absence of some organisms at day 0 (i.e., zero abundance). Microorganisms that exhibited
significant changes were further compared to HIX and net MeHg production to examine
potential relationships among DOM, bacterial taxa, and mercury cycling. For this analysis,
we used the Pearson product-momentum correlation coefficient, grouping leachate and
no leachate microcosms within each environment in a single analysis to provide replication
across a wide range of variation (analysis conducted on data from day 28, n = 6).

Finally, we explored metagenomic shotgun sequences for information on specific
microbial metabolic pathways that changed through time in our microcosms. We used
binomial tests to detect increases in the frequency of COGs, Pfams, and KEGG pathways at
day 28 relative to day 0. Targets more abundant at day 28 (FDR-corrected P < 0.01)
were examined for correlations with HIX and MeHg production with the Pearson
product-momentum correlation coefficient to decipher possible links between microbial
metabolism, DOM cycling, and net MeHg production.

RESULTS
Ambient geochemistry and microbiology
Physicochemical properties and sediment microbiomes differed between vegetated and
unvegetated environments (Hotelling P = 0.004, Table 1). The unvegetated sediment was
extremely oligotrophic compared to vegetated sediment, with much lower concentrations
of C and N, and both vegetated and unvegetated environments appeared to be N-limited
(C:N 16.43 and 20.06). In addition, net MeHg production in sediments without leachate
addition was significantly higher in vegetated sediment than unvegetated sediment, by
nearly two orders of magnitude (Fig. 1). Final total Hg concentrations at the end of the
microcosm experiment were 79.2 ± 18.3 (vegetated with leachate), 86.5 ± 14.5 (vegetated
without leachate), 15.0 ± 5.8 (unvegetated with leachate), and 18.1 ± 1.3 (unvegetated
without leachate) µg/g wet sediment. Initial concentrations are listed in Table 1. Microbial
community structure and alpha diversity were significantly different between the two
environments (ANOSIM, P = 0.001, R= 1.00, t -test, P = 0.01), though major phyla were
similar (Table 1).

Microbiome response to HgCl2 and leachate addition
Over the course of the incubation, microcosms with vegetated, high-C sediment produced
over ten times more MeHg than unvegetated sediment microcosms, regardless of
leachate amendment (ANOVA P = 0.002, Fig. 1). However, leachate did not stimulate
MeHg production in the vegetated environment. Within the oligotrophic, unvegetated
environment, mercury methylation was enhanced by leachate within the oligotrophic
unvegetated environment with roughly two to four times more production in microcosms
receiving leachate as compared to those without leachate.

Graham et al. (2018), PeerJ, DOI 10.7717/peerj.4575 7/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.4575


Table 1 Mean chemical and biological characteristics of vegetated (n= 5) and unvegetated (n= 5) en-
vironments are presented Table 1. All data are derived from sediments. Asterisks represent significant
differences from post hoc t -tests, and standard deviations are presented in parentheses. Microbial groups
are listed as relative abundance (fraction of all OTUs in community).

Vegetated environment Unvegetated Environment

pH* 5.6 (0.09) 5.8 (0.40)
Water content (g dry/g wet)*** 0.54 (0.04) 0.85 (0.04)
NH4 (ug/g wet)*** 5.96 (1.28) 1.44 (0.56)
TPOC (ug/g wet)*** 90.4 (4.8) 7.2 (4)
TDN (ug/g wet)** 4.8 (1.6) 3.2 (0.8)
percent C*** 13.16 (2.20) 1.82 (3.39)
percent N*** 0.8 (0.06) 0.1 (0.23)
C:N* 16.43 (1.59) 20.06 (5.36)
MeHg (ng/g)** 2.67 (2.18) 0.24 (0.12)
THg (ng/g) 306.56 (551.07) 3.16 (3.99)
MeHg:THg 0.02 (0.009) 0.32 (0.45)
Proteobacteria*** 0.3 (0.04) 0.43 (0.02)
Chloroflexi*** 0.17 (0.01) 0.06 (0.009)
Bacteroidetes 0.11 (0.02) 0.13 (0.03)
Acidobacteria* 0.07 (0.009) 0.08 (0.02)
Nitrospirae*** 0.05 (0.009) 0.02 (0.009)
Actinobacteria*** 0.03 (0.007) 0.07 (0.01)
Alpha Diversity (PDWhole Tree)** 183.8 (6.64) 193.7 (11.33)

Notes.
*P < 0.10.
**P < 0.05.
***P < 0.01.

Community structure changed through time in vegetated and unvegetated environments
with leachate (ANOSIM across days 0, 7, 14, 21, 28, veg.: P = 0.001 R= 0.40, unveg.:
P = 0.001 R= 0.43, Figs. S2A and S2B), but not those without leachate (veg.: P = 0.02,
R= 0.19, unveg.: P > 0.05, Figs. S2A and S2B), indicating no substantial effect from
high concentrations of added inorganic mercury on microbiome structure. At day 28,
communities in unvegetated microcosms with leachate were different than those without
leachate (ANOSIM, P = 0.01, R= 0.54), while microbiome structure in vegetated sediment
microcosms only weakly differed between leachate and no leachate groups (P = 0.04,
R= 0.22).

Changes in community structure in response to leachate was partially generated by shifts
in microbial taxa that are known to containmethylating bacteria. For example, we observed
an increase in Clostridia in both environments (Kruskal–Wallis, veg.: FDR-corrected
P = 0.003, unveg.: P = 0.018, Fig. 2B, Tables S1–S2) and a decrease in Deltaproteobacteria
in unvegetated sediment (Kruskal–Wallis, veg.: FDR-corrected P = 0.36, unveg.: FDR-
corrected P = 0.015, Fig. 2A). Clostridia do not typically metabolize sulfate, while the taxon
Deltaproteobacteria contains many sulfate-reducing organisms. In particular, Clostridia
abundances increased by 3-fold (1.1% to 3.8% of the microbiome) and 10-fold (1.5%
to 10.5% of the microbiome), respectively in vegetated and unvegetated environments,
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Figure 1 Boxplots are shown for net MeHg production. Boxplots are shown for net MeHg production
(calculated as concentration at 28 days less the initial concentration), with upper and lower hinges repre-
senting the values at the 75th and 25th percentiles and whiskers representing 1.5 times value at the 75th
and 25th percentiles, respectively. Leachate increased net MeHg production in unvegetated sediment but
did not have a large impact within vegetated sediments. Regardless of leachate addition, vegetated sedi-
ment experienced an order of magnitude higher rates of net mercury methylation. All samples were spiked
with HgCl2. Mean increase in MeHg production in ng per g dry± standard errors are listed below each
box.

Full-size DOI: 10.7717/peerj.4575/fig-1

driven by increases in nearly all families of Clostridia. SIMPER analysis was confirmative of
these changes in the full community—22.9% of 175 SIMPER-identified OTUs belonged to
Clostridia (increased from avg. 0.78 OTUs/sample to avg. 17.20 OTUs/sample, Tables S1–
S2) while 8% belonged to Deltaproteobacteria (decreased from avg. 8.5 OTUs/sample to
7.4 OTUs/sample, Tables S1–S2).

One family of Clostridia known to contain methylating bacteria (Peptococcaceae),
sharply increased with leachate in unvegetated sediment and displayed a similar trend in
vegetated sediment (Mann–Whitney U , veg.: uncorrected P = 0.03, unveg.: uncorrected
P = 0.03, Fig. 2B, Table S1–S2). These changes were due in part to increases in two closely
related methylating OTUs (Mann–Whitney U , Dehalobacter restrictus strain PER-K23,
veg.: uncorrected P = 0.04, from an average of 0% to 6% of the reduced set of potential
methylating taxa, and Syntrophobotulus glycolicus strain DSM 1351, unveg.: uncorrected
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Figure 2 Boxplots are shown for selected changes in taxonomy in response to leachate addition. All
samples were spiked with HgCl2. Upper and lower hinges represent values at the 75th and 25th percentiles
and whiskers represent 1.5 times values at the 75th and 25th percentiles, respectively. Outliers are plotted
as points. Shading for each bar denote taxonomy and leachate vs. no leachate. Significant relationships (P
< 0.05) are denoted with an asterisk. (A) The addition of leachate decreased the proportion of Deltapro-
teobacteria and increased the proportion of Clostridia in both vegetated and unvegetated sediment, with
greater effects in unvegetated sediment. (B) Within organisms in the ORNL database of putative mer-
cury methylators, we observed changes within the family Peptococcaceae (class Clostridia) in response to
leachate addition. Abundance data are present in Table S2.

Full-size DOI: 10.7717/peerj.4575/fig-2

P = 0.01, from an average of 0% to 3% of the reduced set of potential methylating taxa)
grouped in a single genus by our classification system (Dehalobacter_Syntrophobotulus, Fig.
S2). Vegetated sediments also experienced a slight increase in [Clostridium] cellobioparum
strain DSM 1351 (uncorrected P = 0.03, from an average of 0% to 1% of the reduced
set of potential methylating taxa), while unvegetated sediments displayed an increase in
Geobacter bemidjiensis strain Bem (uncorrected P = 0.02, from an average of 24% to 42%
of the reduced set of potential methylating taxa) and a decrease in Geobacter sp. M21
(uncorrected P = 0.006, from an average of 15% to 3% of the reduced set of potential
methylating taxa). No other OTUs changes in these microcosms.

Metagenomic shotgun sequences were consistent with microbiome shifts observed
in 16S rRNA genes. We note increases in Clostridia (t -test, FDR-corrected P = 0.006),
Peptococcaceae (t -test, FDR-corrected P = 0.018), Dehalobacter restrictus (t -test, FDR-
corrected P = 0.024), and Syntrophobotulus glycolicus (t -test, FDR-corrected P = 0.042) as
well as a possible trend for decreases inDeltaproteobacteria (t -test, FDR-corrected P = 0.18)
in metagenomic data (Fig. 3D). We also idenitfied 7,150 KEGG pathways, 84 COGs, and
79 Pfams that were significantly enriched at day 28 relative to day 0 in unvegetated leachate
microcosms (Figs. 3A–3C). All classfication systems revealed metabolic shifts towards
glycosyltranseferases, among other pathways involved in DOM oxidation and in iron and
nitrate reduction.
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Figure 3 Results from analysis of metagenomic shotgun sequences from unvegetated microcosms are
denoted in Fig. 3. All samples were spiked with HgCl2. (A–C) show the abundance of the top 15 KEGG,
COG, and Pfam targets that increased at day 28 vs. day 0, respectively. (D) shows percent change in se-
lected taxonomic groups at day 28 vs. day 0. Error bars denote standard error.

Full-size DOI: 10.7717/peerj.4575/fig-3

Changes in DOM chemistry
Details of DOM quantity and quality changes are presented in Fig. 4 and Fig. S3 and
described in greater detail in Supplemental Information 1. Regression statistics associated
with Fig. 4 and Fig. S3 are presented in Table 2.

DOM fluorescence indices displayed notable changes through time. In the vegetated
environment, FI remained stable at a low value in leachate microcosms, indicating
plant-derived DOM, and rose in microcosms without leachate indicating greater relative
contribution of microbial vs. abiotic processing (Figs. 4A and 4B). In contrast, in the
vegetated environment, HIX increased in both leachate and no leachate microcosms
indicating processing of more labile vs. recalcitrant DOM (Figs. 4C and 4D). This increase
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Figure 4 DOM fluorescence indices were assessed through time with linear and quadratic regressions
in each environment andmicrocosm type. All samples were spiked with HgCl2. Averages for each en-
vironment and microcosm type are plotted at days 0, 7, 14, 21, and 28, with error bars representing the
standard error. Plots in the first column are leachate microcosms, while plots in the second column are no
leachate microcosms. Unvegetated microcosms are depicted as closed circles with dashed lines showing
significant regressions; vegetated microcosms are x ’s with solid lines showing significant regressions. (A)
and (B) denote FI, (C) and (D) denote HIX, and (E) and (F) denote freshness.

Full-size DOI: 10.7717/peerj.4575/fig-4
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Table 2 Regression statistics (R2 values) from analysis of changes in DOM properties through time are listed in Table 2. These values are as-
sociated with regressions presented in Fig. 4 and Fig. S3. All DOM properties are derived from water overlaying sediments in our incubations. No
leachate microcosms were analyzed from across days 7, 14, 21, and 28; and leachate microcosms were analyzed across days 0, 7, 14, 21, and 28 (n=
4–5 at each sampling point, no samples were taken in no leachate microcosms at day zero), with characteristics of the applied leachate represented at
day 0.

NPOC (mg/L) Total Fluoresence Fluor:NPOC FI HIX Freshness

Vegetated, No leachate (across days 7, 14, 21, 28) 0.39** 0.21* n.s. 0.22** 0.51*** 0.52***

Vegetated, Leachate (across days 0, 7, 14, 21, 28) 0.32*** n.s. n.s. n.s. 0.68**** 0.57***

Unvegetated, No leachate (across days 7, 14, 21, 28) 0.64**** n.s. 0.29** n.s. n.s. n.s.
Unvegetated, Leachate (across days 0, 7, 14, 21, 28) n.s. n.s. n.s. 0.41*** n.s. 0.39***

Notes.
*P < 0.10.
**P < 0.05.
***P < 0.01.
****P < 0.001.

in HIX corresponded with decrease in freshness index (Figs. 4E and 4F), further supporting
our interpretation. In the unvegetated environment, leachate microcosms (but not
microcosms without leachate) increased in FI (Figs. 4A and 4B) denoting an increase
in microbially-sourced DOM over time. There was no change in HIX (Figs. 4C and 4D)
suggesting equal processing of labile vs. recalcitrant DOM. Freshness varied non-linearly
in leachate microcosms but not those without leachate (Figs. 4E and 4F).

Across environment types, HIX was significantly higher in vegetated microcosms
(ANOVA P < 0.0001, Tukey HSD, leachate: P < 0.0001, no leachate: P = 0.004). FI
and freshness were higher in unvegetated leachate microcosms than in vegetated DOM-
amended microcosms (Tukey HSD, FI: P = 0.003, freshness: P = 0.03) but did not differ
across microcosms without leachate (Tukey HSD, FI: P = 0.89, freshness: P = 0.40).

Correlation of microbiome, DOM characteristics, and MeHg
production
Given the apparent shift in community structure towards Clostridia, and chemoorgan-
otrophic Peptococcaceae in particular, we examined correlations of members of this family
listed in the ORNL methylator database with the proportion of complex organic matter
(HIX) and MeHg production within each environment. We focused on HIX because this
index changed consistently and reflected portions of recalcitrant carbon substrate pools
utilized by the organisms we identified. Because we only calculated net MeHg production
at the conclusion of the incubation, we analyzed these correlations at day 28 and grouped
leachate and no-leachate replicates within each environment to provide sufficient variation
and sample size (n= 6). Peptococcaceae with the potential to methylate merucry negatively
correlated with HIX and positively correlated with net MeHg production in unvegetated
microcosms (Pearson’s r (n = 6), HIX: r =−0.82, MeHg: r = 0.67). The same organisms
were not strongly correlated with HIX (r =−0.49) or net MeHg production (r =−0.04)
in vegetated microcosms.

Finally, despite low statistical power (n = 3), we observed marginally significant trends
(P < 0.10) between key metabolic pathways and HIX (Table 3). While we note that
the sample size for this analysis was low, it is remarkable to observe any trends under
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Table 3 Relationships of selected COG and Pfam targets with HIX and net MeHg production at day 28
(n= 3) are presented in Table 3. Values are Pearson’s r , and significance levels are denoted by asterisks.

HIX MeHg

COG
Glycosyltransferase −0.98* 0.79
Glycosyltransferases involved in cell wall biogenesis −0.96* 0.76
ABC-type nitrate/sulfonate/bicarbonate transport systems. periplasmic
components

−0.85 0.55

FOG: PAS/PAC domain −0.88 0.60
Predicted metal-dependent hydrolase of the TIM-barrel fold 0.88 0.60
Transcriptional regulator −0.999** 0.88
Outer membrane receptor proteins. mostly Fe transport −0.79 0.45
HD-GYP domain −0.99** 0.84
Glycosyltransferases. probably involved in cell wall biogenesis −0.96* 0.74
Beta-galactosidase/beta-glucuronidase 0.98* −0.80
Sugar phosphate isomerases/epimerases −0.73 0.36
Lactoylglutathione lyase and related lyases −0.93 0.67
Nitroreductase −0.996** 0.86
Thiamine biosynthesis enzyme ThiH and related uncharacterized enzymes 0.98* 0.80
ABC-type phosphate transport system. periplasmic component −0.66 0.27
Pfam
WD40-like Beta Propeller Repeat −0.99** 0.85
Glycosyl transferase family 2 −0.97* 0.76
TonB dependent receptor 0.90 −0.9999***

Radical SAM superfamily −0.95* 0.75
TonB-dependent Receptor Plug Domain 0.51 −0.83
Amidohydrolase −0.87 0.57
NMT1/THI5 like −0.87 0.58
HD domain −0.9997** 0.91
DNA gyrase C-terminal domain. beta-propeller −0.94 0.70
Protein of unknown function (DUF1501) −0.46 0.04
RHS Repeat −0.80 0.46
Doubled CXXCH motif (Paired_CXXCH_1) −0.97* 0.78
Helix-turn-helix −0.90 0.63
Natural resistance-associated macrophage protein −0.83 0.51
SusD family 0.99* −0.82

Notes.
*P < 0.10.
**P < 0.05.

this limitation and we provide results as an encouraging avenue for future research.
In particular, COGs classified as Glycosyltransferase, Glycosyltransferases involved in
cell wall biogenesis, Glycosyltransferases—probably involved in cell wall biogenesis, and
Beta-galactosidase/beta-glucuronidase; and Pfams classified as Glycosyl transferase family
2, Radical SAM superfamily, and SusD family displayed significant correlations with HIX at
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the P < 0.10 level. Only Pfam PF00593, TonB dependent receptor, correlated with MeHg
production (P < 0.001, r =−1.00, Table 2).

DISCUSSION
We show the importance of vegetation patterns and DOM availability in mercury cycling
within Lake Superior’s St. Louis River Estuary, an integral environment to human society
and industries of the region. Our work demonstrates not only the far higher levels of
mercury cycling in natural vegetated over unvegetated sediments, but also the susceptibility
of oligotrophic, unvegetated sediments to increases in mercury methylation and changes
in microbiomes with the addition of DOM. We also suggest a possible involvement of
metabolisms that ferment recalcitrant organic matter (OM) in mercury methylation,
particularly within oligotrophic unvegetated environments. Our results provide a basis
for further investigation into the role of newly discovered microorganisms in regulating
the production of MeHg in the Great Lakes region and further a body of work aimed at
understanding and mitigating human exposure to MeHg.

Mercury methylation across environments
Our work indicated a strongly different capacity of vegetated vs. unvegetated wetland
sediments to cycle mercury. Without leachate addition, MeHg production in vegetated
sediments was two orders of magnitude higher than in unvegetated sediments (Fig. 1).
As such, vegetated sediments may be considered potentially important locations for
mercury methylation in contaminated watersheds. Such a dynamic may be due to either
higher overall activity of microorganisms or the unique microbiomes contained within
these sediments. Within the high-C vegetated environment, leachate did not influence
the sediment microbiome or net MeHg production to the same extent as within the
more oligotrophic unvegetated environment (Fig. 1, Fig. S1). Given high ratios of C:N,
high OC content, and low NO−3 concentrations in our vegetated sediment (Table 1),
N-limitation may have mitigated net MeHg production in vegetated environments relative
to the unvegetated environment (Taylor & Townsend, 2010), which had substantially
lower concentrations of all measured C and nutrient concentrations. Both ambient
MeHg concentrations prior to microcosm amendment and net MeHg production
were dramatically higher in the vegetated environment, supporting other findings that
plant-microbe interactions facilitate MeHg production (Gentès et al., 2017; Roy, Amyot &
Carignan, 2009; Windham-Myers et al., 2014;Windham-Myers et al., 2009).

By contrast, the unvegetated environment experienced a dramatic increase in MeHg
(Fig. 1) in response to leachate that correlated with changes in the sediment microbiome
(Figs. 2 and 3, Fig. S1 ). Carbon limitation has been widely demonstrated as a constraint on
microbial activity (Bradley, Fernandez Jr & Chapelle, 1992; Brooks, McKnight & Elder, 2005;
Wett & Rauch, 2003); thus, leachate may bolster MeHg production in C-limited ecosystems
via impacts on microbial activity. In our system, net MeHg production in the unvegetated
environment was possibly also constrained by low in situ rates of microbial activity and
by low N concentration, and net MeHg production in response to leachate stimulus never
increased to vegetated levels. Importantly, leachate enhanced the relative abundance of a
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specific taxon known to contain methylating organisms (Clostridia), raising the possibility
that mercury methylation rates may be dually influenced by the sediment microbiome and
by OM (Aiken, Hsu-Kim & Ryan, 2011; Hsu-Kim et al., 2013).

Microbiome response to leachate addition.
Microbiome responses to leachate in both sediment types are consistent with recent
work demonstrating the fermentation of OM by Clostridia despite the presence of OM-
oxidizing Deltaproteobacteria (Reimers et al., 2013) and suggest a possible role for members
of Clostridia in MeHg production, either through direct methylation or indirectly by
enhancing the availability of OM for other organisms through fermentation. Within both
environments, leachate altered the sediment microbiome, driven largely by increases
in Clostridia and decreases in Deltaproteobacteria. Unvegetated microcosms displayed
greater changes in these clades, supporting a greater role for environmental filtering
by DOM within oligotrophic environments (Barberán et al., 2012; Graham et al., 2016a;
Graham et al., 2017; Stegen et al., 2012). Clostridia are obligate anaerobes with the ability
to produce labile carbon compounds via fermentation of recalcitrant OM (Reimers et
al., 2013; Ueno et al., 2016). Recent work has shown organic carbon degradation via
Clostridial fermentation to operate at comparable rates to more energetically favorable
carbon processing pathways (Reimers et al., 2013). Organic acids (e.g., lactate and acetate)
produced through these pathways can also be utilized as a carbon source by sulfate-
and iron- reducing Deltaproteobacteria (Guerrero-Barajas, Garibay-Orijel & Rosas-Rocha,
2011; Reimers et al., 2013; Zhao, Ren & Wang, 2008). Thus, enhanced DOM breakdown by
Clostridia may support other biogeochemical processes (e.g., sulfur, iron, and nitrogen
cycles) that rely on organic carbon as an energy source.

In unvegetated sediments, metagenomic analyses indicated an increase in carbon, and
secondarily, ironmetabolisms consistentwith clades known tomethylatemercury, although
no methylating pathways could be identified in this work (Gilmour et al., 2013; Hamelin
et al., 2011; Kerin et al., 2006; Podar et al., 2015). Carbon metabolisms were the primary
KEGG category increasing in abundance within metagenomes (Fig. 3A), and several COG
pathways and Pfams indicated a possible metabolic shift favoring glycosyltransferases that
convert starches, sugars, and nitroaromatics into a wide range of compounds (Bowles
et al., 2005; Ramli et al., 2015) (Figs. 3B and 3C). Further, metagenomic increases in
Beta-galactosidase/beta-glucoronidase (lactose to galactose/glucose) (Martini et al., 1987),
sugar phosphate isomerase/epimerases (sugar metabolism) (Yeom, Kim & Oh, 2013), and
lactoylglutathione lyase (detoxification for methyglyoxal fermentation byproduct) (Inoue
& Kimura, 1995) and the SusD family (glycan binding) (Martens et al., 2009) provide
additional evidence for increases in fermentation processes in response to leachate.
Increases in TonB dependent receptors (Moeck & Coulton, 1998), amidohydrolase (Seibert
& Raushel, 2005), and NRAMP (Cellier et al., 1995) suggest a secondary importance of
iron processing and/or transport of large organic compounds across cellular membranes.
Finally, our results provide a possible genetic mechanism connecting iron, sulfur, carbon,
and mercury cycling, as the radical SAM superfamily, which facilitates methyl transfers
via the use of a [4Fe-S]+ cluster (Booker & Grove, 2010), increased in concert with net
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MeHg production. In total, the metabolic potential of the sediment microbiome indicates
changes in carbon and ironmetabolisms withinmicrocosms experiencing higher netMeHg
production in response to leachate, supporting past work that suggests a linkage between
mercury methylation and these factors (Gilmour et al., 2013;Hamelin et al., 2011;Hsu-Kim
et al., 2013; Kerin et al., 2006; Podar et al., 2015).

Lastly, at high taxonomic resolution in both environments, leachate increased the
proportion of bacterial taxa that are known to contain methylating organisms such as
Peptococcaceae withinClostridia, despite drastic differences in sediment chemistry (Fig. 2B).
Specifically, the two OTUs identified by ORNL as organisms with mercury methylation
genes that displayed the greatest change are thought to generate energy via organohalide
respiration (D. restrictus) and fermentative oxidation of organic matter (S. glycolicus, also
capable of syntrophy) (Han et al., 2011; Stackebrandt, 2014). The relative abundance of
Peptococcaceae was positively correlated with net MeHg production in the unvegetated
environment, and other taxa that are known to contain methylating organisms did not
increase in abundance, as would be expected if the activity of these organisms was enhanced
by leachate.

We note that shifts in these taxa contain many OTUs that are not methylating bacteria,
however, we attempt to focus our analysis of changes in microbiome composition to
taxa that are relevant to methylation. Overall this work points to the effects of DOM on
microbial community composition with potential implication for microbiome function
that may influence mercury cycling.

Associations between microbiology, DOM processing, and net MeHg
production
The processing of proportionally more labile (microbe-preferred) OM would be expected
to result in increases in HIX. However, changes in these indices within the unvegetated
environment suggest substantial recalcitrant OM degradation vs. the metabolism of labile
substrates (but not in the vegetated environment which followed the expectation of increase
HIX). We observed no change in HIX through time in unvegetated microcosms (both
leachate and no leachate). This result is reflective of a DOM pool that has stable relative
proportions of labile and recalcitrant OM, indicating equal rates of degradation and/or
production of both substrate types (Figs. 4C and 4D). Vegetated microcosms, in contrast,
experienced increases in HIX through time that indicate a loss of labile substrate from the
fluorescent DOM pool (Figs. 4C and 4D). Further, in leachate unvegetated microcosms,
which experienced pronounced changes in the sediment microbiome and increased MeHg
production, HIX was significantly lower than in all other experimental groups (ANOVA,
P < 0.0001, all Tukey HSD P < 0.0001). While most microorganisms preferentially
degrade labile C sources, the degradation of recalcitrant OM can contribute substantially
to aquatic carbon cycling (Mcleod et al., 2011). Unvegetated microcosms receiving
leachate also exhibited large increases in microbially-derived DOM (FI) through time,
demonstrating a noticeable contribution of microbial activity to the DOM pool (Fig. 4A).
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The abundance of Peptococcaceae in unvegetated microcosms negatively correlated with
HIX, denoting an apparent association of these members or co-occuring community
members with DOM processing, but the mechanisms behind these shifts remain
unclear. Metabolism of recalcitrant OM by fermenting organisms may influence mercury
methylation via direct and indirect mechanisms. Members of Clostridia can generate MeHg
themselves, and Clostridial degradation of recalcitrant OM can also produce bioavailable
carbon substrates for sulfate- and iron- reducing organisms that produce MeHg.

While further work with a larger sample size is needed, changes in metagenomes
in response to leachate denote interesting metabolic pathways that may be involved in
recalcitrant OM processing and MeHg production. For example, both COG and Pfam
glycosyltransferases were negatively correlated with HIX, suggesting a role for starch,
sugar, and nitroaromatic fermentation in response to DOM loading. As well, a negative
correlation between HIX, and the radical SAM superfamily provides a possible mechanistic
linkage between methyl transfers and recalcitrant organic matter processing. Conversely,
Beta-galactosidase/beta-glucuronidase, and the SusD family were positively correlated with
HIX, indicating a co-association with labile C processing rather than recalcitrant OM.

CONCLUSIONS
Our work shows clearly distinct mercury cycling dynamics between the vegetated and
unvegetated sediments of the St. Louis River Estuary. While substantially greater MeHg
production is observed in vegetated sediments, unvegetated sediments stand to respond
more strongly to DOM additions in driving increases in MeHg production. We also
describe changes in DOM pool properties through time using fluorescence indices that
can be readily applied in natural systems and may be particularly valuable for monitoring
efforts in wetlands of the Great Lakes Region. Moreover, we observed changes in the
microbiome of both high-C and oligotrophic sediment in response to leachate addition.
The oligotrophic environment showed greater responses in the sediment microbiome and
inmercurymethylation to the addition of DOM, an important insight given increasing risks
of anthropogenic eutrophication (Hsu-Kim et al., 2018; Obrist et al., 2018). Microbiome
shifts towards fermentation pathways, increases in chemoorganotrophic Clostridia,
degradation of recalcitrant OM, and increases in MeHg within oligotrophic environments
emphasizes the need to further study microbial ecology of mercury methylation. While
a correspondence between Clostridia, fermentation metabolisms, and MeHg does not
necessitate a direct relationship between these processes, the abilities of some Clostridia to
methylate mercury and of fermentation products to facilitate other metabolic pathways
commonly associatedwithmercurymethylationmerits future investigation into the ecology
of these organisms. Importantly, our results provide evidence that microbial abundances
that correspondwith increasedmercurymethylation include taxa that are known to contain
methylating bacteria but are not historically considered in MeHg production. Taken
together, our research provides new insights on how DOM may influence microbiome
structure and activity differently in two sediment types, impacting MeHg production in
natural settings in the Great Lakes region.
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