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Dissertation directed by Prof. R. Steven Nerem

This work presents methods for combining time-variable gravimetry, altimetry, and GNSS

bedrock motion data to distinguish sources of mass change in Antarctica with enhanced spatial

resolution. GRACE gravimetry provided direct measurements of mass variation of the Antarctic

Ice Sheet at monthly timescales between 2002 and 2017, but was limited to a spatial resolution of

300 km. Laser altimetry from ICESat (2003-2009) provided elevation change measurements at fine

spatial resolution, better resolving the spatially concentrated sources of Antarctic mass loss, but

with sparse temporal sampling. The processes of glacial isostatic adjustment (GIA), ice dynamics,

surface mass balance, and firn compaction affect geodetic measurements with distinct magnitudes,

timescales, and spatial scales, which means they may be separated through combination of different

data sources. This work explores separation of GIA and ice sheet processes by combining data from

ICESat and GRACE. This is accompanied by separation of GIA and ice sheet processes using GNSS

vertical crustal motion estimates and GRACE. Monthly solutions for combined ice sheet mass

variation are developed using monthly GRACE solutions combined with high-resolution ICESat

elevation rates. High-resolution monthly solutions for Antarctic mass variation are developed by

combining ICESat elevation rates statistical information from models of the processes of interest

with monthly GRACE data. This work also examines of the impact of atmospheric modeling

errors on estimates of Antarctic mass loss, finding that errors in models used to remove atmospheric

signals from GRACE solutions obscure additional acceleration in total Antarctic mass loss. Finally,

time-variable GRACE and ICESat data are combined directly to produce 17 time-variable mass

solutions at high spatial resolution between 2003 and 2009 with an updated GIA model. The

solutions indicate 2003–2009 average mass loss of 116+10
−51 Gt yr−1 and a total GIA mass rate of

110+60
−24 Gt yr−1. With GRACE Follow-On and ICESat-2 now concurrently in orbit, the methods
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developed in this work pave the way toward simultaneous assimilation of their respective gravity

and elevation data into a monthly, high-resolution solution for Antarctic mass change.
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Chapter 1

Introduction

Observing the changing distribution of mass within Earth’s atmosphere, oceans, ice sheets,

and ground water is a top priority in modern Earth science (National Academies of Sciences, En-

gineering, and Medicine, 2018).This task is particularly important and challenging in the largest

contiguous mass of land ice on Earth, the Antarctic Ice Sheet (AIS). With its grounded portion

spanning over 12 million square kilometers and possessing an average thickness of nearly 2 kilome-

ters, the AIS has the potential to raise sea level by over 58 meters if melted completely (Fretwell

et al., 2013). Through gravity-driven ice dynamics, this ice mass continuously flows into the ocean,

approximately balanced by incoming precipitation. However, since the early 2000s, various satellite-

geodetic estimation techniques have revealed that Antarctica makes net contributions of tens to

hundreds of gigatons (1 Gt = 1012 kg) per year of ice mass to the oceans, resulting in several tenths

of a millimeter per year of sea level rise.

A number of methods exist to characterize the mass balance of the AIS and pinpoint where ice

mass is currently being lost. These methods and the processes they detect are illustrated in Figure

1.1. Precise mapping of sources of mass loss in the AIS aids predictions of how these locations will

contribute to future sea level rise. Understanding the overall net balance of surface mass balance

and ice dynamics will illuminate Antarctica’s sensitivity to a changing climate.

Since 2002, the Gravity Recovery and Climate Experiment (GRACE) mission has produced

a monthly record of Earth’s gravity field, enabling direct estimation of changes in the distribution

of water, ice, and solid-Earth mass across its surface. Over Antarctica, GRACE is limited by uncer-
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Figure 1.1: Explanation of major ice sheet processes and observable effects

Figure 1.2: Trend signals captured by GRACE (2002–2017), ICESat (2003–2009), and GNSS (2002–
2017) vertical position estimates, reflecting geodetic change due to mass variation.
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tainty in glacial isostatic adjustment (GIA), the viscoelastic rebound of the solid Earth reflecting

loading from ice present during the last glacial maximum, 20,000 years ago. Uncertainty in GIA

models results in a wide range of estimates of Antarctic mass loss from anywhere between 50 and

150 Gt yr−1 (Mart́ın-Español et al., 2016a).

Changes in the mass of the Antarctic Ice Sheet manifest themselves most directly with ele-

vation change. These may be measured with satellite altimetry. Altimetry missions, such as the

Ice, Cloud, and land Elevation Satellite (ICESat), CryoSat-2, and Envisat have recorded surface

elevation change measurements at the centimeter level. However, these elevation change estimates

are difficult to convert to mass change estimates due to uncertainty in local surface density. Firn

compaction, the slow densification of snow as it becomes ice, is a limiting source of uncertainty

in the relationship between measured surface elevation change and mass change. Uncertainty in

firn compaction models widens the range of possible interpretations such that some authors report

mass gains that exceed losses across the continent (Zwally et al., 2015).

Variations in the mass of the AIS are also reflected in elastic deformations of bedrock directly

detectable in position time series collected by permanent global navigation satellite system (GNSS)

antenna sites mounted in Antarctic bedrock. GNSS vertical motion estimates are extremely sensi-

tive to vertical motion induced by GIA. Elastic loading signals detected in dense GNSS networks

have been used to spatially resolve mass variations elsewhere (Argus et al., 2014).

The trend signals captured by these three techniques are illustrated in Figure 1.2. The

primary features of these trends are strong, GIA-induced uplift signals in West Antarctica and

moderate, long-wavelength GIA signals lining the Antarctic coast; concentrated mass loss signals

near the Amundsen, Thwaites, and Totten glaciers; and ice-dynamics-driven mass buildup in the

Kamb ice stream.

Geodetic methods used to estimate Antarctic mass change have differing sensitivity to ice

sheet processes and background models that limit any single technique. These techniques also differ

by orders of magnitude in effective spatial resolution. Combining data from multiple methods could

overcome the limitations of any single technique to produce a narrower and less uncertain credible
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range of estimates for Antarctic mass loss.

As of December 2018, both the GRACE and ICESat missions are completely inoperative.

Their successors GRACE Follow-On and ICESat-2 were both launched in 2018 and are expected

to return new science data over the next five years. Additionally, ANET GNSS sites are expected

to continue operation in this time period. The concurrent operation of these missions presents an

opportunity to develop a system for integrating these data together into a single operational model.

As Antarctica’s role in future sea level rise remains uncertain (Church et al., 2013), continuous

monitoring the mass of this ice sheet through geodetic means will become indispensable.

The objective of this project is to implement combinations of geodetic observations of Antarc-

tica to resolve variations in mass on monthly timescales. The solution should disaggregate GIA,

surface mass balance, and ice dynamics. Such a combination also should improve spatial resolution

relative to GRACE. Potential spatial resolution improvement could be on the order of 20–100 km.

Such a solution should also provide useful predictions of mass variation during periods in which

GRACE and ICESat do not observe the Antarctic Ice Sheet concurrently. The combination is in-

formed by the statistics of relevant models, but do not explicitly depend on the internal dynamics

of these models or involve direct evaluation of these models.

The scope of this project is limited by one major self-imposed ground rule: there is to be no

direct evaluation of dynamics. Dynamical models of the processes that govern observable geodetic

changes in Antarctica may not be run on their own. Only model outputs may be used in the

development of methods for data combination. Models of GIA, meteorology, ice dynamics, and

firn compaction require considerable computational resources and time to develop and properly

run. Avoiding the limitations of explicit model dynamics grants flexibility in evaluating filtering

approaches. The filter should also not depend on meteorologically driven model outputs for firn

compaction, surface mass balance, and ice dynamics as their latency may become a limiting factor

in the practical implementation of the data combination.

Where models are used, their spatial statistics should constrain solutions. Published GIA

models and covariances should inform the spatial characteristics of the GIA solution. Surface mass
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balance and firn compaction predictions from RACMO 2.3 (Wessem et al., 2014; Lenaerts et al.,

2013; Ligtenberg et al., 2011) should likewise inform the firn and surface mass balance components

of the ice sheet mass variation solution. The ice dynamics should be informed by horizontal inter-

ferometric synthetic aperture radar (InSAR) velocities (Rignot et al., 2011) and trend constraints

developed by Zammit-Mangion et al. (2013). The project should also leverage previous work in

examining atmospheric errors over the Antarctic ice sheet, using reanalyses examined by Hardy

et al. (2017) to correct these errors.

The final product should match or exceed the capabilities of filtering schemes developed by

Zammit-Mangion et al. (2013, 2015); Schoen et al. (2015); Mart́ın-Español et al. (2016b), particu-

larly in terms of spatial and temporal resolution.

The project should narrow the wide range of solutions for Antarctic mass loss recovered

through various methods. These refinements will constrain Antarctica’s contribution to current

sea level rise. Improved spatial resolution of Antarctic mass loss may also inform projections of

future contributions to sea level change as new data are collected. Apparent contradictions between

measurements may uncover interesting scientific problems, such as basal melting or post-seismic

effects.

The investigation explores a number of semi-independent approaches to the problem of com-

bining Antarctic geodetic data for better mass change estimates. First, errors introduced by uncor-

rected atmospheric signals to satellite gravimetry are characterized and corrected using a combina-

tion of in situ pressure measurements and robust atmospheric reanalyses. Techniques to retrieve

atmospheric errors from quiescent parts of the Antarctic Ice Sheet are demonstrated, paving the way

for satellite gravimetry to become a tool of meteorology. Next, techniques to separate GIA and ice

sheet mass variation signals in GRACE, GNSS, and ICESat are explored independently. Monthly

and cycle-by-cycle solutions for elevation change in Antarctica are generated and compared with

GRACE via linear regression to estimate the distribution of effective surface snow density. Spatial

statistics of ice dynamics and surface mass balance (SMB) are used to disaggregate these processes

in GRACE data.
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High-resolution monthly solutions for Antarctic mass variation are pursued by feeding GRACE

data to Kalman filters informed by priors and spatial statistics obtained from ICESat elevation rate

fields and surface mass balance models. Basin-level ice mass discharge measurements are also used

to constrain these measurements. These filters effectively enhance GRACE solutions. The filter

outputs are validated by predicting their elastic loading signals in three-dimensional GNSS time

series and verifying that these results either improve or do not unacceptably degrade the residuals

of these time series.

History of data combination in Antarctica

Farrell (1972) first examined the relationship between elastic loading and mass change on

Earth’s surface, formulating Green’s functions for elastic effects on Earth’s crustal deformation and

geopotential, which may be measured through various geodetic methods. These relationships were

essential for relating elastic loading detected by altimetry and GNSS time series to local changes

in mass. The Green’s functions of Farrell (1972) were further essential for relating geopotential

changes measured by GRACE to mass changes near Earth’s surface. Wahr et al. (1998) ultimately

compiled the essential method for relating spherical-harmonic Stokes coefficients to spatial and

temporal in Earth’s surface mass. Swenson and Wahr (2002), in turn, codified the kernel-averaging

techniques necessary for estimating total mass change within a region using GRACE.

Wahr et al. (1995) examined the relationship between vertical motion from GIA and the

corresponding change in local gravity. They found an approximate linear relationship between

vertical motion and gravity change that enabled solution for GIA through simultaneous linear

combination. This linear relationship was refined by Purcell et al. (2011).

Wahr et al. (2000) used simulated data to demonstrate the plausibility of combining of data

from the then soon-to-be-launched ICESat and GRACE missions. They concluded that five years

of coincident ICESat and GRACE data were sufficient for slight improvement in solutions for AIS

mass loss and refinement of GIA. They found that extending the period of data collection between

both missions should continue to reduce these uncertainties.

After five years of data had been collected from both the GRACE and ICESat missions, Riva
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et al. (2009) attempted to separate GIA and surface processes in the ice sheet through direct linear

combination of the trends of total equivalent water height from GRACE and elevation change from

ICESat. The combination resulted in an empirical GIA model. This technique was refined by

Gunter et al. (2014), who used more robust surface densities. A number of empirical GIA models

have followed these approaches, many of which are shown in Mart́ın-Español et al. (2016a), who

find that empirical and semi-empirical models tend to find more conservative estimates for GIA

corrections than forward models.

Serious efforts at solving the problem of source separation of the constituent processes of

measurable geodetic change in Antarctica continued with Zammit-Mangion et al. (2013). They

devised a hierarchical Bayesian framework for examining altimetry and gravimetry simultaneously,

while leveraging geostatistical information from GIA, firn-compaction, and surface mass balance

models to find solutions for total mass balance in West Antarctica. They characterize the spatial

and temporal folding scales of the input models and associated variances. A similar approach was

taken by Schoen et al. (2015), who also included GNSS vertical motion data. Zammit-Mangion et al.

(2015) later continued this hierarchical approach, but expanded the scope of their combinations

to cover the entire continent. Mart́ın-Español et al. (2016b) continue this thread, and obtain an

empirical GIA solution. Sasgen et al. (2017), as part of the REGINA project, perform a similar

disaggregation of GIA and ice sheet mass processes using GRACE, ICESat, Envisat, and GNSS

data, but use a GIA modeling approach that allows for lateral mantle structure variation. These

papers represent the state of the art in combination of Antarctic geodetic data.



Chapter 2

Background

2.1 Sources of Mass Change in Antarctica

Mass and elevation change in Antarctica may be modeled as a linear combination of four

fundamental processes: glacial isostatic adjustment, ice dynamics, surface mass balance, and firn

compaction. Each process has characteristic temporal scale, spatial scale, and effective density

relating local elevation change to local mass change. Atmospheric effects, such as pressure loading

and gravity signals, must also be considered when trying to identify these processes in geodetic

data. These processes are summarized in Figure 2.1.

Glacial isostatic adjustment (GIA) is the viscoelastically moderated return of mantle mass

displaced by loading from ice sheets present during the last glacial maximum. GIA is detectable

as a gravity signal in GRACE and as an elevation change signal in GPS and satellite altimetry.

GIA is a long-period signal, which may be treated as a constant trend over decadal timescales.

Its geodetic signatures are traditionally forward-modeled using an ice load history and a model of

Earth’s viscosity profile.

The relationship between elevation change and geopotential change due to GIA is not straight-

forward, but approximations exist in the vertical direction. Multiple authors, including Wahr et al.

(1995) and Purcell et al. (2011) have derived asymptotic linear relationships between gravity change

and elevation change, which allow conversion between these quantities independent of load history

and solid-Earth structure. This normally results in modeling GIA as a Bouguer plate with 2
3 the

overall density of Earth, or 3700 kg m−3. Other authors, such as (Riva et al., 2009), have refined
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Figure 2.1: Classficiation of Antarctic mass variation processes and error sources
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this approximation to include self-attraction and loading effects.

Horizontal motion does not follow these asymptotic relationships and requires full modeling

of the load history and viscoelastic response of Earth. While it is possible to use a full model

to predict the GIA signal in GNSS observations, these signals are difficult to disentangle from

additional horizontal motion signals from plate tectonics.

Ice sheet surface processes may be divided into three components: surface mass balance, firn

compaction, and ice dynamics. The relationship between the three components may be illustrated

in the differential continuity equation for an ice sheet.

∂ρ

∂t
+ ρ∇ · u = σ (2.1)

The first term, describing rate of change in local density ρ, captures firn compaction. The

divergence term ρ∇·u, where u is the ice stream velocity vector, describes ice dynamics. When the

continuity equation is integrated vertically, it implies that gradients in horizontal ice velocities must

be balanced by thickening or thinning of the ice sheet in the vertical direction. Ice dynamics may

therefore be measured with elevation rates or with horizontal ice velocities. From the divergence

theorem, the total contribution of ice dynamics to the ice sheet mass balance may be obtained by

integrating the ice velocity divergence over the volume of the ice sheet, or integrating ice velocities

through flux gates at the ice sheet boundaries (the grounding line). Finally, the external inputs from

precipitation, runoff, and evaporation above the ice sheet are included in the differential volumetric

mass generation term σ, the surface mass balance (SMB).

Surface mass balance generates a net ∼2,500 Gt per year of total accumulation on the conti-

nent, an amount approximately balanced by ice dynamics. The state of the art in Antarctic surface

mass balance modeling is represented by the Regional Antarctic Climate Model (RACMO) 2.3

(Wessem et al., 2014; Lenaerts et al., 2013). The accumulated mass loading of SMB signature may

be detected by GRACE directly, through changes in geopotential; GNSS, through changes in elastic

loading of bedrock; and satellite altimetry via the combined effects of elastic loading and volume
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change in the ice sheet. The effective density of surface snow is time-dependent, but its steady

state may be empirically modeled as a function of annually-averaged temperature, precipitation,

and wind speeds (Kaspers et al., 2004).

Firn densification, or firn compaction, is the slow consolidation of accumulated surface snow

under its own weight and the weight of additional accumulation. Firn compaction is directly observ-

able with altimetry. According to the model produced by Ligtenberg et al. (2011), firn densification

has deflated the volume of the ice sheet by ∼90 km3 yr−1 between 2003 and 2016, causing altimetry

to systematically overestimate the mass loss of the continent if uncorrected. Fortunately, because

it has no associated loading or mass change signal, it is not detectable in geopotential or bedrock

motion, raising the possibility that it is separable from other ice sheet processes if other measure-

ments are involved. In some approaches to the problem of data combination over Antarctica, firn

compaction is treated as a background signal that must be subtracted from altimetry before com-

bination with other data. In others, firn compaction is treated as a separate process that may be

disaggregated through the combination of GRACE and altimetry data. Both approaches depend

on information from available models. Additionally, some authors have proposed using differences

between radar and laser altimetry penetration depths to reveal changes in firn density.

Ice dynamics, the gravity-driven, viscoelastically moderated flow of ice sheet material into

the ocean, is another long-period process. Temporally, this flow is modulated by changes in air

and ocean temperature, surface mass balance, and bedrock topography. These processes may drive

a physical model of ice dynamics. However, the use of numerical models is explicitly beyond the

defined scope of this work, which is limited to combining geodetic data to map mass change directly.

Instead, ice dynamics may be regarded as a relatively constant trend in mass and elevation change

with allowance for variation according to observational constraints. Constraints on surface elevation

change due to ice dynamics may be drawn from horizontal ice surface velocity measurements derived

from INSAR (Rignot et al., 2011), following Zammit-Mangion et al. (2013). Ice dynamics is directly

observable in the same manner as surface mass balance, as it directly affects geopotential, elastic

crustal deformation, and ice sheet surface elevation.
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Atmospheric signals also contribute to geodetic measurements in Antarctica. Atmospheric

pressure loading causes elastic crustal deformations on the order of several millimeters over most

of Earth’s surface (Petrov, 2004). Pressure loading deformations affect GNSS and altimetry mea-

surements and must be corrected if sub-centimeter elevation accuracy is required.

Gravity from atmospheric mass variations in space and time can be detected by GRACE.

The sub-monthly component of these variations can introduce temporal aliasing errors to GRACE

estimates of mass change within a region, while lower-frequency atmospheric signals can introduce

considerable bias to these estimates. These atmospheric signals are subtracted during processing

of GRACE data using a dealiasing model known as AOD1B (Flechtner, 2007). The atmospheric

component of this model currently uses the ECMWF operational analysis model. The operational

nature of this model introduces drifts, discontinuities and other biases to GRACE solutions, which

may be quantified by comparing the dealiasing model with alternative atmospheric models, such as

reanalyses, or in situ surface pressure data. Over Antarctica and Greenland, Hardy et al. (2017) use

alternative models to find that long-term drifts in the dealiasing model can introduce substantial

errors in mass loss acceleration estimates on the order of 4 Gt yr−2. Hardy et al. (2017) further

demonstrated that these errors are large enough to be detectable over quiet, high-elevation parts

of the continent.

Atmospheric signals are treated as a background process that must be removed to accurately

recover ice-sheet and solid-Earth mass variations. It is not presently practical to recover these

processes separately, though the unique sensitivity of Antarctic GRACE results to atmospheric

models may one day make Antarctica a testbed for gravity as a meteorological observable.

2.2 Geodetic Methods for Observing Antarctic Mass Change

This work considers three primary data sources: GRACE geopotential fields, GNSS position

data, and satellite altimetry. GRACE senses the sum of geopotential contributions of GIA and

surface mass change, including ice dynamics and surface mass balance. GPS receivers that are

mounted in bedrock can measure elevation changes due to GIA and elastic loading from surface
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mass change. Finally, satellite altimetry can sense the sum of elevation changes due to all four

processes. The spatial and temporal distribution of data used for this project is summarized in

Figure 2.2.

Figure 2.2: Spatial (left) and temporal (right) distribution of ICESat, GRACE, and bedrock-
mounted GNSS data.

2.2.1 Gravity

The GRACE mission, launched in March 2002 and terminated in October 2017, consisted

of twin satellites orbiting approximately 400 km above Earth’s surface separated along track by

approximately 200 km. The satellites were linked by a K-band microwave signal, variations in the

phase of which can be used to determine changes in intersatellite range on the order of 10 µm.

These variations reflect changes in Earth’s gravity field and may be inverted to produce monthly

global gravity solutions. These geopotential fields, in turn, may be inverted to reveal variations in

mass near Earth’s surface. GRACE was sensitive to variations in hydrology, land ice, displacements

of the solid Earth, ocean bottom pressure, tides, and atmospheric pressure. As these signals are all

linearly combined within a GRACE solution, isolating any single mass transport process requires
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models of the gravity signals of all other major processes. The uncertainty of these background

models can become a limiting factor in measuring any of these processes. Over Antarctica, the

primary source of uncertainty is GIA, which is about ±70 Gt yr−1 (Caron et al., 2018).

Multiple GRACE-based solutions for time variations in Earth’s gravity exist, using differing

filters and basis functions. In the initial exploration of this problem, both mascon and spherical-

harmonic solutions were used. The spherical-harmonic solutions used here are the RL05 Stokes

coefficients produced at maximum degree and order 60 by the University of Texas at Austin Center

for Space Research.

The JPL RL05.1M mascon (mass concentration) solutions (Watkins et al., 2015; Wiese,

2015) were also used. These use a more natural set of basis functions, representing Earth’s gravity

field as a set of 4,551 spherical caps. The mass distribution within these caps is processed using

a priori constraints and spread over the bounding quadrilateral of each cap. The mascons are

further partitioned to disaggregate land and ocean signals by their distinct geostatistical properties

through the coastline resolution improvement (CRI) filter.

A special subset of land-components of the 148 CRI-filtered mascons on the grounded portion

of the Antarctic ice sheet and surrounding islands was used for input data in Chapters 4, 5, and 6.

This mascon subset is illustrated in Figure 2.3.

The GRACE Follow-On mission, launched in May 2018, will continue to provide Antarctic

gravity observations.

2.2.2 Laser Altimetry

Laser altimetry is the measurement of surface elevation by timing the emission of radiation

from a platform and the return of this radiation after it is reflected from this surface. Knowing the

round-trip transit time of this radiation, its speed of propagation, factors that change its velocity

along its path, and the precise position and orientation of the platform enables measurement of the

elevation of a point on Earth’s surface at a particular time. Laser altimetry directly measures the

elevation of the uppermost layer of the ice surface at a given elevation, enabling measurement of
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Figure 2.3: Quarter-degree Antarctic land mask for use with JPL RL05.1M mascon products.
Mascon bounds are overlaid to illustrate how the “land mascon” data subset used in this work is
developed.
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volume change of the ice sheet. Altimetry is also sensitive to bedrock elevation change due to GIA

and elastic loading. While many altimetry products exist for Antarctica, the focus of this project

has been limited to processing ICESat laser altimetry data. Other radar-based measurements exist,

but harbor their own set of challenges in processing and interpretation.

ICESat was launched in 2003 and ceased operation in 2009. In this time, it recovered over

1 billion laser shots, approximately 130 million of which fell over the Antarctic ice sheet. ICESat

was placed in a 91-day repeat orbit with an inclination of 94.0◦, enabling observations as far south

as 86◦ S. ICESat’s groundtrack permitted observation of 95% of the grounded portion of the AIS.

Its primary science instrument was the Geoscience Laser Altimeter System (GLAS), which emitted

laser pulses at 1064 and 532 nm. The laser was normally operational for 25–45 days in ICESat’s

repeat cycle, and was typically used every other cycle, for an effective biannual temporal resolution.

At Earth’s surface, each GLAS beam footprint spanned approximately 70 meters and was separated

by 170 meters along track.

The altimetry data used here are GLAS/ICESat L1 and L2 Global Altimetry Data, Version

34 GLAH12 (ice sheets) subset, which consist of geolocated altitude measurements. These data

are available at the National Snow and Ice Data Center (NSIDC) archive1 . The millions of data

points available in this dataset require additional processing on the user end to establish temporal

variation, which is discussed later in this document.

ICESat was succeeded by ICESat-2, which launched in 2018. While ICESat-2 follows a 91-

day repeat ground track, like its predecessor, it uses six lasers instead of ICESat’s single beam

to locally increase spatial resolution and better establish topographic slopes. It also has a more

polar inclination than its predecessor, covering latitudes as far north and south as 88◦. ICESat-2 is

expected to have highly accessible time-variable elevation products for the Antarctic ice sheet 2 .The

ATL06 product will consist of geolocated surface heights with along-track and cross-track slopes.

The ATL11 product will be a time series of heights at selected points on the ice sheets. The ATL14

1 http://nsidc.org/data/docs/daac/glas_icesat_l1_l2_global_altimetry.gd.html
2 https://icesat-2.gsfc.nasa.gov/science/data-products

http://nsidc.org/data/docs/daac/glas_icesat_l1_l2_global_altimetry.gd.html
https://icesat-2.gsfc.nasa.gov/science/data-products
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product will provide monthly maps of land ice elevation for each year in the campaign. Monthly

sub-cycle products are also anticipated. The design of these products permits straightforward

temporal coregistration of altimetry products with GRACE-FO for future data combination.

2.2.3 GNSS-Measured Crustal Motion

GNSS refers to any set of satellites in high- or medium-Earth orbit used to produce geospa-

tial position solutions, including the US Global Positioning System (GPS), the European Union’s

Galileo, and Russia’s GLONASS. The term GPS is sometimes used interchangeably with GNSS

to metonymically to refer to all GNSS-based measurements. In all GNSS setups, satellites broad-

cast signals according to precise atomic clocks to passive receivers. These receivers compare the

timing of these messages with their own internal clocks, to obtain pseudorange measurements.

Four or more pseudorange measurements are necessary for establishing a receiver’s clock bias and

three-dimensional position.

Pseudorange measurements are limited by how well receiver electronics can align the digital

signals in GNSS satellite messages with internal reference messages; this translates to meter-to-

decimeter-level solution precision. However, more sophisticated GNSS users are able to enhance

the precision of their position solutions using carrier-phase tracking. As typical GPS signals have

a bit length of hundreds of meters, but carrier-signal wavelengths on the order of 20 cm, tracking

the phase of the carrier wave affords much more precision in range measurement. This increased

precision enables sensitivity to millimeter-level deformation induced by elastic loading and GIA.

The GNSS data used for this project come from the University of Nevada, Reno Plug and

Play daily position solutions (Blewitt et al., 2018). Position time series were downloaded from

over 150 stations installed in Antarctica between 2002 and 2017. Only stations determined to

be mounted in bedrock were eligible for inclusion in this work because of the need to accurately

measure bedrock deformation due to GIA and elastic loading. Most of the 150 stations are not

mounted in bedrock or have too short of a record to be useful for measuring bedrock velocities.

Whether stations were mounted in bedrock was determined by comparing their horizontal
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velocities with a plate motion model. Observation sites with records shorter than 36 months were

also removed from the analysis. There are 68 remaining bedrock-mounted stations in total. Of the

remaining stations, 10 stations in the Antarctic Peninsula (within 330 km of 66◦ S, 65 ◦ W) were

excluded to GIA misfitting due to the unique structure of the mantle in that part of Antarctica.

The stations BERP and BACK were also excluded due to known problems with rime formation

and other major error sources3 . The daily position time series were then binned to the intervals

defining GRACE months, leaving a total of 56 stations used for verification.

Although the GNSS position solutions are available in three dimensions, this study is often

limited to using only the vertical component of these data. While horizontal motion induced by

elastic loading is easily predicted using techniques established by Farrell (1972), other effects that

induce horizontal motion in Antarctica are more difficult to model. This is due to high uncertainty

in the horizontal observation operators for GIA. In contrast with the simple analytic rules relating

GIA to both its geopotential and vertical motion effects are found by Wahr et al. (1995), Wahr

et al. (2000), and Purcell et al. (2011), GIA observation operators for horizontal motion are highly

model-dependent. Furthermore, plate tectonics can be difficult to separate from GIA-induced

motion. Horizontal motion does represent an additional source of elastic loading signals, however.

Where possible, detrended horizontal position time series are used for validation.

3 Erik Ivins, personal correspondence



Chapter 3

Investigation of Atmospheric Errors over Antarctica

The role of systematic atmospheric errors in GRACE estimates of mass variation over the

Antarctic ice sheet was examined exhaustively as part of this work. Methods for correcting these

errors in GRACE data were developed using reanalyses and alternative data. Monthly averages of

the atmospheric component of AOD1B RL05, referred to as GAA, may be added back to GRACE

mass flux estimates to restore monthly averages of the total gravity field of Earth. Similar averages

of atmospheric surface pressure from alternative models may then be subtracted to correct these

atmospheric errors.

Investigating errors in AOD1B with alternative models and comparison with in-situ pressure

data reveals significant drifts in GAA on annual and interannual timescales. These errors hide

approximately 4 Gt yr−2 of additional acceleration in mass loss, roughly 40% of the 11 ± 4 Gt yr−2

total acceleration found by Velicogna et al. (2014). These errors are large enough to recover from

quiet parts of Antarctica. Characterizing and these errors will be essential to accurate estimation

of mass variation in Antarctica.

Further details on this investigation are given by Hardy et al. (2017) and are reproduced in

abridged form in the following sections.

3.1 Data and Methods

In situ surface pressure measurements are the primary record of ground truth for Antarctic

surface pressure. They are used to assess the accuracy of AOD1B and all alternative models. Data
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Figure 3.1: Spatial (left) and temporal (right) distribution of available surface pressure observations
from AWS, READER, and Antarctic GPS networks available within GRACE months.

collected between 2002 and 2016 from 114 observation sites were obtained from three different

data archives were used for this comparison. US Antarctic Program automatic weather stations

(AWS) have their data archived at the University of Wisconsin Madison’s Antarctic Meteorological

Research Center (Lazzara et al., 2012) and comprise over half the data used for this analysis.

Observations from 22 sites in READER (REference Antarctica Data for Environmental Research,

Turner et al. (2004)), an archive of monthly averages from meteorological instruments maintained by

the British Antarctic Survey’s scientific committee on Antarctic Research were also used. Ancillary

pressure measurements from 31 GNSS sites were used in the comparison as well. These observations

were recorded to correct atmospheric propagation delays in GNSS processing, but are nonetheless

a valuable record of surface pressure over Antarctica. The value of the GNSS surface pressure data

is enhanced by the fact that they are not assimilated into reanalyses or forecast models considered

in this analysis. The locations of all stations used in the analysis and the numbers of stations used

for each GRACE month are shown in Figure 3.1.

Relative to instrumental data, GAA has an RMS surface pressure error of 14.1 mm water

equivalent.
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GAA from AOD1B RL05 is compared with five different reanalysis products: NCEP-DOE

(Kanamitsu et al., 2002), MERRA, MERRA-2 (Rienecker et al., 2011), ERA-Interim (Dee et al.,

2011), and JRA-55 (Kobayashi et al., 2015). Of these models, only ERA-Interim, MERRA-2, and

JRA-55 are of the most recent generation of reanalysis models. MERRA has been deprecated as of

February 2016. MERRA and NCEP-DOE are only included for completeness as these reanalyses

have been commonly used for comparison in the past (e.g, Kim et al. (2016)).

As a new version of AOD1B (AOD1B RL06) is now available, it was also included in the

comparison. This new product will be used to dealias future GRACE and GRACE Follow-On

solutions (Dobslaw et al., 2017). This new product differs from RL05 in several ways. The atmo-

spheric component is a composite of the ERA-Interim reanalysis prior to 2007 and the ECMWF

Operational Analysis thereafter. It is provided at a higher spatial resolution (degree and order 180)

than RL05 (degree and order 100). The atmospheric component also includes upper-atmospheric

density anomalies, although their effects are shown to only have an effect of a few mm EWH.

The definition of the atmospheric component of AOD1B RL06 has changed such that direct

comparison with RL05 is not straightforward. To minimize correlation between the atmospheric

and oceanic component due to the inverse barometer effect, GFZ removed the atmospheric pressure

signals in RL06 over the oceans almost entirely. Instead, the sum of local atmospheric and oceanic

contributions to ocean bottom pressure are included in the oceanic product (ocn/GAB), while the

atmospheric component replaces oceanic surface pressure signals with the average surface pressure

of the entire ocean. This makes direct comparison of the AOD1B RL06 atm/GAA products with

surface pressure observations and model outputs impossible over oceans, islands, ice shelves, and

inland locations within a wavelength (∼220 km) of the coast.

Instead, the glo/GAC (atmosphere plus ocean) products of both AOD1B RL05 and RL06

products are compared. As these fields are the most direct reflection of the gravity signals sensed by

GRACE, comparing them directly provides a more accurate indication of the errors introduced by

the model changes. In situ validation of AOD1B RL06 was performed with comparisons with inland

observation sites more than 220 km from the grounding line of each ice sheet. These comparisons
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are performed with the GAA product. Because AOD1B RL06 was not used in any official GRACE

products at the time this analysis was performed and subsequently published, no official GAA or

GAC product was available for AOD1B RL06. Custom versions of these products were created by

averaging 3-hour AOD1B RL06 fields within the time periods used to define GRACE months for

the JPL RL05 solution.

All weather models are resampled onto a common 200x200 stereographic grid centered on

the south pole. Model resolution differences are controlled by converting these models to spherical

harmonics and evaluating them at a maximum degree and order of 100. AOD1B RL06 was the

only exception to this, and was evaluated at degree and order 180. The grid is inscribed by the 60

◦S parallel and has a maximum latitude of approximately 48.5 ◦S. The effective resolution of this

grid is 34 km.

Each of the reanalyses uses different physics, resolutions, data assimilation schemes, and

initial conditions to propagate their pressure fields over time. These differences between their

implementations separate the models from the ground truth in independent ways. It is, therefore,

reasonable to assume that a combination of models will better reflect the ground truth better

than any single model. The success of ensemble approaches has been demonstrated for decades

in meteorological literature (e.g., Weigel et al. (2008)). Model combination driven by the modern

reanalyses, ERA-Interim, JRA-55, and MERRA-2 was implemented.

The most basic combination method was an unweighted average of all three models. However,

with 114 Antarctic observation locations available over the entire observation span, it is also pos-

sible to generate synthetic pressure fields that are semi-independent of the models. These surface

pressure fields are interpolated from instrumental surface pressure measurements or their residuals

relative to GAA. They have a distinct advantage over simple averaging of instrument data because

interpolation addresses the problems inherent in the spatial heterogeneity of the instruments.

These solutions take the form,

x̂ = PHT (HPHT +R)−1y, (3.1)
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where P is the covariance of the model grid, H is a linear operator relating the model grid to

observations, R is the residual observation covariance (a diagonal matrix with elements estimated as

150 mm2 from semivariogram), x̂ is the estimated correction to the grid and y is a vector of pressure

observations relative to an a priori background model. We present two interpolation approaches,

optimal interpolation and the ensemble Kalman filter, which are distinguished by how we estimate

the model covariance P . Both formulations are similar to least-squares collocation (Moritz, 1978)

or the Kalman filter in the spatial domain.

With optimal interpolation, the covariance is estimated from the sample covariance of ERA-

Interim surface pressure evaluated over the entire grid and time span and the grid points cor-

responding to the instrument locations. This scheme better captures fine-scale variability than

kriging as the model dynamics are captured by its covariance.

The ensemble Kalman filter estimates the covariance term state at any given month using

the mutual sample covariance of selected reanalyses, with the a priori state estimate generated

from the mean of these models. The ensemble members are ERA-Interim, JRA-55, and MERRA-

2. Unlike with the optimal method, the covariance is not stationary and changes from month to

month, meaning model dynamics can be better represented for each month. This method follows

the observation-matrix-free formulation of Mandel (2009). This implementation of the Kalman

filter has no memory of previous grid states and imposes no correlation of states across time. The

evolution of the a priori state deviation and covariance are implicitly contained in the ensemble

covariance and mean. Because the ensemble only contains three members, all resulting solutions

are constrained to two effective degrees of freedom per month.

3.2 Results

Over the entire continent, the RMS of the residuals of GAA against the instruments chosen

for this analysis is 14.1 mm water equivalent over the entire timeframe. GAA performs poorly

over topographically variable regions, like the Transantarctic Mountains near the coasts, where

fast-moving polar lows are difficult to model or occur at too fine a scale.
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Comparing instrument time series to GAA, clear, temporally correlated biases become ap-

parent. Most importantly, where instruments have been present before 2008, the bias time series

in Antarctica show a distinct U-shape across many instrument locations. This suggests that there

is a long-wavelength acceleration bias in GAA with respect to the instruments.

Taking an unweighted average of instrument anomalies over each month yields the time series

shown in Figure 3.2. Fitting an annual sinusoid, trend, and acceleration yields a high-signal-to-

noise acceleration of 0.39 ± 0.05 mm yr−2. This is somewhat smaller than the 0.58 ± 0.07 mm yr−2

found by Kim et al. (2016), who restrict their data to inland stations over a shorter time period.

The acceleration is less prominent in coastal stations. READER stations, which are almost entirely

sited with a few hundred kilometers of the grounding line, do not see this acceleration in aggregate.

AWS and GPS observation sites, which are more likely to be inland show similar patterns in model

drift, however.

Simple scaling by the grounded area of Antarctica suggests this is consistent with an accel-

eration of 4.7 ± 0.6 Gt yr−2, which may be subtracted to correct a GRACE mass loss time series.

This represents a statistically significant bias (∼8σ) in previous acceleration estimates of Antarctic

mass loss.

This averaging approach is the simplest possible as it queries instruments directly with few

additional steps. However, as the differences between observation networks illustrate, the het-

erogeneous spatial distribution of instruments across Antarctica limits the utility of this simple

unweighted averaging. The density of observation sites in West Antarctica is far greater than

that of East Antarctica, for instance. GPS stations with colocated pressure sensors also tend to

be mounted in exposed bedrock, limiting coverage in East Antarctica. Comparison of GAA with

reanalyses and spatial interpolation of instrument data yield more realistic estimates of mass bias

due to atmospheric errors.

Comparison of the aforementioned models with GAA consistently shows significant spurious

accelerations in GAA. These accelerations, along with linear trend, annual sine and cosine, and

RMS difference are shown in Table 3.1. Maps of linear trend, annual sine and cosine, and RMS are
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given in Figure 3.3. The time series of total mass bias given for each model is shown in Figure 3.4.

All models, except MERRA show improved RMS errors with respect to the instruments. Typical

RMS values are approximately 12 mm EWH. Unsurprisingly, combinations of reanalyses show

additional improvement with respect to surface observations, with typical RMS errors between

10 and 12 mm EWH. The ”Optimal” interpolation scheme returns the best performance with

respect to observations with an RMS of 10.8 mm EWH. With the exception of NCEP-DOE and

MERRA, these results all show a consistent acceleration bias of ∼4 Gt yr−2. This acceleration bias

is uniformly distributed about the continent.

Comparison of GAA with the AOD1B RL06 version reveals marginal improvement in accu-

racy relative to instruments over Antarctica. Because of changes in the product definition, the RL06

version of GAA is not comparable with the RL05 GAA or other surface pressure data over oceans.

Furthermore, because of spectral leakage, the comparison of RL06 GAA with other pressure data

can only be made more than a full wavelength inland, or 220 km. Comparison with instruments is

therefore restricted to 35 inland stations, which the RL06 version of GAA matches within 9.0 mm

EWH RMS compared with RL05’s 9.5 mm EWH. The GAC products of each model are compared

to highlight the effects of model versions on total mass change in Antarctica. It is found that

RL06’s GAC captures the drift of RL05 relative to ERA-Interim between 2002 and 2007. After

2007, the outputs are nearly identical across versions with small differences attributable to differ-

ences in resolution and discontinuities due to model-change corrections. The overall acceleration

error between 2002 and 2016 is diminished relative to other models, only 1.7 ± 0.3 Gt yr−2. This

means that AOD1B RL06 may still introduce significant acceleration errors on the order of 1–3

Gt yr−2 relative to modern reanalyses, owing to the continued use of the ECMWF Operational

Analysis model.
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Figure 3.2: Time series of mean difference between instrumental surface pressure data and surface
pressure predictions from GAA. The solid black line represents the unweighted monthly mean of all
AWS, READER, and GPS instruments available at a particular time while the gray fill shows the
1σ variability of instrument residuals about this mean. The time series of average pressure error of
GAA relative to each pressure network are shown alongside the average of all stations, highlighting
the importance of instrument spatial distribution in detecting this signal. The smooth black curve
is the polynomial component of a polynomial-plus-annual-sinusoid fit to these data.
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The presence of significant surface pressure errors in GRACE data highlights the possibility

of assimilating GRACE data into numerical weather models. This cannot be accomplished without

first demonstrating that known pressure errors are present in GRACE data over Antarctica.

The models and surface pressure field generation techniques explored in the last sections all

generate consistent monthly bias time series, any of which may be used as a “truth” dataset. This

motivates the search for the signatures of these models in the JPL RL05.1M mascon solution. Mas-

cons are preferred because their processing results in reduced noise relative to spherical-harmonic

solutions from the same data, which fall victim to striping and other noise sources.

The focus of this search is on part of the High Antarctic Plateau (HAP), which is defined

here as a contiguous region of East Antarctica with an elevation greater than 2500 m. Annual

surface mass balance accumulations are typically less than 50 mm per year above this elevation.

Additionally, surface pressure errors above this elevation exceed the variability of surface mass

balance by up to 2 orders of magnitude, meaning that non-trend signals in this region should be

attributable to surface pressure errors. Within this region, calibrated errors in equivalent water

height variation are 9–16 mm, comparable with the 14.1 mm EWH RMS difference between GAA

and instruments. This is partly because GRACE’s polar orbit crosses this region 15 times daily,

yielding a higher number of gravity observations within an observation span than can be gained at

lower latitudes.

The predicted integrated pressure error signal from optimal interpolation over the High

Antarctic Plateau is compared with the corresponding mascon time series in Figure 3.5. The

mascon time series, while considerably noisier than the predicted surface pressure error time series,

has very similar low-frequency characteristics as the pressure error time series. Most notably, a

best-fit quadratic function fit to the mascon time series (weighted by observational errors) shows

good agreement with the predicted errors; their computed accelerations agree within errors.

The presence of atmospheric mass error is verified by comparing the recovered HAP mass

time series with the optimal-interpolation surface pressure error model, which fits ground data

best. The goodness of fit of this model is measured relative to the GRACE data by computing χ2,
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defined by

χ2 =
∑n

i=1
(δmHAP,i−δmmodel,i)

2

σ2
δmHAP,i

,

where n is the number of GRACE months, δmHAP,i is the total mass variation of the HAP

detected by GRACE for an individual month, σ2
δmHAP,i

is the error in total mass obtained from

the calibrated errors in the GRACE solutions, and δmmodel,i is the predicted mass variation from

a candidate model.

The χ2 value for a model of zero pressure error is 269.7. When the optimal interpolation

model is used as a candidate model to explain the observed pressure variations, χ2 is 216.7. Further-

more, an error-weighted fit of observed surface mass and predicted pressure error from the optimal

interpolation model reveals a regression coefficient of 0.95 ± 0.17 and a correlation coefficient of

0.45, strongly hinting at the correspondence of these datasets. Similar results may be yielded with

comparison with the ensemble Kalman filter and the unweighted ensemble. It should be noted that

individual reanalyses do not improve the χ2 or show a regression coefficient statistically identical to

1. Nonetheless, the GRACE data agree with the more accurate instrument-driven pressure fields.

With a strong hint of the presence of recoverable pressure error signals in the data, attempts

to retrieve these signals are conducted more systematically. GRACE is sensitive to changes in total

mass. To simplify this process, the long-period influences of ice dynamics and GIA were removed

by detrending the mascon time series.

A Kalman filter was applied to the detrended GRACE data to simultaneously disaggregate

surface mass balance and surface pressure signals. The a priori covariance was estimated from the

month-to-month difference in surface pressure bias estimated from ERA-Interim and the monthly

average sum of precipitation and evaporative losses modeled by ERA-Interim. The filter estimates

the mascon-averaged values of surface mass balance xSMB and surface pressure bias xδp simultane-

ously with the constraint that these vectors must sum to their corresponding mascon values within

a range defined by the diagonal mascon observation covariance R provided in the solution. This
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approach may be compared with that of Seo et al. (2015), who use empirical orthogonal functions.

The following equations are solved, in which the observation operator H represents the point-

wise addition of surface pressure and surface mass balance mascons. The covariance estimate P for

xSMB and xδp come from RACMO2.3 (Wessem et al., 2014) and ERA-Interim, respectively.

yi = (xSMB + xxδp)i

yi = Hxi

x =

xSMB,i

xδp,i


H =

[
I I

]

P =

PSMB,SMB Pδp,SMB

PSMB,δp Pδp,δp


K = PHT (HPHT +R)−1

x̂i = xi−1 +K (yi −Hxi−1)

For improved solution stability, only mascons on the High Antarctic Plateau, where pressure

error signals dominate, were assimilated. The broad-scale spatial correlations of these error signals

were exploited to impute pressure estimates outside of the HAP. As the signal-to-noise ratio of

SMB signals to pressure errors is low outside this region, this does not affect the overall solution.

Correlations across time were not exploited, except by using the solution from the previous month

as a prior.

The pressure retrieval over Antarctica is successful. The acceleration, trend, and annual

cycle are shown in Figure 3.3 alongside forward predictions. Over the entire ice sheet, this total

acceleration is 3.4 ± 1.0 Gt yr−2, in line with the accelerations returned by other models (except

the older reanalyses, Figure 3.3). This result is based on a fit weighted according to the solution

uncertainties.

The RMS of pressure residuals relative to instruments is 14.4 mm, comparable to the 14.1
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mm RMSE of GAA. Because each mascon represents the integrated pressure over a 100,000 km2

quadrilateral, this RMS error includes the error of omission due to reduced spatial resolution.

While GRACE itself may not offer improvement over GAA on monthly timescales, it may prove

valuable in filling continent-scale gaps in pressure measurements over East Antarctica. Additionally,

GRACE can capture drifts and biases in numerical weather models on longer timescales, as was

demonstrated above.
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Figure 3.5: Ratio of Antarctic surface pressure error standard deviation to surface mass balance
standard deviation (upper left), which exceeds unity above elevations of 2500 meters; mascons
corresponding to the region above 2500 meters (lower left); and predicted pressure error signal
from optimal interpolation compared with time series of JPL mascons integrated over this region
(right). While the mascon time series is considerably noisier than the predicted surface pressure
errors, a quadratic fit to this time series agrees with the surface pressure error predictions, indicating
the presence of this signal in the time series.
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Chapter 4

Adjustment of Trends

This chapter focuses on separating signals from GIA and ice sheet processes in average trends

observed by GRACE, ICESat, and GNSS data. The primary goal is separation of GIA and ice

mass signals. GIA is the largest error source for the AIS.

4.1 Formulation of Data Combination over Antarctica

The basic estimation problem may be first stated as y = Hx, where y contains the observed

ICESat, GRACE, and GNSS data; x contains a parameterization of a GIA model over the entire

time period of interest and vectors of surface ice mass estimates for every time period in the

estimation (e.g., every month); and H is a matrix of observation operators reflecting the effects of

GIA, elastic loading, and total mass change at each of the observation locations. These functions

contain the Green’s functions of Farrell (1972) and are inherently linear.

In one formulation of this problem, the basic observation equation for observed GIA and

elastic loading effects at time ti with respect to reference time t0 and ice mass state xICE,0 is as

follows:


yGRACE,i − yGRACE,0

yGPS,i − yGPS,0

yALT,i − yALT,0

 =


(ti − t0)I I

HGPS
GIA HGPS

ICE

HALT
GIA HALT

ICE


i

 xGIA

xICE,i − xICE,0

 , (4.1)
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This equation captures the entire problem of data combination on monthly timescales. It

assumes that the parameterization of GIA and surface mass share the same physical dimensions

(e.g., mm equivalent water height and mm equivalent water height per year) as the GRACE data to

which they are compared. Note that the equation requires subtraction of data from an epoch com-

mon to all datasets. This registration against a common epoch bypasses the problem of estimating

constant biases between datasets, but is difficult to implement when there is poor overlap between

datasets. It also renders the data vulnerable to outliers present in the data at the reference epoch.

This observation equation may also be differentiated with respect to time to examine the

entire problem in terms of linear rates of variation. This is an intuitive point of departure for

exploring corrections to GIA models.


ẏGRACE

ẏGPS

ẏALT

 =


I I

HGPS
GIA HGPS

ICE

HALT
GIA HALT

ICE


xGIA

ẋICE

 , (4.2)

Differentiation also eliminates the need for a common epoch against which to reference the

data, further simplifying the problem and maximizing the total amount of information included in

the inversion. For this reason, two of the following sections in this chapter explore the data purely

in terms of estimated rates.

There is wide flexibility for the choice of basis functions for the xGIA and xICE, format of the

observation data, and the formulation of the observation functions. The models may be represented

as radial basis function, spherical harmonics, or mascons. GRACE data may be represented in a

similar basis. Altimetry data generally come in high volume and require a number of reduction steps

to be computationally tractable. Multiple approaches exist for reducing altimetry data. The choice

of basis functions, data formats, and observation functions carry distinct tradeoffs in computational

efficiency, accuracy, and feasibility, which are explored in this chapter.

It is important to consider that this formulation treats firn compaction as a background

process and assumes that its elevation change effects have been subtracted from yALT. Future work
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on this problem will necessarily involve treating firn compaction as an unknown process to be solved

for.

4.2 Modeling Considerations

There are a number of options for how the observation and mass state vectors are represented.

Spherical harmonics are orthogonal special functions defined over the entire surface of a

sphere. As spherical harmonics are valid solutions of Laplace’s equation in spherical coordinates,

they are a natural basis for representing various aspects of geopotential fields. As such, they are the

default representation scheme for GRACE gravity solutions and AOD1B geophysical fluid gravity

models. As a spectral representation of the gravity field, spherical harmonics are easily convolved

with Green’s functions to examine other geodetic effects.

However, spherical harmonics are cumbersome if used within a limited spatial domain. Mod-

eling Earth’s full gravity field at maximum degree and order 60, for example, requires 3,721 indepen-

dent coefficients, including degree 0. While these functions are necessarily orthogonal over a sphere,

evaluating these functions over a limited spatial domain to generate a local solution imposes linear

dependence between coefficients in the solution, introducing a computational inefficiency and an

obstacle to direct interpretation. Antarctica accounts for less than 3% of Earth’s surface, meaning

that these 3,721 coefficients have only 100 or so degrees of freedom within its coastline.

The problem of linear dependence between spherical-harmonic coefficients is solved through

the generation of Slepian functions within a domain. Slepian functions may be obtained through

eigenvalue decomposition of a matrix of spherical-harmonic functions evaluated within a confined

domain. Slepian decomposition of the gravity field within a limited domain can be useful for

filtering noise sources, as has been demonstrated by Harig and Simons (2012). As Slepian functions

may be represented both spatially and as spherical harmonics, it is straightforward to convolve

these with Green’s functions or perform spectral filtering operations.

Spherical-cap mascons are radially-symmetric representations of mass and surface elevation

change. Their effects on geopoential and vertical crustal deformation are paraxial and vary only as
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a function of distance from the cap. Mascons may be arbitrarily sized and distributed according

to the availability of data or the spatial characteristics of the model.

Grids and other mesh configurations are also a viable way to represent mass variation, es-

pecially at high-resolution spatial scales of 20 km. Zammit-Mangion et al. (2013, 2015); Mart́ın-

Español et al. (2016b) explore different optimized mesh spacings for best capturing mass variation

in Antarctica. One avenue for optimizing the distribution of solutions points involves taking advan-

tage of lower characteristic length scales near the coasts of Antarctica for surface mass balance and

firn compaction. These grids may also be parameterized by empirical orthogonal functions, which

exploit linear dependence across space and time within a model to reduce its complex dynamics of

to linear combinations of static spatial patterns.

4.3 Adjustment of GIA models with GNSS vertical motion rates

The first successful approach to this problem involved combining GNSS vertical motion with

GRACE data to generate corrections to the IJ05 GIA model (Ivins et al., 2013). This was accom-

plished with a simplification of Equation 4.2 for observations y given model parameters xGRACE

(total estimated mass) and xGIA (GIA correction) is

y = HGIAxGIA +HEWH(xGRACE − xGIA) (4.3)

The operators HGIA and HEWH give the respective partial derivatives of elastic loading and

GIA uplift at each observation site with respect to the parameters of each model. The individual

parameter vectors may be isolated by rearrangement of the equations. This effectively combines

the elastic loading and GIA observation operators into a single operator with respect to GIA.

y = (HGIA −HEWH)xGIA +HEWHxGRACE (4.4)

For our purposes, the term xGRACE may be removed from the estimation and constrained to

the GRACE covariance. This is the equivalent of adding the uncertainty of the potential to the
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GIA covariance. This reduces the problem to estimation of corrections to the GIA model instead

of both the GIA model and GRACE data. The observation equations may therefore be simplified

and a priori estimates may be removed.

H = HGIA −HEWH (4.5)

δy = Hδx̂GIA (4.6)

δy = y − (HGIA −HEWH)x̄GIA −HEWHx̄GRACE (4.7)

The corrections are then obtained using least-squares adjustment.

δx̂GIA = PHT (HPHT +R)−1δy (4.8)

This technique requires an estimate of the spatial statistics of both GIA models and total

geopotential, represented by the covariance P = PGRACE+PGIA. The covariance of the geopotential

PGRACE comes from an estimate of the trend term in a simultaneous fit of a trend and annual signal

to the original GRACE Stokes coefficients. These uncertainties may then be projected onto the

basis functions used to represent mass variations.

The covariance of GIA, PGIA, is more difficult to estimate, but is critical to generating

corrections to GIA models statistically consistent with commonly-used forward models. To this

end, a small ensemble of six publicly available forward GIA models was used, including the W12a

L/B/U models (Whitehouse et al., 2012), IJ05.R2 (Ivins et al., 2013), and two versions of the

ICE-6G model by (Peltier et al., 2015) and Purcell et al. (2016) as shown in Figure 4.1. The mean

and standard deviation of this ensemble are shown in Figure 4.2.

For the purpose of this inversion, GNSS sites on the Antarctic Peninsula were excluded from

the analysis. The Antarctic Peninsula is known to have a distinct mantle viscosity profile not

captured by any of the ensemble members (Barletta et al., 2018).
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Figure 4.1: GIA ensemble members
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Figure 4.2: Mean and standard deviation of the GIA ensemble
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4.3.1 Parameterization

While GRACE geopotential models are distributed in terms of spherical harmonics, it is

preferable to work in the spatial domain. In this analysis, GIA and mass loss are therefore parame-

terized in terms of mass concentrations (mascons), similar to the approach of JPL (Watkins et al.,

2015). Each mascon is a spherical cap of uniform mass loading with a diameter of 3 degrees. The

mascons are confined to land and the area under ice shelves to capture GIA. GIA and ice mass

change are modeled as separate layers of spherical caps. The sum of each set of caps is equal to total

surface mass as yielded by retrieval from GRACE geopotential fields with the methods of Wahr

et al. (1998). The spatial configuration of these caps is given in Figure 4.4. The variable captured

by each mascon is the rate of equivalent water height change within its boundaries. The uplift

due to this mass change is computed from the spherical-harmonic decomposition of each mascon,

using functions and coefficients given by Purcell et al. (2011) for GIA and Farrell (1972) for elastic

loading.

Each spherical cap may be decomposed into a set of dimensionless spherical-harmonic co-

efficients Γ̄i,lm, where i is the index of the cap, l is the spherical-harmonic degree and m is the

spherical-harmonic order. In this implementation, the spherical caps are decomposed to degree

and order 60. While higher-degree implementation using radial Legendre polynomials is possible,

spherical harmonics are more straightforward to work with in this setup. The surface density σi of

each cap may be computed from GRACE spherical harmonics Clm and Slm as,

σi =
RρE

3

∞∑
l=2

2l + 1

1 + kEl

l∑
m=0

Γ̄i,lm

Clm
Slm

 (4.9)

.

Here, kEl is a set of elastic loading Love numbers describing the deformation of the crust in

response to surface loads, R is the equatorial radius of Earth, and ρE is the average density of

Earth.

The effect of GIA from one spherical cap measured at an angular distance α from its center
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is,

δr(α, δσi)GIA ≈
3

ρE

∞∑
l=2

hV El
kV El

1 + kEl
2l + 1

ΓlPl(cosα)δσi (4.10)

.

In the above equation, the fictitious elastic loading term contained in the GIA mass estimate

(for dimensional compatibility with land ice mass) is removed and replaced with more appropri-

ate viscoelastic Love numbers hV El , kV El , the ratio of which approaches 2l+1
2 over sufficiently long

timescales. Because of this approximation, the effect of 1 mm EWH of GIA detected by GRACE

results in approximately 0.3 mm of vertical uplift. However, truncation errors reduce the actual

scale of this effect and introduce substantial Gibbs phenomena.

The effect of ice mass change of a single spherical cap on elastic loading is given by

δr(α, δσi)elastic =
3

ρE

∞∑
l=2

hEl
2l + 1

ΓlPl(cosα)δσi. (4.11)

From this parameterization, it is straightforward to compute the observation operators HGIA

and HEWH as matrices of the partial derivatives of these expressions with respect to the surface

densities of each spherical cap.

The Green’s functions for elastic loading converge quickly at when truncated at degree 60,

but do not converge as quickly for GIA. This is illustrated in Figure 4.3. Consequently, the uplift

pattern from a uniform disk of GIA loading is subject to ringing artifacts. In terms of magnitude,

a unit variation in mass observed by GRACE has a much larger effect in terms of uplift when

interpreted as GIA than when interpreted as elastic loading. GNSS position measurements are

therefore much more sensitive to GIA than changes in ice mass.

Because the vertical motion load Love number hEl converges quickly to a finite value of -5.2

as l approaches ∞, this function converges much more quickly than the expression for GIA effects.

From the sign of this value, it is readily apparent that a unit change in GIA as measured by GRACE

has the opposite effect on vertical bedrock motion as an equivalent change in ice mass.
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The above parameterization is set up for use with the CSR RL05 spherical-harmonic GRACE

products. The rest of this work uses JPL RL05.1M mascon solution, requiring an alternative basis

to be set up for this data. For the same reasons the full set of spherical harmonics are eschewed, us-

ing the full mascon dataset would be too cumbersome. Instead, only the 148 mascons covering the

grounded portion of the Antarctic ice sheet are sampled. The mascons may be further subdivided

into land and ocean components according to the quarter-degree cylindrical land mask accompa-

nying the solution. The mascon solutions are processed so mascons straddling both ocean and

land may disaggregated into land and ocean components, leveraging constraints from surrounding

mascons of each category. The algorithm for this, the “coastline resolution improvement” (CRI)

filter is detailed in Wiese et al. (2016). The locations and spans of these subsampled mascons over

Antarctica are detailed in Figure 2.3.

For each of the 156 GRACE months contributing to the solution, the value of land com-

ponents of the 148 AIS mascons are assigned to a vector representing the available data for that

month. Uplift Green’s functions for these mascons are available and computed to degree and order

100. The boundaries of these mascons are retained for “mascon averaging” operations to con-

struct observation operators relating solution mass distributions to observed GRACE data. These

land mascons provide both convenient basis functions for GRACE data and low-resolution mass

solutions.

4.3.2 Results



45

Figure 4.3: Partial derivatives of vertical motion (attributed to either GIA or elastic loading) with
respect to a change in equivalent water thickness of a spherical cap with a 300 km diameter as a
function of great-circle distance from the center of the cap. This illustrates the high sensitivity of
GPS to GIA signals.
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Figure 4.4: Locations and spatial extents of spherical caps used for the initial analysis of GNSS
and GRACE data
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Model GIA Ice (2002–2017)

Gt yr−1 Gt yr−1

A et al. (2013) + JPL RL05.1M 112 -201
GRACE + GNSS 85 -173

Table 4.1: GIA and ice sheet mass trends for 2002–2017 obtained using a combination of GNSS
and GRACE data

Pre-fit models and data for the spherical-cap solution are shown in Figure 4.5. Corrections

to the reference GIA model and postfit residuals are given in Figure 4.6 and the total corrected

GIA model is shown in Figure 4.7.

The spherical-cap method yields a correction of the GIA model of -8.5 ± 3.6 Gt yr−1, taking

the current estimate of Antarctic mass change using CSR RL05 and IJ05 from -100 Gt yr−1 to -91

Gt yr−1 between 2002 and 2016. The corrections to the model explain 47% of the variance in the

prefit residuals and leave postfit residuals with a weighted RMS scatter of 1.0 mm yr−1. While the

total change in mass loss rate is not significant, the new spatial patterns introduced by the new

data are noteworthy and do not contradict expectations.

One of the key limitations of this method is the manner in which the covariance of GIA

was estimated. Using only six GIA models from four authors affords only five effective degrees of

freedom in the covariance matrix. Given the high number of GNSS stations used in the solution,

this leaves the solution spatially overconstrained.

The Caron et al. (2018) GIA covariance estimate provides an alternative to the ensemble-

based approach to estimate the GIA covariance used in this modeling procedure. The covariance

matrix of the Caron et al. (2018) solution is dominated by a single spatial pattern. The first

eigenvalue of its Antarctic components accounts for more than 90% of the overall variance. This

product is available, but not used in this analysis for now.

This method was repeated with a land-mascon basis functions with JPL RL05.1M mascons

as inputs. Aside from the input data and choice of basis functions, this solution differs from the

previous solution in the way that GIA uplift is handled. Results are shown in Figure 4.8 and

tabulated in Table 4.1.
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Figure 4.6: Postfit corrections to the IJ05.R2 GIA model parameters (left, units: mm EWH) and
predicted uplift deviations plotted alongside GPS vertical velocity prefit residuals.

Figure 4.7: Postfit corrections to the IJ05.R2 GIA model parameters with IJ05.R2 added back (left,
units: mm EWH) and predicted uplift rates plotted alongside GPS vertical velocities.
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Figure 4.8: Left: Mascon-averaged GIA solutions obtained from combination of GRACE, GIA, and
GPS ensembles and predicted uplift rates plotted alongside GPS vertical velocities. Right: Land
surface ice mass balance for solution.
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Instead of using asymptotic approximations for GIA uplift Green’s functions, this solution

method attempts to account for lateral variation in mantle properties with spatially-dependent

estimates for effective bedrock density. For each mascon, the uplift and equivalent-water-height

components of the A et al. (2013) GIA model (so chosen for its 3D Earth structure) are isolated

and linearly regressed against each other to obtain an effective density for each mascon. The

densities span 3000–4000 kg m−3, consistent with the range of densities imposed by Riva et al.

(2009). The densities are presented in Figure 4.10e. The GIA component of uplift for a GPS

site on each mascon may be computed by dividing the equivalent water height rate for the GIA

signal predicted for the geographically closest mascon by that effective density. The problem setup

remains identical to the previous method, except for the aforementioned change in basis functions

and GIA Green’s functions.

This solution method outperforms the other method and the solution fields explain 73% of

the variance in the GNSS trends, reducing the standard deviation from 2.7 mm yr−1 to 1.4 mm

yr−1. Formal uncertainty estimates for total mass loss from both methods are unexpectedly small

and are roughly ±2 Gt yr −1. The solution estimates are presented without uncertainties to avoid

a false impression of precision.

The methods presented in this section demonstrate the feasibility of adjusting GIA models

with bedrock-mounted GPS position time series and constraints on GIA models.

4.4 Combination of ICESat surface elevation rates with GRACE mass change

rates

This section describes attempts to duplicate combination of GRACE and ICESat by Riva

et al. (2009) and Gunter et al. (2014) to generate an empirical GIA model and a corresponding

estimate of ice sheet mass loss. This combination uses gridded ICESat elevation rate data between

2003 and 2009 and equivalent water height change rates estimates from GRACE data available in

the same time period.

GRACE and ICESat sense combined effects of changes in local surface density with differing
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spatial resolutions and sensitivities. For any given point in Antarctica, the observation equation

for rate of surface density change detected by GRACE is

σ̇ = σ̇GIA + σ̇Ice (4.12)

.

If σ̇ is the product of an elevation change rate and an effective density of a medium, then

this equation may be rephrased as

σ̇ = ρGIAḣGIA + ρSurfaceḣIce (4.13)

,

and the observation equation for observed altimetry elevation rates is,

ḣ = ḣGIA + ḣIce (4.14)

The effective densities ρGIA and ρSurface differ by nearly an order of magnitude. ρGIA is

approximately 2
3 the average density of Earth (Wahr et al., 1995), or 3700 kg m−3, while the effective

density of snow or ice at the ice sheet surface ranges between 300 and 917 kg m−3, depending on

the state of firn compaction at the ice surface. This density contrast renders ICESat much more

sensitive to changes in ice sheet elevation than GRACE for an equivalent change in mass. More

importantly, the density contrast makes the above set of equations invertible everywhere over the

Antarctic ice sheet. The rate of GIA elevation change may be solved at any location as,

ḣGIA =
σ̇ − ḣρSurface

ρGIA − ρSurface
(4.15)

,

and the rate of ice sheet mass loss may be rendered as,

σ̇Ice = σ̇ − ḣGIAρGIA (4.16)



53

.

Given a measurement of surface elevation rate and a corresponding equivalent water height

change rate, it is possible to separate GIA and ice sheet processes in both signals. The primary

difficulty in this approach lies in the estimation of the effective densities associated with both GIA

and ice sheet processes. Due to firn compaction, the effective ice surface density varies in both

space and time.

Effective solid-Earth density is also uncertain. While the partial derivative relating GIA-

induced bedrock elevation change is unique to all GIA models, an acceptable rule of thumb is that

this value asymptotically converges to 2
3 the average density of Earth as the GIA model run time

approaches infinity. Riva et al. (2009) find that this effective density varies between 3400 kg m−3

over oceans and 4000 kg m−3 over land due to self-attraction and loading effects. They approximate

the transition between land and ocean density using Gaussian smoothing.

The time-dependence of surface density due to firn compaction can be mitigated using a

firn-compaction model and a corresponding model of surface mass balance (SMB). Gunter et al.

(2014) modify the formulation of an empirical GIA solution to include these models:

ḣGIA =
σ̇ − σ̇SMB − (ḣ− ḣFirn)ρSurface

ρGIA − ρSurface
(4.17)

.

In this formulation, σ̇SMB is the average anomaly of surface mass balance rate within the

2003–2009 time period of interest relative to the average rate of surface mass accumulation and

ḣFirn is the average rate of firn elevation change within the corresponding period. The RACMO2.3

SMB outputs produced by Lenaerts et al. (2013) and Wessem et al. (2014) were used, which include

outputs of a firn compaction model initially devised by Ligtenberg et al. (2011).

4.4.1 Reduction of ICESat Data

In duplicating the Gunter/Riva method, it was necessary to reproduce their reduction and

gridding of ICESat data. Gridded ICESat data are necessary for direct comparison with GRACE
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data.

Three primary methods exist for reducing altimetry data: the crossover method, the repeat-

track method, and the overlapping-footprint method. Felikson et al. (2017) give a substantial

overview of these methods applied to Greenland.

The crossover method involves identifying laser shots that fall within a defined radius of

a known point corresponding to the intersection of two reference ground tracks. A plane is fit

to the elevations of points identified within this distance to approximate the topographic slope

and the residuals to this spatial fit may be interpreted as variations in surface elevation across

time. The crossover method has the advantage of computational and conceptual simplicity. It is

straightforward to implement and may be computed with limited resources. However, the spacing

between crossovers increases at low latitudes, resulting in reduced spatial resolution near coastlines,

where ice mass loss is most likely to occur. The crossover method also discards laser shots far

from the crossover locations, potentially wasting useful data. Furthermore, any linear dependence

between the time variation of elevation and the locations of individual footprints about a crossover

point may confound the estimate of the topographic slope.

The repeat-track method locates laser shots within a specified cross-track distance of segments

of the reference ground track. The assembled points are partitioned into along-track bins and the

topographic slope within each bin is estimated such that the residuals may be interpreted as time

variations in surface elevation. This technique uses more data than the crossover method and

consequently has the advantage of higher resolution at low latitudes. It is therefore more capable

of detecting coastal surface elevation change than the crossover method.

The overlapping-footprint (OFP) method searches the entire elevation measurement dataset

for laser shot footprints that are co-located such that the sum of their campaign footprint radii

(50–70 meters) is less than the distance between their centroids. If this condition is met, the shot

footprints are determined to be overlapping. Overlap between laser shots means that they are sens-

ing elevations from the same points in space and the difference between their respective elevation

measurements may be interpreted as direct elevation change. While topographic slope correction
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is possible, this method may be practically implemented without such corrections. This method

contains fewer assumptions about topography than the repeat-track and crossover methods. Fur-

thermore, it does not depend on prior knowledge of the groundtrack, enabling the use of data from

the Laser 1a/b campaign in which ICESat was in an 8-day repeat orbit. Its primary disadvantage

is the brute-force nature of the computation required to find all overlapping footprints.

Because of the higher resolution afforded by the OFP method, it was decided that this method

would be used to extract elevation change signals from the ICESat data, as was done by Riva et al.

(2009) and Gunter et al. (2014).

The reduction process was initiated with the GLAH12 geolocated elevation dataset. Before

searching for overlapping footprints, several data editing tasks were performed, following Gunter

et al. (2014). The saturation corrections present in the elevation datasets were subtracted from the

elevation data. Data with co-elevations of more than 0.45◦ and data points flagged for multiple

peaks were excluded.

The search for overlapping footprints was performed by comparing data from different days of

observations. Neighboring footprints within pairs of observation days were located using k-d trees.

To eliminate redundancy and save computing time, data from the same day were not compared.

For each shot pair, the search records the mean position of the footprint pair, the distance between

the footprints, the timestamp of each shot, and the difference in elevation between the shots.

The search found over 350 million valid OFP pairs. These OFP pairs contain redundant

spatial and temporal information and are best gridded for comparison with GRACE data. A pole-

centered stereographic grid with a spacing of 27 km, consistent with crossover spacing, was chosen

to bin the data. This grid was used through this work to be consistent with the input ICESat data.

After Gunter et al. (2014), shot pairs with an apparent elevation rate of more than 12 meters per

year were excluded from the binning process, as this rate exceeds any known ice sheet process. The

degree of overlap between neighboring ICESat footprints, a function of their radii and the distance

between them, was computed according to the formulation for exoplanet transit depth given by

Mandel and Agol (2002) and used as a weight in the computation of the binned average. The use
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Figure 4.9: Left: Overall density of overlapping footprints used to generate monthly ICESat solution
between 2003 and 2009. Center: Number of GRACE months in which ICESat elevation changes
are able to be computed. Right: Best-fit surface elevation rate from overlapping footprints.

of overlap weighting is essential for valid elevation change solutions.

These elevation difference grids were then processed via least squares fit with the time dif-

ference between campaign pairs as the independent variable to obtain a map of surface elevation

trends. The 2003–2009 trend, overall pair density, number of solutions months per grid cell are

illustrated in Figure 4.9.

Following Gunter et al. (2014), the solutions are corrected for campaign bias using the low-

precipitation zone on the High Antarctic Plateau as a calibration target. The corrected trend map

is shown in Figure 4.10.

4.4.2 Solution for GIA with GRACE and ICESat

Having secured a valid ICESat trend for 2003–2009 and GRACE rates for the corresponding

period, it is possible to disaggregate GIA and land-ice mass variation according to the method of

Gunter et al. (2014). All ingredients used for this combination are shown in Figure 4.10.

Starting with GRACE mass trends from the CRI-filtered JPL RL05.1M mascon solutions

(Watkins et al., 2015), the 2003–2009 trend is computed and mascon-averaged GIA signals are

restored to yield the total mass flux trend signal over Antarctica, shown in Figure 4.10a. The

difference between the 2003–2009 average of RACMO SMB and the average of RACMO over its
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entire time period of 1979–2015 is computed and mascon averaged to obtain the grid of SMB

anomaly rates shown in Figure 4.10b. These fields are differenced to obtain Figure 4.10g.

Trends from 2003–2009 ICESat data processed in the previous section are shown in Figure

4.10c. A campaign bias correction of 10.5 mm yr−1 has been subtracted from these trends, following

the low-precipitation zone calibration method of Gunter et al. (2014). The Ligtenberg et al. (2011)

firn densification trend shown in Figure 4.10d is subtracted from the ICESat trend map to obtain

the data shown in Figure 4.10h. Gunter et al. (2014) use difference between the ICESat elevation

rate and the firn surface elevation rate used to determine whether to use the density model of

Kaspers et al. (2004), a solid ice density of 917 kg m−3, or zero density. The approach presented

here differs in that regions lying within the exposed bedrock mask (Fretwell et al., 2013) are given

zero density. In further contrast with Gunter et al. (2014), the rule for assigning zero density to a

grid cell based on agreement between the firn model and ICESat is ignored to illustrate an extreme

solution. The snow density model is shown in Figure 4.10f.

The mascon-averaged effective mantle density is shown in Figure 4.10e. These densities come

from a local regression of predicted uplift and predicted equivalent water height variation of the

A et al. (2013) GIA model within each mascon. Because the A et al. (2013) model has lateral

variations in mantle structure, the modeled density may accurately reflect effective mantle density.

The altimetry data in Figure 4.10h are multiplied by the density distribution in Figure 4.10f

and then mascon-averaged so it may be compared with Figure 4.10g. The data in these two

subfigures are then differenced, divided by the difference between the effective mantle density and

effective surface density, and elastically corrected to obtain the uplift rate from GIA shown in

Figure 4.10i. This GIA model is compared with elastically corrected GNSS vertical motion data

as a validation step. To obtain surface mass change, this GIA model is multiplied by the effective

mantle density and subtracted from the total mass signal in Figure 4.10a.

The final results are shown in Figures 4.10i and 4.10j. The resultant GIA model shows an

unexpected negative trend in West Antarctica and positive trends in East Antarctica. Surface mass

changes line up with expectations, particularly near the Amundsen coast and Totten glacier, where
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Model GIA Ice (2003–2009)

Gt yr−1 Gt yr−1

A et al. (2013) + JPL RL05.1M 112 -153
GRACE + ICESat 108 -148

Table 4.2: GIA and ice sheet mass trends for 2003–2009 obtained using a combination of ICESat
and GRACE data

strong mass loss signals are present.

Results also diverge from both expectations and those of Gunter et al. (2014). Total ice mass

loss is 148 Gt yr−1 compared with 153 Gt yr−1 from the original mascon solution. The total mass

signal from the solution GIA is 108 Gt yr−1, comparable with the original A et al. (2013) model,

but more than twice the value found by Gunter et al. (2014). The standard deviation of the prefit

residuals of elastically-corrected GNSS vertical velocities is 2.6 mm yr−1, but this error increases

to 10.2 mm yr−1. after the solution. These results indicate unsuccessful replication of the results

of Gunter et al. (2014) and Riva et al. (2009). The reasons for this disagreement have not yet been

established. Reliable uncertainty estimates are also not available at present. Like with the GNSS

combination, the formal uncertainties not realistic enough to present alongside the data.

The approach of Gunter et al. (2014) and Riva et al. (2009) is replicated in this chapter, but

the final results differ somewhat from theirs.

With refinement, the methods used to combine data over Antarctica may be applied to

other regions where ice mass change signals are recorded by gravity, altimetry, and dense GNSS

observation sites, such as the Greenland Ice Sheet, southern Alaska, and Iceland. Monitoring mass

change enables prediction of crustal deformation and geoid height change, a problem of interest to

authorities charged with maintaining vertical datums with accuracy requirements of 1 cm within

a timespan of a decade. In Antarctica, both geoid heights and bedrock elevations change by more

than a centimeter per decade, due to a combination of elastic loading and GIA. This mirrors the

magnitude of geoid and elevation change in North America (Jacob et al., 2011).
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Figure 4.10: Input data, models, and results for combination of GRACE and ICESat trends to
obtain an empirical GIA model and surface mass trend between 2003 and 2009.
a GRACE total mass trend from CRI-filtered JPL mascons with mascon-averaged A et al. (2013)
GIA model restored
b Mascon-averaged average of RACMO SMB anomaly over 2003–2009 interval
c Gridded ICESat surface elevation change rate over 2003–2009 interval with campaign bias cor-
rection
d RACMO firn densification rate over 2003–2009 interval
e Mascon-averaged bedrock density estimate for relating rate of surface uplift to rate of apparent
equivalent water height change from GIA
f Inferred density of surface snow and ice based on comparing ICESat elevation rates with the firn
model. Effective density is set to zero over regions known to consist primarily of exposed bedrock.
g Difference between a and b
h Difference between c and d
i Solution for GIA uplift rates from combination of above data. Elastically corrected GNSS data
shown for comparison.
j Solution for ice mass change rates from combination of above data



60

4.4.3 Separation of ice dynamics and SMB signals in GRACE data

Thus far, we have explored methods for separating ice mass change signals from glacial iso-

static adjustment in GRACE data. Ice mass change signals have two components: ice dynamics

and surface mass balance. These processes may be distinguished by where they tend to dominate

signals. Because gravity and elevation signals caused by ice dynamics are primarily due to hori-

zontal transport, InSAR-derived horizontal ice velocity maps may be used to create ice dynamics

constraints.

If the ice sheet is decomposed into layers of ice dynamics and surface mass balance, the

observation equation is

ẏGRACE = H

ẋSMB

ẋice

 , (4.18)

where

H =

[
δij δij

]
, (4.19)

δij is the Kronecker delta function, ẏGRACE is the 2002–2017 trend for the 148 land mascons,

and the vectors ẋSMB, ẋice represent the average equivalent water height variations in ice dynamics

and SMB. With no additional information, it is impossible to disaggregate ẋSMB and ẋice from

their sum. However, spatial statistics from models of SMB and ice dynamics can make the problem

tractable. Following Zammit-Mangion et al. (2013), InSAR horizontal velocity data from Rignot

et al. (2011) are used to identify the parts of the mascons with significant ice dynamics contributions.

Where horizontal velocity is found to be greater than 10 m yr −1 the variance of the ice dynamics

at that spot is assigned a value of (15,000 mm EWH)2, after Zammit-Mangion et al. (2013). The

area of each mascon with horizontal ice velocity above this threshold his tabulated. It is tempting

to quantify ice dynamics variability using the divergence of the Rignot et al. (2011) horizontal

velocities, but the noise in the resulting product is too excessive to be useful. The horizontal ice

velocities and resultant ice mask used in this work are shown in Figure 4.11.



61

The observation operator is rewritten such that H considers the fraction of a mascon’s area

occupied by a the ice dynamics mask.

H = hij =

[
δij

Aice,i

Amascon,i
δij

]
(4.20)

Note that the observation equation does not consider surface mass balance and SMB mutually

exclusive. The area in which ice dynamics are applicable within a mascon may be limited to less

than the area of the mascon, but SMB may affect the entire mascon.

The a priori covariance is then computed:

P =

PSMB 0

0 Pice

 (4.21)

While PSMB may be estimated directly from RACMO, RACMO contains the full SMB signal,

which is on the order 2,000 Gt yr−1. To estimate PSMB, the sample covariance in the trend of the

Ligtenberg et al. (2011) model firn model is scaled by the average density of Antarctic surface snow

(300 kg m−3) and divided by the variance of the timestamps in the GRACE time series to reflect

the variability of the rate of surface mass balance in time.

The solution is obtained iteratively using constrained least squares:

ẋSMB,k+1

ẋice,k+1

 = (HTWH + P−1)−1

ẏGRACE −H

ẋSMB,k

ẋice,k


+

ẋSMB,k

ẋice,k

 (4.22)

A solution based on the IJ05 GIA model is shown in Figure 4.12. As expected, the ice dy-

namics component has strong negative signals near the Pine Island, Thwaites, and Totten Glaciers

and strong positive signals on in the vicinity of the Kamb Ice Stream. The smoother, spatially

correlated SMB component is characterized by strong long-wavelength signals lining the coast of

East Antarctica.

The solution is dependent on the choice of GIA model. This method was repeated with

various GRACE inputs with an ensemble of eight GIA models, including Caron et al. (2018) and A
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Figure 4.11: Left: Horizontal ice velocities obtained from InSAR measurements (Rignot et al.,
2011). Right: Ice dynamics mask (orange) for horizontal velocities greater than 10 m yr−1.

et al. (2013) and the ensemble members used for the GNSS combination. The resultant solutions

are consistent with the results of Mart́ın-Español et al. (2016b), who separate GIA, ice dynamics,

and SMB over a comparable interval. The effect of the range of GIA models on total mass trends

is shown in Figure 4.13.
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Figure 4.12: Results for source separation of 2002–2017 trends for ice dynamics and surface mass
balance using JPL RL05.1 mascons, an ice dynamics mask and covariance, and a surface mass
balance mask.

Figure 4.13: Results for source separation of ice dynamics and surface mass balance with an
ensemble of GIA background models compared with results for ice dynamics, surface mass balance,
and GIA from Mart́ın-Español et al. (2016b).



Chapter 5

Enhancing the Spatial Resolution of Monthly GRACE Solutions with ICESat

Trends

The main goal of this endeavor is to combine ICESat, GNSS, and GRACE data to obtain

monthly solutions for the distribution of mass in Antarctica. This chapter focuses on combining

ICESat trends, monthly GRACE data, and spatial statistics from local models and measurements

of local mass change processes to create monthly, high-resolution mass change solutions.

In contrast with the previous chapter, where ICESat elevation rates are computed with an

in-house solution, ICESat elevation rates used for the filtering methods in this chapter come from

Sasgen et al. (2017). All GRACE data were corrected with the GIA solution of Caron et al.

(2018). However, the accompanying covariance of this model was not propagated into the mascon

formal errors. The Caron et al. (2018) covariance matrix over Antarctica is dominated by a single

spatial pattern that accounts for more than 90% of its variance. The immutable long-wavelength

correlations introduced by this covariance destabilized filter solutions, thereby justifying its omission

from the solution presented in this chapter.

5.1 Problem Setup

Assuming that the GIA and firn compaction have been corrected, the observation equation

to find the variation in average equivalent water height may be written as
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yGRACE,i − yGRACE,0

yICESat,i − yICESat,0

 =

 M M

1
ρice

L 1
ρice

L


i

xSMB,i − xSMB,0

xice,i − xice,0

 . (5.1)

xice,i and xSMB,i denote the latent parameter vectors for the cumulative mass contributions

from ice dynamics and surface mass balance, respectively. The matrix M performs mascon-

averaging of these vectors for direct comparison with GRACE. The matrix L serves to project

mass variability fields for comparison with ICESat altimetry.

Monthly solutions for ICESat altimetry are not available at this stage for practical combi-

nation with GRACE. Nonetheless, ICESat elevation trend fields still contain spatial information

suitable for enhancing low-resolution GRACE data. These trends reflect average mass change

within the 2003–2009 span and are still useful as a constraint.

yGRACE,i − yGRACE,0

ẏICESat,i

 =

M 0

0 1
ρice

L


 xSMB,i − xSMB,0 + xice,i − xice,0

〈ẋSMB〉2003−2009 + 〈ẋice〉2003−2009

 . (5.2)

The above observation equation may be rewritten into two sub-vectors. The lower sub-vector

provides an isolated ICESat observation equation, which may be rearranged as

ρiceẏICESat = L
[
〈ẋSMB〉2003−2009 + 〈ẋice〉2003−2009

]
. (5.3)

The average surface mass balance rate between 2003 and 2009, 〈ẋSMB〉 is provided by

RACMO. Since this is an average of six years, or approximately 72 months, of SMB processes,

the uncertainty of the estimated field may be estimated by evaluating the sample covariance of

RACMO within this time period and dividing this covariance matrix by the number of input

months.

The average ice dynamics within this period may therefore be estimated by subtracting the

mean SMB field from the ICESat velocity field during this time period.
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〈ẋice〉2003−2009 = ρiceL
T ẏICESat − 〈ẋSMB〉2003−2009 (5.4)

At each month, ice dynamics may be parameterized as

ẋice,i = 〈ẋice〉2003−2009 + δẋice,i (5.5)

The estimation problem is now reduced to simply assimilating GRACE observations with

constraints developed from the SMB model and ICESat.

yGRACE,i − yGRACE,i−1 = M(ti − ti−1)ẋi +M(ti − ti−1)
[
ẋSMB,i + 〈ẋice〉2003−2009

]
(5.6)

.

The variable ẋi represents the sum of unmodeled ice dynamics and SMB at each month.

The observation equation may be cumulatively summed over the entire observation span to

arrive at

yGRACE,i − yGRACE,0 =
i∑

j=0

M(tj − tj−1)
[
ẋj + ẋSMB,j + 〈ẋice〉2003−2009

]
(5.7)

.

Redefining the cumulative mass change
∑i

j=0(tj−tj−1)ẋj = xi The final observation equation

at each iteration may be set up as

[
yGRACE,i − yGRACE,0

]
=

M 0

0 0


 xi

ẋSMB,i + 〈xice〉2003−2009

 (5.8)

with transitions between states expressed by

xi+1

ẋi+1

 =

I ti+1 − ti

0 0


 xi

ẋSMB,i + 〈ẋice〉2003−2009

+

 0

ẋSMB,i+1 + 〈ẋice〉2003−2009

 (5.9)
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The state derivative term in the parameter vector is not estimated, but is informed by SMB

and ice dynamics priors at all steps.

The covariance of the average ice dynamics within this time period is the sum of the covariance

of ICESat errors, SMB, and the scaled firn elevation.

With ICESat and RACMO used in the creation of priors, the filter at every step becomes

xi|i

ẋi|i

 = K

yGRACE,i − yGRACE,0 −H

xi|i−1

ẋi|i−1


+

xi|i−1

ẋi|i−1

 (5.10)

The subscript notation i|j may be read as “pertaining to the state i given prior information

at state j”. The matrix H is the observation operator,

H =

M 0

0 0

 (5.11)

,

which contains the mascon-averaging operator M .

The matrix K is a minimum mean-squared error estimator, the Kalman gain. This matrix

contains the optimal modification vectors of the solution associated with unit errors in the ob-

servations. K is conventionally estimated from the covariance of the observation errors and the

cross-covariance of the observation errors and state errors.

K = CXY C
−1
Y Y , (5.12)

where X and Y denote latent parameters and observations, respectively. If the covariance

provides enough information and CY Y is positive definite, then parameters may be adjusted by

observations even if the number of unknown parameters exceeds number of observations. If the

parameter covariance matrix, Pi|i−1 is known, the covariance of the observations Ri is also known,

and a linear operator H exists to relate observations and parameters, then

CXY = Pi|i−1H
T (5.13)
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and

CY Y = HPi|i−1H
T +Ri (5.14)

.

The Kalman gain is therefore

K = Pi|i−1H
T (HPi|i−1H

T +Ri)
−1. (5.15)

Solutions generated from the Kalman filter may be propagated forward in time to the next

step. Covariances may also be adjusted to include information from the current iteration using the

Joseph formulation,

Pi|i = (I −KH)Pi|i−1(I −KH)T +KRKT (5.16)

which can be simplified to

Pi|i = (I −KH)Pi|i−1 (5.17)

.

The Kalman filter is simple to describe and conceptually straightforward to implement. Be-

cause the observation operations in this work are strictly linear, the assumptions under which the

filter is derived are valid. The challenge of constructing the Kalman filter lies in establishing the

covariance of the parameters.

Since the subsampled land components of CRI-filtered mascons have highly variable areas and

the filtering setup requires predicting mascon equivalent water heights, smaller mascons may have

unwarranted leverage on the solution. To remedy this effect, a weighting matrix is applied to the

numerator and denominator of the Kalman gain. The weighting matrix W has diagonal elements

equal to the square of the areas of the corresponding mascons. This modification implicitly changes

the observation equations so the figure of merit is the variance of the residual mass of each mascon

rather than its mass flux. The Kalman gain takes the form:
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K = Pi|i−1H
TW (WHPi|i−1H

T +WRi)
−1. (5.18)

5.2 Computational Considerations

The Kalman filter is well-suited for monthly solutions. The computation of the Kalman gain

is straightforward when the number of observations is small relative to the number of parameters

because rank the effective rank of this matrix is limited by the number of data points. The scaling

of the Kalman gain computation time is quadratic with the number of parameters, but linear with

the number of data points. The solution presented here exists on a 27 km grid with 17,880 elements

mapped to the JPL land mask. At every iteration, GRACE provides a vector of 148 mascons that

represent averages of these grid cells.

The covariance update step in the Kalman filter is the most computationally intensive part

of the filter. This step involves the multiplication of two n × n matrices, an operation with a

computational complexity of O(n3), where n is the number of data points. One alternative to

the conventional Kalman filter keeps the filter entirely in terms of the data-parameter covariance

matrix PHT . This approach keeps the computational complexity of the filter to O(m2n), where m

is the number of parameters. The covariance update step is approximated with a Taylor expansion.

This approach was briefly considered and implemented, but found found to be unnecessary for the

work subsequently presented in this chapter.

The need to reduce the size of the parameter vector prompted exploration of various mesh

optimization methods to capture small-scale variability in select parts of Antarctica while relegating

quiet inland variation to low-resolution. Foremost among these methods was the construction of

variance quadtrees (Minasny et al., 2007) based on various geophysical fields that reflect Antarctic

mass variation, such as topography. The variance quadtree algorithm divides a field into quadri-

lateral zones with variances less than or equal to a threshold value. Each quadtree element may

be considered to have equal variance and therefore equal weight when being assimilated into a

solution. The implementation of this algorithm enables its use for future investigations.
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Figure 5.1: Summary of information flow for monthly combination techniques

While mesh optimization provided interesting avenues for parameterization of Antarctic mass,

the computational complexity problem was ultimately solved by downsampling the matrix by a

factor of four, reducing the number of elements required to describe Antarctic land mass from

17,880 to 1,105. The parameter vector is a lattice of 108 km elements, each representing up to

16 27-km grid elements. This vector is projected onto the solution grid with nearest-neighbor

interpolation.

The flow of information in these solution methods is illustrated by Figure 5.1.

5.2.1 Priors and Covariance Matrix Construction

The trick used to obtain monthly solutions involves using ice dynamics to establish a prior.

A number of parameterizations of the a priori covariance of ice dynamics were explored.

The final covariance model for ice dynamics is generated using the following procedure:

Amid other sources of elevation change, ICESat trends contain a measurement of the average

ice dynamics between 2003 and 2009. Using the Ligtenberg et al. (2011) firn model and RACMO2.3,

it is possible to remove the effect of firn compaction and the contribution of surface mass balance

from this dataset. The uplift signal of GIA is also present in this model and removable. The

altimetry field also contains elastic loading signals from Antarctic mass variation.
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The initial estimate for the ice mass trend field is convolved with high-resolution Green’s func-

tions to compute vertical crustal deformation from elastic loading. This crustal deformation field

is subtracted from the altimetry data. The loading-corrected altimetry is then used to recompute

the a priori ice mass variation signal. This iteration is not repeated.

The ice mass rate is unobserved south of 86◦ S. Grid cells south of this latitude are imputed

with the median ice mass value in an annulus between 85◦ S and 86◦ S.

The prior mass rate covariance matrix becomes:

P = ρice

[
Pḣ + Pfirn

]
+ PSMB + Picek (5.19)

The factor k scales the covariance so it represents the variability of the field at monthly time

scales rather than the average over the ICESat observation time period. k is set to 72 in this work.

ICESat trend uncertainties provided by REGINA are clipped between 0 and 1 m yr−1. They

are subsequently median-filtered with a to further remove outliers. The median filter has a bidirec-

tional window size of 5 adjacent grid points (135 km full-width). The median filter also introduces

spatial correlations. These trend errors are multiplied by the ρice (917 kg m−3).

Pice is estimated from the

Pij,ice =
[
ρ2

ice|ḣi||ḣj |+ σ2
0

]
e−

1
2

r2ij

s2 (5.20)

The nugget σ2
0 is set to 10 mm EWH2, a value consistent with the noise floor of the altimetry.

The purpose of this step is to ensure that zero-crossings in the field are allowed to vary. The sill

term also enables variation within the unobserved part of Antarctica south of 86◦ S, which is visible

to GRACE. The range scale parameter s was set to 250 km, consistent with semivariograms of the

ICESat elevation trend field. The resultant covariance matrix is shown in Figure 5.2.
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Figure 5.2: Diagonal elements (standard deviations) of a priori covariance matrix for ice dynamics
derived from ICESat 2003–2009 elevation trends and average surface mass balance. These con-
straints demonstrate and impose high-magnitude, short-wavelength variability near the Antarctic
coasts and low-magnitude, long-wavelength variability inland.
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5.2.2 Validation with GNSS

High-resolution solutions for mass variation in Antarctica may be considered valid if they

predict signals in independent data that others models do not. Our filter assimilates ICESat trends

and GRACE data. The remaining geodetic data in Antarctica are GNSS position time series,

which contain elastic-loading displacement signals from Antarctic mass variations. These data

were deliberately set aside for validation.

Improvement in spatial resolution has multiple effects on crustal displacement time series. In

the vertical direction, increased concentration of mass variation changes the near-field amplitude of

elastic displacements. The horizontal components of crustal motion contain directional information

and are therefore sensitive to the location of a loading source. While the vertical signal introduced

by elastic loading depends only on distance, the horizontal components of a GNSS position time

series positioned near a loading source will be markedly different from the time series observed if

the loading source’s position were changed, but its distance to the observation site remained the

same. Because of the geometry of satellite observations, GNSS observations are also more precise

in the horizontal plane than the vertical axis. However, while horizontal measurements are less

noisy, the effect of elastic loading in the horizontal direction is also approximately half that of the

vertical effect. (Wahr et al., 2013)

GNSS motion time series contain linear-trend signals that are not caused by crustal loading,

such as plate tectonics and GIA. Horizontal GNSS position time series contain valuable data on

crustal deformation due to elastic loading. The geometry of GNSS observations also make these ob-

servations less noisy and underconstrained Unfortunately, long-period signals due to plate tectonics

and GIA are difficult to model. While robust approximations (Purcell et al., 2011) relating the

vertical component of GIA-induced displacement to corresponding change in gravity exist, relations

for the horizontal component of GIA are indeterminate and highly model-dependent Sabadini and

Vermeersen (2004). Modeling long-period signals, such as GIA, may be avoided by detrending both

the set of elastic loading predictions from the output model and the horizontal motion data. As
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detrending is a linear operation, a detrending operator may be added to the observation operator

during the assimilation process to make the horizontal motion data comparable with only non-trend

signals.

While horizontal trend signals are avoided, vertical trends predicted with both the JPL

RL05.1M mascons and these solution methods are compared. This comparison is sensitive to the

choice of GIA model.

The comparison is performed by computing elastic loading in the east, north, and vertical

directions with both the JPL RL05.1M mascons and the mass change solutions from our filters.

Elastic-loading displacement from the atmosphere and oceans were removed using the GAC com-

ponent of AOD1B RL05. Because of the high intrinsic resolution of the Kalman filter results, we

computed loading using near-exact radial Green’s functions obtained from (Petrov, 2004)1 . The

loading signals from the mascons were computed by projecting the land-components of the Antarc-

tic CRI-filtered mascons to onto the same grid as our candidate solutions and applying the same

convolution with high-resolution Green’s functions.

5.3 Fixed-gain Kalman Filter

The feasibility of monthly solutions was initially explored with a case testing the following

idea: Could mascon trends be processed with a filter with ICESat-based covariance to obtain a

high-resolution mass trend field? In the setup discussed at the beginning of the chapter, the Kalman

gain is defined in terms of the observation-parameter covariance and data-data covariance. The

covariance for ice dynamics obtained earlier in this chapter may be used as an input to compute

both covariance matrices.

The observation equation for this setup is

ẏGRACE = Mṁ. (5.21)

ẏGRACE is a vector of best-fit rates of change in mascon equivalent water height between 2003

1 http://vlbi.gsfc.nasa.gov/aplo/
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and 2009; ṁ is the corresponding rate of change at higher resolution. The filter takes the form:

ṁ = K[ẏGRACE −Mṁḣ] + ṁḣ. (5.22)

ṁḣ is the sum of the a priori ice dynamics estimate and the 2003–2009 average SMB from

RACMO. The subscript ḣ indicates the origins of this prior in satellite altimetry. The Kalman gain

K, as previously established depends on the observation operator M and the covariance of the ice

sheet mass trend field within this span.

K = PMTW
[
W (MPMT +R)

]−1
(5.23)

The observations errors R are estimated from the errors in the GRACE trend between 2003

and 2009, or within the ICESat observation span. That is, R = [r2
jj ] and

r2
jj =

1

n− 2

∑n
k=1 σ

2
kj∑n

k=1(tk − t̄)2
. (5.24)

.

σkj is mascon j’s formal error at time tk. The constant t̄ is the mean of the n months that

comprise the inputs to the GRACE trend calculation. The GIA covariance PGIA from Caron et al.

(2018) is not added to the GRACE uncertainty. W is a diagonal matrix with elements equal to

the square of the area of the corresponding mascon. The addition of this term serves to weight the

observations by the areas of the mascons, ensuring that noise in smaller mascons does not have

excess influence over the solution.

The covariance matrix P is set to Pice as established in the previous section. The results of

this combination are shown in Figure 5.3.

The success of this filter naturally raises a question of whether it can be applied to individual

GRACE months without modifying the Kalman gain. To explore this, the following modifications

were made:

The basic observation equation is
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yi = Mmi, (5.25)

where yi is the vector of predicted equivalent water heights for the 148 land mascons at the

time ti. The filter seeks to minimize the variance of yi,obs−yi, where yi,obs is the vector of mascons

in the GRACE dataset at time ti. The operator M performs mascon averaging of grid cells and

serves as the observation operator for this demonstration.

The filter takes the form

mi = K[yi,obs −Mṁḣ(ti − t0)] + ṁḣ(ti − t0). (5.26)

K = PMTW
[
W (MPMT +R)

]−1
(5.27)

The matrix P and the a priori estimate of the mass loss field are both estimated from the

the ICESat trend grid over the 2003–2009 observation span.

The continental mass variation solution time series for the 2002–2017 interval is shown in

Figure 5.4. Basin-by-basin mass evolution time series are shown in Figure 5.6. These changes are

integrated according to defined regions of the Antarctic Ice Sheet to obtain the time series in Figure

5.5. Finally, the elastic loading effects of this model on Antarctic GNSS sites is shown in Figure

5.7.
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Figure 5.4: Mass change integrated over the entire Antarctic ice sheet from the fixed-gain Kalman
filter compared with its input GRACE data and corresponding 1-σ errors

Figure 5.5: Mass change (Gt) from the fixed-gain Kalman filter in Gt integrated over East Antarc-
tica, West Antarctica, the Antarctic Peninsula compared with corresponding GRACE data
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5.4 Adjustment of Ice Dynamics

Ice dynamics processes vary slowly over time. For the purposes of this study, ice dynamics

may be modeled over the 2002–2017 interval as a static trend with a constant acceleration. Direct

measurements of total basin-scale ice dynamics are available from Gardner et al. (2018), who

measured the volumetric discharge of ice from outlet glaciers for each of Antarctica’s 27 drainage

basins, as defined by Zwally et al. (2012). The basin boundaries are illustrated in Figure 5.8. The

measurements were performed by measuring horizontal displacements at outlet glaciers (flux gates)

for each basin with satellite imagery. Discharge rates are available from 2008 and 2015 and may

be differenced to compute discharge acceleration. The time-integrated ice dynamics signal within

a basin may be modeled as a quadratic function of time with these basins as inputs.

Assuming the ice dynamics field developed from ICESat and RACMO earlier in this chapter

is accurate, then its spatial integrals within each basin should agree with the Gardner et al. (2018)

estimates. Using the a priori covariance of the ice dynamics, these basin-scale estimates may then

be optimally adjusted to fit the measured time-dependent basin discharge. Such a fit has two effects.

First, it ensures that the ice dynamics prior matches both the spatial patterns implied by ICESat

and RACMO; and the independent magnitudes of basin-level integral measurements. Second, it

introduces time-dependence in the form of constant acceleration to the ice dynamics prior.

The fit is performed with a Kalman filter as before. The filter is evaluated sequentially, but

error estimates are not propagated in time.

For each month, the observation equation is

ẏbasin,i = Bṁice,i. (5.28)

The operator B integrates grid mass fluxes over each drainage basin for comparison with the

discharge estimates. The adjustment to the ice dynamics field at each month is

ṁi,ice,posterior = K(ẏbasin,i −Bṁi,ice,prior) + ṁi,ice,prior. (5.29)
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Figure 5.7: Change in variance of the detrended residual GNSS position time series relative to
results obtained by computing elastic crustal deformation with the JPL RL05.1M mascon solutions
after removing elastic crustal deformation predictions from the fixed-gain Kalman filter.
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The Kalman gain K is defined as:

K = Pice,priorB
T (BPice,priorB

T +R)−1, (5.30)

where R = r2
i jδjk, the measurement errors for the Gardner et al. (2018) basin discharge error

estimates. No propagation of the acceleration errors in time is performed to obtain this matrix.

This keeps the Kalman gain constant and also saves memory by requiring the computation of a

single updated covariance matrix.

Pice,posterior = (I −KB)Pice,prior (5.31)

The parallel nature of this solution makes it functionally equivalent to simply reducing the

ice dynamics field to a trend and acceleration, but the actual implementation instead evaluates ice

dynamics independently at each month. This adjustment is illustrated in Figure ??. The output

of this procedure may be fed forward to other solutions.

The adjusted solution may also be added to RACMO SMB fields and integrated through time

to create a solution independent of GRACE. The 2002–2017 trend is shown in Figure 5.10. The

total AIS mass time series is given in Figure 5.11. Basin-by-basin mass evolution time series are

shown in Figure 5.13. These changes are integrated according to defined regions of the Antarctic

Ice Sheet to obtain the time series in Figure 5.12. Finally, the elastic loading effects of this model

on Antarctic GNSS sites is shown in Figure 5.14.
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Figure 5.8: Boundaries and indices of Zwally et al. (2012) Antarctic ice sheet drainage basins
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Figure 5.11: Mass change integrated over the entire Antarctic ice sheet from the adjusted ice
dynamics solution compared with its input GRACE data and corresponding 1-σ errors

Figure 5.12: Mass change (Gt) from the adjusted ice dynamics solution in Gt integrated over East
Antarctica, West Antarctica, the Antarctic Peninsula compared with corresponding GRACE data
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5.5 One-Dimensional Kalman Filter

A one-dimensional Kalman filter was devised to verify the conceptual integrity of the Kalman

filters in this chapter. This filter adjusts only the cumulative mass change and mass change rate of

Antarctica according the the total mass estimated by GRACE.

The total mass change of the Antarctic ice sheet at time ti relative to t0 is given by mi. The

rate of mass change, given by the sum of ice dynamics and surface mass balance at time ti is ṁi.

The cumulative mass change and instantaneous rate of mass change may be assembled into a state

vector:

xi =

mi

ṁi

 . (5.32)

The surface mass balance model used here has output available no later than December

2015, whereas the GRACE data runs to August 2016. SMB for months outside of the boundary

are imputed with the average SMB integrated over the entire continent for the 2002–2016 period.

For the purposes of this filter, the instantaneous mass change is integrated forward in time linearly

as a function of ∆t = ti − ti−1.

xi|i−1 =

mi|i−1

ṁi

 = Fixi−1|i−1 +

 0

ṁi

 . (5.33)

The state transition matrix Fi is designed such that information about the rate of mass change

is not preserved between iterations. Instead, the instantaneous rate of mass change is obtained from

external models.

Fi =

1 ∆t

0 0

 . (5.34)

The state also has an associated covariance. The covariance P0 is initialized such that all

terms in the 2x2 matrix are zero. The covariance for the current iteration is propagated forward

in time from the previous iteration to the current iteration as follows.
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Figure 5.14: Change in variance of the detrended residual GNSS position time series relative to
results obtained by computing elastic crustal deformation with the JPL RL05.1M mascon solutions
after removing elastic crustal deformation predictions from the adjusted ice dynamics solution. The
lower-right subplot compares the trends predicted by the output model to the data after correction
with the Caron et al. (2018) GIA model.
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Pi|i−1 = FPi−1|i−1F
T +Q (5.35)

The covariance from the previous iteration consists of two diagonal scalar elements.

Pi−1 =

σ2
m,i−1|i−1 0

0 σ2
ṁ,i−1

 (5.36)

The constant matrix Q contains the process noise associated with the variability of the

instantaneous rate of change of the ice sheet.

Q =

0 0

0 σ2
ice

 (5.37)

The basic observation equation of the filter relates the total mass predicted by the model

mi|i−1.

mi|i−1 = Hixi|i−1, (5.38)

where

Hi =

[
1 0

]
. (5.39)

At each iteration, the filter must minimize the square of the difference between mi|i−1 and

the observed total mass mi,obs. The solution update, xi|i may be estimated using the minimum

mean square estimator:

xi|i = Ki(mi,obs −mi|i−1) + xi|i−1. (5.40)

The Kalman gain Ki is defined as:

Ki = Pi|i−1H
T (HPi|i−1H

T +Ri)
−1, (5.41)
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where R =
[
r2
i

]
. The scalar quantity r2

i is computed as the sum of the GRACE measurement

errors for month i, month 0, and the propagated GIA covariance between t0 and ti, or

r2
i = σ2

m,i + σ2
m,0. (5.42)

Similarly, the prediction variance is

σ2
m,i|i−1 = HPi|i−1H

T = σ2
ṁice

∆t2 + σ2
m,i−1|i−1. (5.43)

These may be ingested into the definition of the Kalman gain to obtain

Ki =
σ2
m,i|i−1

σ2
m,i|i−1 + r2

i

1

0

 . (5.44)

The updated covariance Pi|i may be computed with the new Kalman gain as follows:

Pi|i = (I −KiH)Pi|i−1. (5.45)

The matrix I −KiH takes the form

I −KiH =

1−
σ2
m,i|i−1

σ2
m,i|i−1

+r2i
0

0 1

 (5.46)

and the adjusted covariance is

Pi|i =


(

1−
σ2
m,i|i−1

σ2
m,i|i−1

+r2i

)
σ2
m,i|i−1

σ2
m,i|i−1

+r2i
0

0 σ2
ice

 . (5.47)

The filter is then incremented to month i+ 1.

The cumulative mass time series is shown in Figure 5.15.

5.6 Conventional Kalman Filter

At each iteration, the ice dynamics grid obtained from Section 5.4 corresponding to the

current month is added to the RACMO SMB field for the same month. The total mass flux
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Figure 5.15: Total cumulative mass change of the Antarctic Ice Sheet obtained from the one-
dimensional Kalman filter compared with input GRACE data and the sum of a priori ice dynamics
and RACMO SMB.
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field is integrated over the interval between the previous month and the current month and added

to the mass field from the previous month. This mass field, which exists on a 27-km grid, is

mascon-averaged and compared with the GRACE mascon estimates for the corresponding month.

The observation deviation vector is then pushed through the Kalman gain operator to obtain a

state deviation vector for the integrated mass change field. This state deviation is computed at a

resolution of 108 km to reduce computation time, but is projected onto the 27-km land grid using

nearest-neighbor interpolation.

xi =

mi

ṁi

 . (5.48)

As with the one-dimensional filter, the surface mass balance model used here has outputs

available no later than December 2015, whereas the GRACE data runs to August 2016. SMB for

months outside of the boundary are imputed with the average SMB field in the 2002–2016 period.

For the purposes of this filter, the instantaneous mass change is integrated forward in time linearly

as a function of ∆ti = ti − ti−1.

xi|i−1 =

mi|i−1

ṁi

 = Fixi−1|i−1 +

 0

ṁi

 . (5.49)

The state transition matrix Fi is designed such that information about the rate of mass change

is not preserved between iterations. Instead, the instantaneous rate of mass change is obtained from

external models.

Fi =

δjk ∆ti = ti − ti−1

0 0

 . (5.50)

The state also has an associated covariance. The covariance P0 is initialized such that all

terms in the 2x2 matrix are zero. The covariance for the current iteration is propagated forward

in time from the previous iteration to the current iteration as follows.

Pi|i−1 = FPi−1|i−1F
T +Q (5.51)
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The covariance from the previous iteration consists of two block diagonal elements. This

matrix is initialized at zero.

Pi−1 =

Pm,i−1 0

0 Pṁ,i−1

 (5.52)

The constant matrix Q contains the process noise associated with the variability of the

instantaneous rate of change of the ice sheet.

Q =

0 0

0 Pice

 (5.53)

The basic observation equation of the filter relates the total mass predicted by the model

mi|i−1.

yGRACE,ii|i−1 = Mmi|i−1, (5.54)

where

H =

[
M 0

]
. (5.55)

At each iteration, the filter must minimize the square of the difference between mi|i−1 and

the observed total mass mi,obs. The solution update may be estimated using the minimum mean

square estimator:

mi|i = Ki(yGRACE,ii|i−1 −Mmi|i−1) + mi|i−1. (5.56)

The Kalman gain Ki is defined as:

Ki = Pi|i−1H
TW (WHPi|i−1H

T +WRi)
−1. (5.57)
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The diagonal elements of R are derived from the mascon observation errors. Because of the

setup of the filter, the errors associated with the initial month are added to the corresponding

elements of this matrix. The diagonal elements of the weight matrix W are the squares of

σ2
m,i|i−1 = HPi|i−1H

T (5.58)

The updated covariance Pi|i may be computed with the new Kalman gain as follows:

Pi|i = (I −KiH)Pi|i−1. (5.59)

The filter is then incremented to month i+ 1.

The observation equations and filtering setup are similar to previous models. The adjusted

trend is shown in Figure 5.16. Note the artifacts originating from diminished spatial resolution.

The time series for total continental ice sheet mass variation is given in 5.17. Cumulative regional

mass balance time series for this model are shown in Figure 5.18. Cumulative basin-by-basin mass

balance time series for this model are shown in Figure 5.19. GNSS residuals are shown in Figure

5.20.
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Figure 5.17: Mass change integrated over the entire Antarctic ice sheet from the conventional
Kalman filter compared with its input GRACE data and corresponding 1-σ errors

Figure 5.18: Mass change (Gt) from the conventional Kalman filter in Gt integrated over East
Antarctica, West Antarctica, the Antarctic Peninsula compared with corresponding GRACE data
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5.7 Discussion

The GRACE- and basin-discharge-constrained solutions all yield consistent mass loss esti-

mates across the continent. The basin constraints notably have a slightly more conservative estimate

of total acceleration in the 2002–2017 period. These solutions do not fit the JPL mascons well, with

RMS residuals of over 200 mm EWH. Direct adjustment of mass fields with GRACE data fits the

GRACE data with area-weighted RMS residuals of 24 mm EWH. The conventional Kalman filter

has wRMS residuals of 14 mm EWH, comparable to the magnitude of atmospheric pressure errors

in Antarctica. Mass loss estimates over the Antarctic Peninsula diverge widely across all solutions.

All solution methods result in improvement in RMS residuals of GNSS trends relative to the elastic

loading predicted by the JPL mascons. Detrended GNSS time series residuals generally show little

overall change with any of these solutions, except in certain regions. Slight improvements may, for

example, be seen in the horizontal components across the Transantarctic Mountains. No solution

degrades the overall variance of the detrended GNSS residuals by more than 2%.

All solutions presented involve propagating uncertainties in mass change rates through time

to inform the uncertainty and overall flexibility of the cumulative mass change field. Early iterations

of these solutions techniques involved recursive modulation of the input mass rates themselves. In

such a setup, cumulative mass errors at a particular instant are fed through a Kalman filter to

damp or amplify the present rate of change in mass. This may be likened to a control algorithm,

in which state derivatives at a present state are modulated by present state errors to minimize

errors at a future state. Such a filter requires an explicit cross-covariance between surface mass

balance. While this algorithm was successfully implemented with performance comparable to the

extant methods in this work, the first-principles basis for the development of the cross-covariance

was insufficient to justify inclusion in this work. This filter, instead, served as a prototype for the

conventional Kalman filter presented in this work.
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Figure 5.20: Change in variance of the detrended residual GNSS position time series relative to
results obtained by computing elastic crustal deformation with the JPL RL05.1M mascon solutions
after removing elastic crustal deformation predictions from the conventional Kalman filter. The
lower-right subplot compares the trends predicted by the output model to the data after correction
with the Caron et al. (2018) GIA model.
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Chapter 6

Least-Squares Combination of GRACE and ICESat for Time-variable Mass

Solutions

Thus far, this work has implemented a combination of altimetry and gravity trends, a com-

bination of monthly gravity data with altimetry and constraints from background models. The

previous chapter described the enhancement of monthly GRACE solutions with models and ICE-

Sat data. These enhancements are largely reliant on using high-resolution models and data to

generate model covariances for the optimal redistribution of low-resolution measurements from

GRACE. It would be preferable to require less model input and let the core GRACE and ICESat

speak for themselves.

This chapter focuses on directly combining ICESat and GRACE data to produce time-variable

mass solutions at the spatial and temporal resolution of ICESat. It begins with the production of

ICESat elevation change grids for 17 ICESat cycles from overlapping footprints found in Chapter 4.

These solutions are then compared with monthly GRACE solutions binned to the same altimetry

cycles. Downsampling the altimetry data to the same resolution as GRACE enables an initial

comparison of GRACE and ICESat time series. Both sets of time series are corrected for error

sources and background signals, such as GIA, firn air content, atmospheric pressure errors, and

ICESat inter-campaign biases before comparison.

These elevation and surface-mass flux time series may be regressed to infer the effective

density of the surface material in Antarctica. They may also be combined at mascon resolution to

create both surface mass flux solutions for the 17 ICESat cycles and a solution for a correction to
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the GIA model. This low-resolution combination informs a subsequent combination at the full 27

km resolution of the gridded altimetry data .

The final product of this work is a set of corrections to the Caron et al. (2018) GIA model and

17 high-resolution maps of surface mass flux over the grounded portion of Antarctic Ice Sheet and

Antarctica’s major islands. These solutions are evaluated for effective spatial resolution, agreement

with independent data, and agreement with previous work.

6.1 Data Reduction and Preprocessing

The combination of ICESat and GRACE requires the generation of solutions for surface ele-

vation change for each ICESat cycle. The overlapping-footprint elevation differences from Chapter

4 were used as a starting point for the creation of these elevation change grids. Each shot pair was

assigned to a spatial bin on a 27-km south-pole-centered stereographic grid and to one of 153 pos-

sible temporal difference bins corresponding to combinations of pairs of the 18 ICESat campaigns.

Each shot pair contributed to an average elevation change within each spatiotemporal bin. The

weight of each shot pair’s contribution to the solution was determined by the degree of overlap of

the larger shot footprint with the smaller footprint. This degree of overlap, computable from the

radii and separation of both shots according to the formulation of Mandel and Agol (2002), defined

the weight of each shot pair in each average. Over 350 million shot pairs contribute to these grids.

Each grid cell contains up to 153 elevation difference measurements for the 18 ICESat cycles.

These elevation differences are then collapsed into a time series of 17 cycles with respect to a

reference epoch using linear least squares. The input data are weighted by the sum of the overlap

fractions of all available shots within an epoch pair. The reference datum was chosen to be laser 3E

because of its centrality in the sequence of cycles and superlative availability of overlapping laser

shots across all cycles. This process is repeated for all grids in which data are available to produce

17 elevation grids between 2003 and 2009. Corresponding formal uncertainties were computed from

residuals of the predicted elevation differences with respect to the input data. The solutions for

elevation change at each ICESat cycle are shown in Figure 6.1. Trends, shot densities, and the
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spatial distribution of temporal resolution are illustrated in Figure 6.2.
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The GRACE data used in this combination are the land components of the CRI-filtered JPL

RL05.1M mascon solutions. As in Chapters 4 and 5, the input data is composed of 148 mascon

time series, but the individual time series were resampled to match the corresponding ICESat data.

Because multiple GRACE months may overlap with a single ICESat cycle, the GRACE months

were binned into ICESat cycles using the number of overlapping days each GRACE month has

within the corresponding ICESat cycle as a weight. Each ICESat cycle typically overlaps with

two GRACE months. The major exceptions are Laser 2A (54 days, three GRACE months) and

Laser 3K (14 days, no overlapping GRACE months). Because Laser 3K has no overlapping GRACE

months, this cycle is filled using nearest-neighbor interpolation in time. The cycle-averaged GRACE

data from Laser 3E were subtracted from all subsequent grids to match the reference epoch of the

ICESat data.

The ICESat and GRACE data were corrected for geophysical and observational biases prior

to combination and comparison. Both the ICESat and GRACE data were corrected for GIA

using the Caron et al. (2018) GIA model uplift and mascon-averaged equivalent water height

predictions, respectively. The integrated mass trend correction for GRACE was was 77 Gt yr−1

and the integrated volume correction for ICESat was 15 km3 yr−1. Surface pressure corrections

from Hardy et al. (2017) were also subtracted from the GRACE data. Atmospheric modeling errors

are at their most egregious between 2002 and 2007, which overlaps two-thirds of of the combination

interval. Within the interval, these contain a trend of -16 Gt yr−1, which was subtracted from

the GRACE data. After these corrections have been applied, the trend in the input GRACE data

between 2003 and 2009 is -102 Gt yr−1.

The ICESat data were corrected for firn signals using the firn air content model of Ligtenberg

et al. (2011). Unlike in Chapter 5, the firn air content only reflects the integrated void space within

an ice column, rather than the sum of accumulated surface mass balance and firn air content.

Subtracting firn air content alone should correct elevation signals such that they may be interpreted

as linearly identical to mass changes of ice with a uniform density of 917 kg m−3. The integrated

magnitude of this correction is 28 km3 yr−1. The standard deviation of the detrended firn air
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content was added in quadrature to the uncertainty of the original ICESat data to approximate

firn error. Inter-campaign biases in ICESat data were measured by identifying a contiguous region

above 2500 m elevation with annual precipitation of less than 30 mm EWH. ICESat-measured

elevations in the low-precipitation zone (LPZ) were averaged for each cycle. The resultant the time

series of LPZ biases was then subtracted from ICESat data for each cycle. The LPZ time series

has a trend of 1.0 cm yr−1 of elevation, or 121 km3 yr −1 integrated over the entire continent.

All pre-combination corrections are illustrated in Figure 6.3.
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6.2 Least-squares Combination

6.2.1 Examination of Time Series and Effective Densities

Prior to combination, we can inspect selected colocated time series of elevation and mass. For

simplicity, the comparison is done by first mascon-averaging the ICESat data. Missing ICESat data

were imputed by extrapolating the ICESat trend map found in Chapter 4 forward in time. A scale-

agnostic comparison of these data is shown in Figure 6.4. Over regions of high mass change signal,

(e.g., Pine Island, Thwaites, Kamb, and Totten) these time series are well-correlated. However,

the low signal-to-noise ratio (SNR) of inland East Antarctic locations results in poor correlation

of the GRACE and ICESat data. This low SNR is both a result of observational limitations in

GRACE and unmodeled firn air content, which dilute the correlation between the time series. Over

the Antarctic Peninsula, both ICESat and GRACE show strong trends, but broad disagreement

in variation about these trends. The narrow north-south orientation of the Antarctic Peninsula

creates an observability challenge for both ICESat and GRACE.

Further examination of Figure 6.4 shows that the the factor defining the relative scale of the

GRACE time series does not correspond to the density of fully-compacted ice (917 kg m−3) over

most of the continent. It is generally expected that once firn air content has been subtracted from

elevation data, the residual elevation signal is linearly related to gravity signals by the density of

fully-compacted ice. To map effective density in space, an orthogonal regression of the GRACE

and ICESat time series was performed for each mascon i and time index j:

hij = aimij . (6.1)

The solution coefficient ai represents a combination of average surface snow density within

the mascon and a local elastic loading correction. The elastic loading effect is approximated by

assuming that the ice sheet floats in a medium with the the average density of Earth’s crust, 2.7 g

cm−3:
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ai =
1

ρi
− 1

ρcrust
(6.2)

Orthogonal regression, which minimizes the error-weighted sum of the squares in both the

mass and elevation change time series was chosen over traditional linear least-squares regression to

mitigate the effects of correlation dilution from low-SNR signals in East Antarctica. While GIA

plays a role in the relationship between these time series, it was not included in this fit.

The results of the orthogonal regression, the effective densities, are shown in Figure 6.5

along with their uncertainties. These densities are most consistent with the expectation of 917

kg m−3 over West Antarctica, the Antarctic Peninsula, and Coats Land. Over East Antarctica.

Negative densities are found in prominent pockets near Ellsworth Land and parts of the High

Antarctic Plateau. The poor correlation of the time series in these regions is reflected in their high

uncertainty. Over many of the remaining parts of the continent, the density is consistent with zero

or the equilibrium firn densities modeled by Kaspers et al. (2004).
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6.2.2 Time-Domain Combination at Mascon Resolution

The mascon-averaged altimetry time series may be combined with GRACE data at mascon

resolution to yield cumulative mass balance for each cycle and a time-independent correction to

the background GIA model. Each mascon time series pair forms a system of 2n sparse equations

with n+ 1 unknowns, where n is the length of the time series (17 cycles). More explicitly,



yGRACE,i,1

yGRACE,i,2

...

yGRACE,i,n

yICESat,i,1

yICESat,i,2

...

yICESat,i,n



=



∆t1 1

∆t2 1

...
. . .

∆tn 1

1
ρGIA

∆t1 ai

1
ρGIA

∆t2 ai

...
. . .

1
ρGIA

∆tn ai





mi,GIA

mi,1

mi,2

...

mi,n


(6.3)

The GIA model is parameterized in terms of equivalent water height and contributes to

GRACE observations unitarily. The relationship between observed altimetry and GIA equivalent

water height change is captured by an assumed mantle density of 4000 kg m−3, following Gunter

et al. (2014) and Riva et al. (2009). While Wahr et al. (1995) suggest that the asymptotic limit

of effective mantle density is two-thirds the average density of Earth, or 3700 kg m−3, Purcell

et al. (2011) suggest a that this limit may be closer to 4200 kg m−3 over land. Effective mantle

density over the Antarctic Peninsula may be lower because of its unique mantle structure. This

work ultimately uses 4,000 kg m−3 everywhere to be consistent with Gunter et al. (2014) and Riva

et al. (2009).

The data combination was performed by accumulating normal matrices and vectors for the

system of equations. The diagonal elements of the mascon-projected covariance matrix from the

GIA model Caron et al. (2018) were used as a constraint for the solution. The rationale for

eliminating the off-diagonal terms is explained in Chapter 5.
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Figure 6.5: Best-fit, orthogonal-regression-based density solution from time series of ICESat and
GRACE.
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While the traditional approach for weighting the data involves the use of the inverse error

variances of the input data as weights, we find that the high relative precision of the ICESat

observations and their contributions to the mascon average will result in excessive weight being

given to the ICESat data. Because the ICESat data contains spurious firn air content signals that

will not be observable by GRACE, it is less important that the solution fits both time series within

their own errors, but instead that the solution time series is maximally correlated with both input

time series. The solution should therefore find the first principal component of both time series,

optimally separating the latent mass change signals in both GRACE and ICESat and discarding

spurious firn signals in ICESat.

This goal is met by weighting each input time series by its own inverse variance. This

ensures that that a common spatial scale, both the GRACE and ICESat time series have the same

approximate weight in the solution. However, if the ICESat data have additional firn signal, it

should increase the overall variance of the ICESat signal, diminishing the weight of the ICESat

data in the solution relative to the GRACE data.

wM,ii =
1

var(yM)

σ̄2
M

σ2
M,i

(6.4)

wA,ii =
1

var(yA)

σ̄2
A

σ2
A,i

(6.5)

The values σ2
M,i and σ2

A,i are the variances from the errors provided for each data point in

the time series at each mascon. These values are normalized by their respective means, σ̄2
M and σ̄2

M

but their relative variations are preserved to minimize the impact of known outliers on the solution.

Least-squares combinations of ICESat and GRACE were performed with various surface

densities. The four models tested were: the “ice” model with surface density of 917 kg m−3

everywhere; the “equilibrium firn” density model of Kaspers et al. (2004), a hybrid density model

in which everywhere above an elevation of 2000 m was assigned the equilibrium density model and

every location below this elevation was assigned fully compacted ice; and the empirical orthogonal

regression model discussed earlier. Results are shown in Table 6.1. The performance of each model
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Ice Equilibrium Firn Hybrid Best-Fit

50% Density Range (kg m−3) 917 360–400 360–917 230–900
Ice Mass Trend (Gt yr−1) -174 ± 156 -122 ± 59 -183 ± 92 -140 ± 56
GIA Mass Trend (Gt yr−1) 112 ± 131 112 ± 49 110 ± 69 100 ± 38
Reduced χ2 229 226 219 25

Table 6.1: Results of mascon-resolution least-squares combinations with various density models

was assessed by computing the reduced χ2 of each model, or the error- and degree-of-freedom-

normalized sum of squared residuals. Instead of using the variance-based solution weights in the

computation of least squares, the original inverse error variances were used. Thus, the reduced χ2

exceeds 200 for three of the models.

Naturally, the empirical model is the best-fitting by an order of magnitude because this model

was obtained by fitting both ICESat and GRACE. However, the values found in this fit, many of

which are strongly negative or close to zero, are not usable without a natural physical basis to assign

these densities. The best-performing model remaining is the hybrid model, which both captures

intense coastal ice dynamics signals and fits weaker inland signals well. The quality of these models

may also be assessed by their signal-to-noise ratio (SNR). The fully-compacted ice solution has too

much inland noise, resulting in an unusable SNR, while the hybrid model has a higher SNR. The

results from the hybrid fit are compared with the original input datasets in Figures 6.6 and 6.7.

The choice of densities in the solution is important to its integrity. The hybrid density model

was chosen as the best compromise between the orthogonal regression density solution and the

fully-compacted ice density model. Variance-based weighting was deemed necessary to properly

balance the uncertainties in each dataset and find solutions that are maximally correlated with

both ICESat and GRACE.
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6.3 Full-Resolution Combination

The goal of this work is to combine GRACE and ICESat data at the resolution of the input

ICESat data (27 km). Like the previous solution, the solution consists of 17 grounded mass change

vectors for the ICESat cycles, each with length 17,880, and one GIA deviation vector with length

148. Comprising the input data are 17 vectors of length 17880 for the altimetry and 17 vectors of

length 148 for the mascon data. Missing altimetry data are handled by setting the corresponding

weights to zero.

The observation matrix is sparse, and consists of four unique operators M , A, GM and GA.

The M operator is the mascon-averaging operator, a 148x17880 sparse matrix that performs area-

weighted averaging within the bounds of a mascon. The A operator, a 17880x17880 dense matrix,

captures the effect mass variation has on altimetry. It combines both spatially variable ice density

and Green’s functions for elastic loading. The GM matrix relates GIA mass variation to the land

components of CRI-filtered JPL mascon equivalent water height rates. Because the GIA model

is parameterized to match the mascon data, this matrix takes the form of a 148-by-148 identity

matrix. Finally, the GA operator captures the effect GIA has on observed altimetry rates. This

matrix may be viewed as a mascon back-projection operator divided by a scalar mantle density of

4000 kg m−3. The GA and GM operators are customarily multiplied by a scalar time deviation at

each cycle to project GIA trends into the measurement space.

The full observation equation takes the form
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

yGRACE,1

yICESat,1

yGRACE,2

yICESat,2

...

yGRACE,n

yICESat,n



=



∆t1GM M

∆t1GA A

∆t2GM M

∆t2GA A

...
. . .

∆tnGM M

∆tnGA A





xGIA

m1

m2

...

mn


(6.6)

The sparse observation matrix has 306,476 rows and 304,108 columns. The system of equa-

tions has 2,368 degrees of freedom. The sheer size of the observation matrix means that direct

solution of this least-squares problem cannot be achieved with an ordinary hardware setup. The

sparsity of the observation equations, however, does result in a partially block-diagonal information

matrix when assembling the final normal equations. This configuration fits a common problem in

geodesy, where a time-independent background model is fit alongside time-dependent parameters.

The blockwise least squares solution algorithm is detailed in Kaula (1966). In it, the

sparse normal equations formed by in the least squares solution are broken up into smaller time-

dependent and time-independent components. Information matrices and vectors are accumulated

for time-independent parameters alongside the information vectors, information matrices, and cross-

information vectors and matrices of time-dependent mass variation parameters.

The GIA information vector sGIA and matrix NGIA are accumulated across all data cycles.

NGIA =
n∑
i=1

∆t2i [G
T
MWM,iGM +GTAWA,iAGA] + P̄−1

GIA (6.7)

sGIA =

n∑
i=1

∆ti[G
T
MWM,iyM +GTAWAyA] (6.8)

At each iteration, the intrinsic information matrices and vectors (Ni and si) for the high-

resolution mass solution are collected alongside the time-dependent cross-information matrices

Ni,cross illustrating relating GIA and mass variation.
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Ni = MTWM,iM +ATWA,iA+ P̄−1 (6.9)

Ni,cross = ∆ti[M
TWM,iGM +ATWA,iGA] (6.10)

Ni and Ni,cross are combined at each iteration and accumulated to form an intermediate

time-independent information matrix and information vector used to decorrelate GIA and surface

mass variation before the final solution of x̂GIA.

N ′ =
n∑
i=1

NT
i,crossN

−1
i Ni,cross (6.11)

s′ =
n∑
i=1

NT
i,crossN

−1
i si (6.12)

After accumulation, the time-independent best-fit GIA solution vector x̂GIA is inverted along

with its error covariance P̂GIA.

x̂GIA = [NGIA −N ′]−1[sGIA − s′] (6.13)

P̂GIA = [NGIA −N ′]−1 (6.14)

Once the GIA solution exists, it it possible to generate solutions for time-dependent mass

variation solutions m̂i and the corresponding error covariance P̂i.

m̂i = N−1
i [si −Ni,crossx̂GIA] (6.15)

P̂i =
[
Ni −Ni,crossNGIAN

T
i,cross

]−1
(6.16)

The information matrices for GIA and cycle mass balances included smoothing constraints to

aid in filling data gaps and erase the boundaries between mascons. The GIA constraint came from

the diagonal elements of the mascon-averaged covariance matrix in the Caron et al. (2018) GIA

model. The smoothing constraint was represented by a Gaspari-Cohn (Gaspari and Cohn, 1999)
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function with a half-radius of 75 km and a diagonal covariance amplitude of 108 mm2 EWH. The

Gaspari-Cohn operator was chosen for its inherent suitability for sparse correlations. The inversion

of the isotropic covariance matrix was performed via fast Fourier transform. Within the area south

of 86◦ S, where ICESat cannot observe, a smaller constraint amplitude of 104 mm2 EWH to ensure

the smoothness of the resulting solution.

The construction of the altimetry component of the information matrix, ATWA,iA at each

iteration was a computational bottleneck because of the dimensions of the A matrix and the vari-

ability of the weight matrix between cycles. The computing time and memory requirements were

reduced substantially through series expansions of this problem, based on the observation that the

diagonal elements of the observation matrix (surface ice plus elastic loading) were several orders

of magnitude larger than the off-diagonal terms (elastic deformation only). Therefore, breaking

the A matrix into diagonal and off-diagonal components enabled a binomial decomposition of

the product ATWAA, iA. If A = Adiag + Aoff , where Adiag contains the diagonal elements of A

and Aoff contains the off-diagonal elements, then ATWAA = ATdiag[WAAdiag] + ATdiag[WAAoff ] +

[WAAoff ]TAdiag + AToff [WAAoff ]. The first term ATdiag[WAAdiag] may be computed in linear O(n)

time, while the next two terms ATdiag[WAAoff ]+ [WAAoff ]TAdiag are computable in O(n2) time. The

final term, AToff [WAAoff ] where the small off-diagonal elements are multiplied together create a neg-

ligible contribution to the content of the information matrix, but require O(n3) time to compute.

The elimination of this term substantially reduces computation time and memory demand with

minimal impact on the solution.

The best-fit solution trend is found in Figure 6.8. Note that the inputs to the trend fit are

weighted by the inverse formal error variances from the combination.
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Uncertainty bounds were estimated using a bootstrap method (Press et al., 2007) . To speed

up processing time, the observation equations were broken up mascon-by-mascon such that high-

resolution solutions were computed within the bounds of a mascon, but were uncorrelated with

solution coefficients in other mascons. The tradeoff of this speedup was that elastic loading and

spatial smoothing could not be implemented across mascon bounds. For each mascon, the unaltered

time series of GRACE data was injected into the normal equations. At each cycle within the mascon,

altimetry data were spatially resampled with replacement. This means that certain values of yA,i

and WA,i and corresponding rows of the matrix A appeared multiple times within a resampled

iteration. As before, the information vectors and matrices and the corresponding cross-information

vectors and matrices for the mascon subvector were accumulated and inverted to solve for GIA

and high-resolution mass-variation within that mascon. The mass variation subvector is added to

a master vector of mass variation for the entire continent. This process is repeated 300 times–the

maximum feasible number of iterations given time constraints–to generate a posterior distribution

of possible mass variation and GIA solutions given the input data and realistic variations therein.

The ensemble of solutions may be used to compute a distribution of continental mass trends

and total GIA correction. The posterior distribution of integrated mass change of the bootstrap

are shown in Figure 6.9.

These solution distributions notably exhibit long, mirrored tails that reflects a strong anti-

correlation between mass trend and total GIA signal. Continent-wide, the total GIA solution is

nearly perfectly anti-correlated with the mass trend solution. This is also true for East Antarctica.

Correlations between GIA and estimated ice mass trend over West Antarctica and the Antarctic

Peninsula are weaker, at -0.50 and -0.37, respectively.

The distribution obtained from the bootstrap is used to construct a 1σ confidence around

the best-fit estimate. Because these distributions are highly skewed, their asymmetry is expressed

according to the deviation of the 15.9th and 84.1st percentiles from the solution. The continent-

integrated mass change trend between 2003 and 2009 of -116+10
−51 Gt yr−1 is within 1σ of the

2002–2007 IMBIE (Shepherd et al., 2018) estimate of -73 ± 53 Gt yr−1. Over West Antarctica,
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recovered mass loss of -78 +4
−11 Gt yr−1 remains consistent with the IMBIE estimate of -65 ± 27 Gt

yr−1. Further regional comparison of these solutions is shown in Table 6.2.

The quality of the solution may be examined by assessing its best and worst cases. Laser

2A, corresponding to late 2003, has laser shots available over 90% of the continent (Figure 6.10).

However, altimetry coverage is unavoidably poor over the Antarctic Peninsula. This results in

medium-wavelength ringing and other instabilities in this region. Elsewhere, particularly above

2000 m elevation, the solution recovers smooth variation in ice mass primarily attributable to

surface mass balance. Near the coast, the solution exhibits the essential ice dynamics features. The

mass loss signals from the Pine Island and Thwaites glaciers are recovered in detail, as are the more

spatially concentrated signals on the Bakutis and Hobbs Coasts. The model further captures the

ice dynamics gains in the Kamb Ice Stream and the mass loss signal near Totten.
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Figure 6.9: Histograms of posterior distributions for Antarctic Ice Sheet ice mass trend and GIA
obtained from bootstrapping. Best-fit solutions are shown with vertical lines.
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The recovered signal suffers from impulsive noise along other low-latitude coasts because of

the gaps in the ICESat data. This noise is caused in part by ICEsat providing more spatial infor-

mation in the north-south along-track direction than in the east-west crosstrack direction at low

latitudes. This can lead to ringing and other artifacts when combined with smooth GRACE data.

This type of noise may be mitigated with a median filter in post-processing the output solutions

or by using a different set of constraints for coastal sites. For instance, an anisotropic smoothing

constraint with more reach in the east-west direction than the north-south direction may compen-

sate for the difference between along-track and cross-track resolution in ICESat data. Altimetry

quality also degrades near the coast because of increased slopes and topographic roughness. These

slope-induced errors can introduce appreciable noise, even between closely overlapping altimetry

footprints. As may be expected from, ICESat exhibits noisier performance over the rugged topog-

raphy of the Trans-Antarctic Mountains.

The worst case is embodied by Laser 2F, the last available observation cycle (Figure 6.11).

Only 52% of the ground was covered by altimetry at 27 km resolution with signals being con-

centrated inland. Despite the high density of shots inland, the solution also suffers from isolated

ringing artifacts from outlier altimetry inputs and zones of missing data. This solution fails to re-

solve Antarctic Peninsula signals better than GRACE. Mass loss near Totten is notably indistinct

amid the coastal noise.

However, this cycle also demonstrates one of the chief benefits of data combination: filling

gaps in altimetry coverage. In spite of missing data over the Kamb ice stream, the solution suc-

cessfully reconstructs the shape of the ice mass gain signals at high resolution with only hints from

low-resolution GRACE data and surrounding high-resolution altimetry. The solution also properly

allocates long-wavelength signal to the outlet glaciers in West Antarctica, but does not resolve their

shapes well.
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The solutions may be integrated over East Antarctica, West Antarctica, the Antarctic Penin-

sula, and the entire continent to form time series and trends.

The best-fit GIA solution is compared with three representative models (Whitehouse et al.

(2012), Peltier et al. (2015), and the reference model by Caron et al. (2018)) in Figure 6.13. The

total mass rate correction for the Antarctic ice sheet is compared with other GIA models in Figure

6.14, which shows that the solution is within the range of variation of other models.

The majority of the deviation of the total GIA solution from the reference model comes from

East Antarctica. Using the posterior distribution to construct asymmetric confidence intervals,

the total GIA signal over East Antarctica is 70 +58
−24 Gt yr−1, 26 Gt yr−1 higher than the 44 ±

50 Gt yr−1 indicated by the Caron et al. (2018) reference model. Independent verification of

this apparent bedrock uplift due to GIA could be difficult due to the lack of available GPS sites.

Pending the development of novel geodetic observation methods, bedrock motion under the High

Antarctic Plateau is only practically observable through the combination of altimetry and gravity

demonstrated here.

The deviation of the GIA solution from the Caron et al. (2018) reference model is most intense

over Ellsworth Land, where predicted uplift rates approach 1 cm yr−1. The integrated mass change

over all of West Antarctica, however only deviates from the reference model by 7 Gt yr−1 for a

total mass rate of 32 +2
−4 Gt yr−1. The GIA model does not deviate from the predictions of Caron

et al. (2018) significantly over the Antarctic Peninsula.

The GIA solution may be compared with GPS rates published by Mart́ın-Español et al.

(2016a). After using the JPL RL05.1M CRI-filtered mascons to remove elastic loading between

2009 and 2016, the residual observed mass trends are compared with predictions from the solution

GIA model. A cluster of nine stations on the Antarctic Peninsula were removed from the analysis

because of inadequate knowledge of mantle structure in that region. On the Amundsen Coast, data

from the stations BERP and BACK were omitted because of concern with data quality and local

environmental conditions. This comparison is shown in Figure 6.15.

At a glance, this comparison indicates that that the GIA model overestimated uplift in
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Figure 6.12: Time-variable combined mass variation solution for the major subdivisions of the
Antarctic ice sheet compared with GRACE and ICESat input data

Mass Rate (Gt yr−1) AIS WAIS EAIS AP

GIA This work 110+60
−24 32+2

−4 70+58
−24 4+4

−4

Caron et al. (2018) 77 ± 71 25 ± 20 43 ± 50 2.7 ± 3.4

Ice Mass Trend This work (2003–2009) -116+10
−51 -78+4

−11 -21+24
−35 -2+8

−6

IMBIE (2002–2007) -73 ± 53 -65 ± 27 +12 ± 43 -20 ± 15

Table 6.2: Comparison of regional mass variation solutions with results from Caron et al. (2018)
and Shepherd et al. (2018)
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Figure 6.13: Best-fit GIA solution uplift rates from combining ICESat and GRACE (lower right)
compared with three representative GIA models
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Figure 6.14: Comparison of GIA mass rates integrated over the Antarctic ice sheet after Mart́ın-
Español et al. (2016a)
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Figure 6.15: Comparison of the best-fit GIA model with GPS uplift rates
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Std. Dev. Detrended Residuals (mm) JPL Mascons Combined Solution

Up 4.2 4.3
East 4.4 4.4
North 5.2 5.2

Table 6.3: Standard deviations of detrended residuals for UNR GPS positions positions predicted
by GRACE and the combined solution within the 2003–2009 interval

Ellsworth Land. The model is otherwise consistent with uplift rate measurements across East

Antarctica and the Trans-Antarctic Mountains. The weighted RMS error is computed using the

inverse error variances as weights with distance-dependent tapering of the weights to diminish the

effect of clusters of GPS stations. The weighted RMS of the residuals is 3.1 mm yr−1. Other GIA

models, including IJ05R2 (Ivins et al., 2013), AGE1b (Sasgen et al., 2013), and Gunter et al. (2014)

have weighted RMS residuals of less than 2.0 mm yr−1.

GPS time series may be used to validate the ice mass solution time series in principle. Ex-

amining the standard deviation of detrended residuals (SDDR) in three dimensions should enable

quantification of solution quality independent of GIA and other trend signals. While Mart́ın-

Español et al. (2016a) only published GPS trends, the UNR daily GPS time series used in previous

chapters may be used to compare time variations in bedrock deformation with model predictions.

Unfortunately, this method is limited by the lack of GPS stations available in Antarctica prior to

2009. Outside of the cluster of stations in the vicinity of Ross Island, only seven sites are available

for comparison with solutions over the 2003–2009 interval. Consequently, comparing the SDDR of

the mascon-based solutions with GIA and elastic loading predictions from Caron et al. (2018) and

the JPL RL05.1M mascons is inconclusive. Near-identical SDDR values are found for both mass

variation solutions (Table 6.3).

The time series of solutions may be inspected basin-by-basin and compared with GRACE

mass measurements integrated within their bounds (Figure 6.16). Basins 1, 13, 14, 17, 18, 20,

21, and 22 account for more than 80% of the variance of the total mass of the continent in this

time span. Basin 1 exhibits a substantial GIA correction. There is a constant bias in the solution

time series relative to GRACE solution. Mass loss on the Amundsen coast in basins 20, 21, and
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22 is shown with a strong negative trend in both the GRACE and combined solution time series.

However, notably, the trends in basins 21 and 22 are magnified relative to the low-resolution

GRACE solution. This reflects high-resolution ICESat data aiding the restoration of mass loss

signals that leak across basin boundaries in the GRACE data. This effect is most notable in the

narrow boundaries of basin 18, which contains the Kamb Ice Stream. The trend measured by

GRACE within the basin is magnified by a factor of two as additional spatial information from

ICESat corrects for leakage. Within the larger basins 13 and 14, where leakage is less important,

there is broad agreement with GRACE and important mass loss signals and events are captured.
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6.3.1 Resolution

The chief motivation for combining ICESat and GRACE is enhanced spatial resolution. Ver-

ifying that the combination of these two datasets yields greater spatial resolution requires multiple

methods of quantification.

In imaging, spatial resolution is defined system’s ability to distinguish lines of a particular

spacing. Resolution is represented by a modulation transfer function, which describes the imagine

system’s impulse response as a function of spatial frequency. The modulation transfer function is

obtained by computing the spectral coherence of an image relative to the structure of the original

source.

A simpler, more intuitive approach to quantifying resolution involves visualizing the mod-

ulation transfer function in terms of how the observation system modulates Fourier kernels of a

particular frequency. This is similar to checkerboard tests performed in seismic tomography and

GPS elastic loading inversion.

The first step in resolution quantification is construction of the “resolution matrix” which is

the product of the observation system pseudoinverse and the observation operator. The resolution

matrix is a square matrix that relates a set of parameters to the solution generated from the solution

of a system of observation equations. It describes impulse response of the observation system. The

diagonal elements of the resolution matrix lie between 0 and 1. The closer a diagonal element is to

1, the more well-resolved a parameter may be understood to be. The spatial resolution is reflected

in the dispersion of the off-diagonal elements in each row with distance, indicating the degree of

confusion in the solution.

For each cycle, the resolution matrix is computed from the information matrix obtained from

altimetry and gravity. The effects of GIA are neglected and the final calculation of the resolution

matrix at each cycle takes the form:

R = [ATWA,iA+MTWM,iM + P̄−1]−1[ATWA,iA+MTWM,iM ]. (6.17)
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Altimetry Coverage <27 km <100 km >100 km

resolution resolution resolution

Best case (Laser 2A) 90% 86% 94% 6 %
Worst case (Laser 2F) 53% 52% 85% 15 %

Table 6.4: Antarctic ice sheet altimetry coverage and resolving widths for resolution thresholds of
better than the native grid resolution of 27 km, better than 100 km, and worse than 100 km

The calculation of the resolution matrix includes the smoothing covariance P̄ .

Michelini and McEvilly (1991) devised a compact metric to summarize spatial resolution for

a given point in the solution vector. The rows of R may be used to compute the resolving width

sj for the corresponding mass solution vector at index j.

sj = |Rj |−1
N∑
k=1

(
Rkj
|Rj |

)2

djk, (6.18)

where djk corresponds to the distance matrix for the locations of each point in the vector

m. This metric uses the resolution matrix rows as weights to compute the average information

dispersion distance from a solution location.

We compute the resolution matrix and resolving width for the best (Laser 2A, 2003, 90%

altimetry coverage) and worst (Laser 2F, 2009, 53% altimetry coverage) ICESat epochs allowed by

the model. These results are shown in Table 6.4 In the best-case epoch, a resolution of 27 km is

achieved over 86% of the continent. A further 8% of the continent is resolvable to better than 100

km. In total, 97% of the continent is resolvable to better-than-GRACE resolution of 330 km. The

chief deficiencies in resolution occur near the coast and are especially pronounced on the northern

reaches of the Antarctic peninsula. While the 4.8% of the continent below the 86 ◦S parallel is

unobservable to altimetry, the combination of altimetry, GRACE, and elastic loading inversion

enables the solution to resolve signals as far south as 87◦ S with an east-west resolution of ∼100

km.

The resolving width may be verified with a checkerboard test. For this test, we generate

symmetric and continuous cosine checkerboard functions with half-wavelengths given in octaves
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of grid resolution: 27 km, 54 km, 108 km, 216 km, and 432 km. The checkerboard vectors are

multiplied by the resolution matrix to obtain a set of test solutions, the local coherence of which

may be visually inspected to verify spatial resolution at each checkerboard scale. Both the resolving

widths and checkerboard tests for the selected epochs are shown in Figure 6.17.

In the best-case epoch, the 27 km checkerboard is fully resolved in the solution region above

2000 m elevation and parts of the Rockefeller Plateau. The altimetry hole south of 86 ◦S remains

unresolved. The 54 km checkerboard is well resolved over the majority of the continent, including

Ellesmere Island, but is not resolved within 200 km of the coast or over the Kamb ice stream. The

108 km checkerboard is recovered everywhere, except within 50 km of a coast or in the 86 ◦S hole.

Evidence of partial recovery of the checkerboard south of 86 ◦S. Little improvement in coherence

is found on the Antarctic peninsula at coarser scales.

The worst-case epoch demonstrates adequate recovery of the 27 km checkerboard where

altimetry is present. Most of the continent can be represented continuously at 108 km resolution,

except within ∼200 km of the coast. The coast and Antarctic peninsula are poorly resolved even

at half-wavelengths of 432 km.

The checkerboard test provides an optimistic upper limit on the spatial resolution of the

combination. The ability to distinguish features will ultimately depend on the spatial distribution

of the signal-to-noise ratio of the input data.

The spatial distribution of the SNR was examined by first computing the geometric mean of

the ratio of the absolute value of solution signal to the standard deviation of the bootstrap ensemble

members. This is shown in Figure 6.18. For more than 90% of the observable continent, the typical

SNR is ∼1. The major exceptions are over Amundsen, Kamb, and Totten glaciers. Assuming that

SNR improves with the square root of the number of grid cells included in an averaging window,

then the smallest scale required to resolve a typical inland Antarctic mass change signal with

3-sigma certainty may be ∼100 km.

These tests enable the following generalization: For an ideal ICESat cycle with reliable firn

corrections and little noise, over 85% of the continent may be resolved to 27 km or better. Coastal
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locations or major ice streams may be resolved to ∼100 km. Locations on the Antarctic peninsula

are resolvable to ∼100 km, but observing gaps may result in minimal resolution improvement over

CRI-filtered mascons. Inspection of the SNR suggests that the effective spatial resolution of the

solution is ∼100 km.
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6.4 Discussion

This chapter details the generation of time-variable solutions for surface elevation change

in Antarctica and the combination of these solutions with corresponding GRACE data to create

high-resolution mass variation solutions.

The gridded, high-resolution time-variable altimetry product at the heart of this work is a

novel contribution to the field. Most literature up to this point has focused on producing altimetry

trends to assess mass trends within an interval. The altimetry product created to enable this

combination is a unique and novel “frame-by-frame” examination of surface elevation variation in

the Antarctic Ice Sheet. The spatial resolution of this product is currently 27 km, but maps of shot

pair density and cycle availability (Figure 6.2) imply that solutions with grid resolutions as low as

2 km may be generated to examine elevation variations within regions. One such application of

altimetry series is the investigation of subglacial lakes across the Antarctic Ice Sheet as performed

by Smith et al. (2009) using ICESat data.

The availability of time-variable altimetry grids was an essential ingredient in producing

cycle-by-cycle, high-resolution solutions for mass variation in Antarctica. The solutions generated

in this chapter may also be used as training dataset to construct estimators to optimally relate

low-resolution GRACE surface mass flux data to high-resolution. Such an estimator may be used

to preserve temporal continuity for high-resolution spatial solutions in the event that ICESat-2 is

temporarily unable to collect data during its coincident observing span with GRACE-FO.

A number of lessons resulted from this combination. First, even after correcting for firn

air content, some firn air content signal is expected to remain in the data and the errors may be

correlated with the signal. Considering the low signal-to-noise ratio of GRACE and ICESat over

quiet parts of the ice sheet, a hybrid density model with fully compacted ice at low elevations and

equilibrium firn density at high elevations may be necessary to properly combine these datasets.

Variance-based weighting further mitigated the role of residual firn air content signal in the ICESat

data in the combination. Weighting the data according to variance ensures that the mass time
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Figure 6.18: Signal-to-noise ratio of high-resolution mass variation solutions
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series in the solution is maximally correlated with both the GRACE and ICESat input time series

at a point by downweighting the ICESat data accordingly if it contains extraneous signals that

aren’t correlated with the corresponding with GRACE time series.

While few GPS observing sites are available for measurement of crustal deformation during

the period of 2003–2009, trends obtained from GPS stations installed in later years may be used to

constrain the time-independent GIA model outside of the data observing range. The inclusion of

GPS trends from outside the observation period would be applicable to combination of data from

GRACE-FO and ICESat-2 if these satellites outlive any of the current GPS observing sites.

ICESat’s groundtrack may be poorly suited for observing elevation change over the Antarctic

Peninsula. This results in poor resolution of mass change over this region in the combination of

ICESat and GRACE. Other possible data sources, data editing rules, and and spatial constraints

should be investigated to improve mass variation solutions near the coast. The addition of lower-

inclination altimetry data, such as from CryoSat may stabilize this solution.

Sasgen et al. (2019) notably combine CryoSat altimetry data with GRACE data over the

2011–2017 interval to find a mass loss rate of 178 ± 23 Gt yr−1. While these aren’t directly

comparable with our solutions over the 2003–2009 interval, the difference is partly attributable

to the acceleration in mass loss of ∼15 Gt yr−2 over the 2002–2017 interval found by Shepherd

et al. (2018). Their combination technique differs from this work in that it was performed in the

spectral, rather than spatial domain. This enabled scale-dependent relative weighting of altimetry

and GRACE, with altimetry being given more weight at spatial scales below 400 km. This work,

by contrast, is a straightforward space-domain combination of low-resolution area averages with

high-resolution point measurements.

Gao et al. (2019) recently performed another combination of GRACE with ICESat altimetry

over 2003–2009, finding a mass loss signal of 84 ± 31 Gt yr−1 and a GIA correction of 55 ± 23 Gt

yr−1. While their mass loss estimate is consistent with this work within 1 σ, their GIA estimate is

significantly smaller. Their GIA estimate is distinguished from this work in that it uses the more

robust spherical-cap parameterization presented in Chapter 4 of this work. They also use variable
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effective mantle densities, particularly over the Antarctic Peninsula.



Chapter 7

Conclusions

This project focused on combining GRACE, ICESat, and GNSS data to better resolve the

sources of mass change in Antarctica. The primary objective is to implement a combination of

geodetic observations of Antarctica to resolve variations in mass on monthly timescales. The

combination should fulfill three criteria:

(1) Assimilate GNSS, altimetry, and gravimetry data into a model of mass variability in Antarc-

tica

(2) Disaggregate sources of mass and elevation change including GIA, ice dynamics, surface

mass balance, and firn compaction

(3) Increase spatial resolution of Antarctic mass transport relative to GRACE solutions at

monthly timescales

The inputs, outputs, and timescales of each method are tabulated in Figure 7.1.

Because of the exploratory nature of this investigation, no single method presented in this

work fulfills all of these goals. This is partly to enable independent validation of solutions and to

reduce the complexity of the overall problem. Furthermore, no method disaggregates all Antarctic

mass transport processes at once. Instead, GIA is separated from aggregated ice sheet processes in

some methods. In solution methods seeking to disaggregate ice dynamics and surface mass balance

or adjust the sum of their contributions, GIA is treated as an independent background model.
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Finally, a number of these investigations were preformed at mascon-resolution or by operating on

elevation and surface mass trends, not necessarily offering improvements on the spatial or temporal

resolution of GRACE. The direct least-squares combination of ICESat and GRACE in Chapter 5

improves the spatial resolution of GRACE at the temporal resolution of ICESat.

Nonetheless, this investigation has resulted in the creation of an in-depth toolkit for under-

standing Antarctic mass variation with multiple geodetic datasets.

Atmospheric errors, a major error source in GRACE data were studied in depth on monthly

timescales. In situ data, robust reanalyses, and optimal combinations of these models and data

were used to validate the atmospheric component of the dealiasing model and produce corrections

to GRACE solutions. These errors were found that to hide additional acceleration in mass loss

on the order of 4 Gt yr−2. This work also finds that the next generation of dealiasing models,

AOD1B RL06, largely corrects these discrepancies by using the ERA-Interim surface pressure field

as an input after 2006. However, the new dealiasing model still contains less robust operational

atmospheric models prior to 2006 and thus still features their associated drifts. This work further

demonstrates the presence of atmospheric error signals in GRACE data over the High Antarctic

Plateau. Using these a method for recovery of atmospheric signals in quiet parts of Antarctica was

developed, demonstrating the potential of GRACE as a meteorological observing tool.

These atmospheric errors and their corrections were used in preprocessing of data combination

in Chapter 6. Over the 2003–2009 ICESat interval, where atmospheric errors are most extreme,

these errors add a correction of 16 Gt yr−1 to the input GRACE data. This work highlights the

importance of including atmospheric surface pressure corrections in analyses of GRACE data.

This investigation required the development of data products for ICESat elevation changes

from overlapping footprints and elevation change grids by cycle. The resolution and effective revisit

frequencies of locations in Antarctica over the 2003–2009 span were quantified. These time-variable

grids for each cycle were used to produce estimates of effective surface density via least-squares

comparison of mascon-averaged ICESat elevation grids.
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This work developed a method for separation of ice sheet mass trend signals and GIA using

GRACE data, GNSS data, and GIA ensembles. It also replicated the Gunter et al. (2014) method

for separation of ice sheet mass trend signals and GIA using GIA ensembles and GNSS data. A

method for separating ice dynamics and surface mass balance trend signals in mascons without

necessarily increasing spatial resolution was explored.

Another part of this project focused on obtaining monthly solutions at high spatial resolution

through the combination of GRACE, ICESat, surface mass balance models, and basin discharge

measurements. The investigation of monthly combination first resulted in a method for estimating

ice dynamics fields using ICESat fields and adjusting these fields with basin discharge estimates.

This a priori ice dynamics model was combined with the RACMO surface mass balance model and

low-resolution GRACE data to obtain high-resolution mass change solutions. The elastic loading

predictions from these solution methods were demonstrated to be consistent with in independent

GNSS position time series.

Finally, the work culminated in the direct, least-squares combination of GRACE and ICESat

at the temporal and spatial resolution of ICESat. It required the creation of a unique, time-variable

elevation data product created by locating overlapping footprints across different ICESat cycles and

inverting these elevation differences to create time series of elevation change. These time series were

combined with low-resolution mascon solutions from GRACE to simultaneously produce 17 high-

resolution slices of Antarctic mass balance in time and a low-resolution, time-independent solution

for GIA. This work revealed the challenges of combining fundamentally different measurement

types at these temporal and spatial scales. It resulted in an estimate for total mass change in the

2003–2009 interval of -116+10
−51 Gt yr−1 and a GIA estimate of 110+60

−24 Gt yr−1. These estimates are

broadly consistent with contemporary work within 1–2σ.

7.1 Future work

It is desirable to unify the analysis techniques described in this work into a single filter that

accomplishes all of the stated project goals. This work produced time-variable maps of ICESat
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Figure 7.1: Summary of input data, modeled output processes, and data timescales for all solution
methods explored in this work



151

elevation grids at the timescale of the iciest cycle (2-3 times per year over a typical 33-day span),

but these were not ingested into the monthly solutions. The cycle-based solutions may be used

to estimate ice dynamics priors and covariances instead of using average trends. Firn air content

could be modeled using spatial constraints from existing models rather than being treated as a

background model. GNSS solutions could also be included with future solutions rather than set

aside for validation.

The methods developed for this work can benefit regions where changes in ice mass occur

on smaller scales than GRACE can resolve. The Gulf of Alaska contributed 75 ± 11 Gt yr−1 to

current sea level rise between 1994 and 2013 (Larsen et al., 2015). Because Alaskan ice mass loss

can locally create geoid changes in excess of 1 cm per decade, high-resolution modeling of these

signals may prove essential to maintaining an accurate geoid-based height system (Jacob et al.,

2011). Iceland’s major ice caps are individually much smaller than a single mascon, but local

crustal deformation caused by these processes are observable by InSAR and surrounding GNSS

sites, which capture both elastic loading from the ice caps and the unique GIA signals associated

with recent deglaciation (Auriac et al., 2013).

As the three major datasets used in this work represent the major types of geodetic observa-

tions in Antarctica, the mathematical and computational infrastructure used to solve this problem

could, in principle, accommodate other time-variable geodetic datasets. More importantly, the ac-

curacy of this solution should be evaluated using data outside of the core triad of GRACE, ICESat,

and GNSS data.

Radar altimetry data present the most immediate additional information due to their broad

coverage in both space and time. CryoSat-2, launched in 2010, extends the record of Antarctic

surface elevation change to the present day. Helm et al. (2014), for example, use CryoSat-2 data

to measure the loss of -128 ± 83 km3 yr−1 of Antarctic ice sheet volume between 2011 and 2014.

Envisat radar altimetry is available between 2002 and 2012, with considerable temporal overlap

between ICESat data. Envisat orbits at a somewhat lower inclination than ICESat, and is therefore

only able to provide data from as far south as 81.6◦ S compared with ICESat’s 86.0◦ S. Nonetheless,
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the data provided by the Envisat mission have been used to establish elevation change rates over

Antarctica (Flament and Rémy, 2012).

Airborne laser altimetry from Operation IceBridge (Koenig et al., 2010) is designed to supple-

ment ICESat altimetry. While IceBridge flight lines often capture much smaller spatial scales than

the proposed solution scales, these flights are often designed to follow prior ICESat groundtracks

and frequently target regions where elevation change is expected.

7.2 Final Remarks

As stated at the beginning of this work, measuring mass transport on Earth’s surface is

a top priority for Earth science in coming years. At the time of this writing, GRACE-FO and

ICESat-2 are in orbit collecting and will soon return science data products to extend the record

of mass change in Antarctica. The techniques demonstrated in this work pave the way toward

robust simultaneous combinations of these data and will enable refinement of the community’s

understanding Antarctica’s present contributions to sea level rise and the role Antarctica will play

in future sea level. The higher resolution afforded by the techniques developed here will sharpen

understanding of mass transport processes in Antarctica. The unique altimetry and surface mass

change products developed in Chapter 6 will allow researchers to examine cumulative mass balance

in Antarctica on a cycle-by-cycle basis rather than through averaged trends. They will be of benefit

to modelers of both the Antarctic ice sheet and solid-Earth processes like GIA. Furthermore, the

techniques demonstrated here are applicable to ice mass changes in other parts of the world.

The combination techniques presented here and their output products open new avenues for

Antarctic science.
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