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This work presents methods for combining time-variable gravimetry, altimetry, and GNSS
bedrock motion data to distinguish sources of mass change in Antarctica with enhanced spatial
resolution. GRACE gravimetry provided direct measurements of mass variation of the Antarctic
Ice Sheet at monthly timescales between 2002 and 2017, but was limited to a spatial resolution of
300 km. Laser altimetry from ICESat (2003-2009) provided elevation change measurements at fine
spatial resolution, better resolving the spatially concentrated sources of Antarctic mass loss, but
with sparse temporal sampling. The processes of glacial isostatic adjustment (GIA), ice dynamics,
surface mass balance, and firn compaction affect geodetic measurements with distinct magnitudes,
timescales, and spatial scales, which means they may be separated through combination of different
data sources. This work explores separation of GIA and ice sheet processes by combining data from
ICESat and GRACE. This is accompanied by separation of GIA and ice sheet processes using GNSS
vertical crustal motion estimates and GRACE. Monthly solutions for combined ice sheet mass
variation are developed using monthly GRACE solutions combined with high-resolution ICESat
elevation rates. High-resolution monthly solutions for Antarctic mass variation are developed by
combining ICESat elevation rates statistical information from models of the processes of interest
with monthly GRACE data. This work also examines of the impact of atmospheric modeling
errors on estimates of Antarctic mass loss, finding that errors in models used to remove atmospheric
signals from GRACE solutions obscure additional acceleration in total Antarctic mass loss. Finally,
time-variable GRACE and ICESat data are combined directly to produce 17 time-variable mass
solutions at high spatial resolution between 2003 and 2009 with an updated GIA model. The
solutions indicate 2003-2009 average mass loss of 116J_r51)(1) Gt yr~! and a total GIA mass rate of

110J_rgg Gt yr~!. With GRACE Follow-On and ICESat-2 now concurrently in orbit, the methods
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developed in this work pave the way toward simultaneous assimilation of their respective gravity

and elevation data into a monthly, high-resolution solution for Antarctic mass change.
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Chapter 1

Introduction

Observing the changing distribution of mass within Earth’s atmosphere, oceans, ice sheets,
and ground water is a top priority in modern Earth science (National Academies of Sciences, En-
gineering, and Medicine| |2018).This task is particularly important and challenging in the largest
contiguous mass of land ice on Earth, the Antarctic Ice Sheet (AIS). With its grounded portion
spanning over 12 million square kilometers and possessing an average thickness of nearly 2 kilome-
ters, the AIS has the potential to raise sea level by over 58 meters if melted completely (Fretwell
et al., 2013). Through gravity-driven ice dynamics, this ice mass continuously flows into the ocean,
approximately balanced by incoming precipitation. However, since the early 2000s, various satellite-
geodetic estimation techniques have revealed that Antarctica makes net contributions of tens to
hundreds of gigatons (1 Gt = 10'2 kg) per year of ice mass to the oceans, resulting in several tenths
of a millimeter per year of sea level rise.

A number of methods exist to characterize the mass balance of the AIS and pinpoint where ice
mass is currently being lost. These methods and the processes they detect are illustrated in Figure
[I.1} Precise mapping of sources of mass loss in the AIS aids predictions of how these locations will
contribute to future sea level rise. Understanding the overall net balance of surface mass balance
and ice dynamics will illuminate Antarctica’s sensitivity to a changing climate.

Since 2002, the Gravity Recovery and Climate Experiment (GRACE) mission has produced
a monthly record of Earth’s gravity field, enabling direct estimation of changes in the distribution

of water, ice, and solid-Earth mass across its surface. Over Antarctica, GRACE is limited by uncer-



Figure 1.1: Explanation of major ice sheet processes and observable effects
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Figure 1.2: Trend signals captured by GRACE (2002-2017), ICESat (2003-2009), and GNSS (2002—
2017) vertical position estimates, reflecting geodetic change due to mass variation.
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tainty in glacial isostatic adjustment (GIA), the viscoelastic rebound of the solid Earth reflecting
loading from ice present during the last glacial maximum, 20,000 years ago. Uncertainty in GIA
models results in a wide range of estimates of Antarctic mass loss from anywhere between 50 and
150 Gt yr—! (Martin-Espafiol et al., [2016a)).

Changes in the mass of the Antarctic Ice Sheet manifest themselves most directly with ele-
vation change. These may be measured with satellite altimetry. Altimetry missions, such as the
Ice, Cloud, and land Elevation Satellite (ICESat), CryoSat-2, and Envisat have recorded surface
elevation change measurements at the centimeter level. However, these elevation change estimates
are difficult to convert to mass change estimates due to uncertainty in local surface density. Firn
compaction, the slow densification of snow as it becomes ice, is a limiting source of uncertainty
in the relationship between measured surface elevation change and mass change. Uncertainty in
firn compaction models widens the range of possible interpretations such that some authors report
mass gains that exceed losses across the continent (Zwally et al. 2015]).

Variations in the mass of the AIS are also reflected in elastic deformations of bedrock directly
detectable in position time series collected by permanent global navigation satellite system (GNSS)
antenna sites mounted in Antarctic bedrock. GNSS vertical motion estimates are extremely sensi-
tive to vertical motion induced by GIA. Elastic loading signals detected in dense GNSS networks
have been used to spatially resolve mass variations elsewhere (Argus et al., 2014)).

The trend signals captured by these three techniques are illustrated in Figure [[.2] The
primary features of these trends are strong, GIA-induced uplift signals in West Antarctica and
moderate, long-wavelength GIA signals lining the Antarctic coast; concentrated mass loss signals
near the Amundsen, Thwaites, and Totten glaciers; and ice-dynamics-driven mass buildup in the
Kamb ice stream.

Geodetic methods used to estimate Antarctic mass change have differing sensitivity to ice
sheet processes and background models that limit any single technique. These techniques also differ
by orders of magnitude in effective spatial resolution. Combining data from multiple methods could

overcome the limitations of any single technique to produce a narrower and less uncertain credible



range of estimates for Antarctic mass loss.

As of December 2018, both the GRACE and ICESat missions are completely inoperative.
Their successors GRACE Follow-On and ICESat-2 were both launched in 2018 and are expected
to return new science data over the next five years. Additionally, ANET GNSS sites are expected
to continue operation in this time period. The concurrent operation of these missions presents an
opportunity to develop a system for integrating these data together into a single operational model.
As Antarctica’s role in future sea level rise remains uncertain (Church et all |2013), continuous
monitoring the mass of this ice sheet through geodetic means will become indispensable.

The objective of this project is to implement combinations of geodetic observations of Antarc-
tica to resolve variations in mass on monthly timescales. The solution should disaggregate GIA,
surface mass balance, and ice dynamics. Such a combination also should improve spatial resolution
relative to GRACE. Potential spatial resolution improvement could be on the order of 20-100 km.
Such a solution should also provide useful predictions of mass variation during periods in which
GRACE and ICESat do not observe the Antarctic Ice Sheet concurrently. The combination is in-
formed by the statistics of relevant models, but do not explicitly depend on the internal dynamics
of these models or involve direct evaluation of these models.

The scope of this project is limited by one major self-imposed ground rule: there is to be no
direct evaluation of dynamics. Dynamical models of the processes that govern observable geodetic
changes in Antarctica may not be run on their own. Only model outputs may be used in the
development of methods for data combination. Models of GIA, meteorology, ice dynamics, and
firn compaction require considerable computational resources and time to develop and properly
run. Avoiding the limitations of explicit model dynamics grants flexibility in evaluating filtering
approaches. The filter should also not depend on meteorologically driven model outputs for firn
compaction, surface mass balance, and ice dynamics as their latency may become a limiting factor
in the practical implementation of the data combination.

Where models are used, their spatial statistics should constrain solutions. Published GIA

models and covariances should inform the spatial characteristics of the GIA solution. Surface mass



balance and firn compaction predictions from RACMO 2.3 (Wessem et al., [2014; Lenaerts et al.,
2013; |Ligtenberg et al., |2011) should likewise inform the firn and surface mass balance components
of the ice sheet mass variation solution. The ice dynamics should be informed by horizontal inter-
ferometric synthetic aperture radar (InSAR) velocities (Rignot et al., |2011) and trend constraints
developed by |[Zammit-Mangion et al.| (2013). The project should also leverage previous work in
examining atmospheric errors over the Antarctic ice sheet, using reanalyses examined by [Hardy
et al.| (2017) to correct these errors.

The final product should match or exceed the capabilities of filtering schemes developed by
Zammit-Mangion et al.| (2013} 2015); Schoen et al.| (2015); Martin-Espanol et al.| (2016b), particu-
larly in terms of spatial and temporal resolution.

The project should narrow the wide range of solutions for Antarctic mass loss recovered
through various methods. These refinements will constrain Antarctica’s contribution to current
sea level rise. Improved spatial resolution of Antarctic mass loss may also inform projections of
future contributions to sea level change as new data are collected. Apparent contradictions between
measurements may uncover interesting scientific problems, such as basal melting or post-seismic
effects.

The investigation explores a number of semi-independent approaches to the problem of com-
bining Antarctic geodetic data for better mass change estimates. First, errors introduced by uncor-
rected atmospheric signals to satellite gravimetry are characterized and corrected using a combina-
tion of in situ pressure measurements and robust atmospheric reanalyses. Techniques to retrieve
atmospheric errors from quiescent parts of the Antarctic Ice Sheet are demonstrated, paving the way
for satellite gravimetry to become a tool of meteorology. Next, techniques to separate GIA and ice
sheet mass variation signals in GRACE, GNSS, and ICESat are explored independently. Monthly
and cycle-by-cycle solutions for elevation change in Antarctica are generated and compared with
GRACE via linear regression to estimate the distribution of effective surface snow density. Spatial
statistics of ice dynamics and surface mass balance (SMB) are used to disaggregate these processes

in GRACE data.



High-resolution monthly solutions for Antarctic mass variation are pursued by feeding GRACE
data to Kalman filters informed by priors and spatial statistics obtained from ICESat elevation rate
fields and surface mass balance models. Basin-level ice mass discharge measurements are also used
to constrain these measurements. These filters effectively enhance GRACE solutions. The filter
outputs are validated by predicting their elastic loading signals in three-dimensional GNSS time
series and verifying that these results either improve or do not unacceptably degrade the residuals
of these time series.

History of data combination in Antarctica

Farrell| (1972)) first examined the relationship between elastic loading and mass change on
Earth’s surface, formulating Green’s functions for elastic effects on Earth’s crustal deformation and
geopotential, which may be measured through various geodetic methods. These relationships were
essential for relating elastic loading detected by altimetry and GNSS time series to local changes
in mass. The Green’s functions of Farrell (1972) were further essential for relating geopotential
changes measured by GRACE to mass changes near Earth’s surface. [Wahr et al.|(1998) ultimately
compiled the essential method for relating spherical-harmonic Stokes coefficients to spatial and
temporal in Earth’s surface mass. [Swenson and Wahr{(2002), in turn, codified the kernel-averaging
techniques necessary for estimating total mass change within a region using GRACE.

Wahr et al.| (1995) examined the relationship between vertical motion from GIA and the
corresponding change in local gravity. They found an approximate linear relationship between
vertical motion and gravity change that enabled solution for GIA through simultaneous linear
combination. This linear relationship was refined by Purcell et al.| (2011)).

Wahr et al.| (2000) used simulated data to demonstrate the plausibility of combining of data
from the then soon-to-be-launched ICESat and GRACE missions. They concluded that five years
of coincident ICESat and GRACE data were sufficient for slight improvement in solutions for AIS
mass loss and refinement of GIA. They found that extending the period of data collection between
both missions should continue to reduce these uncertainties.

After five years of data had been collected from both the GRACE and ICESat missions, [Riva
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(2009) attempted to separate GIA and surface processes in the ice sheet through direct linear
combination of the trends of total equivalent water height from GRACE and elevation change from

ICESat. The combination resulted in an empirical GIA model. This technique was refined by

\Gunter et al.| (2014), who used more robust surface densities. A number of empirical GIA models

have followed these approaches, many of which are shown in Martin-Espanol et al. (2016a), who

find that empirical and semi-empirical models tend to find more conservative estimates for GIA
corrections than forward models.

Serious efforts at solving the problem of source separation of the constituent processes of

measurable geodetic change in Antarctica continued with Zammit-Mangion et al.| (2013). They

devised a hierarchical Bayesian framework for examining altimetry and gravimetry simultaneously,
while leveraging geostatistical information from GIA, firn-compaction, and surface mass balance
models to find solutions for total mass balance in West Antarctica. They characterize the spatial

and temporal folding scales of the input models and associated variances. A similar approach was

taken by [Schoen et al.| (2015]), who also included GNSS vertical motion data. |Zammit-Mangion et al.|

(2015) later continued this hierarchical approach, but expanded the scope of their combinations

to cover the entire continent. Martin-Espanol et al.| (2016b)) continue this thread, and obtain an

empirical GIA solution. [Sasgen et al. (2017), as part of the REGINA project, perform a similar

disaggregation of GIA and ice sheet mass processes using GRACE, ICESat, Envisat, and GNSS
data, but use a GIA modeling approach that allows for lateral mantle structure variation. These

papers represent the state of the art in combination of Antarctic geodetic data.



Chapter 2

Background

2.1 Sources of Mass Change in Antarctica

Mass and elevation change in Antarctica may be modeled as a linear combination of four
fundamental processes: glacial isostatic adjustment, ice dynamics, surface mass balance, and firn
compaction. Each process has characteristic temporal scale, spatial scale, and effective density
relating local elevation change to local mass change. Atmospheric effects, such as pressure loading
and gravity signals, must also be considered when trying to identify these processes in geodetic
data. These processes are summarized in Figure [2.1

Glacial isostatic adjustment (GIA) is the viscoelastically moderated return of mantle mass
displaced by loading from ice sheets present during the last glacial maximum. GIA is detectable
as a gravity signal in GRACE and as an elevation change signal in GPS and satellite altimetry.
GIA is a long-period signal, which may be treated as a constant trend over decadal timescales.
Its geodetic signatures are traditionally forward-modeled using an ice load history and a model of
Farth’s viscosity profile.

The relationship between elevation change and geopotential change due to GIA is not straight-
forward, but approximations exist in the vertical direction. Multiple authors, including [Wahr et al.
(1995) and Purcell et al. (2011) have derived asymptotic linear relationships between gravity change
and elevation change, which allow conversion between these quantities independent of load history
and solid-Earth structure. This normally results in modeling GIA as a Bouguer plate with % the

overall density of Earth, or 3700 kg m™3. Other authors, such as (Riva et al. [2009), have refined



Figure 2.1: Classficiation of Antarctic mass variation processes and error sources

Typical length

Source Process Description Example Model scale* Temporal behavior
. Sub-monthly to annual
Atmosphere Atmosphere Surfac.e pressure AOD1 BZ ERA 2000 kmft timescales; long-period
variations Interim e
drifts in model errors
Firn Surface snow Ligtenberg et al.
compaction | densifying into ice (2011)
80 km coastal Interannual
Net precipitation, 200 km interior
| heet Surface mass evaporation, and RACMO 2.3
ce shee , -
balance (SMB) runoff
) INSAR horizontal
. Horizontal transport " .
Ice dynamics of ice velocities 50 km Varying trend
(Rignot et al, 2011)
Glacial Viscoelastic rebound
Solid Earth =~ _'sostatic ofsolid Barth 5 ot 5 (2013); 1J05 3000 km Constant trend
adjustment | following last glacial
(GlA) maximum *Schon et al. (2015)

1 This work



10

this approximation to include self-attraction and loading effects.

Horizontal motion does not follow these asymptotic relationships and requires full modeling
of the load history and viscoelastic response of Earth. While it is possible to use a full model
to predict the GIA signal in GNSS observations, these signals are difficult to disentangle from
additional horizontal motion signals from plate tectonics.

Ice sheet surface processes may be divided into three components: surface mass balance, firn
compaction, and ice dynamics. The relationship between the three components may be illustrated

in the differential continuity equation for an ice sheet.

ap
ot

+pV-u=o (2.1)

The first term, describing rate of change in local density p, captures firn compaction. The
divergence term pV -u, where u is the ice stream velocity vector, describes ice dynamics. When the
continuity equation is integrated vertically, it implies that gradients in horizontal ice velocities must
be balanced by thickening or thinning of the ice sheet in the vertical direction. Ice dynamics may
therefore be measured with elevation rates or with horizontal ice velocities. From the divergence
theorem, the total contribution of ice dynamics to the ice sheet mass balance may be obtained by
integrating the ice velocity divergence over the volume of the ice sheet, or integrating ice velocities
through flux gates at the ice sheet boundaries (the grounding line). Finally, the external inputs from
precipitation, runoff, and evaporation above the ice sheet are included in the differential volumetric
mass generation term o, the surface mass balance (SMB).

Surface mass balance generates a net ~2,500 Gt per year of total accumulation on the conti-
nent, an amount approximately balanced by ice dynamics. The state of the art in Antarctic surface
mass balance modeling is represented by the Regional Antarctic Climate Model (RACMO) 2.3
(Wessem et al., 2014; |Lenaerts et al., 2013). The accumulated mass loading of SMB signature may

be detected by GRACE directly, through changes in geopotential; GNSS, through changes in elastic

loading of bedrock; and satellite altimetry via the combined effects of elastic loading and volume
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change in the ice sheet. The effective density of surface snow is time-dependent, but its steady
state may be empirically modeled as a function of annually-averaged temperature, precipitation,
and wind speeds (Kaspers et al., 2004]).

Firn densification, or firn compaction, is the slow consolidation of accumulated surface snow
under its own weight and the weight of additional accumulation. Firn compaction is directly observ-
able with altimetry. According to the model produced by [Ligtenberg et al.| (2011)), firn densification
has deflated the volume of the ice sheet by ~90 km? yr~! between 2003 and 2016, causing altimetry
to systematically overestimate the mass loss of the continent if uncorrected. Fortunately, because
it has no associated loading or mass change signal, it is not detectable in geopotential or bedrock
motion, raising the possibility that it is separable from other ice sheet processes if other measure-
ments are involved. In some approaches to the problem of data combination over Antarctica, firn
compaction is treated as a background signal that must be subtracted from altimetry before com-
bination with other data. In others, firn compaction is treated as a separate process that may be
disaggregated through the combination of GRACE and altimetry data. Both approaches depend
on information from available models. Additionally, some authors have proposed using differences
between radar and laser altimetry penetration depths to reveal changes in firn density.

Ice dynamics, the gravity-driven, viscoelastically moderated flow of ice sheet material into
the ocean, is another long-period process. Temporally, this flow is modulated by changes in air
and ocean temperature, surface mass balance, and bedrock topography. These processes may drive
a physical model of ice dynamics. However, the use of numerical models is explicitly beyond the
defined scope of this work, which is limited to combining geodetic data to map mass change directly.
Instead, ice dynamics may be regarded as a relatively constant trend in mass and elevation change
with allowance for variation according to observational constraints. Constraints on surface elevation
change due to ice dynamics may be drawn from horizontal ice surface velocity measurements derived
from INSAR (Rignot et al., 2011), following Zammit-Mangion et al.|(2013]). Ice dynamics is directly
observable in the same manner as surface mass balance, as it directly affects geopotential, elastic

crustal deformation, and ice sheet surface elevation.
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Atmospheric signals also contribute to geodetic measurements in Antarctica. Atmospheric
pressure loading causes elastic crustal deformations on the order of several millimeters over most
of Earth’s surface (Petrov, [2004). Pressure loading deformations affect GNSS and altimetry mea-
surements and must be corrected if sub-centimeter elevation accuracy is required.

Gravity from atmospheric mass variations in space and time can be detected by GRACE.
The sub-monthly component of these variations can introduce temporal aliasing errors to GRACE
estimates of mass change within a region, while lower-frequency atmospheric signals can introduce
considerable bias to these estimates. These atmospheric signals are subtracted during processing
of GRACE data using a dealiasing model known as AOD1B (Flechtner, [2007). The atmospheric
component of this model currently uses the ECMWF operational analysis model. The operational
nature of this model introduces drifts, discontinuities and other biases to GRACE solutions, which
may be quantified by comparing the dealiasing model with alternative atmospheric models, such as
reanalyses, or in situ surface pressure data. Over Antarctica and Greenland, Hardy et al.[(2017) use
alternative models to find that long-term drifts in the dealiasing model can introduce substantial
errors in mass loss acceleration estimates on the order of 4 Gt yr=2. Hardy et al|(2017) further
demonstrated that these errors are large enough to be detectable over quiet, high-elevation parts
of the continent.

Atmospheric signals are treated as a background process that must be removed to accurately
recover ice-sheet and solid-Earth mass variations. It is not presently practical to recover these
processes separately, though the unique sensitivity of Antarctic GRACE results to atmospheric

models may one day make Antarctica a testbed for gravity as a meteorological observable.

2.2 Geodetic Methods for Observing Antarctic Mass Change

This work considers three primary data sources: GRACE geopotential fields, GNSS position
data, and satellite altimetry. GRACE senses the sum of geopotential contributions of GIA and
surface mass change, including ice dynamics and surface mass balance. GPS receivers that are

mounted in bedrock can measure elevation changes due to GIA and elastic loading from surface
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mass change. Finally, satellite altimetry can sense the sum of elevation changes due to all four
processes. The spatial and temporal distribution of data used for this project is summarized in
Figure
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Figure 2.2: Spatial (left) and temporal (right) distribution of ICESat, GRACE, and bedrock-
mounted GNSS data.

2.2.1 Gravity

The GRACE mission, launched in March 2002 and terminated in October 2017, consisted
of twin satellites orbiting approximately 400 km above Earth’s surface separated along track by
approximately 200 km. The satellites were linked by a K-band microwave signal, variations in the
phase of which can be used to determine changes in intersatellite range on the order of 10 pm.
These variations reflect changes in Earth’s gravity field and may be inverted to produce monthly
global gravity solutions. These geopotential fields, in turn, may be inverted to reveal variations in
mass near Earth’s surface. GRACE was sensitive to variations in hydrology, land ice, displacements
of the solid Earth, ocean bottom pressure, tides, and atmospheric pressure. As these signals are all

linearly combined within a GRACE solution, isolating any single mass transport process requires
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models of the gravity signals of all other major processes. The uncertainty of these background
models can become a limiting factor in measuring any of these processes. Over Antarctica, the
primary source of uncertainty is GIA, which is about +70 Gt yr=! (Caron et al., 2018).

Multiple GRACE-based solutions for time variations in Earth’s gravity exist, using differing
filters and basis functions. In the initial exploration of this problem, both mascon and spherical-
harmonic solutions were used. The spherical-harmonic solutions used here are the RL0O5 Stokes
coefficients produced at maximum degree and order 60 by the University of Texas at Austin Center
for Space Research.

The JPL RLO05.1M mascon (mass concentration) solutions (Watkins et al., 2015; Wiese,
2015|) were also used. These use a more natural set of basis functions, representing Earth’s gravity
field as a set of 4,551 spherical caps. The mass distribution within these caps is processed using
a priori constraints and spread over the bounding quadrilateral of each cap. The mascons are
further partitioned to disaggregate land and ocean signals by their distinct geostatistical properties
through the coastline resolution improvement (CRI) filter.

A special subset of land-components of the 148 CRI-filtered mascons on the grounded portion
of the Antarctic ice sheet and surrounding islands was used for input data in Chapters 4, 5, and 6.
This mascon subset is illustrated in Figure 2.3

The GRACE Follow-On mission, launched in May 2018, will continue to provide Antarctic

gravity observations.

2.2.2 Laser Altimetry

Laser altimetry is the measurement of surface elevation by timing the emission of radiation
from a platform and the return of this radiation after it is reflected from this surface. Knowing the
round-trip transit time of this radiation, its speed of propagation, factors that change its velocity
along its path, and the precise position and orientation of the platform enables measurement of the
elevation of a point on Earth’s surface at a particular time. Laser altimetry directly measures the

elevation of the uppermost layer of the ice surface at a given elevation, enabling measurement of
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Figure 2.3: Quarter-degree Antarctic land mask for use with JPL RL05.1M mascon products.
Mascon bounds are overlaid to illustrate how the “land mascon” data subset used in this work is
developed.
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volume change of the ice sheet. Altimetry is also sensitive to bedrock elevation change due to GIA
and elastic loading. While many altimetry products exist for Antarctica, the focus of this project
has been limited to processing ICESat laser altimetry data. Other radar-based measurements exist,
but harbor their own set of challenges in processing and interpretation.

ICESat was launched in 2003 and ceased operation in 2009. In this time, it recovered over
1 billion laser shots, approximately 130 million of which fell over the Antarctic ice sheet. ICESat
was placed in a 91-day repeat orbit with an inclination of 94.0°, enabling observations as far south
as 86° S. ICESat’s groundtrack permitted observation of 95% of the grounded portion of the AIS.
Its primary science instrument was the Geoscience Laser Altimeter System (GLAS), which emitted
laser pulses at 1064 and 532 nm. The laser was normally operational for 25-45 days in ICESat’s
repeat cycle, and was typically used every other cycle, for an effective biannual temporal resolution.
At Earth’s surface, each GLAS beam footprint spanned approximately 70 meters and was separated
by 170 meters along track.

The altimetry data used here are GLAS/ICESat L1 and L2 Global Altimetry Data, Version
34 GLAHI12 (ice sheets) subset, which consist of geolocated altitude measurements. These data
are available at the National Snow and Ice Data Center (NSIDC) archiveﬂ . The millions of data
points available in this dataset require additional processing on the user end to establish temporal
variation, which is discussed later in this document.

ICESat was succeeded by ICESat-2, which launched in 2018. While ICESat-2 follows a 91-
day repeat ground track, like its predecessor, it uses six lasers instead of ICESat’s single beam
to locally increase spatial resolution and better establish topographic slopes. It also has a more
polar inclination than its predecessor, covering latitudes as far north and south as 88°. ICESat-2 is
expected to have highly accessible time-variable elevation products for the Antarctic ice sheet E| .The
ATLO6 product will consist of geolocated surface heights with along-track and cross-track slopes.

The ATL11 product will be a time series of heights at selected points on the ice sheets. The ATL14

! http://nsidc.org/data/docs/daac/glas_icesat_11_12_global_altimetry.gd.html
2 https://icesat-2.gsfc.nasa.gov/science/data-products


http://nsidc.org/data/docs/daac/glas_icesat_l1_l2_global_altimetry.gd.html
https://icesat-2.gsfc.nasa.gov/science/data-products
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product will provide monthly maps of land ice elevation for each year in the campaign. Monthly
sub-cycle products are also anticipated. The design of these products permits straightforward

temporal coregistration of altimetry products with GRACE-FO for future data combination.

2.2.3 GNSS-Measured Crustal Motion

GNSS refers to any set of satellites in high- or medium-Earth orbit used to produce geospa-
tial position solutions, including the US Global Positioning System (GPS), the European Union’s
Galileo, and Russia’s GLONASS. The term GPS is sometimes used interchangeably with GNSS
to metonymically to refer to all GNSS-based measurements. In all GNSS setups, satellites broad-
cast signals according to precise atomic clocks to passive receivers. These receivers compare the
timing of these messages with their own internal clocks, to obtain pseudorange measurements.
Four or more pseudorange measurements are necessary for establishing a receiver’s clock bias and
three-dimensional position.

Pseudorange measurements are limited by how well receiver electronics can align the digital
signals in GNSS satellite messages with internal reference messages; this translates to meter-to-
decimeter-level solution precision. However, more sophisticated GNSS users are able to enhance
the precision of their position solutions using carrier-phase tracking. As typical GPS signals have
a bit length of hundreds of meters, but carrier-signal wavelengths on the order of 20 cm, tracking
the phase of the carrier wave affords much more precision in range measurement. This increased
precision enables sensitivity to millimeter-level deformation induced by elastic loading and GIA.

The GNSS data used for this project come from the University of Nevada, Reno Plug and
Play daily position solutions (Blewitt et al., |2018). Position time series were downloaded from
over 150 stations installed in Antarctica between 2002 and 2017. Only stations determined to
be mounted in bedrock were eligible for inclusion in this work because of the need to accurately
measure bedrock deformation due to GIA and elastic loading. Most of the 150 stations are not
mounted in bedrock or have too short of a record to be useful for measuring bedrock velocities.

Whether stations were mounted in bedrock was determined by comparing their horizontal
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velocities with a plate motion model. Observation sites with records shorter than 36 months were
also removed from the analysis. There are 68 remaining bedrock-mounted stations in total. Of the
remaining stations, 10 stations in the Antarctic Peninsula (within 330 km of 66° S, 65 © W) were
excluded to GIA misfitting due to the unique structure of the mantle in that part of Antarctica.
The stations BERP and BACK were also excluded due to known problems with rime formation
and other major error sourcesﬁ . The daily position time series were then binned to the intervals
defining GRACE months, leaving a total of 56 stations used for verification.

Although the GNSS position solutions are available in three dimensions, this study is often
limited to using only the vertical component of these data. While horizontal motion induced by
elastic loading is easily predicted using techniques established by Farrell (1972), other effects that
induce horizontal motion in Antarctica are more difficult to model. This is due to high uncertainty
in the horizontal observation operators for GIA. In contrast with the simple analytic rules relating
GIA to both its geopotential and vertical motion effects are found by Wahr et al.| (1995), |Wahr
et al.| (2000)), and [Purcell et al. (2011)), GIA observation operators for horizontal motion are highly
model-dependent. Furthermore, plate tectonics can be difficult to separate from GIA-induced
motion. Horizontal motion does represent an additional source of elastic loading signals, however.

Where possible, detrended horizontal position time series are used for validation.

3 Erik Ivins, personal correspondence



Chapter 3

Investigation of Atmospheric Errors over Antarctica

The role of systematic atmospheric errors in GRACE estimates of mass variation over the
Antarctic ice sheet was examined exhaustively as part of this work. Methods for correcting these
errors in GRACE data were developed using reanalyses and alternative data. Monthly averages of
the atmospheric component of AOD1B RLO05, referred to as GAA, may be added back to GRACE
mass flux estimates to restore monthly averages of the total gravity field of Earth. Similar averages
of atmospheric surface pressure from alternative models may then be subtracted to correct these
atmospheric errors.

Investigating errors in AOD1B with alternative models and comparison with in-situ pressure
data reveals significant drifts in GAA on annual and interannual timescales. These errors hide
approximately 4 Gt yr—2 of additional acceleration in mass loss, roughly 40% of the 11 + 4 Gt yr—2
total acceleration found by [Velicogna et al.| (2014). These errors are large enough to recover from
quiet parts of Antarctica. Characterizing and these errors will be essential to accurate estimation
of mass variation in Antarctica.

Further details on this investigation are given by |[Hardy et al. (2017) and are reproduced in

abridged form in the following sections.

3.1 Data and Methods

In situ surface pressure measurements are the primary record of ground truth for Antarctic

surface pressure. They are used to assess the accuracy of AOD1B and all alternative models. Data
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Figure 3.1: Spatial (left) and temporal (right) distribution of available surface pressure observations
from AWS, READER, and Antarctic GPS networks available within GRACE months.

collected between 2002 and 2016 from 114 observation sites were obtained from three different
data archives were used for this comparison. US Antarctic Program automatic weather stations

(AWS) have their data archived at the University of Wisconsin Madison’s Antarctic Meteorological

Research Center (Lazzara et all 2012) and comprise over half the data used for this analysis.

Observations from 22 sites in READER (REference Antarctica Data for Environmental Research,

Turner et al.| (2004)), an archive of monthly averages from meteorological instruments maintained by

the British Antarctic Survey’s scientific committee on Antarctic Research were also used. Ancillary
pressure measurements from 31 GNSS sites were used in the comparison as well. These observations
were recorded to correct atmospheric propagation delays in GNSS processing, but are nonetheless
a valuable record of surface pressure over Antarctica. The value of the GNSS surface pressure data
is enhanced by the fact that they are not assimilated into reanalyses or forecast models considered
in this analysis. The locations of all stations used in the analysis and the numbers of stations used
for each GRACE month are shown in Figure

Relative to instrumental data, GAA has an RMS surface pressure error of 14.1 mm water

equivalent.
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GAA from AODI1B RLO05 is compared with five different reanalysis products: NCEP-DOE
(Kanamitsu et al., [2002), MERRA, MERRA-2 (Rienecker et al.l 2011, ERA-Interim (Dee et al.,
2011)), and JRA-55 (Kobayashi et al., 2015)). Of these models, only ERA-Interim, MERRA-2, and
JRA-55 are of the most recent generation of reanalysis models. MERRA has been deprecated as of
February 2016. MERRA and NCEP-DOE are only included for completeness as these reanalyses
have been commonly used for comparison in the past (e.g, Kim et al.| (2016)).

As a new version of AOD1B (AOD1B RLO06) is now available, it was also included in the
comparison. This new product will be used to dealias future GRACE and GRACE Follow-On
solutions (Dobslaw et al., [2017)). This new product differs from RLO5 in several ways. The atmo-
spheric component is a composite of the ERA-Interim reanalysis prior to 2007 and the ECMWF
Operational Analysis thereafter. It is provided at a higher spatial resolution (degree and order 180)
than RLO5 (degree and order 100). The atmospheric component also includes upper-atmospheric
density anomalies, although their effects are shown to only have an effect of a few mm EWH.

The definition of the atmospheric component of AOD1B RL06 has changed such that direct
comparison with RLO05 is not straightforward. To minimize correlation between the atmospheric
and oceanic component due to the inverse barometer effect, GFZ removed the atmospheric pressure
signals in RLO6 over the oceans almost entirely. Instead, the sum of local atmospheric and oceanic
contributions to ocean bottom pressure are included in the oceanic product (ocn/GAB), while the
atmospheric component replaces oceanic surface pressure signals with the average surface pressure
of the entire ocean. This makes direct comparison of the AOD1B RL06 atm/GAA products with
surface pressure observations and model outputs impossible over oceans, islands, ice shelves, and
inland locations within a wavelength (~220 km) of the coast.

Instead, the glo/GAC (atmosphere plus ocean) products of both AOD1B RL05 and RL06
products are compared. As these fields are the most direct reflection of the gravity signals sensed by
GRACE, comparing them directly provides a more accurate indication of the errors introduced by
the model changes. In situ validation of AOD1B RL06 was performed with comparisons with inland

observation sites more than 220 km from the grounding line of each ice sheet. These comparisons



22

are performed with the GAA product. Because AOD1B RL06 was not used in any official GRACE
products at the time this analysis was performed and subsequently published, no official GAA or
GAC product was available for AOD1B RL06. Custom versions of these products were created by
averaging 3-hour AOD1B RLO06 fields within the time periods used to define GRACE months for
the JPL RLO5 solution.

All weather models are resampled onto a common 200x200 stereographic grid centered on
the south pole. Model resolution differences are controlled by converting these models to spherical
harmonics and evaluating them at a maximum degree and order of 100. AOD1B RL06 was the
only exception to this, and was evaluated at degree and order 180. The grid is inscribed by the 60
°S parallel and has a maximum latitude of approximately 48.5 °S. The effective resolution of this
grid is 34 km.

Each of the reanalyses uses different physics, resolutions, data assimilation schemes, and
initial conditions to propagate their pressure fields over time. These differences between their
implementations separate the models from the ground truth in independent ways. It is, therefore,
reasonable to assume that a combination of models will better reflect the ground truth better
than any single model. The success of ensemble approaches has been demonstrated for decades
in meteorological literature (e.g., Weigel et al.| (2008])). Model combination driven by the modern
reanalyses, ERA-Interim, JRA-55, and MERRA-2 was implemented.

The most basic combination method was an unweighted average of all three models. However,
with 114 Antarctic observation locations available over the entire observation span, it is also pos-
sible to generate synthetic pressure fields that are semi-independent of the models. These surface
pressure fields are interpolated from instrumental surface pressure measurements or their residuals
relative to GAA. They have a distinct advantage over simple averaging of instrument data because
interpolation addresses the problems inherent in the spatial heterogeneity of the instruments.

These solutions take the form,

& =PHT(HPHT + R) 'y, (3.1)
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where P is the covariance of the model grid, H is a linear operator relating the model grid to
observations, R is the residual observation covariance (a diagonal matrix with elements estimated as
150 mm? from semivariogram), & is the estimated correction to the grid and y is a vector of pressure
observations relative to an a priori background model. We present two interpolation approaches,
optimal interpolation and the ensemble Kalman filter, which are distinguished by how we estimate
the model covariance P. Both formulations are similar to least-squares collocation (Moritz, [1978])
or the Kalman filter in the spatial domain.

With optimal interpolation, the covariance is estimated from the sample covariance of ERA-
Interim surface pressure evaluated over the entire grid and time span and the grid points cor-
responding to the instrument locations. This scheme better captures fine-scale variability than
kriging as the model dynamics are captured by its covariance.

The ensemble Kalman filter estimates the covariance term state at any given month using
the mutual sample covariance of selected reanalyses, with the a prior: state estimate generated
from the mean of these models. The ensemble members are ERA-Interim, JRA-55, and MERRA-
2. Unlike with the optimal method, the covariance is not stationary and changes from month to
month, meaning model dynamics can be better represented for each month. This method follows
the observation-matrix-free formulation of Mandel (2009). This implementation of the Kalman
filter has no memory of previous grid states and imposes no correlation of states across time. The
evolution of the a priori state deviation and covariance are implicitly contained in the ensemble
covariance and mean. Because the ensemble only contains three members, all resulting solutions

are constrained to two effective degrees of freedom per month.

3.2 Results

Over the entire continent, the RMS of the residuals of GAA against the instruments chosen
for this analysis is 14.1 mm water equivalent over the entire timeframe. GAA performs poorly
over topographically variable regions, like the Transantarctic Mountains near the coasts, where

fast-moving polar lows are difficult to model or occur at too fine a scale.
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Comparing instrument time series to GAA, clear, temporally correlated biases become ap-
parent. Most importantly, where instruments have been present before 2008, the bias time series
in Antarctica show a distinct U-shape across many instrument locations. This suggests that there
is a long-wavelength acceleration bias in GAA with respect to the instruments.

Taking an unweighted average of instrument anomalies over each month yields the time series
shown in Figure 3.2l Fitting an annual sinusoid, trend, and acceleration yields a high-signal-to-
noise acceleration of 0.39 4= 0.05 mm yr—2. This is somewhat smaller than the 0.58 4= 0.07 mm yr—2
found by Kim et al. (2016]), who restrict their data to inland stations over a shorter time period.
The acceleration is less prominent in coastal stations. READER stations, which are almost entirely
sited with a few hundred kilometers of the grounding line, do not see this acceleration in aggregate.
AWS and GPS observation sites, which are more likely to be inland show similar patterns in model
drift, however.

Simple scaling by the grounded area of Antarctica suggests this is consistent with an accel-
eration of 4.7 + 0.6 Gt yr—2, which may be subtracted to correct a GRACE mass loss time series.
This represents a statistically significant bias (~8¢) in previous acceleration estimates of Antarctic
mass loss.

This averaging approach is the simplest possible as it queries instruments directly with few
additional steps. However, as the differences between observation networks illustrate, the het-
erogeneous spatial distribution of instruments across Antarctica limits the utility of this simple
unweighted averaging. The density of observation sites in West Antarctica is far greater than
that of East Antarctica, for instance. GPS stations with colocated pressure sensors also tend to
be mounted in exposed bedrock, limiting coverage in East Antarctica. Comparison of GAA with
reanalyses and spatial interpolation of instrument data yield more realistic estimates of mass bias
due to atmospheric errors.

Comparison of the aforementioned models with GAA consistently shows significant spurious
accelerations in GAA. These accelerations, along with linear trend, annual sine and cosine, and

RMS difference are shown in Table [3.1] Maps of linear trend, annual sine and cosine, and RMS are
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given in Figure[3.3] The time series of total mass bias given for each model is shown in Figure
All models, except MERRA show improved RMS errors with respect to the instruments. Typical
RMS values are approximately 12 mm EWH. Unsurprisingly, combinations of reanalyses show
additional improvement with respect to surface observations, with typical RMS errors between
10 and 12 mm EWH. The ”Optimal” interpolation scheme returns the best performance with
respect to observations with an RMS of 10.8 mm EWH. With the exception of NCEP-DOE and
MERRA, these results all show a consistent acceleration bias of ~4 Gt yr—2. This acceleration bias
is uniformly distributed about the continent.

Comparison of GAA with the AOD1B RL06 version reveals marginal improvement in accu-
racy relative to instruments over Antarctica. Because of changes in the product definition, the RL06
version of GAA is not comparable with the RL05 GAA or other surface pressure data over oceans.
Furthermore, because of spectral leakage, the comparison of RL0O6 GAA with other pressure data
can only be made more than a full wavelength inland, or 220 km. Comparison with instruments is
therefore restricted to 35 inland stations, which the RL06 version of GAA matches within 9.0 mm
EWH RMS compared with RL05’s 9.5 mm EWH. The GAC products of each model are compared
to highlight the effects of model versions on total mass change in Antarctica. It is found that
RL06’s GAC captures the drift of RLO05 relative to ERA-Interim between 2002 and 2007. After
2007, the outputs are nearly identical across versions with small differences attributable to differ-
ences in resolution and discontinuities due to model-change corrections. The overall acceleration
error between 2002 and 2016 is diminished relative to other models, only 1.7 & 0.3 Gt yr—2. This
means that AOD1B RL06 may still introduce significant acceleration errors on the order of 1-3
Gt yr—2 relative to modern reanalyses, owing to the continued use of the ECMWF Operational

Analysis model.
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Figure 3.2: Time series of mean difference between instrumental surface pressure data and surface
pressure predictions from GAA. The solid black line represents the unweighted monthly mean of all
AWS, READER, and GPS instruments available at a particular time while the gray fill shows the
1o variability of instrument residuals about this mean. The time series of average pressure error of
GAA relative to each pressure network are shown alongside the average of all stations, highlighting
the importance of instrument spatial distribution in detecting this signal. The smooth black curve
is the polynomial component of a polynomial-plus-annual-sinusoid fit to these data.
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The presence of significant surface pressure errors in GRACE data highlights the possibility
of assimilating GRACE data into numerical weather models. This cannot be accomplished without
first demonstrating that known pressure errors are present in GRACE data over Antarctica.

The models and surface pressure field generation techniques explored in the last sections all
generate consistent monthly bias time series, any of which may be used as a “truth” dataset. This
motivates the search for the signatures of these models in the JPL RL05.1M mascon solution. Mas-
cons are preferred because their processing results in reduced noise relative to spherical-harmonic
solutions from the same data, which fall victim to striping and other noise sources.

The focus of this search is on part of the High Antarctic Plateau (HAP), which is defined
here as a contiguous region of FEast Antarctica with an elevation greater than 2500 m. Annual
surface mass balance accumulations are typically less than 50 mm per year above this elevation.
Additionally, surface pressure errors above this elevation exceed the variability of surface mass
balance by up to 2 orders of magnitude, meaning that non-trend signals in this region should be
attributable to surface pressure errors. Within this region, calibrated errors in equivalent water
height variation are 9-16 mm, comparable with the 14.1 mm EWH RMS difference between GAA
and instruments. This is partly because GRACE’s polar orbit crosses this region 15 times daily,
yielding a higher number of gravity observations within an observation span than can be gained at
lower latitudes.

The predicted integrated pressure error signal from optimal interpolation over the High
Antarctic Plateau is compared with the corresponding mascon time series in Figure [3.5] The
mascon time series, while considerably noisier than the predicted surface pressure error time series,
has very similar low-frequency characteristics as the pressure error time series. Most notably, a
best-fit quadratic function fit to the mascon time series (weighted by observational errors) shows
good agreement with the predicted errors; their computed accelerations agree within errors.

The presence of atmospheric mass error is verified by comparing the recovered HAP mass
time series with the optimal-interpolation surface pressure error model, which fits ground data

best. The goodness of fit of this model is measured relative to the GRACE data by computing 2,



30

defined by

2 _ n (6mHAP,if6mmodel,i)2
X© =ik

2 9
g
SMHPAP,i

where n is the number of GRACE months, dmpuap; is the total mass variation of the HAP
detected by GRACE for an individual month, O-(%mHAP,i is the error in total mass obtained from
the calibrated errors in the GRACE solutions, and dmmodeli is the predicted mass variation from
a candidate model.

The 2 value for a model of zero pressure error is 269.7. When the optimal interpolation
model is used as a candidate model to explain the observed pressure variations, x? is 216.7. Further-
more, an error-weighted fit of observed surface mass and predicted pressure error from the optimal
interpolation model reveals a regression coefficient of 0.95 + 0.17 and a correlation coefficient of
0.45, strongly hinting at the correspondence of these datasets. Similar results may be yielded with
comparison with the ensemble Kalman filter and the unweighted ensemble. It should be noted that
individual reanalyses do not improve the y? or show a regression coefficient statistically identical to
1. Nonetheless, the GRACE data agree with the more accurate instrument-driven pressure fields.

With a strong hint of the presence of recoverable pressure error signals in the data, attempts
to retrieve these signals are conducted more systematically. GRACE is sensitive to changes in total
mass. To simplify this process, the long-period influences of ice dynamics and GIA were removed
by detrending the mascon time series.

A Kalman filter was applied to the detrended GRACE data to simultaneously disaggregate
surface mass balance and surface pressure signals. The a priori covariance was estimated from the
month-to-month difference in surface pressure bias estimated from ERA-Interim and the monthly
average sum of precipitation and evaporative losses modeled by ERA-Interim. The filter estimates
the mascon-averaged values of surface mass balance xg)/p and surface pressure bias x5, simultane-
ously with the constraint that these vectors must sum to their corresponding mascon values within

a range defined by the diagonal mascon observation covariance R provided in the solution. This
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approach may be compared with that of |Seo et al.| (2015]), who use empirical orthogonal functions.
The following equations are solved, in which the observation operator H represents the point-
wise addition of surface pressure and surface mass balance mascons. The covariance estimate P for

zsup and x5, come from RACMO2.3 (Wessem et al., 2014) and ERA-Interim, respectively.

Yi = (XsmB + Xu5,)i
Yi = Hx;
LSMB,i
X =
Lép,i

o op

P Psyp,svB  Pspsun

PsyiB,sp Psy sp
K =PHY(HPHT +R)™!

~

T =%+ K (y; — Hxi—1)

For improved solution stability, only mascons on the High Antarctic Plateau, where pressure
error signals dominate, were assimilated. The broad-scale spatial correlations of these error signals
were exploited to impute pressure estimates outside of the HAP. As the signal-to-noise ratio of
SMB signals to pressure errors is low outside this region, this does not affect the overall solution.
Correlations across time were not exploited, except by using the solution from the previous month
as a prior.

The pressure retrieval over Antarctica is successful. The acceleration, trend, and annual
cycle are shown in Figure [3.3| alongside forward predictions. Over the entire ice sheet, this total
acceleration is 3.4 + 1.0 Gt yr~2, in line with the accelerations returned by other models (except
the older reanalyses, Figure . This result is based on a fit weighted according to the solution
uncertainties.

The RMS of pressure residuals relative to instruments is 14.4 mm, comparable to the 14.1
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mm RMSE of GAA. Because each mascon represents the integrated pressure over a 100,000 km?
quadrilateral, this RMS error includes the error of omission due to reduced spatial resolution.
While GRACE itself may not offer improvement over GAA on monthly timescales, it may prove
valuable in filling continent-scale gaps in pressure measurements over East Antarctica. Additionally,
GRACE can capture drifts and biases in numerical weather models on longer timescales, as was

demonstrated above.
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Figure 3.5: Ratio of Antarctic surface pressure error standard deviation to surface mass balance
standard deviation (upper left), which exceeds unity above elevations of 2500 meters; mascons
corresponding to the region above 2500 meters (lower left); and predicted pressure error signal
from optimal interpolation compared with time series of JPL mascons integrated over this region
(right). While the mascon time series is considerably noisier than the predicted surface pressure
errors, a quadratic fit to this time series agrees with the surface pressure error predictions, indicating
the presence of this signal in the time series.
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Chapter 4

Adjustment of Trends

This chapter focuses on separating signals from GIA and ice sheet processes in average trends
observed by GRACE, ICESat, and GNSS data. The primary goal is separation of GIA and ice

mass signals. GIA is the largest error source for the AIS.

4.1 Formulation of Data Combination over Antarctica

The basic estimation problem may be first stated as y = Hx, where y contains the observed
ICESat, GRACE, and GNSS data; x contains a parameterization of a GIA model over the entire
time period of interest and vectors of surface ice mass estimates for every time period in the
estimation (e.g., every month); and H is a matrix of observation operators reflecting the effects of
GIA, elastic loading, and total mass change at each of the observation locations. These functions
contain the Green’s functions of |[Farrell] (1972)) and are inherently linear.

In one formulation of this problem, the basic observation equation for observed GIA and
elastic loading effects at time ¢; with respect to reference time ¢y and ice mass state xicg is as

follows:

YGRACE,i — YGRACE,0 (ti—to)] I
GPS GPS xaia
YGPS,i — YGPS,0 =| Hgx Hiw ) (4.1)

ALT ALT XICE,i — XICE,0
Hepa Hieg

YALT, i — YALT,0
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This equation captures the entire problem of data combination on monthly timescales. It
assumes that the parameterization of GIA and surface mass share the same physical dimensions
(e.g., mm equivalent water height and mm equivalent water height per year) as the GRACE data to
which they are compared. Note that the equation requires subtraction of data from an epoch com-
mon to all datasets. This registration against a common epoch bypasses the problem of estimating
constant biases between datasets, but is difficult to implement when there is poor overlap between
datasets. It also renders the data vulnerable to outliers present in the data at the reference epoch.

This observation equation may also be differentiated with respect to time to examine the
entire problem in terms of linear rates of variation. This is an intuitive point of departure for

exploring corrections to GIA models.

YGRACE I I
XGIA

yeps | = |HSES HEES 7 (4.2)
XICE

YALT Sia Hidd

Differentiation also eliminates the need for a common epoch against which to reference the
data, further simplifying the problem and maximizing the total amount of information included in
the inversion. For this reason, two of the following sections in this chapter explore the data purely
in terms of estimated rates.

There is wide flexibility for the choice of basis functions for the xgra and xycg, format of the
observation data, and the formulation of the observation functions. The models may be represented
as radial basis function, spherical harmonics, or mascons. GRACE data may be represented in a
similar basis. Altimetry data generally come in high volume and require a number of reduction steps
to be computationally tractable. Multiple approaches exist for reducing altimetry data. The choice
of basis functions, data formats, and observation functions carry distinct tradeoffs in computational
efficiency, accuracy, and feasibility, which are explored in this chapter.

It is important to consider that this formulation treats firn compaction as a background

process and assumes that its elevation change effects have been subtracted from yar . Future work
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on this problem will necessarily involve treating firn compaction as an unknown process to be solved

for.

4.2 Modeling Considerations

There are a number of options for how the observation and mass state vectors are represented.

Spherical harmonics are orthogonal special functions defined over the entire surface of a
sphere. As spherical harmonics are valid solutions of Laplace’s equation in spherical coordinates,
they are a natural basis for representing various aspects of geopotential fields. As such, they are the
default representation scheme for GRACE gravity solutions and AOD1B geophysical fluid gravity
models. As a spectral representation of the gravity field, spherical harmonics are easily convolved
with Green’s functions to examine other geodetic effects.

However, spherical harmonics are cumbersome if used within a limited spatial domain. Mod-
eling Earth’s full gravity field at maximum degree and order 60, for example, requires 3,721 indepen-
dent coefficients, including degree 0. While these functions are necessarily orthogonal over a sphere,
evaluating these functions over a limited spatial domain to generate a local solution imposes linear
dependence between coeflicients in the solution, introducing a computational inefficiency and an
obstacle to direct interpretation. Antarctica accounts for less than 3% of Earth’s surface, meaning
that these 3,721 coefficients have only 100 or so degrees of freedom within its coastline.

The problem of linear dependence between spherical-harmonic coefficients is solved through
the generation of Slepian functions within a domain. Slepian functions may be obtained through
eigenvalue decomposition of a matrix of spherical-harmonic functions evaluated within a confined
domain. Slepian decomposition of the gravity field within a limited domain can be useful for
filtering noise sources, as has been demonstrated by Harig and Simons| (2012). As Slepian functions
may be represented both spatially and as spherical harmonics, it is straightforward to convolve
these with Green’s functions or perform spectral filtering operations.

Spherical-cap mascons are radially-symmetric representations of mass and surface elevation

change. Their effects on geopoential and vertical crustal deformation are paraxial and vary only as
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a function of distance from the cap. Mascons may be arbitrarily sized and distributed according
to the availability of data or the spatial characteristics of the model.

Grids and other mesh configurations are also a viable way to represent mass variation, es-
pecially at high-resolution spatial scales of 20 km. Zammit-Mangion et al. (2013 |2015); Martin-
Espanol et al.| (2016b)) explore different optimized mesh spacings for best capturing mass variation
in Antarctica. One avenue for optimizing the distribution of solutions points involves taking advan-
tage of lower characteristic length scales near the coasts of Antarctica for surface mass balance and
firn compaction. These grids may also be parameterized by empirical orthogonal functions, which
exploit linear dependence across space and time within a model to reduce its complex dynamics of

to linear combinations of static spatial patterns.

4.3 Adjustment of GIA models with GNSS vertical motion rates

The first successful approach to this problem involved combining GNSS vertical motion with
GRACE data to generate corrections to the IJ05 GIA model (Lvins et al., 2013)). This was accom-
plished with a simplification of Equation [4.2] for observations y given model parameters XgGracE

(total estimated mass) and xgra (GIA correction) is

y = Hciaxgia + Hewn(XGRACE — XGIA) (4.3)

The operators Haia and Hrw give the respective partial derivatives of elastic loading and
GIA uplift at each observation site with respect to the parameters of each model. The individual
parameter vectors may be isolated by rearrangement of the equations. This effectively combines

the elastic loading and GIA observation operators into a single operator with respect to GIA.

y = (Hgia — Hewn)xcia + HEWHXGRACE (4.4)

For our purposes, the term xgracg may be removed from the estimation and constrained to

the GRACE covariance. This is the equivalent of adding the uncertainty of the potential to the
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GIA covariance. This reduces the problem to estimation of corrections to the GIA model instead
of both the GIA model and GRACE data. The observation equations may therefore be simplified

and a priori estimates may be removed.

H = Hgia — Hewn (4.5)
0y = HéXqia (4.6)
dy =y — (Hgia — Hewn)Xcia — HEwWHXGRACE (4.7)

The corrections are then obtained using least-squares adjustment.

o%aqia = PHY(HPHT + R) 1oy (4.8)

This technique requires an estimate of the spatial statistics of both GIA models and total
geopotential, represented by the covariance P = Pgracg+ Paia. The covariance of the geopotential
Parack comes from an estimate of the trend term in a simultaneous fit of a trend and annual signal
to the original GRACE Stokes coefficients. These uncertainties may then be projected onto the
basis functions used to represent mass variations.

The covariance of GIA, Pgia, is more difficult to estimate, but is critical to generating
corrections to GIA models statistically consistent with commonly-used forward models. To this
end, a small ensemble of six publicly available forward GIA models was used, including the W12a
L/B/U models (Whitehouse et al.| 2012), 1J05.R2 (Ivins et al., 2013)), and two versions of the
ICE-6G model by (Peltier et al., [2015) and [Purcell et al.| (2016) as shown in Figure The mean
and standard deviation of this ensemble are shown in Figure [4.2

For the purpose of this inversion, GNSS sites on the Antarctic Peninsula were excluded from
the analysis. The Antarctic Peninsula is known to have a distinct mantle viscosity profile not

captured by any of the ensemble members (Barletta et al., 2018).
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4.3.1 Parameterization

While GRACE geopotential models are distributed in terms of spherical harmonics, it is
preferable to work in the spatial domain. In this analysis, GIA and mass loss are therefore parame-
terized in terms of mass concentrations (mascons), similar to the approach of JPL (Watkins et al.,
2015)). Each mascon is a spherical cap of uniform mass loading with a diameter of 3 degrees. The
mascons are confined to land and the area under ice shelves to capture GIA. GIA and ice mass
change are modeled as separate layers of spherical caps. The sum of each set of caps is equal to total
surface mass as yielded by retrieval from GRACE geopotential fields with the methods of [Wahr
et al.| (1998). The spatial configuration of these caps is given in Figure The variable captured
by each mascon is the rate of equivalent water height change within its boundaries. The uplift
due to this mass change is computed from the spherical-harmonic decomposition of each mascon,
using functions and coefficients given by Purcell et al. (2011)) for GIA and [Farrell| (1972)) for elastic
loading.

Each spherical cap may be decomposed into a set of dimensionless spherical-harmonic co-
efficients fum, where ¢ is the index of the cap, [ is the spherical-harmonic degree and m is the
spherical-harmonic order. In this implementation, the spherical caps are decomposed to degree
and order 60. While higher-degree implementation using radial Legendre polynomials is possible,
spherical harmonics are more straightforward to work with in this setup. The surface density o; of

each cap may be computed from GRACE spherical harmonics Cj,, and Sj,, as,

00 l Clm

g; = i Z I‘i,lm (49)
3 =1t ki m=0 Sim

Here, klE is a set of elastic loading Love numbers describing the deformation of the crust in
response to surface loads, R is the equatorial radius of Earth, and pg is the average density of

Earth.

The effect of GIA from one spherical cap measured at an angular distance « from its center
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3 =W E1+EE

or(a, do;)aia ~ — S
(@ Sor)ar pp = KE 2+ 1

'y Py(cos a)do; (4.10)

In the above equation, the fictitious elastic loading term contained in the GIA mass estimate
(for dimensional compatibility with land ice mass) is removed and replaced with more appropri-

%il over sufficiently long

ate viscoelastic Love numbers hlVE , leE , the ratio of which approaches
timescales. Because of this approximation, the effect of 1 mm EWH of GIA detected by GRACE
results in approximately 0.3 mm of vertical uplift. However, truncation errors reduce the actual

scale of this effect and introduce substantial Gibbs phenomena.

The effect of ice mass change of a single spherical cap on elastic loading is given by

3 «— hF
Or(a, 00;)elastic = — L_T,P(cos a)do;. 4.11
(v, 00%)elast pE§2l+1zz( ) (4.11)

From this parameterization, it is straightforward to compute the observation operators Hgra
and Hgwpy as matrices of the partial derivatives of these expressions with respect to the surface
densities of each spherical cap.

The Green’s functions for elastic loading converge quickly at when truncated at degree 60,
but do not converge as quickly for GIA. This is illustrated in Figure Consequently, the uplift
pattern from a uniform disk of GIA loading is subject to ringing artifacts. In terms of magnitude,
a unit variation in mass observed by GRACE has a much larger effect in terms of uplift when
interpreted as GIA than when interpreted as elastic loading. GNSS position measurements are
therefore much more sensitive to GIA than changes in ice mass.

Because the vertical motion load Love number h{; converges quickly to a finite value of -5.2
as [ approaches oo, this function converges much more quickly than the expression for GIA effects.
From the sign of this value, it is readily apparent that a unit change in GIA as measured by GRACE

has the opposite effect on vertical bedrock motion as an equivalent change in ice mass.
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The above parameterization is set up for use with the CSR RLO05 spherical-harmonic GRACE
products. The rest of this work uses JPL RL05.1M mascon solution, requiring an alternative basis
to be set up for this data. For the same reasons the full set of spherical harmonics are eschewed, us-
ing the full mascon dataset would be too cumbersome. Instead, only the 148 mascons covering the
grounded portion of the Antarctic ice sheet are sampled. The mascons may be further subdivided
into land and ocean components according to the quarter-degree cylindrical land mask accompa-
nying the solution. The mascon solutions are processed so mascons straddling both ocean and
land may disaggregated into land and ocean components, leveraging constraints from surrounding
mascons of each category. The algorithm for this, the “coastline resolution improvement” (CRI)
filter is detailed in [Wiese et al. (2016). The locations and spans of these subsampled mascons over
Antarctica are detailed in Figure [2.3]

For each of the 156 GRACE months contributing to the solution, the value of land com-
ponents of the 148 AIS mascons are assigned to a vector representing the available data for that
month. Uplift Green’s functions for these mascons are available and computed to degree and order
100. The boundaries of these mascons are retained for “mascon averaging” operations to con-
struct observation operators relating solution mass distributions to observed GRACE data. These
land mascons provide both convenient basis functions for GRACE data and low-resolution mass

solutions.

4.3.2 Results
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Figure 4.3: Partial derivatives of vertical motion (attributed to either GIA or elastic loading) with
respect to a change in equivalent water thickness of a spherical cap with a 300 km diameter as a
function of great-circle distance from the center of the cap. This illustrates the high sensitivity of
GPS to GIA signals.
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Figure 4.4: Locations and spatial extents of spherical caps used for the initial analysis of GNSS
and GRACE data
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Model GIA  Ice (2002-2017)
Gt yr~! Gt yr~!

A et al. (2013) + JPL RL05.1M 112 -201
GRACE + GNSS 85 -173

Table 4.1: GIA and ice sheet mass trends for 20022017 obtained using a combination of GNSS
and GRACE data

Pre-fit models and data for the spherical-cap solution are shown in Figure Corrections
to the reference GIA model and postfit residuals are given in Figure [4.6] and the total corrected
GIA model is shown in Figure [1.7]

The spherical-cap method yields a correction of the GIA model of -8.5 + 3.6 Gt yr—!, taking
the current estimate of Antarctic mass change using CSR RL05 and 1J05 from -100 Gt yr—! to -91
Gt yr~! between 2002 and 2016. The corrections to the model explain 47% of the variance in the
prefit residuals and leave postfit residuals with a weighted RMS scatter of 1.0 mm yr—!. While the
total change in mass loss rate is not significant, the new spatial patterns introduced by the new
data are noteworthy and do not contradict expectations.

One of the key limitations of this method is the manner in which the covariance of GIA
was estimated. Using only six GIA models from four authors affords only five effective degrees of
freedom in the covariance matrix. Given the high number of GNSS stations used in the solution,
this leaves the solution spatially overconstrained.

The (Caron et al.| (2018) GIA covariance estimate provides an alternative to the ensemble-
based approach to estimate the GIA covariance used in this modeling procedure. The covariance
matrix of the |Caron et al| (2018) solution is dominated by a single spatial pattern. The first
eigenvalue of its Antarctic components accounts for more than 90% of the overall variance. This
product is available, but not used in this analysis for now.

This method was repeated with a land-mascon basis functions with JPL RL05.1M mascons
as inputs. Aside from the input data and choice of basis functions, this solution differs from the
previous solution in the way that GIA uplift is handled. Results are shown in Figure [4.8] and

tabulated in Table
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Figure 4.6: Postfit corrections to the 1J05.R2 GIA model parameters (left, units: mm EWH) and
predicted uplift deviations plotted alongside GPS vertical velocity prefit residuals.

Model (Water height equivalent)

-

36

30

24

-18

-12

Predicted Vertical Motion

mmyr!

Figure 4.7: Postfit corrections to the 1J05.R2 GIA model parameters with 1J05.R2 added back (left,
units: mm EWH) and predicted uplift rates plotted alongside GPS vertical velocities.
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Figure 4.8: Left: Mascon-averaged GIA solutions obtained from combination of GRACE, GIA, and
GPS ensembles and predicted uplift rates plotted alongside GPS vertical velocities. Right: Land

surface ice mass balance for solution.
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Instead of using asymptotic approximations for GIA uplift Green’s functions, this solution
method attempts to account for lateral variation in mantle properties with spatially-dependent
estimates for effective bedrock density. For each mascon, the uplift and equivalent-water-height
components of the A et al.| (2013) GIA model (so chosen for its 3D Earth structure) are isolated
and linearly regressed against each other to obtain an effective density for each mascon. The
densities span 3000-4000 kg m~3, consistent with the range of densities imposed by [Riva et al.
(2009). The densities are presented in Figure . The GIA component of uplift for a GPS
site on each mascon may be computed by dividing the equivalent water height rate for the GIA
signal predicted for the geographically closest mascon by that effective density. The problem setup
remains identical to the previous method, except for the aforementioned change in basis functions
and GIA Green’s functions.

This solution method outperforms the other method and the solution fields explain 73% of
the variance in the GNSS trends, reducing the standard deviation from 2.7 mm yr~! to 1.4 mm
yr~!. Formal uncertainty estimates for total mass loss from both methods are unexpectedly small
and are roughly £2 Gt yr ~!. The solution estimates are presented without uncertainties to avoid
a false impression of precision.

The methods presented in this section demonstrate the feasibility of adjusting GIA models

with bedrock-mounted GPS position time series and constraints on GIA models.

4.4 Combination of ICESat surface elevation rates with GRACE mass change

rates

This section describes attempts to duplicate combination of GRACE and ICESat by [Riva
et al. (2009) and |Gunter et al. (2014) to generate an empirical GIA model and a corresponding
estimate of ice sheet mass loss. This combination uses gridded ICESat elevation rate data between
2003 and 2009 and equivalent water height change rates estimates from GRACE data available in
the same time period.

GRACE and ICESat sense combined effects of changes in local surface density with differing
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spatial resolutions and sensitivities. For any given point in Antarctica, the observation equation

for rate of surface density change detected by GRACE is

0 = 0GIA T Olce (412)

If & is the product of an elevation change rate and an effective density of a medium, then

this equation may be rephrased as

o= pGIAhGIA + PSurfacehIce (4.13)

and the observation equation for observed altimetry elevation rates is,

h = haia + hice (4.14)

The effective densities pgra and psurtace differ by nearly an order of magnitude. pgia is
approximately % the average density of Earth (Wahr et al.,|{1995)), or 3700 kg m—3, while the effective
density of snow or ice at the ice sheet surface ranges between 300 and 917 kg m~3, depending on
the state of firn compaction at the ice surface. This density contrast renders ICESat much more
sensitive to changes in ice sheet elevation than GRACE for an equivalent change in mass. More
importantly, the density contrast makes the above set of equations invertible everywhere over the

Antarctic ice sheet. The rate of GIA elevation change may be solved at any location as,

o — hpSurface
PGIA — PSurface

hagra = (4.15)

and the rate of ice sheet mass loss may be rendered as,

lce = 0 — hGIAPGIA (4.16)
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Given a measurement of surface elevation rate and a corresponding equivalent water height
change rate, it is possible to separate GIA and ice sheet processes in both signals. The primary
difficulty in this approach lies in the estimation of the effective densities associated with both GIA
and ice sheet processes. Due to firn compaction, the effective ice surface density varies in both
space and time.

Effective solid-Earth density is also uncertain. While the partial derivative relating GIA-
induced bedrock elevation change is unique to all GIA models, an acceptable rule of thumb is that
this value asymptotically converges to % the average density of Earth as the GIA model run time
approaches infinity. [Riva et al.| (2009) find that this effective density varies between 3400 kg m—3
over oceans and 4000 kg m 3 over land due to self-attraction and loading effects. They approximate
the transition between land and ocean density using Gaussian smoothing.

The time-dependence of surface density due to firn compaction can be mitigated using a
firn-compaction model and a corresponding model of surface mass balance (SMB). |Gunter et al.

(2014) modify the formulation of an empirical GIA solution to include these models:

0 — OSMB — (h - hFirn)pSurface
PGIA — PSurface

haia = (4.17)

In this formulation, ogyvp is the average anomaly of surface mass balance rate within the
20032009 time period of interest relative to the average rate of surface mass accumulation and
hpim is the average rate of firn elevation change within the corresponding period. The RACMO2.3
SMB outputs produced by |Lenaerts et al. (2013) and |Wessem et al.| (2014) were used, which include

outputs of a firn compaction model initially devised by Ligtenberg et al.| (2011).

4.4.1 Reduction of ICESat Data

In duplicating the Gunter/Riva method, it was necessary to reproduce their reduction and

gridding of ICESat data. Gridded ICESat data are necessary for direct comparison with GRACE
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data.

Three primary methods exist for reducing altimetry data: the crossover method, the repeat-
track method, and the overlapping-footprint method. |Felikson et al. (2017) give a substantial
overview of these methods applied to Greenland.

The crossover method involves identifying laser shots that fall within a defined radius of
a known point corresponding to the intersection of two reference ground tracks. A plane is fit
to the elevations of points identified within this distance to approximate the topographic slope
and the residuals to this spatial fit may be interpreted as variations in surface elevation across
time. The crossover method has the advantage of computational and conceptual simplicity. It is
straightforward to implement and may be computed with limited resources. However, the spacing
between crossovers increases at low latitudes, resulting in reduced spatial resolution near coastlines,
where ice mass loss is most likely to occur. The crossover method also discards laser shots far
from the crossover locations, potentially wasting useful data. Furthermore, any linear dependence
between the time variation of elevation and the locations of individual footprints about a crossover
point may confound the estimate of the topographic slope.

The repeat-track method locates laser shots within a specified cross-track distance of segments
of the reference ground track. The assembled points are partitioned into along-track bins and the
topographic slope within each bin is estimated such that the residuals may be interpreted as time
variations in surface elevation. This technique uses more data than the crossover method and
consequently has the advantage of higher resolution at low latitudes. It is therefore more capable
of detecting coastal surface elevation change than the crossover method.

The overlapping-footprint (OFP) method searches the entire elevation measurement dataset
for laser shot footprints that are co-located such that the sum of their campaign footprint radii
(5070 meters) is less than the distance between their centroids. If this condition is met, the shot
footprints are determined to be overlapping. Overlap between laser shots means that they are sens-
ing elevations from the same points in space and the difference between their respective elevation

measurements may be interpreted as direct elevation change. While topographic slope correction
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is possible, this method may be practically implemented without such corrections. This method
contains fewer assumptions about topography than the repeat-track and crossover methods. Fur-
thermore, it does not depend on prior knowledge of the groundtrack, enabling the use of data from
the Laser 1la/b campaign in which ICESat was in an 8-day repeat orbit. Its primary disadvantage
is the brute-force nature of the computation required to find all overlapping footprints.

Because of the higher resolution afforded by the OFP method, it was decided that this method
would be used to extract elevation change signals from the ICESat data, as was done by |[Riva et al.
(2009)) and |Gunter et al.| (2014).

The reduction process was initiated with the GLAH12 geolocated elevation dataset. Before
searching for overlapping footprints, several data editing tasks were performed, following |Gunter
et al. (2014). The saturation corrections present in the elevation datasets were subtracted from the
elevation data. Data with co-elevations of more than 0.45° and data points flagged for multiple
peaks were excluded.

The search for overlapping footprints was performed by comparing data from different days of
observations. Neighboring footprints within pairs of observation days were located using k-d trees.
To eliminate redundancy and save computing time, data from the same day were not compared.
For each shot pair, the search records the mean position of the footprint pair, the distance between
the footprints, the timestamp of each shot, and the difference in elevation between the shots.

The search found over 350 million valid OFP pairs. These OFP pairs contain redundant
spatial and temporal information and are best gridded for comparison with GRACE data. A pole-
centered stereographic grid with a spacing of 27 km, consistent with crossover spacing, was chosen
to bin the data. This grid was used through this work to be consistent with the input ICESat data.
After (Gunter et al. (2014), shot pairs with an apparent elevation rate of more than 12 meters per
year were excluded from the binning process, as this rate exceeds any known ice sheet process. The
degree of overlap between neighboring ICESat footprints, a function of their radii and the distance
between them, was computed according to the formulation for exoplanet transit depth given by

Mandel and Agol| (2002) and used as a weight in the computation of the binned average. The use
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Shot Pair Density Possible Solution Months (Rank) Surface Elevation Rate

Figure 4.9: Left: Overall density of overlapping footprints used to generate monthly ICESat solution
between 2003 and 2009. Center: Number of GRACE months in which ICESat elevation changes
are able to be computed. Right: Best-fit surface elevation rate from overlapping footprints.

of overlap weighting is essential for valid elevation change solutions.

These elevation difference grids were then processed via least squares fit with the time dif-
ference between campaign pairs as the independent variable to obtain a map of surface elevation
trends. The 2003-2009 trend, overall pair density, number of solutions months per grid cell are

illustrated in Figure [4.9

Following (Gunter et al. (2014), the solutions are corrected for campaign bias using the low-

precipitation zone on the High Antarctic Plateau as a calibration target. The corrected trend map
is shown in Figure
4.4.2 Solution for GIA with GRACE and ICESat

Having secured a valid ICESat trend for 2003-2009 and GRACE rates for the corresponding

period, it is possible to disaggregate GIA and land-ice mass variation according to the method of

|Gunter et al. (2014)). All ingredients used for this combination are shown in Figure

Starting with GRACE mass trends from the CRI-filtered JPL RL05.1M mascon solutions

(Watkins et al.l [2015), the 2003-2009 trend is computed and mascon-averaged GIA signals are

restored to yield the total mass flux trend signal over Antarctica, shown in Figure £.10p. The

difference between the 2003-2009 average of RACMO SMB and the average of RACMO over its
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entire time period of 1979-2015 is computed and mascon averaged to obtain the grid of SMB
anomaly rates shown in Figure [£.10p. These fields are differenced to obtain Figure [£.10.

Trends from 2003-2009 ICESat data processed in the previous section are shown in Figure
. A campaign bias correction of 10.5 mm yr—! has been subtracted from these trends, following
the low-precipitation zone calibration method of |(Gunter et al.| (2014)). The Ligtenberg et al.| (2011])
firn densification trend shown in Figure is subtracted from the ICESat trend map to obtain
the data shown in Figure [£.10h. [Gunter et al| (2014)) use difference between the ICESat elevation
rate and the firn surface elevation rate used to determine whether to use the density model of
Kaspers et al.| (2004), a solid ice density of 917 kg m~2, or zero density. The approach presented
here differs in that regions lying within the exposed bedrock mask (Fretwell et al., [2013) are given
zero density. In further contrast with (Gunter et al.| (2014), the rule for assigning zero density to a
grid cell based on agreement between the firn model and ICESat is ignored to illustrate an extreme
solution. The snow density model is shown in Figure [£.10f.

The mascon-averaged effective mantle density is shown in Figure [{.10p. These densities come
from a local regression of predicted uplift and predicted equivalent water height variation of the
A et al. (2013) GIA model within each mascon. Because the |A et al| (2013 model has lateral
variations in mantle structure, the modeled density may accurately reflect effective mantle density.

The altimetry data in Figure [£.10h are multiplied by the density distribution in Figure [{.10f
and then mascon-averaged so it may be compared with Figure [£.I0g. The data in these two
subfigures are then differenced, divided by the difference between the effective mantle density and
effective surface density, and elastically corrected to obtain the uplift rate from GIA shown in
Figure [4.10j. This GIA model is compared with elastically corrected GNSS vertical motion data
as a validation step. To obtain surface mass change, this GIA model is multiplied by the effective
mantle density and subtracted from the total mass signal in Figure [4.10p.

The final results are shown in Figures and [4.10j. The resultant GIA model shows an
unexpected negative trend in West Antarctica and positive trends in East Antarctica. Surface mass

changes line up with expectations, particularly near the Amundsen coast and Totten glacier, where
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Model GIA Ice (2003-2009)
Gt yr—! Gt yr—!

A et al. (2013) + JPL RL05.1M 112 -153
GRACE + ICESat 108 -148

Table 4.2: GIA and ice sheet mass trends for 2003-2009 obtained using a combination of ICESat
and GRACE data

strong mass loss signals are present.

Results also diverge from both expectations and those of (Gunter et al. (2014). Total ice mass
loss is 148 Gt yr~! compared with 153 Gt yr~! from the original mascon solution. The total mass
signal from the solution GIA is 108 Gt yr—!, comparable with the original A et al. (2013) model,
but more than twice the value found by Gunter et al.| (2014)). The standard deviation of the prefit
residuals of elastically-corrected GNSS vertical velocities is 2.6 mm yr~!, but this error increases

to 10.2 mm yr—!.

after the solution. These results indicate unsuccessful replication of the results
of |Gunter et al.| (2014) and [Riva et al.| (2009). The reasons for this disagreement have not yet been
established. Reliable uncertainty estimates are also not available at present. Like with the GNSS
combination, the formal uncertainties not realistic enough to present alongside the data.

The approach of |Gunter et al.| (2014) and Riva et al. (2009) is replicated in this chapter, but
the final results differ somewhat from theirs.

With refinement, the methods used to combine data over Antarctica may be applied to
other regions where ice mass change signals are recorded by gravity, altimetry, and dense GNSS
observation sites, such as the Greenland Ice Sheet, southern Alaska, and Iceland. Monitoring mass
change enables prediction of crustal deformation and geoid height change, a problem of interest to
authorities charged with maintaining vertical datums with accuracy requirements of 1 cm within
a timespan of a decade. In Antarctica, both geoid heights and bedrock elevations change by more

than a centimeter per decade, due to a combination of elastic loading and GIA. This mirrors the

magnitude of geoid and elevation change in North America (Jacob et al., [2011)).
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Figure 4.10: Input data, models, and results for combination of GRACE and ICESat trends to
obtain an empirical GIA model and surface mass trend between 2003 and 2009.

a GRACE total mass trend from CRI-filtered JPL mascons with mascon-averaged
GIA model restored

b Mascon-averaged average of RACMO SMB anomaly over 2003—2009 interval

c Gridded ICESat surface elevation change rate over 2003-2009 interval with campaign bias cor-
rection

d RACMO firn densification rate over 2003-2009 interval

e Mascon-averaged bedrock density estimate for relating rate of surface uplift to rate of apparent
equivalent water height change from GIA

f Inferred density of surface snow and ice based on comparing ICESat elevation rates with the firn
model. Effective density is set to zero over regions known to consist primarily of exposed bedrock.
g Difference between a and b

h Difference between ¢ and d

i Solution for GIA uplift rates from combination of above data. Elastically corrected GNSS data
shown for comparison.

Jj Solution for ice mass change rates from combination of above data

GRACE mass trend RACMO SMB anomaly ICESat surface trend RACMO firn densification trend
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4.4.3 Separation of ice dynamics and SMB signals in GRACE data

Thus far, we have explored methods for separating ice mass change signals from glacial iso-
static adjustment in GRACE data. Ice mass change signals have two components: ice dynamics
and surface mass balance. These processes may be distinguished by where they tend to dominate
signals. Because gravity and elevation signals caused by ice dynamics are primarily due to hori-
zontal transport, InSAR-derived horizontal ice velocity maps may be used to create ice dynamics
constraints.

If the ice sheet is decomposed into layers of ice dynamics and surface mass balance, the

observation equation is

XSMB
YGerAacE = H , (4.18)
}.(ice
where

0i; is the Kronecker delta function, ygrace is the 2002-2017 trend for the 148 land mascons,
and the vectors XgumB, Xice represent the average equivalent water height variations in ice dynamics
and SMB. With no additional information, it is impossible to disaggregate Xgymp and Xjce from
their sum. However, spatial statistics from models of SMB and ice dynamics can make the problem
tractable. Following |Zammit-Mangion et al.| (2013), InSAR horizontal velocity data from [Rignot
et al.| (2011 are used to identify the parts of the mascons with significant ice dynamics contributions.
Where horizontal velocity is found to be greater than 10 m yr ~! the variance of the ice dynamics
at that spot is assigned a value of (15,000 mm EWH)?, after Zammit-Mangion et al.| (2013). The
area of each mascon with horizontal ice velocity above this threshold his tabulated. It is tempting
to quantify ice dynamics variability using the divergence of the Rignot et al. (2011) horizontal
velocities, but the noise in the resulting product is too excessive to be useful. The horizontal ice

velocities and resultant ice mask used in this work are shown in Figure
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The observation operator is rewritten such that H considers the fraction of a mascon’s area

occupied by a the ice dynamics mask.

Amascon,i LY

H = hz’j = |:5ij Aice.i ) :| (4‘20)

Note that the observation equation does not consider surface mass balance and SMB mutually
exclusive. The area in which ice dynamics are applicable within a mascon may be limited to less
than the area of the mascon, but SMB may affect the entire mascon.

The a priori covariance is then computed:

Psyp 0
pP= (4.21)
0 Pice
While Psyp may be estimated directly from RACMO, RACMO contains the full SMB signal,
which is on the order 2,000 Gt yr~!. To estimate Psyp, the sample covariance in the trend of the
Ligtenberg et al.| (2011) model firn model is scaled by the average density of Antarctic surface snow
(300 kg m~3) and divided by the variance of the timestamps in the GRACE time series to reflect

the variability of the rate of surface mass balance in time.

The solution is obtained iteratively using constrained least squares:

XSMB,k XSMB,k
=H"WH+P )" | yorace — H + (4.22)

Xice,k+1 Xice,k Xice,k

XSMB k+1

A solution based on the 1J05 GIA model is shown in Figure As expected, the ice dy-
namics component has strong negative signals near the Pine Island, Thwaites, and Totten Glaciers
and strong positive signals on in the vicinity of the Kamb Ice Stream. The smoother, spatially
correlated SMB component is characterized by strong long-wavelength signals lining the coast of
East Antarctica.

The solution is dependent on the choice of GIA model. This method was repeated with

various GRACE inputs with an ensemble of eight GIA models, including |Caron et al.| (2018)) and A



[ 62|

Horizontal Ice Velocity

[ : -
10 10° 10! 102 10°
myr!

Figure 4.11: Left: Horizontal ice velocities obtained from InSAR measurements (Rignot et al.
2011)). Right: Ice dynamics mask (orange) for horizontal velocities greater than 10 m yr—1.

(2013) and the ensemble members used for the GNSS combination. The resultant solutions

are consistent with the results of Martin-Espanol et al.| (2016b]), who separate GIA, ice dynamics,

and SMB over a comparable interval. The effect of the range of GIA models on total mass trends

is shown in Figure [4.13]
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Figure 4.12: Results for source separation of 2002-2017 trends for ice dynamics and surface mass
balance using JPL RLO05.1 mascons, an ice dynamics mask and covariance, and a surface mass
balance mask.
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Figure 4.13: Results for source separation of ice dynamics and surface mass balance with an
ensemble of GIA background models compared with results for ice dynamics, surface mass balance,
and GIA from Martin-Espailol et al. (2016b).




Chapter 5

Enhancing the Spatial Resolution of Monthly GRACE Solutions with ICESat
Trends

The main goal of this endeavor is to combine ICESat, GNSS, and GRACE data to obtain
monthly solutions for the distribution of mass in Antarctica. This chapter focuses on combining
ICESat trends, monthly GRACE data, and spatial statistics from local models and measurements
of local mass change processes to create monthly, high-resolution mass change solutions.

In contrast with the previous chapter, where ICESat elevation rates are computed with an
in-house solution, ICESat elevation rates used for the filtering methods in this chapter come from
Sasgen et al.| (2017). All GRACE data were corrected with the GIA solution of |Caron et al.
(2018). However, the accompanying covariance of this model was not propagated into the mascon
formal errors. The Caron et al.| (2018) covariance matrix over Antarctica is dominated by a single
spatial pattern that accounts for more than 90% of its variance. The immutable long-wavelength
correlations introduced by this covariance destabilized filter solutions, thereby justifying its omission

from the solution presented in this chapter.

5.1 Problem Setup

Assuming that the GIA and firn compaction have been corrected, the observation equation

to find the variation in average equivalent water height may be written as
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YGRACE,i — YGRACE,0 M M XSMB,i — XSMB,0 (5.1)
1 L 1
Pice Pice i

YICESat,i — YICESat,0 Xice,i — Xice,0

Xice,i and xgvp,i denote the latent parameter vectors for the cumulative mass contributions
from ice dynamics and surface mass balance, respectively. The matrix M performs mascon-
averaging of these vectors for direct comparison with GRACE. The matrix L serves to project
mass variability fields for comparison with ICESat altimetry.

Monthly solutions for ICESat altimetry are not available at this stage for practical combi-
nation with GRACE. Nonetheless, ICESat elevation trend fields still contain spatial information

suitable for enhancing low-resolution GRACE data. These trends reflect average mass change

within the 2003-2009 span and are still useful as a constraint.

YGRACE,i — YGRACE,0 M 0 XSMB,i — XSMB,0 + Xice,i — Xice,0 (5.2)
y - 0 -LL| |(xsuB) + (Xice)
YICESat,i Dice SMB/2003—2009 ice/2003—2009

The above observation equation may be rewritten into two sub-vectors. The lower sub-vector

provides an isolated ICESat observation equation, which may be rearranged as

PiceY1CESat = L [<5<SMB>2003—2009 + <5<ice>2003—2009] : (5.3)

The average surface mass balance rate between 2003 and 2009, (Xgmp) is provided by
RACMO. Since this is an average of six years, or approximately 72 months, of SMB processes,
the uncertainty of the estimated field may be estimated by evaluating the sample covariance of
RACMO within this time period and dividing this covariance matrix by the number of input
months.

The average ice dynamics within this period may therefore be estimated by subtracting the

mean SMB field from the ICESat velocity field during this time period.
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<5(ice>2003_2009 = piceLTS’ICESat - <5(SMB>2003_2009 (54)

At each month, ice dynamics may be parameterized as

kice,i = <7.<ice>2003_2009 + 55{1ce,i (5'5)
The estimation problem is now reduced to simply assimilating GRACE observations with

constraints developed from the SMB model and ICESat.

YGRACE,i — YGRACE,i—1 = M (t; — ti_1)%; + M(t; — ti—1) [%smB,i + (Kice)2003—2009) (5.6)

The variable %X; represents the sum of unmodeled ice dynamics and SMB at each month.
The observation equation may be cumulatively summed over the entire observation span to

arrive at

%
YGRACE,i — YGRACE,0 = Z M(tj — tj-1) [%; + XsmB,j + (Xice)2003—2000] (5.7)
=0

Redefining the cumulative mass change Zzzo(tj —tj—1)%X; = x; The final observation equation

at each iteration may be set up as

M 0 X;
YGRACE,i — YGRACE,0 . (5-8)
0 0] [%smB,i + (Xice)2003—2000
with transitions between states expressed by
Xit1 I tiy—1; X; 0
— + (5.9)

Xit1 0 0 %XsMB,i + (Xice) 20032009 XSMB,i+1 + (Xice) 20032009
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The state derivative term in the parameter vector is not estimated, but is informed by SMB
and ice dynamics priors at all steps.

The covariance of the average ice dynamics within this time period is the sum of the covariance
of ICESat errors, SMB, and the scaled firn elevation.

With ICESat and RACMO used in the creation of priors, the filter at every step becomes

Xi|i Xili—1 Xili—1
= K | YGRACE,i — YGRACE,0 — H + (5.10)
Xj|; Xiji—1 Xiji—1

The subscript notation i|j may be read as “pertaining to the state i given prior information

at state j77. The matrix H is the observation operator,

H= (5.11)

which contains the mascon-averaging operator M.

The matrix K is a minimum mean-squared error estimator, the Kalman gain. This matrix
contains the optimal modification vectors of the solution associated with unit errors in the ob-
servations. K is conventionally estimated from the covariance of the observation errors and the

cross-covariance of the observation errors and state errors.

K = OxyCyy, (5.12)

where X and Y denote latent parameters and observations, respectively. If the covariance
provides enough information and Cyy is positive definite, then parameters may be adjusted by
observations even if the number of unknown parameters exceeds number of observations. If the
parameter covariance matrix, Fj;_1 is known, the covariance of the observations R; is also known,

and a linear operator H exists to relate observations and parameters, then

CXY - P,L‘|Z‘_1HT (513)
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and

Cyy =HPy_H" +R; (5.14)

The Kalman gain is therefore

K =Py H"(HP_ H" + R;)™". (5.15)

Solutions generated from the Kalman filter may be propagated forward in time to the next
step. Covariances may also be adjusted to include information from the current iteration using the

Joseph formulation,

Pyji=(I-KH)Py; (I -KH)" + KRK" (5.16)

which can be simplified to

Py =(I—-KH)Py; 1 (5.17)

The Kalman filter is simple to describe and conceptually straightforward to implement. Be-
cause the observation operations in this work are strictly linear, the assumptions under which the
filter is derived are valid. The challenge of constructing the Kalman filter lies in establishing the
covariance of the parameters.

Since the subsampled land components of CRI-filtered mascons have highly variable areas and
the filtering setup requires predicting mascon equivalent water heights, smaller mascons may have
unwarranted leverage on the solution. To remedy this effect, a weighting matrix is applied to the
numerator and denominator of the Kalman gain. The weighting matrix W has diagonal elements
equal to the square of the areas of the corresponding mascons. This modification implicitly changes
the observation equations so the figure of merit is the variance of the residual mass of each mascon

rather than its mass flux. The Kalman gain takes the form:
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K =Py (H"WWHP;,_H" + WR;)™". (5.18)
5.2 Computational Considerations

The Kalman filter is well-suited for monthly solutions. The computation of the Kalman gain
is straightforward when the number of observations is small relative to the number of parameters
because rank the effective rank of this matrix is limited by the number of data points. The scaling
of the Kalman gain computation time is quadratic with the number of parameters, but linear with
the number of data points. The solution presented here exists on a 27 km grid with 17,880 elements
mapped to the JPL land mask. At every iteration, GRACE provides a vector of 148 mascons that
represent averages of these grid cells.

The covariance update step in the Kalman filter is the most computationally intensive part
of the filter. This step involves the multiplication of two n X n matrices, an operation with a
computational complexity of O(n?), where n is the number of data points. One alternative to
the conventional Kalman filter keeps the filter entirely in terms of the data-parameter covariance
matrix PH”. This approach keeps the computational complexity of the filter to O(m?®n), where m
is the number of parameters. The covariance update step is approximated with a Taylor expansion.
This approach was briefly considered and implemented, but found found to be unnecessary for the
work subsequently presented in this chapter.

The need to reduce the size of the parameter vector prompted exploration of various mesh
optimization methods to capture small-scale variability in select parts of Antarctica while relegating
quiet inland variation to low-resolution. Foremost among these methods was the construction of
variance quadtrees (Minasny et al., 2007) based on various geophysical fields that reflect Antarctic
mass variation, such as topography. The variance quadtree algorithm divides a field into quadri-
lateral zones with variances less than or equal to a threshold value. Each quadtree element may
be considered to have equal variance and therefore equal weight when being assimilated into a

solution. The implementation of this algorithm enables its use for future investigations.
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Figure 5.1: Summary of information flow for monthly combination techniques

While mesh optimization provided interesting avenues for parameterization of Antarctic mass,
the computational complexity problem was ultimately solved by downsampling the matrix by a
factor of four, reducing the number of elements required to describe Antarctic land mass from
17,880 to 1,105. The parameter vector is a lattice of 108 km elements, each representing up to
16 27-km grid elements. This vector is projected onto the solution grid with nearest-neighbor
interpolation.

The flow of information in these solution methods is illustrated by Figure [5.1

5.2.1 Priors and Covariance Matrix Construction

The trick used to obtain monthly solutions involves using ice dynamics to establish a prior.
A number of parameterizations of the a priori covariance of ice dynamics were explored.
The final covariance model for ice dynamics is generated using the following procedure:

Amid other sources of elevation change, ICESat trends contain a measurement of the average

ice dynamics between 2003 and 2009. Using the |[Ligtenberg et al. (2011)) firn model and RACMO2.3,

it is possible to remove the effect of firn compaction and the contribution of surface mass balance
from this dataset. The uplift signal of GIA is also present in this model and removable. The

altimetry field also contains elastic loading signals from Antarctic mass variation.
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The initial estimate for the ice mass trend field is convolved with high-resolution Green’s func-
tions to compute vertical crustal deformation from elastic loading. This crustal deformation field
is subtracted from the altimetry data. The loading-corrected altimetry is then used to recompute
the a priori ice mass variation signal. This iteration is not repeated.

The ice mass rate is unobserved south of 86° S. Grid cells south of this latitude are imputed
with the median ice mass value in an annulus between 85° S and 86° S.

The prior mass rate covariance matrix becomes:

P = pice [Ph + Pﬁrn] + PsmB + Picek (519)

The factor k scales the covariance so it represents the variability of the field at monthly time
scales rather than the average over the ICESat observation time period. k is set to 72 in this work.

ICESat trend uncertainties provided by REGINA are clipped between 0 and 1 m yr—!. They
are subsequently median-filtered with a to further remove outliers. The median filter has a bidirec-
tional window size of 5 adjacent grid points (135 km full-width). The median filter also introduces
spatial correlations. These trend errors are multiplied by the pice (917 kg m~3).

Pice is estimated from the

2
i
2

02 R 2] —-3%
Pyice = [pelalliy] + 8] €72 (5.20)

The nugget 08 is set to 10 mm EWH?, a value consistent with the noise floor of the altimetry.
The purpose of this step is to ensure that zero-crossings in the field are allowed to vary. The sill
term also enables variation within the unobserved part of Antarctica south of 86° S, which is visible
to GRACE. The range scale parameter s was set to 250 km, consistent with semivariograms of the

ICESat elevation trend field. The resultant covariance matrix is shown in Figure [5.2
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-50

Figure 5.2: Diagonal elements (standard deviations) of a priori covariance matrix for ice dynamics
derived from ICESat 2003-2009 elevation trends and average surface mass balance. These con-
straints demonstrate and impose high-magnitude, short-wavelength variability near the Antarctic
coasts and low-magnitude, long-wavelength variability inland.
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5.2.2 Validation with GNSS

High-resolution solutions for mass variation in Antarctica may be considered valid if they
predict signals in independent data that others models do not. Our filter assimilates ICESat trends
and GRACE data. The remaining geodetic data in Antarctica are GNSS position time series,
which contain elastic-loading displacement signals from Antarctic mass variations. These data
were deliberately set aside for validation.

Improvement in spatial resolution has multiple effects on crustal displacement time series. In
the vertical direction, increased concentration of mass variation changes the near-field amplitude of
elastic displacements. The horizontal components of crustal motion contain directional information
and are therefore sensitive to the location of a loading source. While the vertical signal introduced
by elastic loading depends only on distance, the horizontal components of a GNSS position time
series positioned near a loading source will be markedly different from the time series observed if
the loading source’s position were changed, but its distance to the observation site remained the
same. Because of the geometry of satellite observations, GNSS observations are also more precise
in the horizontal plane than the vertical axis. However, while horizontal measurements are less
noisy, the effect of elastic loading in the horizontal direction is also approximately half that of the
vertical effect. (Wahr et al., [2013)

GNSS motion time series contain linear-trend signals that are not caused by crustal loading,
such as plate tectonics and GIA. Horizontal GNSS position time series contain valuable data on
crustal deformation due to elastic loading. The geometry of GNSS observations also make these ob-
servations less noisy and underconstrained Unfortunately, long-period signals due to plate tectonics
and GIA are difficult to model. While robust approximations (Purcell et al. 2011) relating the
vertical component of GIA-induced displacement to corresponding change in gravity exist, relations
for the horizontal component of GIA are indeterminate and highly model-dependent [Sabadini and
Vermeersen| (2004). Modeling long-period signals, such as GIA, may be avoided by detrending both

the set of elastic loading predictions from the output model and the horizontal motion data. As
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detrending is a linear operation, a detrending operator may be added to the observation operator
during the assimilation process to make the horizontal motion data comparable with only non-trend
signals.

While horizontal trend signals are avoided, vertical trends predicted with both the JPL
RLO05.1M mascons and these solution methods are compared. This comparison is sensitive to the
choice of GIA model.

The comparison is performed by computing elastic loading in the east, north, and vertical
directions with both the JPL RL05.1M mascons and the mass change solutions from our filters.
Elastic-loading displacement from the atmosphere and oceans were removed using the GAC com-
ponent of AOD1B RL05. Because of the high intrinsic resolution of the Kalman filter results, we
computed loading using near-exact radial Green’s functions obtained from (Petrov, 2004)|I| . The
loading signals from the mascons were computed by projecting the land-components of the Antarc-
tic CRI-filtered mascons to onto the same grid as our candidate solutions and applying the same

convolution with high-resolution Green’s functions.

5.3 Fixed-gain Kalman Filter

The feasibility of monthly solutions was initially explored with a case testing the following
idea: Could mascon trends be processed with a filter with ICESat-based covariance to obtain a
high-resolution mass trend field? In the setup discussed at the beginning of the chapter, the Kalman
gain is defined in terms of the observation-parameter covariance and data-data covariance. The
covariance for ice dynamics obtained earlier in this chapter may be used as an input to compute
both covariance matrices.

The observation equation for this setup is

YyaerACE = M. (5.21)

YCRACE is a vector of best-fit rates of change in mascon equivalent water height between 2003

! http://vlbi.gsfc.nasa.gov/aplo/
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and 2009; m is the corresponding rate of change at higher resolution. The filter takes the form:

m = K[}"GRACE - Mmh] + mh (5.22)

h; is the sum of the a prior: ice dynamics estimate and the 2003-2009 average SMB from
RACMO. The subscript h indicates the origins of this prior in satellite altimetry. The Kalman gain
K, as previously established depends on the observation operator M and the covariance of the ice

sheet mass trend field within this span.

K = PMTW [W(MPMT + R)]” (5.23)

The observations errors R are estimated from the errors in the GRACE trend between 2003

and 2009, or within the ICESat observation span. That is, R = [’I“JQ-j] and

n 2
2 L 2=y (5.24)
G S SN

ok; is mascon j’s formal error at time ¢;. The constant t is the mean of the n months that
comprise the inputs to the GRACE trend calculation. The GIA covariance Para from [Caron et al.
(2018) is not added to the GRACE uncertainty. W is a diagonal matrix with elements equal to
the square of the area of the corresponding mascon. The addition of this term serves to weight the
observations by the areas of the mascons, ensuring that noise in smaller mascons does not have
excess influence over the solution.

The covariance matrix P is set to Pic. as established in the previous section. The results of
this combination are shown in Figure |5.3

The success of this filter naturally raises a question of whether it can be applied to individual
GRACE months without modifying the Kalman gain. To explore this, the following modifications
were made:

The basic observation equation is
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yi = Mm;, (5.25)

where y; is the vector of predicted equivalent water heights for the 148 land mascons at the
time ¢;. The filter seeks to minimize the variance of y; 1, —y;, where y; ;¢ is the vector of mascons
in the GRACE dataset at time ¢;. The operator M performs mascon averaging of grid cells and
serves as the observation operator for this demonstration.

The filter takes the form

m; = K[yi,obs — Mmh(tl — to)] + mh(tl — to). (526)

1

K = PM™W [W(MPM" + R)]” (5.27)

The matrix P and the a priori estimate of the mass loss field are both estimated from the
the ICESat trend grid over the 2003-2009 observation span.

The continental mass variation solution time series for the 2002-2017 interval is shown in
Figure [5.4] Basin-by-basin mass evolution time series are shown in Figure [5.6] These changes are
integrated according to defined regions of the Antarctic Ice Sheet to obtain the time series in Figure
(.5l Finally, the elastic loading effects of this model on Antarctic GNSS sites is shown in Figure

i



77

I9)]1 uewuey|
ure8-poxyj oY) WOl paurejqo porrod owil} owres oY) 10 SPUSI) PIOURYUD PUR [RAIUL LT0Z-¢00¢ I0A0 spual) uoodsewr jnduy :¢'¢ anSig

1A HM3 ww
00 00€ 00¢ 00T 0 00T— 00Z— 00&E— O00b—
1 1

palepon paniasqo



78

—— GRACE
0 - —— Solution

—500 A

—1000 A

Gt

—1500 A

—2000 A

—2500 A

2002 2004 2006 2008 2010 2012 2014 2016

Figure 5.4: Mass change integrated over the entire Antarctic ice sheet from the fixed-gain Kalman
filter compared with its input GRACE data and corresponding 1-o errors
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Figure 5.5: Mass change (Gt) from the fixed-gain Kalman filter in Gt integrated over East Antarc-
tica, West Antarctica, the Antarctic Peninsula compared with corresponding GRACE data
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5.4 Adjustment of Ice Dynamics

Ice dynamics processes vary slowly over time. For the purposes of this study, ice dynamics
may be modeled over the 2002-2017 interval as a static trend with a constant acceleration. Direct
measurements of total basin-scale ice dynamics are available from |Gardner et al. (2018), who
measured the volumetric discharge of ice from outlet glaciers for each of Antarctica’s 27 drainage
basins, as defined by |Zwally et al.| (2012)). The basin boundaries are illustrated in Figure The
measurements were performed by measuring horizontal displacements at outlet glaciers (flux gates)
for each basin with satellite imagery. Discharge rates are available from 2008 and 2015 and may
be differenced to compute discharge acceleration. The time-integrated ice dynamics signal within
a basin may be modeled as a quadratic function of time with these basins as inputs.

Assuming the ice dynamics field developed from ICESat and RACMO earlier in this chapter
is accurate, then its spatial integrals within each basin should agree with the |Gardner et al.| (2018])
estimates. Using the a priori covariance of the ice dynamics, these basin-scale estimates may then
be optimally adjusted to fit the measured time-dependent basin discharge. Such a fit has two effects.
First, it ensures that the ice dynamics prior matches both the spatial patterns implied by ICESat
and RACMO; and the independent magnitudes of basin-level integral measurements. Second, it
introduces time-dependence in the form of constant acceleration to the ice dynamics prior.

The fit is performed with a Kalman filter as before. The filter is evaluated sequentially, but
error estimates are not propagated in time.

For each month, the observation equation is

ybasin,i = Bmice,i- (528)

The operator B integrates grid mass fluxes over each drainage basin for comparison with the

discharge estimates. The adjustment to the ice dynamics field at each month is

IM; jce,posterior — K(Ybasin,i - Bmi,ice,prior) + IM; jce,prior- (529)
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Figure 5.7: Change in variance of the detrended residual GNSS position time series relative to
results obtained by computing elastic crustal deformation with the JPL RL05.1M mascon solutions
after removing elastic crustal deformation predictions from the fixed-gain Kalman filter.
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The Kalman gain K is defined as:

K = Hce,priorBT(BPice,priorBT + R)_la (530)

where R = r% Jdjk, the measurement errors for the Gardner et al. (2018) basin discharge error
estimates. No propagation of the acceleration errors in time is performed to obtain this matrix.
This keeps the Kalman gain constant and also saves memory by requiring the computation of a

single updated covariance matrix.

Bce,posterior = (I - KB)-Pice,prior (531)

The parallel nature of this solution makes it functionally equivalent to simply reducing the
ice dynamics field to a trend and acceleration, but the actual implementation instead evaluates ice
dynamics independently at each month. This adjustment is illustrated in Figure [77] The output
of this procedure may be fed forward to other solutions.

The adjusted solution may also be added to RACMO SMB fields and integrated through time
to create a solution independent of GRACE. The 2002-2017 trend is shown in Figure The
total AIS mass time series is given in Figure [5.11] Basin-by-basin mass evolution time series are
shown in Figure [5.13] These changes are integrated according to defined regions of the Antarctic
Ice Sheet to obtain the time series in Figure [5.12] Finally, the elastic loading effects of this model

on Antarctic GNSS sites is shown in Figure [5.14]



Figure 5.8: Boundaries and indices of |[Zwally et al.l (]2012[) Antarctic ice sheet drainage basins
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Figure 5.11: Mass change integrated over the entire Antarctic ice sheet from the adjusted ice
dynamics solution compared with its input GRACE data and corresponding 1-o errors
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Figure 5.12: Mass change (Gt) from the adjusted ice dynamics solution in Gt integrated over East
Antarctica, West Antarctica, the Antarctic Peninsula compared with corresponding GRACE data
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5.5 One-Dimensional Kalman Filter

A one-dimensional Kalman filter was devised to verify the conceptual integrity of the Kalman
filters in this chapter. This filter adjusts only the cumulative mass change and mass change rate of
Antarctica according the the total mass estimated by GRACE.

The total mass change of the Antarctic ice sheet at time ¢; relative to tg is given by m;. The
rate of mass change, given by the sum of ice dynamics and surface mass balance at time ¢; is ;.
The cumulative mass change and instantaneous rate of mass change may be assembled into a state
vector:

X; = " . (5.32)
m;

The surface mass balance model used here has output available no later than December
2015, whereas the GRACE data runs to August 2016. SMB for months outside of the boundary
are imputed with the average SMB integrated over the entire continent for the 2002-2016 period.
For the purposes of this filter, the instantaneous mass change is integrated forward in time linearly

as a function of At =¢; — t;_1.

mji—1 0
Xiji-1 = = Fix; 11+ : (5.33)
The state transition matrix F; is designed such that information about the rate of mass change

is not preserved between iterations. Instead, the instantaneous rate of mass change is obtained from

external models.

1 At
F; = . (5.34)
0 0

The state also has an associated covariance. The covariance F; is initialized such that all
terms in the 2x2 matrix are zero. The covariance for the current iteration is propagated forward

in time from the previous iteration to the current iteration as follows.
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Figure 5.14: Change in variance of the detrended residual GNSS position time series relative to
results obtained by computing elastic crustal deformation with the JPL RL05.1M mascon solutions
after removing elastic crustal deformation predictions from the adjusted ice dynamics solution. The
lower-right subplot compares the trends predicted by the output model to the data after correction
with the |Caron et al.| (2018) GIA model.




90

Pjicy = FP_y; 1 F" +Q (5.35)

The covariance from the previous iteration consists of two diagonal scalar elements.

g% . .
P, = m,i—1|i—1 (536)

The constant matrix () contains the process noise associated with the variability of the

instantaneous rate of change of the ice sheet.

0 O
Q= (5.37)

0 o2

ice
The basic observation equation of the filter relates the total mass predicted by the model

mMyji—1-

myji—1 = Hixg)q, (5.38)

where

-l 5.9

At each iteration, the filter must minimize the square of the difference between m;;_; and
the observed total mass m; ns. The solution update, Tj); may be estimated using the minimum

mean square estimator:

Xili = Ki(mi obs — mi\i—l) + Xi|i—1- (5.40)

The Kalman gain K; is defined as:

K; = Py H"(HP;_1H" + R;)~", (5.41)
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where R = [rf] The scalar quantity r? is computed as the sum of the GRACE measurement

errors for month 4, month 0, and the propagated GIA covariance between ty and t;, or

r? = 0'727111- + 03170. (5.42)

Similarly, the prediction variance is

Ufmili—l = HPy H" =05, At + 0-7%1,2'—1\1'—1‘ (5.43)

These may be ingested into the definition of the Kalman gain to obtain

K — ‘77271,1‘|z‘—1 1 (5.44)
i~ 3 2 : .
Onili—1 T Ti 0

The updated covariance P;; may be computed with the new Kalman gain as follows:

Py = - KH)Py;_1. (5.45)

The matrix I — K;H takes the form

[— K;H = mali=1 7 (5.46)

and the adjusted covariance is

<1 _ m,i|i—1 ) m,i|i—1 0
2 2 2 2
Py = Tonyili—117% ) T i1 173 ’ (5.47)

The filter is then incremented to month ¢ + 1.

The cumulative mass time series is shown in Figure [5.15

5.6 Conventional Kalman Filter

At each iteration, the ice dynamics grid obtained from Section 5.4 corresponding to the

current month is added to the RACMO SMB field for the same month. The total mass flux
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Figure 5.15: Total cumulative mass change of the Antarctic Ice Sheet obtained from the one-
dimensional Kalman filter compared with input GRACE data and the sum of a priori ice dynamics
and RACMO SMB.
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field is integrated over the interval between the previous month and the current month and added
to the mass field from the previous month. This mass field, which exists on a 27-km grid, is
mascon-averaged and compared with the GRACE mascon estimates for the corresponding month.
The observation deviation vector is then pushed through the Kalman gain operator to obtain a
state deviation vector for the integrated mass change field. This state deviation is computed at a
resolution of 108 km to reduce computation time, but is projected onto the 27-km land grid using
nearest-neighbor interpolation.

X; = o . (5.48)

rh;

As with the one-dimensional filter, the surface mass balance model used here has outputs
available no later than December 2015, whereas the GRACE data runs to August 2016. SMB for
months outside of the boundary are imputed with the average SMB field in the 2002-2016 period.
For the purposes of this filter, the instantaneous mass change is integrated forward in time linearly

as a function of At; =t; — t;_1.

my;—1 0
Xiji—1 = = Fix;_1i-1 + : (5.49)
m; m;
The state transition matrix F; is designed such that information about the rate of mass change

is not preserved between iterations. Instead, the instantaneous rate of mass change is obtained from

external models.

O Aty =t; —t; 4
="’ L (5.50)

0 0

The state also has an associated covariance. The covariance F; is initialized such that all
terms in the 2x2 matrix are zero. The covariance for the current iteration is propagated forward

in time from the previous iteration to the current iteration as follows.

Py = FPi-1\i-1FT +Q (5.51)
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The covariance from the previous iteration consists of two block diagonal elements. This

matrix is initialized at zero.

Py = (5.52)
0 Pji1

The constant matrix () contains the process noise associated with the variability of the

instantaneous rate of change of the ice sheet.

0 0
Q= (5.53)
O Pice

The basic observation equation of the filter relates the total mass predicted by the model

m;;—1-

YGRACE,jij;—1 = Mmy;_q, (5.54)

where

H= [M 0} : (5.55)

At each iteration, the filter must minimize the square of the difference between m;;_; and
the observed total mass m;ons. The solution update may be estimated using the minimum mean

square estimator:

m;; = Kz’(?JGRACE,im-,l — Mmj; 1) + my;_;. (5.56)

The Kalman gain K; is defined as:

Ki= Py (H"W(WHPy;,_1H" + WR;)™". (5.57)
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The diagonal elements of R are derived from the mascon observation errors. Because of the
setup of the filter, the errors associated with the initial month are added to the corresponding
elements of this matrix. The diagonal elements of the weight matrix W are the squares of

2
Omili—1

=HPy;, H" (5.58)

The updated covariance P;; may be computed with the new Kalman gain as follows:

Py = — K;H)Pj;_;. (5.59)

The filter is then incremented to month ¢ + 1.

The observation equations and filtering setup are similar to previous models. The adjusted
trend is shown in Figure Note the artifacts originating from diminished spatial resolution.
The time series for total continental ice sheet mass variation is given in Cumulative regional
mass balance time series for this model are shown in Figure Cumulative basin-by-basin mass
balance time series for this model are shown in Figure GNSS residuals are shown in Figure

0. 20
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Figure 5.17: Mass change integrated over the entire Antarctic ice sheet from the conventional
Kalman filter compared with its input GRACE data and corresponding 1-o errors
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Figure 5.18: Mass change (Gt) from the conventional Kalman filter in Gt integrated over East
Antarctica, West Antarctica, the Antarctic Peninsula compared with corresponding GRACE data
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5.7 Discussion

The GRACE- and basin-discharge-constrained solutions all yield consistent mass loss esti-
mates across the continent. The basin constraints notably have a slightly more conservative estimate
of total acceleration in the 2002-2017 period. These solutions do not fit the JPL mascons well, with
RMS residuals of over 200 mm EWH. Direct adjustment of mass fields with GRACE data fits the
GRACE data with area-weighted RMS residuals of 24 mm EWH. The conventional Kalman filter
has wRMS residuals of 14 mm EWH, comparable to the magnitude of atmospheric pressure errors
in Antarctica. Mass loss estimates over the Antarctic Peninsula diverge widely across all solutions.
All solution methods result in improvement in RMS residuals of GNSS trends relative to the elastic
loading predicted by the JPL mascons. Detrended GNSS time series residuals generally show little
overall change with any of these solutions, except in certain regions. Slight improvements may, for
example, be seen in the horizontal components across the Transantarctic Mountains. No solution
degrades the overall variance of the detrended GNSS residuals by more than 2%.

All solutions presented involve propagating uncertainties in mass change rates through time
to inform the uncertainty and overall flexibility of the cumulative mass change field. Early iterations
of these solutions techniques involved recursive modulation of the input mass rates themselves. In
such a setup, cumulative mass errors at a particular instant are fed through a Kalman filter to
damp or amplify the present rate of change in mass. This may be likened to a control algorithm,
in which state derivatives at a present state are modulated by present state errors to minimize
errors at a future state. Such a filter requires an explicit cross-covariance between surface mass
balance. While this algorithm was successfully implemented with performance comparable to the
extant methods in this work, the first-principles basis for the development of the cross-covariance
was insufficient to justify inclusion in this work. This filter, instead, served as a prototype for the

conventional Kalman filter presented in this work.
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Figure 5.20: Change in variance of the detrended residual GNSS position time series relative to
results obtained by computing elastic crustal deformation with the JPL RL05.1M mascon solutions
after removing elastic crustal deformation predictions from the conventional Kalman filter. The
lower-right subplot compares the trends predicted by the output model to the data after correction
with the |Caron et al.| (2018) GIA model.
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Chapter 6

Least-Squares Combination of GRACE and ICESat for Time-variable Mass

Solutions

Thus far, this work has implemented a combination of altimetry and gravity trends, a com-
bination of monthly gravity data with altimetry and constraints from background models. The
previous chapter described the enhancement of monthly GRACE solutions with models and ICE-
Sat data. These enhancements are largely reliant on using high-resolution models and data to
generate model covariances for the optimal redistribution of low-resolution measurements from
GRACE. It would be preferable to require less model input and let the core GRACE and ICESat
speak for themselves.

This chapter focuses on directly combining ICESat and GRACE data to produce time-variable
mass solutions at the spatial and temporal resolution of ICESat. It begins with the production of
ICESat elevation change grids for 17 ICESat cycles from overlapping footprints found in Chapter 4.
These solutions are then compared with monthly GRACE solutions binned to the same altimetry
cycles. Downsampling the altimetry data to the same resolution as GRACE enables an initial
comparison of GRACE and ICESat time series. Both sets of time series are corrected for error
sources and background signals, such as GIA, firn air content, atmospheric pressure errors, and
ICESat inter-campaign biases before comparison.

These elevation and surface-mass flux time series may be regressed to infer the effective
density of the surface material in Antarctica. They may also be combined at mascon resolution to

create both surface mass flux solutions for the 17 ICESat cycles and a solution for a correction to
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the GIA model. This low-resolution combination informs a subsequent combination at the full 27
km resolution of the gridded altimetry data .

The final product of this work is a set of corrections to the|Caron et al.| (2018]) GIA model and
17 high-resolution maps of surface mass flux over the grounded portion of Antarctic Ice Sheet and
Antarctica’s major islands. These solutions are evaluated for effective spatial resolution, agreement

with independent data, and agreement with previous work.

6.1 Data Reduction and Preprocessing

The combination of ICESat and GRACE requires the generation of solutions for surface ele-
vation change for each ICESat cycle. The overlapping-footprint elevation differences from Chapter
4 were used as a starting point for the creation of these elevation change grids. Each shot pair was
assigned to a spatial bin on a 27-km south-pole-centered stereographic grid and to one of 153 pos-
sible temporal difference bins corresponding to combinations of pairs of the 18 ICESat campaigns.
Each shot pair contributed to an average elevation change within each spatiotemporal bin. The
weight of each shot pair’s contribution to the solution was determined by the degree of overlap of
the larger shot footprint with the smaller footprint. This degree of overlap, computable from the
radii and separation of both shots according to the formulation of Mandel and Agol| (2002)), defined
the weight of each shot pair in each average. Over 350 million shot pairs contribute to these grids.

Each grid cell contains up to 153 elevation difference measurements for the 18 ICESat cycles.
These elevation differences are then collapsed into a time series of 17 cycles with respect to a
reference epoch using linear least squares. The input data are weighted by the sum of the overlap
fractions of all available shots within an epoch pair. The reference datum was chosen to be laser 3E
because of its centrality in the sequence of cycles and superlative availability of overlapping laser
shots across all cycles. This process is repeated for all grids in which data are available to produce
17 elevation grids between 2003 and 2009. Corresponding formal uncertainties were computed from
residuals of the predicted elevation differences with respect to the input data. The solutions for

elevation change at each ICESat cycle are shown in Figure Trends, shot densities, and the
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spatial distribution of temporal resolution are illustrated in Figure [6.2
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The GRACE data used in this combination are the land components of the CRI-filtered JPL
RLO05.1M mascon solutions. As in Chapters 4 and 5, the input data is composed of 148 mascon
time series, but the individual time series were resampled to match the corresponding ICESat data.
Because multiple GRACE months may overlap with a single ICESat cycle, the GRACE months
were binned into ICESat cycles using the number of overlapping days each GRACE month has
within the corresponding ICESat cycle as a weight. Each ICESat cycle typically overlaps with
two GRACE months. The major exceptions are Laser 2A (54 days, three GRACE months) and
Laser 3K (14 days, no overlapping GRACE months). Because Laser 3K has no overlapping GRACE
months, this cycle is filled using nearest-neighbor interpolation in time. The cycle-averaged GRACE
data from Laser 3E were subtracted from all subsequent grids to match the reference epoch of the
ICESat data.

The ICESat and GRACE data were corrected for geophysical and observational biases prior
to combination and comparison. Both the ICESat and GRACE data were corrected for GIA
using the |Caron et al.| (2018) GIA model uplift and mascon-averaged equivalent water height

predictions, respectively. The integrated mass trend correction for GRACE was was 77 Gt yr—!

and the integrated volume correction for ICESat was 15 km? yr—!

. Surface pressure corrections
from Hardy et al.| (2017)) were also subtracted from the GRACE data. Atmospheric modeling errors
are at their most egregious between 2002 and 2007, which overlaps two-thirds of of the combination
interval. Within the interval, these contain a trend of -16 Gt yr—', which was subtracted from
the GRACE data. After these corrections have been applied, the trend in the input GRACE data
between 2003 and 2009 is -102 Gt yr—!.

The ICESat data were corrected for firn signals using the firn air content model of |Ligtenberg
et al. (2011). Unlike in Chapter 5, the firn air content only reflects the integrated void space within
an ice column, rather than the sum of accumulated surface mass balance and firn air content.
Subtracting firn air content alone should correct elevation signals such that they may be interpreted

as linearly identical to mass changes of ice with a uniform density of 917 kg m~3. The integrated

magnitude of this correction is 28 km? yr~—!. The standard deviation of the detrended firn air
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content was added in quadrature to the uncertainty of the original ICESat data to approximate
firn error. Inter-campaign biases in ICESat data were measured by identifying a contiguous region
above 2500 m elevation with annual precipitation of less than 30 mm EWH. ICESat-measured
elevations in the low-precipitation zone (LPZ) were averaged for each cycle. The resultant the time
series of LPZ biases was then subtracted from ICESat data for each cycle. The LPZ time series
has a trend of 1.0 cm yr—! of elevation, or 121 km?3 yr ~! integrated over the entire continent.

All pre-combination corrections are illustrated in Figure [6.3
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6.2 Least-squares Combination

6.2.1 Examination of Time Series and Effective Densities

Prior to combination, we can inspect selected colocated time series of elevation and mass. For
simplicity, the comparison is done by first mascon-averaging the ICESat data. Missing ICESat data
were imputed by extrapolating the ICESat trend map found in Chapter 4 forward in time. A scale-
agnostic comparison of these data is shown in Figure Over regions of high mass change signal,
(e.g., Pine Island, Thwaites, Kamb, and Totten) these time series are well-correlated. However,
the low signal-to-noise ratio (SNR) of inland East Antarctic locations results in poor correlation
of the GRACE and ICESat data. This low SNR is both a result of observational limitations in
GRACE and unmodeled firn air content, which dilute the correlation between the time series. Over
the Antarctic Peninsula, both ICESat and GRACE show strong trends, but broad disagreement
in variation about these trends. The narrow north-south orientation of the Antarctic Peninsula
creates an observability challenge for both ICESat and GRACE.

Further examination of Figure [6.4] shows that the the factor defining the relative scale of the
GRACE time series does not correspond to the density of fully-compacted ice (917 kg m™3) over
most of the continent. It is generally expected that once firn air content has been subtracted from
elevation data, the residual elevation signal is linearly related to gravity signals by the density of
fully-compacted ice. To map effective density in space, an orthogonal regression of the GRACE

and ICESat time series was performed for each mascon ¢ and time index j:

hij = aimij. (61)

The solution coefficient a; represents a combination of average surface snow density within
the mascon and a local elastic loading correction. The elastic loading effect is approximated by
assuming that the ice sheet floats in a medium with the the average density of Earth’s crust, 2.7 g

cm~3:
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1 1
A = — —
Pi Pcrust

(6.2)

Orthogonal regression, which minimizes the error-weighted sum of the squares in both the
mass and elevation change time series was chosen over traditional linear least-squares regression to
mitigate the effects of correlation dilution from low-SNR signals in East Antarctica. While GIA
plays a role in the relationship between these time series, it was not included in this fit.

The results of the orthogonal regression, the effective densities, are shown in Figure [6.5)
along with their uncertainties. These densities are most consistent with the expectation of 917
kg m~3 over West Antarctica, the Antarctic Peninsula, and Coats Land. Over East Antarctica.
Negative densities are found in prominent pockets near Ellsworth Land and parts of the High
Antarctic Plateau. The poor correlation of the time series in these regions is reflected in their high
uncertainty. Over many of the remaining parts of the continent, the density is consistent with zero

or the equilibrium firn densities modeled by Kaspers et al. (2004).
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6.2.2 Time-Domain Combination at Mascon Resolution

The mascon-averaged altimetry time series may be combined with GRACE data at mascon
resolution to yield cumulative mass balance for each cycle and a time-independent correction to
the background GIA model. Each mascon time series pair forms a system of 2n sparse equations

with n 4+ 1 unknowns, where n is the length of the time series (17 cycles). More explicitly,

YGRACE,i,1 Aty 1
YGRACE,i,2 Atgy 1 r 7
mi,GIA
mi1
YGRACE,i,n Aty, 1
- mi2 (63)
YICESat,i,1 ran At a;
YICESat,i,2 oo Ato i
min
YICESat,i LAt a;
L a 32,1 | _PGIA n Z_

The GIA model is parameterized in terms of equivalent water height and contributes to
GRACE observations unitarily. The relationship between observed altimetry and GIA equivalent
water height change is captured by an assumed mantle density of 4000 kg m~3, following |Gunter
et al. (2014) and Riva et al. (2009). While Wahr et al. (1995) suggest that the asymptotic limit
of effective mantle density is two-thirds the average density of Earth, or 3700 kg m~3, Purcell
et al| (2011) suggest a that this limit may be closer to 4200 kg m~3 over land. Effective mantle
density over the Antarctic Peninsula may be lower because of its unique mantle structure. This
work ultimately uses 4,000 kg m~3 everywhere to be consistent with |Gunter et al.| (2014) and Riva
et al.| (2009).

The data combination was performed by accumulating normal matrices and vectors for the
system of equations. The diagonal elements of the mascon-projected covariance matrix from the
GIA model |Caron et al.| (2018)) were used as a constraint for the solution. The rationale for

eliminating the off-diagonal terms is explained in Chapter 5.
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Figure 6.5: Best-fit, orthogonal-regression-based density solution from time series of ICESat and

GRACE.
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While the traditional approach for weighting the data involves the use of the inverse error
variances of the input data as weights, we find that the high relative precision of the ICESat
observations and their contributions to the mascon average will result in excessive weight being
given to the ICESat data. Because the ICESat data contains spurious firn air content signals that
will not be observable by GRACE, it is less important that the solution fits both time series within
their own errors, but instead that the solution time series is maximally correlated with both input
time series. The solution should therefore find the first principal component of both time series,
optimally separating the latent mass change signals in both GRACE and ICESat and discarding
spurious firn signals in ICESat.

This goal is met by weighting each input time series by its own inverse variance. This
ensures that that a common spatial scale, both the GRACE and ICESat time series have the same
approximate weight in the solution. However, if the ICESat data have additional firn signal, it
should increase the overall variance of the ICESat signal, diminishing the weight of the ICESat
data in the solution relative to the GRACE data.

1 O'%/[

= M 6.4
M Sar(yan) o3, o4

_2
1 04

—A 6.5
var(ya) J?M (6:5)

WA G =

The values U%M and 0124@‘ are the variances from the errors provided for each data point in
the time series at each mascon. These values are normalized by their respective means, 5]2\/[ and 5%/[
but their relative variations are preserved to minimize the impact of known outliers on the solution.

Least-squares combinations of ICESat and GRACE were performed with various surface
densities. The four models tested were: the “ice” model with surface density of 917 kg m™3
everywhere; the “equilibrium firn” density model of Kaspers et al. (2004), a hybrid density model
in which everywhere above an elevation of 2000 m was assigned the equilibrium density model and

every location below this elevation was assigned fully compacted ice; and the empirical orthogonal

regression model discussed earlier. Results are shown in Table[6.1] The performance of each model
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‘ Ice Equilibrium Firn  Hybrid Best-Fit
50% Density Range (kg m—3) 917 360400 360-917 230-900
Ice Mass Trend (Gt yr—!) -174 £+ 156 -122 £ 59 -183 £ 92 -140 £ 56
GIA Mass Trend (Gt yr—1) 112 + 131 112 £+ 49 110 £ 69 100 +£ 38
Reduced y? 229 226 219 25

Table 6.1: Results of mascon-resolution least-squares combinations with various density models

was assessed by computing the reduced x? of each model, or the error- and degree-of-freedom-
normalized sum of squared residuals. Instead of using the variance-based solution weights in the
computation of least squares, the original inverse error variances were used. Thus, the reduced x?
exceeds 200 for three of the models.

Naturally, the empirical model is the best-fitting by an order of magnitude because this model
was obtained by fitting both ICESat and GRACE. However, the values found in this fit, many of
which are strongly negative or close to zero, are not usable without a natural physical basis to assign
these densities. The best-performing model remaining is the hybrid model, which both captures
intense coastal ice dynamics signals and fits weaker inland signals well. The quality of these models
may also be assessed by their signal-to-noise ratio (SNR). The fully-compacted ice solution has too
much inland noise, resulting in an unusable SNR, while the hybrid model has a higher SNR. The
results from the hybrid fit are compared with the original input datasets in Figures and

The choice of densities in the solution is important to its integrity. The hybrid density model
was chosen as the best compromise between the orthogonal regression density solution and the
fully-compacted ice density model. Variance-based weighting was deemed necessary to properly
balance the uncertainties in each dataset and find solutions that are maximally correlated with

both ICESat and GRACE.
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6.3 Full-Resolution Combination

The goal of this work is to combine GRACE and ICESat data at the resolution of the input
ICESat data (27 km). Like the previous solution, the solution consists of 17 grounded mass change
vectors for the ICESat cycles, each with length 17,880, and one GIA deviation vector with length
148. Comprising the input data are 17 vectors of length 17880 for the altimetry and 17 vectors of
length 148 for the mascon data. Missing altimetry data are handled by setting the corresponding
weights to zero.

The observation matrix is sparse, and consists of four unique operators M, A, Gj; and G 4.
The M operator is the mascon-averaging operator, a 148x17880 sparse matrix that performs area-
weighted averaging within the bounds of a mascon. The A operator, a 17880x17880 dense matrix,
captures the effect mass variation has on altimetry. It combines both spatially variable ice density
and Green’s functions for elastic loading. The Gj; matrix relates GIA mass variation to the land
components of CRI-filtered JPL mascon equivalent water height rates. Because the GIA model
is parameterized to match the mascon data, this matrix takes the form of a 148-by-148 identity
matrix. Finally, the G4 operator captures the effect GIA has on observed altimetry rates. This
matrix may be viewed as a mascon back-projection operator divided by a scalar mantle density of
4000 kg m~3. The G4 and G); operators are customarily multiplied by a scalar time deviation at
each cycle to project GIA trends into the measurement space.

The full observation equation takes the form
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—YGRACE,I_ _Ath M M ]
YICESat,1 At1Gy A XGIA
YGRACE 2 AtaG M m;
YiCESat2 | = | AtaGa A my (6.6)
YGRACEn AV ESY] M| | my, |
| YicESatn | | AtnGa A

The sparse observation matrix has 306,476 rows and 304,108 columns. The system of equa-
tions has 2,368 degrees of freedom. The sheer size of the observation matrix means that direct
solution of this least-squares problem cannot be achieved with an ordinary hardware setup. The
sparsity of the observation equations, however, does result in a partially block-diagonal information
matrix when assembling the final normal equations. This configuration fits a common problem in
geodesy, where a time-independent background model is fit alongside time-dependent parameters.

The blockwise least squares solution algorithm is detailed in Kaula (1966). In it, the
sparse normal equations formed by in the least squares solution are broken up into smaller time-
dependent and time-independent components. Information matrices and vectors are accumulated
for time-independent parameters alongside the information vectors, information matrices, and cross-
information vectors and matrices of time-dependent mass variation parameters.

The GIA information vector sqra and matrix Ngia are accumulated across all data cycles.

Naia = Y A IGTWariGar + GAWa i AGA] + Pgly (6.7)
i=1
saia = »_ AG[GT Wiy m + GiWay Al (6.8)
=1

At each iteration, the intrinsic information matrices and vectors (N; and s;) for the high-
resolution mass solution are collected alongside the time-dependent cross-information matrices

N; cross illustrating relating GIA and mass variation.
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Ni= MWy ;M + ATWa A+ P71 (6.9)

Ni,cross = Ati[MTWM,iGM + ATWA,iGA] (610)

N; and N cross are combined at each iteration and accumulated to form an intermediate
time-independent information matrix and information vector used to decorrelate GIA and surface

mass variation before the final solution of Xa74.

n
N' = " N oss N Ni cross (6.11)
=1
n
§ =) NN s (6.12)
=1

After accumulation, the time-independent best-fit GIA solution vector Xg 4 is inverted along

with its error covariance Pgia.

%Gra = [Naia — N’ Hsaia — 8] (6.13)
Pcia = [Naia — N7 (6.14)

Once the GIA solution exists, it it possible to generate solutions for time-dependent mass

variation solutions m,; and the corresponding error covariance F;.

m; = N'_l[si - Ni,cross)A(GIA] (6'15)

> -1
]Di = [Nz - Ni,crossNGIAN'T ] (6,16)

%,Cross

The information matrices for GIA and cycle mass balances included smoothing constraints to
aid in filling data gaps and erase the boundaries between mascons. The GIA constraint came from
the diagonal elements of the mascon-averaged covariance matrix in the Caron et al.| (2018) GIA

model. The smoothing constraint was represented by a Gaspari-Cohn (Gaspari and Cohn, 1999)
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function with a half-radius of 75 km and a diagonal covariance amplitude of 10®° mm? EWH. The
Gaspari-Cohn operator was chosen for its inherent suitability for sparse correlations. The inversion
of the isotropic covariance matrix was performed via fast Fourier transform. Within the area south
of 86° S, where ICESat cannot observe, a smaller constraint amplitude of 10* mm? EWH to ensure
the smoothness of the resulting solution.

The construction of the altimetry component of the information matrix, ATWAJ'A at each
iteration was a computational bottleneck because of the dimensions of the A matrix and the vari-
ability of the weight matrix between cycles. The computing time and memory requirements were
reduced substantially through series expansions of this problem, based on the observation that the
diagonal elements of the observation matrix (surface ice plus elastic loading) were several orders
of magnitude larger than the off-diagonal terms (elastic deformation only). Therefore, breaking
the A matrix into diagonal and off-diagonal components enabled a binomial decomposition of
the product ATW4A,iA. If A = Adiag + Aost, Where Agjag contains the diagonal elements of A
and A.g contains the off-diagonal elements, then ATW4 A = AL (W Adiag] + AL [WaAog] +

diag diag

[WAAOH]TAdiag + AEH[WAAOH}' The first term AZ

diag WA Adiag] may be computed in linear O(n)

time, while the next two terms AdTiag[WAAoff] + [WAAOH}TAdiag are computable in O(n?) time. The
final term, AOTH[WAAOH] where the small off-diagonal elements are multiplied together create a neg-
ligible contribution to the content of the information matrix, but require O(n?) time to compute.
The elimination of this term substantially reduces computation time and memory demand with
minimal impact on the solution.

The best-fit solution trend is found in Figure Note that the inputs to the trend fit are

weighted by the inverse formal error variances from the combination.
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Uncertainty bounds were estimated using a bootstrap method (Press et al., 2007) . To speed
up processing time, the observation equations were broken up mascon-by-mascon such that high-
resolution solutions were computed within the bounds of a mascon, but were uncorrelated with
solution coefficients in other mascons. The tradeoff of this speedup was that elastic loading and
spatial smoothing could not be implemented across mascon bounds. For each mascon, the unaltered
time series of GRACE data was injected into the normal equations. At each cycle within the mascon,
altimetry data were spatially resampled with replacement. This means that certain values of y ;
and Wy, and corresponding rows of the matrix A appeared multiple times within a resampled
iteration. As before, the information vectors and matrices and the corresponding cross-information
vectors and matrices for the mascon subvector were accumulated and inverted to solve for GIA
and high-resolution mass-variation within that mascon. The mass variation subvector is added to
a master vector of mass variation for the entire continent. This process is repeated 300 times—the
maximum feasible number of iterations given time constraints—to generate a posterior distribution
of possible mass variation and GIA solutions given the input data and realistic variations therein.

The ensemble of solutions may be used to compute a distribution of continental mass trends
and total GIA correction. The posterior distribution of integrated mass change of the bootstrap
are shown in Figure [6.9]

These solution distributions notably exhibit long, mirrored tails that reflects a strong anti-
correlation between mass trend and total GIA signal. Continent-wide, the total GIA solution is
nearly perfectly anti-correlated with the mass trend solution. This is also true for East Antarctica.
Correlations between GIA and estimated ice mass trend over West Antarctica and the Antarctic
Peninsula are weaker, at -0.50 and -0.37, respectively.

The distribution obtained from the bootstrap is used to construct a lo confidence around
the best-fit estimate. Because these distributions are highly skewed, their asymmetry is expressed
according to the deviation of the 15.9th and 84.1st percentiles from the solution. The continent-
integrated mass change trend between 2003 and 2009 of —116'_%(1) Gt yr~! is within 1o of the

2002-2007 IMBIE (Shepherd et al., 2018) estimate of -73 + 53 Gt yr~!. Over West Antarctica,
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recovered mass loss of -78 J_rzlll Gt yr~! remains consistent with the IMBIE estimate of -65 + 27 Gt
yr~!. Further regional comparison of these solutions is shown in Table

The quality of the solution may be examined by assessing its best and worst cases. Laser
2A, corresponding to late 2003, has laser shots available over 90% of the continent (Figure .
However, altimetry coverage is unavoidably poor over the Antarctic Peninsula. This results in
medium-wavelength ringing and other instabilities in this region. Elsewhere, particularly above
2000 m elevation, the solution recovers smooth variation in ice mass primarily attributable to
surface mass balance. Near the coast, the solution exhibits the essential ice dynamics features. The
mass loss signals from the Pine Island and Thwaites glaciers are recovered in detail, as are the more
spatially concentrated signals on the Bakutis and Hobbs Coasts. The model further captures the

ice dynamics gains in the Kamb Ice Stream and the mass loss signal near Totten.
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Figure 6.9: Histograms of posterior distributions for Antarctic Ice Sheet ice mass trend and GIA
obtained from bootstrapping. Best-fit solutions are shown with vertical lines.
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The recovered signal suffers from impulsive noise along other low-latitude coasts because of
the gaps in the ICESat data. This noise is caused in part by ICEsat providing more spatial infor-
mation in the north-south along-track direction than in the east-west crosstrack direction at low
latitudes. This can lead to ringing and other artifacts when combined with smooth GRACE data.
This type of noise may be mitigated with a median filter in post-processing the output solutions
or by using a different set of constraints for coastal sites. For instance, an anisotropic smoothing
constraint with more reach in the east-west direction than the north-south direction may compen-
sate for the difference between along-track and cross-track resolution in ICESat data. Altimetry
quality also degrades near the coast because of increased slopes and topographic roughness. These
slope-induced errors can introduce appreciable noise, even between closely overlapping altimetry
footprints. As may be expected from, ICESat exhibits noisier performance over the rugged topog-
raphy of the Trans-Antarctic Mountains.

The worst case is embodied by Laser 2F, the last available observation cycle (Figure .
Only 52% of the ground was covered by altimetry at 27 km resolution with signals being con-
centrated inland. Despite the high density of shots inland, the solution also suffers from isolated
ringing artifacts from outlier altimetry inputs and zones of missing data. This solution fails to re-
solve Antarctic Peninsula signals better than GRACE. Mass loss near Totten is notably indistinct
amid the coastal noise.

However, this cycle also demonstrates one of the chief benefits of data combination: filling
gaps in altimetry coverage. In spite of missing data over the Kamb ice stream, the solution suc-
cessfully reconstructs the shape of the ice mass gain signals at high resolution with only hints from
low-resolution GRACE data and surrounding high-resolution altimetry. The solution also properly
allocates long-wavelength signal to the outlet glaciers in West Antarctica, but does not resolve their

shapes well.
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The solutions may be integrated over East Antarctica, West Antarctica, the Antarctic Penin-
sula, and the entire continent to form time series and trends.

The best-fit GIA solution is compared with three representative models (Whitehouse et al.
(2012)), Peltier et al.| (2015), and the reference model by |Caron et al.| (2018))) in Figure The
total mass rate correction for the Antarctic ice sheet is compared with other GIA models in Figure
which shows that the solution is within the range of variation of other models.

The majority of the deviation of the total GIA solution from the reference model comes from
East Antarctica. Using the posterior distribution to construct asymmetric confidence intervals,
the total GIA signal over East Antarctica is 70 Jjgi Gt yr~!, 26 Gt yr~! higher than the 44 +
50 Gt yr~! indicated by the |Caron et al.| (2018) reference model. Independent verification of
this apparent bedrock uplift due to GIA could be difficult due to the lack of available GPS sites.
Pending the development of novel geodetic observation methods, bedrock motion under the High
Antarctic Plateau is only practically observable through the combination of altimetry and gravity
demonstrated here.

The deviation of the GIA solution from the |Caron et al. (2018) reference model is most intense
over Ellsworth Land, where predicted uplift rates approach 1 cm yr~'. The integrated mass change
over all of West Antarctica, however only deviates from the reference model by 7 Gt yr~! for a
total mass rate of 32 JjZ Gt yr~!. The GIA model does not deviate from the predictions of |Caron
et al. (2018) significantly over the Antarctic Peninsula.

The GIA solution may be compared with GPS rates published by [Martin-Espanol et al.
(2016a). After using the JPL RL05.1M CRI-filtered mascons to remove elastic loading between
2009 and 2016, the residual observed mass trends are compared with predictions from the solution
GIA model. A cluster of nine stations on the Antarctic Peninsula were removed from the analysis
because of inadequate knowledge of mantle structure in that region. On the Amundsen Coast, data
from the stations BERP and BACK were omitted because of concern with data quality and local
environmental conditions. This comparison is shown in Figure [6.15)

At a glance, this comparison indicates that that the GIA model overestimated uplift in
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Figure 6.12: Time-variable combined mass variation solution for the major subdivisions of the
Antarctic ice sheet compared with GRACE and ICESat input data

Mass Rate (Gt yr—1) | AIS WAIS EAIS AP

GIA This work 110157 3217 7075Y 41
Caron et al/ (2018) TTE£71 25420 43+50 2.7+34

Ice Mass Trend This work (2003-2009) | -11673)  -7871, 21722 218
IMBIE (2002-2007) 73453 -65+27 +12+43 20+ 15

Table 6.2: Comparison of regional mass variation solutions with results from Caron et al. (2018)

and [Shepherd et al.| (2018)
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Figure 6.13: Best-fit GIA solution uplift rates from combining ICESat and GRACE (lower right)
compared with three representative GIA models
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Figure 6.14: Comparison of GIA mass rates integrated over the Antarctic ice sheet after
[Espaiiol et al.| (2016a))
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Figure 6.15: Comparison of the best-fit GIA model with GPS uplift rates
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Std. Dev. Detrended Residuals (mm) ‘ JPL Mascons Combined Solution

Up 4.2 4.3
East 4.4 4.4
North 5.2 5.2

Table 6.3: Standard deviations of detrended residuals for UNR GPS positions positions predicted
by GRACE and the combined solution within the 2003-2009 interval

Ellsworth Land. The model is otherwise consistent with uplift rate measurements across East
Antarctica and the Trans-Antarctic Mountains. The weighted RMS error is computed using the
inverse error variances as weights with distance-dependent tapering of the weights to diminish the
effect of clusters of GPS stations. The weighted RMS of the residuals is 3.1 mm yr~!. Other GIA
models, including IJO5R2 (Ivins et al.,|2013]), AGE1b (Sasgen et al.,|2013)), and |Gunter et al. (2014)
have weighted RMS residuals of less than 2.0 mm yr—*.

GPS time series may be used to validate the ice mass solution time series in principle. Ex-
amining the standard deviation of detrended residuals (SDDR) in three dimensions should enable
quantification of solution quality independent of GIA and other trend signals. While [Martin-
Espanol et al.| (2016a) only published GPS trends, the UNR daily GPS time series used in previous
chapters may be used to compare time variations in bedrock deformation with model predictions.
Unfortunately, this method is limited by the lack of GPS stations available in Antarctica prior to
2009. Outside of the cluster of stations in the vicinity of Ross Island, only seven sites are available
for comparison with solutions over the 2003-2009 interval. Consequently, comparing the SDDR, of
the mascon-based solutions with GIA and elastic loading predictions from |Caron et al.| (2018) and
the JPL RL05.1M mascons is inconclusive. Near-identical SDDR values are found for both mass
variation solutions (Table .

The time series of solutions may be inspected basin-by-basin and compared with GRACE
mass measurements integrated within their bounds (Figure . Basins 1, 13, 14, 17, 18, 20,
21, and 22 account for more than 80% of the variance of the total mass of the continent in this
time span. Basin 1 exhibits a substantial GIA correction. There is a constant bias in the solution

time series relative to GRACE solution. Mass loss on the Amundsen coast in basins 20, 21, and
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22 is shown with a strong negative trend in both the GRACE and combined solution time series.
However, notably, the trends in basins 21 and 22 are magnified relative to the low-resolution
GRACE solution. This reflects high-resolution ICESat data aiding the restoration of mass loss
signals that leak across basin boundaries in the GRACE data. This effect is most notable in the
narrow boundaries of basin 18, which contains the Kamb Ice Stream. The trend measured by
GRACE within the basin is magnified by a factor of two as additional spatial information from
ICESat corrects for leakage. Within the larger basins 13 and 14, where leakage is less important,

there is broad agreement with GRACE and important mass loss signals and events are captured.
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6.3.1 Resolution

The chief motivation for combining ICESat and GRACE is enhanced spatial resolution. Ver-
ifying that the combination of these two datasets yields greater spatial resolution requires multiple
methods of quantification.

In imaging, spatial resolution is defined system’s ability to distinguish lines of a particular
spacing. Resolution is represented by a modulation transfer function, which describes the imagine
system’s impulse response as a function of spatial frequency. The modulation transfer function is
obtained by computing the spectral coherence of an image relative to the structure of the original
source.

A simpler, more intuitive approach to quantifying resolution involves visualizing the mod-
ulation transfer function in terms of how the observation system modulates Fourier kernels of a
particular frequency. This is similar to checkerboard tests performed in seismic tomography and
GPS elastic loading inversion.

The first step in resolution quantification is construction of the “resolution matrix” which is
the product of the observation system pseudoinverse and the observation operator. The resolution
matrix is a square matrix that relates a set of parameters to the solution generated from the solution
of a system of observation equations. It describes impulse response of the observation system. The
diagonal elements of the resolution matrix lie between 0 and 1. The closer a diagonal element is to
1, the more well-resolved a parameter may be understood to be. The spatial resolution is reflected
in the dispersion of the off-diagonal elements in each row with distance, indicating the degree of
confusion in the solution.

For each cycle, the resolution matrix is computed from the information matrix obtained from
altimetry and gravity. The effects of GIA are neglected and the final calculation of the resolution

matrix at each cycle takes the form:

R=[ATWa;A+ MTWyriM + P7HHATW 4 A+ MT Wy M). (6.17)



139

resolution resolution resolution
Best case (Laser 2A) 90% 86% 94% 6 %
Worst case (Laser 2F) 53% 52% 85% 15 %

Altimetry Coverage <27 km <100 km  >100 km

Table 6.4: Antarctic ice sheet altimetry coverage and resolving widths for resolution thresholds of
better than the native grid resolution of 27 km, better than 100 km, and worse than 100 km

The calculation of the resolution matrix includes the smoothing covariance P.
Michelini and McEvilly| (1991)) devised a compact metric to summarize spatial resolution for
a given point in the solution vector. The rows of R may be used to compute the resolving width

sj for the corresponding mass solution vector at index j.

N R\
sj=R;IT' Y <|R]]\> ik, (6.18)

k=1

where d;, corresponds to the distance matrix for the locations of each point in the vector
m. This metric uses the resolution matrix rows as weights to compute the average information
dispersion distance from a solution location.

We compute the resolution matrix and resolving width for the best (Laser 2A, 2003, 90%
altimetry coverage) and worst (Laser 2F, 2009, 53% altimetry coverage) ICESat epochs allowed by
the model. These results are shown in Table In the best-case epoch, a resolution of 27 km is
achieved over 86% of the continent. A further 8% of the continent is resolvable to better than 100
km. In total, 97% of the continent is resolvable to better-than-GRACE resolution of 330 km. The
chief deficiencies in resolution occur near the coast and are especially pronounced on the northern
reaches of the Antarctic peninsula. While the 4.8% of the continent below the 86 °S parallel is
unobservable to altimetry, the combination of altimetry, GRACE, and elastic loading inversion
enables the solution to resolve signals as far south as 87° S with an east-west resolution of ~100
km.

The resolving width may be verified with a checkerboard test. For this test, we generate

symmetric and continuous cosine checkerboard functions with half-wavelengths given in octaves
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of grid resolution: 27 km, 54 km, 108 km, 216 km, and 432 km. The checkerboard vectors are
multiplied by the resolution matrix to obtain a set of test solutions, the local coherence of which
may be visually inspected to verify spatial resolution at each checkerboard scale. Both the resolving
widths and checkerboard tests for the selected epochs are shown in Figure [6.1

In the best-case epoch, the 27 km checkerboard is fully resolved in the solution region above
2000 m elevation and parts of the Rockefeller Plateau. The altimetry hole south of 86 °S remains
unresolved. The 54 km checkerboard is well resolved over the majority of the continent, including
Ellesmere Island, but is not resolved within 200 km of the coast or over the Kamb ice stream. The
108 km checkerboard is recovered everywhere, except within 50 km of a coast or in the 86 °S hole.
Evidence of partial recovery of the checkerboard south of 86 °S. Little improvement in coherence
is found on the Antarctic peninsula at coarser scales.

The worst-case epoch demonstrates adequate recovery of the 27 km checkerboard where
altimetry is present. Most of the continent can be represented continuously at 108 km resolution,
except within ~200 km of the coast. The coast and Antarctic peninsula are poorly resolved even
at half-wavelengths of 432 km.

The checkerboard test provides an optimistic upper limit on the spatial resolution of the
combination. The ability to distinguish features will ultimately depend on the spatial distribution
of the signal-to-noise ratio of the input data.

The spatial distribution of the SNR was examined by first computing the geometric mean of
the ratio of the absolute value of solution signal to the standard deviation of the bootstrap ensemble
members. This is shown in Figure[6.18, For more than 90% of the observable continent, the typical
SNR is ~1. The major exceptions are over Amundsen, Kamb, and Totten glaciers. Assuming that
SNR improves with the square root of the number of grid cells included in an averaging window,
then the smallest scale required to resolve a typical inland Antarctic mass change signal with
3-sigma certainty may be ~100 km.

These tests enable the following generalization: For an ideal ICESat cycle with reliable firn

corrections and little noise, over 85% of the continent may be resolved to 27 km or better. Coastal
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locations or major ice streams may be resolved to ~100 km. Locations on the Antarctic peninsula
are resolvable to ~100 km, but observing gaps may result in minimal resolution improvement over

CRI-filtered mascons. Inspection of the SNR suggests that the effective spatial resolution of the

solution is ~100 km.
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6.4 Discussion

This chapter details the generation of time-variable solutions for surface elevation change
in Antarctica and the combination of these solutions with corresponding GRACE data to create
high-resolution mass variation solutions.

The gridded, high-resolution time-variable altimetry product at the heart of this work is a
novel contribution to the field. Most literature up to this point has focused on producing altimetry
trends to assess mass trends within an interval. The altimetry product created to enable this
combination is a unique and novel “frame-by-frame” examination of surface elevation variation in
the Antarctic Ice Sheet. The spatial resolution of this product is currently 27 km, but maps of shot
pair density and cycle availability (Figure imply that solutions with grid resolutions as low as
2 km may be generated to examine elevation variations within regions. One such application of
altimetry series is the investigation of subglacial lakes across the Antarctic Ice Sheet as performed
by [Smith et al.| (2009) using ICESat data.

The availability of time-variable altimetry grids was an essential ingredient in producing
cycle-by-cycle, high-resolution solutions for mass variation in Antarctica. The solutions generated
in this chapter may also be used as training dataset to construct estimators to optimally relate
low-resolution GRACE surface mass flux data to high-resolution. Such an estimator may be used
to preserve temporal continuity for high-resolution spatial solutions in the event that ICESat-2 is
temporarily unable to collect data during its coincident observing span with GRACE-FO.

A number of lessons resulted from this combination. First, even after correcting for firn
air content, some firn air content signal is expected to remain in the data and the errors may be
correlated with the signal. Considering the low signal-to-noise ratio of GRACE and ICESat over
quiet parts of the ice sheet, a hybrid density model with fully compacted ice at low elevations and
equilibrium firn density at high elevations may be necessary to properly combine these datasets.
Variance-based weighting further mitigated the role of residual firn air content signal in the ICESat

data in the combination. Weighting the data according to variance ensures that the mass time
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0.0

Figure 6.18: Signal-to-noise ratio of high-resolution mass variation solutions
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series in the solution is maximally correlated with both the GRACE and ICESat input time series
at a point by downweighting the ICESat data accordingly if it contains extraneous signals that
aren’t correlated with the corresponding with GRACE time series.

While few GPS observing sites are available for measurement of crustal deformation during
the period of 2003-2009, trends obtained from GPS stations installed in later years may be used to
constrain the time-independent GIA model outside of the data observing range. The inclusion of
GPS trends from outside the observation period would be applicable to combination of data from
GRACE-FO and ICESat-2 if these satellites outlive any of the current GPS observing sites.

ICESat’s groundtrack may be poorly suited for observing elevation change over the Antarctic
Peninsula. This results in poor resolution of mass change over this region in the combination of
ICESat and GRACE. Other possible data sources, data editing rules, and and spatial constraints
should be investigated to improve mass variation solutions near the coast. The addition of lower-
inclination altimetry data, such as from CryoSat may stabilize this solution.

Sasgen et al.| (2019) notably combine CryoSat altimetry data with GRACE data over the
20112017 interval to find a mass loss rate of 178 + 23 Gt yr~!. While these aren’t directly
comparable with our solutions over the 2003-2009 interval, the difference is partly attributable
to the acceleration in mass loss of ~15 Gt yr=2 over the 2002-2017 interval found by Shepherd
et al.| (2018)). Their combination technique differs from this work in that it was performed in the
spectral, rather than spatial domain. This enabled scale-dependent relative weighting of altimetry
and GRACE, with altimetry being given more weight at spatial scales below 400 km. This work,
by contrast, is a straightforward space-domain combination of low-resolution area averages with
high-resolution point measurements.

Gao et al.| (2019) recently performed another combination of GRACE with ICESat altimetry
over 2003-2009, finding a mass loss signal of 84 + 31 Gt yr~! and a GIA correction of 55 + 23 Gt
yr~!. While their mass loss estimate is consistent with this work within 1 o, their GIA estimate is
significantly smaller. Their GIA estimate is distinguished from this work in that it uses the more

robust spherical-cap parameterization presented in Chapter 4 of this work. They also use variable
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effective mantle densities, particularly over the Antarctic Peninsula.



Chapter 7

Conclusions

This project focused on combining GRACE, ICESat, and GNSS data to better resolve the
sources of mass change in Antarctica. The primary objective is to implement a combination of
geodetic observations of Antarctica to resolve variations in mass on monthly timescales. The

combination should fulfill three criteria:

(1) Assimilate GNSS, altimetry, and gravimetry data into a model of mass variability in Antarc-

tica

(2) Disaggregate sources of mass and elevation change including GIA, ice dynamics, surface

mass balance, and firn compaction

(3) Increase spatial resolution of Antarctic mass transport relative to GRACE solutions at

monthly timescales

The inputs, outputs, and timescales of each method are tabulated in Figure

Because of the exploratory nature of this investigation, no single method presented in this
work fulfills all of these goals. This is partly to enable independent validation of solutions and to
reduce the complexity of the overall problem. Furthermore, no method disaggregates all Antarctic
mass transport processes at once. Instead, GIA is separated from aggregated ice sheet processes in
some methods. In solution methods seeking to disaggregate ice dynamics and surface mass balance

or adjust the sum of their contributions, GIA is treated as an independent background model.
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Finally, a number of these investigations were preformed at mascon-resolution or by operating on
elevation and surface mass trends, not necessarily offering improvements on the spatial or temporal
resolution of GRACE. The direct least-squares combination of ICESat and GRACE in Chapter 5
improves the spatial resolution of GRACE at the temporal resolution of ICESat.

Nonetheless, this investigation has resulted in the creation of an in-depth toolkit for under-
standing Antarctic mass variation with multiple geodetic datasets.

Atmospheric errors, a major error source in GRACE data were studied in depth on monthly
timescales. In situ data, robust reanalyses, and optimal combinations of these models and data
were used to validate the atmospheric component of the dealiasing model and produce corrections
to GRACE solutions. These errors were found that to hide additional acceleration in mass loss
on the order of 4 Gt yr~2. This work also finds that the next generation of dealiasing models,
AODI1B RLO06, largely corrects these discrepancies by using the ERA-Interim surface pressure field
as an input after 2006. However, the new dealiasing model still contains less robust operational
atmospheric models prior to 2006 and thus still features their associated drifts. This work further
demonstrates the presence of atmospheric error signals in GRACE data over the High Antarctic
Plateau. Using these a method for recovery of atmospheric signals in quiet parts of Antarctica was
developed, demonstrating the potential of GRACE as a meteorological observing tool.

These atmospheric errors and their corrections were used in preprocessing of data combination
in Chapter 6. Over the 2003-2009 ICESat interval, where atmospheric errors are most extreme,
these errors add a correction of 16 Gt yr~! to the input GRACE data. This work highlights the
importance of including atmospheric surface pressure corrections in analyses of GRACE data.

This investigation required the development of data products for ICESat elevation changes
from overlapping footprints and elevation change grids by cycle. The resolution and effective revisit
frequencies of locations in Antarctica over the 2003-2009 span were quantified. These time-variable
grids for each cycle were used to produce estimates of effective surface density via least-squares

comparison of mascon-averaged ICESat elevation grids.
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This work developed a method for separation of ice sheet mass trend signals and GIA using
GRACE data, GNSS data, and GIA ensembles. It also replicated the |Gunter et al.| (2014) method
for separation of ice sheet mass trend signals and GIA using GIA ensembles and GNSS data. A
method for separating ice dynamics and surface mass balance trend signals in mascons without
necessarily increasing spatial resolution was explored.

Another part of this project focused on obtaining monthly solutions at high spatial resolution
through the combination of GRACE, ICESat, surface mass balance models, and basin discharge
measurements. The investigation of monthly combination first resulted in a method for estimating
ice dynamics fields using ICESat fields and adjusting these fields with basin discharge estimates.
This a priori ice dynamics model was combined with the RACMO surface mass balance model and
low-resolution GRACE data to obtain high-resolution mass change solutions. The elastic loading
predictions from these solution methods were demonstrated to be consistent with in independent
GNSS position time series.

Finally, the work culminated in the direct, least-squares combination of GRACE and ICESat
at the temporal and spatial resolution of ICESat. It required the creation of a unique, time-variable
elevation data product created by locating overlapping footprints across different ICESat cycles and
inverting these elevation differences to create time series of elevation change. These time series were
combined with low-resolution mascon solutions from GRACE to simultaneously produce 17 high-
resolution slices of Antarctic mass balance in time and a low-resolution, time-independent solution
for GIA. This work revealed the challenges of combining fundamentally different measurement
types at these temporal and spatial scales. It resulted in an estimate for total mass change in the
2003—2009 interval of -1 16:1-)(1) Gt yr_1 and a GIA estimate of 110J_rgg Gt yr_l. These estimates are

broadly consistent with contemporary work within 1-2o.

7.1 Future work

It is desirable to unify the analysis techniques described in this work into a single filter that

accomplishes all of the stated project goals. This work produced time-variable maps of ICESat
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Inputs Modeled Processes
Basin Atmospheric Surface Ice Firn
Filter Description = GRACE ICESat GNSS RACMO . P Mass . N GIA Timescale
Discharge Errors Dynamics : Compaction
Balance
Cha3pler Atmospheric Errors . . . Monthly
GNSS + GRACE . . . . Trend
ICESat + GRACE . . . . Trend
Chapter ICESat/GRACE c
4 Regression ° ® . onstant
Source Separation . . . . Trend
Ice Dynamics
Adjustment ° ° * . Monthly
Chaspler leed-ng;;:\e:(alman . . . . Monthly
Conventional
Kalman Filter ° ° ° ° . Monthly
Chapter Least-Squares
6 Combination ¢ ¢ ¢ ¢ Cycle

Figure 7.1: Summary of input data, modeled output processes, and data timescales for all solution
methods explored in this work
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elevation grids at the timescale of the iciest cycle (2-3 times per year over a typical 33-day span),
but these were not ingested into the monthly solutions. The cycle-based solutions may be used
to estimate ice dynamics priors and covariances instead of using average trends. Firn air content
could be modeled using spatial constraints from existing models rather than being treated as a
background model. GNSS solutions could also be included with future solutions rather than set
aside for validation.

The methods developed for this work can benefit regions where changes in ice mass occur
on smaller scales than GRACE can resolve. The Gulf of Alaska contributed 75 4+ 11 Gt yr~! to
current sea level rise between 1994 and 2013 (Larsen et al., [2015]). Because Alaskan ice mass loss
can locally create geoid changes in excess of 1 ¢m per decade, high-resolution modeling of these
signals may prove essential to maintaining an accurate geoid-based height system (Jacob et al.,
2011). Iceland’s major ice caps are individually much smaller than a single mascon, but local
crustal deformation caused by these processes are observable by InSAR and surrounding GNSS
sites, which capture both elastic loading from the ice caps and the unique GIA signals associated
with recent deglaciation (Auriac et all, 2013).

As the three major datasets used in this work represent the major types of geodetic observa-
tions in Antarctica, the mathematical and computational infrastructure used to solve this problem
could, in principle, accommodate other time-variable geodetic datasets. More importantly, the ac-
curacy of this solution should be evaluated using data outside of the core triad of GRACE, ICESat,
and GNSS data.

Radar altimetry data present the most immediate additional information due to their broad
coverage in both space and time. CryoSat-2, launched in 2010, extends the record of Antarctic
surface elevation change to the present day. |[Helm et al.| (2014), for example, use CryoSat-2 data
to measure the loss of -128 + 83 km?® yr~! of Antarctic ice sheet volume between 2011 and 2014.
Envisat radar altimetry is available between 2002 and 2012, with considerable temporal overlap
between ICESat data. Envisat orbits at a somewhat lower inclination than ICESat, and is therefore

only able to provide data from as far south as 81.6° S compared with ICESat’s 86.0° S. Nonetheless,
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the data provided by the Envisat mission have been used to establish elevation change rates over
Antarctica (Flament and Rémy), 2012]).

Airborne laser altimetry from Operation IceBridge (Koenig et al., 2010]) is designed to supple-
ment ICESat altimetry. While IceBridge flight lines often capture much smaller spatial scales than
the proposed solution scales, these flights are often designed to follow prior ICESat groundtracks

and frequently target regions where elevation change is expected.

7.2 Final Remarks

As stated at the beginning of this work, measuring mass transport on Earth’s surface is
a top priority for Earth science in coming years. At the time of this writing, GRACE-FO and
ICESat-2 are in orbit collecting and will soon return science data products to extend the record
of mass change in Antarctica. The techniques demonstrated in this work pave the way toward
robust simultaneous combinations of these data and will enable refinement of the community’s
understanding Antarctica’s present contributions to sea level rise and the role Antarctica will play
in future sea level. The higher resolution afforded by the techniques developed here will sharpen
understanding of mass transport processes in Antarctica. The unique altimetry and surface mass
change products developed in Chapter 6 will allow researchers to examine cumulative mass balance
in Antarctica on a cycle-by-cycle basis rather than through averaged trends. They will be of benefit
to modelers of both the Antarctic ice sheet and solid-Earth processes like GIA. Furthermore, the
techniques demonstrated here are applicable to ice mass changes in other parts of the world.

The combination techniques presented here and their output products open new avenues for

Antarctic science.
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