
 
 

 

 

 

SOLAR-THERMOCHEMICAL HYDROGEN PRODUCTION USING THIN FILM ALD 
FERRITES AND OTHER METAL OXIDES 

by 

 

JONATHAN RICHARD SCHEFFE 

B.S., North Carolina State University, 2005 

 

 

 

 

 

A thesis submitted to the 

 Faculty of the Graduate School of the  

University of Colorado in partial fulfillment 

of the requirement for the degree of 

Doctor of Philosophy 

Department of Chemical and Biological Engineering 

2010 

 

 

 

 



 
 

This thesis entitled: 

Solar-thermochemical Hydrogen Production Using Thin Film ALD Ferrites and Other Metal 
Oxides 

written by Jonathan Richard Scheffe 

has been approved for the Department of Chemical and Biological Engineering 

 

 

 

       

Alan W. Weimer (Chair) 

 

 

 

       

Mark Allendorf 

 

 

Date    

 

 

 

 

The final copy of this thesis has been examined by the signatories, and we 

Find that both the content and the form meet acceptable presentation standards 

Of scholarly work in the above mentioned discipline.



iii 
 

 

 

Scheffe, Jonathan Richard (Ph.D., Chemical and Biological Engineering) 

Solar Thermochemical Hydrogen Production Using Metal Oxide-based Reactive Intermediates 

Thesis directed by Professor Alan W. Weimer 

  

Production of renewable hydrogen is achievable via two-step redox cycles using metal 

oxide-based intermediates. Concentrated solar energy is capable of decomposing the metal oxide 

in the first high temperature step, and in the second step water is reacted with the reduced metal 

oxide to produce H2 and regenerate the starting material.  

The thermodynamics of relevant ferrite-based water splitting cycles has been investigated 

using the thermodynamics software package FactSage. The effect of different metal substitutions 

in MxFe3-xO4, has been explored, and indicates that Co and Ni based ferrites are both superior to 

Fe3O4. Additionally, it is shown that increasing the inert gas concentrations has a direct effect on 

the reduction temperature. Increasing the amount of cobalt results in lowering the thermal 

reduction requirements, but does not necessarily translate to more H2 production. For values of x 

> 1, the amount of reducible iron decreases, and results in less H2 production at elevated 

reduction temperatures. Oxidation of reduced species is shown to be achievable at temperatures 

greater than when ∆Grxn > 0 if large excesses of water are introduced. More H2 is expected to be 

present at equilibrium for ferrite based reactions compared to ceria based water splitting cycles, 

because the degree of reduction is approximately three times greater. 

Atomic layer deposition (ALD) has been used as a means to synthesize thin films of iron 

oxide, which can be used as reactive intermediates in solar redox cycles. Conformal films of 

amorphous iron(III) oxide and α-Fe2O3 have been coated on zirconia nanoparticles (26 nm) in a 
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fluidized bed reactor by atomic layer deposition. Ferrocene and oxygen were alternately dosed 

into the reactor at temperatures between 367 oC and 534 oC. Self-limiting chemistry was 

observed via in situ mass spectrometry, and by means of induced coupled plasma – atomic 

emission spectroscopy analysis. Film conformality and uniformity were verified by high 

resolution transmission electron microscopy, and the growth rate was determined to be 0.15 Å 

per cycle.  

Iron oxide (γ-Fe2O3) and cobalt ferrite (CoxFe3-xO4) thin films have also been synthesized 

via ALD on high surface area (50 m2/g) m-ZrO2 supports. The oxide films were grown by 

sequentially depositing iron oxide and cobalt oxide, and adjusting the number of iron oxide 

cycles relative to cobalt oxide to achieve desired stoichiometry. Samples were chemically 

reduced in a flow reactor equipped with in situ x-ray diffraction. They were also subjected to 

chemical reduction and oxidation in a stagnation flow reactor to test activity for use in chemical 

looping cycles to produce H2 via water splitting. γ-Fe2O3 films chemically reduced in mixtures of 

H2, CO, and CO2 at 600 °C formed Fe3O4 and FeO phases, and exhibited a trend-wise decrease 

in H2 production rates upon cycling. Co0.85Fe2.15O4 films were successfully cycled without 

deactivation and produced four times more H2 than γ-Fe2O3, principally due to the formation of a 

CoFe alloy upon reduction. For comparison, a mechanically milled mixture of α-Fe2O3 and ZrO2 

powders with similar iron loading to the thin films did not maintain high activity to water 

splitting due to sintering and grain growth. 

Cobalt ferrites are deposited on Al2O3 substrates via ALD, and the efficacy of using these 

in a ferrite water splitting redox cycle to produce H2 is studied. Experimental results are coupled 

with thermodynamic modeling, and results indicate that CoFe2O4 deposited on Al2O3 is capable 

of being reduced at lower temperatures than CoFe2O4 (200oC-300oC) due to a reaction between 
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the ferrite and substrate to form FeAl2O4. Significant quantities of H2 are produced at reduction 

temperatures of only 1200 oC, whereas, CoFe2O4 produced little or no H2 until reduction 

temperatures of 1400 oC. CoFe2O4/Al2O3 was capable of being cycled at 1200 oC reduction/ 

1000 oC oxidation with no obvious deactivation. 

Cobalt ferrite (Co0.9Fe2.1O4) and iron oxide (Fe3O4) thin films deposited via ALD on m-

ZrO2 supports are utilized in a high temperature water splitting redox cycle to produce H2. Both 

materials were thermally reduced at 1450 oC and oxidized with H2O (20-40%) at temperatures 

between 900 oC and 1400 oC in a stagnation flow reactor. Oxidation of iron oxide was more rapid 

than the cobalt ferrite, and the rates of both materials increased with temperature, even up to 

1400 oC. At elevated oxidation temperatures (T > 1250 oC) we observed simultaneous production 

of H2 and O2, due to both thermal reduction and water oxidation operating in equilibrium. A 

kinetic model was developed for the oxidation of cobalt ferrite from 900 oC to 1100 oC, in which 

there was an initial reaction order limited regime, followed by a slower diffusion limited regime 

characterized well by the parabolic rate law. The activation energy and H2O reaction order 

during the reaction order regime were 119.76 ± 8.81 kJ/mole and 0.70 ± 0.32, respectively, and 

the activation energy during the diffusion limited regime was 191 ± 19.8 kJ/mol.  

The feasibility of using commercially available, un-doped, ceria (CeO2) felts in a 

thermochemical redox cycle to produce H2 has been explored, and a detailed kinetic analysis of 

the oxidation reaction is discussed. Reduction is achieved at 1450 oC, and the subsequent H2 

producing step is studied from 700 to 1200 oC and H2O mole fractions of 0.04 to 0.32. The O2 

and H2 equilibrium compositions remain constant for up to 30 redox cycles, and sintering 

appears to be abated by microscopy analysis. The average amount of H2 produced is 280.9 ± 

45.8 µmoles/g CeO2. The re-oxidation rates are faster on a per mass basis than similar ferrite 
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based-cycles because the surface area is largely unaffected by thermal cycling. The oxidation 

reaction is governed by a first order reaction mechanism (1-α) at low temperatures and 

conversions, but at higher temperatures the mechanism transitions to a second order reaction (1-

α)2. This is attributed to the onset of the thermodynamically favored reverse reaction at elevated 

temperatures. The activation energy is calculated between 700 and 900 oC from 0.2<α<0.5, and 

determined to be 35.5 ± 13.3 kJ/mol. An Arrhenius expression, coupled with a first order 

reaction mechanism is used to model the experimentally observed reaction rates where the 

forward reaction was predominant.  
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CHAPTER 1   MOTIVATION AND SCOPE 
 

1.1 Motivation 
 

Historically, energy has played a large role in the development and growth of societies. 

Before the discovery and use of fossil fuels, “ancient civilizations, no matter how enlightened or 

creative, rested on slavery and on grinding human labor, because human and animal muscle 

power were the principal forms of energy available for mechanical work [1].” The advent of the 

industrial revolution was fueled in large part by cheap and plentiful fossil fuels, and the 

discovery and use of these ubiquitous energy sources have helped our society progress to the 

point where it is today. In fact, energy usage has been directly correlated to a society’s standard 

of living [2]. There is no question that these easily accessible and abundant fuels sources have 

contributed to a comfortable standard of living for nations across the globe. However, their 

supplies are finite and it is imperative that we develop a more modern energy infrastructure in 

the future. In the nearly three hundred years since the beginning of the industrial age, we have 

seen innumerable technological advances, yet our dependence on fossil fuels over this time span 

has not waned. Once their supply begins to dwindle, prices will become prohibitively expensive, 

and in order to maintain our standard of living we must be capable of cheaply exploiting other 

alternative energy sources.  

Many assume that renewable energy sources will smoothly and seamlessly replace fossil 

fuels when they are needed, but in reality this is a process that will take decades to realize. The 

world’s entire energy infrastructure is based on fossil fuels, from the internal combustion engines 

in our cars and the pipelines their gas is transported in, to the electricity generated and sent to our 

homes via an electrical grid. Predictions indicate that peak oil production may be reached as 
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early as 2021, yet only 7% of the United States energy needs are derived from renewable 

resources [3, 4]. A transition to another energy infrastructure, like the often discussed “Hydrogen 

Economy”, will take years of research, planning, and development, and will not simply occur 

overnight. It is vital that we are not caught flat-footed and realize too late that we are dependent 

on an energy source that will not be available forever.  

There are other equally important but less quantifiable costs associated with our 

dependence on fossil fuels use. The United States is slowly becoming more dependent on foreign 

sources of oil, which inevitably leads to uncertainty regarding its price and supply. For example, 

the Organization of the Petroleum Exporting Countries (OPEC) is able to artificially manipulate 

the price of oil simply by decreasing production. We are reminded of this dependence during 

times like the 1973 oil embargo, and as recently as 2008 when the crude oil prices rose to a 

record high of nearly $150 per barrel. Price fluctuations such as these are inevitable when such 

large percentages of this exhaustible commodity are controlled by a few. Although the United 

States is the third largest producer of crude oil, we are the world’s largest consumer, of which 

57% is imported [4]. As recently as 1970 its production peaked, but demand is at an all time high 

[5].  

Another inevitable byproduct resulting from fossil fuel consumption is the release of 

greenhouse gases into the earth’s atmosphere. These gases are believed to accentuate the 

“greenhouse effect”, effectively causing the atmosphere to act as an insulator and preventing 

some of the earth’s radiative energy from escaping the atmosphere and warming the planet. Over 

the past twenty years, 75% of the emitted greenhouse gases have been caused by the burning of 

fossil fuels. CO2 concentrations have increased to nearly 385 ppm since the onset of the 

industrial revolution and it is believed that this increase is directly related to the earth’s climate 
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[6]. Surface temperatures have risen by 0.6 oC to 0.9 oC and are expected to keep rising as CO2 

concentrations continue to increase [7]. This will have a direct effect on plant and animal 

species, as their environments will be irreparably altered. The Arctic ice cap is melting at an 

annual rate of twenty four thousand square miles, and increasing CO2 concentrations in oceans 

are turning them more and more acidic. Other more tangible but equally unavoidable 

environmental impacts associated with the extraction of fossil fuels include large-scale oil spills, 

such as the British Petroleum spill in the Gulf of Mexico that has caused severe environmental 

problems. Although the short term costs of ignoring these problems are certainly less than 

addressing them, we must not lose sight of our future. The long term economic and 

environmental costs of not investing in alternative energy technologies are too great. The simple 

fact is we are a nation and society that is completely dependent on a resource that will 

undoubtedly not be here forever. 

Of all the known renewable energy sources, solar energy is the most abundant. As of 

2006, the earth’s energy requirements were approximately 16 Terrawatts, and about half of this 

is used by United States [4]. The incident sunlight on the earth’s surface provides more than 

enough power to provide this energy. According to the amount of solar irradiation incident in the 

southwestern United States shown on Figure 1-1, the state of Arizona receives about 12 times 

more solar energy than the entire United States required in 2006 [8]. Therefore, if we could 

capture this at only 10% efficiency it would be possible to power the country with an area 

roughly the size of Arizona. Efficiencies such as these are achievable commercially today, but 

obviously if the efficiencies were increased the amount of land required would be decreased. The 

shear abundance of solar energy is enough motivation to consider this energy source a viable 

candidate to satisfy our needs. 
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Figure 1-1: ISCCP Solar irradiance Data, April 1997. Bishop JKB. Surface Solar Irradiance from 
ISCCP data. Ocean Biogeochemical Processes Group at Lawrence Berkeley National Laboratory 

 

Photovoltaic solar cells capable of generating electricity are perhaps the most ubiquitous 

of all solar technologies. This technology is practical at small scales where the generated 

electricity is used locally. However, it is not feasible to transport electricity over long distances 

due to resistive losses from the transmitting line. This problem is exemplified in the United 

States, where the highest concentrations of solar irradiance are generally located in areas of low 

population densities. Therefore, the conversion of solar energy to a fuel source that can be 

transported long distances would be ideal.  

Hydrogen is a particularly promising solar derived energy carrier for several reasons, and 

talk of transition to a hydrogen fuel based economy has become so widespread that it is often 
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referred to as the “hydrogen economy” [9, 10]. It is possible that it could be transported in 

pipelines or on roads, not unlike how gasoline is transported today [11, 12]. Hydrogen is the 

most common element on the surface of the earth, and has the highest energy density of all 

conventional fuels [11]. It is capable of being utilized in fuel cells which are 2-3 times more 

efficient than traditional combustion engines and water is the only reaction byproduct. It is 

referred to as an energy carrier, rather than an energy source because it does not exist in its 

elemental form [11]. Rather it must be derived from other chemical species such as fossil fuels or 

water.  

Currently, 98% of all hydrogen production comes from non-renewable fossil fuel based 

resources[10]. There are several renewable pathways for the production of hydrogen, many of 

which are solar-based[13], but most of these processes lack the ability to efficiently convert 

sunlight into hydrogen. This is largely because they rely on several steps to convert the 

sunlight/water into hydrogen, and with each step energy losses are incurred along the way. An 

example of this is photovoltaic (PV)/electrolysis in which sunlight is converted to electrical 

energy via PV cells, which subsequently power an electrolyzer to split water and generate H2. An 

alternative to this is the solar-thermochemical production of hydrogen.  This process avoids the 

inefficiencies of some of the other processes by thermally decomposing H2O directly into H2 and 

O2, and has the potential to be the most efficient renewable H2 production method [13]. It has 

theoretical maximum solar to heat efficiencies (LHV) of between 40 and 49% and solar to 

hydrogen efficiencies of about 20% [14, 15].  

The production of hydrogen via solar-thermochemical cycles provides the motivation for 

this thesis [16]. The objective is to produce hydrogen or other related transportable fuels from 

renewable energy sources, particularly concentrated sunlight, as cheaply and efficiently as 
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possible in order to provide a fuel source which is capable of meeting the country’s and world’s 

future energy demands. 

1.2 Scope 
 

The ultimate objective of this research project is to produce hydrogen and/or other 

transportable fuels from water and carbon dioxide using concentrated solar energy. Specifically, 

possible materials will be explored, typically metal oxides, that are capable of operating in a two-

step thermal-redox cycle to produce a useable fuel. The net reaction leaves the intermediate 

unchanged. The role of the intermediate is to reduce the energy requirements of the reaction, 

similar to the role of a catalyst. This process can be seen from the generic two-step water 

splitting process below to produce H2. 

 

𝑀𝑂 +  𝑠𝑜𝑙𝑎𝑟 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦  → 𝑀𝑂1−𝑥  +   
𝑥
2
𝑂2                                                                           𝟏) 

𝑀𝑂1−𝑥  +  𝑥𝐻2𝑂 → 𝑀𝑂 +  𝑥𝐻2                                                                                                                𝟐) 

𝑁𝑒𝑡 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛: 𝑠𝑜𝑙𝑎𝑟 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 + 𝑥𝐻2𝑂 →  
𝑥
2
𝑂2  + 𝑥𝐻2                                                   𝟑) 

 

The first step involves the reduction of a metal oxide (MO) using solar thermal energy, 

and generally occurs at high temperatures (T > 1200 oC). The following step exposes the reduced 

MO to water, thereby re-oxidizing the MO and generating H2. This results in a net reaction 

where the only feedstocks are solar thermal energy and water, and the net products are H2 and 

O2. The advantages of completing this reaction in two steps rather than one are twofold. First, the 

thermodynamic requirements to directly split water are extremely large ( T> 4300 K), and this 

process acts to decrease the upper operating temperature required. Secondly, rather than dealing 



7 
 

with a potentially explosive mixture of H2 and O2 that needs to be separated, the H2 and O2 are 

generated independently.  

There is a range of materials and/or feedstocks that have the potential to produce H2 or 

other fuels by analogous 2-step processes. Perhaps the most ubiquitous materials include metal 

oxides of the form, MxFe3-xO4, commonly referred to as ferrites or spinel oxides. M is generally a 

transition metal, and some of the most frequently explored metals include Co, Ni, Zn and Mn, all 

of which have advantageous properties. More recently, CeO2 and metal doped CeO2, have been 

utilized in these cycles due to their relative high temperature morphological stability.  

In addition to H2O, other feedstocks such as CO2 have the potential to produce useable 

fuels via similar redox cycles. For example, when CO2 is substituted for H2O in the above 

reactions, the end product is CO rather than H2. This can easily be converted into H2 via the 

water gas shift reaction, or used in a syngas mixture to produce carbon based fuels. The 

temperature requirements can be lowered even further if a biomass source is incorporated in the 

first reaction. It is capable of chemically reducing the metal oxide at lower temperatures than 

would be possible from only thermal energy and the resulting second step would remain 

unchanged. 

This thesis will focus primarily on the use of cobalt ferrites (CoxFe3-xO4) to thermally 

split H2O into H2 according to the above redox cycle. It is well documented that this material has 

the potential to produce H2 via these thermochemical cycles, and has distinct advantages 

compared to other ferrites. It has been shown to be promising from both an experimental and 

thermodynamic perspective. Previous research that has been conducted to focus on the kinetics 

and thermodynamics of the relevant reactions will be extended.  Furthermore, the effect of 

synthesis procedures will be investigated. In addition to cobalt ferrites, the feasibility of other 
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promising metal oxide materials will be explored along with alternative routes to the production 

of renewable H2 via similar, high temperature redox cycles.  

More specifically, this research will focus on the synthesis of cobalt oxide and iron oxide 

thin films via atomic layer deposition (ALD) in order to synthesize samples of the form CoxFe3-

xO4. The purpose of this is twofold. Firstly, the influence of cobalt concentration on the 

thermodynamics and kinetics of the relevant reactions will be investigated. Secondly, ALD 

provides the ability to deposit well defined and homogenous films.  It is an ideal platform in 

which to model and to study the reaction kinetics. A fundamental understanding of the reaction 

kinetics is essential for material and reactor design, but has largely been overlooked by the 

scientific community. Because ALD is independent of line of sight, it also provides the ability to 

deposit films on various types of substrates, ranging from highly porous high surface area 

materials to well-defined single crystals. This work will focus on depositing the ferrite on ZrO2 

and Al2O3 supports, because both are readily available and thermally stable at the high 

temperatures of interest. 

Baseline testing of the ALD synthesized materials will be conducted in a high 

temperature horizontal furnace, which is equipped with a steam delivery system and a residual 

gas analyzer (RGA) to measure the product gases. The goal of these studies is to roughly 

compare the materials to one another in terms of their ability to produce H2 repeatedly over many 

cycles. They will also be compared to powder-based samples that are known to work well from 

the literature. The relevant phases that are formed after reduction and oxidation will be studied 

via powder x-ray diffraction (XRD) and other applicable analysis techniques to determine what 

interactions, if any, there are between the ALD films and the underlying supports. 
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The kinetics of the water splitting reaction will be studied at Sandia National 

Laboratories in a high temperature stagnation flow reactor (SFR). The advantage of this reactor 

lies in its ability to ensure one-dimensional and homogeneous flow across the sample. 

Understanding the gas dynamics at the sample’s interface is essential for developing relevant 

kinetic models. We are interested specifically in determining the role, if any, of diffusion, surface 

area, and cobalt stoichiometry of these materials. Additionally, we are concerned with reaction 

conditions such as reduction and oxidation temperature, water concentration, and pressure. This 

reactor is equipped with a modulated beam mass spectrometer to measure the reaction product 

species, and is capable of operating between 1 and 760 Torr. 

Following this, the effect of syngas reduction will be studied in contrast to thermal 

reduction to produce H2 at lower temperatures. The interest here lies in determining the optimal 

reduction conditions that limit the morphological evolution of the samples and provide the best 

conditions for cyclical repeatability. The number of possible species formed during syngas 

reduction is much greater than for thermal reduction, and is dependent on the concentration and 

composition of reduction gases and the reaction temperature. Because of this complexity, these 

experiments will be coupled with in-situ XRD experiments to determine the crystalline phases 

that are formed.  

In addition to cobalt ferrites, the feasibility of using CeO2 for both H2O and CO2 splitting 

reactions will be studied and compared to CoxFe3-xO4. These materials have received recent 

interest due to their high temperature stability, but are even less understood than ferrites. Some 

baseline experiments using the SFR will be conducted to determine the temperatures required for 

thermal reduction and optimal oxidation temperatures. Their thermal stability will be studied, 

and the oxidation kinetics will be investigated. 
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For all of the experiments mentioned, equilibrium calculations using the thermodynamic 

software package, FactSage, will be utilized to help understand and predict equilibrium species 

that are formed during thermal reduction and oxidation. Ultimately, thermodynamic calculations 

will help to determine optimal conditions where one would expect these reactions to occur, and 

help to design experiments effectively and efficiently. Thermodynamic modeling can be used as 

a means to easily screen for “alternative” water splitting cycles without the need to perform 

costly experiments. 

Additionally, material characterization is critical to interpreting the aforementioned 

experimental results. The performance of these materials ultimately depends on their ability to be 

cycled repetitively, up to thousands or even millions of times. Therefore, it is planned to 

characterize how these materials change, if at all, during cycling. By coupling experimental data 

with microstructural analysis, we hope to resolve the means by which the materials are changing. 

Analysis techniques planned to be utilized are high resolution transmission electron microscopy 

(HRTEM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), 

Raman spectroscopy, powder XRD, induced coupled plasma – atomic emission spectroscopy 

(ICP-AES), and BET surface area analysis. 
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CHAPTER 2   LITERATURE REVIEW 
 

2.1 Traditional Methods of Hydrogen Production 

 
Worldwide, about 0.1 Gton of H2 is produced annually, 98% of which is the product of 

fossil fuel conversion [1]. Several processes are used to convert a variety of fossil fuels, included 

steam reforming of natural gas[2], partial oxidation and autothermal reforming of hydrocarbons 

and alcohols[2, 3], and coal gasification, and biomass gasification[4]. Both steam reforming of 

natural gas and partial oxidation involve reforming the fuel source with steam to produce a 

syngas mixture, which can be further converted to a H2/CO2 mixture via the water gas shift 

reaction. The difference between the two processes lies in how heat is provided to the reaction. 

In steam reforming heat is provided externally, whereas in partial oxidation the necessary heat is 

provided by burning a portion of the fuel. In their most basic forms, traditional coal and biomass 

gasification operate analogously to the aforementioned processes. The coal or biomass is 

gasified, reacted with air or steam at elevated temperatures to form a syngas mixture, and 

followed by the water gas shift reaction to generate more H2. Due to the nature of these fuel 

sources, more CO2 and impurities are generated compared to the aforementioned methods. 

Currently, all of these processes are a viable means to produce H2, but they are not a solution to 

our energy problems. They all require the use of non-renewable fuel sources, and in all cases are 

inherently more energy intensive than the amount of useable energy acquired. However, because 

all of the CO2 generated in these processes is centralized, sequestration is more viable than if it 

were generated elsewhere on a smaller scale (i.e. automobiles). Additionally, these processes 

would allow fuel sources to be used that are plentiful in the United States [5], rather than relying 

heavily on other nations for the country’s energy needs. So, while these traditional H2 production 
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methods are not an end solution to our energy concerns, they do provide a realistic means to 

transition from our current energy infrastructure to one based on hydrogen.  

2.2 Carbon Neutral Hydrogen Production 
 

A more efficient and renewable means of H2 production from biomass[6-8], coal[9], 

natural gas[10], and even carbonaceous waste materials[11] using concentrated solar energy has 

been explored recently. Rather than burning a portion of the feedstock to provide the energy 

needed for heating the reactants, concentrated solar in the form of thermal energy is used. This 

has several distinct advantages compared to traditional gasification[12]. Firstly, the calorific 

value of the feedstock is increased because it is not used to provide energy for the reaction. 

Secondly, the products are not contaminated by the products of feedstock combustion and 

because the feedstock is not combusted, there are no greenhouse gases emitted. Additionally, the 

reactants are directly irradiated, resulting in rapid kinetics compared to indirect heating methods. 

Another distinct advantage of this process is the ability to efficiently operate at high 

temperatures. This results in less undesirable tar formation during biomass gasification, which is 

a concern when operating at lower temperatures[7]. Although all of these processes utilize 

carbon-based sources to generate H2, some can be considered carbon neutral.  Biomass 

gasification, for instance, can be considered a renewable process if there is as much biomass 

grown as is utilized. Others such as coal or natural gas driven processes, cannot be considered as 

such, but do represent a major step towards renewable H2 production when compared to 

traditional gasification processes.  

There are several other carbon neutral processes capable of producing renewable H2 via 

water splitting methods, but most are considered to be more expensive than the aforementioned 

processes. As such, most are being investigated extensively in order to try and make them more 
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economically viable and competitive with traditional hydrogen production methods. These 

include, but are not limited to, electrolysis, photolysis via photoeletrochemistry, photolysis via 

photobiological water splitting, and solar-thermal water splitting [13, 14]. 

The electrolysis of water is perhaps the simplest of all water splitting technologies and 

was first discovered in the 1800’s [13]. Water is split into H2 and O2 on opposing sides of an 

anode and cathode when a direct current is applied, and it is capable of producing ultra-pure H2 

without having to deal with gas separations. This technology is intriguing because it can be 

easily incorporated with wind, photovoltaic (PV), and nuclear systems which generate renewable 

electricity. The cost of this process is limited largely by the cost of electricity generated and the 

capital cost of the electrolyzer. Currently, the cost of producing H2 via electrolysis using the 

wind, solar or nuclear is more expensive than steam methane reforming, coal gasification and 

biomass gasification[15]. However, by the year 2030, these are expected to be competitive with 

or cheaper than non-renewable processes because of projected increases in fossil fuel costs and 

decreased renewable energy costs [15]. Additionally, there is ongoing research to try and 

improve electrolyzer efficiencies, which could further decrease the cost of H2 production[16]. 

Closely related to PV/electrolysis is the photoelectrochemical (PEC) production of H2. 

Rather than generating electricity and subsequently generating H2 with an electrolyzer, however, 

photoelectrochemistry is capable of splitting water in a single step. This process is based on the 

theory that water is capable of absorbing specific wavelengths of visible light that provide 

sufficient energy to split H2O into H2 and O2 [17]. However, because water is not efficient at 

absorbing visible light (most is transmitted), this process is used in conjunction with a 

semiconductor that is capable of absorbing light. Water is decomposed on its surface [13]. In 

essence, a PV cell and electrolyzer are incorporated into a single device, rather than operated as 
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separate entities. The advantage of this compared to PV/electrolysis lies in the theoretical 

electrolyzer efficiencies of PEC. Lower current densities are required and thus lower voltages, 

resulting in theoretical electrolysis efficiencies of 91% [13]. Photolysis of H2O is also capable of 

being achieved by microorganisms in a similar manner to photosynthesis[13]. Theoretical 

efficiencies are similar to those of PEC H2 production (10-13% incident solar to H2), but have 

not yet been realized for extended periods of time due to several factors including limited 

reaction rates, and O2 intolerances.  

2.3 Solar Thermal Hydrogen Production – Direct Water Splitting 
 

Potentially the most efficient process to convert solar energy into hydrogen is via solar-

thermal water splitting, rather than electricity (PV/electrolysis) or photons (photolysis) [13, 14]. 

This process avoids the inefficiencies of some of the other processes by thermally decomposing 

H2O directly into H2 and O2.  Solar energy is collected via arrays of mirrors (heliostats), which 

are capable of achieving concentration ratios of greater than 5000 suns and temperatures as high 

as 3000 K [18]. The absorption efficiency of a solar receiver is defined as the net rate at which 

energy is being absorbed, Qabsorption, divided by the solar power input, Qsolar, shown as  

𝑛𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 =
𝑄𝑟𝑒𝑎𝑐𝑡𝑜𝑟
𝑄𝑠𝑜𝑙𝑎𝑟

= 1 −
𝜎𝑇4

𝐼𝐶
                                                                                                    𝟐 − 𝟏) 

where σ is the Stefan-Boltzmann constant, T is the reactor temperature, I is the normal beam 

insolation, and C is the concentration ratio of the incident solar radiation [18]. The solar to 

thermal efficiency is the product of the absorption efficiency and optical efficiency of the solar 

concentrators, and has been calculated by Steinfeld et. al. to be 40% and 49% for solar 

concentration ratios of 5000 and 10,000 suns at 2300 K. There are several known solar thermal 
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processes which have reaction efficiencies greater than 40%, resulting in theoretical solar to H2 

efficiencies of 20% [14, 19].  

The simplest and most direct method of solar-thermal water splitting is the direct splitting 

of H2O, or thermolysis. Thermodynamically, the spontaneous decomposition of water at 1 atm 

occurs at temperatures greater than 4300 K [14], but it is possible to decompose a significant 

amount of water at temperatures as low as 2500 K [20]. In fact, this reaction has been performed 

at temperatures below 2000 K, and it was concluded that interactions with the reactor walls have 

a large effect on the decomposition rate [20]. Conceptually, this process is very simple, but 

realistically there are many difficulties which prohibit its practicality in the near future. There are 

very few materials capable of withstanding the high temperatures required. In fact, most 

experiments are performed at temperatures well below the spontaneous H2O decomposition 

temperature because ZrO2 reactor tubes are used. As a result, temperatures must be maintained 

below 2500 K to prevent the zirconia from melting [21]. At these temperatures, only about 4% of 

the water is expected to dissociate under atmospheric conditions, which severely limits the 

efficiency of this process. Furthermore, a potentially explosive mixture of H2 and O2 is generated 

if allowed to cool, and therefore must be separated either at high temperatures, or by rapid 

quenching [21]. Quenching must occur at rates of 1500 K – 2000 K per millisecond to prevent 

recombination of the products. This is capable of preventing 90% of the reactants from 

recombining, but it is a highly energy intensive process. High temperature refractory membranes, 

electrodiffusion membranes, metallic membranes, centrifugation, and supersonic jets are all 

being investigated as a means to separate the product gases as high temperatures [21]. Higher H2 

yields can be achieved by these methods, but over time extensive sintering and pore clogging 
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lead to decreases in the yields.  Because of these difficulties, this process is not expected to be 

economically feasible in the near future. 

2.4 Solar Thermal Hydrogen Production – Thermochemical Water Splitting Cycles 
 

Solar thermochemical water splitting cycles have proven to be an attractive alternative to 

direct water splitting. The net result of these cycles is the same as direct water splitting (ℎ𝑒𝑎𝑡 +

 𝐻2𝑂 → 𝐻2 +  1
2
𝑂2), but the reaction is split into two or more reactions using chemical reactant 

intermediates. Generally, these cycles are characterized by a high temperature step in which the 

chemical reactant is thermally reduced via solar energy, and one or more lower temperature 

water splitting steps which may or may not require a thermal input. Currently there are more than 

350 known thermochemical cycles, many of which have theoretical efficiencies of greater than 

40% [22]. Some of the most thermodynamically feasible and efficient cycles were established by 

the Solar Hydrogen Generation Research (SHGR) project sponsored by the United State’s 

Department of Energy [22]. Among these, some of the promising and extensively investigated 

include “lower temperature” cycles such as the sulfur hybrid cycle[19], sulfur iodine[23], UT-3 

cycle[24], hybrid copper chloride[25] and “high temperature” cycles such as iron oxide, sodium 

manganese, zinc oxide, and various ferrite cycles. Also, the recently investigated ceria water 

splitting cycle has received a tremendous amount of interest. 

The “low temperature” cycles were originally developed to be used in conjunction with 

nuclear waste heat, and therefore have been investigated extensively by the nuclear industry. 

Generally, these are more complex (more reactions involved) than the “higher temperature” 

cycles and often involve fairly hazardous chemicals, such as sulfuric and hydrochloric acid. One 

of the most widely studied “lower temperature” cycles is the sulfur iodine cycle which was 
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developed and studied extensively by General Atomics from the late 1970’s until today [23, 26]. 

Although complex, small scale pilot plants have demonstrated the scale-up feasibility of this 

cycle using nuclear waste heat [27, 28]. This cycle involves three separate steps, the first being 

an exothermic liquid phase reaction of I2, SO2, and H2O to form hydrogen iodide and sulfuric 

acid. Each of these products is decomposed in separate endothermic reactions. The 

decomposition of sulfuric acid occurs at temperatures near 900 oC and requires and external heat 

source such as nuclear or solar energy. The net result of these three reactions is the 

decomposition of H2O into 0.5O2 and H2. The biggest advantage of these cycles compared to 

higher temperature cycles is the lower temperature requirement.  

The “higher temperature” cycles are conceptually simpler than the “lower temperature” 

cycles, but do occur at much higher temperatures (T generally > 1400 oC). Because of this, 

reactor construction materials become a concern due to high temperature instability, and thermal 

shock issues arise because the non-oxide refractory materials that are stable at these temperatures 

cannot withstand rapid temperature changes that are inevitable when utilizing concentrated solar 

energy [14].  The most extensively studied high temperature cycles occur in two distinct steps 

and do not require any hazardous chemical intermediates, with the exception of the sodium 

manganese cycle. These all involve the high temperature endothermic decomposition of a metal 

oxide, and a lower temperature water splitting step to regenerate the metal oxide and produce H2. 

The first “high temperature” cycle was proposed by Nakamura. He concluded that the 

direct thermal splitting of H2O was not feasible or economical due to the high temperature and 

separation requirements, and proposed a two-step process which utilizes magnetite (Fe3O4) as a 

chemical intermediate.  The advantage of this compared to direct water splitting is that the 

highest temperature step proceeds spontaneously at 2500 K, rather than 4300 K for direct water 
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splitting [29]. The cycle comprises two separate reactions, namely a high temperature 

endothermic decomposition step and a lower temperature exothermic water splitting step, as 

shown below. 

 

𝐹𝑒3𝑂4 +  𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 → 3𝐹𝑒𝑂 +  
1
2
𝑂2    {𝑇 > 2500 𝐾}                                                   𝟐 − 𝟐) 

 

𝐻2𝑂 + 3𝐹𝑒𝑂 → 𝐹𝑒3𝑂4 +  𝐻2    {𝑇 < 650 𝐾}                                                                                  𝟐 − 𝟑) 

 

The first high temperature step involves the decomposition of magnetite to FeO and the 

subsequent release of O2. In the second, lower temperature step, the reaction of FeO and water 

proceeds exothermically below 650 K to produce H2 and regenerate magnetite. Thus, the only 

reactants are H2O and thermal energy, and the products are O2 and H2. The magnetite is 

regenerated at the conclusion of every cycle and never consumed. In addition to operating at 

lower temperatures, the H2 and O2 are generated in separate steps, so separation difficulties are 

avoided. 

An even more thermodynamically attractive “high temperature” cycle is the zinc oxide 

cycle. Conceptually, it is very similar to the magnetite cycle and involves the decomposition of 

zinc oxide to zinc vapor, and the subsequent oxidation of Zn with water to produce H2 and 

regenerate the ZnO [18]. The first high temperature step is endothermic and occurs 

spontaneously at temperatures greater than 2300 K and the water oxidation step is exothermic, 

occurring at 700 K. Perkins et.al. have studied the decomposition step in great detail in both a 

high temperature aerosol flow reactor and thermogravimetric analyzer (TGA) [30, 31]. The 

observed rates in the aerosol flow reactor were three orders of magnitude greater than those 
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observed in the TGA, and the maximum conversion of ZnO to Zn was about 18% for residence 

times of only 1.11 to 1.78s. It was concluded that the reaction could be characterized well by the 

L’vov theory, which describes a reaction limited by the evolution of species from a solid surface. 

In fact, the decomposition of ZnO proceeds via the dissociation of of Zn and O gas from the 

surface, which is remarkably different than the decomposition of Fe3O4, in which only O2 is 

evolved. This results in a cycle that is inherently more complex than the Fe3O4 cycle because the 

addition of a phase change results in rapid gas phase recombination kinetics. Therefore, the 

decomposition reaction must be quenched rapidly which results in a large energy input and 

decreases the efficiency of the process. Also, material handling becomes more complex because 

the Zn vapor tends to nucleate on reactor walls. Steinfeld at. al. have investigated solutions to 

this problem and have developed a rotating reactor in which the ZnO particles are held to the 

reactor walls by centripetal force, thereby maximizing the reactor volume for efficient radiative 

heat transfer. The resulting Zn vapor is carried to the outlet of the reactor by rapidly quenching 

with Ar gas, resulting in Zn solid powder [32]. The oxidation of Zn has been investigated 

extensively, and proceeds via a fast interfacial reaction followed by a slower diffusion limited 

regime [33]. This is caused by a ZnO product layer formed around the Zn metal. Generally, this 

reaction is attempted at fairly low temperatures (T < 683 K) to prevent melting and sintering 

[34]. When conducted at higher temperatures, the Zn is capable of reacting with water in the 

vapor phase, resulting in higher conversions (70%) and faster kinetics, but much of the products 

are deposited on the reactor walls [35]. 

The sodium manganese cycle is another attractive “high temperature” cycle that operates 

in three separate steps. The first step involves the conversion of solar thermal energy to chemical 

energy via the decomposition of manganese(III) oxide at temperatures greater than 1835 K [36]. 
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The second reaction is exothermic and proceeds at 900 to 1100 K via the reaction of MnO and 

sodium hydroxide to produce H2 and NaMnO2. The third step involves the reaction NaMnO2 and 

water to reform manganese(III) oxide and NaOH. Francis et. al. have studied the high 

temperature decomposition step in a TGA and aerosol flow reactor at temperatures ranging from 

1673 K to 1873 K, and conversions as high as 75% were achieved [37]. Although this cycle is 

conceptually simple, realistically there are many barriers that must be overcome before it is 

feasible. Material handling is difficult because the second step involves a reaction with liquid 

sodium hydroxide, which is highly corrosive. In fact, there has been only one published 

demonstration of the second and third steps of the cycle [38]. The hydrolysis reaction proved to 

be the most difficult to accomplish, because rather than the anticipated formation of Mn2O3 and 

NaOH, a Na-Mn-oxide was formed. 

2.4.1 Ferrite-based Water Splitting Cycles 
  

 Although the temperature requirements for both the zinc oxide and sodium manganese 

cycles are less than the iron oxide cycle proposed by proposed by Nakamura in 1977, they are 

both more difficult to realize due to their associated phase transformations and material handling 

concerns.  As a result, “ferrite” cycles were evolved, and incorporate the simplicity of the iron 

oxide cycle with the lower temperature requirements of the other cycles. By substituting 

transition metal oxides (M = Ni, Co, Mn) for Fe in Fe3O4 (MxFe3-xO4), the decomposition 

temperature is lowered by destabilizing the spinel phase, but the reduced phase is still capable of 

being re-oxidized to reform the ferrite [39]. A simplified version of this process is shown below 

in equations 2-4 and 2-5.  
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𝑀𝑥𝐹𝑒3−𝑥𝑂4 +  𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 → (3 − 𝑥)𝐹𝑒𝑂 + 𝑥𝑀𝑂 +  
1
2
𝑂2    {𝑇 > 1673 𝐾}              𝟐 − 𝟒) 

 

𝐻2𝑂 + (3 − 𝑥)𝐹𝑒𝑂 + 𝑥𝑀𝑂 → 𝑀𝑥𝐹𝑒3−𝑥𝑂4 +  𝐻2    {𝑇 < 1673 𝐾}                                          𝟐 − 𝟓) 

 

The first, thermal reduction step proceeds via the decomposition of the ferrite to a solid solution 

of the transition metal oxide (e.g. Co2+), Fe2+, and a small amount of Fe3+ (not shown). The 

second water splitting step operates at lower temperatures to oxidize the solid solution to reform 

the ferrite and produce H2. The advantage of the substitution of a transition metal can be clearly 

observed in Figure 2-1, from Allendorf et.al. [39]. The decomposition of Zn, Ni, and Co ferrites 

(x = 1 in MxFe3-xO4) are compared to Fe ferrite (Fe3O4) and all three have an influence on the 

thermodynamically predicted reduction temperature. Both cobalt and nickel ferrites are expected 

to reduce at temperatures below 1700 K, whereas Fe3O4 does not reduce completely until below 

1750 K. In addition, the reduction of Fe3O4 occurs at temperatures greater than its melting point, 

which leads to extensive sintering and slow reaction rates [39]. The addition of Co and Ni helps 

to mitigate this problem and the substituted-ferrite reduces at temperatures below its melting 

point. As such, Co and Ni ferrites have received the most interest in the literature. The biggest 

advantage of ferrite cycles compared to other “high temperature” redox cycles is their ability to 

be cycled with relative ease because the ferrites do not undergo any phase changes (i.e. solid to 

liquid) [40-43]. However, the theoretical amount of hydrogen generated is less than other higher 

temperature thermochemical cycles due to the fact that only Fe3+ is capable of being reduced to 

Fe2+ at the temperatures of interest[43]. Additionally, hydrolysis kinetics are relatively slow due 

to diffusion or surface area limitations created by near surface oxidation [43, 44]. This problem 

is exacerbated by high temperature sintering which occurs during thermal reduction.  This often 
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leads to increasing the water oxidation temperature (Step 2) in order to increase reaction rates 

(generally T > 1000 oC), resulting in oxidation temperatures that are much higher than other 

analogous cycles [43, 45, 46]. Furthermore, vaporization of metals can lead to extensive metal 

loss over time.  

 

 

Figure 2-1. Equilibrium plot of the decomposition of various ferrites (blue) and subsequent 
evolution of O2 (red), from Allendorf et.al. Energy & Fuels 2008;22:4115. 
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Ferrite water splitting cycles were first proposed by Tamaura et. al. in 1995 via the 

reduction of a Ni-Mn ferrite to a substoichiometric state [47]. Because the ferrite was only 

reduced to a substoichiometric state rather than the wustite (Fe2+) phase, reduction was capable 

of being achieved at only 1373 K and the spinel phase was maintained. The reduced ferrite was 

capable of being re-oxidized with H2O to form H2 at 873 K. Although successful, it was 

concluded that the amount of H2 generated was not enough to be economically feasible in a large 

scale process due to the small degree of reduction that was achieved.  Nevertheless, this process 

opened the door for other ferrite cycles to be investigated, and resulted in a substantial amount of 

research around the globe devoted to its endeavor. 

To date, most literature has been interested in the effects of the substituted metals in 

MxFe3-xO4 and their stoichiometry [40, 41], synthesis methods[41, 48, 49], and various 

substrates[40, 43] on the total amount of H2 produced and their ability to be cycled a number of 

times. For example, Allendorf et. al. recently reported on the thermodynamic effects of Fe, Co, 

Ni, and Zn substitution in MxFe3-xO4, and observed that x and M greatly influence the 

equilibrium of this reaction for a given reduction temperature [39]. Co and Ni ferrites were both 

reduced to a greater extent at temperatures of interest (~1400 oC), and it was shown that Fe3O4 

does not fully reduce until after the melting temperature of wustite. The addition of Zn actually 

resulted in a higher expected decomposition temperature, and is predicted to vaporize under 

these conditions. In fact, this has been observed experimentally and resulted in Zn deposition on 

reactor walls [50].  

Kodama et. al. have observed greater cyclical stability and more H2 production when 

depositing Ni, Co, and Fe ferrites on ZrO2 and YSZ supports [40-42]. They observed that Fe2+ 

forms a solid solution with the substrate during thermal reduction and could be subsequently 
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oxidized to reform the ferrite. They also observed a decrease in sintering and attributed it to the 

presence of the substrate, which inhibits the reactive particles from interacting with one another.  

Because of this, they observed improved cyclical stability when compared to only physical 

particles, and the presence of a support is now ubiquitous for these types of high temperature 

cycles.  

For these cycles to be a viable means of renewable H2 production, the materials must be 

capable of being cycled thousands or millions of times in a repeatable and predictable manner, 

and therefore several different supports and synthesis methods have been investigated for their 

benefits. Following the work of Kodama et.al. Sandia National Laboratories (SNL) has 

investigated the influence of various types of supports on the production and repeatability of 

hydrogen using cobalt ferrites, including YSZ (3% Y2O3), Al2O3, TiO2,HfO2, and Y-doped HfO2 

[43]. They used a robocasting technique, developed at SNL, to fabricate monolith type structures 

directly from physically mixed ferrite and support particles. It was concluded that YSZ was the 

most promising support because more H2 was produced than when using any of the other 

supports, and the materials remained active for tens of cycles. HfO2 and Y-doped HfO2 also 

produced hydrogen without signs of deactivation, but the yields were about half as much for the 

Y-doped HfO2 and 25% for the HfO2.  The performance using Al2O3 and TiO2 was much worse, 

as a small, decreasing amount of H2 was produced for successive cycles. It was hypothesized that 

this was due to a solid state reaction between the support and the reactive ferrite [43]. Roeb et.al. 

have tested the effectiveness of recrystallized silicon carbide (ReSiC) and siliconized silicon 

carbide (SiSiC) monoliths as ferrite supports and were able to cycle the materials up to six times 

[51]. The ReSiC was concluded to be more suitable than the SiSiC due to its greater stability at 

higher temperatures and its lower resistance to reactivity with the ferrite. 
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Through thermodynamics, the effect of substituted metals and various substrates has been 

extensively studied.  The kinetics and mechanisms of these reactions have yet to be explored in 

as much detail. Rapid hydrolysis kinetics is desired in order to facilitate high throughput of H2 

[43, 44]. Charvin et. al. observed a strong dependence of Fe3O4 particle size on the H2 reaction 

rate during water oxidation experiments [52]. As the particle size was increased, slower rates 

were observed. It was hypothesized that this was due to an oxide barrier formed on the surface of 

the particles, hindering further oxidation of the bulk. Similar behavior has been observed for CO2 

splitting on chemically reduced CoFe2O4 nanoparticles [53]. Though it was hypothesized that 

this phenomena was due to bulk diffusion limitations, there was no evidence that it was not more 

dependent on surface area. Steinfeld et.al. have studied the oxidization kinetics of FeO particles 

using CO2 [33]. They observed two distinct reaction limited regimes, namely an initially fast 

interfacial reaction which could be described by the power rate law, and a slower diffusion 

limited regime at longer reaction times. Experiments were conducted isothermally and non-

isothermally in a TGA, and the calculated activation energies for the interfacial regime and 

diffusion limited regime were 70 kJ/mol and 106.4 kJ/mol, respectively. Go et. al. has studied 

the water oxidation of Zn, Mn, and Fe ferrite powders after chemical reduction using CH4, and 

concluded that the reactions were diffusion limited [54]. It was apparent that the reaction models 

fit the data well for long reaction times, but the initial onset of the reaction was not captured 

well. The measured activation energies ranged from 57 kJ/mol to 110 kJ/mol, which are similar 

to Steinfeld et.al.’s value for FeO oxidation. Oxidation was studied using water concentrations 

ranging from 10% to 80% and no dependence on the reaction rates was observed. Because the 

materials were chemically reduced at low temperatures it is not clear how representative this 

study is of a true “high temperature” ferrite oxidation study. It is well documented that extensive 
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sintering occurs when ferrites are thermally reduced at higher temperatures, which has an effect 

on the material’s morphology. Pitz-Paal et. al. have studied the water oxidation of zinc ferrite on 

SiC honeycomb supports and determined that the kinetics agreed well with the shrinking core 

model. The relevant kinetic parameters were calculated based on peak H2 rates, and the 

activation energy was determined to be 110 kJ/mol [55]. Surprisingly, all of the calculated 

activation energies during the diffusion limited regimes for the above studies were less than 

those calculated for Fe diffusion in Fe3O4 [56-58]. This is unexpected because the diffusion of Fe 

through magnetite has been shown to be the rate limiting mechanism in Fe oxidation [59].  

Presently, there have yet to be any kinetic studies of ferrite thermal decomposition 

reactions. It is well understood that the thermodynamics and kinetics improve as the temperature 

is increased, but obviously this is not a substitute for a fundamental understanding of reaction 

kinetics. Possibly, this step is less studied because the water oxidation reaction is even less 

understood, thereby garnering more attention from researchers. Ultimately, the economic 

viability of this thermochemical cycle is dependent on developing an understanding of the rate 

limiting mechanisms and kinetics of both the decomposition and oxidation reactions. This will 

prove to be important for engineering materials that are able to withstand the rigors of thermal 

stresses and high temperatures, while at the same time quickly and efficiently transporting 

oxygen through its lattice. Additionally, a fundamental understanding of the reaction kinetics is 

critical for designing reactors and solar fields that are able to operate under conditions that 

provide the most efficient pathway of converting incident solar radiation and water into 

hydrogen and oxygen. 

2.4.2 Alternative Metal Oxide Cycles – Ceria 
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Perhaps the biggest barrier preventing ferrite water splitting cycles from being 

economical today is the slow rate of both decomposition and oxidation reactions. Because the 

oxidation reaction is limited by diffusion, one obvious solution to this problem would be to 

synthesize materials with larger surface area to volume ratios. However, this proves to be 

difficult to realize because of sintering that occurs at high temperatures. This compromises the 

material’s integrity and results in a reduction of reactive surface area. To circumvent this 

problem, other materials are being investigated which have superior material properties at 

elevated temperatures compared to ferrites. One of these materials is ceria (CeO2), which is 

capable of being cycled in an analogous manner to the ferrites [60]. Sintering is not as much of 

an issue because its melting temperature is much greater (2230 oC) [43]. Because of this, higher 

surface area materials can be utilized and the observed reaction rates are considerably faster than 

ferrite’s [60].  

In order to fully decompose CeO2 to Ce2O3, very high temperatures are required (2000 

oC), which is undesirable. Additionally, at these temperatures the ceria is highly volatile, leading 

to losses of reactive mass. However, it is capable of being reduced to a sub-stoichiometric state 

(CeO2-δ) at lower temperatures comparable to ferrite cycles [61]. The disadvantage of this is that 

the degree of reduction is less than ferrites, resulting in lower H2 yields. Dopants are being 

investigated whose role is to increase the degree of nonstoichiometry and decrease the reduction 

temperature, but the degree of reduction will never equal that of ferrite cycles unless the ceria is 

reduced stoichiometrically to Ce2O3 [62]. In the end, there is a tradeoff between faster reactions 

or higher hydrogen yields when considering ceria and ferrite-based water splitting processes. 

However, ferrite rates have the possibility to improve with material design advances that limit 

the degree of sintering, whereas ceria yields are limited by thermodynamics and cannot be 
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improved. Currently, though, both cycles are the best candidates for “high temperature” solar 

water splitting applications, and as such each is receiving considerable interest from the scientific 

community. 
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CHAPTER 3 THERMODYNAMIC MODELING OF RELEVANT FERRITE-BASED 
WATER SPLITTING CYCLES 
 

3.1 Abstract 
 

 The thermodynamics of relevant ferrite-based water splitting cycles has been investigated 

using the thermodynamics software package FactSage. The effect of different metal substitutions 

in MxFe3-xO4, has been explored, and indicates that Co and Ni based ferrites are both superior to 

Fe3O4. Additionally, it is shown that increasing the inert gas concentrations has a direct effect on 

the reduction temperature. Increasing the amount of cobalt results in lowering the thermal 

reduction requirements, but does not necessarily translate to more H2 production. For values of x 

> 1, the amount of reducible iron decreases, and results in less H2 production at elevated 

reduction temperatures. Oxidation of reduced species is shown to be achievable at temperatures 

greater than when ∆Grxn > 0 if large excesses of water are introduced. More H2 is expected to be 

present at equilibrium for ferrite based reactions compared to ceria based water splitting cycles, 

because the degree of reduction is approximately three times greater. 

 

3.2 Introduction 
 

 Solar thermochemical production of H2 by ferrite cycles was born out of the originally 

proposed Fe3O4 redox cycle, by Nakamura in 1977 [1]. By incorporating the advantages 

properties of Fe3O4 with those of other metal oxides by substituting them into its spinel structure, 

its ability to split water at relatively benign temperatures is maintained, but its decomposition 

temperature is lowered. Ferrites of the form MxFe3-xO4 (where M is generally Co[2, 3], Ni[4-6], 



36 
 

Mn[7-9], Zn[10-12], or Fe[4, 13-15]) have all been shown to be capable of splitting water to 

generate hydrogen using solar thermal energy according to the redox reaction shown below: 

 

𝑀𝑥𝐹𝑒3−𝑥𝑂4 +  𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 → (3 − 𝑥)𝐹𝑒𝑂 + 𝑥𝑀𝑂 +  
1
2
𝑂2    {𝑇 > 1673 𝐾}              𝟑 − 𝟏) 

 

𝐻2𝑂 + (3 − 𝑥)𝐹𝑒𝑂 + 𝑥𝑀𝑂 → 𝑀𝑥𝐹𝑒3−𝑥𝑂4 +  𝐻2    {𝑇 < 1673 𝐾}                                         𝟑 −  𝟐) 

 

The ferrite is thermally reduced in the first, high temperature step (generally 1400 – 1600 oC), 

and oxygen is evolved. In the second lower temperature step (generally 900 – 1100 oC), the 

reduced ferrite is reacted with steam to generate H2 and re-oxidize the ferrite to its original state. 

Thus, the only net inputs are H2O and thermal energy, and the only net outputs are H2 and O2. 

This process is advantageous to direct water splitting as it operates at much lower temperatures 

and O2 and H2 are generated in separate steps, eliminating the need for high temperature 

separation of product gases[16].  

 Thermodynamic modeling of ferrite [17] and similar metal oxide redox cycles [16] has 

shown to be an effective method of predicting equilibrium species, as well as screening for other 

potentially relevant cycles. While these calculations can never take the place of experiments, 

their advantage lies in the ability to perform many calculations relatively easily, based on years 

of accumulated knowledge and experiments that have already been accomplished. 

 The objective of this work is to provide a theoretical framework, based on 

thermodynamic calculations, of ferrite water splitting cycles. Of particular interest is 

investigating the effects of various conditions on the overall performance of the ferrite.  

Specifically, the effects of different substituted metals (i.e. Ni, Co), their concentrations (MxFe3-
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xO4), reduction and oxidation temperatures, and gas concentrations (both inert gas and oxidant). 

Additionally, a short amount of time will be devoted to the thermodynamics of ceria (CeO2) 

water splitting cycles, which have received a tremendous amount of interest recently [18-21]. 

 

3.3 Methods 
 

 Thermodynamic calculations are performed using the thermodynamics software package, 

FactSage version 6.0. This software is equipped with extensive thermodynamic databases based 

on data from the literature. Equilibrium calculations are conducted by minimizing the total Gibbs 

energy, G, of the system, which is composed of all possible species formed based on the input 

species specified. These calculations have been shown to be an effective method for predicting 

phases and equilibrium H2 generation of ferrites by Allendorf et. al. [17]. The inclusion of 

solution phases with species was shown to have a significant impact upon the equilibrium 

results. For all ferrite equilibrium calculations, we are including the species and solution phases 

shown in Table 3-1. Species included in the ceria calculations are shown in Table 3-2. All 

calculations are performed at 1 atm. Thermal reduction and oxidation calculations are performed 

with a dilution of 10000 moles of Ar and H2O, respectively, unless specified otherwise.  
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Table 3-1: Species Included in Ferrite Equilibrium Calculations 

 

Table 3-2: Species Included in Ceria Equilibrium Calculations 

 

3.4 Results 
 

3.4.1Gibbs Free Energy Analysis 
 

 The effect of metal substitution, specifically cobalt, can be seen in Figures 3-1a and 3-1b, 

where the Gibbs free energy as a function of temperature is shown for decomposition and 

oxidation reactions using Fe3O4, Co3O4, and CoFe2O4 as intermediates. By definition, the 

reactions are spontaneous at temperatures where ∆Grxn < 0. Co3O4 (940 oC) is expected to 

decompose at lower temperatures than either Fe3O4 (2480oC) or CoFe2O4 (2040 oC), but its re-

Gases Pure Liquids Pure Solids Solution Phases
Ar
O2
O
Co
Ni
NiO
FeO
Fe
O3

FeO
CoO
Fe3O4
Co
Fe
Ni

FeO (wustite)
CoO
NiO
Fe3O4 (magnetite)
Fe2O3 (hematite)
Co
(CoO)(Fe2O3)
(NiO)(Fe2O3)
Fe
Co3O4

spinel
-MxFe3-xO4
-MxCo3-xO4
-MxNi3-xO4
-MO4

metal oxides (MeO)
-FeO, Fe2O3,CoO, NiO

slag
- FeO, Fe2O3, CoO, NiO

corundum (M2O3)
-Fe2O3,

M = Fe, Co, or Ni

Gases Pure Liquids Pure Solids
Ar
O2
O
CeO
O3
Ce
Ce2

Ce2O3
Ce

CeO2
Ce6O11
Ce2O3
Ce18O31
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oxidation with water to produce H2 is thermodynamically unfavorable. There are no 

temperatures where its Gibbs energy is less than zero. Fe3O4 is capable of decomposing at 

temperatures above 2480 oC, but this is very high considering that most reactor materials 

available today are not stable at temperatures greater than 2500 K [16]. Additionally, reradiation 

losses become significant due to their T4 dependence, and above 1600 oC Fe3O4 exists as a 

liquid. The oxidation of its decomposition products to reform Fe3O4 and produce H2 is 

exothermic and spontaneous at temperatures lower than 700 oC. However, this reaction is 

expected to be untenable if the liquid phase is formed due to diffusion limitations through its 

bulk. CoFe2O4, on the other hand, combines the advantages properties of both Co3O4 and Fe3O4. 

It is expected to decompose at temperatures greater than 2040 oC, about 450 oC lower than 

Fe3O4, due to its ability to destabilize the spinel structure [3]. Unlike Co3O4 however, it is still 

capable of reacting with water to re-oxodize and produce H2. In fact, the Gibbs free energy of 

this reaction is nearly identical to Fe3O4’s until temperatures greater than 1600 oC, which is well 

above realistic operating conditions.  
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Figure 3-1: a) Gibbs free energy as a function of temperature for the decomposition of Fe3O4, 
Co3O4 and CoFe2O4. b) Gibbs free energy as a function of temperature for the water oxidation of 
Fe3O4, Co3O4 and CoFe2O4 decomposition products to produce H2. 
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3.4.2Thermal Reduction – Equilibrium Calculations 
 

 Although the Gibbs free energy plots discussed above provide a means to discuss the 

advantages of metal substitution of Fe in Fe3O4, they are not necessarily representative of results 

that would be expected experimentally. Firstly, ferrite redox cycles are generally not operated 

under equilibrium conditions. In most cases, the ferrite is held in a fixed position within a reactor 

and depending on the conditions an inert or oxidizing sweep gas flows over it [6, 7, 22]. As a 

result, the reaction products are carried away from the solid sample, driving the equilibrium of 

the reaction to lower temperatures. Secondly, the above calculations were achieved by assuming 

that the reactions shown in Figures 3-1a and 3-1b were only reactions that could occur. In reality, 

there are solution and slag phases which could form that may have an effect on the 

thermodynamics of the reaction [17]. A more realistic means to study the redox reactions is to 

perform equilibrium calculations which account for all of the possible species that may exist 

based on the input species. Additionally, introducing large concentrations of inert and oxidant 

gases into the calculations is capable of simulating experiments which do not operate under 

equilibrium conditions, by diluting the gas phase products (O2 and H2). Therefore, all of the 

remaining equilibrium calculations are performed in this manner to better replicate experimental 

scenarios. 

 Equilibrium calculations comparing the decomposition of two commonly used ferrites, 

CoFe2O4 and NiFe2O4, to Fe3O4 are shown in Figure 3-2. The ferrites (black line), and solid 

reduction products all exist as solution phases, which will hereby be referred to as spinel and 

MeO, respectively. The MeO solution phase is a combination of M2+ (where M is the substituted 

metal), Fe2+, and Fe3+. Both CoFe2O4 and NiFe2O4 begin to decompose at temperatures below 

1200 oC, and are expected to be fully reduced by 1450 oC. The Fe3O4, on the other hand, does 
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not decompose completely until 1500 oC, and by this temperature exists as a slag phase which is 

undesirable. At the same time the Co and Ni spinel solutions decompose, O2(g) is observed, 

corroborating that the ferrites are reducing rather than simply experiencing a change of phase.  

 

Figure 3-2: Equilibrium products as a function of temperature for the decomposition of Fe3O4, 
CoFe2O4 and NiFe2O4. Moles Ar:ferrite = 10000:1 

 

Although the Fe3O4 decomposes by 1500 oC, it is not accompanied by large amounts of O2, as 

the cobalt and nickel ferrites are. This is because this decomposition has largely proceeded via 

phase change to a slag, without the accompanying reduction of Fe3+ to Fe2+. Surprisingly, at 

1450 oC, when the cobalt ferrite is fully decomposed, only 0.29 moles of O2 exists at 
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equilibrium, rather than 0.5, which would be present if all of the Fe3+ were reduced to Fe2+. This 

is due to a significant portion of the Fe in the MeO phase existing as Fe3+. Because conversions 

calculated in the literature assume that all of the Fe3+ is capable of reducing to Fe2+, this 

observation may help to explain why some conversions are lower than expected [2, 4]. It is also 

apparent that all of these species are predicted to decompose at temperatures lower than the 

Gibbs free energy plots shown in Figure 3-1. This is due to the dilution of the gas phase products 

(O2), with 10000 moles Ar:Ferrite. 

 The effect of dilution is further explored in Figure 3-3, and indicates that there is a direct 

relationship between expected decomposition temperatures of cobalt ferrite and inert gas 

concentration. Ratios of Ar:CoFe2O4 equaling 10000:1, 100:1, and 1:1 have been considered, and 

as expected, indicate lower predicted decomposition temperatures for higher dilutions. For a 

dilution of 10000:1 the ferrite is expected to decompose at 1450 oC, and the corresponding O2 

evolution is observed. The same trend is observed for a ratio of 100:1, but decomposition isn’t 

expected to fully proceed until 1600 oC. By the time the spinel has fully decomposed with a 1:1 

ratio, the slag phase has formed. As a result, less O2 exists at this time compared to the other 

dilution conditions because the decomposition largely proceeded via the phase change to a slag, 

rather than to the reduced MeO phase. These observations also highlight a distinct advantage that 

ferrite cycles have over cycles such as the ZnO/Zn redox cycle. Because the ferrites remain a 

solid during decomposition, the reduction temperature can be manipulated easily by either 

flowing different concentrations of inert gas over a stationary sample, or simply operating under 

vacuum. ZnO/Zn cycles are not offered the same advantage however, because ZnO decomposes 

to Zn vapor during decomposition [16]. Therefore, a sweep gas would result in the gas phase 

products being swept away at the same time, which may be undesirable. As a result, ferrite 
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cycles are generally operated at lower temperatures than the ZnO/Zn cycle, even though the 

Gibbs free energy of its decomposition is every bit as favorable [16]. 

 

Figure 3-3: The effect of dilution on the equilibrium products as a function of temperature for the 
decomposition of CoFe2O4 

 

 The effect of the substituted metal concentration has also been debated in the literature, 

and to date, experimental results have largely been ambiguous [2, 3, 6]. Thermodynamic 

calculations indicate that, for the case of cobalt ferrite, the decomposition temperature is lowered 

as x, in CoxFe3-xO4, is increased from 0.2 to 1.0, as shown in Figure 3-4. As already discussed, 

CoFe2O4 is completely decomposed by 1450 oC. The onset of decomposition of Co0.6Fe2.4O4 
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begins at about 1250 oC, and does not decompose completely until 1500 oC. As x is decreased to 

0.2, the decomposition does not begin until 1350 oC, and the slag phase is expected to form 

before it has fully decomposed. As x increases past 1, the behavior becomes more like Co3O4, 

which decomposes at low temperatures but is not capable of re-oxidizing to produce H2. Larger 

cobalt concentrations did lead to even lower decompositions that for x=1, but are not considered 

here because the amount of active Fe decreases beyond this point. 

 

Figure 3-4: The effect of cobalt stoichiometry on the equilibrium products as a function of 
temperature for the decomposition of CoxFe3-xO4. Moles Ar:ferrite = 10000:1 

 

3.4.3Water Oxidation – Equilibrium Calculations 
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 Ferrite water oxidation experiments are generally operated at temperatures ranging from 

900 to 1100 oC, although the reaction is thermodynamically spontaneous at temperatures much 

lower than these (see Figure 3-1b). This is partly due to the fact that lower oxidation 

temperatures result in sluggish observed reaction rates that result from sintering and diffusion 

limitations through the bulk particles [2, 23]. Also, analogous to the experimental reduction 

conditions, oxidation reactions are operated in a manner which allows the reaction to proceed at 

higher temperatures than thermodynamics would suggest. The effect of operating under non-

equilibrium conditions can be seen in Figure 3-5, where we have considered the effect of three 

different H2O:MeO ratios: 10000:1, 100:1, and 1:1. The MeO species in this case is the fully 

decomposed cobalt ferrite at 1500 oC and 10000 moles Ar:ferrite. With only a 1:1 ratio of 

H2O:MeO, the reaction results predominantly in the formation of the spinel up to 800 oC. 

Beyond this temperature there is a sharp decrease in spinel formation, which is due to the 

transition to a positive ∆Grxn. This is slightly higher than the initially stated 700 oC because of 

differences in the way the calculations were performed, as discussed previously. As the ratio of 

H2O to MeO increases, the spinel is stable at even higher temperatures. Complete conversion to 

the spinel is achieved up to 500 oC for a dilution of 100:1, but even at 1200 oC, conversion is 

expected to be 70%. The spinel is stable to 1100 oC with a ration of 10000:1, with only a 

negligible decrease in fractional conversion to 1200 oC. Clearly the reaction to reform the ferrite 

to produce H2 is more stable at higher temperatures when diluting the reaction products with an 

H2O.  
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Figure 3-5: The effect of water concentration on the re-oxidation reaction to reform the spinel 
and H2. MeO results from the decomposition of CoFe2O4 at 1500 oC, 10000 moles Ar 

 

 The effect of reduction temperature and x, in CoxFe3-xO4 on the equilibrium H2 

production was considered in Figure 3-6. Calculations were performed by determining the 

equilibrium species of various cobalt substituted ferrites (0<x<1.4) from temperatures between 

1300-1500 oC, and recycling these species (MeO and spinel) into another equilibrium calculation 

with 10000 moles H2O at 1000 oC. As seen in Figure 3-5b, for all values of x, the amount of 

equilibrium H2 increases as the temperature is increased due to an increase in reduced iron 

species (MeO). Also, for reduction temperatures up to 1400 oC, the amount of H2 increases as the 

Co concentration increases. This was surprising, because for all values when x > 1, the amount 
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of reducible Fe is decreased. However, because full decomposition of the ferrites was not 

achieved by 1400 oC, the increased amounts of reducible iron for x ≤ 1 did not contribute to 

greater amounts of equilibrium H2 production. At higher reduction temperatures, the negative 

impact of x > 1 is realized because when x ≥ 1 the ferrite is fully decomposed, resulting in 

decreased amounts of equilibrium H2 beyond this point. For all of the conditions investigated at 

1450 and 1500 oC, the most H2 was produced for x=1.  

 

Figure 3-6: Equilibrium H2 produced per gram of ferrite as a function of decomposition 
temperature and cobalt stoichiometry (x, in CoxFe3-xO4). 

 

3.4.4Ceria-based Redox Cycles 
 

 In addition to ferrites, ceria (CeO2) and metal doped ceria have also received a 

tremendous amount of interest recently as “high temperature” solar thermochemical water 
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splitting candidates for renewable hydrogen production. They are capable of splitting water using 

solar energy according to the generic two step redox cycle shown below, where the only net 

inputs are solar energy and water and the outputs are O2 and H2. 

 

𝐶𝑒𝑂2 + 𝑆𝑜𝑙𝑎𝑟 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 → 𝐶𝑒𝑂2−𝛿 + 
𝛿
2
𝑂2                                                                   𝟑 − 𝟑) 

 

𝐶𝑒𝑂2−𝛿 +  𝛿𝐻2𝑂 → 𝐶𝑒𝑂2 +  𝛿𝐻2                                                                                                      𝟑 − 𝟒) 

 

The first step proceeds via the thermal decomposition of CeO2, usually to a non-stoichiometric 

state, and O2 is evolved. The reduced ceria is then re-oxidized in the second lower temperature 

step using steam to produce H2. The degree of reduction (Ce4+ to Ce3+) is highly dependent on 

temperature, and complete reduction to Ce2O3 is only achieved at very high temperatures (≈2000 

oC) [24]. The main advantage of ceria lies in its ability to be cycled at relatively high 

temperatures without sintering, resulting in faster observed reaction rates than ferrites [18, 25]. 

However, the degree of reduction is less than ferrites, which results in less H2 production on a 

per mole bases. 

 As seen in Figure 3-7a, the decomposition of ceria results in several stable oxidation 

states, but complete reduction to Ce2O3 is not expected to occur until nearly 2000 oC. A more 

reasonable decomposition temperature of 1600 oC is required to reduce the ceria to Ce6O11.  

However, when compared to the decomposition of CoFe2O4, there are two glaring differences. 

First, the decomposition temperature is nearly 150 oC greater for ceria, and second, only about 

1/3 of the oxygen is evolved. This is directly related to the amount of H2 capable of being 

produced. Experiments have shown, however, that the decomposition of ceria generally proceeds 
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at temperatures similar to ferrite cycles. This is due to the addition of dopants, which increase the 

degree of reduction at low oxygen partial pressures compared to un-doped ceria [18, 25]. In 

effect, the dopants role is similar to that of cobalt in CoFe2O4, and aids in decreasing the 

reduction temperature. Although several dopants are being investigated, including Zr and Sm, 

the degree of reduction will never equal that of ferrite cycles unless the ceria is reduced 

stoichiometrically to Ce2O3 [18, 20, 25].  

 

Figure 3-7: Equilibrium products for the decomposition of CeO2. Ar:CeO2 = 10000:1 

 

 The oxidation of Ce6O11 with water to reform CeO2 and produce H2 is spontaneous below 

880 oC, as seen in Figure 3-8. However, there is expected to be a tradeoff if dopants are 

introduced, resulting in water oxidation thermodynamics that are not as favorable as un-doped 
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ceria. This is because the role of dopants, like samarium, is to induce more oxygen vacancies at 

lower temperatures than un-doped ceria. As a result, doped ceria is thermodynamically more 

stable with higher oxygen vacancy concentrations than undoped, resulting in a larger energy 

barrier that needs to be overcome for re-oxidation.  

 

Figure 3-8: Gibbs free energy as a function of temperature for the water oxidation of Ce6O11 

 

3.5 Conclusions 
 

 Equilibrium calculations have shown that the thermal reduction of metal substituted 

ferrites, such as Co and Ni, occurs at lower temperatures than un-substituted Fe3O4. Both are 

expected to decompose completely by 1450 oC, while Fe3O4 does not decompose completely 
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until its slag phase is expected to occur. Additionally, the decomposition temperature is directly 

related to the amount of inert gas present which acts to dilute the gas phase reaction products 

(O2). As a result, the decomposition temperature can be manipulated experimentally by diluting 

the reactants with a sweep gas, or operating under vacuum. Also, the reduction temperature 

decreases as the amount of cobalt in CoxFe3-xO4 is increased. The maximum amount of hydrogen 

is expected to be produced using CoFe2O4 reduced at temperatures greater than 1450 oC, and 

oxidized at temperatures less than 1100 oC. Below 1450 oC, ferrites with higher cobalt 

concentrations are expected to produce more H2. Ceria is expected to decompose at higher 

temperatures than cobalt ferrites, unless doped with metals such as Sm or Zr. Additionally, 

complete reduction to Ce2O3 is not achievable until very high temperatures (≈ 2000 oC), resulting 

in reduction to a non-stoichiometric state that has less potential for H2 production than the 

complete decomposition of metal substituted ferrites. 
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CHAPTER 4 ATOMIC LAYER DEPOSITION OF IRON(III) OXIDE ON ZIRCONIA 
NANOPARTICLES IN A FLUIDIZED BED REACTOR USING FERROCENE AND 
OXYGEN 
 

4.1 Abstract 
 
 
 Conformal films of amorphous iron(III) oxide and α-Fe2O3 have been coated on zirconia 

nanoparticles (26 nm) in a fluidized bed reactor by atomic layer deposition. Ferrocene and 

oxygen were alternately dosed into the reactor at temperatures between 367 oC and 534 oC. Self-

limiting chemistry was observed via in situ mass spectrometry, and by means of induced coupled 

plasma – atomic emission spectroscopy analysis. Film conformality and uniformity were verified 

by high resolution transmission electron microscopy, and the growth rate was determined to be 

0.15 Å per cycle. Energy dispersive spectroscopy, X-ray diffractometry, and X-ray photoelectron 

spectroscopy were utilized as a means to determine film composition at each deposition 

temperature. Over all of the deposition temperatures investigated, films were deposited as 

amorphous iron(III) oxide. However, after heat treatment at 850 oC in air and N2 atmospheres, α-

Fe2O3 was the predominant species. 

4.2 Introduction  
 
 Iron(III) oxide thin films have received significant attention in recent years due to their 

potential for use in catalytic, optical, electrical and magnetic applications. Iron oxide based 

Fisher-Tropsch synthesis catalysts, along with cobalt oxide based catalysts, are used industrially 

to convert synthesis gas to liquids with low H2/CO ratios and have low CH4 selectivities [1, 2]. 

Fe2O3 is used extensively to catalyze the dehydrogenation of ethylbenzene for styrene synthesis 

due to the intermediate adsorption strength of Fe3+ for ethylbenzene and styrene [3-6].  Iron(III) 
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oxide has a high propensity to transmit visible light while absorbing light in the infrared range, 

and as such can be used as a solar filter on windows to reduce radiative heat transfer [7, 8]. The 

band gap of iron (III) oxide is 2.0 eV, which allows for the capability of absorbing 38% of the 

solar spectrum. Relative to TiO2, which typically only absorbs the ultraviolet portion of the solar 

spectrum (~ 5%) it is well suited to help improve the efficiency of photoelectrochemical 

hydrogen production [9, 10]. Additionally, there has been recent extensive research involving 

iron oxide nanoparticle synthesis, as the nanosized features exhibit different properties than the 

bulk material and have been used for several important magnetic applications [11-13].  The 

properties of iron (III) oxide thin films are highly dependent on thickness, morphology and 

chemical composition, and therefore it is advantageous to have precise control of these 

properties. 

Currently, there are several methods employed for iron oxide thin film deposition, 

including chemical vapor deposition (CVD), sputtering, arc-plasma spray deposition, and various 

wet chemistry methods such as sol-gel deposition [7, 13-17]. However, there are disadvantages 

to these methods that limit their ability to precisely control film thickness, morphology and 

chemical composition. For example, sol-gel methods have the capability to deposit films as thin 

as 100 nm, but it can be difficult to control its chemical state, and many times films are not 

uniform and conformal[16-18].  Sputtering is able to deposit thinner films than those of wet 

chemistry methods, however due to the continuous bombardment of highly energetic species 

onto the film, the equilibrium state of the deposited oxide is very difficult to control [15, 16]. 

Perhaps the most common technique for iron oxide thin film deposition is CVD. This process 

involves vapor phase precursors reacting within a deposition chamber on a substrate surface, and 

as a result there are no geometrical limitations [19]. However, film thickness is difficult to 
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control because this process is not self-limiting, resulting in films that are generally micron-sized 

or thicker [20]. Films are typically non-conformal and granular due to the fact that excess vapor 

phase reactants may nucleate and precipitate on the substrate surface. Additionally, film 

stoichiometry is difficult to control, as the amount of precursor delivered into the deposition 

chamber is dependent on its vapor pressure [21].  

 Atomic layer deposition (ALD) is a self-limiting technique that is capable of depositing 

highly conformal films one molecular layer at a time [22-25]. Deposition is based upon the 

principle of splitting a binary reaction (typical of CVD) into two half- reactions and alternating 

the exposure of gas phase precursors of each half- reaction to a surface, as shown below: 

 
Binary Reaction: )()( 2 HLnOMOHyLMx yxn ⋅+→⋅+⋅   

Half-Reaction 1: )()(:][)()(:][ ** HLyLMOSMLxOHS ynxyny +→+ −   

Half-Reaction 2: ))(()(:)(:][)(:][ *
2

* HLynOHOMSOyHLMOS yyxynxy −+→+− , 

 
where M represents the metal species, n is the number of ligands (L), x:y is the metal to oxide 

ratio, [S] represents a surface site, and * represents an active surface species [26]. Operating 

conditions are controlled in such a way that the precursors of one half-reaction react only with 

the precursors of the other. This ensures atomic level control, since there is at most one sub-

monolayer of added species per half-reaction [27].  

 Iron oxide ALD has been demonstrated on a wide array of crystalline surfaces using 

Fe(thd)3 and Fe(acac)3 as precursors [28, 29]. Recently, Fe(C5H5)2 (ferrocene)  and oxygen have 

been used to deposit iron oxide films onto Si(100) and anodic aluminum [30]. The growth rates 

on Si(100) and anodic aluminum were 0.14 nm and 0.06 nm per cycle, respectively. At 

deposition temperatures below 500 oC a mixture of hematite and an unidentified phase were 

present. In this work, ALD of iron oxide on zirconia nanoparticles using ferrocene and oxygen is 
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investigated. Films are deposited in a fluidized bed reactor (FBR) at temperatures ranging from 

367 oC and 534 oC. They are shown to be highly conformal and uniform and can be controlled 

with angstrom level precision. As-deposited, the films are amorphous iron(III) oxide, but with 

heat treatment can be crystallized into α-Fe2O3. 

 

4.3 Experimental Details 
 

4.3.1Material Preparation 
 

 A schematic representation of the FBR is shown in Figure 4-1. The reactor is 3.5 cm in 

diameter and includes a porous stainless steel (SS) distributor plate and filter at the inlet and 

outlet, respectively. These are used to prevent particles from leaving the reactor, while allowing 

gas to pass through freely. The details of this reactor configuration have been described 

elsewhere [26]. Product gases were measured using a Stanford Research Systems QMS series 

mass spectrometer. 

Fluidization was accomplished at reduced pressure in conjunction with a mechanical 

vibration platform, as shown in Figure 4-1. Mechanical vibration has been shown to aid in 

overcoming interparticle forces present between nanoparticles, resulting in smaller aggregate 

sizes and a decreased minimum fluidization velocity [30]. The pressure drop across the bed was 

measured as a function of gas flow rate in order to maintain fluidization throughout the ALD 

cycle. 
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Figure 4-1: Schematic diagram of the ALD fluidized bed reactor. 

 

 The ALD cycle consisted of dosing ferrocene (99% purity acquired from Alfa Aesar®) 

and high purity oxygen (99.9%) in alternate doses into the reactor at temperatures ranging from 

367 oC and 534 oC. Ferrocene was delivered into the reactor using a 200cc bubbler (Precision 

Fabricators Ltd.) heated to 60 oC and nitrogen was employed as a carrier gas. The reactor was 

then purged with nitrogen in order to remove any excess ferrocene and by-products. Once 

purged, oxygen was dosed, followed by another nitrogen purge. All lines were heated to 65 oC in 

order to prevent any ferrocene vapor from depositing. A three factor central composite 
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experimental design, shown in Figure 4-2, was carried out with temperature, ferrocene dosing 

time, and oxygen dosing time all varying accordingly.  

 

Figure 4-2: Experimental design used to study factors affecting iron oxide growth rate. 

 

4.3.2 Material Characterization  
 

 Visual inspection of the films was carried out using a 200 kV JEOL 2010F Schottky field 

emission high resolution transmission electron microscope (HRTEM). Film composition was 

determined via energy dispersive spectroscopy (EDS), X-ray diffraction (XRD, Scintag PAD5 

Powder Diffractometer, CuKα  radiation, λ = 1.5406Å), and X-ray photoelectron spectroscopy 

(XPS, PHI 5600, Physical Electronics Inc., Al Kα). EDS results were obtained from a 

spectrometer that was coupled with the Schottky field emission TEM. XRD analysis was 

performed using a scan rate of 2 degrees/minute and step size of 0.2 degrees. A pass energy of 
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58.7 eV and step size of 0.2 eV was used during XPS analysis.  The resulting scans were 

internally calibrated by shifting the C 1s peak to 285.0 eV. Induced coupled plasma – atomic 

emission spectroscopy (ICP-AES) was used as means to quantify the mass percent of iron in the 

film. 

 

4.4 Results and Discussion  
 

4.4.1 Fluidization 
 
 The main advantage of an FBR compared to other reactor configurations is the benefit of 

constant particle recirculation, resulting in excellent fluid-solid contact and increased heat and 

mass transfer coefficients [22, 31]. In an ALD reactor, this would result in the active surface sites 

reacting quickly with the reactant due to continuous exposure to the gas phase precursors. 

Therefore, it is imperative that the particles remain in a fluidized state during the entire ALD 

process. In order to ensure this, a fluidization curve was generated to verify that the particles 

could be fluidized, and to determine the appropriate superficial gas velocity used throughout the 

reaction. Incipient fluidization occurs when the pressure drop as a function of superficial fluid 

velocity remains constant [32]. The fluidization curve shown in Figure 4-3 verifies that the 

particles become fluidized at a superficial gas velocity of 0.015 cm/s. 
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Figure 4-3: Pressure drop across the bed as a function of superficial gas velocity. Incipient 
fluidization occurs at 0.015 cm/s. 

 

4.4.2 In Situ Mass Spectroscopy 
 
 Residual gas analysis (RGA), which has been shown to be an effective method to observe 

the termination of ALD half reactions on various substrates, was used to observe the ALD 

reaction in situ [23, 26]. The RGA plot of one complete cycle is shown in Figure 4-4 at a 

temperature of 450 oC. Each half-reaction was clearly observed and indicated that the chemistry 

was self-limiting. When ferrocene was dosed into the reactor (‘Ferrocene Dose’), there was an 

increase in the partial pressure of CO2. Soon after, the partial pressure of ferrocene began to 

increase, which signified precursor breakthrough, and eventually reached a maximum. The CO2 
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subsequently decreased, which indicated that the surface was saturated and the reaction had 

reached completion. After the reactor was purged, oxygen was dosed (‘O2 Dose’) and the partial 

pressure of both CO2 and oxygen increased. As oxygen continued to be dosed, the reaction 

product began to decrease, which signifying that the reaction was approaching completion. In the 

first half reaction, CO2 is attributed to chemisorbed oxygen reacting with ferrocene ligands 

adsorbed on the surface. As O2 is dosed in the second half reaction, it reacts with the remaining 

chemisorbed ferrocene ligands to evolve CO2, and oxidizes the iron. This mechanism has been 

observed during ALD of metals and metal oxides using metallocene precursors with oxygen, 

such as for Ru and RuO2 using Ru(C5H5)2  [33, 34].  

 

Figure 4-4: In situ mass spectrometry results during one complete ALD cycle. 
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4.4.3 Film Characterization 
 
 HRTEM images after 200 coating cycles at 450 oC are shown in Figures 4-5a and 4-5b. 

These images clearly indicate that the films are conformal and uniform around the particles. 

From visual inspection, the films are about 3 nm thick, corresponding to a growth rate of 0.15 Å 

per cycle, which is comparable to other metal oxide ALD growth rates [29, 35, 36]. Additionally, 

there is a clear differentiation between films around individual particles. This is observed in 

Figure 4-5b, where films around two individual particles can be observed, indicating that 

particles have not been glued together. EDS results, shown in Figure 4-5c, confirm the presence 

of iron. C and Cu peaks result from the grid that particles were analyzed on and are not 

representative of the particle surfaces. The only remaining peaks were Zr, Fe and O, which 

clearly indicated that iron had been deposited on the ZrO2 particle substrates. 

 

Figure 4-5: a) and b) HRTEM micrographs after 200 coating cycles. c) EDS spectrum confirms 
the presence of iron. 

 

Two properties intrinsic to ALD, self-limiting chemistry and linear growth rate, are 

confirmed in Figures 4-6 and 4-7 by measuring iron mass percent as a function of ferrocene 

dosing time and number of ALD cycles at 450 oC, respectively. As ferrocene dosing time was 

increased from 67s to 480s, the iron mass percent in the film increased from about 1% to 11%. 
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However, as the dosing time was increased to 883 s, the amount of iron in the film did not 

significantly increase, confirming that ferrocene does not continue to react once all of the surface 

sites are saturated.  

 

Figure 4-6: ICP-AES iron mass percent in the film as a function of ferrocene dosing time. Self-
limiting chemistry is confirmed. 

 

Nearly linear growth is observed in Figure 4-7 as the number of ALD cycles is increased from 50 

to 200. The discrepancy between iron mass percent in Figure 4-6 and that of Figure 4-7 is due to 

the fact that zirconia nanoparticles were not used to study the growth of the films as a function of 

number of ALD cycles, but rather zirconia particles that had a mean diameter of 110 µm. 
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Figure 4-7: ICP-AES iron mass percent in the film as a function of the number of ALD cycles. 
Nearly linear growth is observed. 

 

Contour plots shown in Figure 4-8 summarize how the mass percent of iron in the film 

varies with ferrocene dosing time, oxygen dosing time, and temperature. Each graphic depicts 

one factor (e.g. dosing time) as a function of another while holding the third factor constant at its 

center point (refer to Figure 4-2 for a schematic of the experimental design). Because the 

majority of change in iron mass percent was observed at short dosing times, each of these axes is 

shown only up to their center point. As seen in Figures 4-8a and 4-8b, the amount of iron in the 

film began to decrease as the temperature was raised beyond 500 oC. This is likely due to the 

thermal desporption of ferrocene, which has been shown to desorb molecularly intact [37].  
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Additionally, a greater dependence was observed for ferrocene dosing time than that of oxygen 

on the final iron mass percent in the films. As seen in Figure 4-8a, as ferrocene dosing time 

decreased below 200 s, the amount of iron in the film decreased rather dramatically, whereas the 

change was not nearly as significant for oxygen dosing time (Figure 4-8b). This was further 

corroborated in Figure 4-8c, where large changes in iron content were attainable even at very low 

oxygen dosing times. This can be explained by the fact that ferrocene was dosed into the reactor 

with the aid of a carrier gas (N2) because of its low vapor pressure. Therefore, the mass of 

ferrocene available to react with the fluid bed per unit time was much smaller than that for 

oxygen.  

 

Figure 4-8: Countour plots of a) ferrocene dosing time vs. temperature at a constant O2 dosing 
time of 480 s, b) O2 dosing time vs. temperature at a constant ferrocene dosing time of 480 s, and 
c) O2 dosing time vs. ferrocene dosing time as a constant temperature of 450 oC. 

 

EDS results confirm the presence of iron but do not give any information regarding the 

oxidation state or crystalline nature of the films. Therefore, powder XRD was utilized in an 

effort to further understand the crystallininity of the film. XRD results of uncoated and coated 

particles after 200 cycles are shown in Figure 4-9. For both samples, only peaks representative of 

the ZrO2 nanoparticles were evident, which suggests that the films were likely amorphous as 
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deposited. After 200 cycles it was apparent that the peaks were less sharp than uncoated 

particles, but the angle and relative intensity of the peaks remained unchanged. This can be 

observed visually in the high resolution TEM image in Figure 4-4b, where the crystalline and 

ordered nature can be clearly observed in the ZrO2 particle, but not in the deposited film. 

 

Figure 4-9: XRD spectrum of uncoated and coated ZrO2 nanoparticles after 200 ALD cycles. 

 

 Because the coated film was amorphous, samples were thermally annealed in both air and 

an inert environment at 850 oC for four hours in an effort to crystallize the film and to help 

determine whether iron metal or amorphous iron oxide was deposited. At 850 oC in air, α-Fe2O3 

is the thermodynamically favored state of iron oxide. In an inert environment, however, α -Fe2O3 
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would only be expected if the deposited film was amorphous iron(III) oxide, as it was not 

exposed to an oxidizing atmosphere during heat treatment. As seen in Figure 4-10, there are 

peaks representative of α-Fe2O3 for the sample heat-treated in air, which were not present in the 

sample measured in the as-deposited state. The crystal structure of the sample that was heat-

treated in an inert environment was nearly identical to that of the sample thermally annealed in 

air, which indicated that amorphous iron(III) oxide was deposited on the particle surfaces by 

ALD using ferrocene and O2 at a temperature of 450oC. 

 

Figure 4-10: XRD spectrum of as-deposited and heat-treated samples after 200 ALD coating 
cycles. 
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 In order to verify that the sample heat treated in an N2 atmosphere was not oxidized from 

iron(II,III) oxide to iron(III) oxide due to oxygen or water adsorbed on its surface, XPS 

measurements were conducted for both the amorphous and heat-treated samples. These results 

confirmed that iron(III) oxide was deposited, as shown in Figures 4-11 and 4-12.  

 

Figure 4-11: XPS spectrum of Fe 2p of amorphous iron oxide film. 

 

The binding energy associated with electrons residing in the Fe 2p3/2  orbitals in both the 

amorphous and heat-treated samples was approximately 711.0 eV, which is in good agreement 

with previously reported literature values [38, 39]. Because the difference in binding energy 

between these orbitals for the Fe2+ and Fe3+ oxidation states is very small, it can be difficult to 

determine the relative amount of Fe2+ and Fe3+ in the sample [40]. Therefore, Gaussian curves 
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centered around Fe2+ (709.2eV – 709.8 eV) and Fe3+ (710.6eV - 711.2eV) were added and fit to 

the data using a sum of least squares approximation.  The binding energy of metallic iron (707 

eV) was not considered as it falls considerably away from the center of the Fe 2p3/2 peak. As 

seen in Figures 4-11 and 4-12, a majority of the contribution to the best fit line was due to the 

Fe3+ peak, while that of the  Fe2+ was much smaller. Therefore it can be concluded that most of 

the iron was in the Fe3+ oxidation state, similar to the XRD results, but the presence of the Fe2+ 

state, albeit to a significantly lower degree,  cannot be excluded. 

 

 

Figure 4-12: XPS spectrum of Fe 2p of iron oxide film heat treated at 850 oC. 

 

4.5 Conclusions 
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 ALD chemistry that combined ferrocene and oxygen as precursors was used to deposit 

ultrathin amorphous iron oxide layers on zirconia nanoparticles in a fluidized bed reactor. Self-

limiting chemistry, characteristic of ALD, was observed via in situ mass spectrometry and ICP-

AES studies. HRTEM images were used to show the conformal and uniform nature of the films 

on individual nanoparticles. XRD and XPS analyses established that essentially all of the iron 

oxide that was deposited was amorphous and in the +3 oxidation state. After heat treatment at 

850 oC, it was shown that the films could be crystallized to form α-Fe2O3, even on the high 

radius of curvature substrates used here. 
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CHAPTER 5 HYDROGEN PRODUCTION VIA CHEMICAL LOOPING REDOX 
CYCLES USING ALD SYNTHESIZED IRON OXIDE AND COBALT FERRITES 
 

5.1 Abstract 
 

 Iron oxide (γ-Fe2O3) and cobalt ferrite (CoxFe3-xO4) thin films have been synthesized via 

atomic layer deposition on high surface area (50 m2/g) m-ZrO2 supports. The oxide films were 

grown by sequentially depositing iron oxide and cobalt oxide, and adjusting the number of iron 

oxide cycles relative to cobalt oxide to achieve desired stoichiometry. The as-deposited films are 

shown to be crystalline by high resolution transmission electron microscopy and x-ray 

diffraction, with a thickness of approximately 2.5 nm. Raman spectroscopy was used to confirm 

the predominance of the spinel phase in the case of cobalt ferrite. Samples were chemically 

reduced in a flow reactor equipped with in situ x-ray diffraction. They were also subjected to 

chemical reduction and oxidation in a stagnation flow reactor to test activity for use in chemical 

looping cycles to produce H2 via water splitting. γ-Fe2O3 films chemically reduced in mixtures of 

H2, CO, and CO2 at 600 °C formed Fe3O4 and FeO phases, and exhibited a trend-wise decrease 

in H2 production rates upon cycling. Co0.85Fe2.15O4 films were successfully cycled without 

deactivation and produced four times more H2 than γ-Fe2O3, principally due to the formation of a 

CoFe alloy upon reduction. For comparison, a mechanically milled mixture of α-Fe2O3 and ZrO2 

powders with similar iron loading to the thin films did not maintain high activity to water 

splitting due to sintering and grain growth. 

 

5.2 Introduction 
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 Iron oxide and cobalt ferrites are receiving significant interest for their applications as 

catalysts and as intermediates in thermal redox cycles and chemical looping combustion 

processes. These materials have been shown to be effective catalysts for the decomposition of 

NOx[1, 2], various organic contaminants[3, 4], decomposition of biomass tars[5], and for the 

production of H2 via the water gas-shift reaction[6, 7]. They have also been used as a catalyst 

support to take advantage of their magnetic properties, which facilitates downstream separation 

unit operations, in large scale environmental catalysis applications[8]. Recently, iron oxide and 

mixed metal ferrites have been used as intermediates in chemical looping processes[9, 10] and 

thermal redox cycles for the renewable production of H2 in concentrated solar power 

applications[11-13]. 

 A high specific surface area is of particular importance for many catalytic applications 

and redox cycles because surface area has a direct affect on catalytic efficiencies[3] and 

oxidation kinetics of redox cycles. For example, Bleeker et.al. have used iron oxide particles in a 

fluidized bed, two-step redox cycle. In this work, pyrolysis oil was used to reduce the iron oxide 

and steam subsequently exposed to the reduced iron produced H2[14, 15]. Grain growth of the 

iron oxide particles was observed with increased cycling, leading to a decrease in surface area 

and ultimately to decreased conversions. This behavior has also been observed by Bohn et.al. 

when reducing iron oxide particles all the way to metallic iron in a packed bed reactor[10]. 

However, deactivation was abated when the iron oxide was only reduced to the wustite phase 

(FeO). 

 High specific surface area is also essential in thermal gas splitting cycles operating at 

high temperature (1400-1600 oC) where the iron cation in a metal oxide (MxFe3-xO4) is thermally 

reduced to Fe2+and then oxidized by H2O or CO2 back to Fe3+ resulting in H2 or CO formation. 
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Steinfeld et.al. observed a direct dependence on FeO surface area on the CO2 oxidation rate. As 

larger surface to volume particles were used, the resultant initial reaction rates were more 

rapid[16]. Weidenkaff at. al. also observed a FeO particle size dependence on H2O splitting, and 

attributed this to diffusion limitations through the bulk of the iron oxide [17]. Analogous to lower 

temperature chemical looping cycles, sintering and grain growth is also a problem for these high 

temperature gas splitting applications. 

 There are a variety of methods used to synthesis metal oxides of the form MxFe3-xO4, 

including solution combustion synthesis[1], aerial oxidation of aqueous suspensions[13], sol-gel 

process[3], laser molecular beam epitaxy[18], sputtering[19], chemical vapor deposition[20], and 

atomic layer deposition (ALD)[21]. Deposition on porous supports, such as SiO2, Al2O3, ZrO2, 

and yttria stabilized zirconia (YSZ) has proven to be successful at limiting the amount of 

sintering and grain growth thereby maintaining active surface area and improving cycle 

stability[11, 12, 22, 23]. In addition, inorganic supports provide a platform in which specific 

surface area can be precisely controlled. 

 ALD is an especially attractive synthesis method for producing conformal thin films on 

high surface area, high porosity supports because nano-scale films of various materials can be 

deposited independent of line of sight. This cannot be done using physical vapor deposition or 

pulsed laser techniques. Due to the self-limiting nature of the deposition chemistry, precursors of 

one half-reaction react only on the surface with intermediate functional groups generated by the 

other precursor. This ensures atomic level control, since at most one sub-monolayer is deposited 

per each half-reaction. Cobalt oxide thin films can be grown on a wide array of surfaces using 

precursors such as bis(N,N′ -diisopropylacetamidinato)cobalt(II)[24], CoI2[25], and Co(thd)2[26, 

27]. Additionally, iron oxide films have been deposited using bis(N,N′ -
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diisopropylacetamidinato)iron(II)[24], Fe(acac)3[28], Fe(thd)2[29], Fe(thd)3[30], iron(III) tert-

butoxide[31], and ferrocene[32, 33]. Various stoichiometries of CoxFe3-xO4 can also be deposited 

by combining selective organometallic precursors in alternating doses of correct proportions[21]. 

 In this report, we describe the synthesis of nano-scale films of Fe2O3 and CoxFe3-xO4 on 

high surface area m-ZrO2 supports (50 m2/g) using ferrocene and cobaltocene as the iron and 

cobalt sources, respectively, and O2 as the oxidant. These materials can be used to study iron 

oxide and cobalt ferrite gas splitting kinetics in either a chemical combustion looping process or 

high temperature thermal redox. To evaluate the efficacy and activity of these materials for water 

splitting via chemical looping processes, we performed experiments in which supported ALD 

films are reduced in a synthesis-gas atmosphere, and subsequently oxidized by steam. 

Additionally, we compare these results to mechanically milled powders of bulk Fe2O3 and ZrO2 

mixtures (BET SA = 210 m2/g). 

 

5.3 Materials and Experimental Methods 
 

5.3.1 ALD synthesis 
 

 Multilayers of iron(III) oxide and cobalt(II) oxide were deposited onto porous ZrO2 

substrates (BET surface area = 50 m2/g, Alfa Aesar®) via ALD in alternating cycles according to 

the schematic shown in Figure 5-1. Details of the reactor configuration are described 

elsewhere[33]. The ZrO2 supports were ground with a mortar and pestle and sieved to particle 

sizes ranging from 149 µm to 250 µm to facilitate gas diffusion through the entire porous 

structure and achieve conformal coverage of the deposit. Deposition conditions were 450 °C and 

200 mTorr total pressure. 
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Figure 5-1: Schematic of CoFe2O4 synthesis by ALD. 

 

 Iron(III) oxide deposition consisted of flowing ferrocene (99% purity, Alfa Aesar®) or 

high purity oxygen (99.9%) into the reactor, with each dose representing one-half of the ALD 

cycle. A saturated vapor of ferrocene in nitrogen was delivered through a 200 cm3 bubbler 

(Precision Fabricators Ltd.) heated to 60 oC. The reactor was then purged with pure nitrogen to 

remove any unreacted ferrocene and vapor phase byproducts of the ALD chemistry. 

Subsequently, oxygen was introduced into the reactor followed by another nitrogen purge. 
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Layers of Cobalt(II) oxide were deposited in an identical manner to that of iron(III) oxide using 

cobaltocene as the organometallic precursor. 

 In situ mass spectrometry is a reliable method for determining the termination of ALD 

half reactions on various substrates[34, 35] and was used here to monitor the extent of reaction. 

A plot illustrating the self-limiting nature of the ALD chemistry is shown in Figure 5-2. Each 

half reaction for both Fe2O3 and CoO deposition is clearly observed.  

 

Figure 5-2: In situ mass spectrometry results showing Fe2O3 and CoO deposition. 

 

Fe2O3 is deposited in the first two cycles and is characterized initially by an increase in the CO2 

partial pressure resulting from a reaction between ferrocene and the oxide surface. Once the 
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deposition nears completion, a mass spectral feature associated with the organometallic precursor 

at an m/e = 65 increases as the unreacted ferrocene breaks through the reaction zone. The partial 

pressure of CO2 also starts to decrease at this point. Following a nitrogen purge the surface is 

oxidized with O2 and an increase in CO2 partial pressure, also a byproduct of this half reaction, is 

observed. Once O2 breakthrough is achieved, indicating a termination of the half reaction, CO2 

again decreases. This process is repeated with ferrocene for one more cycle, shown in the center 

segment of Figure 5-1b, and then CoO is deposited using cobaltocene. The CoO ALD chemistry 

is nearly identical to that of ferrocene, evidenced by similar temporal behavior of the precursor 

and byproduct spectral patterns. 

 

5.3.2 Material characterization 
 

 Electron microscopies were used to inspect morphology and crystallinity of the as-

deposited ALD films. Elemental composition was determined via energy dispersive x-ray 

spectroscopy (EDS) and induced coupled plasma–atomic emission spectroscopy (ICP-AES). A 

Raman microscope was used to interrogate phonon modes in the films in order to fingerprint the 

chemical structure of the deposits. Surface area measurements were made with a Micrometrics 

Gemini V BET surface area analyzer. 

 Visual inspection of the films was carried out using a JEOL 2010F field-emission 

transmission electron microscope (HRTEM) operating at 200 kV. The material was lightly 

crushed using a mortar and pestle, and sonicated in ethanol. Copper TEM grids with a thin 

carbon support film were dipped into the suspension and allowed to dry. A JEOL 7600F field-

emission scanning electron microscope (FESEM) operating at 4kV and 15kV was used to 
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examine surface morphology and local chemical variation. Here, samples were mounted on 

conductive tape and sputtered with carbon. 

 Raman spectra were acquired ex situ in a 180 degree-backscattering geometry using a 

100× objective lens and 532-nm excitation from a frequency-doubled Nd:YAG laser. The 

scattered light was filtered by a film polarizer in crossed polarization with the incident, linearly 

polarized light to reduce the non-Raman background. A Semrock edge filter was used to reject 

the elastically scattered light. A spectrograph with a single 1200 groove/mm grating dispersed 

the light onto a CCD detector cooled by liquid nitrogen. The laser has a spot size of 

approximately 1 μm. The spectrometer was calibrated with a neon lamp. Raman spectra were 

collected at multiple locations on the sample surface. 

 

5.3.3 In situ HT-XRD 
 

 High temperature XRD (HT-XRD) experiments were performed using a Scintag PAD X 

diffractometer (Thermo Electron Inc.; Waltham, MA). This diffractometer is equipped with a 

sealed-tube source (Cu Kα, λ = 0.15406 nm), an incident-beam mirror optic, a peltier-cooled Ge 

solid-state detector, and a Buehler hot-stage with Pt/Rh heating strip and surround heater. The 

hot stage lies within a sealed cell with x-ray-transparent beryllium windows, and is operable 

from ambient temperature to 1600 °C, and at gas pressures from 10-9 to 103 Torr. A gas manifold 

was attached to the inlet of the reaction cell allowing the controlled flow of helium, hydrogen, 

and carbon dioxide through the cell. Suitable gas compositions were achieved by blending using 

mass flow controllers (Brooks Instruments). 

 Samples of typically 20 – 30 mg material were analyzed as thin films (ca. 50 – 100 µm) 

of powder on top of single-crystal <100> 9YSZ platelets (10mm x 10mm x 0.5mm, MTI 
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Corporation). In situ HT-XRD experiments were conducted at atmospheric pressure, under gas 

flow rates of 500 sccm. Experiments involved purging the reaction cell with He, then ramping 

the temperature to 600 °C before switching to a reducing gas mixture (2340 ppm H2 and 2340 

ppm CO2). Diffraction patterns were recorded at room temperature under He, at 600 °C under 

He, and then continuously at 600 °C for 2 – 4 hours after introducing the reducing gas. A final 

XRD pattern was recorded after cooling the sample back to ambient temperature. Heating and 

cooling ramp rates were set to 20 °C min-1. Using this experimental set-up, phase fractions as 

low as approximately 1 wt.-% could be reliably detected. The temperature calibration was 

performed using the thermal expansion behavior of known materials (e.g., alumina or Pt) to an 

accuracy of ±5 °C. Diffraction patterns were collected at 40 kV and 30 mA using fixed slits and 

a count time of 1 s. 

 

5.3.4 Stagnation flow reactor 
 

 Samples were reduced and oxidized in a stagnation flow reactor (SFR) shown in Figure 

5-3. The reactor consists of a stainless steel gas-handling manifold, ceramic reactor core, high 

temperature furnace (Carbolite STF16/180), and modulated effusive beam mass spectrometer. 

The ceramic reactor core is configured to allow inlet gases flowing downward towards the 

round-bottom, closed end of an Al2O3 tube (McDanel Advanced Ceramic Technologies) to 

impinge on a zirconia flat, turn 180 degrees, and exit through an annular space between the walls 

of two concentric tubes (see cross sectional view and flow stream lines in Figure 5-3). The 

distance between zirconia flat and bottom of inner tube wall was maintained at 8 mm to ensure 

ideal stagnation flow behavior as determined by 2-D computational fluid dynamic (CFD) 

calculations. Essentially the gas-phase region above the zirconia flat between centerline and 
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inner tube radius can be considered an ideal 1-D stagnation plane governed by diffusive 

transport. Shown in the inset to Figure 5-3 are plots of the surface velocity gradient as a function 

of inner tube radius for an ideal 1-D case, the best case CFD prediction used to fix the reactor 

geometry, and a worst case prediction. It is important to note that the SFR operates in a flow 

regime where velocity and thermal gradients are independent of tube radius so that materials 

sitting on the zirconia flat experience a uniform gas composition. 

 

Figure 5-3: Stagnation flow reaction (SFR) 

 

 Gases exiting the flow reactor were sampled using a differentially pumped, modulated 

effusive beam mass spectrometer (Extrell C50, 500 amu). Upon expansion into the second of 
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three pumping stages, the molecular beam is chopped by a resonant modulator driven at 200 Hz 

and ionized by electron impact at 30 eV. Modulated ion current from the electron multiplier is 

routed through a lock-in amplifier and discriminated against DC background. This increases 

detector sensitivity and digitally filters out ion current resulting from gases that persist in the 

ionization volume thus enabling real-time baseline correction and a higher degree of precision 

for quantifying component partial pressures. A mixture of 5 vol.-% CO and 5 vol.-% H2 in He 

was used to calibrate the detector. 

 Mass flow controllers were used to meter all gas feed rates. The reactor exhaust was 

throttled, allowing for feedback control of the reactor pressure to any desired setpoint within the 

range 1 to 760 Torr. Unless otherwise indicated, oxidation and reduction reactions were 

conducted at a temperature of 600 °C, a total flow rate of 500 sccm, using mixtures of H2, CO, 

CO2, H2O, and He at a total pressure of 75 Torr. Water was delivered through an evaporator fed 

by micro-syringe pump. Liquid nitrogen traps were used to condense H2O prior to sampling the 

reactor effluent with the mass spectrometer. Between 50 and 200 mg of sample material in the 

form of powder or ALD-coated ZrO2 support were placed in the reactor. Chemical reduction was 

accomplished by exposing the sample to a gas mixture of 1 vol.-% H2, 1 vol.-% CO, and 2 vol.-

% CO2 diluted in He for a total of 600 s. Water oxidation consisted of flowing H2O and He in 

various proportions for 600 s. 

 

5.4 Results and Discussion 
 

5.4.1 ALD materials 
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 ALD films with three representative cobalt stoichiometries (x = 0, 0.67 and 1 in CoxFe3-

xO4) were synthesized by appropriately adjusting the number and sequence of iron oxide and 

cobalt oxide deposition cycles (e.g., 1 cobalt oxide cycle for every 2 iron oxide cycles in 

CoFe2O4). The total number of ALD cycles was varied between 24 and 50 cycles. The 

corresponding mass loadings, as measured via ICP-AES analysis, varied from 20% to 37%. ICP-

AES results showing the actual cobalt stoichiometry verses attempted are shown in Figure 5-4.  

 

Figure 5-4: ICP-AES Results of the actual stoichiometry (x, in CoxFe3-xO4) verses target 
stoichimetry 
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When flowing only ferrocene, the target and actual stoichiometries are identical because iron 

oxide is deposited. As higher cobalt concentrations are attempted, the actual stoichiometries 

agree well with the targeted stoichiometries, indicating that both iron oxide and cobalt oxide 

growth rates are similar. Variations in film stoichiometry are primarily due to gas diffusion 

limitations through the ZrO2 support, but may also be due to cycle-to-cycle variability. As noted 

previously, the original ZrO2 supports were ground to smaller particle sizes to decrease the 

reactant diffusion time, because the original supports were too large to allow for adequate 

diffusion through the pores. 

 FESEM images of Co0.85Fe2.15O4 deposited on 50 m2/g supports are presented in Figures 

5-5a and 5-5b. The bulk support was ground and sieved prior to ALD and, at ×40 magnification, 

appears to have an average particle size of order 200 µm. The high surface area of these supports 

is the result of sintering ZrO2 nanoparticles, which are nominally 50 nm in diameter as seen at 

higher magnification (×20000) in Figure 5-5b. Measurements of the specific surface area of the 

supports using BET methods confirm that significant sintering or grain growth did not occur 

during the deposition at 450 oC. After deposition of Co0.85Fe2.15O4 (45% by mass), the surface 

area of the support decreased from 51 m2/g to 28 m2/g. This decrease agrees well with the 

increase in mass due to the addition of the ferrite film (45%), and also confirms that deposition 

did not result in pore clogging. EDS mapping of Zr and Fe (Figure 5-5c and 5-5d) confirm that 

iron is uniformly distributed throughout the support. 
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Figure 5-5: a) FESEM image of bulk ZrO2 supports, b)FESEM image of ZrO2 nanoparticles  
within the bulk, c) EDS Zr map after Co0.85Fe2.15O4 deposition and d) EDS Fe map after 
Co0.85Fe2.15O4 deposition 

 

 TEM analysis shows the crystalline nature of the ZrO2 nanoparticles and the 

Co0.85Fe2.15O4 coated nanoparticles after deposition at 450 oC. TEM and HRTEM images of the 

uncoated ZrO2 support are shown in Figures 5-6a and 5-6b. The lattice fringes are clearly 

observed in Figure 5-6b, and the accompanying electron diffraction pattern (inset Figure 5-6a) 

confirms that the nanoparticles making up the support are m-ZrO2. TEM images in Figures 5-6c 

and 5-6d show that a thin film surrounds the ZrO2 nanoparticles after deposition. At higher 

magnification (Figure 5-6d) it is apparent that this 2 nm layer has a different crystolographic 
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orientation than the underlying support. This interface is not observed for the un-coated ZrO2 

support. Electron energy loss spectroscopy (EELS) also confirms that of cobalt and iron oxides 

were present throughout the surface of the ZrO2. 

 

Figure 5-6: a) HRTEM image of m-ZrO2 support and corresponding diffraction pattern, 
b)HRTEM image of m-ZrO2 nanoparticle within support , c) HRTEM image after Co0.85Fe2.15O4  
deposition and d) HRTEM image showing crystalline Co0.85Fe2.15O4 film on m-ZrO2 
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 The structural nature and homogeneity of the films were examined further by Raman 

spectroscopy. The strongest Raman modes we observe for ALD iron oxide films occur at 325, 

370, 465, 495, 625, 650, and 710 cm-1, as shown in Figure 5-7a. These modes are indicative of 

maghemite (γ-Fe2O3) and agree well with previous literature reports[36, 37]. This is also indirect 

confirmation for the presence of a nanoscale thin film as maghemite is the more 

thermodynamically favored phase of Fe3+ for small particle sizes (less than 16 nm) because it 

possesses a lower surface energy than hematite[36, 38, 39]. 

 

Figure 5-7: Raman spectra of a) g-Fe2O3 deposited on m-ZrO2, b) Co0.5Fe2.5O4 deposited on m-
ZrO2 and c) Co0.85Fe2.15O4 deposited on m-ZrO2 
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 Substitution of cobalt for iron in the ALD film leads to a decrease in the Raman modes 

associated with maghemite, and a subsequent increase in the intensity of magnetite (Fe3O4) 

modes at 290, 460, and 680 cm-1 (Figure 5-7b)[36, 40]. In addition, the peak at 680 cm-1 is not 

symmetrical, which is expected for pure Fe3O4. The asymmetry is attributed to the presence of 

Co substituted for Fe. As the cobalt stoichiometry in the film increases from 0.5 to 0.85, a peak 

at 660 cm-1 grows in beside the peak at 680 cm-1. This observation is consistent with literature 

reports of inverse spinel structures where Co substitutes for Fe in octahedral sites[20, 40]. The 

Raman spectra also reveal indirect evidence for conformal coverage of the ALD films on the 

support because no modes indicative of ZrO2 are apparent. 

5.4.2 Chemical reduction and HT-XRD 
 

 Iron oxide and cobalt ferrite samples were chemically reduced in either a 1:1 mixture of 

H2:CO2 diluted in He, or a 1:1:2 mixture of H2:CO:CO2 diluted in He. By including CO2 in the 

reducing gas, the extent to which metallic iron (Fe0) will form when starting from Fe2O3 (Fe3+) 

can be suppressed such that the formation of FeO (Fe2+) is thermodynamically favored. This is 

discussed in detail by Bohn et. al.[10] and we have confirmed this with calculations using the 

thermodynamics software package FactSage. Bohn et. al. observed better redox cycle 

repeatability when reducing iron oxide particles to FeO rather than metallic iron. They attributed 

this to the suppression of grain growth and sintering. Therefore, we chose to chemically reduce 

our materials in an atmosphere conducive to the formation of FeO in order to minimize cycle-to-

cycle variability in H2 production rates, as well as investigate water splitting chemistry that is 

comparable to thermal redox cycles in which iron oxide is cycled between Fe3O4 and FeO at high 

temperature. Phases formed during chemical reduction were monitored in situ by HT-XRD. 
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 Chemical reduction of α-Fe2O3 nanoparticles physically mixed with m-ZrO2 (25% α-

Fe2O3  by mass) in 1 vol.-% H2, 1 vol.-% CO2 mixture resulted in the formation of FeO, but after 

prolonged reduction metallic Fe was formed, as shown in Figure 5-8. Prior to the addition of any 

reactants, only α-Fe2O3 is observed at room temperature. Once heated to at 600 oC, however, 

Fe3O4 is observed. After exposure to a reducing atmosphere, there is a rapid transition to FeO. 

Unexpectedly, however, the presence of metallic Fe is observed after only 15 minutes, and 

slowly increases in intensity until the sample is cooled to room temperature. This behavior is 

different from that of only α-Fe2O3 particles without m-ZrO2. In fact, when we used only α-

Fe2O3 we observed a clear transition from α-Fe2O3 to Fe3O4 to FeO only after the reducing gases 

were introduced. The presence of metallic Fe was observed, but after a much longer time (> 84 

minutes). Because metallic Fe is not thermodynamically predicted to exist under either of these 

conditions, we attribute its formation to the grain growth of the iron oxide particles. This results 

in larger particles that can readily be reduced by the H2, but the impact of CO2 becomes 

kinetically limited due to diffusion limitations through the bulk of the particles. Bohn et.al. have 

performed similar experiments and did not observe any metallic Fe formation, but it should be 

noted that their experiments were much shorter (≈10 minutes). Only for longer reduction times 

than this did we witness any Fe [10]. Also, because of the differences observed with and without 

m-ZrO2, it is clear that there is an interaction between the m-ZrO2 and α-Fe2O3, which results in 

a more rapid reduction of iron to its reduced phases. Without further investigation, however, it is 

difficult to determine the nature of this observation. The rapid reduction may be in part due to the 

role that ZrO2 plays in preventing grain growth of the Fe2O3 particles, and the reduction to Fe 

rather than FeO may be related to the solubility of iron in ZrO2. 
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Figure 5-8: In situ XRD spectra of 25% α -Fe2O3 /75% m-ZrO2 by mass reduced in 1% H2 / 1% 
CO2 in He (500 sccm total) at 600 oC 

 

 Metallic Fe is not observed during the chemical reduction of γ-Fe2O3 synthesized via 

ALD. Only FeO is observed after chemical reduction for up to 148 minutes. As seen in Figure 5-

9, upon exposure to the reducing atmosphere, there is an immediate appearance of FeO (42o) and 

the maghemtite (γ-Fe2O3, 35o) decreases in intensity. By the end of the experiment, no changes 

in either γ-Fe2O3 or FeO intensity are observed, indicating that the reaction has completed. This 
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is in contrast to the α-Fe2O3/ZrO2 powder in which the iron was reduced to metallic Fe. Because 

the γ-Fe2O3 synthesized via ALD was deposited on a stable ZrO2 support, morphological 

changes are suppressed for the duration of the experiment. It is difficult to see the transition from 

γ-Fe2O3 to Fe3O4 because maghemtite and magnetite both have similar XRD patterns, and the 

resolution of our diffractometer is not capable of distinguishing between the two.  

 

Figure 5-9: In situ XRD spectra of Fe2O3 on m-ZrO2 (ALD/20.2% mass loading) reduced in 1% 
H2 / 1% CO2 in He (500 sccm total) at 600 oC 
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Additionally, many of the peaks due to m-ZrO2 fall on or near the peaks of interest, making data 

interpretation more difficult. It is not yet clear why the α-Fe2O3 particles mixed with ZrO2 reduce 

to metallic Fe and the ALD synthesized γ-Fe2O3 films on ZrO2 reduce only to FeO. It may simply 

be due to differences between crystallographic orientations of the iron oxide or due to the 

morphological differences between very thin films (≈ 2nm) and  particles. 

 Although the chemical reduction of iron in Fe2O3 (or Fe3O4) to FeO has been reported 

previously in the literature, the chemical reduction of iron to Fe2+ in cobalt ferrite is less 

understood. Thermodynamic calculations under the same conditions conducive to the formation 

of FeO in the iron oxide system predict the formation of metallic Co and Fe in cobalt ferrites. In 

fact, we could not find any conditions where a thermodynamically stable phase of Fe2+ exists 

when chemically reducing cobalt ferrite with a mixture of H2, CO, and CO2. As predicted, the 

formation of Fe2+ was not observed for Co0.85Fe2.15O4 synthesized via ALD. Rather, after the 

introduction of the reducing gas there is a rapid transition from the magnetite structure (30o) to a 

CoFe alloy (44.5o), as seen in Figure 5-10. For the duration of the reaction, the intensity of the 

alloy slowly increases, but the majority of the conversion occurs almost immediately after the 

reducing gases are delivered. 

 With guidance from the results of our in situ HT-XRD experiments, the subsequent water 

splitting chemistry of reduced iron oxide and cobalt ferrite ALD thin films was investigated. 

Chemical reduction was achieved in an ambient of 1 vol.-% H2, 1 vol.-% CO, and 2 vol.-% CO2 

in He at 75 Torr for 600 s at 600 oC. The CO2 signal was monitored with the mass spectrometer 

in order to determine a point at which full reduction was achieved. Oxidation was performed at 

75 Torr and 12.5% H2O. 
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Figure 5-10: In situ XRD spectra of Co0.85Fe2.15O4 on m-ZrO2 (ALD/19% mass loading) reduced 
in 1% H2 / 1% CO2 in He (500 sccm total) at 600 oC 

 

5.4.3 Water splitting in the stagnation flow reactor 
 

 Temporal water oxidation behavior at 600 oC is remarkably different for each of the 

materials. Both Fe2O3 (ALD/20.2% mass loading) and Co0.85Fe2.5O4 (ALD/19% mass loading) 

were characterized by an initial rapid peak rate, followed by an exponential decay. However, the 
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physically mixed Fe2O3/ZrO2 powder (25% mass loading) was characterized by an almost 

constant H2 rate until the reaction was exhausted. The cyclical behavior of Fe2O3 (ALD/20.2% 

mass loading) is characterized by slightly decreasing peak H2 rates, and a decrease in the time 

required for H2 to decline back to baseline, as shown in Figure 5-11a. From cycle #1 to cycle #5, 

this time decreases from about 100 s to 50 s, and peak rates decrease from 36.9 to 31.1 

µmoles/s/g. We do not believe that this behavior is primarily due to sintering, because the peak 

rates do not decrease nearly as dramatically as the total H2 production.  Additionally, BET 

surface area measurements indicated only a small decrease in specific surface area. Rather, we 

attribute this to iron solubility in the ZrO2 support, which is well documented at these 

temperatures[41]. 

 The first five cycles of Co0.85Fe2.5O4 (ALD/19% mass loading) are shown in Figure 5-

11b, and it is clear that the H2 rate is nearly identical from one cycle to the next. There is almost 

no variation in the H2 rate at a given time from one cycle to the next. This is indication that the 

sample structure and morphology is not changing to a significant degree. Interestingly, even 

though this sample is reduced to metallic Co and Fe, it does not deactivate in the same manner as 

Fe2O3 when reduced to metallic Fe. We observed rapid deactivation when Fe2O3 was reduced to 

Fe metal (not shown). The differences may be a result of cobalt limiting the migration of iron, 

and hindering its ability to grow and sinter. It is also apparent that, unlike Fe2O3, the H2 rate does 

not decrease back to zero for the reaction times that we explored. After 400s, the rate appears to 

plateau above zero. It is unclear whether this is due to extremely slow reaction rates at these 

times due to the oxidation of metallic Co. Another possibility is that we are catalytically 

producing small amounts H2 from the catalytic decomposition of H2O.  
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 The temporal behavior of the physically mixed Fe2O3/ZrO2 powder (25% mass loading) 

does not exhibit the exponential decay that is observed for both of the ALD materials. Rather, the 

H2 increases to a plateau until the reaction apparently reaches completion, as seen in Figure 5-

11c. As the number of cycles increases, the magnitude of the plateau decreases and the reaction 

time increases. The decrease in reaction rate is due to sintering and grain growth of the iron 

oxide, which is corroborated by BET surface area measurements showing that the initial surface 

area of 210 m2/g decreases to 10 m2/g after only five cycles. This temporal behavior is different 

from reaction rates for iron oxide powders reported in the literature [10, 42]. Generally, an 

exponential decay of H2 is observed that is attributed to diffusion limitations through the product 

oxide layer on particles. Clearly, the behavior we observe is not consistent with a reaction 

limited by diffusion because the rate remains constant as a function of time. Instead, our data 

suggests that the rate is limited by water adsorption on the surface of the particles. This is not an 

artifact of our reactor configuration because this behavior is not observed with any of our ALD 

materials. Additionally, it is unlikely we are limited by diffusion through the bed of particles, as 

we do not have a packed bed of particles but rather a thin layer (≈ 1mm) placed on top of a ZrO 2 

holder. It is possible that the exponential decay observed in some of the literature is an artifact of 

the packed-beds that are used rather than the inherent kinetics of the reactants themselves. 
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Figure 5-11: Temporal H2 data for five cycles of samples reduced in 1% CO / 1% H2 / 2% CO2 in 
He (500 sccm total). a) Fe2O3 (ALD/20.2% mass loading) , b) Co0.85Fe2.15O4 (ALD/19% mass 
loading)  and c) physically mixed Fe2O3/ZrO2 powder (25% mass loading) 

 

 Peak H2 rates vary little with cycling, as shown in Figure 5-12a for seven cycles. The 

peak rate for Fe2O3 on ZrO2 (ALD/20.2% mass loading) at 600 oC is 33.58 ± 3.1 µmoles/s/g, 

while for Co0.85Fe2.5O4 (ALD/19% mass loading) the rate is 39.07 ± 1.2 µmoles/s/g. This 

behavior is remarkably better than when samples were chemically reduced without any oxidant 

present (not shown). We compared ALD materials to a physically mixed powder solution 

containing a 3:1 mass ratio of ZrO2 to α-Fe2O3, and the peak rate of its first cycle is comparable 

to the ALD ferrite samples. However, subsequent cycling resulted in a gradual decrease in the 

peak rates, which is caused by grain growth that decreases specific surface area. BET 

measurements confirmed that the surface area of the powder had decreased from 210 m2/g to 10 
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m2/g after 5 redox cycles. The surface area of the ALD materials decreased slightly as well, but 

not nearly to the extent of the physically mixed powder. Fe2O3 on ZrO2 (ALD/20.2% mass 

loading) decreased from a surface area of 39 m2/g to 27 m2/g and Co0.85Fe2.5O4 (ALD/19% mass 

loading) decreased from 41m2/g to 31.5 m2/g when cycled at 600 oC. However, we did observed 

a decrease in surface area of Fe2O3 on ZrO2 (ALD/20.2% mass loading) to 8.5 m2/g when cycled 

at 700 oC.  

 The H2 yield of Co0.85Fe2.5O4 (ALD/19% mass loading) was greater than ALD 

synthesized and Fe2O3 powder for up to 7 redox cycles, as shown in Figure 5-12b. The initial 

yield of cobalt ferrite was 4100 µmoles H2/g, whereas the yield for ALD iron oxide was 1200 

µmoles H2/g. The yield of the cobalt ferrite remained stable for all 7 cycles; however the yield of 

ALD iron oxide cycled at 600 oC decreased to 800 µmoles H2/g by the 5th cycle, and remained 

stable upon further cycling. We hypothesize that the yield for Fe2O3 ALD samples is less than 

cobalt ferrite for two reasons. Firstly, the potential extent of oxidation of the cobalt ferrite is 

greater because it was reduced all the way to metallic Co and Fe, as determined by in situ HT-

XRD (Figure 5-10). The iron oxide, however, was only reduced to FeO. Secondly, Fe3+ is highly 

soluble in ZrO2 at these temperatures, which may reduce the amount of iron that is available to 

participate in the redox reaction[41]. Although Fe3+ is present in the cobalt ferrite as well, the 

presence of metallic cobalt or CoO may inhibit the solubility of iron if it preferentially forms a 

solution with it.  
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Figure 5-12: a)Peak H2 rates for various samples after reduction in 1% CO / 1% H2 / 2% CO2 in 
He (500 sccm total) and b) corresponding total H2 yields 
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5.5  Conclusion 
 

 Conformal films of maghemite (γ-Fe2O3) and spinel cobalt oxides (CoxFe3-xO4) were 

deposited on porous m-ZrO2 supports by ALD using ferrocene and cobaltocene as the iron and 

cobalt sources and O2 as the oxidant. These materials are shown to be highly active in a chemical 

looping process to split water for the production of H2. ALD Fe2O3 samples reduced in a 

CO/H2/He mixture without the presence of an oxidant rapidly deactivated due to the formation of 

metallic Fe, likely resulting in growth and sintering. However, samples that were reduced with 

the addition of CO2 exhibited remarkably better behavior. In situ XRD results indicated that 

ALD samples of Fe2O3 were reduced to Fe2+, while Co0.85Fe2.5O4 was reduced to a Co/Fe alloy. 

Also, Fe2O3/ZrO2 powders reduced in the same manner reduced to Fe2+ for short times, but for 

longer times, metallic Fe was observed. ALD Fe2O3 samples reduced in this manner still 

exhibited signs of deactivation due to a loss of active iron resulting from its incorporation into 

the ZrO2 support. Peak rates decreased slightly, but H2 yields decreased by about 50% after 7 

cycles. Cobalt ferrites are advantages compared to Fe2O3 samples for several reasons. When 

cobalt was substituted for iron, the material was reduced to metallic Co and Fe, rather than Fe2+, 

resulting in much greater H2 yields (about 4x). Additionally, there were no signs of deactivation. 

The H2 reaction rates and yields were nearly identical for 7 redox cycles. When physically mixed 

Fe2O3/ZrO2 powders were cycled in the same manner as the ALD materials, reaction rates 

became progressively slower as they were cycled due to sintering and grain growth.  

 These results suggest that thin films of cobalt ferrites perform remarkably better than 

their iron oxide analogs and iron oxide powders at producing repeatable and large amounts of 

hydrogen via chemical looping processes. Additionally, they provide motivation for studying the 

efficacy of using these materials in other analogous gas-splitting cycles, such as thermal redox 
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cycles to produce H2 or CO via H2O and CO2 splitting. Further experimental investigation of the 

mechanism of material sintering and reduction/oxidation chemical kinetics must be performed to 

understand why these materials are superior to other analogous materials, but nevertheless, the 

impetus for future work is provided.  
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CHAPTER 6 A SPINEL FERRITE/HERCYNITE WATER-SPLITTING REDOX CYCLE 
 

6.1 Abstract 
 

 Cobalt ferrites are deposited on Al2O3 substrates via atomic layer deposition, and the 

efficacy of using these in a ferrite water splitting redox cycle to produce H2 is studied. 

Experimental results are coupled with thermodynamic modeling, and results indicate that 

CoFe2O4 deposited on Al2O3 is capable of being reduced at lower temperatures than CoFe2O4 

(200oC-300oC) due to a reaction between the ferrite and substrate to form FeAl2O4. Although the 

reaction of FeAl2O4 and H2O is not as thermodynamically favorable as that of FeO and H2O, it is 

shown to be capable of splitting H2O to produce H2 if non-equilibrium conditions are 

maintained. Significant quantities of H2 are produced at reduction temperatures of only 1200 oC, 

whereas, CoFe2O4 produced little or no H2 until reduction temperatures of 1400 oC. 

CoFe2O4/Al2O3 was capable of being cycled at 1200 oC reduction/1000 oC oxidation with no 

obvious deactivation. 

6.2 Introduction  
 

 Solar thermal water splitting to produce hydrogen is a particularly promising technology as it has 

theoretical maximum system efficiencies of between 65-80% and solar to hydrogen efficiencies of about 

20% [1, 2]. Additionally, hydrogen is an ideal energy carrier as it has the highest specific energy density 

of all conventional fuels and can be generated from renewable sources[3]. One process for renewable 

hydrogen generation is solar water splitting using metal oxide redox cycles[4-6]. Ferrites of the form 

MxFe3-xO4 (where M is generally Co[7, 8], Ni[9-11], Mn[12-14], Zn[15-17], or Fe[9, 18-20]) have been 

shown to be capable of splitting water to generate hydrogen using solar thermal energy according to the 

redox reaction shown below: 



109 
 

𝑀𝑥𝐹𝑒3−𝑥𝑂4 +  𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 → (3 − 𝑥)𝐹𝑒𝑂 + 𝑥𝑀𝑂 +  
1
2
𝑂2    {𝑇 > 1673 𝐾}              𝟔 − 𝟏) 

 

𝐻2𝑂 + (3 − 𝑥)𝐹𝑒𝑂 + 𝑥𝑀𝑂 → 𝑀𝑥𝐹𝑒3−𝑥𝑂4 +  𝐻2    {𝑇 < 1673 𝐾}                                          𝟔 − 𝟐) 

 

 The ferrite is thermally reduced in the first, high temperature step (1400 – 1600 oC), and oxygen 

is evolved. In the second lower temperature step (900 – 1100 oC), the reduced ferrite is reacted with steam 

to generate H2 and re-oxidize the ferrite to its original state. Thus, the only net inputs are H2O and thermal 

energy, and the only net outputs are H2 and O2. This process is advantageous to direct water splitting as it 

operates at much lower temperatures and O2 and H2 are generated in separate steps, eliminating the need 

for high temperature separation of product gases[5]. Cobalt and nickel ferrites are especially promising as 

they have favorable thermodynamic properties (i.e. low decomposition temperatures (>1400 oC) and high 

melting points (≈ 1550 oC) [21], and have been effectively utilized experimentally by several researchers 

[7-9, 11]. 

 These cycles have been studied using bulk powders that were synthesized by solid state 

synthesis[12, 22-24], coprecipitation[8], or other analogous processes. However, it has been observed that 

it is not feasible to cycle bulk powders due to high temperature sintering which results in a loss of active 

surface area[11, 25]. Therefore, synthesis techniques have been employed in which ferrites were 

deposited on substrates such as ZrO2[9, 11], YSZ[8, 18], and SiC[13, 14], with the idea being that surface 

area would remain unchanged through the high temperature cycling. This has been an effective means of 

maintaining cyclical stability of the ferrites. Kodama et. al. has observed greater cyclical stability and 

more H2 production when depositing Ni, Co, and Fe ferrites on ZrO2 and YSZ supports [7, 11, 18]. They 

observed that Fe2+ forms a solid solution with the substrate during thermal reduction and could be 

subsequently oxidized to reform the ferrite. Additionally, x and M in MxFe3-xO4 affected the reported 

conversions.    
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 One substrate that has yet to be studied in detail is Al2O3, because it is known that iron oxide 

reacts with Al2O3 to form hercynite (FeAl2O4) at elevated temperatures [26, 27]. As a result, it has been 

deemed undesirable to deposit ferrites on Al2O3 because it was thought that this would deactivate the 

ferrite due to undesired products being formed. However, the reaction of Al2O3 with MxFe3-xO4 results in 

the evolution of O2 from the reduction of Fe3+ to Fe2+. According to the literature, this reaction occurs in 

air with Fe3O4 at temperatures as low as 1320 oC, which is lower than temperatures at which iron 

reduction occurs in MxFe3-xO4 in inert atmospheres[21, 26]. Thermal reduction in air is more difficult than 

in an inert environment because an inert environment dilutes the reaction products (O2), forcing the 

equilibrium to the right[21]. Therefore, it would be expected that the reduction of a ferrite in the presence 

of Al2O3 in an inert environment would occur at even lower temperatures than when in air, and much 

lower than reduction of a ferrite not exposed to Al2O3.  

 In light of this evidence, we deposit cobalt ferrites (CoFe2O4) on Al2O3 supports via atomic layer 

deposition (ALD) to study the feasibility of using these materials in a new two-step thermochemical water 

splitting cycle. This cycle is illustrated in the redox reaction shown below: 

 

𝐶𝑜𝐹𝑒2𝑂4 +  3 𝐴𝑙2𝑂3 +  𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 → 𝐶𝑜𝐴𝑙2𝑂4 +  2 𝐹𝑒𝐴𝑙2𝑂4 +  0.5 𝑂2                                  𝟔 − 𝟑) 

 

𝐶𝑜𝐴𝑙2𝑂4 +  2𝐹𝑒𝐴𝑙2𝑂4 + 𝐻2𝑂 → 𝐶𝑜𝐹𝑒2𝑂4 +  3𝐴𝑙2𝑂3 + 𝐻2                                                                      𝟔 − 𝟒) 

 

We observe significantly lower decomposition temperatures (200 oC to 300 oC) for ferrites deposited on 

Al2O3 compared to bulk coprecipitated powders. Additionally, we successfully generate H2 with these 

materials at upper operating temperatures of 1200 oC, whereas negligible H2 is formed using ferrites that 

are not supported on Al2O3 at these temperatures.  We couple experimental results with thermodynamic 

modeling performed using FactSage, and find that thermodynamics agrees very well with our 

experimental results.  
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6.3 Materials and Methods 
 

6.3.1 ALD Synthesis 
 

 Multilayers of iron(III) oxide and cobalt(II) oxide are deposited onto porous Al2O3 substrates via 

ALD in alternating doses. Iron(III) oxide deposition consists of dosing ferrocene (99% purity acquired 

from Alfa Aesar®) and high purity oxygen (99.9%) in alternate doses into the reactor at 450 oC. Cobalt(II) 

oxide deposition is performed in an identical manner to that of iron(III) oxide, with the exception that 

cobaltocene, rather than ferrocene, is used. Details of the reactor configuration have been described 

elsewhere [28]. The ALD chemistries are measured in situ via mass spectrometry.  

6.3.2 Porous Al2O3 Synthesis 
 

 Porous Al2O3 supports were synthesized by combining a 1:1 volume ratio of poly(methyl 

methacrylate) (PMMA) and Al2O3 nanoparticles (Sigma Aldrich®,<50nm). The mixture is ball-milled 

using ZrO2 milling media for 24 hours in order to ensure homogeneous mixing. The resulting mixture is 

then hard-pressed at 20000 pounds. It is then heated to 700 oC in air in a ZrO2 crucible for 60 minutes to 

burn out the PMMA, leaving a porous structure, and finally heated to 1400 oC in N2 for two hours. 

6.3.3 Co-Precipitation Synthesis 
 

 The cobalt ferrite precursor was precipitated from appropriate molar amounts of iron and cobalt 

nitrates by addition to NH4OH at 60 oC. The solid was then washed and dried and calcined at 1100 oC in 

air. Once calcined, the powder was mixed with ZrO2 in a 1:3 mass ratio of ferrite to ZrO2.  

6.3.4 Thermal Cycling 
 

 Samples were cycled in a high temperature horizontal tube furnace (CM furnace, model 1630) as 

shown in Supplemental Figure 6-13. The sample is placed in a ZrO2 boat within a ¾ inch inner diameter 
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alumina reaction tube. High purity N2 is delivered into the reactor at a flowrate of 200 sccm using 

electronic mass flow controllers in conjunction with Labview®.  Water is delivered at a flowrate of 0.5 

ml/min using a syringe pump. The end of the capillary is placed in a vaporizer at 200 oC in order to 

generate steam. A cold trap is placed at the outlet of the reactor in order to condense any vaporous H2O. 

All outlet gases are monitored after the cold trap using a Stanford Research Systems QMS 100 series 

residual gas analyzer. The mass spectrometer is calibrated by flowing various mixtures of high purity H2 

and O2 (1% in N2) calibration gases in conjunction with high purity N2. Reduction consists of purging the 

furnace of air and then heating the sample to the desired temperature (1200 oC-1500 oC) at 20 oC/minute 

in N2. Oxidation consists of reducing the temperature to 1000 oC after thermal reduction, and flowing 

H2O and N2 for 60 minutes. 

6.3.5 Thermodynamic Analysis 
 

 Thermodynamic calculations are performed using the thermodynamics software package, 

FactSage version 6.0. This was shown to be an effective method for predicting phases and H2 generation 

by Allendorf et. al., as modeling calculations agreed well with their experimental results and in the 

literature[21]. The inclusion of solution phases with species was shown to have a significant impact upon 

the results. In these calculations, we are including the species and solution phases shown in Table 6-1. All 

of the calculations are performed at 1 atm. Thermal reduction calculations are performed with a dilution 

of 10000 moles of Ar, and unless specified otherwise, 10000 moles H2O are used in H2O oxidation 

calculations. Because experiments occur under non-equilibrium conditions, this dilution was chosen in 

order to represent these conditions as best we could. Higher dilutions drive the chemical equilibrium of 

the reaction to occur at lower temperatures, and therefore, if a higher dilution factor is chosen, the 

calculated decomposition temperature is expected to decrease. 
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Table 6-1: Species Included in Thermodynamic Calculations 

 

6.3.6 Material Characterization 
 

 Visual inspection of the films is carried out using a 200 kV JEOL 2010F Schottky field emission 

high resolution transmission electron microscope (HRTEM). Film composition is determined via energy 

dispersive x-ray (EDX) analysis, X-ray diffraction (XRD, Scintag PAD5 Powder Diffractometer, CuKα  

radiation, λ = 1.5406Å), and induced coupled plasma – atomic emission spectroscopy (ICP-AES). XRD 

analysis is performed using a scan rate of 2 degrees/minute and step size of 0.2 degrees. ICP-AES is used 

as a means to quantify the mass loading and relative molar amounts of Co and Fe in CoxFe3-xO4. 

6.4 Results and Discussion 
 

6.4.1 Material Characterization 
 

 ALD is governed by self limiting chemistry, and as a result nano-scale films are capable of being 

synthesized with relative ease [29-33]. This is observed in the STEM image shown in Figure 6-1a. The 

Gases Pure Liquids Pure Solids Solution Phases 
Ar 
O2 
O 
Co 
FeO  
Fe 
AlO 
AlO2 
O3 
Al 
(AlO)2 
Al2O 
Al2 

Al2O3 
FeO 
CoO 
Fe3O4 
Co  
Fe 
Al 
CoAl 

Al2O3 
FeAl2O4 
FeO (wustite) 
CoO 
Al2Fe2O6 
Fe3O4 (magnetite)  
Fe2O3 (hematite) 
Co 
(CoO)(Fe2O3) 
Fe 
Co3O4 
CoAl 
Al 
CoAl3 
FeAl3 
Co2Al5 

spinel 
   -MxFe3-xO4 
   -MxCo3-xO4 
   -MxAl3-xO4 
   -MO4 
 
metal oxides (MeO)  
   -FeO, Fe2O3, Al2O3, CoO 
 
slag  
   - FeO, Fe2O3, Al2O3, CoO 
 
corundum (M2O3) 
    -Fe2O3, Al2O3 
 
M = Fe, Co, or Al 
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bright layers surrounding the larger, darker areas are the cobalt ferrite ALD film, as verified by EDX 

analysis. It appears that the film is uniform around the Al2O3 core, and is on the order of 5nm. EDX 

analysis of the bulk structure, shown in Figure 6-1b, indicates that the predominant element present is Al. 

Co and Fe have x-ray counts that are an order of magnitude less than Al. However, EDX analysis of the 

surface, shown in Figure 6-1c, confirms that it is composed of a much higher concentration of Fe and Co 

than the bulk, as their x-ray counts are nearly on the order of Al. This is confirmation that a thin film 

composed of Fe and Co is deposited on the surface of the Al2O3 support. Powder XRD analysis confirms 

that the as-deposited film had a spinel structure, indicative of CoxFe3-xO4, as shown in Supplemental 

Figure 6-14.  

 

Figure 6-1: a) STEM image of as-deposited CoFe2O4 ALD film on Al2O3, and b) EDX analysis 
of the bulk (left) and surface (right). 

 

6.4.2 Thermal Reduction 
 

 Previous literature has indicated that Fe3+, in Fe3O4, is reduced at temperatures of 1320 oC in air 

in the presence of Al2O3, which is lower than traditional ferrite cycles [26]. Thermodynamic modeling is 
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performed in order to understand how these materials reduce in an inert environment, and the influence 

that Co has in CoxFe3-xO4. Modeling is also performed using traditional ferrites without Al2O3, in a 

manner analogous to Allendorf, et. al. [21]. Experiments were then conducted in order to directly 

compare experimental results with thermodynamic modeling.  Thermodynamic modeling showing O2 

evolution as a function of temperature for Fe3O4 and CoFe2O4, both with and without the presence of 

Al2O3, is shown in Figure 6-2. CoFe2O4 + 5 Al2O3 is predicted to begin reducing at temperatures below 

800 oC, and after 1000 oC, the degree of reduction is expected to increase greatly. This is in contrast to 

CoFe2O4, in which O2 does not begin to evolve to a significant extent until after 1200 oC.  

 

Figure 6-2: Total O2 evolved per mole of ferrite as a function of temperature - equilibrium 
calculations 
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Additionally, Fe3O4 + 5 Al2O3 begins to evolve O2 around 1100 oC, whereas Fe3O4 does not until 1400 oC. 

Based on these results, it is clear that the trend in reduction temperature is as follows: CoFe2O4 + 5Al2O3< 

Fe3O4 + 5Al2O3< CoFe2O4<Fe3O4. Experimental results corroborate these observations, and indicate that 

CoFe2O4 on Al2O3 reduces at a lower temperature than CoFe2O4 deposited on ZrO2, as seen in Figure 6-3. 

O2 begins to evolve at 950 oC for CoFe2O4/Al2O3 and a total of 0.17 moles is evolved. In contrast, 

CoFe2O4/ZrO2 begins to reduce at 1200 oC, and only releases 0.105 moles O2. In both cases, less O2 is 

evolved than thermodynamically predicted at 1400 oC. This is likely due to kinetic limitations, as O2 is 

still evolving from both samples after 10000s. These results confirm that cobalt ferrites deposited on 

Al2O3 are capable of being reduced at lower temperatures than those deposited on ZrO2. 

 

Figure 6-3: Total O2 evolved per mole of ferrite as a function of temperature - experimental 
results. 

 

 The predominant species formed after the reduction of CoFe2O4 is a metal oxide solid solution 

(MeO) of FeO, CoO and a small amount of Fe2O3, as shown in Figure 6-4. CoFe2O4 actually exists as a 
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solid solution of various spinels (Fe3O4, CoFe2O4, FeCo2O4) under the temperature range considered, and 

is represented by Spinel in Figure 6-4. It is clear that as the temperature increases past 1200 oC, the Spinel 

phase decreases until it reaches zero moles at 1450 oC. At the same time, FeO, CoO and Fe2O3 begin to 

increase and eventually reach a maximum when the Spinel phase is fully decomposed. It should be noted 

that a significant amount of Fe2O3 (Fe3+) is expected to be present under these conditions, which would 

have a negative impact on the amount of H2 capable of being generated since less oxidizible iron (Fe2+) is 

present. Additionally, the decrease in the MeO species after 1500 oC results from the presence of a Slag 

phase. This should be avoided experimentally, as this will result in a significant decrease in active surface 

area which would result in less H2 production.  

 

Figure 6-4: Thermodynamic predictions of species present as a function of reduction temperature 
for CoFe2O4. 
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When considering the Spinel solution with CoFe2O4 and 5Al2O3, it is more complex than only CoFe2O4. 

This is because there are other possible species present such as FeAl2O4, AlFe2O4, CoAl2O4, and 

AlCo2O4, in addition to the species listed above. Rather than MeO species resulting from thermal 

decomposition of CoFe2O4, the reduction species are part of the Spinel solution. Therefore the major 

components of the Spinel solution are plotted in Figure 6-5, rather than only the total Spinel solution as 

was done in Figure 6-4.  

 

Figure 6-5: Thermodynamic predictions of species present as a function of reduction temperature 
for CoFe3O4 + 5Al2O3. 

 

As can be seen, the two major components forming as a result of thermal decomposition beginning at 900 

oC are FeAl2O4 and CoAl2O4. These can be thought of as the analogs of the MeO species during CoFe2O4 

decomposition, FeO and CoO, as they are both in the 2+ reduced states. Also, there are no slag phases 
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that are formed during thermal reduction up to 1600 oC, as there were with CoFe2O4 decomposition. 

Therefore, high temperature sintering should be less of a problem with ferrites supported on Al2O3, as the 

sintering temperature is generally proportional to the melting temperature. This is significant, as high 

temperature sintering occurs frequently in traditional ferrite cycles and has a negative impact on H2 

generation due to a decrease in active surface area. Additionally, material considerations for high 

temperature solar reactors would be more flexible if the upper operating temperature could be reduced by 

200 oC [34]. These factors make this cycle an attractive alternative to traditional ferrite water splitting 

thermochemical cycles. However, much is dependent on the capability of this material to split H2O 

effectively which will be discussed in the following section. 

 We have studied the effect of the reduction temperature over the temperature range of 1200 oC to 

1500 oC.  Powder XRD results confirm that at temperatures as low as 1200 oC the predominant species 

present is FeAl2O4, as seen in Figure 6-6a. As the reduction temperature is increased to 1500 oC, the peak 

representative of FeAl2O4 is steadily shifted to a higher 2θ value. We hypothesize that the peak at 1200 oC 

is actually representative of a solid solution of CoFe2O4 and FeAl2O4, which is predicted 

thermodynamically at this temperature. As the temperature is increased, the relative percentage of 

CoFe2O4 decreases, resulting in the FeAl2O4 peak shifting to the right. This would be expected, as the 

standard peak for FeAl2O4 actually should fall to the right of where it is shown here. The fact that 

CoFe2O4 influences the peak position of FeAl2O4 is not surprising because the peaks fall very close 

together, as observed from the CoFe2O4 peak shown in Figure 6-6a. Qualitative evidence that FeAl2O4 has 

been formed after thermal reduction at 1200 oC can be seen from the change in color from black to green, 

shown in Figure 6-6b. The green color is indicative of FeAl2O4, indicating that a phase change has 

occurred from CoFe2O4 to FeAl2O4. 
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Figure 6-6: a) Powder XRD results of CoFe2O4 deposited on Al2O3 as a function of reduction 
temperature. b) Color change after reducing sample at 1200 oC.  

 

6.4.3 Water Oxidation 
 

 Thermodynamic calculations were performed in which the reduction species at 1450 oC of both 

CoFe2O4 and CoFe2O4/5Al2O3 were exposed to steam. A Gibbs free energy minimization for the H2O 

oxidation of FeO and FeAl2O4 over the temperature range of 700 oC to 1200 oC indicates that water 

oxidation with FeO is more favorable than with FeAl2O4, as shown in Supplemental Figure 6-15. These 

species were included because they are the reduced species that are oxidized in the water oxidation 

reaction. In fact, H2O oxidation of FeO is spontaneous at temperatures below 700 oC, whereas it is not 

spontaneous under any temperatures for FeAl2O4. Even though oxidation is spontaneous below 700 oC, 

oxidation of FeO is commonly performed at temperatures much greater than 700 oC due to enhanced 

reaction kinetics. These reactions are capable of proceeding at elevated temperatures because the 
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experiments are not conducted at equilibrium, as it was in the case of the Gibbs free energy minimization 

calculation. Experimentally, the reactant gases are flowing over the solid reactants and sweep away the 

product species (H2), driving the equilibrium of the reaction to the right.  This behavior can be seen in 

Figure 6-7, in which a calculation is performed for the water oxidation of reduced CoFe2O4 (MeO) and 

CoFe2O4/5Al2O3 (Spinel/M2O3) at 1450 oC using two different concentrations of H2O. When 100 moles 

H2O are reacted with MeO, the amount of H2 generated decreases as the temperature is increased, because 

the ΔG of the reaction is increasing. When the H2O is increased to 1000 moles, it has little effect at lower 

temperatures, because the reaction is thermodynamically spontaneous. Its effect on the amount of H2 

predicted to form does not become noticeable until higher temperatures, due to the fact that the product 

species (H2) is more diluted. More equilibrium H2 is predicted at higher temperatures for 1000 moles H2O 

compared to 100 moles. 
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Figure 6-7: Effect of H2O concentration on the H2 production as a function of temperature for 
reduced CoFe2O4  (black) and reduced CoFe2O4 + 5 Al2O3 (red). 

 

The water concentration has a much greater effect on the reaction of Spinel/M2O3 + H2O, however 

because the reaction is not thermodynamically spontaneous over any of the temperatures explored. As the 

concentration is increased from 100 moles to 1000 moles, more H2 is generated over all temperatures 

observed, and H2 increases as a function of temperature. These results indicate that, although water 

oxidation of FeAl2O4 is not thermodynamically spontaneous, it is capable of splitting water if the reaction 

is carried out under non-equilibrium conditions. It should be noted that a small amount of H2O is expected 

to be decomposed at temperatures greater than 900 oC, which has an effect on the amount of H2 observed 

for each of the curves shown in the Figure 6-7. Therefore, the amount of H2 generated due to H2O 
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reacting with Spinel/M2O3 begins to decrease after about 1000 oC when accounting for H2 that is due to 

water thermally decomposing. Based on these calculations, it is thermodynamically favorable to perform 

this reaction near 1000 oC with high concentrations of water. 

 Water oxidation experiments are conducted using CoFe2O4 deposited on Al2O3 and a 

coprecipitated CoFe2O4/ZrO2 mixture (3:1 mass percent ZrO2). ZrO2 is added to alleviate high 

temperature sintering of the cobalt ferrite. Each of the samples is reduced at temperatures ranging from 

1200 oC to 1500 oC and subsequently oxidized with steam at 1000 oC. Reduction and oxidation cycles are 

carried out in the following order for both samples: 1400 oC, 1200 oC, 1300 oC, 1500 oC. Samples are not 

removed from the furnace from one cycle to the next. As seen in Figure 6-8, the amount of H2 generated 

increases as the reduction temperature increases for CoFe2O4 deposited on Al2O3. However, there is still a 

significant amount of H2 generated at the lowest reduction temperature of 1200 oC. This is expected, as 

results from Figure 6-2 predict a significant amount of reduction to occur by 1200 oC and remain 

uncompleted even as the temperature surpasses 1500 oC. Powder XRD results did not confirm the 

presence of CoFe2O4 after oxidation, as seen in Supplemental Figure 6-16. However, the peak that is 

representative of FeAl2O4 is shifted to the left which is consistent with the powder XRD results of 

thermally reduced samples in which the peak is shifted to the right at higher reduction temperatures. We 

hypothesize that this shift is indicative of changes in the concentrations of CoFe2O4 and FeAl2O4 in the 

spinel solution.  



124 
 

 

Figure 6-8: H2 reaction rate as a function of reduction temperature for CoFe2O4 deposited on 
Al2O3. 

 

The reduction temperature is shown to have a much larger impact on the amount of H2 produced using the 

CoFe2O4/ZrO2 mixture, as seen in Figure 6- 9. At 1200 oC  and 1300 oC, there is very little H2 produced. 

At 1400 oC the amount of H2 generated increases, and finally at 1500 oC much more H2 is produced. It is 

likely that the amounts of H2 observed at 1200 and 1300 oC were simply due to the reduction at 1400 oC 

because they increase only to the value of its oxidation tail (about 0.05 µmoles H2/s/g). This behavior is 

consistent with the thermodynamic results seen in Figure 6-4. At 1400 oC, the reduction is only expected 

to be partially complete, and by 1500 oC, all of the CoFe2O4 is expected to be reduced, resulting in more 

H2 generated in the water oxidation step. This observation also agrees very well with Kodama et. al. ‘s 
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cobalt and nickel ferrite results in which very little H2 was generated at reduction temperatures of 1300 

oC, but about 4 times more was generated at 1400 oC reduction [11]. Based on these results, it is 

concluded that the reduced species of CoFe2O4 on Al2O3 (Spinel/ M2O3) is capable of reacting with H2O 

to produce H2 at lower reduction temperatures than the reduced species of CoFe2O4 (MeO). 

 

Figure 6-9: H2 reaction rate as a function of reduction temperature for physically mixed 
CoFe2O4/ZrO2. 

 

 Thermodynamic calculations of predicted H2 production for CoFe2O4/Al2O3 and CoFe2O4 are 

consistent with experimental results. Equilibrium species of CoFe2O4/5Al2O3 and CoFe2O4 are calculated 

at 1200-1500 oC. These species, Spinel/M2O3 and MeO respectively, are then exposed to 10000 moles 

H2O and the H2 produced is shown in Figure 6-10. There is a small amount of H2 produced due to direct 
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water splitting at this temperature (<0.02 moles per 10000 mole H2O), and this is accounted for by 

subtracting this from the amount at equilibrium. As seen in Figure 6-10, 0.0005 moles H2 is expected to 

be generated at a reduction temperature of 1200 oC for CoFe2O4/Al2O3, and this value increases to 0.0012 

moles H2 at a reduction temperature of 1500 oC. CoFe2O4 on the other hand is expected to produce almost 

no H2 at 1200 oC and 1300 oC. At 1400 oC 0.0007 moles H2 are produced and at 1500 oC, 0.00175 moles 

H2.  

 

Figure 6-10: Total H2 produced as a function of reduction temperature - equilibrium calculations. 

 

When compared to experimental data shown in Figure 6-11, the trend is the same. The data in Figure 6-11 

are calculated by computing the area of the H2 production curves in Figure 6-8 and 6-9. A significant 

amount of H2 is produced at 1200 oC with the CoFe2O4/Al2O3 sample, whereas very little is produced at 
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up to 1300 oC for only CoFe2O4. Only at 1500 oC does CoFe2O4 produce more H2 than the CoFe2O4/Al2O3 

sample.  

 

Figure 6-11: Total H2 produced as a function of reduction temperature - experimental results. 

 

 In light of the fact that we were able to thermally reduce CoFe2O4/Al2O3 at temperatures as low as 

1200 oC, and subsequently oxidize it with water at 1000 oC, we attempted to thermally cycle it under 

these conditions to evaluate its thermal stability. The H2 reaction rates and associated conversions after 

1200 oC reductions are shown in Figure 6-12. Conversions were calculated by assuming that 100% 

conversion is achieved when all of the Fe3+ is reduced to Fe2+ during thermal reduction, and then all of the 

Fe2+ is reoxidized to Fe3+ during water oxidation. The conversion ranges from 14.2% (.000591 moles 

H2/g) to 18.7% (.000777 moles H2/g), with no obvious trend either up or down. Obviously, more cycles 

need to be performed to determine the efficacy of these materials over hundreds, or even thousands of 
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cycles. However, these data do provide compelling evidence that these materials can produce significant 

quantities of H2 at 1200 oC without obvious deactivation. This is 200 oC to 300 oC lower than where 

ferrite redox cycles are typically performed.  

 

Figure 6-12: H2 production rate of CoFe2O4 deposited on Al2O3 during water oxidation at 1000 
oC over the course of eight redox cycles. The sample was thermally reduced at 1200 oC. 

 

6.5  Conclusions 
 

 The efficacy of using CoFe2O4 deposited on Al2O3 substrates to split H2O was studied 

experimentally and in conjunction with thermodynamic modeling. We observed very low decomposition 

temperatures (200 oC lower than CoFe2O4) due to a reaction between the ferrite and Al2O3, resulting in 

FeAl2O4. This behavior has been corroborated with thermodynamic modeling. Although the reaction of 

FeAl2O4 with H2O is not as favorable as that of FeO, it is shown that under non-equilibrium conditions it 

is capable of splitting water to produce H2 at 1000 oC. Significant quantities of H2 are generated at 
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reduction temperatures of only 1200 oC, whereas little or no H2 was generated using CoFe2O4 until 1400 

oC. Additionally, CoFe2O4/Al2O3 is capable of being cycled at 1200 oC reduction/1000 oC oxidation with 

no obvious changes in H2 conversion. These results certainly warrant further exploration of this cycle and 

provide compelling evidence that ferrites may be cycled with Al2O3 to produce H2 at much lower 

temperatures than traditional ferrite redox cycles. 
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6.7 Supplemental Figures 
 

 

Supplemental Figure 6-13: Schematic representation of the water splitting reactor. 
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Supplemental Figure 6-14: Powder XRD results of uncoated Al2O3 and after CoFe2O4 
deposition. 
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Supplemental Figure 6-15: Gibbs free energy minimization for the reaction of H2O + 3FeAl2O4 
→  Fe3O4+ 3Al2O3+ H2 and H2O + 3FeO → Fe3O4 + H2. 
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Supplemental Figure 6-16: Powder XRD results of CoFe2O4 on Al2O3 before thermal reduction, 
after 1200 oC reduction, and after H2O oxidation at 1000 oC. 
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CHAPTER 7 INVESTIGATION OF THE KINETICS OF THERMOCHEMICAL 
FERRITE WATER SPLITTING CYCLES USING COBALT-IRON SPINEL OXIDES 
 

7.1 Abstract 
 

 Cobalt ferrite (Co0.9Fe2.1O4) and iron oxide (Fe3O4) thin films were deposited via atomic 

layer deposition on m-ZrO2 supports and utilized in a high temperature water splitting redox 

cycle to produce H2. Both materials were thermally reduced at 1450 oC and oxidized with H2O 

(20-40%) at temperatures between 900 oC and 1400 oC in a stagnation flow reactor. Oxidation of 

iron oxide was more rapid than the cobalt ferrite, and the rates of both materials increased with 

temperature, even up to 1400 oC. At elevated oxidation temperatures (T > 1250 oC) we observed 

simultaneous production of H2 and O2, due to both thermal reduction and water oxidation 

operating in equilibrium. We produced H2 under these conditions for an indefinite period of time, 

at temperatures much lower than those required for water thermolysis. A kinetic model was 

developed for the oxidation of cobalt ferrite from 900 oC to 1100 oC, in which there was an 

initial reaction order limited regime, followed by a slower diffusion limited regime characterized 

well by the parabolic rate law. The activation energy and H2O reaction order during the reaction 

order regime were 119.76 ± 8.81 kJ/mole and 0.70 ± 0.32, respectively, and the activation energy 

during the diffusion limited regime was 191 ± 19.8 kJ/mol.  

 

7.2 Introduction and Background 
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 Spinel ferrites of the form MxFe3-xO4, where M generally represents Ni, Zn, Co, Mn, or 

other transition metals, have been shown to be capable of splitting water according to the two 

step cycle shown below: 

 

 𝑀𝑥𝐹𝑒3−𝑥𝑂4  +  𝑠𝑜𝑙𝑎𝑟 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 →  𝑥𝑀𝑂 +  (3 − 𝑥)𝐹𝑒𝑂 +  0.5𝑂2                        𝟕 − 𝟏) 

   

 𝑥𝑀𝑂 + (3 − 𝑥)𝐹𝑒𝑂 +  𝐻2𝑂 →  𝑀𝑥𝐹𝑒3−𝑥𝑂4  +  2𝐻2                                                               𝟕 − 𝟐) 

 

This is an inherently clean and sustainable process, as the only net inputs are solar energy and 

water, and the net outputs are hydrogen and oxygen. The first, thermal reduction step generally 

operates at temperatures between 1400 oC and 1500 oC, which is lower than many other 

analogous high temperature metal oxide cycles, such as the ZnO/Zn and Mn2O3/MnO cycles. [1, 

2]. As a result, radiation losses are decreased significantly because they increase as the fourth 

power of temperature, and material considerations for reactor design should be more flexible. 

Cycle repeatability has also been demonstrated with relative ease because the ferrites do not 

undergo any phase changes (i.e. solid to liquid) [3-6]. However, the theoretical amount of 

hydrogen generated is less than other higher temperature thermochemical cycles due to the fact 

that only Fe3+ is capable of being reduced to Fe2+ at the temperatures of interest[6]. Additionally, 

hydrolysis kinetics are relatively slow due to diffusion or surface area limitations created by near 

surface oxidation [6, 7]. This problem is exacerbated by high temperature sintering which occurs 

during thermal reduction.  This often leads to increasing the water oxidation temperature (Step 2) 

in order to increase reaction rates (generally T > 1000 oC), resulting in oxidation temperatures 
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that are much higher than other analogous cycles [6, 8, 9]. Furthermore, vaporization of metals 

can lead to extensive metal loss over time.  

 Currently, little is understood about the factors that control the reaction rates and 

conversion efficiencies of ferrite water splitting cycles. To date, most literature has dealt with the 

effects of the substituted metals in MxFe3-xO4 and their stoichiometry [3, 4], synthesis methods[4, 

10, 11], and various substrates[3, 6] on the total amount of H2 produced and their ability to be 

cycled a number of times. For example, Allendorf et. al. recently reported on the thermodynamic 

effects of Fe, Co, Ni, and Zn substitution in MxFe3-xO4, and observed that x and M greatly 

influence the equilibrium of this reaction for a given reduction temperature [12]. Co and Ni 

ferrites were both reduced to a greater extent at temperatures of interest (~1400 oC), and it was 

shown that Fe3O4 does not fully reduce until after the melting temperature of wustite. Kodama et. 

al. has observed greater cyclical stability and more H2 production when depositing Ni, Co, and 

Fe ferrites on ZrO2 and YSZ supports [3-5]. They observed that Fe2+ forms a solid solution with 

the substrate during thermal reduction and could be subsequently oxidized to reform the ferrite. 

Additionally, x and M in MxFe3-xO4 affected the reported conversions.    

 Though thermodynamics and the aforementioned factors have been studied, the kinetics 

and mechanisms of these reactions have yet to be explored in detail. Rapid hydrolysis kinetics 

are desired in order to facilitate high throughput of H2 [6, 7]. Charvin et. al. observed a strong 

dependence of Fe3O4 particle size on the H2 reaction rate during water oxidation experiments 

[13]. As the particle size was increased, slower rates were observed. It was hypothesized that this 

was due to an oxide barrier formed on the surface of the particles, hindering further oxidation of 

the bulk. Similar behavior has been observed for CO2 splitting on chemically reduced CoFe2O4 

nanoparticles [14]. Though it was hypothesized that this phenomena was due to bulk diffusion 
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limitations, there was no evidence that it was not more dependent on surface area. Go et. al. has 

studied the water oxidation of various ferrite powders after chemical reduction, and concluded 

that the reactions were diffusion limited processes[15]. Pitz-Paal et. al. have studied the water 

oxidation of zinc ferrite on SiC honeycomb supports and determined that the kinetics agreed well 

with the shrinking core model. The relevant kinetic paramaters were calculated based on peak H2 

rates, and the activation energy was determined to be 110 kJ/mol[16]. Ultimately, the economic 

viability of this thermochemical cycle is dependent on relatively fast kinetics. 

 Various methods are used to synthesize ferrites used in these cycles, including solid state 

synthesis (SSS) [10, 17-19], coprecipitation[6], aerial oxidation method[4], aerosol spray 

pyrolysis[10], and self-propagating high-temperature synthesis[10]. SSS is perhaps the simplest 

of these techniques, but it can be difficult to control particle sizes due to high temperature 

sintering that occurs during synthesis. This can result in decreased activity of the ferrites, 

possibly due to the fact that specific surface area plays an important role in either the reduction 

or oxidation steps [3-5]. Both coprecipitation and aerial oxidation have been used to successfully 

deposit ferrites on supports, such as ZrO2 and YSZ, and were shown to increase the reactivity of 

the ferrites over several cycles [3, 6]. This was attributed to a reduction in high temperature 

sintering. Though these methods have helped improve cycle efficiencies and stability, it can be 

difficult to control some of their properties such as film thickness, specific surface area, and 

particle size. Because of these difficulties, this makes many of these synthesis techniques a poor 

platter for studying kinetics, in which a well characterized and homogeneous material would be 

ideal. 

 Atomic layer deposition (ALD), a technique capable of depositing highly conformal films 

one atomic layer at a time, is able to precisely control all of the aforementioned properties    [20-
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23], even on high surface area primary nanoparticles [24-27]. Operating conditions are controlled 

in such a manner that the precursors of one half-reaction react only on the surface with 

intermediate functional groups generated by the other precursor. This ensures atomic level 

control, since at most one sub-monolayer is deposited per half-reaction. Cobalt oxide thin films 

have been grown on a wide array of surfaces using precursors such as bis(N,N′ -

diisopropylacetamidinato)cobalt(II) [28], CoI2 [29], Co(thd)2 [30, 31]. Additionally, iron oxide 

films have been deposited using bis(N,N′ -diisopropylacetamidinato)iron(II) [28], Fe(acac)3 [32], 

Fe(thd)2 [33], Fe(thd)3 [34], iron(III) tert-butoxide [35], and ferrocene [36, 37]. By combining 

these chemistries in alternating doses it is possible to deposit films of CoxFe3-xO4 [38]. This 

process is ideal for studying ferrite reaction kinetics as it is capable of synthesizing well-defined 

and homogeneous films. Additionally, due to the self limiting nature of the process, the cobalt 

and iron stoichiometry in CoxFe3-xO4 can be controlled with a high level of precision. 

 We have prepared two different ferrite stoichiometries by ALD (Co0.9Fe2.1O4 and Fe3O4) 

to study the efficacy of utilizing them in a thermochemical redox cycle to produce H2. Of 

particular importance to us is gaining an understanding of the rate limiting mechanisms of the 

water oxidation reaction. Finally, we hope to be able to incorporate the rate limiting reaction 

mechanisms with relevant kinetic parameters to derive a global rate expression capable of 

describing the oxidation reaction rates over a wide range of conditions. 

 

7.3 Experimental Details 

7.3.1 ALD Synthesis 
 

 Multilayers of iron(III) oxide and cobalt(II) oxide were deposited onto porous ZrO2 

substrates (BET surface area = 50, Alfa Aesar®) via ALD in alternating doses. Iron(III) oxide 



141 
 

deposition consisted of dosing ferrocene (99% purity acquired from Alfa Aesar®) and high purity 

oxygen (99.9%) in alternate doses into the reactor at 450 oC. Details of the reactor configuration 

have been described elsewhere [37]. Ferrocene was delivered into the reactor using a 200cc 

bubbler (Precision Fabricators Ltd.) heated to 60 oC. The reactor was then purged with nitrogen 

in order to remove any excess ferrocene and by-products. Once purged, oxygen was dosed, 

followed by another nitrogen purge. Cobalt(II) oxide deposition was performed in an identical 

manner to that of iron(III) oxide, with the exception that cobaltocene, rather than ferrocene, was 

used. The ALD chemistries were measured in situ via mass spectrometry and all lines were 

heated to 65 oC in order to prevent any ferrocene or cobaltocene vapor from condensing. Induced 

coupled plasma – atomic emission spectroscopy (ICP-AES) was used to verify both cobalt 

stoichiometry (x, in CoxFe3-xO4) and mass loadings of the films.  

7.3.2Thermal Cycling: Stagnation Flow Reactor 
 

Water oxidation and thermal reduction experiments were conducted in a vertically oriented 

stagnation flow reactor (SFR) at 75 Torr, which has been described in Chapter 5. Two gas lines 

were used concurrently, line 1 and line 2, and switched from the reactor to a bypass orientation 

depending on the gas species desired. 500 sccm of helium was flowed through line 1 and used as 

a purge gas. Line 2 contained a mixture of H2O and He, with the total flow equaling 500 sccm. 

Water was delivered using a non-porous nafion membrane provided by RASIRCTM at 70 oC and 

350 Torr. The flowrate was controlled by varying the inlet gas flow, and was calculated 

according to the equation 7-3 shown below, 

 

𝐹𝑟 = 𝐹𝑚𝑃𝑟 (𝑃𝑜 − 𝑃𝑟)                                                                                                                      ⁄       𝟕 − 𝟑) 
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where Fr is the H2O flowrate in sccm, Fm is the flowrate of inert gas through the membrane, Pr is 

the vapor pressure of H2O at the membrane temperature, and Po is the pressure of the membrane.  

 Thermal reduction consisted of heating the sample to 1450 oC at 15 oC/minute while 

flowing 500 sccm He. Once the setpoint was achieved, the furnace temperature was held for an 

additional 75 minutes.  Following reduction, the temperature was reduced at 15 oC/minute to the 

desired oxidation set point while continuing to flow He. Once achieved, the steam/He mixture 

was delivered into the reactor for 600s. Both O2 and H2 were measured at the outlet of the reactor 

by a modulated beam mass spectrometer, and calibration was achieved by delivering various 

known concentrations of O2 and H2 in He. The sample was placed in a YSZ holder fabricated by 

Zircar Zirconia, Inc.  

 

7.3.3 Material Characterization 
 

 Visual inspection of the films was carried out using a JEOL 7600F field-emission 

scanning electron microscope (FESEM) operating at 4kV and 15kV to examine surface 

morphology and local chemical variation. Here, samples were mounted on conductive tape and 

sputtered with carbon. Film composition was determined via induced coupled plasma – atomic 

emission spectroscopy (ICP-AES).  

7.4 Results  
 

7.4.1 Temporal Behavior/Cycling 
 

 Two representative ferrite samples, Co0.9Fe2.1O4 and Fe3O4, were synthesized and 

investigated and are described in Table 7-1. After deposition the cobalt ferrite surface area was 
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29 m2/g with a mass loading of 45%, and iron oxide surface area was of 27 m2/g with a mass 

loading of 36%. Extensive characterization was conducted and described in Chapter 5, and 

indicated that these films were deposited homogeneously on the surface of the m-ZrO2 supports. 

Film stoichiometry was verified by ICP-AES analysis, and raman spectroscopy. The water 

oxidation of Co0.9Fe2.1O4 was studied at oxidation temperatures between 900 and 1400 oC and 

mole fractions of water from 0.2 to 0.4 at 75 Torr. Oxidation experiments using Fe3O4 were not 

as exhaustive as Co0.9Fe2.1O4, but were conducted over the same range of conditions. All 

experiments were conducted by cycling the same sample repetitively, rather than separate 

samples for each experiment. The samples were never tampered with between cycles and 

remained in the reactor for the duration of their experiments. 

 

Table 7-1: Physical characteristics of synthesized ferrites 

 

 The temporal behavior of H2 and O2 evolution during water oxidation and thermal 

reduction are similar for both Co0.9Fe2.1O4 and Fe3O4. Shown on the left half of Figures 7-1a and 

7-1b are the water oxidation rates for both materials at 1100 oC and 30% H2O. Both H2 rates 

increase rapidly at the onset of the reaction, and exponentially decay as the reaction progresses. 

This behavior is very characteristic of, and similar to, other ferrite water splitting rates observed 

in the literature [6, 16]. Also, the rate of Fe3O4 oxidation is faster than the cobalt ferrite. It’s peak 

H2 rate of 8.8 µmoles/s/g is nearly double the peak rate of the cobalt ferrite (4.3 µmoles/s/g).  

Stoichiometry 
(ICP-AES)

Initial ZrO2 SA 
(BET)

Final SA After 
Deposition (BET)

Mass (%) Loading 
(ICP-AES)

Sample 1 Co0.9Fe2.1O4 51 m2/g 29 m2/g 45%

Sample 2 Fe3O4 51 m2/g 27 m2/g 36%



144 
 

 

Figure 7-1: a) Temporal water oxidation rates (left) and O2 evolution rates (right) for 
Co0.9Fe2.1O4 and b) Fe3O4 
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The onset of O2 evolution (right half of Figures 7-1a and 7-1b) for both samples occurs right 

after 1200 oC, and the O2 yields for Co0.9Fe2.1O4 (378 µmoles/g) and Fe3O4 (366 µmoles/g) are 

both similar. This was surprising because thermodynamics predicts the onset of thermal 

reduction to occur at lower temperatures for cobalt ferrites, as well as larger conversions[12]. 

The rate of O2 evolution is also noticeably slower than H2 evolution for both samples. Reduction 

was continued for 75 minutes after the set point of 1450 oC was achieved, yet the rates were still 

well above baseline after that length of time. The majority of both oxidation reactions occurred 

within the first 10 minutes. This is contrary to some previous literature reports in which these 

reaction rates are similar, or the water oxidation rates are even slower than thermal reduction[6]. 

However, it is likely that these rates are highly dependent on the size and morphology of the 

materials used. 

 Both materials were capable of being cycled without signs of deactivation. Continuous 

water oxidation cycles, after thermal reduction, of Co0.9Fe2.1O4 and Fe3O4 , are shown in Figures 

7-2a and 7-2b for increasing oxidation temperatures. The rates of both samples increase as the 

oxidation temperature is increased, even up to 1400 oC for the cobalt ferrite. This is significant 

because it is only 50 oC less than its thermal reduction upper operating temperature, suggesting 

that it is possible to drive the water oxidation reaction, rather than thermal reduction, simply by 

altering the gas composition. To the best of our knowledge, this is the first published report of 

this phenomenon. These results suggest that there is a competition between kinetics and 

thermodynamics as the temperature is increased. Thermodynamics predicts that the oxidation 

reaction for both materials is unfavorable (∆G>0) as the temperature is increased past about 750 

oC [Supplemental Figure 7-11], yet the H2 reaction rates and conversions continue to increase up 

to 1400 oC. This is clearly indicative of a kinetically limited reaction. Subsequent O2 rates during 
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thermal reduction at 1450 oC are shown in Figure 7-2c, for Co0.9Fe2.1O4. As expected, the O2 

yields increase as the degree of oxidation increases, corroborating that the extent of oxidation 

increased as the oxidation temperature was increased. 

 

Figure 7-2: a) H2 reaction rates for Co0.9Fe2.1O4 , b) Fe3O4 and c) subsequent O2 evolution rates 
for Co0.9Fe2.1O4  

 

 It is also apparent from Figure 7-2a, that the value of the H2 plateau increases as the 

oxidation temperature is increased. The plateau is observed at long oxidation times where the 

rate of change of H2 approaches zero. To determine the nature of this plateau, we performed 

experiments without samples to see if it was due to water thermolysis. We saw no evidence of 

any H2 until 1400 oC, but even at that temperature the increase was very minimal and much less 

than the values of the H2 plateaus observed in Figure 7-2a. Therefore, we performed extended 
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oxidation runs with Co0.9Fe2.1O4 to see if the plateaus remain constant or eventually decreased to 

zero once the reaction was exhausted. This was initially attempted at 1300 oC / 40% H2O. The 

initial reaction rate is very rapid and is preceded by an exponential decay to a plateau of 5e-7 

moles/g/s, as shown in Figure 7-3. This rate stays constant for up to 1500 s without showing any 

sign of decreasing. After 2000 s at 1300 oC, we increased the temperature to 1350 oC, and finally 

1400 oC, while continuing to flow steam.  

 

Figure 7-3: Extended H2O oxidation of Co0.9Fe2.1O4 while varying the temperature 

 

There was a corresponding increase in the H2 rate as the temperature was increased, and after 

continuing to oxidize the sample for 6000 s, the rate of change of H2 was zero except for when 

the temperature was changed, indicating that this is an activated process. We do not believe that 

the extended H2 rates are due to the slow oxidation of the sample because the amount of H2 

generated was 4332 µmoles/g, whereas the amount of O2 generated during the subsequent 
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thermal reduction was only 407 µmoles/g. Clearly there is more H2 generated than predicted 

based on a stoichiometric amount of H2 and O2 generated from H2O (2:1). In fact, more H2 is 

generated than is thermodynamically possible from a ferrite based two step water splitting 

process [12]. We believe that this phenomenon is due to both thermal reduction and water 

oxidation occurring simultaneously, without a net effect on the oxidation state of the ferrite. In 

addition to continued H2 production, we observe the simultaneous evolution of oxygen. Without 

the presence of steam, thermal reduction is favorable under these conditions, and in fact, once the 

flow rate of steam is stopped a rapid increase in the O2 evolution rate results. These results 

indicate that it is possible to split H2O into H2 and O2 for an indefinite period of time, without 

going to extreme temperatures which are required for water thermolysis[39].  

 A stoichiometric amount of H2 and O2 is generated at low oxidation temperatures (T ≤ 

1100 oC). A plot of O2 verses H2 yeilds for both the cobalt ferrite and iron oxide for all oxidation 

conditions is shown in Figure 7-4. The lower yields agree well with the predicted ratio of 2:1 

(H2:O2, ideal line) expected from stoichiometric H2O splitting. However, at higher H2 

conversions, the amount of O2 evolved plateaus and the H2:O2 ratios begin to fall away from the 

ideal line. This phenomenon is attributed to the continued production of H2 at elevated 

temperatures, as discussed previously. The data obtained for the extended oxidation (Figure 7-3) 

is indicated by the point on the extreme right of the figure, indicating the extent to which this 

varies from a stoichiometric reaction expected from a standard ferrite-based water splitting cycle. 
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Figure 7-4: Total O2 yields vs. H2 yields for CoFe2O4 and Fe3O4 

  

 The O2 yields of Co0.9Fe2.1O4 range from 150 µmoles/g to 510 µmoles/g, depending on 

the oxidation conditions, and increase as the oxidation temperature is increased. These values are 

less than the original amount of O2 evolved from the sample, which was 641 µmoles/g, and 

indicate that even at the highest H2 conversions, the sample is not able to be completely oxidized. 

At low temperatures the sample is not capable of being oxidized completely due to kinetic 

limitations, and at higher oxidation temperatures the reaction is limited by thermodynamics 

(∆G>0). All of the relevant H2 data for Co0.9Fe2.1O4 and Fe3O4, is tabulated in Table 7-2. 

Conversions for both samples increase with increasing temperatures, and less noticeably with 
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increasing water concentration. ANOVA analysis of Co0.9Fe2.1O4 data indicates that temperature 

has a statistical effect on the H2 yield, O2 yields, and H2 peak rates (p-value ≤ .05), whereas the 

effect of H2O concentration on these values is less significant, with p-values ranging from 0.042 

to 0.10.  

Table 7-2: Total H2 yields as a function of reactive material, oxidation temperature and water 
concentration 

 

7.4.2 Kinetic discussion – Cobalt Ferrite 
 

 Water oxidation kinetic parameters based on the peak H2 rate were calculated for 

Co0.9Fe2.1O4, assuming Arrhenius type rate dependence according to the rate expression given 

by: 

 

𝑟𝐻2 �
𝑚𝑜𝑙
𝑔×𝑠

� = [𝑦𝐻2𝑂]𝑛𝑘𝑜𝑒
−𝐸𝑎
𝑅𝑇                                                                                                                  𝟕 − 𝟒)  

H2O % H2 Yield (moles H2/g) 
Co0.9Fe2.1O4

H2 Yield (moles H2/g) 
Fe3O4

900 oC
20 .000194 0.000451
30 .000252 0.000415
40 .000236 0.000411

1000oC
20 .000416
30 .000580
40 .000452

1100oC
20 .000740 0.000887
30 .000736 ± 3.9E-05 0.000844
40 .000820 0.000484

1200oC
20 .000821
30 .000900
40 .001053

1300oC
20 .000895 0.001088
30 .001280 0.001105
40 .001302 0.001274
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where rH2 is the peak H2 production rate, 𝑦𝐻2𝑂 is the H2O mole fraction, n is the H2O reaction 

order, ko is the pre-exponential factor, Ea is the activation energy, R is the ideal gas constant, and 

T is the isothermal reaction temperature. A plot of the ln[rH2] verses inverse temperature is 

shown in Figure 7-5, and indicates that there is a linear trend between temperatures ranging from 

900 oC to 1100 oC. At higher temperatures the rates plateau which we attribute to thermodynamic 

limitations [Supplemental Figure 7-11]. The activation energy was calculated by estimating the 

slope of each linear portion of the figure, and was determined to be 119.76 ± 8.81 kJ/mole. There 

is limited literature data to compare this value to, but it is greater than previous reports for H2O 

and CO2 splitting for various ferrites. Go et. al. studied the water oxidation of Fe2O3, MnFe2O4, 

and ZnFe2O4 and calculated activation energies ranging from 57.4 to 109.7 kJ/mol[15]. 

However, all of their samples were reduced at lower temperatures (< 900 oC) in the presence of 

CH4, whereas our experiments were thermally reduced at much high temperatures (1450 oC). 

Steinfeld et.al. have calculated the activation energy of FeO oxidation using CO2, and calculated 

peak rate activation energies of 73.4 ± 8.5 and 69 kJ/mol for isothermal and dynamic 

thermogravimetric experiments, respectively[40]. Most recently Pitz-Paal et. al. calculated an 

activation energy of 110 ± 14 kJ/mol for the water oxidation of zinc ferrite. The H2O reaction 

order was calculated by determining the slope of a plot of ln[rH2] verses ln𝑦𝐻2𝑂, and is 0.70  ± 

0.32. This is close to the value determined by Steinfeld et.al. for CO2 decomposition on FeO 

(0.78), and none was reported by Go et. al. for H2O decomposition because they assumed a zero 

order reaction dependence. Pitz-Paal et. al. did not see any dependence from 10-80% H2O and 

therefore concluded that it’s reaction order was zero. Tabulated values of all kinetic parameters 

based on peak H2 reaction rates are shown in within Figure 7-5. The calculated data was 
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incorporated into the above Arrhenius kinetic expression and shown as the fitted data in Figure 

7-5 and there is good agreement with the data and the fitted expression.  

 

Figure 7-5: Arrhenius plots based on peak H2 rates and corresponding kinetic parameters and 
fits. 

 

 While this simple Arrhenius expression is capable of describing the peak H2 rate 

behavior, it is not necessarily valid for predicting all H2 rates as a function of time. Therefore, we 

have implemented a master plot analysis technique which is capable of comparing our 

normalized rate data in differential form to functional forms of known solid state kinetic models 

[41]. The advantage of this analysis is that the curves are only dependent on the kinetic model 

and not on other kinetic parameters. Therefore individual sets of differential rate data can be 
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compared to various kinetic models in order to determine appropriate models characteristic of 

the reaction mechanism. The kinetic model, f(α), is a function which is capable of describing the 

mechanism of the process, and is implemented into the differential form of a generic Arrhenius 

expression shown below as: 

 

𝑑𝛼
𝑑𝑡

= 𝑘 · 𝑓(𝛼)                                                                                                                                         𝟕 − 𝟓) 

 

where α is the reacted fraction at time t [42]. We have compared our experimental data to several 

common reaction models, as described in Table 7-3.  

 

Table 7-3: Reaction models that were compared to experimental data 

 

Model Symbol f(α)
Reaction Order Fn

Nucleation and Growth 
(Johnson-Mehl-Avrami equation)

An

Phase Boundary Controlled 
Reaction

R2

Phase Boundary Controlled 
Reaction

R3

One Dimensional Diffusion D1

Two Dimensional Diffusion D2

Three Dimensional Diffusion D3
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As shown in Figure 7-6, water oxidation at 1100 oC/30% H2O is compared to several reaction 

models and no single model is identical to the experimental data over all conversions. However, 

after a fractional reaction of 0.3, the experimental data and D1 model agree very well. At lower 

conversions, the predicted rates are much faster than experimental rates, and the data is best 

represented by a second order reaction model (F2).  

 

Figure 7-6: Master plot comparing experimental oxidation data at 1100 oC/30% H2O to various 
reaction mechanisms. 

 

This suggests that the reaction is limited by two different mechanisms, the first being a surface 

chemical reaction limitation described by the second order reaction model, and the second, a 

diffusion mechanism at longer reaction times. Steinfeld et.al. have observed similar behavior 

when oxidizing FeO particles to Fe3O4 using CO2 [40]. However, given the thin nature of the 
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ALD cobalt ferrite films it is surprising that the oxidation data is represented well by a diffusion 

model. These models are commonly described by the oxidation of metals in which a growing 

oxide layer limits the reaction rate due to diffusion through the oxide layer [43]. However, our 

materials were synthesized with films that were about 2nm thick, and so diffusion limitations by 

that same mechanism would be unlikely unless the materials changed morphologically due to the 

high temperatures required for these redox cycles. 

 FESEM images and EDX analysis of samples before and after one complete redox cycle 

indicate that extensive sintering and metal phase segregation occurred during thermal cycling. 

As-synthesized Co0.9Fe2.1O4 on the m-ZrO2 support is shown in Figure 7-7a, and the ZrO2 

nanoparticles within the support are easily observed with average particle sizes of 50nm. 

Corresponding EDX maps are shown in Figures 7-7c and 7-7e, and it is clear that both zirconium 

and iron are distributed homogeneously, as shown by the evenly disbursed areas of gray and 

black. A cobalt EDX map is not shown because it looks identical to iron. This is clear indication 

that the ferrite film was dispersed evenly and throughout the porous support. However, after the 

first redox cycle the ZrO2 nanoparticles can no longer be observed, and sintered grains with an 

average size of 1 µm result, as seen in Figure 7-7b. This resulted in a decrease of surface area 

from 29 m2/g to less than 1 m2/g, and is further confirmation of sintering and grain growth. Also 

accompanying sintering was extensive zirconium and iron phase segregation, observed in 

Figures 7-7d and 7-7f. There are high concentrations where only iron can be observed, and vice 

versa. These morphological changes clearly indicate that the ALD films no longer exist as they 

were originally synthesized, but rather as a sintered material with grain sizes much larger than 

the original film thickness. This change may explain why the oxidation rates appear to be limited 

by diffusion, which is common for the oxidation of bulk powder oxides and metals. 
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Figure 7-7: a)FESEM image of as synthesized cobalt ferrite, b) FESEM after 1st redox cycle, c) 
Fe EDS map of as synthesized cobalt ferrite, d) FE EDS map after 1st redox cycle, e) Zr EDS 
map of as synthesized cobalt ferrite, f) Zr EDS map after 1st redox cycle 
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 To further investigate the role of diffusion in the water oxidation reaction, we have 

attempted to fit our data to the parabolic rate law which describes solid state reactions which are 

limited by diffusion of a reactant through a growing oxide film, as shown below: 

  

𝛼𝑛 = 𝑘𝑝 · 𝑡                                                                                                                                               𝟕 − 𝟔) 

 

where α is the reacted fraction at time t, kp is the parabolic rate constant, t is time, and n is an 

empirically derived exponent[44]. The reacted fraction, α, is defined as:  

 

𝛼 =
𝑇𝑜𝑡𝑎𝑙 𝐻2 𝑡

2 · 𝑇𝑜𝑡𝑎𝑙 𝑂2 𝑅1
                                                                                                                               𝟕 − 𝟕) 

 

where Total H2 t is the total amount of H2 generated at a given time, t, and Total O2 R1 is the total 

amount of oxygen that was evolved from the sample during the first thermal reduction. This is 

the true measure of the materials oxidation potential, because we cannot assume that all of the 

Fe3+ was reduced to Fe2+ due to incomplete reduction. Additionally, we cannot calculate this 

after every cycle because other O2 yields are always less than the first thermal reduction this due 

to incomplete oxidation. According to Equation 7-6, data that can be characterized by the 

parabolic rate law would be linear when ln(α) is plotted verses ln(t) with a slope of 1/n. A plot of 

ln(α) verses ln(t) for all sets of data is shown in Figure 7-8, and the data is not linear for the 

entire length of the reactions. However, after the first 150 s of the reaction (ln[t] = 5) the data is 

approximately linear, and agrees well with the parabolic rate law, further confirming that the 

reaction is limited by diffusion for long reaction times. This also agrees with the master plot 

analysis discussed in Figure 7-6, in which the data only agreed well with the D1 diffusion model 
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after the reaction progressed to a conversion greater than 0.3. We were able to compute n for 

each data set from their respective slopes, and the average value is 1.94 ± 0.44, which is close to 

the value of 2 most commonly associated with the parabolic rate law. There was a large variation 

of n with respect to oxidation temperature; n was 1.54 ± 0.13 at 900 oC, 1.87 ± 0.39, and 2.41 ± 

0.17 at 1100 oC. 

 

Figure 7-8: Calculation of n as defined by the parabolic rate law. Linear portions indicate good 
agreement with the model. 

 

 The calculated activation energy during the diffusion limited regime is higher than that of 

the activation energy calculated based on peak H2 rates. Activation energy was calculated by 

plotting ln[α] – (1/n)ln[t] verses 1/T for t > 150s, and determining the slope, which is equal to 

Ea/R. These values are plotted for various water concentrations, as shown in Figure 7-9, and the 



159 
 

average activation energy is 191 ± 19.8 kJ/mol, compared to 119.76 ± 8.81 kJ/mole for the peak 

H2 rates.  

 

Figure 7-9: Arrhenius plot over all times where the data fits the parabolic rate law (t> 150s). 

 

Calculated activation energies of Fe[43, 45] and FeO[15, 40] oxidation during diffusion limited 

regimes, and Fe diffusion in Fe3O4[46-48] generally range from about 100 to 160 kJ/mol. Iron 

diffusion through magnetite is the rate limiting step in these processes, and therefore activation 

energies calculated for Fe and FeO oxidation are usually equal to the activation energy of iron 

diffusion in magnetite [45]. We have not observed any reported activation energies for oxidation 

to cobalt ferrite, and therefore can only compare our data with reports of iron and iron oxide 

oxidation to magnetite.  Our calculated activated energies in this regime are higher than for Fe 

and FeO oxidation. This is likely due to the presence of cobalt, because rather than Fe3O4 our 
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oxide layer consists of Co0.9Fe2.1O4. It is unlikely that this process is limited by either Fe or O 

diffusion through the ZrO2 support, as we saw no evidence that a significant amount of Fe was 

dissolved in the ZrO2, and the activation energy for O diffusion in YSZ is much less than the 

activation energy we calculated [49]. Additionally, if we were limited by diffusion through the 

support, we would have expected to see similar rates for both Fe3O4 and Co0.9Fe2.1O4. Therefore, 

we conclude that the activation energy of iron diffusion through cobalt ferrite is greater than the 

activation energy through magnetite. Further qualitative evidence of this can be observed when 

comparing the oxidation rates of Fe3O4 and Co0.9Fe2.1O4, in which the rate of oxidation of 

magnetite is faster under all of the conditions that we investigated. 

 Following these results, we have derived a global rate expression capable of describing 

the temporal water oxidation behavior of Co0.9Fe2.1O4 from 900 to 1100 oC. Because we are 

limited by two different mechanisms, namely a reaction order limitation initially followed by a 

diffusion limitation at longer reaction times, we have incorporated two different expressions with 

varying kinetic parameters. The initial reaction was capable of being described well by 

employing the Arrhenius expression based on peak H2 rates, coupled with a second order 

reaction model, shown by: 

 

𝑟𝐻2 �
𝑚𝑜𝑙
𝑔 · 𝑠

� =
𝑑𝛼
𝑑𝑡

= [𝑦𝐻2𝑂]𝑛𝑘𝑜𝑒
−𝐸𝑎
𝑅𝑇 (1 − 𝛼)2                                                                                  𝟕 − 𝟖) 

 

where the relevant kinetic parameters are the same as those discussed in Figure 7-5, with the 

exception of ko. This was determined to be 0.32 moles/g/s rather than 0.39 moles/g/s to account 

for the addition of the reaction model. The diffusion limited regime could be described well by 
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an Arrhenius expression with no dependence on water concentration, coupled with a diffusion 

limited reaction model, shown by: 

 

𝑟𝐻2 �
𝑚𝑜𝑙
𝑔 · 𝑠

� =
𝑑𝛼
𝑑𝑡

= 𝑘𝑜𝑒
−𝐸𝑎
𝑅𝑇 𝑓(𝛼)                                                                                                        𝟕 − 𝟗) 

 

where f (α) was derived from the parabolic rate law and is dependent on the empirically 

calculated n. As shown by the derivation below, f (α) can be derived from the parabolic rate law 

by differentiation and algebraic manipulation.  

 

𝛼𝑛 = 𝑘𝑝𝑡                                                                                                                                               𝟕 − 𝟏𝟎) 

 

𝑑𝛼
𝑑𝑡

=  
𝑘𝑝

1
𝑛

𝑛
𝑡�
1
𝑛−1�                                                                                                                                 𝟕 − 𝟏𝟏) 

 

𝑑𝛼
𝑑𝑡

=  
𝑘𝑝
𝑛

(𝛼𝑛)�
1
𝑛−1�                                                                                                                            𝟕 − 𝟏𝟐) 

 

𝑘 =
𝑘𝑝
𝑛

, 𝑓(𝛼) =  (𝛼1−𝑛)                                                                                                           𝟕 − 𝟏𝟑) 

 

𝑑𝛼
𝑑𝑡

=  𝑘𝑓(𝛼)                                                                                                                                         𝟕 − 𝟏𝟒) 
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 We have used the experimentally determined n value of 1.94. Water concentration was 

not included in this kinetic expression because we are limited only by Fe diffusion. Ea was the 

value calculated in Figure 7-9 and equals 191 ± 19.8 kJ/mol and ko was derived empirically and 

determined to be 9 moles/g/s. The time at which the first mechanism transitions to the diffusion 

limited regime is dependent upon the extent of reaction, and therefore is different for each water 

concentration and temperature. We have defined this transition to occur when the conversion of a 

specific data set was equal to 20% of its maximum conversion. Plots of the integral form of the 

data from 900 oC to 1100 oC and fits are shown in Figure 7-10 for 20% H2O. As expected, the 

rate of change of the conversions is faster as the temperature is increased, and the models agree 

well with the data. There is a clear inflection point observed for the fits at low conversions which 

is due to the transition from the reaction order mechanism to the diffusion limited mechanism. 

The data does not have such a sharp transition because it does not occur instantaneously, as it 

was modeled, but gradually over time. Without the inclusion of the initial reaction order model, 

the predicted diffusion model rates are much more rapid than the experimentally observed rates. 

Additionally, if we were to only include the reaction order model, the predicted rates eventually 

become much faster than the observed rates. By including both the reaction order model and the 

diffusion limited model we are able to capture both the initial rates and the longer-term parabolic 

rates fairly accurately. There is error that exists between some of the fits and experimental rates 

is due to the large degree of experimental error, as evidenced in the variability in Figure 7-2. 

Because we are using the same material and continuously thermally reducing/oxidizing, it is 

inherently a very complex system in which the reactive species may be changing 

morphologically depending on the number of cycles that is has withstood. Furthermore, in 

addition to just one reactive species such as iron, we also have cobalt and zirconia, all of which 
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are capable of interacting with each other and diffusing as the number of cycles is increased. 

This may result in dynamic concentration gradients which could have an effect on the oxidation 

behavior of Fe. 

 

Figure 7-10: Comparison of experimental data to reaction models for 20% H2O between 900 and 
1100 oC. 

 

 In other less complex reactions, similar mechanistic behavior has been observed when 

oxidizing metals and metal oxides at high temperatures. For instance, Steinfeld et. al. observed a 

rapid interfacial reaction follow by a slower diffusion limited reaction when oxidizing FeO 

between 923 and 1473 K and Zn metal between 640 and 754 K with CO2 [40]. Also, Fe 

oxidation by air or oxygen is generally characterized by a rapid reaction rate followed by longer 

term oxidation rate described well by the parabolic rate law. Although our system is more 

complex than any of these, they are similar in that our only reactive species with the oxidant is 



164 
 

FeO, and so conceptually it makes sense that we observe similar behavior. Additionally, the 

inclusion of an initial reaction order limited mechanism is more realistic than a diffusion-limited 

models over all times, because diffusion models are characterized by a nearly infinite reaction 

rate at a conversion of zero. This is because they are all based off of a functional form similar to f 

(α) = 1/α, and so for very small conversions the reaction rates are infinitely fast.  

7.5 Conclusions 
 

 Cobalt ferrite (Co0.9Fe2.1O4) and iron oxide (Fe3O4) thin films were both successfully 

utilized in a two step thermochemical water splitting cycle to produce H2. H2 conversions of both 

materials were comparable and increased as oxidation temperature was increased. This was 

surprising considering the thermodynamically predicted extent of reduction is expected to be 

greater for cobalt ferrite under these reduction conditions (1450 oC). The oxidation rates 

exhibited Arrhenius type behavior from 900 to 1100 oC, but H2 was capable of being generated 

even at temperatures as high as 1400 oC. This is due to the occurrence of both oxidation and 

reduction reactions occuring, and results in simultaneous production of H2 and O2 for an 

indefinite amount of time. The temperature at which this reaction occurs (T > 1250 oC) is much 

less than that required for water thermolysis. 

 Master plot analysis was utilized to compare the experimental data to various functional 

forms representative of reaction mechanisms, and it was determined that there are two distinct 

reaction limited regimes. Initially, the reaction is limited by a second order reaction mechanism, 

and the activation energy and H2O reaction order during this regime were determined to be 

119.76 ± 8.81 kJ/mole and 0.70 ± 0.32, respectively. Following this mechanism, the reaction was 

limited by diffusion, and agreed well with the parabolic rate law.  This was accompanied by an 
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increase in the activation energy, which was determined to be 191 ± 19.8 kJ/mol. This activation 

energy is higher than all other published reports of Fe or FeO oxidation, or Fe diffusion through 

magnetite. As a result, we believe that the activation energy for Fe diffusion through cobalt 

ferrite is higher than magnetite, resulting in the observed slower reaction rates. By combining 

both reaction mechanisms into a single rate expression, we were able to derive a global rate 

expression capable of characterizing the temporal behavior of the oxidation of cobalt ferrite for 

temperatures between 900 and 1100 oC, and water concentrations from 20% to 40%.  
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Supplemental Figure 7-11: ∆G verses temperature for cobalt ferrite and iron oxide oxidation 
reactions.
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CHAPTER 8 KINETIC ANALYSIS OF COMMERCIALLY AVAILABLE CEO2  FELTS 
FOR SOLAR THERMOCHEMICAL H2 PRODUCTION 
 

8.1 Abstract 
 

 The feasibility of using commercially available, un-doped, ceria (CeO2) felts in a 

thermochemical redox cycle to produce H2 has been explored, and a detailed kinetic analysis of 

the oxidation reaction is discussed. Reduction is achieved at 1450 oC, and the subsequent H2 

producing step is studied from 700 to 1200 oC and H2O mole fractions of 0.04 to 0.32. The O2 

and H2 equilibrium compositions remain constant for up to 30 redox cycles, and sintering 

appears to be abated by microscopy analysis. The average amount of H2 produced is 280.9 ± 

45.8 µmoles/g CeO2. The re-oxidation rates are faster on a per mass basis than similar ferrite 

based-cycles because the surface area is largely unaffected by thermal cycling. 

 The oxidation reaction is governed by a first order reaction mechanism (1-α) at low 

temperatures and conversions, but at higher temperatures the mechanism transitions to a second 

order reaction (1-α)2. This is attributed to the onset of the thermodynamically favored reverse 

reaction at elevated temperatures. In fact, the reaction rates decrease above oxidation 

temperatures of 1000 oC, due to this competition. The activation energy is calculated between 

700 and 900 oC from 0.2<α<0.5, and determined to be 35.5 ± 13.3 kJ/mol. An Arrhenius 

expression, coupled with a first order reaction mechanism is used to model the experimentally 

observed reaction rates where the forward reaction was predominant. 

8.2 Introduction 
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 Ceria (CeO2) and metal doped ceria have received a tremendous amount of interest 

recently as “high temperature” solar thermochemical water splitting candidates for renewable 

hydrogen production. They are capable of splitting water using solar energy according to the 

generic two step redox cycle shown below, where the only net inputs are solar energy and water 

and the outputs are O2 and H2. 

 

𝐶𝑒𝑂2 + 𝑆𝑜𝑙𝑎𝑟 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 → 𝐶𝑒𝑂2−𝛿 + 
𝛿
2
𝑂2                                                                   𝟖 − 𝟏) 

 

𝐶𝑒𝑂2−𝛿 +  𝛿𝐻2𝑂 → 𝐶𝑒𝑂2 +  𝛿𝐻2                                                                                                      𝟖 − 𝟐) 

 

The first step proceeds via the thermal decomposition of CeO2, usually to a non-stoichiometric 

state, and O2 is evolved. The reduced ceria is then re-oxidized in the second lower temperature 

step using steam to produce H2. The degree of reduction (Ce4+ to Ce3+) is highly dependent on 

temperature, and complete reduction to Ce2O3 is only achieved at very high temperatures (≈2000 

oC) [1]. Under these conditions most ceramic reactor construction materials become unstable and 

radiation heat losses are considerable because of their fourth order temperature dependence. 

Therefore, reduction at lower temperatures (≈1400 - 1500 oC) is more common, resulting in 

reduction to a non-stoichiometric state where the ceria’s fluorite structure is maintained [2, 3].  

 Ceria has some distinct advantages over analogous ferrite gas splitting cycles. Generally, 

ferrite gas splitting cycles have upper operating temperatures that are very close to their melting 

temperatures, and as a result extensive sintering is observed [4-6]. Ceria, on the other hand, has a 

much higher melting temperature (2300 oC) but has upper operating temperatures that are 

comparable to ferrite cycles [7]. Because of this, the degree of sintering is less than ferrites and 
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they are able to maintain their surface area more effectively, resulting in observed oxidation rates 

that are generally faster than ferrites [1, 2, 6]. It has also been suggested that the oxidation rates 

may not be limited by bulk diffusion through an oxide scale because of high oxygen diffusivities 

and a fixed crystal structure  [2]. Ceria and ferrites are both capable of being cycled with relative 

ease compared to other high temperature cycles, such as the ZnO/Zn and sodium manganese 

cycles, because they remain as solids through the redox cycle rather than undergoing phase 

transformations [8-10]. On the other hand, because ceria is reduced to a non-stoichimetric state, 

the degree of reduction is less than other high temperature thermochemical cycles, resulting in 

less H2 produced per mole of material. Also, ceria is highly reactive with most materials and has 

a significant vapor pressure at the operating temperatures of interest, so maintaining its chemical 

state proves to be challenging. 

 It is well understood that dopants have an effect on the thermodynamics of ceria 

reduction [11-13]. The addition of ceria dopants (Ce1-xMxO2-δ, where M is commonly Gd or Sm), 

has been widely studied for enhancing the conductivity of solid oxide fuel cells, which is directly 

related to the degree of oxygen vacancies [11, 12]. The introduction of dopants has been shown 

to increase the degree of reduction at low oxygen partial pressures compared to un-doped ceria. 

Therefore, the addition of dopants such as zirconium [3] and samarium [2] and metal oxides 

(MOx, M = Mn, Ni, Fe, Cu) [14, 15] is being explored as a means to increase the thermodynamic 

driving force of reduction at lower temperatures for uses in solar thermochemical redox cycles.  

 Abanades et.al. were the first to study the thermal decomposition of CeO2 to Ce2O3 at 

temperatures as high as 2000 oC in a solar reactor. The reduced ceria was capable of reacting 

with steam at temperatures between 400-600 oC to re-oxidize the ceria and produce H2 in less 

than five minutes, which is considerably faster than the rate of ferrite oxidation. However, the 
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upper operating temperatures are much higher and at these conditions reactor construction 

materials are expected to be a concern. More recently, they investigated doping ceria with as 

much as 50% zirconium (Ce1-xZrxO2) to increase the thermodynamic driving force for reduction 

at lower temperatures [3]. Thermogravimetric analysis indicated the mass loss due to thermal 

decomposition at 1500 oC could be increased from 0.4% to 2% by increasing the Zr content from 

0% to 50%. The reduced material was still capable of reacting with water to produce H2 at 

temperatures between 800 and 1000 oC, but this temperature is higher than that required for the 

oxidation of undoped ceria.  

 Samerian doped ceria CO2/H2O splitting for the production of syngas and methane has 

been studied by Haile et.al.[2]. The Sm-doped ceria (15% Sm) was chemically reduced at 800 oC 

with a mixture of H2, H2O and Ar to an oxidation state that would be expected at 1500 oC via 

thermal reduction. The reduced ceria was then exposed to steam, CO2, or a combination thereof 

at temperatures between 500 oC and 700 oC to produce H2 and/or CO. The activation energy and 

reaction order for CO2 splitting (0.8 eV and 0.77) was higher than H2O splitting (0.52 eV and 

0.54), and a ratio of H2/CO = 2 was achievable by flowing a 2:1 ratio of H2O to CO2: the 

addition of a nickel catalyst to the surface of the ceria resulted in producing CH4 in addition to 

CO and H2. This reaction was favorable at lower temperatures (T = 400 oC) because of the 

thermodynamic driving force at lower temperatures to form carbon rather than CO2. Kaneko 

et.al. have studied the feasibility of using solid solutions of ceria and various metal oxides (MOx, 

M = Mn, Ni, Fe, Cu) to split water for hydrogen production [14, 15]. They observed an increase 

in the degree of reduction when using solid solutions of ceria and NiO or MnO. The materials 

were capable of being reduced at temperatures between 1400 oC and 1500 oC, and oxidized to 

produce H2 at 1000 oC. 
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 We are interested in studying the water splitting reactions of un-doped commercially 

available ceria felts, which are being considered as potential reactive intermediates in Sandia 

National Laboratory’s counter-rotating-ring receiver/reactor/recuperator (CR5) reactor [16], as 

part of their Sunshine to Petrol (“S2P”) program [17]. The goal is to determine the optimal 

conditions for both reduction and oxidation reactions and to baseline the materials for 

comparison to other potential water splitting candidates, including other metal-doped ceria 

samples, and ferrites. From these experiments, we hope to provide some mechanistic insight into 

the oxidation reactions and determine relevant kinetic parameters that can be incorporated into 

future reactor and material designs.  

8.3 Experimental Methods 
 

 Ceria (CeO2) felts (CeF-100) were purchased from Zircar Zirconia, Inc. Samples are 

greater than 99% pure with slight impurities of Al2O3, SiO2, and Fe2O3. The surface area was 

measured to be 5.4 ± 0.035 m2/g by BET analysis. Surface area measurements were made with a 

Micrometrics Gemini V BET surface area analyzer. Scanning electron microscopy (SEM) and 

energy-dispersive spectroscopy (EDS) were performed on a in a Zeiss scanning electron 

microscope at 15 kV. Samples were sputtered with a thin layer of gold−palladium before 

analysis to prevent charging 

 Oxidation and thermal reduction experiments were conducted in a vertically oriented 

stagnation flow reactor (SFR) at 75 Torr, which has been described in Chapter 5. Gases exiting 

the flow reactor were sampled using a differentially pumped, modulated effusive beam mass 

spectrometer (Extrell C50, 500 amu). Upon expansion into the second of three pumping stages, 

the molecular beam is chopped by a resonant modulator driven at 200 Hz and ionized by electron 

impact at 30 eV. Modulated ion current from the electron multiplier is routed through a lock-in 
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amplifier and discriminated against DC background. This increases detector sensitivity and 

digitally filters out ion current resulting from gases that persist in the ionization volume thus 

enabling real-time baseline correction and a higher degree of precision for quantifying 

component partial pressures. A mixture of 5 vol.-% H2 in He was used to calibrate the detector. 

 Mass flow controllers were used to meter all gas feed rates. The reactor exhaust was 

throttled, allowing for feedback control of the reactor pressure to any desired setpoint within the 

range 1 to 760 Torr.  Water was delivered through an evaporator fed by micro-syringe pump. 

H2O/He concentrations were calculated by assuming steam behaves as an ideal gas at 75 Torr. 

Liquid nitrogen traps were used to condense H2O prior to sampling the reactor effluent with the 

mass spectrometer. Between 100 and 200 mg of sample material were placed in the reactor on a 

YSZ holder fabricated by Zircar Zirconia, Inc.  

 Thermal reduction consisted of heating the sample to 1450 oC at 15 oC/minute and 

dwelling for 35 minutes while flowing 500 sccm He.  Following reduction, the temperature was 

reduced at 15 oC/minute to the desired oxidation set point while continuing to flow He. Once 

achieved, a steam/He mixture was delivered into the reactor for 600s. Oxidation experiments 

were conducted at temperatures ranging from 700 to 1200 oC, and mole fractions of H2O from 

0.04 to 0.32. 

 All thermodynamic values were obtained from the thermodynamic software package, 

FactSage version 6.0. 

8.4 Results 

8.4.1 Temporal Behavior/Cycling 
 

 The onset of O2 evolution during thermal reduction begins around 1200 oC, and reaches a 

maximum rate near 1400 oC, as seen in Figure 8-1. The decomposition rate is characterized by an 
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initial acceleration which eventually plateaus near 1400 oC, and begins to decrease once the set 

point of 1450 oC is achieved. The rate then decelerates and eventually plateaus to a rate that is 

above the baseline. This behavior is similar to that observed for the decomposition of other ceria 

and ferrite based powders [3, 7]. We have performed experiments at temperatures as high as 

1500 oC, but did not observe a substantial improvement in the degree of reduction to justify 

operating at temperatures this high.  

 

Figure 8-1: Temporal O2 evolution during thermal decomposition at 1450 oC. 

 

It is not clear what the rate limiting mechanism is that results in the asymptotic behavior for long 

reduction times. Clearly, the reaction is not thermodynamically limited because the reaction is 

still progressing, but a more detailed kinetic analysis of the decomposition must be performed to 

understand what limits the rate of the reaction. Also of interest is the observation that the ceria’s 

performance improved remarkably after the first redox cycle. The first attempt at reduction did 
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not begin until much higher temperatures than the data shown in Figure 8-1, and less total O2 

was evolved. However, subsequent reductions resulted in behavior more characteristic of the 

decomposition discussed above. It is not clear whether this behavior is due to inherent impurities 

in the ceria leaching out over time, or because of a reaction between the YSZ sample holder and 

the ceria. It is well documented that the introduction of dopants such as Zr, lead to lower 

decomposition temperatures by stabilizing the oxygen deficient fluorite structure at lower 

temperatures than un-doped ceria [3]. 

 Temporal oxidation rates are characterized by a rapid increase in H2 production, followed 

by a deceleration back to baseline. The rate of H2 production increases with temperature from 

700 oC to 1000 oC, and decreases as the temperature is increased beyond this point. This is 

observed in Figures 8-2a and 8-2b, where the H2 production rates for all oxidation temperatures 

are shown while flowing 16% H2O. From 700 to 900 oC, the peak rates increase from 2.5 

µmoles/g/s to 5 µmoles/g/s and from 1000 to 1200 oC decrease from 6.5 µmoles/g/s to 3 

µmoles/g/s. Obviously, the Ea is not negative above 1000 C, but rather the reverse reaction likely 

becomes more favorable as the temperature is increased, resulting in slower observed reaction 

rates. Thermodynamic calculations have indicated that the reaction of fully reduced ceria 

(Ce2O3) and steam become unfavorable at temperatures greater than 700 K, based on Gibbs free 

energy minimization calculations [18].  
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Figure 8-2: Temporal H2 evolution from 700-900oC (a) and 1000-1200 oC (b). Mole fraction 
H2O = 0.16. 
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 The observed reaction rates are due to contributions from the forward and reverse 

reactions, and are related to each other by their equilibrium constant, K. This is related to the 

Gibbs free energy change of the reaction by the following equation, 

 

𝑅𝑇𝑙𝑛𝐾 =  −∆𝐺𝑟𝑥𝑛                                                                                                                                 𝟖 − 𝟑)  

 

where R is the ideal gas constant, T is the absolute temperature and ∆Grxn
 is the Gibbs free energy 

for standard conditions (pgas = 1 atm). When the equilibrium constant is greater than one, the 

∆Grxn
 is negative, and the forward reaction is more thermodynamically favorable than the 

reverse. For values less than one, the reverse reaction is more favorable than the forward. 

Knowledge of this value alone is not enough to make any predictions about the observed reaction 

rates, but it can give some insight into the temperature range where a given reaction is expected 

to be favorable. The observed peak H2 rates for all experimental conditions are shown in the 

Arrhenius plot shown in Figure 8-3. Also included are the ∆Grxn
 values of the following idealized 

reversible reaction. 

 

𝐶𝑒6𝑂11 + 𝐻2𝑂 ↔ 6𝐶𝑒𝑂2 + 𝐻2                                                                                                            𝟖 − 𝟒) 

 

The peak rates increase linearly from 700 to 900 oC, and climax somewhere between 900 and 

1000 oC. After this point, the rates decrease with temperature, due to competition with the 

reverse reaction as suggested by the equilibrium calculations.  At temperatures greater than 900 

oC, ∆Grxn > 0, and the reverse reaction is more thermodynamically favored than the forward, 

which results in slower observed H2 production rates. Although the decrease in peak reaction 
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rates as a function of temperature can be explained by equilibrium calculations, there are several 

factors which could contribute to disagreements between the observed reaction rates and 

thermodynamic predictions. For example, kinetic limitations could result in conditions where the 

forward reaction proceeds, even at temperatures where thermodynamics predicts the reverse 

reaction is more favorable.  

 

Figure 8-3: Arrhenius plot of peak H2 rates for all experimental conditions shown with DGo
rxn. 

 

Behavior similar to this has been observed experimentally in ferrite-based water oxidation 

studies [7]. Water oxidation rates of most ferrites continue to increase well above temperatures 

where thermodynamics would predict because the reaction is limited by diffusion through their 

bulk. Additionally, oxidation conditions of thermochemical redox cycles are generally not 

operated close to equilibrium. The solid samples are usually stationary, while a sweeping gas 
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carries the reaction products away from their surface. However, based on these thermodynamic 

calculations and the observed decrease in reaction rates at elevated temperatures, it is clear that 

the reverse reaction is competing with the forward. 

 The ability of ceria to produce consistent amounts of hydrogen repetitively is vital for 

large scale operations. Ideally, it would remain chemically active for thousands or even millions 

of cycles. Because we are constrained by relatively slow heating and cooling times it is not 

feasible to cycle the ceria thousands of times in our current configuration, but we have monitored 

changes in the samples equilibrium H2 and O2 productivity over 30 redox cycles and do not 

observe a noticeable decline in performance.  The total H2 and O2 produced as a function or 

redox cycles is shown in Figure 8-4. There is a large amount of variability, especially in the H2 

production, which is mainly caused by experimental variation and poor signal to noise. Also, 

each of the data points shown are for experiments that were conducted under varying conditions 

(i.e. H2O mole fraction and oxidation temperature). However, there is not a systematic trend that 

would indicate sample degradation due to a loss of surface area or other chemical 

transformations. These results are different than those observed by Haile et.al., who observed a 

decrease in equilibrium H2 and O2 production for the first 100 cycles using Sm-doped ceria 

powders. The differences may lie in the morphological differences between the samples. The 

ceria used in this study was a web-like support with 5 to 10 µm thick threads about 100 µm long 

(see Supplemental Figure 8-8). Therefore, there is less active surface area available to sinter than 

powder materials, resulting in more stable H2 production. Ideally, the ratio of H2 to O2 produced 

for a given redox cycle would be 2:1, assuming that water is decomposed stoichiometrically. We 

observe slightly more O2 than would be expected for a stoichiometric reaction (280.9 ± 45.8 
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µmoles H2/g vs. 185.4 ± 38.9 µmoles O2/g), which is attributed to small air leaks within the 

reactor or O2 impurities within the reactant gases. 

 

Figure 8-4: Total H2 and O2 generated over the course of 30 redox cycles. Experimental 
conditions range from 700 to 1200 oC, and 0.04 to 0.32 mole fraction H2O. 

 

8.4.2 Kinetic Investigation 
 

 Previous investigations of ceria oxidation for high-temperature gas splitting processes 

have suggested that reaction rates are not limited by diffusion, but this has largely been based on 

circumstantial evidence. Calculated characteristic diffusion times were sufficiently fast compared 

to measured reaction rates that diffusion was ruled out as a rate limiting mechanism [18]. For this 

study, a rigorous kinetic analysis has been employed to determine the governing rate limiting 

mechanisms. Specifically, measured differential rate data has been compared to various 
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functional forms of known solid state kinetic models using master plot methods [19], which have 

been used extensively in solid state thermal analysis [20-22]. The advantage of this analysis is 

that the data is capable of being normalized in such a way that it is only dependent on the 

governing kinetic model and not other kinetic variables. Therefore, individual sets of differential 

rate data can be compared to known kinetic models to determine those that are characteristic of 

measured data without any knowledge of kinetic parameters. The kinetic model, f(α), is a 

function which is capable of describing the mechanism of a solid state reaction, and is 

incorporated into the differential form of a generic Arrhenius rate expression, as shown below 

 

𝑑𝛼
𝑑𝑡

= 𝑘𝑓(𝛼)                                                                                                                                             𝟖 − 𝟓) 

 

where dα/dt is the measured differential rate data, k is the kinetic rate constant and α is the 

reacted fraction at time t. For isothermal experiments, this equation can be simplified to show 

that 

 

𝑑𝛼 𝑑𝑡⁄
(𝑑𝛼 𝑑𝑡⁄ )𝛼=0.5

=  
𝑓(𝛼)

𝑓(𝛼)𝛼=0.5
                                                                                                                𝟖 − 𝟔) 

 

where the left and right hand sides are the normalized rate data and kinetic models, respectively. 

Therefore, if the normalized rate data agrees well with a given kinetic model, a plot of 

(𝑑𝛼 𝑑𝑡⁄ ) (𝑑𝛼 𝑑𝑡⁄ )𝛼=0.5⁄ verses α and 𝑓(𝛼) 𝑓(𝛼)𝛼=0.5⁄  verses α should be equivalent. The 

fractional conversion, α, is defined as  
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𝛼 =
𝑇𝑜𝑡𝑎𝑙 𝐻2(𝑡)
𝑇𝑜𝑡𝑎𝑙 𝐻2

                                                                                                                                    𝟖 − 𝟕) 

 

 The normalized rate data from have been compared to several kinetic models which are 

described in Table 8-1. Plots of the data from 700 to 1200 oC and an H2O mole fraction of 0.16 

compared to these models are shown in Figure 8-5.  

 

Table 8-1: Solid state reaction models and corresponding differential forms, f(α) 

 

The data agrees well with a first order reaction model at 700 oC, but transitions to a second order 

model at higher temperatures. For α<0.5 and temperatures from 700 to 900 oC, the data agrees 

well with a first order reaction mechanism, but  larger conversions above 700 oC, the reaction 

transitions to a second order model. From 1000-1200 oC, the normalized rate data agrees best 

with a second order model for all conversions.  

Model Symbol f(α)
Reaction Order Fn

Nucleation and Growth 
(Johnson-Mehl-Avrami equation)

An

Phase Boundary Controlled 
Reaction

R2

Phase Boundary Controlled 
Reaction

R3

One Dimensional Diffusion D1

Two Dimensional Diffusion D2

Three Dimensional Diffusion D3
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Figure 8-5: Normalized rate data compared to various solid state reaction models. a) 700 oC, b) 
800 oC, c) 900 oC, d) 1000 oC, e) 1100 oC and f) 1200 oC. H2O mole fraction = 0.16. (−− F1), 
(____ F2), (− ∙ −A2), (∙∙∙ D1), (∆16% H2O) 

 

The transition from a first to second order reaction model is likely due to the contribution of the 

reverse reaction to the observed rates, which was shown to be thermodynamically more 
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favorable than the forward reaction above 900 oC (see Figure 8-3). It is also clear that the 

observed reaction rates are not limited by nucleation and growth or diffusion mechanisms, and 

agrees well with Haile et.al.’s observations that the characteristic diffusion time is much less 

than observed oxidation rates [18]. The initial rise in the normalized rate data for low 

conversions is attributed to a delay in the time that H2 is produced to the time it is sampled in the 

mass spectrometer and the time required for steam concentrations to equilibrate. 

 With knowledge of the appropriate reaction model, the activation energy can be 

calculated for all conversions where the mechanism is valid. The reaction rate was assumed to 

have Arrhenius dependence according to the equation shown below, 

 

𝑟𝑎𝑡𝑒𝐻2 =  
𝑑𝛼
𝑑𝑡

= [𝐻2𝑂]𝑛𝑘𝑜 exp �−
Ea
RT
� (1 − α), 0.2 < 𝛼 < 0.5                                     𝟖 − 𝟖) 

 

where [H2O] is the mole fraction of steam, n is the steam reaction order, ko is the pre-exponential 

factor, Ea is the activation energy, R is the ideal gas constant, and T is the absolute temperature. 

The activation energy can be obtained by taking the natural logarithm of both sides of the 

Arrhenius equation and determining the slope (–Ea/R) of ln 𝑑𝛼
𝑑𝑡

(1 − 𝛼)�  verses 1/𝑇, as illustrated 

below. 

 

ln
𝑑𝛼
𝑑𝑡

(1 − 𝛼)� = 𝑛 ln[𝐻2𝑂] − �
𝐸𝑎
𝑅
� �

1
𝑇
�                                                                                          𝟖 − 𝟗) 

 

If the correct reaction mechanism, f(α), is applied, then ln 𝑑𝛼
𝑑𝑡

(1− 𝛼)�  for all α’s of a given 

experimental data set should be equal [21]. Inappropriate mechanisms would result in randomly 
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scattered data. Calculation of the apparent Ea in this manner is more accurate than a simple peak 

rate analysis because a larger spectrum of the fractional conversion is included. Additionally, the 

reaction model is incorporated into the calculation, whereas a peak rate analysis is generally 

calculated independently of the fractional conversion. Arrhenius plots from 0.2<α<0.5 are shown 

in Figures 8-6a-d for all H2O mole fractions investigated.  

 

Figure 8-6: Arrhenius plots between 700 and 900 oC for H2O mole fractions of a) 0.04 , b) 0.08, 
c) 0.16, d) 0.32. The apparent activation energy, Ea = 35.5 ± 13.3 kJ/mol. 

 

The apparent Ea between 700 and 900 oC was determined to be 35.5 ± 13.3 kJ/mol. Between 

these temperatures, a linear dependence was observed between ln 𝑑𝛼
𝑑𝑡

(1 − 𝛼)�  and 1/𝑇, as 

expected for Arrhenius type behavior, but for greater temperatures the rates began to decrease 

due to contributions from the reverse reaction. The large degree in variability arises from the 
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inherent signal to noise of the mass spectrometer, the large number of data points included, and 

experimental variability. Haile et.al. calculated a larger activation energy of 50 kJ/mol for H2O 

splitting on chemically reduced Sm-doped ceria between 400 and 700 oC. However, this is not 

surprising because the role of dopants, like samarium, is to induce more oxygen vacancies at 

lower temperatures than un-doped ceria. As a result, doped ceria is thermodynamically more 

stable with higher oxygen vacancy concentrations than undoped, resulting in a larger energy 

barrier that needs to be overcome for re-oxidation. The H2O reaction order, n, was calculated by 

determining the slope of ln 𝑑𝛼
𝑑𝑡

(1 − 𝛼)�  verses ln[𝐻2𝑂], from 0.2<α<0.5. Τhis was observed to 

be 0.17 ± 0.03, indicating a weak dependence of water concentration on the observed reaction 

rates.  

 We have coupled the calculated kinetic parameters Ea, n and f(α), which are summarized 

in Table 8-2, with the Arrhenius expression shown in equation 8-8 to compare this kinetic model 

to the experimentally observed reaction rates. The pre-exponential factor, ko, was determined 

empirically to be 1.0.  

Table 8-2: Summary of calculated kinetic parameters. 

 

The integrated form of the rate equation with corresponding experimental data sets is shown in 

Figure 8-7a-c for an H2O mole fraction of 0.16. As seen in Figure 8-7a, the data and kinetic 

model agree well over all conversions at 700 oC. As the temperature increases to 800 and 900 oC, 

f(α) (1-α)

Ea (kJ/mol) 35.5 13.3

ko 1.0

n 0.17 0.03
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however, the fits become progressively worse for large conversions. After conversions of 0.8 at 

800 oC, and 0.6 at 900 oC, the rates predicted by the first order reaction model are faster than the 

observed. This is due to the transition from a first order to a second order reaction model, which 

was evident from the master plot analysis discussed in Figure 8-5.  

 

Figure 8-7: Experimental data (____) and corresponding kinetic model (⋯). a) 700 oC, b) 800 oC, 
c) 900 oC, H2O mole fraction = 0.16. 

 

It is hypothesized that this transition results from a competition between the forward and reverse 

reactions. Incorporating the reverse reaction into the overall kinetic expression would be optimal, 

but is beyond the scope of this work. To do this, a separate comprehensive kinetic study of the 

reverse reaction would be required. Additionally, there would be complications incorporating 

both the forward and reverse rates into a kinetic expression for our experimental apparatus 
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because we are not operating under equilibrium conditions. Nevertheless, for a commercial or 

large scale process such as the CR5 reactor [16], reactions will likely not be carried out to 

maximum conversions because their slow rates will have a negative impact on overall fuel 

production rates. 

8.5 Conclusions 
 

 Commercially available ceria (CeO2) felts were thermally cycled up to 30 times under 

various re-oxidation conditions with minimal effects on its H2 fuel production. The onset of 

thermal decomposition was near 1200 oC, and reaches a maximum rate at 1450 oC, which is 

comparable to ferrite based water splitting cycles. Additionally, the oxidation rates were faster 

on a per mass bases than those we have observed for analogous ferrite cycles because sintering is 

abated. However, the amount of H2 produced was less than comparable ferrite cycles because the 

ceria is only capable of being reduced to a non-stoichiometric state. 

 The water oxidation reaction was not limited by diffusion, as it is in other similar thermal 

water splitting cycles [23, 24], but rather by first and second order reaction mechanisms. At low 

temperatures (700 oC) the reaction is limited by a first order reaction, but as the temperature 

increase to 1200 oC, the mechanism changes to a second order reaction. We attribute this 

transition to the increased presence of the reverse reaction, which is thermodynamically more 

favorable than the forward reaction at temperatures greater than 900 oC. The reverse reaction is 

also evidenced experimentally at temperatures greater than 1000 oC, resulting in decreasing H2 

reaction rates as a function of temperature. The maximum H2 rates were observed between 900 

and 1000 oC. 

 The activation energy was calculated between conversions of 0.2 and 0.5 and 

temperatures of 700 to 900 oC, and determined to be 35.5 ± 13.3 kJ/mol. This is similar to, but 
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lower than, the activation energy of 50 kJ/mol calculated by Haile et.al  for water oxidation of 

Sm-doped ceria. Finally, an Arrhenius kinetic expression coupled with a first order reaction 

model, (1-α), was capable of describing the temporal data well for conversions less than α=0.6. 

At 700 oC, the model fit the data for all conversions, but became progressively worse as the 

reaction order transitioned from a first to second order model at higher temperatures and 

conversions. 
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8.7 Supplemental Figures 
 

 

Supplemental Figure 8-8: SEM image of ceria felt before thermal cycling.
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CHAPTER 9 CONCLUSIONS AND FUTURE OUTLOOK 

9.1 Conclusions 
 

 Thermochemical redox cycles using metal oxides as intermediates, specifically ferrites 

and ceria, has shown to be a practical means of producing renewable H2 using concentrated solar 

energy. We have considered the use of these materials in thermochemical redox cycles from both 

a thermodynamic and kinetic perspective, and focused on the effect of different synthesis 

procedures and substrates.   

 Equilibrium calculations have shown that the thermal reduction of metal substituted 

ferrites, such as Co and Ni, occurs at lower temperatures than un-substituted Fe3O4. Both are 

expected to decompose completely by 1450 oC, while Fe3O4 does not decompose completely 

until its slag phase is expected to occur. Additionally, the decomposition temperature is directly 

related to the amount of inert gas present which acts to dilute the gas phase reaction products 

(O2). As a result, the decomposition temperature can be manipulated experimentally by diluting 

the reactants with a sweep gas, or operating under vacuum. Also, the reduction temperature 

decreases as the amount of cobalt in CoxFe3-xO4 is increased. The maximum amount of hydrogen 

is expected to be produced using CoFe2O4 reduced at temperatures greater than 1450 oC, and 

oxidized at temperatures less than 1100 oC. Below 1450 oC, ferrites with higher cobalt 

concentrations are expected to produce more H2. Ceria is expected to decompose at higher 

temperatures than cobalt ferrites, unless doped with metals such as Sm or Zr. Additionally, 

complete reduction to Ce2O3 is not achievable until very high temperatures (≈ 2000 oC), resulting 

in reduction to a non-stoichiometric state that has less potential for H2 production than the 

complete decomposition of metal substituted ferrites. 
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 ALD chemistry that combined ferrocene and oxygen as precursors was used to deposit 

ultrathin amorphous iron oxide layers on zirconia nanoparticles in a fluidized bed reactor. Self-

limiting chemistry, characteristic of ALD, was observed via in situ mass spectrometry and ICP-

AES studies. HRTEM images were used to show the conformal and uniform nature of the films 

on individual nanoparticles. XRD and XPS analyses established that essentially all of the iron 

oxide that was deposited was amorphous and in the +3 oxidation state. After heat treatment at 

850 oC, it was shown that the films could be crystallized to form α-Fe2O3, even on the high 

radius of curvature substrates used here. 

 Conformal films of maghemite (γ-Fe2O3) and spinel cobalt oxides (CoxFe3-xO4) were 

deposited on porous m-ZrO2 supports by ALD using ferrocene and cobaltocene as the iron and 

cobalt sources and O2 as the oxidant. These materials are shown to be highly active in a chemical 

looping process to split water for the production of H2. ALD Fe2O3 samples reduced in a 

CO/H2/He mixture without the presence of an oxidant rapidly deactivated due to the formation of 

metallic Fe, likely resulting in growth and sintering. However, samples that were reduced with 

the addition of CO2 exhibited remarkably better behavior. In situ XRD results indicated that 

ALD samples of Fe2O3 were reduced to Fe2+, while Co0.85Fe2.5O4 was reduced to a Co/Fe alloy. 

Also, Fe2O3/ZrO2 powders reduced in the same manner reduced to Fe2+ for short times, but for 

longer times, metallic Fe was observed. ALD Fe2O3 samples reduced in this manner still 

exhibited signs of deactivation due to a loss of active iron resulting from its incorporation into 

the ZrO2 support. Peak rates decreased slightly, but H2 yields decreased by about 50% after 7 

cycles. Cobalt ferrites are advantages compared to Fe2O3 samples for several reasons. When 

cobalt was substituted for iron, the material was reduced to metallic Co and Fe, rather than Fe2+, 

resulting in much greater H2 yields (about 4x). Additionally, there were no signs of deactivation. 
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The H2 reaction rates and yields were nearly identical for 7 redox cycles. When physically mixed 

Fe2O3/ZrO2 powders were cycled in the same manner as the ALD materials, reaction rates 

became progressively slower as they were cycled due to sintering and grain growth.  

 These results suggest that thin films of cobalt ferrites perform remarkably better than 

their iron oxide analogs and iron oxide powders at producing repeatable and large amounts of 

hydrogen via chemical looping processes. Additionally, they provide motivation for studying the 

efficacy of using these materials in other analogous gas-splitting cycles, such as thermal redox 

cycles to produce H2 or CO via H2O and CO2 splitting. Further experimental investigation of the 

mechanism of material sintering and reduction/oxidation chemical kinetics must be performed to 

understand why these materials are superior to other analogous materials, but nevertheless, the 

impetus for future work is provided.  

 The efficacy of using CoFe2O4 deposited on Al2O3 substrates to split H2O was studied 

experimentally and in conjunction with thermodynamic modeling. We observed very low decomposition 

temperatures (200 oC lower than CoFe2O4) due to a reaction between the ferrite and Al2O3, resulting in 

FeAl2O4. This behavior has been corroborated with thermodynamic modeling. Although the reaction of 

FeAl2O4 with H2O is not as favorable as that of FeO, it is shown that under non-equilibrium conditions it 

is capable of splitting water to produced H2 at 1000 oC. Significant quantities of H2 are generated at 

reduction temperatures of only 1200 oC, whereas little or no H2 was generated using CoFe2O4 until 1400 

oC. Additionally, CoFe2O4/Al2O3 is capable of being cycled at 1200 oC reduction/1000 oC oxidation with 

no obvious changes in H2 conversion. These results certainly warrant further exploration of this cycle and 

provide compelling evidence that ferrites may be cycled with Al2O3 to produce H2 at much lower 

temperatures than traditional ferrite redox cycles. 

 Cobalt ferrite (Co0.9Fe2.1O4) and iron oxide (Fe3O4) thin films were both successfully 

utilized in a two step thermochemical water splitting cycle to produce H2. H2 conversions of both 
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materials were comparable and increased as oxidation temperature was increased. This was 

surprising considering the thermodynamically predicted extent of reduction is expected to be 

greater for cobalt ferrite under these reduction conditions (1450 oC). The oxidation rates 

exhibited Arrhenius type behavior from 900 to 1100 oC, but H2 was capable of being generated 

even at temperatures as high as 1400 oC. This is due to the occurrence of both oxidation and 

reduction reactions occuring, and results in simultaneous production of H2 and O2 for an 

indefinite amount of time. The temperature at which this reaction occurs (T > 1250 oC) is much 

less than that required for water thermolysis. 

 Master plot analysis was utilized to compare the experimental data to various functional 

forms representative of reaction mechanisms, and it was determined that there are two distinct 

reaction limited regimes. Initially, the reaction is limited by a second order reaction mechanism, 

and the activation energy and H2O reaction order during this regime were determined to be 

119.76 ± 8.81 kJ/mole and 0.70 ± 0.32, respectively. Following this mechanism, the reaction was 

limited by diffusion, and agreed well with the parabolic rate law.  This was accompanied by an 

increase in the activation energy, which was determined to be 191 ± 19.8 kJ/mol. This activation 

energy is higher than all other published reports of Fe or FeO oxidation, or Fe diffusion through 

magnetite. As a result, we believe that the activation energy for Fe diffusion through cobalt 

ferrite is higher than magnetite, resulting in the observed slower reaction rates. By combining 

both reaction mechanisms into a single rate expression, we were able to derive a global rate 

expression capable of characterizing the temporal behavior of the oxidation of cobalt ferrite for 

temperatures between 900 and 1100 oC, and water concentrations from 20% to 40%.  

 Commercially available ceria (CeO2) felts were thermally cycled up to 30 times under 

various re-oxidation conditions with minimal effects on its H2 fuel production. The onset of 
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thermal decomposition was near 1200 oC, and reaches a maximum rate at 1450 oC, which is 

comparable to ferrite based water splitting cycles. Additionally, the oxidation rates were faster 

on a per mass bases than those we have observed for analogous ferrite cycles because sintering is 

abated. However, the amount of H2 produced was less than comparable ferrite cycles because the 

ceria is only capable of being reduced to a non-stoichiometric state. 

 The water oxidation reaction was not limited by diffusion, as it is in other similar thermal 

water splitting cycles [23, 24], but rather by first and second order reaction mechanisms. At low 

temperatures (700 oC) the reaction is limited by a first order reaction, but as the temperature 

increase to 1200 oC, the mechanism changes to a second order reaction. We attribute this 

transition to the increased presence of the reverse reaction, which is thermodynamically more 

favorable than the forward reaction at temperatures greater than 900 oC. The reverse reaction is 

also evidenced experimentally at temperature greater than 1000 oC, resulting in decreasing H2 

reaction rates as a function of temperature. The maximum H2 rates were observed between 900 

and 1000 oC. 

 The activation energy was calculated between conversions of 0.2 and 0.5 and 

temperatures of 700 to 900 oC, and determined to be 35.5 ± 13.3 kJ/mol. This is similar to, but 

lower than, the activation energy of 50 kJ/mol calculated by Haile et.al  for water oxidation of 

Sm-doped ceria. Finally, an Arrhenius kinetic expression coupled with a first order reaction 

model, (1-α), was capable of describing the temporal data well for conversions less than α=0.6. 

At 700 oC, the model fit the data for all conversions, but became progressively worse as the 

reaction order transitioned from a first to second order model at higher temperatures and 

conversions. 
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9.2 Outlook 
 

 Ultimately, these materials will be used in a large scale process to produce solar H2, and 

their ability to efficiently do so will be scrupulously considered. The efficiency of the process, in 

terms of dollars per kilogram of H2, is dependent upon a given materials production cost, its 

ability to be cycled thousands or even millions of times repeatedly, the rate of its H2 and O2 

production, its equilibrium H2 and O2 production, and the temperature that it operates. Based on 

these factors, an argument could be made that supports further investigation of all of the 

materials considered in this thesis. Each material was capable of being cycled repeatedly, and 

was successfully shown to produce H2 at reasonable temperatures. Following is an analysis of 

considered each materials advantages, disadvantages, and approaches which may positively 

impact their performance, based on the results of this work. 

9.2.1 Ferrites 

 

 The main advantage of ferrites, specifically metal substituted ferrites, lies in their ability 

to produce large amounts of H2 at equilibrium. The effect of substitution is well understood, 

based on thermodynamic calculations and experimental evidence, and improvements in this area 

are not expected. However, the kinetics of H2 and O2 production were limited by diffusion, 

suggesting that improved kinetics could result by improvements in material design. This was 

attempted experimentally, by depositing thin films onto inert substrates, but because of sintering 

the observed effect was negligible. However, when we proceeded to chemically reduce the 

ferrites via syngas reduction, the integrity of the films remained and reaction rates were 

remarkably faster. This suggests that depositing thin films of ferrites onto substrates that are 

more stable than the m-ZrO2 support that we investigated would limit sintering and improve 
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reaction rates. Therefore, it may be beneficial to observe the effect of depositing ferrites onto 

felts, similar to the ceria felt discussed in Chapter 8. Because of their thin, woven, rod-like 

structure they may maintain their integrity better and suppress sintering. It would be worth 

looking not only at the effect of ZrO2 felts, but also CeO2 felts. Based on the microsopy results 

from Chapter 8, we know that sintering is suppressed. From the literature we also know that the 

ferrite reacts with ceria, but still remains active at producing H2. If excess ferrite were deposited 

onto the ceria, this may result in a ferrite/ceria hybrid in which both species contribute to H2 

production. The advantage of this would be twofold. First, the support would be utilized in the 

cycle, whereas with ZrO2 it is an energy sink. Secondly, the high surface area of the ferrite would 

be maintained, resulting in improved reaction rates. 

9.2.2 Ceria 

 

 Unlike the ferrites, the advantage of ceria lies in its ability to be quickly cycled. Sintering 

was not an issue like it was with the ferrite-based cycle, and as a result the kinetics were faster on 

a per mass basis. However, its main disadvantage was a result of thermodynamic limitations, 

rather than material limitations, which negatively affected the amount of equilibrium H2 and O2 

produced. Therefore, investigating the role of dopants to increase the degree of reduction at 

moderate temperatures will prove to be important. An investigation of Sm and Zr doped ceria, as 

well as various transition metal oxides, has already been performed by other researchers. 

However, there are several other dopants which may result in better performance, and have 

already been investigated by the solid oxide fuel cell community for other applications. 

Therefore, a thorough investigation of the literature would be beneficial, and may provide insight 

other dopants whose effect on reduction has already been well characterized.  The economic 
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feasibility of this cycle is dependent upon improving the thermodynamics of the reduction 

reaction, either by decreasing the temperature requirements sufficiently or increasing the amount 

of equilibrium H2 it is capable of generating. 

9.2.3 Hercynite 

 

 The hercynite redox cycle’s main advantage is its ability to be cycled at upper operating 

temperatures that are 250 oC lower than ferrite or ceria-based cycles. This is important because 

the biggest capital cost of large scale solar thermochemical H2 production are heliostats, which 

concentrate solar energy to achieve the high temperatures which are required. A cycle’s 

temperature requirements are directly related to the number of heliostats that are needed, and 

therefore, for lower temperatures cycles such as hercynite, less heliostats are required and capital 

costs are reduced. However, much less is known about the limitations of the hercynite cycle 

compared to the ferrite and ceria cycles. The total amount of H2 generated is comparable to 

ferrite cycles, but the kinetics and of the reaction are less understood. A comprehensive kinetic 

study, along careful morphological characterization as it is cycled, would be beneficial to 

understand the limitations associated with this reaction.  

9.3 Future Work 
 

 In addition to using these materials in a thermochemical cycle to produce H2, there are 

other similar cycles which should be explored. Feedstocks such as CO2, or CO2 in conjunction 

with H2O, also have the potential to produce useable solar-derived fuels. For example, when CO2 

is substituted for H2O in the two-step redox cycle, the end product is CO rather than H2. This can 

easily be converted into H2 via the water gas shift reaction, or used in a syngas mixture to 
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produce carbon based fuels. Also, by using CO2 and H2O at the same time, it is possible to 

generate a syngas mixture of CO and H2, without the water gas shift reaction. We have 

demonstrated the efficacy of using both ferrites and ceria felts to split CO2 to produce CO, as 

seen in Figures 9-1 and 9-2, respectively. 

 

Figure 9-1: CO2 splitting redox cycle using Co0.9Fe2.1O4 deposited on ZrO2. 

 

CO2 splitting using ferrites proceed successfully at the same conditions as water splitting with 

similar results, namely at oxidation temperatures between 900 and 1300 oC, and thermal 
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reduction temperatures of 1450 oC. Ceria CO2 splitting experiments were also successful for up 

to 30 redox cycles under similar conditions to H2O splitting. Results were similar to H2O 

splitting, except for the dependence on CO2 concentration, as shown in Figure 9-2. CO rates 

were highly dependent upon CO2 concentration, whereas H2 rates were only weakly dependent 

on H2O concentrations under the conditions explored.  

 

Figure 9-2: CO rates as a function of CO2 mole fraction measured at 75 Torr and 800 oC, with a 
total gas flow of 500 sccm (CO2 + He). 

 

 Additionally, the kinetics of decomposition of ferrites and ceria has largely remained 

uninvestigated. However, knowledge of this redox step will prove to be every bit as crucial as the 

oxidation step, which has been considered in this thesis.  The next logical step for these materials 

is a small scale demonstration to study the feasibility of using them on-sun, in a solar reactor. 
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The design of this reactor will be dependent upon the kinetics of both the thermal decomposition 

and oxidation steps, and therefore, a thorough investigation of the decomposition reaction of 

each of the materials will prove to be essential. 
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