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ABSTRACT 

 
This dissertation explores how physical and biological processes organize the 

interaction of carbon and nutrient cycles, which underpin life on Earth. In Chapter 2, I 

establish that ecosystem nitrate accrual exhibits consistent and negative nonlinear 

correlations with organic carbon availability along a hydrologic continuum from soils, 

through fresh- water systems and coastal margins, to the open ocean. Across this 

diversity of environments, we find evidence that resource stoichiometry strongly 

influences nitrate accumulation by regulating a suite of microbial processes that couple 

dissolved organic carbon and nitrate cycling.  

In Chapter 3, I address the climate sensitivity of carbon cycling in old-growth 

tropical rainforests, which are among Earth’s most carbon-rich and productive 

ecosystems. Collectively they exchange more CO2 with the atmosphere than any other 

terrestrial biome – annually, about 16 times more C than the change in atmospheric CO2 

concentration resulting from fossil fuel use – thus small imbalances between rainforest 

carbon uptake and release can influence atmospheric CO2 concentrations. Here, I use 

meta-analysis of field data to examine the long-term climate sensitivity of rainforest CO2 

exchange and storage. I found that net primary productivity and biomass carbon peaks in 

warm, lowland rainforests peaks at the highest rainfall levels, contrasting with a 

saturating response expected from previous studies in montanae forests.  The pattern 

results from interactions between climatic, edaphic, geographic and biotic controls over 
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carbon accumulations.  

In Chapter 4, I found that seasonal water availability plays an important role in 

structuring the tropical nitrogen cycle. Counter to current paradigms that expect tropical 

lowland rainforests to freely leach bioavailable N, I discovered very low export of 

bioavailable N from an old-growth tropical watershed. Nitrate loss was closely tied to 

organic carbon availability for heterotrophic microbes. PON export constituted the largest 

hydrologic loss pathway for N and was regulated by episodes of intense rainfall that 

caused surges of sediment yield from erosion. The magnitude of PON loss is larger than 

measured N inputs, and may constrain N accumulation within the ecosystem over long 

timescales.  
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2.1 NO3

- concentration as a function of DOC or POC concentration among 
earth’s major ecosystems. Databases were gathered from ecosystems in 
tropical, temperate, boreal and arctic regions, and include data sets 
collected on local, watershed, regional, national and global scales. 
Human impacted streams and rivers are waterways within the USA, 
which are predominantly influenced by agricultural activities. The 
separation of the pattern in Seas and Oceans reflects biogeochemical 
differences in C richness among distinct ocean provinces. See Table 1 for 
statistical analyses. Axes are truncated for best observation of data.  

 
 
 
 
 
 
 
 
9 

2.2 Conceptual schematic summarizing the major findings of the paper, 
illustrating how changes in resource stoichiometry along inverse DOC-
NO3

- patterns alter microbial processes that couple the C and N cycles. 
(a) Stoichiometric shifts in organic C:NO3

- ratios underlie inverse 
DOC!NO3

- patterns, in part, by organizing elemental limitation of 
microbial anabolism. A minimal threshold ratio of around 4 represents 
the transition from C to N limitation of microbial anabolism after 
microbial carbon use efficiency is accounted for. Reduced N assimilation 
when resource stoichiometry drives C limitation may allow NO3

- to 
accumulate. (b) A trio of microbial-driven nitrogen transformations 
governs inverse DOC!NO3

- relationships by responding to discrete 
changes in resource stoichiometry. Shifts in resource ratios alter the 
availability and fate of NO3

- by differentially affecting microbial N 
assimilation, nitrification and denitrification. Heterotrophic N 
assimilation strongly reduces NO3

- concentration when the C:N ratios of 
anabolic resources equal or exceed microbial requirements. Declines in 
heterotrophic NO3

- uptake at resource C:N ratios across the N to C 
limitation transition may indirectly promote nitrification if NH4

+ 
availability is relatively higher when heterotrophs are C limited. Finally, 
the extent of NO3

- accrual may be constrained by denitrification of NO3
- 

to N2O or N2 gas when DOC:NO3
- ratios approach the catabolic 

stoichiometry of denitrification. (c) Data (n = 7,965) from the Northern 
Temperate Lakes LTER illustrate the imprint of heterotrophic N uptake, 
nitrification and denitrification on DOC!NO3

- relationships. These data 
were collected from 11 lakes that range dramatically in human-caused 
eutrophication, which exemplifies the robust dependence of the microbial 
processes described herein on discrete shifts in resource stoichiometry in 
the face of human disturbance to the C and N cycles. 
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2.3 Resource stoichiometry controls on microbial NO3- processing. (a) 
Regression of planktonic nitrate uptake on oceanic POC:NO3- ratios in 
the Atlantic (open diamonds) and Lake Superior (inverted closed 
triangles) [low rates]; Equatorial Pacific (closed squares), Southern 
Ocean (open triangles), English Channel (closed triangles), Pacific 
Upwellings (closed diamonds) [medium rates]; Scheldt Estuary (open 
circles) and Rio de Ferrol (closed circles) [high rates]. See 
Supplementary Discussion for details on data assembly and Table 2 for 
statistical analysis. (b) Regression of in-stream nitrification and 
denitrification on DOC:NO3- ratios. Inset panel simply shows the low 
values more clearly. 
 

 
 
 
 
 
 
 
 
 
 
14 

2.4 Relationships between heterotrophic production and autotrophic activity 
on POC:N-NO3

- resource ratios. Heterotrophic bacterial production, 
measured as thymidine incorporation (a) and leucine incorporation (b), 
shows nonlinear increases at breakpoints that match NO3

- uptake 
thresholds observed in Figure 2 and SI Figure 3. Autotrophic activity, 
measured as chlorophyll a concentration (c) and primary production (d) 
generally shows no relation with POC:N-NO3

- resource ratios, with the 
exception of the Equatorial Pacific (d). Markers are the same as found in 
Figure 3. See Table 3 for empirical model results for best-fit regression 
analysis. 
 

 
 
 
 
 
 
 
 
 
 
16 

2.5 Relationships between 15N-NO3
- uptake and POC:N-NO3

- resource ratios 
for three ocean provinces. This plot is duplicated from select data 
observed in Figure 4 for direct comparison of N uptake on resource ratios 
(shown here) and heterotrophic and autotrophic activity in resource ratios 
(Figure 4). A gradient of nutrient poor to nutrient rich conditions 
generally extends from the North Atlantic, Equatorial Pacific and 
Southern Ocean. 
 

 
 
 
 
 
 
17 

2.6 Relationships between NO3
- concentration and resource ratios for select 

(A) ocean and (C) stream locations, where NH4
+ is included in the supply 

quotient in addition to NO3
-.  Panels B and D show organically bound 

nitrogen abundance in oceans (B) and streams (D) as a function of 
organic carbon concentration. (A, C) Negative trends remain practically 
unaltered relative to patterns shown in Figure 1. Oceans: closed circles = 
CARIACO basin, closed triangles = Southern Ocean, closed diamonds = 
Equatorial Pacific, closed squares = North Atlantic. Streams: open 
triangles = Arctic (Partners), open squares = continental USA (EPA 
EMAP), open diamonds = Puerto Rico (Luquillo LTER), inverted 
triangles = Brazil (MBL Brazil), open circles = Northeast USA (Plum 
Island LTER). See Table 2.4 for system-specific correlation coefficient 
and statistical significance. 
 

 
 
 
 
 
 
 
 
 
 
 
 
19 
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2.7 Plots of oceanic 15N-NO3
- uptake (A, B), in-stream denitrification (C, D) 

and in-stream nitrification (E, F) as a function of NO3
- and DOC 

(streams) or POC (oceans) concentration. Site markers: Atlantic (open 
diamonds), Lake Superior (inverted closed triangles), Equatorial Pacific 
(closed squares), Southern Ocean (open triangles), English Channel 
(closed hexagons), Pacific Upwellings (pentagons), Scheldt Estuary 
(inverted closed triangles) and Rio de Ferrol (open hexagons). See SI 
Table 5 for regression analysis and statistical significance. See SI 
Discussion for details on data assembly and analysis. 
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2.8 Plots of N-NO3 concentration as a function of DOC concentration for 
select system-specific scenarios for (A) soils58, (B) streams62, (C) human 
impacted streams78, (D) lakes81, (E) bays81 and (F) oceans82.  Lines 
represent the organic carbon:N-NO3 atomic molar ratio. See Table 6 for 
regression analysis. See SI Discussion for details on data assembly and 
analysis. 
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3.3 ANPP residual variation from Fig. 1A categorized by soil taxonomy. 
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3.4 Observed litterfall versus biomass increment growth for tropical 
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3.5 Comparison of forest mortality rates between SE Asian and 
Mesoamerican rainforests. One-way ANOVA, p = 0.034 
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3.6 Predicted versus observed ANPP based on the estimation of ANPP 
components. (A) ANPP with biomass increment estimated, (B) ANPP 
with litterfall estimated, and (C) ANPP estimated from forest AGB using 
the equation in Figure 1D. Statistical results shown in Table 3.2.  
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3.7 Figure 3.7 | Predicted versus observed ANPP based on the empirical 
modeling of ANPP using mean annual rainfall. Statistical results shown 
in Table 3.2.   
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4.7 Photographic comparison of the geomorphological changes to Quebrada 
Mariposa at the (A) beginning and (B) end of the wet season. (B) The 
white line highlights the gauging station for visual purposes. (Photo 
Credit: P. Taylor) 
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4.8 Simplified input – output budget of the watershed N cycle with emphasis 
on N stocks and key internal fluxes (gross and net rates, respectively) in 
the top 10 cm of soil. Fixation from Reed et al. 2008, soil N from 
Cleveland et al. 2003, gross N fluxes from Wieder et al. In prep, N2O 
fluxes from Wieder et al. 2011, net nitrogen processing, N deposition and 
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CHAPTER 1: OVERVIEW 

1.1. Coupled biogeochemical cycles 

Since the Holocene, civilization has been very successful and rapidly expanded to 

nearly all areas of the globe. Unprecedented and dramatic changes to Earth’s elemental 

cycles have left virtually no ecosystems untouched by human impact. Much of the 

modern economy relies on pervasive alterations to the carbon, nitrogen, and phosphorus 

cycles – elements that are at the foundation of life since primordial times. The uses of 

ancient hydrocarbons for energy, as well as the synthetic creation of nitrogen and mining 

of phosphorus for fertilizer, are salient examples of changes to these biogeochemical 

cycles, which have been key to our advance since the Industrial revolution. As we enter a 

new epoch – the Anthropocene – where human activities are the prime drivers of 

environmental change, there are growing concerns that we could exceed planetary 

boundaries that ensure a sustainable future. For example, fossil fuel combustion along 

with land use has driven an increase in atmospheric CO2 and caused global warming, 

which may harm people and ecosystems, even in remote locations. Defining where these 

boundaries lie and how close we are to them requires a better understanding of the Earth 

system and how sensitive it is to environmental changes.  

This task requires a multidisciplinary approach, including my field of 

biogeochemistry. A biogeochemical perspective is one that borrows from many different 

scientific fields to make sense of the interactions that characterize complex ecological 

systems. A leading principle in this field is that elemental cycles are strongly coupled 

through chemical reactions, which organisms often mediate. Organisms require specific 

elements for metabolic purposes, such that patterns of availability in a certain element are 
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frequently linked to the cycling of many others; that is, one elemental cycle cannot exist 

without many others. Physical factors, such as climate, also often regulate rates of 

biological processes, and as such provide additional constrains to coupled elemental 

cycling. These features of the world can make things complicated, but strategic 

examination of multiple elemental patterns in tandem is crucial for understanding how 

the Earth system works. This approach is what links seemingly disparate topics in my 

dissertation, which include, stoichiometric controls over the accretion of nitrate in Earth’s 

ecosystem (Chapter 2), climate and plant – soil feedbacks regulate tropical forest CO2 

exchange (Chapter 4) and the responses of nitrogen loss from a watershed to hydrologic 

and biological seasonality (Chapter 4).   

1.2 Accrual of nitrate in Earth’s ecosystems 

The availability of nitrogen is a key control over the productivity, diversity, 

composition and functioning of many ecosystems across the globe (Vitousek et al. 1997). 

Human alterations of the nitrogen cycle mainly occur through agricultural intensification 

(i.e. creation and use of synthetic fertilizers) and industrial development (i.e. fossil fuel 

combustion; Davidson et al. 2012). Though many regions of the world could use more 

nitrogen to boost crop yields (Vitousek et al. 2009), the effects of too much reactive N in 

circulation in the developed world are mostly detrimental to both human and ecosystem 

welfare. A major player is nitrate, a particularly bioavailable form of nitrogen, when in 

overabundance, causes economic and aesthetic deterioration via eutrophication, 

promoting invasive of alien species, reducing biodiversity, among other impacts 

(Vitousek et al. 1997). 
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Finding solutions requires an understanding of the control factors that regulate 

and remove reactive N from the environment. Before I started to pursue my Ph.D., I’d 

discovered a negative, nonlinear relationship between organic carbon and nitrate in 

Appalachian ecosystems, which aligned with patterns previously observed in the 

Northeast USA and Colorado’s Front Range mountains. Curious about it’s global 

distribution, I found the same relationship in all of Earth’s major ecosystems early in my 

Ph.D. pursuit. In Chapter 2 I applied principles of ecological stoichiometry to explain 

this global pattern. Notably, even in ecosystems substantially altered by inputs of 

fertilizer, stoichiometric controls over unwanted nitrate accumulation are robust, 

suggesting potential applications for reactive N solutions.  

1.3 Climatic and biogeochemical drivers of tropical carbon cycling 

Tropical rainforests are among Earth’s most carbon (Malhi et al. 2004, 2006) and 

species rich (Gentry 1988) ecosystems. The twentieth century saw global fossil fuel use 

and land use change increase atmospheric CO2 by 25% and ambient air temperatures by 

0.6 oC (IPCC 2001). Along with these atmospheric changes have come both sharp (i.e. 

droughts) and slower shifts in rainfall, with large regions in the Amazon showing 

declining trends (Phillips et al. 2009, 2010; Lewis et al. 2011). At large spatial scales, 

tropical rainforests affect climate and vice versa, however rainforest sensitivity to 

changes in climate is uncertain. 

With the help of meta-analysis, in Chapter 3 I examined how CO2 exchange in 

old growth tropical rainforests changes along gradients of mean annual temperature and 

rainfall. In the past, limited data availability restricted empirical studies to only portions 

of the full climate spectrum present in the tropics. Fortunately, there has been an increase 
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in tropical C flux research in the past two decades, which has afforded new opportunities 

to reexamine current conceptions of climate controls on rainforest C cycling. In contrast 

with some syntheses, I found that the wettest of lowland tropical rainforests are the most 

productive and carbon rich terrestrial ecosystems. In chapter 3 I explore how this is 

driven by climate influences on plant – soil nutrient feedbacks that accelerate tropical 

CO2 exchange. 

1.4 Nitrogen cycling in wet lowland tropical rainforests 

It is commonly thought that old-growth primary rainforests cycle nitrogen (N) in 

excess of biologically demand. N abundance is observed in a variety of old-growth 

tropical rainforests, as suggested by high foliar N to phosphorus ratios (Townsend et al. 

2007), an abundance of N fixation (Cleveland et al. 1999), elevated isotopic signals of 

15N (Houlton et al. 2006), and large losses of bioavailable N to gaseous (Davidson et al. 

2000) and hydrologic (Brookshire et al. 2012) pathways. However, in a rainforest on the 

Osa Peninsula, Costa Rica, such telltale signs of “loose” N cycling are largely not present 

(Townsend et al. 2007, Wieder et al. 2011, In prep). In fact, the plant – soil – microbial 

systems appear to very efficiently use and recycle N.   

In Chapter 4 I examine the magnitude and controls over hydrologic nitrogen loss 

from a wet lowland tropical rainforest. Unlikely predictions based on classical notions of 

tropical N cycling, I found ultra-low concentrations and export of bioavailable N and 

dominance of organic forms in dissolved N export. High rates of rainfall played a large 

role in driving the erosional export of sediment, which carried with it particulate organic 

N (PON). In this chapter I explore hydrology and biological controls over N cycling, and 
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postulate that erosional loss of PON might play a role in constraining ecosystem N 

balance over longer time scales.  
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CHAPTER 2: STOICHIOMETRIC CONTROL OF ORGANIC CARBON – 
NITRATE RELATIONSHIPS FROM SOILS TO THE SEA  
 
Published: Taylor P.G. & Townsend A.R. (2010) Stoichiometric control of organic 
carbon-nitrate relationships from soils to the sea. Nature, 464, 1178-1181 
 
2.1 Abstract 

Human creation of reactive nitrogen (Nr) has risen an order of magnitude since 

the dawn of the Industrial Revolution (Galloway et al. 2008). This dramatic 

reorganization of a global biogeochemical cycle has brought substantial benefits (Smil 

1999), but increasingly causes detrimental outcomes for both people and ecosystems 

(Vitousek et al. 1997) .  One such problem is the accumulation of nitrate (NO3
-) in both 

freshwater and coastal marine ecosystems. Here we establish that ecosystem NO3
- accrual 

exhibits consistent and negative nonlinear correlations with organic carbon (C) 

availability along a hydrologic continuum from soils, through freshwaters and coastal 

margins, to the open ocean.  The trend also prevails in ecosystems subject to substantial 

human alteration. Across this diversity of environments, we find evidence that resource 

stoichiometry (organic C:NO3
-) strongly influences NO3

- accumulation by regulating a 

suite of microbial processes which couple DOC and NO3
-cycling. Through meta-analysis, 

we show that heterotrophic microbes maintain low NO3
- concentrations when organic 

C:NO3
- ratios match the stoichiometric demands of microbial anabolism. However, when 

resource ratios drop below the minimum C:N ratio of microbial biomass, the onset of C 

limitation appears to drive rapid NO3
-  accrual, which may then be further enhanced by 

nitrification. At low organic C:NO3
- ratios, denitrification appears to constrain the extent 

of NO3
-accretion once organic C and NO3

- availability approach the 1:1 stoichiometry of 

this catabolic process.  Collectively, these microbial processes express themselves on 
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local to global scales by restricting the threshold ratios underlying NO3
- accrual to a 

constrained stoichiometric window. Our findings indicate that ecological stoichiometry 

can help explain the fate of NO3
- across disparate environments and in the face of human 

disturbance, which has significant implications for the management of a rapidly changing 

N cycle. 

2.2. Introduction 

Nr refers to inorganic and organic forms of N that are biologically, 

photochemically and/or radiatively active, in contrast to the vast but inert atmospheric N2 

pool (Galloway et al. 2008). Absent human disturbance, relatively low Nr availability 

constrains both the structure and function of a wide variety of ecosystems (Richards 

1965). However, the rapid expansion of the global economy from the Industrial 

Revolution onward, fueled by fossil fuel combustion, creation of synthetic fertilizer, 

widespread land conversion and accelerating global trade, has quickly increased Nr in the 

environment (Galloway et al. 2008). A litany of environmental threats, including air 

pollution, eutrophication, soil acidification, losses of biodiversity and climate change 

stem from the diverse fates of newly created Nr (Vitousek et al. 1997).  Given the 

environmental and social importance of managing a changing N cycle, there is growing 

demand for conceptual and analytical models (Vitousek and Howarth 1991, Mulholland 

et al. 2008, Barnes and Raymond 2010, Arango and Tank 2008, Bohlke et al. 2009) that 

can help predict the fate of Nr across multiple environments. 

Generally, efforts to understand the sources and sinks of NO3
- in ecosystems have 

focused on the roles of resource quantity and quality.  As with any biogeochemical 

species, both kinetic and energetic controls will affect nitrate cycling, and models rooted 
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in the principles of Michaelis!Menten uptake kinetics have improved our predictive 

ability of NO3
- dynamics in streams Mulholland et al. 2008, Barnes and Raymond 2010, 

Arango and Tank 2008, Bohlke et al. 2009). However, one challenge to such efforts 

arises from the fact that N does not cycle independently of other elements.  Instead, 

transformations of Nr in the environment are closely linked with several other major 

biogeochemical cycles, perhaps most notably that of carbon (Arango and Tank 2008, 

Bohlke et al. 2009, Hungate et al. 2003, Manzoni et al. 2010, Hill et al. 2000, Hedin et 

al. 1998, Goodale et al. 2005, Evans et al. 2006) Thus, understanding human disruptions 

to either the N or C cycle is often not possible without a multi-element perspective.  

2.3. Results and Discussion 

Here, we show that consistent and negative nonlinear relationships between NO3
- 

and dissolved or particulate organic carbon (DOC/POC, respectively) occur along a 

hydrologic continuum from soils, to streams and lakes, and on to estuaries and the open 

ocean (Fig. 2.1). Notably, the pattern remains robust even in human-disturbed streams 

and rivers (Fig. 2.1C). The consistency of the pattern across a wide range of 

environments and disturbance regimes suggests the potential for common underlying 

controls. Past studies in streams and groundwater have proposed several explanations for 

this pattern (Hill et al. 2000, Hedin et al. 1998, Goodale et al. 2005, Evans et al. 2006, 

Monteith et al. 2007) with some recent discussions focusing on increased DOC leaching 

from ecosystems recovering from acid deposition (Monteith et al. 2007). However, acid 

deposition cannot account for the widespread coherence shown in Figure 2.1, nor do 

kinetic models alone seem to offer a good explanation, given the frequently low nitrate 

values even in regions with high nitrogen loading to watersheds (Fig. 2.1C). 



! *!

!
Figure 2.1 | NO3- concentration as a function of DOC or POC concentration among 
earth’s major ecosystems. Databases were gathered from ecosystems in tropical, 
temperate, boreal and arctic regions, and include data sets collected on local, watershed, 
regional, national and global scales. Human impacted streams and rivers are waterways 
within the USA, which are predominantly influenced by agricultural activities. The 
separation of the pattern in Seas and Oceans reflects biogeochemical differences in C 
richness among distinct ocean provinces. See Table 2.1 for statistical analyses. Axes are 
truncated for best observation of data. Appendix A lists specific data sources.  
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Table 2.1 | Analysis of global organic C – NO3
- trends 

*Human impacted streams and rivers include systems in agricultural and urban 
landscapes.  
** Databases were assembled that contained paired NO3- and DOC or POC observations. 
For Lakes/Wetlands and Ocean Margins, exponential models were fit to data using POC 
and DOC observations together (i.e. Lakes/Wetlands and Ocean Margins) and DOC only. 
(We separated DOC and POC observations for reasons described in the text.  
*** An exponential model with three estimated parameters was chosen based on root 
mean-squared error comparisons with one and two parameter exponential models. 
Parameters a, b and k were optimized using the root mea-squared error criterion (versus 
regression coefficient) with a least squares curve-fitting procedure. All exponential 
models significant at p < 0.001.  
**** We used the second derivative of the exponential model to find the x,y coordinate at 
the inflection point of each exponential model to determine the molar C:N ratio for 
organic C:NO3- in each environment. The organic C:NO3- is reported molar whereas x,y 
coordinates are mass based (mg/L) for visual comparison with Fig. 2.1. 
!

Here we develop and test a model (Figure 2.2) that describes how shifts in 

elemental limitation may drive organic C–NO3
- patterns by governing the relative rates of 

key microbial processes that couple dissolved C and N cycling. All organisms require 

energy and nutritional resources in characteristic stoichiometric ratios3, which couples the 

global N cycle to other biogeochemical cycles in predictable ways (Smil 1999, Sarmiento 

and Gruber 2006, McGroddy et al. 2004, Cleveleand et al. 2007). The point at which 

growth limitation shifts from one element to another due to inadequate supply of an 

energy or nutritional resource is known as the threshold elemental ratio (Sterner and Elser 



! ""!

2002, Anderson et al. 2005, Manzoni et al. 2010). Critical thresholds can underlie 

ecological processes when organisms that encounter nutritionally imbalanced resources 

maintain stoichiometric homeostasis by recycling or avoiding the element in excess 

(Sterner and Elser 2002, Anderson et al. 2005). For example, critical threshold ratios are 

known to prompt phosphorus and nitrogen accrual in aquatic and soil systems, 

respectively, when resource organic carbon:nutrient ratios fall below the requisite ratios 

of biomass construction.  

!

!

!
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Figure 2.2 | Conceptual schematic summarizing the major findings of the paper, 
illustrating how changes in resource stoichiometry along inverse DOC-NO3

- patterns alter 
microbial processes that couple the C and N cycles. (a) Stoichiometric shifts in organic 
C:NO3

- ratios underlie inverse DOC!NO3
- patterns, in part, by organizing elemental 

limitation of microbial anabolism. A minimal threshold ratio of around 4 represents the 
transition from C to N limitation of microbial anabolism after microbial carbon use 
efficiency is accounted for (Supplementary Discussion). Reduced N assimilation when 
resource stoichiometry drives C limitation may allow NO3

- to accumulate. (b) A trio of 
microbial-driven nitrogen transformations governs inverse DOC!NO3

- relationships by 
responding to discrete changes in resource stoichiometry. Shifts in resource ratios alter 
the availability and fate of NO3

- by differentially affecting microbial N assimilation, 
nitrification and denitrification. Heterotrophic N assimilation strongly reduces NO3

- 
concentration when the C:N ratios of anabolic resources equal or exceed microbial 
requirements. Declines in heterotrophic NO3

- uptake at resource C:N ratios across the N 
to C limitation transition may indirectly promote nitrification if NH4

+ availability is 
relatively higher when heterotrophs are C limited. Finally, the extent of NO3

- accrual may 
be constrained by denitrification of NO3

- to N2O or N2 gas when DOC:NO3
- ratios 

approach the catabolic stoichiometry of denitrification. (c) Data (n = 7,965) from the 
Northern Temperate Lakes LTER illustrate the imprint of heterotrophic N uptake, 
nitrification and denitrification on DOC!NO3

- relationships. Up to DOC:NO3
- ratios of 

4, NO3
- concentrations remain very low because resource stoichiometry favors strong 

denitrification. When resource ratios rise above 4, nitrification and/or C limitation of 
heterotrophy generates a sharp accumulation of NO3

-. However, as DOC:NO3
- ratios rise 

into the range of anabolic demand, NO3
- depletion occurs. These data were collected 

from 11 lakes that range dramatically in human-caused eutrophication, which exemplifies 
the robust dependence of the microbial processes described herein on discrete shifts in 
resource stoichiometry in the face of human disturbance to the C and N cycles. 

!
!

C:N ratios of microbial biomass vary widely, from a low of ~3 to a high of 

~203,18,20.  In addition, critical supply ratios are higher than microbial C:N tissue 

quotients because heterotrophic microbes use some of their organic carbon resource for 

energy production and building new cellular material.  However, such bacterial growth 

efficiency (BGE) varies widely, often in response to the trophic state of the ecosystem 

(Apple et al. 2007, Jahnke et al.  1995, del Girogio et al. 1998). In oligotrophic 

conditions, with high resource C:N ratios and relatively low C lability, BGE tends to 

range between 5-20% (Apple et al. 2007, Jahnke et al.  1995, del Girogio et al. 1998). In 

contrast, BGE values in nutrient-rich systems are much higher and typically range 
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between 40-80% (Apple et al. 2007, Jahnke et al.  1995, del Girogio et al. 1998). 

Moreover, bacteria exhibit compositional plasticity can modify threshold ratios because 

biomass C:N can shift in concert with changes in resource C:N ratios (Tezuka et al. 

1990). Such capability can shift the point at which N is in excess relative to heterotrophic 

demand.   Notably for our analysis, microbial C:N ratios tend to decline as N supply 

increases relative to C (Tezuka et al. 1990).  This fact, coupled with data showing that 

BGE values reach their peak in nutrient rich conditions, suggests that the critical ratio 

determining a switch from N to C limitation of microbial anabolism – and thus the point 

at which NO3
- concentrations may rise sharply – should approach the low end of the 

microbial C:N tissue quotient range.  Hence, the flexibility inherent in both BGE and 

tissue stoichiometry likely underlies the variation in threshold ratios seen in Figure 2.3. 
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Figure 2.3 | Resource stoichiometry controls on microbial NO3- processing. (a) 
Regression of planktonic nitrate uptake on oceanic POC:NO3- ratios in the Atlantic (open 
diamonds) and Lake Superior (inverted closed triangles) [low rates]; Equatorial Pacific 
(closed squares), Southern Ocean (open triangles), English Channel (closed triangles), 
Pacific Upwellings (closed diamonds) [medium rates]; Scheldt Estuary (open circles) and 
Rio de Ferrol (closed circles) [high rates]. See Supplementary Discussion for details on 
data assembly and Table 2.2 for statistical analysis. (b) Regression of in-stream 
nitrification and denitrification on DOC:NO3- ratios. Inset panel simply shows the low 
values more clearly. 
 

Table 2.2 | Model results for data presented in Figure 2.1.  

Site Reference 
(See SI 
Notes) 

Model Parameters  

Best-fit Empirical Equation 
 X = POC for oceans and DOC for streams and rivers 
  Equation n r2 

N-NO3
= Uptake     

Lake Superior 54 ,!-!+.+++(".&()/01! ""! .'+2 
Scheldt Estuary 52 ,!-!+.#%/01!3!+.#"! ")! .&" 
Eastern Pacific 
Coastal Upwellings 

41 ,!-!+.$(+.+#%!/01! *! .%# 

Rio de Ferrol, Spain** 53 ,!-!"."&+.+")!/01! "#! .%# 
English Channel** 51 ,!-!+.++()/01+.($&! "+! .'# 
Equatorial Pacific 82 ,!-!+.++'&+.##/01! #&! .(* 
Southern Ocean 82 ,!-!+.++%+.'%/01! "++! .)$ 
Northeastern Atlantic 82 ,!-!+.+++)+.#%/01! ""(! .() 

Nitrification  ! !  !
Streams and Rivers See 1 - 50 ,!-!+.#$!3!".#(4+.""/01! ))! .&& 

Denitrification  ! !  !
Streams and Rivers See 1 - 50 ,!-!+."$!3!$.#%4+.+$/01! #$+! .') 

* All empirical models significant at p < 0.001 
** POC values were not provided in publication text, so POC was estimated by 
multiplying PON by the C:N of the Redfield ratio. 
!

We first tested this notion by comparing rates of microbial NO3
- assimilation to 

POC:NO3
- ratios in marine biomes, where data on gross rates NO3

- assimilation are most 

widely available. We use POC as the organic carbon resource because it reflects the 

bioavailable pool of marine organic carbon more so than DOC, which is typically 

comprised of older and more recalcitrant material (Sarmiento and Grubver 2006). We 

found POC:NO3
- breakpoint ratios between 4 and 14 across three distinct ocean biomes, 

as well as coastal, estuarine, riverine and lacustrine ecosystems. (Fig. 2.3A). Commonly 
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available 15N–NO3
- uptake data do not delineate between phytoplankton and bacterial N 

assimilation. However, using data from three marine systems, we found that strong 

increases in bacterial production track the rise in threshold ratios seen for N uptake across 

a gradient of eutrophic to oligotrophic conditions (Fig. 2.3A; Fig. 2.4,2.5; Table 2). In 

contrast, we found that autotrophy was largely unrelated to C:N breakpoints (Fig. 2.4C,D; 

Table 2.2; Supplementary Discussion). 

!
Figure 2.4 | Relationships between heterotrophic production and autotrophic activity on 
POC:N-NO3

- resource ratios. Heterotrophic bacterial production, measured as thymidine 
incorporation (a) and leucine incorporation (b), shows nonlinear increases at breakpoints 
that match NO3

- uptake thresholds observed in Figure 2.2. Autotrophic activity, measured 
as chlorophyll a concentration (c) and primary production (d) generally shows no relation 
with POC:N-NO3

- resource ratios, with the exception of the Equatorial Pacific (d). 
Markers are the same as found in Figure 2.3. See Table 2.3 for empirical model results 
for best-fit regression analysis. 
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Figure 2.5 | Relationships between 15N-NO3
- uptake and POC:N-NO3

- resource ratios for 
three ocean provinces. This plot is duplicated from select data observed in Figure 4 for 
direct comparison of N uptake on resource ratios (shown here) and heterotrophic and 
autotrophic activity in resource ratios (Figure 2.4). A gradient of nutrient poor to nutrient 
rich conditions generally extends from the North Atlantic, Equatorial Pacific and 
Southern Ocean. 

!

 

Table 2.3 | Model results for data presented in Figure 2.5.  

Process Model Parameters  

Best-fit Empirical Equation 
 Equation n r2 

Heterotrophic Production  
(thymidine incorporation) 

   

Southern Ocean ,!-!+.++(+.$*/01! #*! .%"2 
Equatorial Pacific ,!-!+.++*+.$)/01! &#! .%# 
North Atlantic ,!-!+.)""+.""!/01! "#"! .&$ 

Heterotrophic Production 
(leucine incorporation) 

! !  

Southern Ocean ,!-!+.+$(+.&%!/01! #*! .%# 
Equatorial Pacific ,!-!+.+'&+.%"/01! &#! .&* 
North Atlantic ,!-!"#.&&#+."$/01! "#"! .() 

Autotrophy ! !  !
Equatorial Pacific ,!-!&.'+'!/01+.%)! $%! .$) 
* All empirical models significant at p < 0.001 
!
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Thus, we believe these patterns may reflect a contemporary view of marine N 

cycling, where bacterioplankton significantly contribute to NO3
- uptake, regeneration and 

nitrification (Mulholland and Lomas 2008). This pattern suggests that high N assimilation 

by heterotrophs activates only when resources and theoretical consumer stoichiometry 

come into balance. As POC:NO3
- ratios rise above minimal ratios near to 4, resource C:N 

composition becomes increasingly N-poor relative to the microbial N assimilation 

stoichiometry for anabolism, and NO3
- concentrations remain consistently low.  Most 

notably, declines below a POC: NO3
- ratio of 4 likely reflects increasing C limitation of 

microbial anabolism, suggesting that stoichiometric controls over heterotrophic activity 

regulate NO3
- buildup. 

Of course, nitrate is not the only potential N source for microbial activity in these 

environments.  However, in both freshwater and marine ecosystems, inorganic N pools 

tend to be dominated by NO3
- (Barnes and Raymond 2010, Arango and Tank 2008, 

Bohlke et al. 2009, Perakis and Hedin 2002), and using a subset of representative sites 

from oceans and streams, we find that including ammonium (NH4
+) does not alter inverse 

relationships (Figure 2.6A, C; Table 2.4; Supplementary Discussion). In contrast, organic 

forms of N (DON or PON) display positive correlations with their organic carbon 

counterparts (DOC and POC, respectively; Figure 2.6 B, D), but this is to be expected 

since the vast majority of organic matter in ecological environments contains both C and 

N in fairly constrained ratios3,18-20.  

!

!

!
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Figure 2.6 | Relationships between NO3
- concentration and resource ratios for select (A) 

ocean and (C) stream locations, where NH4
+ is included in the supply quotient in addition 

to NO3
-.  Panels B and D show organically bound nitrogen abundance in oceans (B) and 

streams (D) as a function of organic carbon concentration. (A, C) Negative trends remain 
practically unaltered relative to patterns shown in Figure 2.1. Oceans: closed circles = 
CARIACO basin, closed triangles = Southern Ocean, closed diamonds = Equatorial 
Pacific, closed squares = North Atlantic. Streams: open triangles = Arctic (Partners), 
open squares = continental USA (EPA EMAP), open diamonds = Puerto Rico (Luquillo 
LTER), inverted triangles = Brazil (MBL Brazil), open circles = Northeast USA (Plum 
Island LTER). See Table 2.4 for system-specific correlation coefficient and statistical 
significance. 
!

!

!

!
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Table 2.4 | Correlation results for DON or PON as a function POC or DOC, respectively, 
for data presented in Figure 2.6. 
!

Site Model Parameters " 

Empirical Equation: y = a(x) +/- b 
 x = POC for oceans and DOC for streams and rivers 
 a b r 

Oceans     
Southern Ocean ."%! 4.+*! .*)!
Equatorial Pacific ."'! 4.#$! .*)!
Northeast Atlantic ."&! .+"! .**!
CARIACO Basin 5+(! .+(! .)"!

Streams ! ! !
Arctic  .+#! "+.('! .&#!
Puerto Rico LTER .+"! ".*&! .%)!
Brazil  .+&! "#.*'! .&&!
Plum Island LTER .+#! *.'! .'"!
 * All trends significant at p < 0.001. 
!
!

NO3
- accumulation may also be driven by nitrification, which could be enhanced 

as a consequence of C limitation of heterotrophic N assimilation. Heterotrophic 

organisms often out-compete nitrifying organisms for NH4
+, but that effect will be 

strongest when nitrogen supply limits metabolism. Consequently, when N assimilation is 

C limited at low DOC:NO3
- ratios, enhanced NH4

+ availability may promote nitrification. 

Indeed, we find that across streams with wide variation in adjacent land-use and 

underlying biome-scale differences, resource controls on nitrification are more complex 

than basic concentration-dependent uptake kinetics (Figure 2.7E, F; Table 2.5; 

Supplementary Discussion). Instead, nitrification rapidly increases at resource ratios 

below the minimum supply C:N ratios for heterotrophic microbes (Fig. 2.3B).  

!

!

!
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!

Figure 2.7 | Plots of oceanic 15N-NO3
- uptake (A, B), in-stream denitrification (C, D) and 

in-stream nitrification (E, F) as a function of NO3
- and DOC (streams) or POC (oceans) 

concentration. Site markers: Atlantic (open diamonds), Lake Superior (inverted closed 
triangles), Equatorial Pacific (closed squares), Southern Ocean (open triangles), English 
Channel (closed hexagons), Pacific Upwellings (pentagons), Scheldt Estuary (inverted 
closed triangles) and Rio de Ferrol (open hexagons). See Table 2.5 for regression analysis 
and statistical significance. 
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Table 2.5 | Regression model results for Figure 2.7 for direct comparison of concentration 
versus stoichiometric controls over NO3- assimilation, nitrification and denitrification.  
 

Site Model Parameters  " 
Empirical Equation: log[y] = log[a(x)] +/- b 

 x = NO3
- x = organic C x = organic C:N-

NO3
- 

 a b r2    a      b r2 a b r2 
N-NO3

= Uptake          
Lake Superior 4#&.)! 4$#.$! .%(! $.(! (.(! .&(! #$%

""!
&!#$'! $()!

Scheldt Estuary ".&! .$*! .&$! $*)! )$%! $'+! ".+! 4.'! .&#!
Eastern Pacific 
Upwellings 

4.&! 4".*! ."+!
/671!

.*! "."! .)*! $(! &+$,! $*'!

Rio de Ferrol 4."! ."! +!
/671!

$-! )$(! $(,! .#! 4."! .%#!

English Channel 4.&! 4#."! .#"!
/671!

".+! ".(! .$*!
/671!

$'! &+$)! $(+!

Equatorial Pacific 4".'! 4%.&! .')! ".%! .$! .&'! $.! &+$)! $.(!
Southern Ocean 4.$! 4".'! +!

/671!
#."! .$! .'*! +$,! &+$#! $'*!

Northeastern 
Atlantic 

4".*! 4'.&! .&*! ".'! 4.)! .%%! $*! &#$%! $(%!

Nitrification ! ! ! ! ! ! ! ! !
U.S. and Puerto 
Rico Streams 
and Rivers 

.(! $.'! .%#! 4".(! $.%! .%&! &
$-#!

#$-! $%'!

Denitrification ! ! ! ! ! ! ! ! !
U.S. and Puerto 
Rico Streams 
and Rivers 

%.&! +! .%#! ".&! #.$! .%(! &
)$(!

+$*! $-#!

* All trends significant at p < 0.001. 
** Bold indicates empirical model with best goodness of fit.!

!

As with heterotrophic assimilation and nitrification, the availability of both 

organic C and NO3
- regulates denitrification. Unlike the anabolic process of NO3

- uptake 

explored above, denitrification is a catabolic process that requires organic C and NO3
- in 

approximately a 1:1 ratio (when biomass synthesis is ignored). Our meta–analysis 

revealed that denitrification activity abruptly responds with increases up to 125-fold at 

DOC:NO3
- ratios that are in-line with the stoichiometric requirements (Fig. 2.3C). For 

systems where NO3
- accumulation continues at very low organic C:NO3

- ratios, other 

environmental factors (e.g. oxic conditions) may constrain denitrification activity. 
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Taken as a whole, the above analyses of marine and stream ecosystems suggest 

that N assimilation, nitrification and denitrification all likely contribute to the 

comparative uniformity of the patterns in Figure 1. Thus, we explored whether organic 

C:NO3
- ratios at the inflection point of each exponential model (Fig. 2.1) to see whether 

the threshold C:N ratios for each major environment align with the breakpoints found in 

Figure 2. We focused on DOC:NO3
- ratios in all systems except oceans because POC in 

non-pelagic systems may encompass a greater proportion of terrigenous, recalcitrant C 

(Raymond and Bauer 2001, Cebrian 1999), which would explain the higher POC:NO3
-  

ratios for those systems (Table 2.1). We find that despite wide variation in pools of 

organic carbon and NO3
- among earth’s ecosystems (Fig. 1), the DOC:NO3

- ratio at the 

inflection point averages 3.5 across all systems and is constrained between 2.2 and 5.2 

(Table 2.1). At the global scale, threshold ratios are greater for lakes and ocean margins 

when POC is used in the numerator (Table 2.1), as well as for several system-specific 

scenarios (Figure 2.8; Table 2.6). These higher ratios rest within the expected 

stoichiometric window for NO3
- accretion, and likely reflect the response of bacterial 

compositional plasticity and growth efficiency to organic C bioavailability accretion 

(Supplementary Discussion). When viewed across all systems and scales of observation, 

NO3
- tends to rise sharply at organic C:NO3

- requirements between those of heterotrophic 

assimilation and denitrification, a pattern which may arise from both an alleviation of N 

limitation to many heterotrophs and an increase in nitrification rates.  



! #%!

!

Figure 2.8 | Plots of N-NO3 concentration as a function of DOC concentration for select 
system-specific scenarios for (A) soils58, (B) streams62, (C) human impacted streams78, 
(D) lakes81, (E) bays81 and (F) oceans82.  Lines represent the organic carbon:N-NO3 
atomic molar ratio. See Table 2.6 for regression analysis. See SI Discussion for details on 
data assembly and analysis. 
!
!
!
!
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Table 2.6 | Empirical assessment of select system-specific DOC-NO3
- relations in Figure 

2.8. 
!

Global 
System 

Modeled Parameters (y=a+b-k(x))! Model Fit (r2)!
                    a        b       k  

Soils*        -0.04 0.47 2.63 0.58 
Streams*        0.07 0.61 0.85 0.72 
Human 
Impacted 
Streams* 

       0.09! 0.55! 1.21! 0.62!

Lakes*        0.03! 0.37! 2.07! 0.56!
Bay*        0.17! 2.75! 2.85! 0.68!
Oceans*        -0.09! 232.78! 9.87! 0.84!
* Data taken from references numbers 58, 62, 78, 81, 81, 82 for soils, streams, human 
impacted streams, lakes, bays and oceans, respectively.  

!

Finally, we believe the increase in the exponential decay constant (k) from soils to 

the sea reveals a systematic (Table 2.1) decline in energetic constraints over nitrate 

cycling along the hydrologic continuum. Where terrestrial plant derivatives dominate 

DOC pools, more chemically complex, decay-resistant compounds are more prevalent 

than in systems where aquatic sources prevail (Raymond and Bauer 2001, Cebrian 1999).  

In fact, the k-value for human impacted rivers and streams is more comparable to soils 

than to undisturbed rivers and streams (Table 2.1), which suggests increased terrestrial 

DOC inputs to freshwater systems in landscapes susceptible to anthropogenic runoff. 

Also, the concurrent decline in unexplained variation in DOC!NO3
- relationships as one 

moves from soils to the sea (Table 2.1) may support a weakening influence of C quality 

on the expression of resource-consumer imbalance as organic C supply shifts from 

terrestrial to aquatic sources. Taken together, these trends might signal a progressive shift 

towards increasingly pure stoichiometric control in marine environments versus 

freshwaters with substantial allochthonous sources of C (Cebrian 1999)  
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In this paper, we have attempted to link stoichiometric and metabolic theories of 

ecology (Allen and Gillooly 2009) to develop a new context in which to understand 

coupled organic C and NO3
- cycling from local to global scales. We believe the 

framework presented here may aid a variety of Nr-related management challenges. For 

instance, downscaling from our global analysis to a variety of system-specific scenarios 

shows that DOC!NO3
- relationships become stronger (Fig. 2.8, Table 2.6). Such 

analyses, when done at scales most relative to management, could allow managers to 

focus on a subset of conditions to direct the fate of NO3
-. For example, resource ratios 

could be strategically regulated to optimize heterotrophic NO3
- assimilation, where high 

NO3
- accumulation rarely occurs. 

That said, we do not advocate for a stoichiometric perspective to the exclusion of 

kinetic, thermodynamic and mass-balance approaches.  Indeed, substantial variation in 

organic C!NO3
- relations suggests a role for environmental factors in addition to 

stoichiometric controls. Thus, we believe that better integration of established 

applications with the first-principles of ecological stoichiometry would improve a range 

of diagnostic and prognostic models of water quality. Achieving this goal will require 

continued evaluation of the mechanisms that underlie inverse organic C!NO3
- patterns. 

Furthermore, additional research should resolve key uncertainties in what determines 

C!NO3
- thresholds; we believe a focus on the controls over microbial compositional 

plasticity and growth efficiency is particularly important. Nonetheless, the results 

presented here provide a testable framework for further unraveling the controls over NO3
- 

accumulation in ecosystems worldwide. 

2.4. Supplementary Discussion 
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2.4.1. The influence of bacterial growth efficiency and compositional plasticity on critical 

threshold ratios for NO3
- accumulation 

Understanding the dynamics of rapid NO3
- depletion above critical threshold 

ratios requires consideration of both bacterial growth efficiency (BGE) and the 

stoichiometric plasticity of microbial biomass at the community scale. Each factor can 

contribute to variation in the system-specific C:NO3
- breakpoints at which nitrate begins 

to accumulate rapidly. First, we will address the role of BGE in influencing the POC:N-

NO3
- thresholds observed in Figure 2.2. BGE represents the proportion of assimilated 

organic carbon allocated to production versus respiratory processes, like active nutrient 

transport and extracellular enzyme production. Different BGE among bacterial 

communities can shift the threshold ratio by changing the proportion of C allocated for 

different metabolic purposes. In many ecosystem models, BGE is commonly assumed to 

be somewhere between 40 - 60% , which reflects the average BGE of several meta-

analyses (Jahnke et al.1995, Cole et al. 1988). 

However, the true variability of BGE among taxa and environmental trophic 

conditions is much greater than the 40 – 60% typically assumed in models. In extremely 

oligotrophic open oceans, where BGE has been evaluated extensively in comparison to 

inland aquatic or terrestrial systems, BGE values are commonly found to be <15% 

(Jahnke et al.1995, Cole and Pace 1995, Kirchman et al.1991). In fact, most BGE studies 

have been conducted in oligotrophic, open ocean systems (Urrutia-Lopez and Moran 

2007), which has potentially biased our understanding of BGE toward lower values. In 

contrast, strikingly high BGE values have been observed in nutrient-rich systems, such as 

nutrient-rich open oceans, upwelling regions, coastal margins and estuaries (Jahnke et al. 

1995), where BGE values often greatly exceed 50%. Goldman et al. (2001) and del 
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Girogio et al. (1998) among others (Ram et al. 2003, Biddanda et al. 2001), provide 

empirical evidence that BGE shifts in concert with reduced resource C:N ratios. Thus, as 

bacterial and resource C:N stoichiometry come into balance, microbes appear to shift C 

allocation pathways proportionally away from maintenance processes toward intracellular 

compounds that facilitate higher production.  

It is conceivable that the strong correlation between reduced C:N substrate ratio 

and greater BGE reflects an influence of decreased organic C recalcitrance on bacterial 

metabolism. As aquatic systems become more nutrient rich and autotrophic production 

increases, phytoplanktonic carbon derivatives, which are lower in C:N composition and  

highly bioavailable, become the prime energy and nutritional supply to heterotrophs. In a 

recent study, Apple and del Giorgio (2007) found that BGE was strongly and positively 

correlated with increases in labile C availability, which in turn, was highly related to both 

phytoplankton and bacterial production. There is also evidence from many studies (e.g. 

Kanda et al. 2009, Kirchman et al. 1994, Wheeler et al. 1986) that increases in 

phytoplankton production in nutrient-rich aquatic systems provide the predominant 

source of simple carbon compounds, like transparent exopolymers, that to serve as 

substrates for bacterial growth. In fact, del Giorgio et al. (1998) among many other 

studies (Cole et al. 1995, Murrell 2003, Goldman et al. 1987) show that bacterial and 

phytoplankton production are closely coupled and that phytoplankton-derived C 

compounds with lower C:N composition (Biddanda et al. 2001) yield the highest BGE, 

which results in strong positive correlations between phytoplankton productivity with 

nutrient richness and high BGE. 
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Yet, organic carbon bioavailability almost certainly does not regulate BGE 

independently of resource stoichiometry. Theoretically, when resource C:N ratios lower 

into the range of potential C:N biomass ratios, it should require less C investment into 

cellular maintenance operations, like building energy intensive enzymes to breakdown 

organic C is quest for N. Consequently, BGE should rapidly increase as energy allocation 

swings towards increasing relative biomass production. Experiments conducted by 

Goldman et al. (2001) and others  (Manzoni et al. 2008) illustrate this mechanism, where 

BGE increases nonlinearly across declining substrate C:N ratios when organic C 

bioavailability is held virtually constant. More broadly, a recent meta-analysis provides 

further evidence showing that BGE ranges from 60 – 90% at low C:N substrate ratios 

(<10) for bacterial communities grown in controlled media inoculated with simple carbon 

compounds and nutrients (Jahnke et al. 1995). Additional support comes from modeling 

efforts aimed at exploring the influence of resource quantity (concentration) and quality 

(C:N) on bacterial growth, respiration and excretion. Touratier et al. (1999) found that 

nonlinear BGE increases from 40 to 80% across a range of resource C:N ratios declining 

from 14 to 3.  

Analysis of BGE has been disproportionately conducted in aquatic systems, as the 

above studies highlight. Yet, recent meta-analyses in terrestrial systems (Manzoni et al. 

2010, Lancelot 1985) illustrate the same mechanism for soil systems that range widely in 

biological and physical conditions from boreal to tropical regions. That is, in 

decomposing leaf litter, bacterial BGE increases with nutrient content and vice versa. 

Using a stoichiometrically explicit model, Manzoni et al. (2010) demonstrate the patterns 

of N immobilization and production are strongly governed by the metabolic activity of 
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microbes that grow according to constrained compositional requirements to achieve 

balanced growth. Compared to aquatic systems however, BGE in soils tends to be lower, 

averaging close to 25% BGE. Collectively, these experimental, observational and 

modeling results demonstrate that shifts in nutritional quality can strongly regulate BGE 

independently of energetic quality, potentially in all of earth’s ecosystems.  

Variability in BGE may affect the imprint of both denitrification and microbial N 

assimilation on observed stoichiometric C:NO3
- breakpoints because both of these 

processes require heterotrophic metabolism of organic matter for energy and carbon, and 

thus carbon use efficiency becomes an issue in calculating threshold ratios. In most 

biogeochemical models that are stoichiometrically explicit, microbes are treated as 

catalysts in chemical reactions in order to simplify the potential for differential 

partitioning of reactants into products. For example, classical equations for the 

conversion of NO3 to N2 via denitrification calculate a C:N uptake ratio of 4:5 without 

accounting for the respiratory costs of obtaining bioavailable organic carbon for 

catabolism. These simplifications work for certain scenarios, yet differences or shifts in 

the partitioning of energy or carbon on the cellular level can affect the position of the 

stoichiometric thresholds as we highlight in this study.  

Another factor that can influence organic C:N-NO3
- ratios stems from the capacity 

of bacteria to shift intracellular stoichiometry in response to changes in resource C:N 

values. While often viewed as stoichiometrically constrained relative to plant 

communities, bacterial communities display considerable range in their tissue C:N 

quotients (Sterner and Elser 2002, Cleveland et al. 2007, Sterner et al. 2008). Though the 

C:N of marine bacterioplankton appears largely constrained between 4-7 (Goldman et al. 
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1987), when viewed across all systems, bacterial C:N ratios can range from 3 to 24, with 

greater variation seen in inland systems (Sterner and Elser 2002, Lancelto et al. 1985), 

particularly soils (Cleveland et al. 2007). This observed flexibility suggests that bacteria 

have the capacity to shift tissue C:N values in response to varying resources in the 

environment. The specific mechanisms are debated, but could reflect an advantage in 

shifting biomass stoichiometry to match resource composition in order to reduce energy 

expenditures associated with metabolic waste excretion. Results of Tezuka et al. (1990) 

may support this possibility; bacterial and resource C:N were strongly correlated when 

organic C bioavailability remained relatively unchanged relative to energy richness 

across a resource C:N gradient extending from 6 to 30.  However, it is more likely that 

the strong correlation is consequent of broader gradients in C:N composition where 

energy richness relative to N abundance moderates plasticity independent of 

bioavailability per se. That is, trophic conditions of lower C:N substrate probably 

facilitate greater bacterial productivity (Anderson et al. 2005, Apple et al. 2007, et al. 

1999, Lancelot et al. 1985), as well as BGE (Anderson et al. 2005, Apple et al. 2007, et 

al. 1999, Lancelot et al. 1985), which requires a proportional shift away from structural 

tissue generation and energy storage in lipids and carbohydrates (high C:N ratios) to 

greater protein (average C:N ~ 3.1; Sterner and Elser 2002) and nucleic acid (average 

C:N ~ 2.3; Sterner and Elser 2002) synthesis to construct biomass. In fact, a closer 

inspection of the substrate versus bacterial C:N plot observed by Tezuka et al. (1990) 

reveals a saturation function, where the discrepancy between substrate and bacterial C:N 

enlarges at high resource ratios, which could indicate that greater resource C:N ratios 

require bacteria to respire more C for every N atom gained for metabolic demands, 
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thereby lowering BGE. Goldman and Dennett (1987) proposed the same mechanism 

based on observed rapid increases in microbial biomass C:N with elevated substrate C:N 

in an incubation experiment. However, the maximal substrate C:N at 30:1 far surpassed 

potential bacterial biomass C:N, which increased to a high of 7.8:1. Likewise, results of 

Tezuka et al. (1990) show that across a substrate gradient of 6 to 30 microbial C:N ranged 

more widely, and reached a maximum of 17. Even in a broader context, the positive 

relationship between resource and organismal stoichiometries has been documented and 

discussed since Alfred Redfield’s notion that resource and organismal stoichiometries 

come into balance through assimilation and remineralization (1963). These studies also 

collectively reiterate that the range of possible microbial C:N composition is 

stoichiometrically constrained, and only shows limited response to changes in resource 

stoichiometry. 

However, for a system-specific analysis, the potential variability in microbial C:N 

ratio can be important. Even in a relatively oligotrophic pelagic system where BGE 

should be constrained to values around 40% , like at the Bermuda Atlantic Time Series 

site, microbial C:N can vary from ~ 3.5 to 8.5 on an annual basis (Gunderson et al. 2002). 

Assuming a constant BGE of 40% throughout the year, the range of the optimal 

stoichiometry for heterotrophic N assimilation can range from 21 to 51 based on the 

influence of changes in biomass C:N alone. In part, assimilated N is sequestered into 

microbial biomass N, which contributes to the depletion of NO3
-, which can represent a 

large portion of ecosystem N (van der Heijden et al. 2008) . However, under conditions of 

N limitation, heterotrophic bacteria also greatly increase N use efficiency, which can 

maintain a low concentration NO3
- pool that turns over quickly. Yet, in reality, BGE 
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likely increases greatly as microbial C:N declines, thus dampening the potential absolute 

increase in the breakpoint stoichiometry expected on microbial C:N alone. Such shifts in 

BGE within a given system are documented on both spatial (Kanda et al. 2008) and 

temporal (Apple et al.  2007) scales; however, these studies often lack explicit connection 

to potentially simultaneous shifts in microbial stoichiometry. 

While the interplay between stoichiometry and C bioavailability is not entirely 

understood and cannot be disentangled for the patterns shown here, it seems clear that for 

systems with greater phytoplankton/bacterial productivity, with trophic conditions low in 

resource C:N composition and abundant labile carbon, variation in BGE and intracellular 

resource allocation are likely to produce low C:N threshold ratios. A comparison of three 

open ocean regions ! the Southern Ocean, Equatorial Pacific, and the Northeast Atlantic 

! which represents a gradient from nutrient-rich to oligotrophic systems, illustrates these 

controls on BGE.  For ease of viewing, SI Figure 3 shows data from these three regions 

as originally shown in Figure 2. Among these ocean provinces, the Southern Ocean is 

generally more nutrient rich than the Northern Atlantic, while the Equatorial Pacific’s 

trophic status rests somewhere between these systems. Here we highlight that previous 

documentation of BGE in these regions tracks the increases in POC:N-NO3
- ratios 

observed along the eutrophic-oligotrophic gradient. That is, high bacterial growth 

efficiencies correspond to low C:N uptake threshold values, and vice versa. Previously 

documented bacterial growth efficiencies and C:N uptake thresholds (reported herein) for 

the Southern Ocean, Eq. Pacific, and the North Atlantic provinces are approximately 42% 

(Bjornsen et al. 1991) and 5, 30% (Sorokin et al. 1980) and 10, and 15% (Suttle et al 

1991) and 15, respectively. Hence, applying these BGE values to the observed POC:N-
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NO3
- breakpoints in SI Figure 3, microbial biomass C:N is roughly 2.1, 3.0 and 2.3 for 

the Southern Ocean, Eq. Pacific and the North Atlantic. While these back-calculated 

bacterial biomass ratios are very low for tissue C:N ratios,  they support the theoretical 

predictions described above that tissue C:N quotients should be low, and BGE values 

high, at the breakpoints of the organic C:NO3
- relationships. 

 Evidence for relatively constrained microbial C:N biomass ratios between 4 to 7 

in marine systems suggests that BGE may be the primary source of variability that 

underlies shifts in threshold C:NO3 ratios. For example, very low BGE could explain the 

relatively high stoichiometric threshold in the ultra-oligotrophic Sargasso Sea (SI Figure 

6F), where bacterial BGE is commonly reported to be around 10% (Kirchman et al. 

1991). That is, if the bacterial biomass C:N is assumed to be 5, the expected threshold 

C:NO3
- ratio is approximately 45, which roughly matches the observed breakpoint. The 

average oceanic threshold ratio for bacterial heterotrophy may be close to 10, based on an 

average biomass C:N of 5 (Goldman et al. 11987) and BGE of 50% (Apple et al. 2006) 

for oceanic bacteria.  However, for systems that exhibit greater ranges in bacterial 

biomass C:N (such as soils [Anderson et al. 2005]), both compositional plasticity and 

BGE variation are likely to play a significant role in determining the breakpoints.  We 

view additional research into the patterns and controls over both microbial C:N values 

and BGE to be a key need.  

The stoichiometry of denitrification is comparatively more constrained for two 

reasons. First, stoichiometric plasticity is not a factor in this catabolic reaction. Second, 

the theoretical threshold ratio of ~1:1 C:NO3 dampens the effect of variable BGE by 

preventing a wide range of potential C:NO3 threshold ratios due to changes in carbon and 
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energy allocation. For instance, a 100% change in BGE for denitrifiers could increase the 

optimal stoichiometry to 2:1, whereas a similar change in heterotrophic microbial N 

assimilation, with a C:N stoichiometry of 6, would shift the breakpoint stoichiometry to 

12, assuming no change in microbial stoichiometry in response to resource stoichiometry. 

Based on this example, it becomes evident that the combined influence of BGE and 

compositional stoichiometry on heterotrophic N assimilation has potentially greater 

influence than denitrification on the overall position of organic C:NO3
- breakpoint. Also, 

the combined influence of these two factors on heterotrophic N assimilation makes it 

difficult to identify a well-defined range of optimal resource stoichiometry that stimulates 

N assimilation across systems. Indeed, such variation may be reflected in the site-to-site 

variation observed in SI Figure 6. Yet, it is noteworthy that despite the possible variation 

in the breakpoint imparted by heterotrophic N assimilation, the global DOC:NO3
- 

breakpoint is well constrained between 2.19 and 5.22 (Table 2.1). This may imply that 

despite between-system variation (Fig. 1.6 and Table 2.6), denitrification strongly acts to 

lower the threshold ratio at the global scale. We believe resolving the underlying 

interaction of denitrification, nitrification and N assimilation and stoichiometry across the 

scales is an important research need, as these relationships will influence critical 

thresholds in NO3
- accumulation.   

 

2.4.2 Heterotrophic microbial influence on organic carbon – nitrate patterns 

In aquatic systems, photoautotrophs play a large role in regulating N availability. 

While this is true, heterotrophic bacterial production is often highly related to primary 

production because soluble, bioavailable organic compounds derived from phytoplankton 
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fuel heterotrophic growth (Sarmiento and Gruber 2006) is possible to discern between 

these processes, which both use NO3
- readily, using separate dark and light bottle 

incubations; however, such data are collected infrequently. Using data from three ocean 

basins (the Equatorial Pacific, Southern Ocean and North Atlantic) that represents a 

gradient of nutrient rich to oligotrophic conditions, we explored whether trends in 15N-

NO3
- uptake are correlated with autotrophic and/or heterotrophic activity.  

In aquatic systems, bulk POC measurements encompass myriad carbon 

compounds, ranging from phytoplankton biomass, to phytoplanktonic derivatives and 

exopolymers, and highly processed organic matter that is recalcitrant in nature. This 

reality of bulk POC analysis complicates our analysis because it becomes difficult to 

discern concentration-dependent N uptake by either autotrophs or heterotrophs. For 

example, in SI Figure 5B the positive relationships between POC and N uptake could 

reflect the coupling of enhanced N uptake and autotrophic biomass production or carbon 

limitation on heterotrophic N uptake. Because autotrophy and heterotrophy are often 

highly correlated in aquatic systems, the positive relationship probably reflects both 

metabolic processes in action. This is illustrated in data (not shown here) from the three 

ocean provinces used in Figs. 3 and 4, where primary production is moderately correlated 

with POC (r = 0.48, p < 0.001), as is heterotrophic production and biomass (r = 0.65, p < 

0.001). Thus, primary and heterotrophic production is highly correlated (r = 0.57, p < 

0.001). This tight coupling of autotrophic and heterotrophic production is not surprising, 

as the microbial loop has been long identified, but does either process act as an ultimate 

constraint on NO3
- uptake and accumulation?  
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Greater insight into the role of autotrophs and heterotrophs in NO3
- uptake 

patterns emerges from our analysis of autotrophic versus heterotrophic uptake across 

shifts in resource POC:N-NO3
- ratios. In accordance with the conceptual model (Figure 

2.1 1), Figure 2.3 shows strong and nonlinear heterotrophic production at distinct ratios 

which correspond with critical threshold ratios underlying NO3
- uptake. Although our 

understanding of the role of heterotrophs in oceanic NO3
- uptake has only recently been 

appreciated (reviewed by Mulholland et al. 2008) our analysis suggests that over scales in 

which NO3
- uptake data are collected, that heterotrophs likely determine the ultimate 

accumulation of NO3
- by responding to discrete shifts in resource composition. Of course 

resource ratios are linked to autotrophic activity, as phytoplankton are by far the 

predominant source of organic C (by fixing CO2) in these systems; the reliance of 

resource ratios on autotrophic production should be explored further in future studies.  

Further evidence comes from a variety of studies documenting lower than 

expected POC:N-NO3
- ratios relative to the stoichiometric demands of autotrophs. 

Conceivably, autotrophs can simultaneously drawdown dissolved inorganic carbon and 

NO3
- for metabolic purposes. This process could produce an inverse relationship between 

POC and NO3
- as phytoplankton concurrently convert CO2 gas into POC and use N-NO3

- 

to build cellular machinery. To the best of our knowledge, inverse POC:N-NO3
- 

relationships have not been interpreted as imprints of autotrophy, but given the 

hypothetical possibility, we consider several potential impacts of this mechanism on the 

relationships observed in Figure 2.3 and Figure 2.4, 2.5. While the Redfield C:N ratio 

suggests that autotrophs should build biomass at C:N ratios approximately twice the 

microbial C:N ratio of biomass (~6.125), when maintenance respiratory processes are 



! $)!

accounted for, recent studies suggest autotrophic C:N uptake occurs at ratios up to 18:1 

C:N (e.g. Mari et al. 2007). Among the few studies (Banse et al. 1994, Dauchez et al. 

1995, Bode et al. 2004) that report C:N uptake ratios, the C:N ratios fall strongly within 

the range of uptake ratios that would be expected for heterotrophs, for reasons outlined 

above. For example, Dauchez et al. (1995) found that C:N uptake ratios along the coastal 

waters of Nova Scotia were largely well-below Redfield ratio, Also, Bode et al. (2004) 

found that C:N uptake ratio plummeted with depth to ratios near to 3 in the Rio de Ferrol 

(Spain), which suggests a role for heterotrophs in NO3
- uptake when resource ratios come 

into balance with microbial C:N demand. Furthermore, Banse (1994) documents  POC:N-

NO3
- uptake ratios below the expected C:N uptake ratios for phytoplankton, and suggests 

that low uptake ratios imply a likely role for heterotrophs. Together, these studies support 

an emerging view that phytoplankton actual “over consume” carbon relative to N needs 

(Toggweiler 1993) to meet higher C:N stoichiometries characteristic of non-biomass 

production, such as transparent exopolymers (Toggweiler 1993, Biddanda and benner 

1997, Keplay et al. 1997). To reconcile high C:N uptake ratios with the Redfield C:N 

ratio of ~6.6125, these studies have suggested that preferential removal of C relative to N 

by heterotrophic bacteria effectively lower organic C:N ratios as phytoplankton-derived 

carbon compounds are degraded. That is, bacteria bring the organic C:N ratio back to 

Redfield ratio by metabolizing “excess” C at C:N uptake ratios lower than the Redfield 

ratio of 6.6125.  Hence, heterotrophs must exhibit lower C:N uptake ratios to produce 

global observed Redfield ratios if autotrophs build organic tissues at ratios much higher 

than Redfield ratio, as the above studies strongly document.  
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2.4.3. Controls on heterotrophic N assimilation, nitrification and denitrification 
 

Figure 2 and SI Figure 5 consist of data from stream-based studies of 

denitrification and nitrification, and oceanic, coastal margins, estuarine, lacustrine and 

riverine 15N-NO3
- uptake measurements to explore C and N controls over denitrification, 

N assimilation and nitrification. The lack of data on denitrification, heterotrophic N 

assimilation and nitrification from one type of ecosystem prevented us from assessing 

these dynamics exclusively in streams or oceans. Stream denitrification rates were 

assessed using denitrification enzyme activity, acetylene-block technique, open-system 

N2/Ar methods, and primarily 15N-NO3
- isotope or enrichment-style nutrient additions 

using nutrient spiraling methods. Stream nitrification rates were assessed using 15N 

additions to streams using the same techniques as applied for denitrification, or the 

nitrapyrin inhibition method. Streams varied greatly in local conditions and intensity of 

land-use; however patterns emerged despite potentially confounding variation. Oceanic, 

coastal, estuarine, lacustrine and riverine N uptake was measured by quantifying 15N 

uptake to particulate organic matter in the Equatorial Pacific, Southern Ocean, North 

Atlantic, English Channel, Scheldt Estuary, Rio de Ferrol, and Lake Superior. Our meta-

analysis was used, in part, to test predictions that high rates of denitrification and 

heterotrophic NO3
- assimilation, and low rates of nitrification, are associated with high 

DOC and low NO3
- concentrations. We found partial empirical support for these 

predictions in data from streams (Figure 2.6) and oceans (Figure 2.6), except that 

denitrification rate exhibited positive relationships with NO3
- and DOC, suggesting that 

both constituents could limit activity. This finding fits with other recent analyses (Arango 

et al. 2008) for a dual role of DOC and NO3
- in limiting activity.  
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15N uptake data for well-oxygenated (no denitrification) surface (0-120m) waters 

from the North Atlantic Bloom Experiment Atlantis II, R/R Kiwi 7 and Equatorial Pacific 

tt008 cruises made no empirical separation between autotrophic and heterotrophic NO3
- 

assimilation. Separating the data into euphotic and non-euphotic zone values left data too 

scant to explore patterns since most studies focus on euphotic surface waters. However, 

with the caveat of not being sure whether 15N-NO3 uptake rates directly reveal 

heterotrophic bacterial N assimilation, patterns in marine N cycling probably reflect close 

coupling of organismal uptake and regeneration which is ultimately mediated by 

heterotrophic microbes recycling bioavailable N forms via remineralization.  

 

2.4.4. System-specific analysis of NO3
- accumulation 

 While the global DOC-NO3
- relationships show remarkable coherence, we 

acknowledge that the unexplained variation in global DOC-NO3
- concentrations remains 

substantial. Thus, while we believe the development of a predictive model of nitrate 

accumulation across multiple systems to be well beyond the scope of this particular 

manuscript, we inspected multiple system-specific scenarios to explore the potential for 

even simple regression-based models to be used at scales most relevant to management 

concerns. In Figure 2.7 and Table 2.5, we provide six site-specific examples for DOC-

NO3
- patterns that are directly comparable to the six global-scale panels of Figure 1 in the 

main text. At this regional scale, DOC concentration explains substantially much more 

variation in NO3
- concentrations in every environment, ranging from soils to the sea.   

Absent other available approaches, such relationships may have utility as a predictive 
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framework, especially for identifying the conditions under which NO3
- accumulation is 

most likely.  

 However, despite this consistency of DOC!NO3
- relationships across 

systems, where possible, we do not advocate for a simple stoichiometric approach at the 

expense of other known controls.  Rather, we stress that better incorporation of 

stoichiometric principles into frameworks that already have well-developed approaches 

for addressing kinetic and thermodynamic controls is likely the most desirable path 

forward. For example, we expect that adding a stoichiometric perspective to a range of 

widely-used mass-balance models (Caraco and Cole 1999, Seitzinger et al. 2008, 

Alexander et al. 2007) would significantly improve their predictive capacity. 

 As emphasized previously, understanding the mechanistic underpinnings of 

shifts in stoichiometric breakpoints may be the largest challenge for predicting when 

NO3
- will rise to detrimental concentrations. Better resolution on this front will require 

careful consideration of system-specific differences in bacterial stoichiometric plasticity 

and BGE. The flexibility in both of the bacterial properties presents challenges, likely 

requiring a combination of both in situ surveys and manipulative experiments to provide 

better resolution. Certainly global inverse DOC!NO3
- patterns reflect the simultaneous 

influence of denitrification, nitrification and heterotrophic N assimilation on the fate of 

NO3
-, yet site to site variation in the organic C:NO3

- breakpoint, below which NO3
- 

accumulates, likely reflects the combined influence of BGE and microbial stoichiometric 

plasticity. Once these properties are known for a given system or region, more explicit 

parameterization of stoichiometric controls would be possible within model frameworks, 

and DOC!NO3
- trends could then potentially be used to quantify the relative roles of 
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denitrification, nitrification, and heterotrophic N assimilation in causing sharp changes in 

NO3 concentrations.  
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CHAPTER 3:  HIGH RAINFALL DRIVES MAXIMUM CO2 EXCHANGE AND 
STORAGE IN LOWLAND TROPICAL FORESTS  
 
3.1 Abstract 

A common paradigm in terrestrial – climate coupling holds that plant net primary 

productivity (NPP) and decomposition decline as rainfall exceeds about 2 m/yr. With the 

help of meta-analysis, we demonstrate opposite trends for lowland tropical forest NPP, 

litter decomposition and biomass above this climate threshold. Unlike cooler montane 

systems, high temperature combines with rainfall to accelerate nutrient turnover that fuels 

maximum CO2 exchange and storage in wet lowland regions. Empirical models derived 

from our database show high pantropical NPP and biomass values of 14.4 ± 4.4 Pg C y-1 

and 342.6 ± 140.5 Pg C, respectively. At a regional scale, high precipitation, carbon 

allocation to wood growth and relatively low tree mortality make Southeast Asian forests 

notable carbon hotspots. Finally, we estimate recent deforestation losses of 1.1 Pg C y1, 

with potentially escalating losses as deforestation intensifies in wet, carbon-rich lowland 

forests. 

3.2 Introduction 

Tropical forests play a critical role in Earth's C cycle and climate system (Field et 

al. 1998), and recent estimates (Pan et al. 2011) suggest that primary and re-growing 

tropical forests now provide the largest terrestrial sink for anthropogenic CO2. In large 

part, this reflects high rates of NPP and substantial C stocks in forest biomass (Malhi et 

al. 2004, 2006; Lewis et al. 2009). The ability of tropical forests to sequester atmospheric 

CO2 strongly depends on how climate (Brando et al. 2008, Malhi et al. 2009) and other 

factors (Quesada et al. 2009, Cleveland et al. 2011, Korner 2009) regulate the tropical 

carbon (C) cycle. As such, human-driven changes to key environmental controls can 



! %%!

cause globally significant changes in atmospheric CO2 levels (Sitch et al. 2008, Phillips 

et al. 2009, Lewis et al. 2011). Recent observations of drought – driven forest mortality 

(Phillips et al. 2009, 2011) have focused research efforts on the interactions between 

seasonal water stress (Brando et al. 2008, Lola da Costa et al. 2010), fire (DeFries et al. 

2008, Aragao and Shimabukuro 2010), rainforest retreat (Malhi et al. 2008) and regional 

C balance (Phillips et al. 2009, Lewis et al. 2011). Here we describe how long term mean 

levels of rainfall configure patterns of rainforest CO2 exchange and storage, a lesser-

known but potentially critical link between the climate system and the tropical carbon 

cycle.  

Net primary productivity (NPP) is the fixation of CO2 as biomass and is the first 

step of carbon sequestration within an ecosystem. It’s commonly thought that NPP and 

decomposition in terrestrial ecosystems increase with mean annual precipitation (MAP) 

up to roughly 2 m per year, after which both decline sharply (Schuur 2003). This 

conclusion is based largely on detailed mechanistic studies along a rainfall gradient in 

Hawaii (Schuur and Matson 2001, Schuur et al. 2001, Holtgrieve et al. 2006), followed 

by a global synthesis of aboveground NPP (ANPP) data (Schuur 2003). The notion that 

high rainfall will reduce CO2 exchange in tropical regions has influenced recent climate-

carbon model assessments (del Grosso et al. 2008, Randerson et al. 2009). However, the 

initial empirical studies that informed this conclusion are biased by cooler montane 

systems in high rainfall regions (Clark et al. 2001), while data from lowland forests – 

which account for roughly 95% of tropical land area – are virtually absent. This 

discrepancy does not reflect a deliberate bias in past studies, but rather a historical legacy 
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of research in montane and relatively dry lowland systems, coupled with a general 

absence of available data from wet lowland forests until very recently.  

Here, we assembled a database of tropical forest aboveground net primary 

production (ANPP), leaf litter decomposition, and aboveground biomass (AGB) to revisit 

of the relationship between rainfall and CO2 exchange and storage. The past decade has 

seen enormous investment in tropical research, notably in the funding and coordination of 

plot – based research networks, including the LBA-ECO (http://www.lbaeco.org), 

RAINFOR (http://www.geog.leeds.ac.uk/projects/rainfor), AfriTRON 

(http://www.geog.leeds.ac.uk/projects/afritron), and Smithsonian’s CTFS 

(http://www.ctfs.si.edu/group/Carbon). We combined these network data with local 

studies to assemble a database comprised of 944 sites from 42 tropical countries (Figure 

3.1), which includes 785 lowland sites and 159 montane sites.  Delineation between 

lowland and montane classifications was categorically determined using a mean annual 

temperature (MAT) cut-off of 18 oC (Holdridge 1947), except when site – specific 

information defined otherwise.   

 

Figure 3.1 | Locations of fields sites in the TROPICS database.  
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ANPP was calculated as the sum of fine litterfall (i.e. leaf growth) and stem 

growth, which are the dominant components of ANPP in tropical ecosystems (Aragao et 

al. 2009). We made no corrections for frequently unmeasured above or belowground 

components, unless stated. For sites where only one component of ANPP was available, 

or only biomass values were available, allometric relationships were used to estimate 

ANPP akin to previous studies (Clark et al. 2001, Malhi et al. 2004). Data on AGB 

stocks, leaf litter decomposition rates, soil type, and forest demographics were collected 

to examine the climate sensitivity of plant – soil feedbacks and scaling between 

productivity and C storage. The database and metadata are available at 

www.carbonbalance.org/TROPICS. 

3.3 Results and Discussion 

Our analysis shows clear differences in the effects of increasing rainfall on ANPP 

and decomposition between lowland and montane (Fig. 3.2A,B). In both systems, ANPP 

and decomposition increase up to an MAP of 2 m y-1, which reflects the dependency of 

plants on water for growth. Yet, where montane forests show a decline in productivity 

and decomposition with increasing rainfall, both metrics continue to increase in lowland 

forests. However, the ultimate mechanism behind the rainfall-C relationships may be 

similar in both forest systems, and consistent with those first proposed by Schuur and 

others (Schuur et al. 2001, Schuur 2003).   
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Figure 3.2 | Climate control of tropical ANPP, decomposition, plant – soil feedbacks and 
scaling between ANPP and AGB. Intact lowland (circles) and montane (triangles) 
tropical forest (A) ANPP and (B) decomposition (k – decay constant) as a function of 
annual rainfall. (C) ANPP versus k for lowland and montane forests. (D) Aboveground 
biomass as a function of ANPP in montane (traingles), American (circles), African 
(squares) and SE Asian (crosses) rainforests. Closed symbols represent sites where ANPP 
was measured as the sum of total litterfall and biomass increment, whereas open symbols 
represent sites where ANPP was estimated based on a predictive relationship between 
litterfall, biomass increment or biomass (Full details in SOM). Non-linear curve-fitting 
techniques were used to generate best-fit empirical equations, which were compared 
using Akaike’s Information criterion. 
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In both montane and lowland forests, ANPP is strongly related to rates of leaf 

litter decomposition (Fig. 3.2C), suggesting a tight coupling between rates of nutrient 

mineralization from organic matter decomposition and realized forest productivity. The 

decline in both ANPP and decomposition in the cooler montane forests is consistent with 

past work (Schuur et al. 2001). The hypothesized mechanism behind the decline in CO2 

exchange is associated with declining soil O2 levels reducing root and microbial 

metabolism under increasingly wet conditions.  When high rainfall causes lower soil 

redox conditions, decomposition is inhibited, thereby reducing the delivery of nutrients 

that are essential for plant growth (Schuur and Matson date). Over time the formation of 

water – absorbing organic soil horizons, which are a common feature of cooler rainforests 

(Proctor et al. 1988, Salinas et al. 2010, Wolf et al. 2011), further slows nutrient turnover 

(Schimel et al. 1995, Salinas et al. 2010, Wolf et al. 2011). Lower nutrient flow 

throughout the ecosystem, in turn, can drive the evolutionary development of growth 

forms that maximize nutrient use efficiency (Vitousek et al. 1982). Those traits come 

with a trade-off against growth (Reich et al. 1999, Wright et al. 2004); for example, 

sclerophyllous leaves are long-lived and serve well for nutrient retention (Vitousek 1982, 

Reich et al. 1997), but their smaller size and thickness reduces photosynthetic potential 

(Reich et al. 1999. Wright et al. 2004). 

The trajectory of lowland forest ANPP diverges from montane systems at high 

rainfall.  Temperature is the prime difference as lowland and montane forests are defined, 

and its affect on plant – microbial function underlies the simultaneous and positive 

response of ANPP and k to high rainfall. Ample radiant energy promotes high 

evapotranspiration in lowland forests (Fisher et al. 2009), and water rarely accumulates in 
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soil to levels to restrict oxygen diffusion to roots and microbes (Silver et al. 1999, Schuur 

and Matson 2001, Wieder et al. 2011). Macropore flow via soil piping is common in 

lowland ecosystems and also improves water drainage (Chappell 2011), potentially 

enhancing aeration of the soil atmosphere. When warm temperatures that favor high 

heterotrophic decomposition (Davidson and Janssens 2006, Salinas et al. 2010) combine 

with high rainfall (Powers et al. 2009, Wieder et al. 2010), rapid soil organic matter 

turnover accelerates nutrient recycling (Fig. 2B). Higher recirculation of nutrients 

throughout the ecosystem leads to foliage with greater nutrient contents and lower 

recalcitrant structural tissue (Aerts and Chapin 2000). In combination with lower nutrient 

resorption (Vitousek et al. 1982, Kobe et al. 2005, Yuan and Chen 2009), senescent 

foliage creates nutrient – rich litterfall that facilitates high rates of decomposition (Schuur 

et al. 2001, Aerts and Chapin 2000) reinforcing the plant – soil feedback. 

Climate (and its connected mechanisms) is only one of many factors that regulate 

tropical CO2 exchange, as evident by the scatter in Fig. 2. Variation in cloud cover and 

radiation, as well as local and regional differences in evolutionary history and species 

composition (Baker et al. 2004, Quesada et al. 2009) also combines to regulate ANPP in 

tropical forests. Indeed, such forests display substantial biogeochemical heterogeneity at 

all scales, challenging generalizations about controlling mechanisms for any major 

ecosystem process (Porder et al. 2005, Townsend 2008). However, using site – specific 

information, we find further evidence for the importance of interactions between climate 

and nutrient availability. An analysis of residuals in Fig. 2A shows that rainforest ANPP 

is higher on more fertile soil orders (i.e. Alfisols, Inceptisols, Ultisols) than generally less 

fertility soils (i.e. Spodosols, Entisols, Oxisols; Fig. 3), which has been shown on local 
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(Paoli et al. 2007) to basin-wide scales (Mercado et al. 2011, Malhi et al. 2004, Chave et 

al. 2009). This aligns with global evidence that plant traits that favor growth over nutrient 

conservation strategies are associated with higher soil fertility (Ordonez et al. 2009). 

Such soil orders also vary in texture and mineralogy, and the community composition 

with associated physiological characteristics (i.e. wood density) of tropical forests often 

changes markedly with soil type (Baker et al. 2003, 2009). Thus, much of the variability 

seen in Fig. 3.2A may result from climate-nutrient interactions that play out differently 

across major soil orders, and are a product not only of the local soil conditions, but of the 

differences in species assembly such soil conditions can drive.  

 

 

Figure 3.3 | ANPP residual variation from Fig. 3.2A categorized by soil taxonomy. 
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aboveground C storage (Fig. 3.2D).  While this relationship may seem intuitive, 

disturbance regime and stand demographics can cause differential scaling between 

growth and biomass among Earth’s forests (Keeling and Phillips 2007). For example, 

redwood trees in Northern California reach tremendous stature not by growing fast, but 

by living for a very long time (Busing and Fujimori, 2005). For tropical systems previous 

work shows that Amazonia AGB saturates with respect to ANPP (Keeling and Phillips 

2007), yet we find no such plateau for SE Asian forests (Fig. 3.2D).  

The most C-rich tropical forests are found in SE Asia (Fig. 3.2D), a regional 

distinction that reflects a synergy of at least two broad life history trends. First, SE Asian 

lowland forests allocate more C to wood over leaf growth (Fig. 3.4). This biogeographic 

pattern likely reflects phylogenetic make up of the Old World tropics, which include the 

prevalent Dipterocarp forests (van Welzen and Slik 2009) renowned for their stature (Slik 

et al. 2011, Paoli et al. 2007). Second, forests in SE Asia tend to have lower mortality 

rates than Mesoamerican forests (Fig. 3.5), allowing more time for biomass accrual. 

These regional differences in forest turnover and allocation suggest that intact forests in 

SE Asia may have greater potential as a long term C sink than forests in the New World. 
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Figure 3.4 | Observed litterfall versus biomass increment growth for tropical rainforests. 
SE Asian lowland rainforest (crosses) carbon allocation segregates from all montane 
(triangles), Mesoamerican (circles) and African (squares) lowland rainforests. 
Monodominant rainforests, comprised mainly of Hawaiian sites, were excluded from this 
analysis, and are not shown. See Table 1 for statistical analysis and empirical equations. 
 

 
Figure 3.5 | Comparison of forest mortality rates between SE Asian and Mesoamerican 
rainforests. One-way ANOVA, p = 0.034 
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Table 3.1 | Empirical equations for estimation of ANPP and ANPP components based on 
litterfall, biomass increment and AGB. 

 
Next, we used the climate – ANPP equations shown in Fig. 3.2A to map the 

potential distribution and magnitude of ANPP throughout the tropical forest biome. This 

empirical approach reproduced observational values with 23% relative error, at a 95% 

confidence interval (Fig. 3.6, 3.7; Table 2). Taking into account the additional errors 

associated with each step in up-scaling (Table 2), tropical ANPP averages 9.2 ± 2.9 Pg 

C/yr (Table 3.1). Total NPP rises to ~ 14.0 Pg C/yr when correction factors were applied 

to include unmeasured components (Table 3.1). Regional hotspots of C uptake are those 

that have high rainfall, such as northwest Amazonia, southern Central America and most 

of Oceania (Fig. 3.8). These regions also exhibit high carbon density because of the 

strong relationship between AGB and ANPP (Fig. 3.2D), and the regional differences 

Predictor Variable  Estimated Variable Region* Estimation Parameters ‡ 
   a b 
Litterfall Biomass Increment NWL, MONT, AFR 0.904 -2.354 
Litterfall Biomass Increment SEA 1.642 -1.540 
Biomass Increment Litterfall NWL, MONT, AFR 1.106 2.604 
Biomass Increment Litterfall SEA 0.609 0.938 
Aboveground 
Biomass 

ANPP Lowland 1.480 0.386 

Aboveground 
Biomass 

ANPP Montane 1.087 0.386 

*Regional abbreviations: NWL, new world lowland forests; MONT, all montane forests; 
AFR, African forests; SEA, Southeast Asia forests.    
‡ Reduced Major Axis regression was used to find best-fit linear models for litterfall by 
biomass increment and vice versa: (y = a*[Predictor Variable] + b). A power function 
was used from AGB by ANPP: (y = a*[Predictor Variable] ^ b). When litterfall was 
used to predict biomass increment, y-intercept values were negative at low litterfall 
values, yielding negative biomass increment. Given this impossibility, we assumed that 
biomass increment was functionally zero for several sites.   
¶ All models significant at p < 0.001. 
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discussed above cause the wettest of SE Asian forests to display the highest values of 

ANPP and C storage. 

Figure 3.6 | Predicted versus observed ANPP based on the estimation of ANPP 
components. (A) ANPP with biomass increment estimated, (B) ANPP with litterfall 
estimated, and (C) ANPP estimated from forest AGB using the equation in Figure 1D. 
Statistical results shown in Table 3.2.   
 

 
Figure 3.7 | Predicted versus observed ANPP based on the empirical modeling of ANPP 
using mean annual rainfall. Statistical results shown in Table 3.2.   
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Table 3.2 | Uncertainty estimation for up scaling ANPP and AGB at the global scale.   

 

 
Figure 3.8 | Pantropical ANPP. Field measurements were up scaled using the empirical 
climate – ANPP relationships in Fig. 2A applied to montane and lowland forests 
separately. The mean annual precipitation predictor was obtained from the Worldclim 
long-term (year 1950 – 1990) dataset at 10 – minute resolution. 

Source Reference Estimation Error 
Measurement Precision*  RMSE r  Relative Error (%) 
Allometry for Aboveground 
Biomass 

Chave et al. 2005   6.8 

Litterfall Malhi et al. In press   5.9 
Biomass Increment Malhi et al. In press   10.9 
Estimation of ANPP ‡     
Aboveground Biomass This study (Fig. S5A) 2.32  6.73 
Litterfall This study (Fig. S5B) 2.87  9.45 
Biomass Increment This study (Fig. S5C) 2.29  2.65 
Empirical Prediction¶     
ANPP This study (Fig. S6) 2.69  23.39 
AGB This study (Fig. S7)   20.57 
Upscaling (plot to 1 km pixel)     
ANPP Clark et al. 2000, Chave et al. 

2005, Mascaro et al. 2011 
  10 

AGB   10 
Mapping Tropical Carbon Combined Error (%) § 

ANPP  31.45 
AGB  37.58 

* This reflects measurement precision, not methodological bias.  
‡ Uncertainty was assessed using best-fit equations between observed vs. modeled 
ANPP when using AGB, litterfall and biomass increment as predictor variables in 
Reduced Major Axis regression. Regression results shown in Table S1 and Figure S5.  
¶ Tests predictive power of the empirical equations in Fig. 1A (ANPP) and Fig. 1D 
AGB). 
§ Error propogated as !productivity, biomass = (!2

measuremnt + !2ANPP estimation + !2prediction + 
!2

upscaling)1/2 
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We compared our field-based, empirical extrapolation against values obtained 

using a number of other methods used to estimate the tropical forest C budget.  First, we 

compared our estimates to a similar empirical scaling approach that employs the single 

‘hump-shaped’ equation, as was done in prior global modeling exercises (Schuur 2003, 

Zaks et al. 2007, del Grosso 2008). Using the relationships in Fig 3.2A yields a 30% 

increase in ANPP over estimates based on the single equation (Table 3.3), underscoring 

the importance of the wet lowlands in driving pan-tropical NPP.  Second, biome-wide 

ANPP derived from the NCAR CLM CN 4.0 model (Oleson et al. 2010) is 25% higher 

than our estimate, which probably reflects model error and uncertainties associated with 

carbon uptake, especially in the tropics (Beer et al. 2010, Bonan et al. 2010). Third, the 

MOD17 algorithm used to derive MODIS-based estimates of ANPP apply 

ecophysiological principles of tree growth with measures of incoming radiation, water 

stress, and temperature (Zhao et al. 2010). Our pan-tropical ANPP estimate based on 

extrapolation of site-level data is remarkably similar to the MODIS decadal (2000 – 

2010) average. However, this correspondence should be viewed with caution, as 

substantial spatial discrepancies exist between the patterns shown in Fig. 3.2 and those in 

recent MODIS estimates (Zhao et al. 2010). The database we report here provides a new 

resource for more thorough evaluations of tropical NPP estimates from processed based 

models and satellite derived products.  
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Table 3.3 | Estimates and comparison of pantropical productivity and biomass (circa 
2000). 

 

 

 

Study Region Productivity (Pg C yr-1) Biomass (Pg C) 

     ANPP NPP*  AGB‡    TB¶ 
This study Tropics 9.20 ± 2.89 13.98 ± 4.40 274.09 ± 

102.78 
342.61 ± 140.47 

 Americas 5.03 ± 1.58 7.65 ± 2.40 149.97 ± 56.24 187.46 ± 76.86 
 Amazon 4.12 ± 1.33 6.40 ± 2.01  125.41 ± 47.03 156.75 ± 64.27 
 Africa 1.44 ± 0.45 2.20 ± 0.69 42.91 ± 16.09 53.64 ± 21.99 
 SE Asia 2.73 ± 0.86 4.15 ± 1.30 81.28 ± 30.48 101.60 ± 41.66 
Schuur et al. 2003 Tropics 6.8    
Zhao et al. 2010 § Tropics 9.24  12.84   
Bonan et al. 2010 § Tropics 12.32     
Saatchi et al. 2011 
§ 

Tropics   179.36 224.20 

Reusch and Gibbs 
2008 § 

Tropics   70.94 97.19 

Pan et al. 2011 ∞ Tropics   177.16 256.76 
Malhi et al. 2006 ∞ Amazon   95 129 
Lewis et al. 2009 ∞ Africa   52.9 65.8 
Mean productivity and biomass estimates and 95% confidence intervals. ANPP 
extrapolation derived using the empirical equations (Fig. 1A, SOM) using rainfall at 
~1-km spatial resolution (Worldclim.org) with lowland and montane forests climate 
responses modeled separately. AGB was predicted from modeled ANPP (Fig. 1D). 
Dry weight was converted to carbon units using a factor of 0.5. Uncertainties 
associated with each step of the estimation were propagated as:  !productivity, biomass = 
(!2

measuremnt + !2ANPP estimation + !2
prediction + !2upscaling)1/2. Full details on uncertainty 

analysis and NPP/TB estimation in SOM. 
*Includes a correction factor of 1.52 to ANPP to account for herbivory, volatile 
organic compounds emissions, branch fall and root production.  
‡ Includes a correction factors for unmeasured components dead wood (10%) and 
small trees and lianas (9.9%). 
 ¶ Includes a correction factor for root biomass (21%).  
§ For comparison, spatial data were trimmed to the World Wildlife Fund’s humid 
tropical forest extent for areas with " 25% canopy cover derived from Moderate-
resolution Imaging Spectroradiometer (MODIS) Vegetation Continuous Fields  250 
metre pixels aggregated to in 1-km spatial resolution for year 2000, yielding an area of 
~ 1,342 Mha similar to the extent considered in the FRA 2010. 
# For comparison, biomass values were fractionally adjusted to account for 
differences in land area used in each study: Malhi et al. 2006 (+2.9%), Lewis et al. 
2009 (-5.4%), Pan et al. 2011 (-3.5%). 
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We also mapped AGB as a function of ANPP to create a provisional estimate of 

intact rainforest C stocks in tree biomass. After applying a correction factor to include 

roots (Table 3.3), we estimate a biome-wide value of 343 ± 140 Pg C. This estimate (and 

its uncertainty) is higher than some recent estimates (Pan et al. 2011, Baccini et al. 2012, 

Quere et al. 2009), yet not unrealistic as our basin wide estimates are ~18% above and 

below recent values derived from long-term monitoring plot networks in Amazonia 

(Mahli et al. 2006) and Africa (Lewis et al. 2009), respectively. Recent advances in 

satellite-derived measures have made important advances in our ability to estimate 

biomass C storage (Saatchi et al. 2011), but yield consistently lower intact rainforest C 

stocks compared to the values we report here. More worrisome is the substantial 

discrepancy between all of these approaches and those based on the IPCC Tier-1 GPG for 

reporting national greenhouse gas inventories (Reusch and Gibbs 2008). Major new 

economic incentive structures aimed at curbing CO2 emissions, such as Reduced 

Emissions from Deforestation and Degradation (REDD+), rely on accurate quantification 

of forest C stocks (Asner et al. 2010, Saatchi et al. 2011, Baccini et al. 2012). If our 

provisional estimates are accurate, the adoption of current IPCC Tier 1 methods for 

international policy mechanisms would severely undervalue C storage in tropical forests, 

especially in the wet, C-rich lowlands. 

Finally, we used the new database and its derived empirical relationships to 

analyze the C consequences of tropical land use change in a new way. We multiplied 

estimates of forest loss from 2000 to 2005 by our provisional map of AGB to assess 

patterns in forest C lost to deforestation and forest degradation. Using this approach we 

estimate reductions in above ground C stocks in the Americas, SE Asia and Africa of 
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3.36 (± 1.35), 1.71 (± 0.70) and 0.28 (± 0.11) Pg C, respectively (Fig. 3.9); for a 

combined rate of 1.08 Pg C y-1. This rate equates to 15% of CO2 emissions from fossil 

fuel and cement production over that time period (Le Quere et al. 2009). This estimate is 

on the low end of prior assessments (van der Werf et al. 2009, Pan et al. 2010, Baccini et 

al. 2012), which partly reflects the exclusion of woodlands and savannas as our database 

was focused on rainforests alone.   

 

 
Figure 3.9 | Cumulative aboveground biomass loss from year 2000 – 2005. The map is 
the product of AGB, estimated from ANPP (Fig. 3.2), and fractional forest cover loss at 
18.5 km grid cells determined by Hansen et al. 2008. The same boundary constraints 
apply as in Fig. 3.8. 

 

Our analysis suggests an opportunity for combined strategies that promote 

biodiversity conservation and the protection of high value C reserves: the wet lowlands 

that show the highest rates of CO2 exchange and biomass C storage are also among the 

most species rich forests of the tropics (Gentry 1988, Clinebell 1995, Myers et al. 2000). 

To date, these regions have generally been subjected to lower rates of deforestation than 

drier portions of the biome (Hansen et al. 2008).  However, this trend may not last.  For 

example, our analysis suggests that the recent surge in oil palm agroforestry is likely to 

drive notably high per hectare rates of forest C loss and reduced C storage potential in SE 

Asia, concurrent with documented biodiversity consequences (Sodhi et al. 2004, 2010; 
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Gibson et al. 2011). In general, our analyses imply that emerging pressures on wet, C- 

and species-rich lowland tropical forests such as SE Asia, the western Amazon, and 

portions of Africa and Central America (Hansen et al. 2010) would be particularly 

damaging to both C sequestration and conservation goals. 
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CHAPTER 4: ORGANIC FORMS DOMINATE HYDROLOGIC NITROGEN 
LOSS FROM A LOWLAND TROPICAL WATERSHED 
 

4.1 Abstract 

Observations of plant – available nitrogen (N) loss in stream water have reinforced the 

notion that lowland, primary tropical rainforests cycle N in relative excess of plant and 

soil uptake. Here we challenge this generalization by showing ultra-low bioavailable N 

loss from a lowland rainforest on the Osa Peninsula, Costa Rica. For 48 of 52 consecutive 

weeks, dissolved organic nitrogen (DON) comprised on average 85% of dissolved N loss, 

except for a one month period in the dry season when low flows and upslope nitrification 

concentrated nitrate (NO3
-) in stream water. Altogether, dissolved N export accounted for 

~ 13% of the combined inputs from free – living N fixation and atmospheric N 

deposition. Notably, the largest form of N export was as particulate organic nitrogen 

(PON): we estimated losses of 14.6 kg N ha-2 yr-1, driven by episodes of high flow that 

appear to trigger riparian slope failure in the late wet season. Relative to N inputs, PON 

loss during landscape erosion may be large enough to constrain ecosystem level N stocks 

over longer timescales. Here we amend the DON leak hypothesis to include PON loss 

that also occurs independent of biotic demand, albeit by different mechanisms.  High 

PON losses may be most common in very wet regions with complex terrain – such as my 

study site – but many tropical regions have similar state factor combinations to those 

found in the Osa region.   Thus, PON loss may play an important role in shaping the 

tropical N cycle across a significant fraction of the biome.   

4.2 Introduction 
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A widely held model in ecosystem ecology holds that tropical forests growing on 

highly weathered soils exhibit conservative P cycling and cycle N in excess of biological 

demand (e.g. Vitousek and Sanford 1986, Hedin et al. 2009). Multiple forms of evidence 

from plants, soils and streams have been used to support this paradigm.  These include: 

high rates of net nitrogen processing (e.g. Vitousek and Matson 1988, Davidson et al. 

2003) that elevate soil NO3
- pools (e.g. Davidson et al. 2007, Sotta et al. 2008), high 

foliar N:P ratios (McGroddy et al. 2004, Townsend et al. 2007, Fyllas et al. 2011) and 

lower foliar N resorption (Vitousek 1982).  Furthermore, comparatively high 15N values 

in foliage and soil of lowland imply high rates of nitrogen loss via fractionating pathways 

( Martinelli et al. 1999; Amundson et al. 2003, Bai and Houlton 2009), a pattern that fits 

with reports of high levels of bioavailable N in streams (Bruijzneel et al. 1991, 

McDowell and Asbury 1994, Newbold et al. 1995, Schrumpf et al. 2004, Deschert et al. 

2005, Brookshire et al. 2012). 

These observations have shaped general paradigms of tropical forest organization 

and function (Davidson et al. 2003, Menge et al. 2009, Quesada et al. 2009, Hedin et al. 

2009, Cleveland et al. 2011, Brooskhire et al. 2012).  However, the majority of past 

studies have been focused in cooler montane systems (e.g. Bruijzneel et al. 1991, Marrs 

et al. 1998, Tanner et al. 1998) that are not likely to represent the lowlands, or lowland 

forests that, in general, represent drier portions of the tropical forest biome that also 

feature the most highly weathered soil types (e.g. Neill et al. 2001, Anaya et al. 2007). 

Yet, tropical landscapes have a myriad of state factor (climate, organisms, topography, 

parent material and time; Jenny 1941) combinations not fully captured in past studies 

(Townsend et al. 2008). One such understudied space in the state factor spectrum are 



! '$!

lowland regions with high rainfall and comparatively more fertile soils, such as the 

Andean arc of the Amazon, much of Southeast Asia and localities throughout Central 

America and the Antilles. This legacy has motivated research in a primary rainforest on 

the Osa Peninsula, Costa Rica, where a different picture of tropical N cycling has been 

emerging over the past decade.  

Despite high inputs of N from deposition and biological fixation (Reed et al. 

2007), bioavailable N rarely accumulates and is often at detection limits (Wieder et al. In 

prep). The soil N cycle is a classic example of a small pool – fast turnover system 

(Davdison et al. 1991, Stark et al. 1997, Perakis et al. 2005); i.e. net mineralization is 3 

orders of magnitude lower than the gross N flux, and the entire surface soil nitrate pool 

turns over in a mere 2.4 hours (Wieder et al. In prep). Signals of “conservative” N 

cycling are seen throughout the ecosystem. Foliar N:P ratios vary substantially across 

species, but bracket the Redfield ratio of 16 (Townsend et al. 2007), a value that is lower 

than many lowland forests in drier regions (Townsend et al. 2007), and one that suggests 

the potential for N constraints to productivity (Reich and Oleskyn 2004). Likewise, foliar 

15N values bracket zero (Unpublished Data), a pattern consistent with a steady decline in 

isotopic values with increasing rainfall across Amazonia (Nardoto et al. 2008). Finally, 

past experimental work showed that soil respiration and root biomass increased by ~50% 

in response to N fertilization (Cleveland et al. 2006).  

Conceptual models of hydrologic N loss (e.g. Brookshire et al. 2012) have been 

shaped by the generalization that tropical rainforests are naturally replete with N.   

However, the patterns summarized above for my field sites suggest that biological 

demand for N in this ecosystem is high, leading to low potential for exogenous losses.  
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The patterns also suggest that the common “N-rich, P-poor” generalization for lowland 

forests on highly weathered soils (such as those present in my sites) may not hold 

everywhere.  Here, I report on a study designed to quantify N inputs and losses using a 

watershed approach, a method that has been used successfully for over 4 decades to 

understand biogeochemical cycling at the ecosystem scale.  

4.3 Methods 

4.3.1 Study Site 

The field site is located in the Golfo Dulce Forest Reserve in southwest Costa 

Rica on the Osa Peninsula (8o43’ N, 83o37’ W). The forest is a highly diverse, old-growth 

forest with no known history of substantial human disturbance, at least in modern times. 

Mean annual rainfall is ~5000 mm and mean annual temperature is 26.5 oC. The region 

has a pronounced dry season between December and February. Rainfall usually begins in 

March and intensifies through October and November. My research was focused on a 

9.35-hectare watershed drained by Quebrada Mariposa, which is located near the village 

of Progresso. The underlying bedrock is basalt originating as Cretaceous/Paleocene 

magmatites referred to as the Osa mélange because of occasional breccia composed 

primarily of limestone (Berrange et al. 1988). Soils are predominantly ultisols with 

localized areas of inceptisols on the steep slopes and mollisols in the bottomlands. There 

is no recent volcanic activity in the region and the nature of landscape evolution restricts 

inter-basin water transfer. Therefore, assumptions of closed basin water dynamics apply, 

which allowed us to close the hydrologic portions of the ecosystem N budget.  

4.3.2 Water Budget 
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Precipitation was measured using a tipping bucket positioned in a clearing 

adjacent to the watershed. Runoff in Quebrada Mariposa was measured using a pressure 

transducer placed in gauging well. The well was dug by hand and never dried during the 

course of monitoring. Stage height was related to discharge using a rating curve. 

Instantaneous flow was determined 27 times across the year at this remote site using a 

salt slug injection technique, including an additional 11 times during large discharge 

events. A times-series of discharge at one-hour intervals was derived using the rating 

curve from June 1, 2009 to May 31, 2010.  

4.3.3 Sample Collection, Chemical Analyses and Calculations 

Precipitation chemistry was collected in acid-washed HDPE bottles connected to 

a telescopic funnel elevated two meters from ground level. The stream was sampled for 

chemistry using an ISCO 6200 autosampler for 52 consecutive weeks. We were unable to 

set up flow-triggered event sampling because of frequent instrument malfunction and 

rapid shifts in baseflow, so we established a sampling window of 3 days at 4-hour 

collection intervals. Each sample was filtered through an ashed, pre-weighed Whatman 

GFF 0.7 um filter. Particulate samples were immediately filtered, then frozen along with 

the filtrate that was used for dissolved C and N analysis. At the University of Colorado, 

filters were dried at 105 0C, then pulverized with a mortar and pedestal and analyzed on 

CHN analyzer. POM concentrations were calculated as the percent C or N of total 

suspended solids per unit volume. Dissolved organic carbon and total dissolved nitrogen 

(TDN) was analyzed on a Shimadzu TOC/TN. Dissolved inorganic nitrogen (DIN), 

including NH4
+ and NO3

-, were analyzed colorimeterically on a Alpkem flow injection 

analyzer and microplater reader, respectively. DON was calculated as the difference 
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between TDN and DIN. Precipitation inputs of N were calculated as volume weighted 

mean concentrations of N in rainfall samples. Export fluxes were calculated using flow-

weighted mean concentrations For POM, which scaled strongly with flow (see below), 

concentrations used in export calculations were derived from log – log concentration – 

discharge relationship.  

In addition to C and N input – output measurements, we analyzed several 

biogeochemical parameters in upslope soils. These included net nitrogen processing, 

litterfall and soil solution chemistry, which are important predictors of C and N export 

patterns in other studies. Total litterfall (including leaves, twigs < 2mm, reproductive 

structures and unidentified material) was measured bi-weekly in 0.25 m2 litterfall traps 

positioned within 10 monitoring plots throughout the watershed. Litter was collected at 2 

–week intervals then dried within my field station, and subsequently dried at 60 oC for 

moisture correction. For net N processing, we adapted a field method similar to Ross et 

al. (2008), where four soil cores 9 (0 – 10 cm depth) were collected and composited 

inside 10 plots. An initial KCl-extractable N sample was taken within 1 hour of harvest at 

1:10 W/V ratio, and the rest of the soil was placed in a polyethylene bag in situ and 

extruded 5 days later for final N extraction. Net transformation rates were assessed every 

4 weeks for one year; and, calculated as final minus initial N concentrations expressed as 

ug N mg soil-1 d-1. Soil solution C and N chemistry was collected in 10 monitoring plots, 

each instrumented with a zero-tension surface lysimeters below the leaf litter layer 

(described in Wieder et al. 2009) and tension lysimeters placed at 15 and 50 cm depth. 

Tension lysimeters were installed using an auger to hand-dig holes, were placed within a 

silica slurry to improve soil – lysimeter connectivity, and given 2 months to equilibrate 
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within the soil matrix. Soil water was pulled at 0.3 MPa, collected bi-weekly and 

analyzed for the same constituents as surface water using the same analytical methods 

aforementioned.   

4.4 Results 

4.4.1 Hydrology 

Over 52 weeks it rained 3220 mm, which is substantially lower than the long-term 

average of ~ 5,000 mm. Runoff during this period was 1111 mm, suggesting that 

evapotranspiration was ~ 2,109 mm assuming no change in ecosystem water storage. 

Quebrada Mariposa is flashy; the runoff response to rain was short lived and grew as 

rainfall intensified with the progression of the wet season. Baseflow varied from < 0.5 to 

> 7 L/s across the year and was overlain by sharp spikes in flow coincident with high 

rainfall events (Figure 4.1).  
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Figure 4.1. 52-week time series of (A) rainfall and (B) discharge at Quebrada Mariposa 
on the Osa Peninusla, Costa Rica.  

 

4.4.2 Terrestrial Processes and Soil Solution Chemistry 

Total litterfall was 11.6 Mg DW ha-2 y-1 and varied seasonally: rates are typically highest 

in the dry season and early wet season, and then declined throughout the remainder of the 

rainy portions of the year (Figure 4.2A). Net mineralization and nitrification averaged 

0.30 and 0.20 ug N mg soil-1 d-1, respectively, whereas NO3
- and NH4

+ averaged 2.40 and 

1.48 ug N mg soil-1. Soil solution chemistry also varied seasonal. Soluble DOC collected 

beneath leaf litter was highest after the onset of rainfall (28.5 mg/L) and declined to a low 

during the dry season (3.1 mg/L). This seasonal pattern was mirrored in soil solution 

collected in tension lysimeters, however DOC concentrations declined on average by 

93% between 0 and 15 cm depth and 98% between 0 and 50 cm depth on average. DON 
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followed the same overall pattern as DOC and DON were closely correlated in each 

portion of the soil profile (data not shown). 

 

Figure 4.2. 52 weeks of (A) litterfall and (B) dissolved nitrogen concentrations in 
hydrologic export in Quebrada Mariposa. Labels: DON (solid circles), N-NO3 (open 
circles), N-NH4 (squares).  
 

4.4.3 Dissolved Carbon and Nitrogen Concentrations and Losses 

Organic nitrogen dominated dissolved N losses (Figure 2B), averaging 85% of 

TDN across the year. Concentrations of DON and DOC were tightly correlated (Figure 

3). Hydrology exerted strong control on DOM and NO3
- concentration (Figure 4). DOM 

displayed a “boomerang” effect in response to rising flow (Figure 4B), which was weakly 

exhibited by NO3
- (Figure 4A). Antecedent litterfall rate was a moderately strong 

predictor of stream water DOC (DOC [mg/L] = 0.25[X] + 0.21, R2 = 0.56, p < 0.001) and 

Early Wet ! Early Wet !Dry!Late Wet !
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DON (DON [ug/L] = 23.61[X] + 71.26, R2 = 0.41, p = 0.018) concentrations, as well as 

DOC and DON concentrations collected in surface, 15 and 50 cm depth lysimeters (data 

not shown). DOC in stream water scaled 1-to-1 with DOC collected at 15 cm depth, 

whereas DOC collected at 50 cm averaged half of stream concentrations (Fig. 4.5); the 

same was true for DON (data not shown). DOC:DON ratios showed little variation (7.94 

± 3.36) across the year (Fig. 4.3).  

 
Figure 4.3. Scaling between dissolved and particulate organic carbon and nitrogen. Inset 
shows full scaling between POC and PON. Average stoichiometry of potential organic 
matter sources are shown as solid lines and labeled to the right of Figure 4.3.   
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Figure 4.4. Concentration – discharge relations for (A) DOC, (B) NO3, (C) PON and (D) 
POC:PON. (C) The exponential equation y = 0.00564exp(X * 0.3511) was used to 
calculate flow-weighted mean PON concentrations.  
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DIN was low throughout the year, except for a brief period when NO3
- 

concentrations spiked during the height of the dry season when flows were very low (Fig. 

2). NO3
- concentrations showed correspondence with antecedent nitrification sampled 

surface soils 2 months prior (y = 228.10 * [X] - 9.50, r2 = 0.396199). Stream water 

weakly reflected NO3
- in 15 cm depth lysimeters and displayed no relationship with 

chemistry at 50 cm depth (Fig. 5). However, NO3
- inversely related to DOC concentration 

in the stream (y = 31.18 – 29.16*ln[X], r2 = 0.42) and soil solution (Fig. 4.6). N-NH4, N-

NO3 and DON fluxes in export were 0.06, 0.26 and 1.37 kg N ha-1 yr-1, respectively. 

Figure 4.5. Scaling between lysimeters and stream water dissolved organic carbon (A) 
and nitrate (B). Open and closed circles represent chemistry from lysimeters installed at 
15 and 50 cm depth, respectively. Dashed line is 1:1 ratio.   
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Figure 4.6. Nitrate as a function of dissolved organic carbon in shallow (open circles) and 
deep (closed circles) soil solution as well as stream water (diamonds). The solid lines 
represent ratios of DOC:N-NO3. 
 

4.4.4 Suspended Sediment, POC and PON Concentrations and Losses 

Log – log concentration – discharge scaling shows that TSS concentrations 

increase exponentially with discharge. Both POC (0.00827(X) + 0.26, r = 0.99) and PON 

(0.00075(X) + 0.01, r = 0.99) increased strongly with TSS concentration. POM carbon 

and nitrogen concentrations were higher in the dry and early wet season, averaging 2.5 

and 0.16%, respectively, and sharply declined into the wet season at high flows (%C, 

0.88; %N, 0.07). The POC:PON ratio varied from 10 to 22, and declined into the wet 

season (Fig. 4.4D). Sediment yield was 5.10 Mg ha-2 y-1. Annual PON loss was higher 

than dissolved losses at 14.6 kg N ha-2. Event – driven losses of PON overwhelmed 

baseflow export. At the highest flows exceeding 13.5 L/s, which only occurred for 51 

hours during the year, the watershed lost 7.6 kg of N as PON.  
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4.5. Discussion 

Under the classical notion that old-growth tropical rainforests are N-rich, 

inorganic N is expected to overwhelm organic N losses (e.g. Hedin et al. 2003, 

Brookshire et al. 2011, 2012). We found the opposite pattern in the watershed 

investigated here, which aligns with multiple indicators of conservative N cycling in the 

plants, soils and microbes of this rainforest. We hypothesized that the high rates of net 

primary productivity in this system create high biotic N demand, which in turn restricts 

the accumulation and loss of soluble N. In addition, substantial, episodic losses of PON 

that exceed measured N inputs likely prevent the accumulation of N excesses in this 

system, leading to higher documented indices of internal N use efficiency within the plant 

– soil – microbial system. 

4.5.1 Dissolved Mineral N Loss 

In N rich systems, inorganic N loss is dominated by NO3
- (Neill et al. 1995, 

Bruijnzeel et al. 1991, Brookshire et al. 2012). NH4
+ is typically favored over nitrate for 

biological uptake and has a greater binding affinity to the negatively charged soil matrix 

(Schimel and Bennett 2004).  These qualities restrict NH4
+ leaching, even in the most P 

limited systems (Hedin et al. 2003). The primary mechanism of hydrologic loss is 

through nitrification of NH4
+ to NO3

- (Hedin et al. 2003, Lohse et al. 2005, Corre et al. 

2010), which in turn can leach from soil to the stream when in excess of biotic demand 

(Neill et al. 2001; Brookshire et al. 2011, 2012). Early studies of several lowland forests 

show one-to-one scaling between the net NH4
+ and NO3

- production (Vitousek and 

Matson 1988), and net nitrification in surface soil has been shown to be an effective 

predictor of NO3
- loss (Hedin et al. 2003).  
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In Quebrada Mariposa, NH4
+ loss was uniformly low and NO3

- increased to 

appreciable levels for one-month in the dry season.  Both net nitrification and soil NO3
- 

levels were extremely low throughout the year, except for the transition between late wet 

to early dry season preceding the stream water NO3
- spike. NO3

- concentrations were 

related to antecedent net nitrification (i.e. two – month offset) as well as shallow soil 

water NO3
- concentrations, suggesting a lag time between production in upslope soils and 

stream water chemistry due to hydrologic transit. The dry season is also a time when soil 

moisture and stream flows are low, factors that also concentrate surface water NO3
- (Fig. 

4.4A). 

Elevated net nitrification is frequently observed in other rainforest soils during the 

dry season (Vernimmen et al. 2007, Anaya et al. 2007, Kiese et al. 2008, Sotta et al. 

2008, Owen et al. 2010). During this period a shortage of soluble, bioavailable organic 

compounds creates C limitation for heterotrophic microbes, whom lower competition for 

bioavailable nitrogen (Schimel and Bennett 2004). The subsequent rise in NH4
+ 

availability at low DOC concentrations stimulates net nitrification (Verhagen 1992, 

Yavitt et al. 2004, Anaya et al. 2007). That is, for most of the year, NO3
- is low when 

soluble C levels are high enough (i.e. above microbial C:N composition) to keep 

heterotrophic microbes in a state of N limitation. This microbial dynamic underlies the 

inverse, nonlinear relationship between NO3
- and DOC in soil lysimeters and stream 

water (Fig. 4.6), a pattern that emerges globally (Taylor and Townsend 2010; Chapter 

2).  

Denitrification might also contribute to low stream NO3
-; yet, limited surface soil 

production likely constrains the process for much of the year.  However, during the late 
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wet – dry season transition, the availability of DOC and NO3
- might converge with 

optimal redox conditions to theoretically increase denitrification. Taylor and Townsend 

(2010; see Chapter 2) found that denitrification rates increases when DOC:NO3
- ratios 

are close to 1, which occur throughout the watershed for about a one-month period in the 

seasonal transition. Wieder et al. 2011 found that N2O fluxes are highest during this 

period, when soil oxygen was at its nadir. Though N2O fluxes were low (< 1 kg N ha-2 yr-

1) compared to N inputs (Fig. 4.8), suggesting relatively low denitrification, the high 

levels of rainfall may shift gaseous N species toward N2 predominance (Davidson et al. 

2003; Houlton et al. 2006), which is notoriously difficult to quantify (Groffman et al. 

2006).  

There are two notable examples where physical factors are likely to override 

biological control. In montane systems with thick O – horizons that absorb substantial 

amounts of water, prolonged interaction with water can desorb and enrich shallow soil 

water with NH4
+ (Bruijzneel et al. 2001, Saunders et al. 2006, Goller et al. 2005). High 

rainfall rates can exceed infiltration capacity of the underlying mineral soil and transfer 

NH4
+ to streams by generating lateral flow through organic-rich soil horizons (Goller et 

al. 2005, 2006; Boy et al. 2009). Secondly, in soils characterized by variable charge 

clays, such as many of the Ultisols and Oxisols that occur throughout the lowland tropics 

(Sanchez 1975), anion exchange capacity can reduce NO3
- mobility through non-specific 

sorption (Sollins et al. 1988, Lohse et al. 2005).  In a watershed near the Quebrada 

Mariposa, with parent material of the same origin, soil mineralogy was mainly comprised 

of chlorite, smectite and kaolinite with only trace levels of iron and aluminum oxide 

minerals such as gibbsite and goethite (Scheucher et al. 2008). The dominance of early to 
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intermediate stage weathering products suggests limited anion sorption capacity. 

However kaolinite can be positively charged, but often at a zero point charge well below 

the pH of my soils (Bolland et al. 1980), which averages 4.85 (Cleveland et al. 2006).  

Overall, the export of NO3
- (0.32 kg ha-2 y-1) was very low compared to internal N 

fluxes: gross rates of ammonification and nitrification at our site are some of the highest 

measured in the world (Wieder et al. in prep), yet net accumulation of NH4
+ and NO3

- are 

at the detection limit most of the year (Fig. 4.8). The low residence time of soil NO3
- 

(~2.4 hrs) is far less than the 2-day average found in N-limited forests found Oregon 

(Stark and Hart 1997) and Chile (Perakis and Hedin 2005). Comparison of surface to 

shallow soil solution shows that < 2% of NO3
- production in the litter layer leaches to 15 

cm depth in this zone of invigorated plant – microbial activity. The ultra low levels of 

inorganic N loss relative to DON highlight the lack of bioavailable N accrual and loss.  

4.4.2 Dissolved organic matter loss  

Biology and hydrology also interact seasonally to control patterns of DOM loss. 

Concentrations of DON are highly correlated with DOC throughout the year (Fig. 4.3), 

and both vary strongly with antecedent leaf litterfall, a large source of potentially soluble 

organic matter. Litterfall generally declines into the wet season until a sharp increase in 

the dry season (Figure 4.2A), a typical pattern of many tropical forests that experience 

pronounced rainfall seasonality (Proctor et al. 1983). As a result, substantial litter stocks 

build up on the forest floor, which undergo microbial decomposition (Cleveland et al. 

2006, Leff et al. submitted) and physical dissolution (Wieder et al. 2009) at the onset of 

the rainy season. The increase in DOC with baseflow in the early wet season suggests 
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flushing of the forest floor when soluble C fluxes are high (e.g. Bucker et al. 2011, 

Shanley et al. 2011), with subsequent depletion and dilution as the wet season progresses. 

From my sampling it was not possible to identify the specific flow paths of DOM, 

yet the one-to-one scaling between stream water and 15 cm depth suggests hydrologic 

coupling between shallow surface soils and stream water, as DOM concentrations at 50 

cm depth are half that of the stream. One possibility is subsurface macropore transport 

from shallow soil solution to the stream. How macroporosity maps across the landscape 

is unknown, yet a recent pantropical synthesis (Chappell et al. 2011) shows that soil pipes 

are very common, particularly in ultisols. Indeed, soil pipes are commonly found along 

the stream channel of Quebrada Mariposa. Since there is no known deep source of 

soluble C, soil pipes might be transporting DOM from relatively solute rich surface 

horizons that bypass deeper zones of biogeochemical processing (Negishi et al. 2007, 

Chappell and Shurlock 2007, Shanley et al. 2010).  

Still though, the DOC transported from this region is 9-fold lower to that found 

beneath the litter layer, implying that soil pipes emerge at depths above which DOM has 

undergone significant microbial processing before export. This is reflected in stream 

water DOC:DON ratios that are close to microbial C:N stoichiometry (Cleveland et al. 

2007) and consistently low throughout the year (Fig. 4.3). This uniform stoichiometry 

despite strong seasonal variation in biological activity and rainfall indicates consistently 

high, and limiting hydrologic bypassing, of microbial metabolism of organic matter. 

Compound – specific information using pyrolysis GC-MS reveals that the vast majority 

of soil organic matter displays chemical signatures of microbial degradation (Grandy et 

al. unpublished data). A small fraction of DOM does however escape retention, probably 
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because of its relative recalcitrance to decay; the implications of DON loss are discussed 

below.  

4.5.3 Particulate Organic Matter Loss 

The naturally high sediment yield (510 Mg km-2 y-1) reflects the erosive forces 

operating on the Osa Peninsula. The region is undergoing rapid uplift of ~ 5 m/kyr, and a 

climate conducive to high rates of weathering accelerates denudation of the landscape 

into the nearby ocean (Berrange and Thorpe 1988). The annual sediment load is on par 

with other tropical regions undergoing tectonic activity (reviewed in Douglas and Guyot 

2005). There have been a tremendous number of hydrologic studies on how storms affect 

runoff, flow paths and sediment yield in the tropics. However, PON loss is rarely 

measured in tandem; only a few published studies (McDowell and Asbury 1994, 

Townsend-Small et al. 2006, Neill et al. 2001) provide context for my results. 

Nonetheless, the strong correlation between PON and SS due to the mineralogical linkage 

of sediment and mineral soil organic matter provides insight into the landscape 

mechanisms that drive high PON loss.  

PON remained low for most of the year under baseflow conditions until intense 

rainfall events (> 20 mm h-1) generated a sharp, nonlinear rise in suspended sediment 

load (Fig. 4.4D). The high nonlinearity in the discharge – PON concentration relationship 

suggests that waves of PON loss arise from threshold-driven geomorphological changes 

in the watershed (e.g. Douglas et al. 1999, Shanley et al. 2011). Over half of PON loss 

occurred during 51 separate hours of high flow (0.6% of the year) when rainfall rates 

exceeded 20 mm h-1. Previous studies have reported that large sediment losses coincide 

with episodic landslips and breaks in in-stream debris dams (e.g. Douglas et al. 1999, 
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Townsend-Small et al. 2006, Shanley et al. 2011). The sharp increase in erosion during 

the late wet season is visually evidenced by riparian bank sloughing into the stream 

channel. Fig. 4.7 shows the accumulation of sediment that has settled around the gauging 

station before and after the wet season, which illustrates the bed load and sediment 

transport within Quebrada Mariposa.  

 

Figure 4.7. Photographic comparison of the geomorphological changes to Quebrada 
Mariposa at the (A) beginning and (B) end of the wet season. (B) The white line 
highlights the gauging station for visual purposes. (Photo Credit: P. Taylor) 
 

Slope failure is a stochastic process that likely depends on the interaction of many 

variables: chiefly slope angle, degree of water saturation, soil physical properties and the 

role of plants in soil cohesion by rooting and water balance via evapotranspiration. 

Though a more sophisticated approach is needed to deduce mechanisms driving soil 

detachment and associated PON transport, the composition of POM and its change over 

seasons supports the notion that heavy late season rainfall events trigger landslips into the 

channel. The two end members for POM sourcing are fresh leaf litter and mineral soil 
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organic matter; C:N ratios for these end members average 42 and 10, respectively (Fig. 

3). During the dry and early wet season the POC:PON ratio is 18, which likely reflects a 

mix of detritus (possibly originating within stream) and mineral soil organic matter. As 

the wet season progresses with more frequent and intense rainfall events, the C:N ratio 

drops to ~ 11 (Fig. 4.3) and strongly reflects the C:N composition of mineral soil. 

Weintraub et al. (In prep) investigated the depth stratification of soil organic matter in a 

nearby field site, and found that percent C declines from 3.2 to 0.74% from surface levels 

to 1 meter, respectively. Percent C and N of POM reflects that of surface soil (0 – 20 cm) 

during the dry and early wet season, but matches deeper mineral soil (80 – 100 cm) 

composition in the late wet season. Such erosional processes are common in tectonically 

active regions (Douglas and Guyot 2005) such as the Osa Peninsula, and probably 

underlie the surges of PON loss.  

4.5.4. N loss in a systems perspective 

The role of N loss from ecosystems over longer timescales is best understood in 

relation to N inputs into the ecosystem. In this system, DON loss appears to play a minor 

role in balancing N deposition and fixation, as found in pristine temperate ecosystems 

(Hedin et al. 1995, 2003; Perakis et al. 2002). However, PON export exceeds measured 

N inputs (Fig. 4.8) and is a pathway of N loss that is independent of biotic demand. This 

phenomenon is complimentary to the DON leak concept (Hedin et al. 1995, Neff et al. 

2003), which states that recalcitrant DON compounds can leach from ecosystems, despite 

high biotic N demand, at levels large enough to constrain N accumulation.  

PON leakage differs from DON in two fundamental ways. First, PON loss is 

almost exclusively controlled by hydrologic regime, whereas DON loss depends on the 
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formation and transport of recalcitrant DON compounds. That is, the loss of DON relies 

on the inability of the plant – microbial system to retain all soluble DON compounds 

before delivery to downstream ecosystems (Hedin et al. 1995, Neff et al. 2003). Erosive 

PON loss bypasses N retention regardless of lability, though much of the PON appears to 

be affiliated with mineral soil sourced below the active rooting zone. Second, PON loss is 

highly episodic, whereas DON loss is typically much more consistent in space and time.  

Yet, the magnitude of PON export observed in my watershed suggests that short bursts of 

N loss could still have lasting, system level effects on N accumulation, and 

partiallycontribute to the metrics of conservative N cycling throughout the system. 
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Figure 4.8. Simplified input – output budget of the watershed N cycle with emphasis on 
N stocks and key internal fluxes (gross and net rates, respectively) in the top 10 cm of 
soil. Fixation from Reed et al. 2008, soil N from Cleveland et al. 2003, gross N fluxes 
from Wieder et al. In prep, N2O fluxes from Wieder et al. 2011, net nitrogen processing, 
N deposition and hydrologic losses from this study. Litterfall N calculated as the product 
of litterfall (this study) and average fresh litter C:N ratio (Wieder et al. 2009). Symbiotic 
N fixation, dry N deposition and N2 flux remain unmeasured. Units in kg N ha-1 y-1. 
 

4.6 Conclusions 

Here we showed that patterns of hydrologic N loss break from classical 

expectations of tropical N cycling. Very low concentrations and export of NH4
+ and NO3

- 

support previous and ongoing findings of efficient N retention within this rainforest 

ecosystem. The dominance of DON in N losses suggests a small leak in the N cycle, 

potentially due to recalcitrant compounds that escape uptake and recycling before 

hydrologic loss.  However, PON export is 8.5 fold larger than dissolved N and is 

regulated by different mechanisms. The magnitude of PON loss came as a surprise, and 

would have gone unnoticed if we’d not intensively sampled high runoff events. A focus 

on dissolved N alone would have led to dramatic underestimation of hydrologic N loss, 

and a misleading picture about how such loss may regulate long-term N accumulation in 

upland systems.   In addition, this finding raises concern about the efficacy of the “grab-

sample” campaign approach commonly employed in remote regions to characterize N 

loss.  

PON flux measurements from small watersheds are very rare in the tropics. 

However, sediment yield, which is commonly measured, may be an adequate proxy for 

PON export in erosive systems since they are mineralogically linked; though not optimal, 

extrapolations based on sediment export may provide a possible proxy for examining the 

importance of PON loss to terrestrial ecosystem N budgets pantropically. A fuller 
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appreciation of the role of PON loss in the tropical N cycle will require a better 

understanding of how erosional processes, which are often episodic, interact with 

biological function in space and time. The high fluxes reported here suggest that over 

longer timescales PON loss in erosive regions of the world is large enough to constrain N 

accumulation and cause upland systems on complex terrain to depart from classic 

paradigms about nutrient limitation in tropical forests.   
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