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Introduction

Bayesian epistemology proposes norms on degrees of belief that are supposed to

constitute rational ideals. The most widely endorsed norm is probabilism, which

requires ideally rational agents to have degrees of belief that can be represented

by a probability function. Unfortunately, probabilistic coherence is unattainable

for human thinkers, because fully complying with the norm is too difficult for us.

In response, Bayesians suggest that for limited thinkers, probabilistic coherence

is an ideal to be approximated. We are supposedly better off the more closely

our credences approximate the ideal. However, it is rarely discussed exactly

in what sense credences are better if they approximate coherence more closely.

In this paper, we first clarify the way in which approximating coherence needs

to be beneficial in order for probabilism to constitute an ideal in the intended

sense. In Section 2, we present existing results from the literature that support

the idea that probabilism is an ideal that should be approximated: On some

measures of incoherence, being less incoherent reduces vulnerability to Dutch

books. Furthermore, given certain other incoherence measures, some ways of be-

ing less incoherent have guaranteed benefits for the accuracy of one’s credences.

The problem is that these known results rely on different ways of measuring

closeness to coherence. Hence, the existing results don’t settle whether, for a

given incoherent credence function, there always are alternative, less incoherent

credence functions that are both better from an accuracy perspective and from
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a Dutch book perspective. In Section 3, we show that is is in fact always possi-

ble, for any given credence function, to identify a series of alternative credence

functions that are less incoherent, and guarantee simultaneous improvements

in accuracy and DB vulnerability. This is good news for the Bayesian project,

because it strengthens the claim that Bayesian ideal norms apply to non-ideal

agents as regulative ideals.1

1 Bayesian Ideal Norms

Bayesians maintain that norms of ideal rationality apply to non-ideal thinkers

in the sense that a non-ideal epistemic state is better the more closely it ap-

proximates this ideal. For this line of argument to be plausible, Bayesians need

to specify what it means to approximate a rational ideal like coherence, and

why doing so is beneficial. Earman makes this point quite forcefully in Bayes

or Bust? : “The response that Bayesian norms should be regarded as ideals to-

wards which we should strive even if we always fall short is idle puffery unless

it is specified how we can take steps to bring us closer to these goals.” (Earman

1992)

Reflection on ideal scenarios in other domains reveals that is not always true

that being closer to an ideal is actually better. Compare the ideal of being fluent

in Portuguese to the ideal of being the first choice for your dream job. Being

the first choice for your dream job is clearly an ideal situation. You would

benefit from it by having the opportunity to pursue a stimulating career, to

earn money by doing something you love, etc. However, there are natural ways

of conceiving of approximations to this ideal that don’t get you an increasing

share of these benefits. If you are the second choice for the position, you get no

more of a portion of the benefit associated with the ideal state than if you are

the fifth choice for the position. The benefits don’t obtain in any of the non-

1Our result demonstrates that it is possible to jointly improve accuracy and reduce DB
vulnerability by approximating coherence, but it is not intended as advice for non-ideal agents
about how to improve, or as a reasoning strategy that non-ideal reasoners can implement.
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ideal situations, even if some of them are intuitively closer to the ideal state

than others. By contrast, suppose that your ideal is to be fluent in Portuguese.

Benefits of fluency in Portuguese include being able to talk to other Portuguese

speakers, understanding Portuguese literature and films, etc. Approximating

the ideal of being fluent clearly gives you an increasing portion of the benefits

associated with being completely fluent. The closer you are to being fluent, the

better you can converse with other Portuguese speakers, and understand films

and literature.

Bayesians clearly think of coherence as being analogous to the language

rather than the job example. Yet, this view needs to be defended. There is a

large literature on why probabilistic coherence is a rational ideal, in which it is

argued that being probabilistically coherent is beneficial. The most prominent

results show that having probabilistically coherent degrees of belief benefits both

the accuracy of one’s attitudes and their ability to guide actions. The accuracy-

dominance argument for probabilism shows that, given a suitable measure of

inaccuracy, if an agent has incoherent credences, there is an alternative coherent

credence function that is closer to the truth no matter what the truth is. If an

agent has coherent credences, her attitudes are not accuracy-dominated in this

way. The Dutch book argument for probabilism shows that incoherent, but not

coherent, degrees of belief justify betting in ways that lead to guaranteed losses.

Hence, coherent credences are better suited than incoherent credences to

play two characteristic roles of belief states, namely accurately representing the

world and guiding action. If coherence is supposed to be an ideal in the sense

in which being fluent in Portuguese is an ideal, then approximating coherence

must deliver an increasing portion of the benefits that fully coherent credences

guarantee.
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2 Reducing Dutch Book Vulnerability and Im-

proving Accuracy

Some research has already been done on whether approximating coherence leads

to decreased Dutch book-vulnerability, and also on whether it leads to improved

accuracy. To state the results, we define a credence function as a function c :

F → [0, 1] that assigns a real number from the interval [0, 1] to each proposition

in a finite set of propositions F ⊆ L, where L is a propositional language defined

in the usual way based on a set of atomic statements {Ai} and the standard

Boolean connectives ¬,∨,∧. A coherent credence function is a credence function

whose credence assignments agree with some probability function on L, whereas

an incoherent credence function lacks this property. 2

A general method for measuring the degree to which an incoherent cre-

dence function approximates coherence is by representing credence functions as

vectors, and measuring the distance between the vector corresponding to an in-

coherent credence function and a vector corresponding to some closest coherent

credence function. For any credence function c : {ϕ1, . . . , ϕm} → [0, 1] such that

c(ϕi) = qi for 1 ≤ i ≤ m, its corresponding vector is q = 〈q1, . . . , qm〉.

In principle, any divergence can be used to formulate such an incoherence

measure, where a divergence is defined as any function d : [0, 1]n × [0, 1]n →

[0,∞), over vectors X,Y ∈ [0, 1]n, where d(X,Y ) = 0 iff X = Y .

We can then define an incoherence measure based on some divergence d as

follows:

Id(c) = min{d(c, c′)|c′ is coherent}

Here, c and c′ are credence functions that are defined over the same set

of propositions, and their divergence is measured based on their corresponding

vectors.

2Here and in what follows, we are considering only unconditional, point-valued credence
functions. The results by SSK (2002, 2003, 2000) and De Bona and Finger (2015) also extend
to imprecise and conditional credences, but since the accuracy-results by De Bona and Staffel
(2017) apply to precise, unconditional credences, the results presented here are limited to
those cases as well.
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A subset of divergences are metrics, which are the most familiar type of

distance measures. They are characterized by being symmetrical and satisfying

the triangle inequality. The p-norm distance, which is a metric, between two

vectors X = 〈x1, x2, . . . , xn〉 and Y = 〈y1, y2, . . . , yn〉 is defined as the p-norm

of their difference, with p ∈ [1,∞):

dp(X,Y ) = ‖X − Y ‖p = (

n∑
i=1

|xi − yi|p)1/p

For example, we can set p = 1, which gives us the absolute distance measure,

or p = 2, which gives us Euclidean distance, and so on. Taking the limit p→∞,

we have d∞(X,Y ) = maxi |xi − pi|, which gives us Chebyshev distance.

It has been found that incoherence measures based on two particular distance

measures have natural interpretations in terms of Dutch book vulnerability (De

Bona and Finger 2015). A Dutch book is a collection of bets that leads to a

guaranteed loss. For an agent whose credence function c is defined over F , we

can represent a bet on or against a proposition ϕi ∈ F based on the agent’s

credence in ϕi as follows:

(Ind(ϕi)− c(ϕi))α

The indicator function Ind(ϕi) assigns a value of 1 if ϕi is true and 0 if false.

The coefficient α (the bet stake) determines the size and direction of the bet.

If α > 0, then the agent bets on the truth of ϕi; if α < 0, the agent bets on

its falsity. An agent is said to be Dutch-bookable if a clever bookie can set up

a betting arrangement based on her credences that lead to a guaranteed loss

no matter what the world is like. More formally, if we can choose coefficients

α1, ..., αn (where αi can be 0), and there is a constant ε > 0 so that the sum of

the payoffs of the bets based on the agent’s credence function c on F is lower

than −ε for every possible state of the world s ∈ S, then the agent is vulnerable

to a Dutch book. The guaranteed loss G that results from a set of bets based

on credences in c with coefficients α1, ..., αn is then:
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G(c) = −min{0, sups∈S
n∑
i=1

αi(Indϕi(s)− c(ϕi))}

Since the coefficients are not constrained, betting losses from Dutch books

can be arbitrarily large. To be useable for measuring incoherence, the Dutch

book loss from a set of bets must be normalized. Two normalizations that have

been proposed by Schervish, Seidenfeld, and Kadane (SSK) are of particular

interest for our purposes (2002, 2003, 2000). Their neutral/max measure deter-

mines the incoherence of a credence function by choosing coefficients α1, ..., αn

that maximize the following quantity: G(c)
max{|α1|,...,|αn|} . Their neutral/sum mea-

sure instead requires maximizing this quantity: G(c)
n∑

i=1
|αi|

. In more intuitive terms,

the neutral/max measure gathers and adds up incoherence anywhere in the

agent’s credence function, whereas the neutral/sum measure detects the sub-

set of the agent’s credences that contains the most dramatic incoherence, and

measures the Dutch book vulnerability of the credences in this set.3

Each of these Dutch book measures correspond to an incoherence measure

based on a p-norm distance (De Bona and Finger 2015). The neutral/max mea-

sure is equivalent to determining the incoherence of a credence function as its

absolute distance (p = 1) to some closest coherent credence function. The neu-

tral/sum measure is equivalent to determining the incoherence of a credence

function as its Chebyshev distance (p = ∞) to some closest coherent credence

function. Hence, the closer a credence function is to coherence according to the

absolute (Chebyshev) distance measure, the lower its normalized Dutch book

loss according to the neutral/max (neutral/sum) measure. This result gives

a partial vindication to the idea that approximating coherence is valuable: if

closeness to coherence is measured with the appropriate p-norm distance mea-

3SSK (2002) not only introduce Dutch book measures of incoherence based on a variety of
possible normalizations, they also show under which conditions the extent of incoherence is a
continuous function of the bets and previsions being considered, and under which conditions
their incoherence measures preserve dominance relations between incoherent credence func-
tions. SSK characterize dominance as follows: Suppose c and c′ are incoherent assignments
of previsions to the same set of random variables. Furthermore, assume that γ is a gambling
strategy that determines for each prevision how much is gambled on the associated bet. c
dominates c′ with respect to γ just in case the guaranteed loss that can be extracted from c′

is greater than the guaranteed loss resulting from c in every possible state of the world. SSK
go on to determine which of their Dutch book measures of incoherence preserve dominance.
The neutral/max and neutral/sum measures we focus on here both do so, among others.
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sures, then approximating coherence has the benefit of reduced Dutch book

vulnerability.

Coherence also has a different benefit - coherent credences are not accuracy-

dominated, provided a suitable measure of accuracy. Does approximating coher-

ence lead to better accuracy? De Bona and Staffel (2017) show that particular

ways of reducing incoherence lead to guaranteed improvements in the accuracy

of one’s credences. However, as explained below, their results depend on using

a set of divergences to measure incoherence that contains neither absolute nor

Chebyshev distances.

Suppose inaccuracy is measured in the usual way with an additive inaccu-

racy measure I that is based on a continuous, strictly proper scoring rule, and

assume moreover that the inaccuracy measure is convex.4 Let I(c, c′) denote the

expected inaccuracy of a credence function c relative to some coherent credence

function c′. Every such inaccuracy measure I defines a divergence

dI(c, c′) = I(c, c′)− I(c′, c′)

In other words, dI(c, c′) measures the expected gain in inaccuracy, according to

a coherent c′, due to adopting c instead of c′. Suppose then that inaccuracy is

measured with some inaccuracy measure I as defined above, and incoherence is

measured with IdI as the divergence from some closest coherent credence func-

tion, where the divergence5 is generated by its corresponding inaccuracy mea-

sure as just described. Under those circumstances, the following holds (De Bona

and Staffel 2017):

Proposition 1. If c is an incoherent credence function on F , and c∗ is some dI-

4For a characterization of inaccuracy measures, see (Predd, Seiringer, Lieb, Osherson, Poor,
and Kulkarni 2009). Their argument for probabilism doesn’t require convexity. However, De
Bona and Staffel’s result does. For an argument that it is desirable to use convex inaccuracy
measures, see (Joyce 2009).The importance of the continuity requirement is illustrated by SSK
(2009).

5As divergences are assumed to be finite, the technical results presented here in principle
exclude the logarithmic scoring rule and the associated KL-divergence dKL(·, ·). However, all
results still hold for this pair if we focus on credence functions c with IdKL

(c) <∞, which is
the case when c(ϕ) ∈ (0, 1) for all ϕ ∈ F , for instance.
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closest coherent credence function to c, then c∗ strongly I-accuracy-dominates

c. Moreover, for any λ ∈ (0, 1), let cλ be a credence function on F such that

cλ(ϕ) = (1 − λ)c(ϕ) + λc∗(ϕ) for all ϕ ∈ F ; then cλ strongly I-accuracy-

dominates c for any λ ∈ (0, 1).

In other words, De Bona and Staffel show that for any incoherent credence

function c, the credence functions that lie on the direct path between c and

some closest coherent credence function to c are more accurate in every possible

world, given a suitable inaccuracy measure I.

These credence functions that are more accurate than c are also less incoher-

ent than c, provided we use a suitable divergence in our measure of incoherence.

This is captured by Proposition 2 (proved in the appendix):

Proposition 2. Let I be a convex, additive inaccuracy measure that is based on

a continuous, strictly proper scoring rule, c, an incoherent credence function on

F , and c∗, some dI-closest coherent credence function to c. For any λ ∈ (0, 1],

let cλ be a credence function on F such that cλ(ϕ) = (1 − λ)c(ϕ) + λc∗(ϕ) for

all ϕ ∈ F ; then IdJ (cλ) < IdJ (c) for any λ ∈ (0, 1].

Hence, we know two interesting facts: (i) For any incoherent credence func-

tion c, any alternative credence functions that are closer to coherence according

to the absolute (or Chebyshev) distance measure are also less vulnerable to

Dutch books according to the neutral/max (neutral/sum) measure. (ii) For any

incoherent credence function c, any alternative credence functions that lie on

the direct path between c and some closest coherent credence function as mea-

sured by a suitable divergence dI are less incoherent than c according to the

incoherence measure IdI , and also more accurate than c in every possible world

according to the associated inaccuracy measure I. The problem is that the two

results rely on different incoherence measures, so we can’t be sure that, for a

given incoherent credence function c, there are always alternative, less incoher-

ent credence functions that are both less vulnerable to Dutch books and more

accurate in every possible worlds.
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We’re thus interested in investigating the following question Q1 : For a given

inaccuracy measure I, is there a way of approximating coherence that guaran-

tees both a gain in I-accuracy in every possible world, and a reduction in Dutch

book vulnerability? On the simplest understanding, a “way of approximating

coherence” refers to a reduction of incoherence according to a way of measuring

it; i.e. there is one way of approximating coherence for each divergence we can

use to measure incoherence. As De Bona and Staffel (2017) have shown, if “a

way of approximating coherence” is understood as a reduction in d-incoherence

for some divergence d, the answer to Q1 is “no”: there are no combinations

of continuous inaccuracy measure I and divergence d, such that a reduction of

d-incoherence is guaranteed to lead to improved I-accuracy in every possible

world. However, we’ve learned above that if we understand a “way of approx-

imating coherence” more generally - in a sense that includes moving on the

direct path to some dI-closest coherent credence function - then there is a way

of approximating coherence that is guaranteed to improve accuracy. Hence, we

will focus on the more specific question Q2 : For a given inaccuracy measure I

that is additive, convex, and based on a continuous, strictly proper scoring rule,

does moving towards a dI-closest coherent credence function decrease Dutch

book vulnerability?

3 We Can Have It All

Fortunately for Bayesian, we can answer Q2 affirmatively, which implies a pos-

itive answer to the more general question Q1, assuming we’re focusing on con-

vex, additive inaccuracy measures that are based on continuous, strictly proper

scoring rules. We can show that, for any incoherent credence function c, any

credence function cλ is less I-inaccurate than c and less Dutch book vulnera-

ble than c according to both the neutral/sum and the neutral/max measures,

provided that cλ lies on the direct path towards some closest coherent credence

function according to some divergence dI that is generated by a suitable inac-
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curacy measure I.

This result is based on the following more general finding (proved in the

appendix):

Proposition 3. Let c be an incoherent credence function on F , and c∗ be an

arbitrary coherent credence function on F . For any λ within the interval (0, 1],

let cλ be a credence function such that cλ(ϕ) = (1−λ)c(ϕ)+λc∗(ϕ) for all ϕ ∈ F .

Then, for any p-norm distance measure dp and any λ ∈ (0, 1]: Idp(cλ) < Idp(c).

Proposition 3 helps us answer Q2 as follows: Due to Proposition 1, we know

that, for any incoherent credence function c, any credence function cλ that lies

on the direct path between c and some dI-closest coherent credence function c∗

is more I-accurate than c in every world. Due to Proposition 2, we also know

that cλ is less incoherent than c, provided that we measure incoherence with

IdI . Due to Proposition 3, we know that cλ is also less incoherent than c if we

measure incoherence as either the absolute or the Chebyshev distance to some

closest coherent credence function. It then follows due to the results proven in

(De Bona and Finger 2015) that cλ is less vulnerable to Dutch books than c

according to both the neutral/max and neutral/sum measures of Dutch book

vulnerability. Hence, we know that, for a given incoherent credence function

c, we can always find alternative credence functions that are more accurate in

every possible world and less vulnerable to Dutch books. These alternative

credence functions are less incoherent than c on any p-norm distance measure

of incoherence, as well as the on the incoherence measure IdI that is based the

relevant inaccuracy measure I.

Example 1. Suppose an agent has an incoherent credence function c(p) = 0.3

and c(¬p) = 0.4. Using the Brier score B as our inaccuracy measure, the

dB-closest coherent credence function is c∗(p) = 0.45 and c∗(¬p) = 0.55; dB

is the squared Euclidean distance. The degree of incoherence of c as measured

by the increase of expected B-inaccuracy relative to c∗ is IdB(c) = dB(c, c∗) =

0.045. c∗ is also a closest coherent credence function to c according to the

10



absolute and Chebyshev distance measures. The degrees of incoherence of c

according to these measures are Id1(c) = 0.3 and Id∞(c) = 0.15. We can now

examine the properties of cλ(p) = 0.375 and cλ(¬p) = 0.475. cλ lies on the

direct path between c and c∗ (λ = 0.5), and it is less incoherent than c on

all three measures: Id1(c) = 0.15, Id∞(c) = 0.075, IdB(c) = 0.0.01125. As

expected, cλ B-dominates c. It also has a lower normalized Dutch book loss:

neutral/max(cλ) = 0.15 < neutral/max(c) = 0.3, and neutral/sum(cλ) =

0.075 < neutral/max(c) = 0.15.

4 Conclusion

This result is very good news for the Bayesian project. Bayesians claim that

ideal norms of rationality should be approximated by non-ideal reasoners. To

argue for this, they must show that there is in fact a way of approximating

the ideal that confers an increasing share of the benefits associated with perfect

norm compliance. The most commonly cited benefits of probabilistic coherence

are that coherent credence functions are not accuracy-dominated, and that they

are not vulnerable to Dutch books. We showed that it is indeed the case that for

any incoherent credence function, there always are alternative, less incoherent

credence functions that are both more accurate in every possible world according

to some suitable inaccuracy measure I, and less vulnerable to Dutch books on

either the neutral/max or neutral/sum measure.

Appendix

Proposition 2 . Let I be a convex, additive inaccuracy measure that is based on

a continuous, strictly proper scoring rule, c, an incoherent credence function on

F , and c∗, some dI-closest coherent credence function to c. For any λ ∈ (0, 1],

let cλ be a credence function on F such that cλ(ϕ) = (1 − λ)c(ϕ) + λc∗(ϕ) for

all ϕ ∈ F ; then IdJ (cλ) < IdJ (c) for any λ ∈ (0, 1].
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Proof. Since I is convex, dI(·, ·) is convex in its first argument. Thus:

dI(cλ, c
∗) ≤ (1− λ)dI(c, c∗) + λdI(c∗, c∗) = (1− λ)dI(c, c∗)

From IdI(cλ) ≤ dI(cλ, c
∗), it follows that, for any λ ∈ (0, 1]:

IdI(cλ) ≤ (1− λ)dI(c, c∗) < dI(c, c∗) = IdI(c)

Proposition 3 . Let c be an incoherent credence function on F , and c∗ be an

arbitrary coherent credence function on F . For any λ within the interval (0, 1],

let cλ be a credence function such that cλ(ϕ) = (1−λ)c(ϕ)+λc∗(ϕ) for all ϕ ∈ F .

Then, for any p-norm distance measure dp and any λ ∈ (0, 1]: Idp(cλ) < Idp(c).

Proof. Let q, q∗ and qλ be the vectors in [0, 1]m, with m = |F |, correspond-

ing to the credence functions c, c∗ and cλ, respectively. It follows that qλ =

(1− λ)q + λq∗. For a given positive p ∈ N ∪ {∞}, let qp ∈ [0, 1]m be the vector

corresponding to a coherent credence functions cp such that Idp(c) = dp(c, c
p) –

i.e., cp is a coherent credence function that is closest to c according to dp. Con-

sider an arbitrary λ ∈ (0, 1]. Let qp,λ = (1−λ)qp +λq∗. Since the set of vectors

corresponding coherent credence functions is convex, qp,λ corresponds to coher-

ent credence function, say cp,λ. Hence, Idp(cλ) ≤ dp(cλ, cp,λ). Furthermore, we

have:

dp(c
λ, cp,λ) = ‖qλ − qp,λ‖p = ‖(1− λ)q − (1− λ)qp‖p

= (1− λ)‖q − qp‖p = (1− λ)d(c, cp) = (1− λ)Idp(c)

(1)

Finally, as λ ∈ (0, 1], Idp(cλ) ≤ dp(cλ, cp,λ) < Idp(c).
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