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The present dissertation consists of two distinct parts. The first one is a comprehensive study

of collective behavior in small collision systems from the point of view of kinetic theory, in which the

medium formed in heavy-ion collisions is modeled as a collection of interacting quasiparticles. We

investigate how parton scattering, where individual partons undergo very few scatters, can translate

the initial collision geometry to final-state azimuthal anisotropy, yielding results in agreement with

experimental data in a variety of systems, from 3He+Au to p+ p collisions, and over a wide range

of collision energies, prompting the question of the minimal conditions for collective behavior to

appear within this framework.

The second part consists of an experimental measurement of the charm and bottom decay

electron cross section in p + p collisions at
√
sNN = 200 GeV using the PHENIX detector at the

Relativistic Heavy Ion Collider. Unlike previous measurements of inclusive heavy flavor electrons,

we present a measurement of each flavor separately. The measurement proceeds by identifying a

candidate sample of electron tracks, constructing a simulated electron cocktail to isolate the elec-

tron candidates from heavy flavor decays, and using a Bayesian inference procedure to statistically

determine the provenance of electrons based on precise displaced vertex measurements. The re-

sulting electron cross sections are consistent with perturbative QCD calculations, exhibiting small

uncertainties and large kinematic reach, making them valuable baseline measurements for the fu-

ture study of in-medium heavy flavor modification in other collision systems, such as A+A and

p+A.
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The future of the world no longer disturbs me; I do not try still to calculate, with
anguish, how long or how short a time the Roman peace will endure; I leave that
to the gods. Not that I have acquired more confidence in their justice, which is not
our justice, or more faith in human wisdom; the contrary is true. Life is atrocious,
we know. But precisely because I expect little of the human condition, man’s peri-
ods of felicity, his partial progress, his efforts to begin over again and to continue,
all seem to me like so many prodigies which nearly compensate for the monstrous
mass of ills and defeats, of indifference and error. Catastrophe and ruin will come;
disorder will triumph, but order will too, from time to time. Peace will again estab-
lish itself between two periods of war; the words humanity, liberty, and justice will
here and there regain the meaning which we have tried to give them. Not all our
books will perish, nor our statues, if broken, lie unrepaired; other domes and pedi-
ments will rise from our domes and pediments; some few men will think and work
and feel as we have done, and I venture to count upon such continuators, placed
irregularly throughout the centuries, and upon this kind of intermittent immortality.

– Marguerite Yourcenar, Memoirs of Hadrian

All shall be well, and all shall be well, and all manner of thing shall be well.

– Julian of Norwich, Revelations of Divine Love



Chapter 1

Motivation and Scope

State of the art cosmological measurements currently place the age of the universe at around

13.8 billion years [32]. By approximately 10−12 seconds after the Big Bang, the universe had rapidly

expanded and cooled down sufficiently for the four fundamental interactions to have separated,

appearing as the distinct forces we know today. However, with a temperature in excess of 100

MeV, the early universe at this stage was too hot for hadronic bound states to form, existing instead

as a mixture of deconfined quarks and gluons until about 10−6 seconds when hadronization began

to take place. The primordial state of matter that filled the universe in this stage of its evolution

is known today as the quark-gluon plasma (QGP) [166].

The advent of quantum chromodynamics (QCD), the field-theoretical description of the

strong interaction, lay down the foundation for the study of the nature of the QGP, since it predicts

an asymptotic decrease in the interaction strength between quarks and gluons in the short length

scale limit. Experimentally, the running of the QCD coupling constant has been verified in data

from a variety of high-energy experiments. However, in order to recreate the conditions of the early

universe, one must also supply a high enough density of quarks and gluons, as are present in the

collisions of relativistic heavy nuclei. Hence, the field of heavy ion physics is born.

The first machine to collide nuclei at relativistic energies was the BEVALAC [187] at Lawrence

Berkeley Laboratory, starting in the early 1970s, reaching energies of up to 2 GeV per nucleon.

During the 1990s, fixed-target experiments at CERN’s Super Proton Synchrotron (SPS) and at

Brookhaven’s Alternating Gradient Synchrotron (AGS) sought to identify signatures of the QGP.
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However, it was not until the early 2000s that definitive evidence for the formation of QGP was

found in high-energy Au+Au collisions at Brookhaven’s Relativistic Heavy-Ion Collider (RHIC),

the first dedicated machine for heavy-ion collisions, capable of colliding Au nuclei at center-of-mass

energies of up to 200 GeV/nucleon. Following the early experimental success of the RHIC program,

the 2004 Nobel Prize in Physics was awarded—coincidentally—to Gross, Politzer, and Wilczek for

their theoretical work on deconfinement in QCD from thirty years before. More recently, over the

past decade, the Large Hadron Collider (LHC) at CERN has delivered collisions of Pb nuclei at

energies of up to 8 TeV.

Instead of the expected weakly coupled gas of quarks and gluons it was discovered that at

the temperature and baryo-chemical potential achieved in Au+Au collisions at RHIC, the QGP

actually exhibits a number of unique properties [204] stemming from a tight coupling between its

constituent particles. While some of these properties are discussed at length in Chapters 2 and 4,

here we succinctly describe those which provide the context for this dissertation.

The first of these properties is the extremely low shear viscocity to entropy density, η/s, of

the QGP, manifested as collective response of the medium to pressure gradients defined by the

orientation and geometric overlap of the colliding nuclei. This observation of collectivity prompted

the identification of the QGP as a liquid, as opposed to a gas which expands isotropically. It was

found that the azimuthal anisotropy profile of the expansion, among other observables, can be

well described by relativistic hydrodynamic theory assuming a minimal value for η/s. In fact, this

quantity, which can be identified as the kinematic viscosity, is the lowest of any known fluid and

has led to the QGP being dubbed the perfect liquid [119].

Additionally, it was found that the QGP is an extremely dense medium, highly opaque to

probes participating in the strong interaction. In other words, color-carrying partons (i.e., quarks

and gluons) interact with the medium and lose energy through a combination of radiative (i.e.,

gluon radiation) and collisional (i.e., elastic scattering) processes, analogous to electromagnetic

bremsstrahlung and collisional ionization in ordinary radiation-matter interactions. However, the

complexity and unique features of QCD make energy loss in the QGP very hard to calculate, with
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many open questions still remaining. Experimentally, a common observable stemming from the

opacity of the QGP medium is the reduction of jet energy, a phenomenon known as jet quench-

ing [200].

The present dissertation consists of two distinct parts, encompassing the author’s work on

various aspects of contemporary heavy-ion physics over the course of his graduate studies. The

first part is a comprehensive phenomenological study of collectivity in small collision systems from

the standpoint of kinetic transport theory. As stated earlier, the azimuthal anisotropy of final-state

particle momentum is a hallmark signature of the formation of strongly interacting QGP in large

nucleus-nucleus (A+A) collisions, traditionally understood in the context of hydrodynamic theory.

However, starting in 2010, the same signals were discovered in small collision systems at RHIC (i.e.,

p, d, 3He+Au) and at the LHC (i.e., p+p and p+Pb) where QGP formation had been thought to be

impossible, prompting a variety of explanations with very different underlying physical motivations.

This dissertation explores the idea that partonic scattering with a very small number of scatterings

per parton can translate the initial geometry of the collision into final-state azimuthal anisotropy

in these systems, providing predictions in quantitative agreement with flow observables measured

in d+Au collisions at RHIC over a wide range of collision energies, from
√
sNN = 200 GeV to

√
sNN = 19.6 GeV. This success prompts an exploration of the minimal conditions within this

kinetic transport framework required to produce collectivity signals.

The second part of the dissertation is a measurement of the differential production of heavy

quarks (i.e., charm and bottom) in p + p collisions at
√
sNN = 200 GeV, using the PHENIX

detector at Brookhaven National Laboratory. Given the large mass of heavy quarks, their thermal

production is precluded in heavy-ion collisions; instead, they originate in early-time hard processes

between colliding partons and are thus present during the full time evolution of the QGP. As such,

they make excellent probes of the hot nuclear medium and its microscopic dynamics, in contrast to

lighter quark flavors which are better suited to probe the dynamics of the bulk. Given the coupling

between heavy quarks and the QGP, they follow the hydrodynamic flow of the medium losing

energy in the process. A common approach used to describe these dynamics has been to model the
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quark as experiencing drag, which defines the average trajectory of the particle along the flow field,

with short-range stochastic deviations from this path arising from diffusion, as encapsulated in the

Langevin equation. Despite the success of this drag-diffusion approach, the details of the coupling

and energy loss mechanisms of heavy quarks in the QGP remain a subject of active investigation.

Insight can be gained by leveraging the mass difference between charm and bottom quarks, which

should be intutive in the Langevin picture since both diffusion and drag are physical processes

highly sensitive to particle mass.

Unlike previous measurements of the inclusive production of heavy quarks, the focus of this

dissertation is to measure the production of each flavor separately by identifying the semileptonic

decay electrons of mesons with open heavy quark content and statistically determining the prove-

nance (i.e., from either a charm or bottom quark) of the electron sample based on precise displaced

vertex measurements. This procedure has been previously used by the PHENIX collaboration to

measure the differential heavy quark production in Au+Au collisions; however, to understand how

these quarks are affected by the hot nuclear medium, one must compare against a corresponding

baseline measurement in p + p collisions and that is what this dissertation aims to provide. This

analysis was carried out together with Timothy Rinn of the Iowa State University heavy-ion physics

group between 2015-2018. All figures and tables in Chapters 7 and 8 are the result of our joint

work.

This dissertation is organized as follows. Chapter 2 provides a general introduction to the

physics of the quark-gluon plasma. Part I—dealing with small system collectivity—then begins

with Chapter 3, as an introduction to collective behavior in small systems; Chapter 4 then presents

the ampt transport model, as well as the results of studies of small system collectivity from a

transport theory perspective. Part II of the dissertation starts with Chapter 5, which provides an

introduction to open heavy flavor measurements in heavy ion collisions; Chapter 6 describes the

PHENIX experiment, and Chapter 7 describes the heavy flavor separation analysis, with the results

discussed in Chapter 8.



Chapter 2

Introduction to the Physics of the Quark-Gluon Plasma

2.1 Quantum Chromodynamics

Quantum chromodynamics (QCD) is the non-Abelian gauge theory of the strong force, one of

four fundamental forces of nature. As part of the standard model of particle physics, it describes the

short-ranged interaction among particles carrying color charge, the quarks and gluons, where the

latter is the gauge boson mediating the interaction. In this section, we provide a very brief overview

of the theory, describing the quark model, the QCD Lagrangian, and two hallmark properties of

QCD: asymptotic freedom and quark confinement. More details can be found in standard references,

such as [163, 111, 87], on which this section is based.

2.1.1 The Quark Model

By the year 1960, particle physics had come a very long way since J.J. Thomson’s discovery of

the electron in the late 19th century. Numerous new particles had been discovered, yet there was no

systematic way to organize them, classify them, or account for their seemingly arbitrary properties.

Thus, in 1961, Murray Gell-Mann proposed an organization scheme based on the electric charge and

strangeness of subatomic particles, arranging them in a variety of geometrical shapes according to

their common properties. This way of arranging particles received the exotic name of the Eightfold

Way [109]. For example, Fig. 2.1 shows the hexagonal array of the lightest baryons and the lightest

mesons, known as the baryon and hadron octets, where particles are grouped by strangeness across

horizontals, and by charge along the diagonals. Heavier particles can be arranged into more complex
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structures, such as the baryon decuplet and other multiplets and supermultiplets which will not be

discussed here.

The important observation, however, is that the geometric patterns can be explained by

positing that mesons and baryons are composites, made up of fundamental particles called quarks,

existing in 6 flavors1 , with properties as listed in Table A.1. If we impose the rule that (anti)baryons

must comprise three (anti)quarks, and that mesons must comprise a quark and an anti-quark,

then it is straightforward to verify that the allowed combinations of quarks naturally populate

the multiplets of the Eightfold Way. However, since quarks are spin 1
2 particles, and the total

wavefunction of baryons must be antisymmetric, a new quantum number of color was introduced

to allow for quark combinations which seemed to violate the exclusion principle. Combined with

the requirement that naturally occurring particles have a total color charge of zero, the quark

model is complete. The model, postulated by Zweig and Gell-Mann, was not only successful in

describing known hadrons, but it was also able to predict the existence and properties of as-of-then

undiscovered particles. Mathematically, Gell-Mann identified the multiplets of the Eightfold Way

with an SU(3) symmetry of the hadron spectrum. That is, the u, d, and s quarks constitute a

fundamental representation of the SU(3) group, with hadrons in the various multiplets forming

irreducible N -dimensional representations.

n p

Σ+
Σ0

Λ
Ξ0Ξ-

Σ-

S = 0

S = -1

S = -2

Q = -1 Q = 0 Q = +1

Κ0 Κ+

π+
π0

η
Κ0Κ-

π -

S = 0

S = -1

S = -2

Q = -1 Q = 0 Q = +1

Figure 2.1: The baryon (left) and meson (right) octets of Murray Gell-Man’s Eightfold Way.

1 In the early 1960s, only thre quark flavors were posited: u, d, and s. The others were introduced as new hadronic
states were discovered, and the quark model was extended to show how such states could also arise from the theory.
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Table 2.1: The six flavors of quarks and their properties.

Flavor Electric Charge Mass Isospin Strangeness

u +2
3 ∼ 4 MeV +1

2 0

d −1
3 ∼ 7 MeV −1

2 0

c +2
3 ∼ 1.5 GeV 0 0

s −1
3 ∼ 135 MeV 0 -1

t +2
3 ∼ 175 GeV 0 0

b −1
3 ∼ 5 GeV 0 0

2.1.2 The QCD Lagrangian

The fundamental interactions between quarks and gluons can be written down succinctly

with the following Lagrangian density [164],

LQCD = Lclassical + Lgauge-fixing + Lghost. (2.1)

The interaction term reads

Lclassical = −1

4
FAαβF

αβ
A +

∑
q̄a(i /D −m)abqb (2.2)

where Fαβ is the field strength tensor from gluon fields Aα

Fααβ = ∂αAAβ − ∂βAAα − gfABCABαACβ , (2.3)

where the indices A,B, and C run over eight colors of the gluon field (gluons carry both color and

anti-color charge, giving rise to eight independent color configurations), g is the strong coupling

constant, and fABC are the structure constants of the SU(3) group. The third term in the field

strength tensor above is responsible for the three- and four-gluon self-interactions, characteristic

of QCD, shown in the first two panels of Fig. 2.2. The second term Lclassical encodes quark-gluon

interactions, whose fundamental vertex is shown in the third panel of Fig. 2.2. The sum runs over

all quark flavors, where D is the covariant derivative, and the qa correspond to the quark fields in

the triplet representation of SU(3).
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Figure 2.2: Feynman diagrams for the fundamental QCD interactions.

In order to define a propagator for the gluon fields, we make a choice of gauge, with

Lgauge = − 1

2λ
(∂αAAα )2, (2.4)

where λ is the gauge parameter for the class of covariant gauges. While S-matrix elements do not

depend on λ, the choice of gauge parameter changes certain calculational aspects of the theory.

The choice of λ = 0 is called the Landau gauge, and λ = 1 is called the Feynman gauge. A

Fadeev-Popov ghost field, which breaks gauge symmetry, must be added in order for the quantum

field to yield unambiguous solutions. Thus

Lghost = ∂αη
A†(Dα

ABη
B), (2.5)

where η is a scalar field following Fermi statistics.

2.1.3 Asymptotic Freedom and Confinement

An important feature of QCD, as an instance of a renormalizable field theory, is the ‘running’

of its coupling constant αs. This means that the renormalized strength of the coupling depends on

the distance (or, equivalently, the momentum transfer Q2) scale at which the interaction is probed.

Perhaps it is appropriate to first motivate this conceptually, before presenting a formal treatment.

In QED, bare electric charges are screened by virtual e+e− pairs from vacuum fluctuations. As in

a dielectric material, the virtual charges become polarized, effectively screening the bare charge,

which becomes smaller with increasing distance. For instance, the commonly quoted value of the

fine structure constant α = 1/137 is actually its asymptotic value at low energies, which changes

due to screening to α ≈ 1/127 at the scale of the Z boson mass.
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Similarly, in QCD, fluctuations of the vacuum, as depicted to lowest order in Fig. 2.3, lead to

the creation of virtual quark pairs and gluons which dress bare color charges. The effect of the qq̄

pairs is analogous to that of e+e− pairs in QED vacuum polarization, such that the effective charge

decreases with distance. However, the self-coupling of gluons leads effectively to an ‘anti-screening’

of the charge, which causes the effective charge to increase with distance. Of these competing

effects, the gluon vacuum polarization dominates such that the β function for QCD is negative,

and the theory exhibits color charge anti-screening, as can be demonstrated through a rigorous

calculation.

Figure 2.3: Feynman diagram for the polarization of the vacuum in QCD. The diagram on the left

contributes to charge screening, and the one on the right, to anti-screening.

The anti-screening of color charges is directly related to the concept of a running coupling,

which becomes small at large Q2 (i.e, at short distances). Mathematically, the running coupling

satisfies the renormalization group equation

β(αs) =
∂αs

∂ lnQ2
, (2.6)

where

β(αs) = −αs(bo + b1αs + b2α
2
s + · · · ) (2.7)

with coefficients bi corresponding to diagrams with i number of loops. For instance, for three-color

QCD and nf almost-massless quarks, the β function becomes

β(g) = − b0g
3

(4π)2
(2.8)
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with b0 = 11 − 2
3nf . In this case, the renormalization equation can be solved for the coupling

constant, yielding

αs(Q) =
α

(0)
s

1 + (b0α
(0)
s /2π) ln(Q/M)

, (2.9)

The arbitrary scale M can be eliminated by defining a characteristic mass scale Λ satisfying

g2(b0/8π
2) ln(M/Λ), such that

αs(Q) =
2π

b0 ln(Q/Λ)
, (2.10)

which clearly shows that the coupling becomes small with increasing Q2. This running of the

coupling constant has been verified experimentally through many measurements, with the world

data summarized in [58], and shown in Fig 2.4. As a result, quarks approach the behavior of free

particles when probed at a sufficiently short distances, which is known as asymptotic freedom. If, on

the other hand, the distance between quarks is made very large, the coupling becomes very strong,

with the consequence that no free color charges may exist in nature; instead, enough energy exists

in the interaction to produce a new qq̄ pair. This phenomenon is known as quark confinement.

Figure 2.4: Running of the strong coupling constant with Q2, from theory (curve with band), and

experiment (points). Figure reproduced from [201].
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2.2 QCD Matter Under Extreme Conditions: The Quark-Gluon Plasma

The previous section briefly outlined the theory of QCD, which provides a field-theoretical

description of the interaction between quarks and gluons. However, despite its fundamental nature,

there exist a wide range of phenomena arising from the many-body interaction of large numbers

of quarks and gluons that cannot be readily identified as a direct consequence of the theory. Most

notably among these emergent phenomena is the existence of bound states, such as the proton, the

neutron, and atomic nuclei, which do not explicitly appear in the QCD Lagrangian.

Similarly, QCD does not unambiguously predict the properties of strongly interacting matter

when subjected to high temperatures, in excess of T ≈ 100 MeV, such as that produced in high-

energy nuclear collisions. For instance, the initial expectation of finding a weakly interacting

parton gas in relativistic nucleus-nucleus collisions quickly fell short when experimental evidence

suggested the formation of an ultra-hot fluid medium characterized by a strong coupling between

its constituent partons. Today we recognize this medium as a new state of matter called the quark-

gluon plasma (QGP), noting that its name was coined before its experimental realization. In that

sense, the “discovery” of the QGP was not merely the identification of a previously unknown form

of QCD matter, but rather the charting of its novel properties, the development of new theoretical

tools to describe them, and the arrival at a unified physical framework to understand the production

of QGP in nuclear collisions and its subsequent time evolution.

The present section provides an overview of the physics of the QGP. We begin with a his-

torical introduction to the problem of the highest possible temperature at which hadronic matter

can exist, showing that the methods of statistical mechanics were applied to particle production

in high-energy collisions long before the advent of the quark model or QCD. We then turn our at-

tention to the thermodynamics of the QGP and the so-called “standard model” of ultrarelativistic

heavy-ion collisions, which describes the various stages involved in the production, expansion, and

hadronization of QGP in nuclear collisions.
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2.2.1 Towards a Statistical Understanding of Particle Production in High Energy

Particle Collisions

The driving force behind the development of particle physics was the search for the ultimate

fundamental constituents of matter. Along these lines, matter was thought to be like a Russian

matryoshka doll, where a particle could be broken up to reveal smaller particles within, which in

turn could be further broken up, and so on until the final constituent was found. Moving along this

chain required probing increasingly higher energy scales, from the molecular binding energies of a

few eV, to atomic ionization potentials of tens of eV, to nuclear binding energies on the order of

MeV. However, beyond this point, when hadrons were discovered, this simple picture broke down.

In particle accelerators, collisions at the GeV scale resulted in the abundant production of even

more hadronic states instead of the expected ultimate particle. This phenomenon of multi-particle

production garnered significant attention, even before the quark model was proposed.

Already in 1950, Fermi [97] proposed a model where all of the energy of a nucleon-nucleon

collision is deposited in a small volume of characteristic size r ∼ ~/mπc (i.e., the Compton wave-

length). He then argued that the system could be treated as being in equilibrium due to the

strength of the interactions involved, such that the energy in the volume could be statistically

distributed among the hadronic states accessible during the short lifetime of the system. Fifteen

years later, around the time when the quark model was being developed, Hagedorn [114] presented

the statistical bootstrap model of strong interactions, based on the assumption that hadrons are

composite particles, made up of lighter hadrons, which in turn are made up of lighter hadrons, and

so on. This simple requirement of self-consistency in the formation of hadron resonances actually

allows the mass spectrum of emitted hadrons to be calculated. Here, as means of illustration, we

present a toy model [98] that illustrates the main results of the statistical bootstrap model, asum-

ming hadrons made up of resonances with vanishing kinetic energy. In such case, we can write the

following recurrence relation for the mass spectrum ρ(m)—that is, ρ(m)dm is the number of states
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with mass between m and m+ dm:

ρ(m) = δ(m−m0) +

∞∑
n=2

1

n!

∫
δ(m−

n∑
i=1

mi)

n∏
i=1

ρ(mi)dmi. (2.11)

Eqn. 2.11 can be solved for ρ(m) by taking its Laplace transform∫
ρ(m)e−βmdm = e−βm0 +

∞∑
n=2

1

n!

n∏
i=1

∫
ρ(mi)e

−βmidmi, (2.12)

and defining

z(β) = e−βm0 (2.13)

and

G(z) =

∫
e−βmρ(m)dm (2.14)

such that 2.11 can be written as

z = 2G(z)− eG(z) + 1, (2.15)

which can be solved for G(z) by differentiating and setting G(z) =
∑

n cnz
n. In that case, the

coefficients of the series can be shown to satisfy a recurrence relation

cn+1 =
1

n+ 1

(
−ncn + 2

n∑
m=1

mcmcn+1−m

)
, (2.16)

such that the series solution for G(z) has a radius of convergence |z| / 0.386. This constraint on

z can be used in Eqn. 2.13, which resembles a partition function, to derive a constraint on the

maximum temperature for the hadrons. Let zH = 0.386, such that

TH = − m0

log(zH)
, (2.17)

which, if we use m0 = mπ0 , gives use a highest possible temperature of TH = 145 MeV. This

quantity is known as the Hagedorn temperature. If we finish solving the statistical bootstrap model

equation for the mass spectrum, we find

ρ(m) ∼ exp(m/TH). (2.18)
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Thus, this toy model demonstrates a central result of the statistical bootstrap model. Namely, high-

energy hadronic collisions lead to the formation of a fireball, from which new hadrons are emitted

following an exponential mass spectrum. However, this exponential increase implies the existence

of a limiting temperature for hadronic matter, which can be interpreted in light of the equipartition

theorem: if more energy is added to the system (say, by increasing the collision energy), it will

lead to the excitation of new, heavier resonances, rather than increasing the energy per particle for

existing states. Nowadays we associate the Hagedorn temperature with the point at which hadronic

matter gives way to quark matter. If we were to treat the problem more formally, as did Hagedorn

and others, we would find an exponential mass spectrum ρ(m) ≈ cma exp(m/TH) which can be fit

to experimental data, to find TH ≈ 160 MeV. The implications of this limiting temperature were

not fully understood in the mid 1960s. In fact, the understanding that the Hagedorn temperature

is associated with the deconfinement transition of fundamental color charges within the hadrons

would have to wait another decade for the development of QCD.

2.2.2 Thermodynamics of the QGP Transition

The derivation of the Hagedorn temperature in the previous section relied entirely on the

concept of self-similarity of hadron structure, with no information on their quark content, or the

properties of quarks. A full treatment of the transition between the hadronic and the deconfined

phase would require solving the equations of QCD. We can begin to study the transition, however,

using a simplified model of an ideal gas [175, 148] of massless pions. As bosons, the energy density

is given by standard Bose-Einstein statistics

ε =
g

(2π)3

∫
p

exp(p/T )− 1
d3p, (2.19)

where E = p since we are working with massless particles. The integral can be evaluated, resulting

in

ε =
3g

π2
T 4ζ(4) = g

π2

30
T 4. (2.20)
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The pressure of the gas is one third of its energy density,

P = g
π2

90
T 4. (2.21)

For pions, the degeneracy g = 3 from their three charge states. Thus, the pressure of the pion gas

is

Pπ =
π2

30
T 4. (2.22)

At a high enough temperature, which we will later determine, the pion gas converts into a gas of

quarks and gluons. The quarks being fermions, and the gluons being bosons, the pressure will be

given by

Pqgp =
1

3
× 1

(2π)3

∫ (
gquark

exp(p/T ) + 1
+

ggluon

exp(p/T )− 1

)
pd3p−B

=

(
7

8
gquark + ggluon

)
π2

90
T 4 −B.

(2.23)

In the above equation, gquark = 3 × 2 × 2 × 2 = 24 to account for three colors, two flavors2 , two

spin projections, and two particle-antiparticle states; similarly, ggluon = 2 × 8 = 16 to account for

two spin projections and eight colors. The constant B is the bag pressure from the bag model—a

phenomenological model of quark confinement [83]—which is subtracted to account for the pressure

from the vacuum on the quarks and gluons.

We have thus described the two phases of strongly interacting matter in our simplified model.

The critical temperature at which the transition occurs can be found by solving Pπ(Tc) = PQGP (Tc)

for Tc, which yields

Tc =

(
45B

17π2

)1/4

, (2.24)

which can be evaluated using B ≈ 0.0016 (MeV)4 to give Tc ≈ 150 MeV.

Even though the simple pion gas model gives a remarkably good estimate of the transition

temperature between hadronic and quark matter, a full understanding of the thermodynamics of

strongly interacting matter requires solving QCD in the non-perturbative regime, using numerical

2 Only two light flavors are considered, up and down, since the mass of the strange quarks is already ∼ 100 MeV,
and the other flavors are even heavier.
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lattice methods. Lattice QCD allows for non-perturbative calculations since the discretization

of spacetime regularizes the theory by introducing a momentum cutoff inversely proportional to

the lattice spacing. Here we will present the main results of finite-temperature lattice QCD at

vanishing baryo-chemical potential [175] regarding the thermodynamics of QCD matter. Given the

Lagrangian of QCD in Eqn. 2.2, the partition function of strongly interacting matter reads

Z(V, T ) =

∫
dA dq dq̄ exp

(
−
∫
V
d3x

∫ 1/T

0
dτL(A, q, q̄)

)
. (2.25)

where the spatial integration is carried out over the entire volume of the system, and where the

time integration is carried out (τ is the Wick-rotated time component) over a finite region of width

dependent on the system temperature. Once the partition function has been calculated, the full

thermodynamics of the system follows. Thus, from standard statistical mechanics, we can obtain

the energy density and pressure ε = (T 2/V )(∂ lnZ/∂T )V and P = T (∂ lnZ/∂V )T .

Fig. 2.5 shows the energy density of strongly interacting matter, normalized by T 4, as a func-

tion of temperature using three different discretizations of the lattice in the temporal direction [65],

for three-flavor QCD. The most salient feature of the plot is a very sudden change in ε/T 4 ocurring

at around T ∼ 150 MeV (the inset in Fig. 2.5 zooms in on this range). Far from this region, ε/T 4

is roughly constant. Since Eqn. 2.20 shows that ε/T 4 ∝ g, where g is the number of degrees of

freedom, we identify T ∼ 150 − 200 MeV as the point where a transition occurs from a hadronic

state to a deconfined state of quarks and gluons. In fact, the high-temperature behavior of the plot

is only about 10% below the value of the energy density for an ideal quark-gluon plasma.
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Figure 2.5: Energy density normalized by T 4 for QCD matter as a function of temperature, as

calculated using lattice QCD with various discretizations in the temporal direction, Nt = 6, 8, 10.

The arrow labeled ‘SB’ depicts the energy density in the Stefan-Boltzmann limit εSB/T
4 = 15.627.

Figure reproduced from [65].

Another important feature of this transition is related to the quark mass. Within hadrons,

constituent quarks are dressed with gluons, which increases their mass substantially. However, as

temperature increases, the quark masses approach that of bare quarks, which are very small. In

the limit of vanishing bare quark mass, the Lagrangian in Eqn. 2.2 becomes chirally symmetric3 .

Thus, the transition of color deconfinement coincides with chiral symmetry restoration.

So far, we have discussed the existence of a transition around Tc ≈ 150 MeV at vanishing

baryo-chemical potential, but we have not discussed what kind of transition it is. Fig. 2.6 maps

the nature of the transition for three-flavor QCD as a function of the quark masses. We will not

discuss the lattice calulations resulting in the plot shown, but rather simply state the results. In

the limit of infinite mass, regardless of quark flavor, the QCD Lagrangian reduces to that of a pure

SU(3) gauge theory with a first-order phase transition. Similarly, in the vanishing mass limit where

3 The dressing of the quarks within hadrons, and the breaking of chiral symmetry is responsible for the mass of
hadronic matter, as opposed to the Higgs mechanism which gives fundamental particles their mass.
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the chiral symmetry of the Lagrangian is restored, the transition is also first-order. Now, away

from those limits (0 < m <∞) there is no singular behavior on a line of first-order discontinuities.

Instead, we speak of a smooth cross-over behavior, or a second-order phase transition. Given our

current knowledge of the u, d and s quark masses, we locate the point in the diagram corresponding

to physical reality, showing that the deconfinement transition we observe experimentally at µB = 0

lies well within the cross-over region.

To conclude this section, we discuss the behavior of the deconfinement transition at non-

vanishing baryo-chemical potential. In this region, conventional lattice QCD methods are no longer

applicable, and recourse has to be made to alternative means of solving the QCD equations. Even

though much work remains to be done to map the behavior of QCD matter, Fig. 2.7 shows our

current best understanding of the phase diagram of this type of matter, as a function of temperature

T and baryo-chemical potential µB. The most notable feature is that the cross-over region extends

over a wide range in µB. Eventually, a critical point is reached, beyond which the smooth cross-over

becomes a first order phase transition. Finally, at low enough temperatures and high enough µB,

another phase transition is expected to occur in which the deconfined quarks in the QGP phase

form bosonic pairs which then condense, thus giving rise to a hypothesized state of matter called

a color superconductor [44]. This transition is the QCD analog of Cooper pair formation in QED.

The LHC, as the collider delivering the highest center-of-mass energies in the TeV scale,

explores the cross-over region closest to µB = 0. On the other hand, RHIC is capable of spanning

a wide range in µB, making it possible to search for the critical point. In particular, the future

phase II of the beam energy scan program (BES-II) will reach much lower energies, with increased

luminosity and new instrumentation.
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Figure 2.6: Character of the deconfinement transition in three-flavor QCD as a function of the

quark masses. Figure reproduced from [175].

Figure 2.7: Phase diagram of QCD matter in temperature and baryo-chemical potential, with

colored regions representing various phases. The boundary between the hadronic and QGP phases

is blurred at low µB, indicating a smooth crossover. White lines are drawn to represent the

trajectory followed by the QGP formed at a variety of collision energies, as it cools. The ‘BES-II’

label indicates the region explored by the RHIC Beam Energy Scan II program, in search of the

critical point. Image credit: Shawn Beckman.
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2.3 The Standard Model of Heavy Ion Collisions

In previous sections we discussed certain thermodynamic properties of QCD matter, focusing

particularly on the deconfinement transition taking place at Tc ≈ 150 − 170 MeV. However, no

mention has been made of the means by which such hot QCD matter is actually produced and

studied, which involves a wide range of physics and phenomenology beyond mere QCD. In modern

particle colliders, particularly RHIC and the LHC, collisions of heavy ions at ultrarelativistic en-

ergies result in so-called fireballs of nuclear matter at very high densities and temperatures, which

expand along directions defined by large pressure gradients. The hot matter cools down as it ex-

pands, eventually cooling down sufficiently to hadronize and give rise to final-state particles which

are experimentally accessible to us. Thefore, if one wishes to study the QGP, it is imperative to

develop an understanding of the entire lifecycle of heavy-ions collisions. Guided by a wealth of

experimental data and advances in theoretical techniques, the framework describing the various

stages in the evolution of the fireball has come to be known as the standard model of heavy ion

collisions4 .

We can break down the standard model into five distinct steps, depicted in Fig. 2.8: (a) pre-

collision, in which the nuclei overlap right before the collision, and define a geometric region over

which energy will be deposited; (b) pre-equilibrium, the process by which hadronic matter becomes

deconfined and rapidly achieves thermal equilibrium; (c) hydrodynamic expansion, where the QGP

expands according to hydrodynamics with minimal kinematical viscosity; (d) hadronization, in

which the QGP cools down sufficiently for partons to form hadronic bound states once more; and

(e) hadronic scattering, by which the hadrons interact and eventually free stream towards the

detectors.

4 The ‘standard model’ moniker, as applied to heavy-ion collisions, bears no relation to the standard model of
particle physics. If parallels with other fields of physics are to be drawn, one can compare a heavy-ion collision
with the Big Bang. In both cases, one deals with an expanding system in which initial-state quantum fluctuations
persist and give rise to structure in the final-state. Hence, the standard model of nuclear collisions is analogous to
the standard model of cosmology.
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Figure 2.8: Time evolution of an ultrarelativistic heavy ion collision, with time increasing from left

to right. Stage (a) represents relativistically contracted nuclei in the instants prior to the collision;

(b) the pre-equlibrium stage, where quarks and gluons become unbound and approach thermal equi-

libration; (c) hydrodynamic expansion of the QGP formed in the collision; (d) hadronization, where

previously unbound quarks and gluons recombine to form hadrons; (e) scattering and expansion of

final-state hadrons. Image credit: Jonah Bernhard.

2.3.1 Collision Geometry

In the study of p + p collisions, it is well known that not all events result in a full head-on

collision; instead, many are just diffractive collisions. In nuclear collisions the situation is more

complex since nuclei are large extended objects such that there is a wide range of possible overlap

between them at the time of collision. When the impact parameter b is small (i.e., the overlap area

is large), collisions are termed central, and when b is large (i.e., small overlap area), they are termed

peripheral. Individual nucleons undergoing collisions with other nucleons are called participants,

and those which do not are called spectators. Fig. 2.9 shows a semi-central A+A collison, where

participants are shown in dark blue and red, and spectators in lighter hues. Since the event activity

directly depends on the number of participants in a given collision, we see that a relation exists

between particle production and the event geometry (i.e., the shape of the overlap area). Thus,

the ability to characterize event geometry from experimentally accessible observables becomes a

matter of central importance in heavy-ion collisions.
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Figure 2.9: Initial geometry of a Au+Au event. The circles in light hues represent spectator

nucleons; those in dark hues represent participant nucleons in the projectile and target nuclei.

Figure reproduced from [45].

Even though Roy Glauber’s name is more famously associated with the field of quantum

optics, his work on quantum mechanical scattering in composite systems led to the development

of the Glauber model [110], which is widely used in nuclear physics. In its various incarnations,

the model provides a way of calculating otherwise inaccessible geometric quantities in heavy-ion

collisions, such as the number of participants Npart and the number of binary collisions Ncoll [146,

25]. It is instructive to first consider a variation of the model, called the optical Glauber model,

which relies on two assumptions: namely that individual nucleons travel independently of each other

in straight trajectories, remaining undeflected as they bore holes through the nuclear medium; and

that nucleon-nucleon interactions occur inelastically with a cross section σNN which depends on

the collision energy.
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Figure 2.10: Side view of a nucleus-nucleus collision, indicating the geometry of the optical Glauber

model. See text for details. Figure adapted from [146].

Figure 2.11: Nuclear density distributions for Pb, Cu, and O nuclei. Figure reproduced from [195].

Following the presentation in [146], Fig. 2.10 shows a schematic diagram of a nucleus-nucleus

collision of impact parameter ~b (i.e., the separation between the center of the nuclei). The blue

region within the nucleus indicates the “tunnel” that a pair of nucleons bore as they interact, a

distance ~s away from the center of the nucleus A. If the nucleus is modeled with a continuous density
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distribution—in an approach known as the optical limit—such as the Woods-Saxon distribution

(shown for three different nuclear species in Fig. 2.11)

ρA(r) = ρ0
1 + ω(r/c)2

exp[(r − c)/z] + 1
, (2.26)

where ρ0, ω, and c are parameters determined from electron-nucleus scattering experiments, we can

write down the probability of a nucleon being found in the blue tube in nucleus A as

T̂A(~s) =

∫
ρA(~s, z)dzA. (2.27)

Therefore, the joint probability of finding a pair of nucleons, one from each nucleus, in the tube is

T̂A(~s)T̂B(~s−~b)d2s, which can be integrated to find the nuclear thickness function

T̂A,B(~b) =

∫
T̂A(~s)T̂B(~s−~b)d2s. (2.28)

The above expression corresponds physically to the area over which a nucleon in the projectile can

interact with a nucleon in the target, such that the probability of n individual interactions taking

place in an collision of impact parameter ~b between nuclei A and B is binomial:

P (n,~b) =

(
NANB

n

)
[T̂AB(~b)σNN ]n[1− T̂AB(~b)σNN ]NANB−n, (2.29)

where NA and NB are the number of nucleons in each nucleus, and the product T̂AB(~b)σNN is

the probability of one nucleon-nucleon interaction. We can add up the above probability over all

nucleon pair combinations NA ×NB to obtain the differential cross section of interaction between

nucleus A and nucleus B

d2σA+B

db2
=

NA×NB∑
n=1

P (n,~b)

= 1− [1− T̂AB(~b)σNN ]NANB .

(2.30)

We thus arrive at our first geometric quantity, the number of binary collisions

N
coll(~b)

=

NA×NB∑
n=1

nP (n,~b)

= NANBT̂AB(~b)σNN .

(2.31)
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The number of participants is then given by

Npart(~b) =NA

∫
T̂A(~s)

{
1−

[
1− T̂B(~s−~b)σNN

]NB}
d2s

+NB

∫
T̂B(~s−~b)

{
1−

[
1− T̂A(~s)σNN

]NA}
d2s.

(2.32)

The above calculations are predicated on the use of continuous nuclear density distributions,

when a closer description of reality would be achieved by modeling the nucleus as a discrete, or

“lumpy” distribution of nucleons. Thus, in contraposition to the optical Glauber model stands the

Monte Carlo Glauber model. In the Monte Carlo approach, a nucleus is modeled event-by-event

by sampling individual nucleon coordinates from the nuclear density distribution, and assigning

a random impact parameter to the collision, drawn from dσ/db = 2πb. Using the same nucleon-

nucleon interaction cross section as in the optical Glauber calculation, a collision between a pair

nucleons is said to occur if their separation satisfies d <
√
σNN/π. Instead of treating the nucleon

as a black disk of area σNN , one can also model the nucleon as having a diffuse cross-sectional

profile, also known as a gray-disk cross section, or experiencing event-by-event fluctuations in cross

section, known as the Glauber-Gribov approach. Given this simple criterion to identify wounded

nucleons, the number of participants and binary collisions follow by construction in the Monte

Carlo approach.

It is of interest to compare the optical and Monte Carlo Glauber formalisms. The left panel

of Fig. 2.12 shows the total cross section, as a function of σNN , as calculated with both models.

For σNN < 1 mb, both yield the same total cross section, with optical Glauber resulting in a

slightly higher value at σNN > 1 mb. The right panel shows Ncoll and Npart, which agree well

between the two types of Glauber calculations. Even though the difference in total cross section

may seem modest, the key difference between Monte Carlo Glauber and its optical counterpart

is that the Monte Carlo approach allows us to model the local nucleon-level fluctuations in the

density of the nuclear medium. The effects of such fluctuations are negligible in the limit of very

weak nucleon-nucleon cross section, yet they are otherwise of substantial importance and have been



27

shown to account, for instance, for higher order azimuthal anisotropy in particle emission in A+A

collisions, as will be discussed in a later section. State-of-the-art computer models treat the QGP

as a continuous medium whose hydrodynamic expansion is highly sensitive to the initial collision

geometry, such that even nucleon-level fluctuations are manifest in final-state observables. For the

purposes of this dissertation, properly modeling such fluctuations in the initial geometry is critical

to correctly interpreting experimental results, as will be discussed in Chapter 5 in the context of

collective behavior in small collisions systems.
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Figure 2.12: (left) inclusive cross section for identical nuclear collisions, and (right) number of

participants and binary collisions as a function of impact parameter calculated in the Optical and

Monte Carlo Glauber formalisms. Figure reproduced from [146].

So far we have seen that, in the Glauber model, we can posit that a monotonic direct rela-

tion exists between impact parameter and particle multiplicity, allowing us to characterize event

geometry from experimental observables. Fig. 2.13 shows a cartoon of the measured distribution

of the number of charged particles produced in A+A collisions, represented by the solid blue line.

The distribution can be divided into quantiles, or centrality classes, as indicated by dashed lines.

Each centrality class corresponds to a range of impact parameters as represented by the overlapping

circles, with more central events being associated with smaller impact parameters. If one defines
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a prescription to translate Monte Carlo Glauber Npart and Ncoll values into particle production,

one can generate a simulated multiplicity distribution. By matching the measured and simulated

distribution, it is possible to determine the geometric quantities corresponding to each centrality

class in data. This procedure, however, can be affected by a number of biases and uncertainties.

For example, in small collision systems, correlations between particle production at central rapid-

ity, and at forward rapidity where multiplicity is measured, can lead to the erroneous classification

of event centrality. Given the focus of this thesis on small systems, Appendix B provides a full

description of the PHENIX centrality categorization procedure in (p)d+Au—which is common also

to large A+A collisions—as well as the above autocorrelation bias effect and how it is accounted

for.

Figure 2.13: Relation between event multiplicity and event geometry. The blue line depicts the

distribution of event multiplicity in A+A collisions, whose quantiles define centrality categories

corresponding to the degree of overlap of the colliding nuclei, as determined by the impact parameter

b. For each centrality, the Glauber model allows for the calculation of geometric quantities such as

the number of nucleon participants Npart and impart parameter b. Figure reproduced from [146].
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2.3.2 Hydrodynamic Expansion

Previous sections have described how, in the absence of theory of the strong interaction,

statistical models were applied to the problem of hadron production in high-energy collisions. In

great measure, the success of such models stemmed from their generality and emphasis on broad

physical principles. Along these lines, Landau introduced the first hydrodynamic model of what

we now call dense matter at high temperatures, as an improvement over Fermi’s static ‘fireball’

description [97] . In Fermi’s model, final-state particles are formed instantly and are emitted

from the fireball without interacting. However, Landau [133] posited that the applicability of

equilibrium thermodynamics to the description of the fireball implied that hydrodynamics should

be equally applicable since it also depends on the mean free path being much smaller than the

system size. Thus, in Landau’s view, the fireball expands hydrodynamically, eventually reaching

the point where the mean free path is no longer small and the system breaks up into final-state

particles. The introduction of this expanding picture was a great success allowing, among other

things, to explain why particle emission was not isotropic in momentum space as was the case in the

static picture. However, interest in Landau’s model eventually waned as the development of QCD

took center stage. Yet, the wealth of experimental observations suggesting collective behavior in

the collider era of heavy-ion physics has renewed the interest in relativistic hydrodynamics, spurring

its development further.

Let’s begin with the simplest case of ideal hydrodynamics, which is straightforward to set

up, followed by the introduction of viscous corrections, based on [188, 204, 172, 158]. We begin

by assuming a medium in local thermal equilibrium. The adjective ‘local’ indicates that while

thermodynamic variables are allowed to vary in space and time, they do so very slowly such that

their distribution is isotropic in the rest frame of a given fluid element. The energy-momentum

tensor of such a fluid element of four-velocity uµ is then

Tµν = εuµuν + P∆µν , (2.33)

where ε is the energy density, P is the pressure, and ∆µν = gµν + uµuν is the projection tensor.
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Note that in the rest frame, Tµν is a diagonal tensor. The equations of motion are then simply

given by

∂µT
µν = 0. (2.34)

It is informative to define D = uµ∂µ and ∇µ = ∆µν∂ν , to write the equations of motion as

Dε = −(ε+ P )∇µuµ (2.35)

and

Duµ = − ∇
µP

ε+ P
. (2.36)

As written, these equations are perfectly general, and certain assumptions are needed to solve them

in the case of heavy ion collisions. Bjorken argued [63] that since the reaction volume is strongly

stretched along the longitudinal direction, the transverse expansion can be ignored for a brief

amount of time following the collision, reducing the problem to 1+1 dimensions. He assumed that

the fluid is in uniform longitudinal motion with vz = z/t, such that the system is boost-invariant

along the longitudinal axis. This is called Bjorken scaling, since it implies that the system looks

the same regardless of rapidity.5 Under these assumptions, it is convenient to cast the problem in

terms of the proper time τ =
√
t2 − z2 and space-time rapidity ηs = arctanh(z/t) as follows

ε(~x, t) = ε(τ), (2.37)

uµ(~x, t) = (cosh(ηs), 0, 0, sinh(ηs)), (2.38)

in curvilinear coordinate system where the fluid is at rest and space-time expands longitudinally.

Using the above assumption yields a differential equation for the time evolution of the energy

density

dε

dτ
= −ε+ P

τ
. (2.39)

5 Not to be confused with Bjorken’s seminal contribution of the same name regarding the independence of the
structure functions on Q2 for fixed x in deep inelastic scattering experiments.
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The above equation tells us that the internal energy in a fluid element is not conserved; rather,

it is transformed into longitudinal flow under the action of pressure. The equation can be solved

by making use of an equation of state (EoS) relating energy density and pressure. For an ideal

relativistic gas, we have P = c2
sε, where cs =

√
∂P/∂ε is the speed of sound. Thus, we obtain the

evolution of the energy density

ε(τ) = ε0

(τ0

τ

)1+c2s
(2.40)

We know from thermodynamics that Tsε+ P and s = dP/dT . Thus, the solution of the hydrody-

namic equations for the entropy density and temperature are

s(τ) = s0
τ0

τ
, (2.41)

T (τ) = T0

(τ0

τ

)c2s
. (2.42)

Notice from Eqn. 2.41 that the product τs(τ) is constant. Thus, the total entropy of the expanding

fluid is also a constant, as expected in ideal hydrodynamics. On the other hand, Eq. 2.42 says that

the fluid cools down slowly as a function of the proper time in longitudinal expansion.

Having discussed ideal hydrodynamics, let us turn now to viscous hydrodynamics. In this

case, we decompose the energy-momentum tensor as follows

Tµν = Tµνideal + πµν + Π∆µν , (2.43)

where Tµνideal is the energy-momentum tensor of ideal hydrodynamics, πµν is the symmetric traceless

shear tensor satisfying πµνuν = 0, and Π is the bulk stress tensor. This expression encodes correc-

tions to ideal hydrodynamics from the gradient expansion of the energy-momentum tensor, which

can be carried out to various orders. To first order, we have the so-called constituent equations

πµν = −ησµν Π = −ζ∇µuµ, (2.44)

where η and ζ are the shear and bulk viscosities, and

σµν = ∇µuν +∇νuµ − 2

3
∆µν∇λuλ. (2.45)



32

The equation of motion arising from this first order correction is called the Navier-Stokes equation.

If we take the Bjorken scaling model, the energy density is then found to obey

dε

dτ
= −ε+ P

τ
+

1

τ2

(
4

3
η + ζ

)
, (2.46)

whose first term is identical to that of ideal hydrodynamics. The problem, however, with relativistic

Navier-Stokes theory is that the dissipative perturbation propagates instantly, violating causality.

This originates from the particular choice of the constituent equations. The situation can be reme-

died by taking into account second order gradient expansion corrections to the energy-momentum

tensor. In that case, the theory is known as Israel-Stewart theory, which preserves causality be-

cause it incorporates relaxation terms for the dissipative currents. The interested reader is referred

to [172] for further details.

To conclude this subsection, we briefly discuss some limitations regarding the applicability of

hydrodynamics to heavy ion collisions. Firstly, notice that all derivations presented above relied on

the gradient expansion of the energy-momentum tensor, which necessarily requires that the gradi-

ents be small, as is the case for systems near equilibrium. However, it has recently been proposed

from holographic studies using the AdS/CFT correspondence that hydrodynamics may be applica-

ble to out-of-equlibrium systems, long before thermodynamic variables isotropize in the rest frame

of the fluid [77, 76]. Studies have suggested the existence of theories of out-of-equilibrium hydro-

dynamics with well-defined solutions even when large gradients are involved, for instance, based on

the decay of non-hydrodynamic modes [170]. The implications of these developments for heavy-ion

physics are significant, given the steep gradients involved and the very quick thermalization time

involved in nuclear collisions, particularly those involving small nuclei.

2.3.3 Hadronic Freeze Out

As the hydrodynamic medium expands, it cools down and becomes less dense. The mean free

path increases in the process, eventually becoming so large that hadrons decouple from the expand-

ing QGP, entering a period of hadronic scattering prior to reaching the experimental apparatus.
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This process is known as freezout, and properly modeling it is a key aspect of understanding the

lifecycle of a heavy ion collision [98]. In modern hydrodynamic modeling there must be a prescrip-

tion to interface the end of the break down of the hydrodynamic expansion and the production of

hadrons. Here, we briefly discuss the so-called Cooper-Frye [79] approach in which a sharp cutoff

(critical) temperature is imposed, below which all hydrodynamic processes stop. If this criterion is

applied to all fluid elements, a hypersurface is defined and its energy density can be mapped onto

hadrons, which then enter a hadronic scattering phase.

One may begin by considering the covariant expression for the number of particles with

distribution f(x, p), decoupling from the freezeout surface Σ:

N =

∫
d3p

Ep

∫
dΣµ(x)pµf(x, p), (2.47)

with

dΣµ = εµαβγ
dxα

dα

dxβ

dβ

dxγ

dγ
dαdβdγ, (2.48)

where εµαβγ is the Levi-Civita symbol and α, β, γ parameterize the three-dimensional freezeout

manifold in four-dimensional Minkowski space. The dΣµ can be explicitly calculated once a suitable

set of coordinates has been defined. Now, from Eq. 2.47, we can write down the momentum

distribution of emitted particles, also known as the Cooper-Frye formula:

Ep
dN

d3p
=

dN

dyd2pT
=

∫
dΣµ(x)pµf(x, p), (2.49)

where the distribution function is the appropriate Fermi-Dirac or Bose-Einstein distribution for

particles in thermal equilibrium.

2.4 Collective Behavior and The Perfect Liquid

When discussing the standard model of heavy-ion collisons, we motivated the inclusion of a

hydrodynamic stage by relating it to the observed collective behavior of the QGP. In this section,

the details of this relation are discussed further, exploring the concept of collective flow as well as

its experimental signatures [184, 186].
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Figure 2.14: Schematic view of a semi-central Au+Au collision along the beam axis. The impact

parameter makes an angle ΨRP with the x−axis, defining the reaction plane. The colored area in

the overlap region depicts the pressure gradient created in the collision.

Fig. 2.14 shows a schematic representation of a semi-central A+A collision looking down

along the beam axis (i.e., the z−axis). The impact parameter, that is the vector joining the center

of both nuclei, forms an angle ΨRP with respect to the x−axis, which defines the so-called reaction

plane, or plane of symmetry of the collision. The QGP will form in the almond-shaped overlap

region. Due to the geometry of the region, the hot nuclear matter there will be subjected to an

anisotropic pressure gradient, represented by the colored ovals. Notice that the pressure is greatest

at the center of the region, and falls off towards the edge. However, the change in pressure is steeper

along the minor axis than along the major axis of the ellipse. As a result, the QGP will expand

hydrodynamically preferentially along the steepest gradient (that is, in the reaction plane). This

anisotropic expansion results in the development of correlations between spatial coordinates and

the direction of hydrodynamic expasion, which we call collective flow. Experimentally, collective

flow appears as a modulation in the yield of final-state particles, which can be expressed with a

Fourier series, as follows

E
d3N

dp3
=

1

2πpT

d2N

dpTdy

(
1 + 2

∞∑
n=0

vn cos[n(φ−ΨRP )]

)
, (2.50)

where φ is the azimuthal angle of individual particles. The odd terms in this expansion are iden-
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tically zero due to the symmetry of the overlap region about the reaction plane. Individual terms

in the series are associated with distinct azimuthal modulation shapes exhibiting 2π/n rotational

symmetry; thus, n = 2 is associated with ellipticity, n = 3 is associated with triangularity, etc., as

shown in Fig. 2.16. The strength of each term is given by the magnitude of the Fourier coefficients

vn = 〈cos[n(φ−ΨRP )]〉, where the average is taken over all particles in a given event. Thus, v1 is

called directed flow, v2 is called elliptic flow, and v3, triangular flow.

It is important to notice that, in A+A collisions, non-vanishing vn, with n > 2, only arise

when fluctuating initial conditions are taken into account [46]. That is, if the initial conditions

were given by a smooth distribution, then the azimuthal modulation of final-state particles could

be described with just an elliptic component in the Fourier series. To illustrate this point, consider

Fig. 2.15, depicting two semi-central A+A events with the same impact parameter. In principle, the

spatial layout of participating nucleons (shown in red) should conform to the elliptical geometry of

the interaction region, as shown in the left panel of the figure. However, nucleon-level fluctuations

can impart non-elliptic contributions to the initial geometry of participants, as shown in the right

panel.

Figure 2.15: Two identical semi-central A+A collisions with different initial geometries due to

nucleon-level fluctuations. Image reproduced from [122].
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n = 2 n = 3 n = 4 n = 5

Figure 2.16: These shapes depict azimuthally-dependent radial modulations of the nth order, as

r(φ) ∝ cos(nφ), illustrating the various orders of azimuthal anisotropy in particle emission.

Elliptic flow was among the first measurements carried out at RHIC in Au+Au collisions [31].

The fact that its value was found to be quite substantial was taken as evidence that the medium

produced in the collisions was liquid-like, since weakly coupled gases would not respond anisotrop-

ically in the same way to pressure gradients. The formalism of ideal hydrodynamics was quickly

applied to the experimental findings with great success [128]. Further evidence supporting the

hydrodynamic picture came from the particle mass dependence of the measured v2, among many

other observations, as described in Ref. [119].

However, despite the success of ideal hydrodynamics, there is no such thing as a truly perfect

(i.e., inviscid) liquid in nature. From kinetic theory, the shear viscosity of a gas can be shown to

be

η ∼ n〈~k〉λ, (2.51)

where n is the density, ~k is the momentum, and λ is the mean free path. But since λ = 1/(nσ)

with σ being the particle interaction cross section, then

η ∼ 〈
~k〉
σ
. (2.52)

Thus, a truly inviscid liquid for which η → 0 would require σ → ∞, showing that the perfect (or

near-perfect) fluidity of the QGP stems from a very tight coupling between its constituent particles.

Thinking conceptually about perfect fluids is not straightforward. We can gain some intuition by

considering a toy problem of a volume of liquid flowing, say, along the x−axis with a transverse
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velocity profile vx(y). The shear force between adjacent fluid layers is proportional to the velocity

gradient, F ∝ η∇yvx(y). Thus, if the shear viscosity η → 0, so too will the shear force. In other

words, in a perfect liquid, perturbations in the flow do not propagate in the transverse direction.

Often, for conceptual understanding, people will think of very imperfect everyday liquids such as

honey as a stepping stone towards understanding perfect fluidity. This is a pitfall that must be

avoided; honey, molasses, and pitch are viscous because of their chemistry (i.e., the electrostatic

interaction of long, complex molecules), and not because of any feature of ballistic interactions

between particles.

Thus, even if the QGP cannot be truly perfect, its viscosity may still be very small. However,

it is notable that the near-perfect fluidity does not apply to the shear viscosity η alone, but rather to

the (specific) shear viscosity η/s, which has been normalized by the entropy density. Calculations

using the AdS/CFT correspondence [130] have determined that for quantum field theories at finite

temperature and zero chemical potential, there is an absolute lower bound on this quantity of

η

s
≥ 1

4π
(2.53)

in natural units. It is interesting to note that the same value can be also be obtained by an

uncertainty principle argument [82]. The value of η/s can be constrained by solving viscous hydro-

dynamics numerically and comparing the result with data [172]. More recent approaches have been

based on global Bayesian fit analysis involving multiple experimental observables [59]. Fig. 2.17

shows 4π× (η/s) as a function of temperature for a variety of the “best” liquids we know, including

cold atom gases and superfluid helium. We can see that, despite large uncertainties, the QGP has

the lowest viscosity of them all.
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Figure 2.17: Shear viscosity to entropy ratio (scaled by 4π) as a function of temperature for a

variety of liquids. Figure reproduced from [181].

Hydrodynamics with viscous corrections stands currently as the best model capable of de-

scribing a large wealth of accumulated data on collective behavior in heavy-ion collisions. For

instance, Fig. 2.18 shows flow coefficients v1 through v5, measured in semicentral A+A collisions

as a function of pT , both RHIC and LHC energies. Also shown for comparison are the results of

hydrodynamic calculations using the music model [176], with fluctuating IP-Glasma initial condi-

tions [176], exhibiting excellent agreement with the data.
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Figure 2.18: Azimuthal flow coefficients v1 through v5 measured at RHIC and LHC energies, along

with hydrodynamic calculations in semi-central A+A collisions using IP-Glasma initial conditions

and the music hydrodynamic framework. Figure reproduced from [104].



Chapter 3

Introduction to Collectivity in Small Collision Systems

3.1 Motivation

In heavy ion physics, the term ‘small collision system’ designates two distinct classes of

collisions: nucleon-nucleon (p + p), and highly asymmetric x+A collisions where the target is

typically Au or Pb, and the projectile x is a proton or a nucleus of very low atomic mass. To date,

this last category comprises p+Au, p+Al, d+Au and 3He+Au at RHIC, and p+Pb at the LHC. Of

these systems, d+Au and p+Pb were originally of interest in the RHIC and LHC programs for the

study of so-called cold nuclear matter (CNM) effects.

Collisions between nuclei cannot be treated theoretically as the mere superposition of individ-

ual nucleon-nucleon collisions, since the partonic structure of nucleons changes when embedded in

the larger bound state that is the nucleus. That is, features of individual hard scattering processes

between nucleons—otherwise calculable with standard perturbative techniques in QCD—become

modified by the presence of the nuclear medium. Along these lines, the umbrella term ‘CNM effects’

refers to all such modifications. A non-exhaustive list of CNM effects includes gluon saturation,

modifications of parton distribution functions in nuclei and the Cronin effect. The study of CNM

effects is not only of importance to understand QCD in nuclear bound states, but it also allows

for the correct interpretation of observations in A+A collisions, where both cold and hot nuclear

matter effects are present. A rich experimental program has developed around CNM, which is

beyond the scope of this dissertation.

From the start of the RHIC program in the early 2000s, small collision systems were con-
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sidered excellent testing grounds for the study of CNM effects, since their small size was thought

to preclude the formation of QGP. In the absence of any strongly interacting hot nuclear matter,

any modification observed in, say, d+Au collisions1 relative to the baseline p + p could then be

ascribed to physics originating from CNM effects.

Nevertheless, the assumption that no QGP could be formed in small system collisions came

under scrutiny when measurements in p+p and p+Pb at the LHC, and d+Au at RHIC, revealed an

enhancement at small relative azimuth in two-particle long-range azimuthal correlations [124, 26,

4, 9, 74]. This feature is considered a hallmark signature of the formation of strongly interacting

QGP in large collision systems, understood in the context of the standard model of heavy ion

collisions presented in the previous chapter. The question then became whether the hydrodynamic

paradigm is applicable to small collision systems, or if entirely different physics is responsible for

these observations.

These initial observations prompted substantial theoretical and experimental efforts, bringing

the question of QGP formation and collectivity in small systems to the forefront of heavy ion

research. The approach taken has been one of systematically taking observables in A+A collisions

which are well understood in the strongly-coupled fluid paradigm, and examining the extent to

which they are also present in small systems. Numerous observables have been studied in this

manner, both in the soft and hard sectors. In the soft sector, evidence for multi-particle collective

behavior correlated with initial geometry is abundant. The hard sector, which deals with probes

associated with hard parton scattering phenomena, such as jets and hadrons with heavy quark

content, is also of interest as the modifications of hard probes in the QGP medium are indicative

of energy loss at the partonic level. In particular, the energy loss of jets (i.e., correlated sprays of

particles originating from parton fragmentation), known as jet quenching is a signature of QGP

formation in A+A collisions. However, jet quenching has not been observed to date in small system

1 It is interesting to note that d+Au—as opposed to p+Au—was the only small collision system available at RHIC
from 2002 to 2013. While this choice may seem arbitrary, it follows from technical limitations of the collider itself
when delivering such asymmetric system at the same center-of-mass energy per nucleon. In particular, the rigidity
of the d beam is closer to that of the Au beam, compared to the p beam. Adjustments to the machine allowed
3He+Au and p+Au collisions to be delivered in 2014 and 2015, respectively, following a strong physics motivation
for comparing small systems with different intrinsic projectile geometries, as will be discussed later.
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collisions. This is particularly striking if signals of collectivity are to be interpreted as arising from

a strongly coupled fluid, since strong coupling necessarily implies parton energy loss. Nevertheless,

it has been posited that if QGP is indeed formed in small system collisions, its spatial and time

extent might be small enough that jet quenching signatures cannot develop.

The present chapter focuses on observables of multi-particle collectivity in the soft sector,

for which two competing classes of theoretical models have been put forth: models based on gluon

saturation physics, where collectivity arises from intrinsic momentum correlations of partons in the

initial state; and models where spatial anisotropy in the initial geometry, and its event-by-event

fluctuations, are translated to momentum space through final-state interactions. The latter class

of models includes viscous hydrodynamics, which has been described in the previous chapter, as

well as kinetic transport models. In the context of kinetic transport, the QGP is modeled not

as a continous medium whose evolution is dictated by various conservation laws, but rather as a

collection of well-defined quasiparticles whose scattering interactions accomplish the translation of

initial geometry to final-state momentum anisotropy.

3.2 Collectivity in Small Collision Systems

In order to provide a survey of current experimental and theoretical results on small system

collectivity, we focus exclusively on a set of observables related to bulk collectivity in the soft sector,

which have been considered hallmark indicators of the formation of a strongly interacting QGP in

A+A collisions, namely:

• Long-range two-particle angular correlation enhancement at small relative azimuth

• Azimuthal anisotropy vn relative to the collision event plane

• Azimuthal anisotropy from higher order correlations using multi-particle cumulants

• Differential v2 for hadrons of different mass

For a comprehensive review of other observables, including HBT radii and particle spectra, see [140].
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3.2.1 Long-Range Two-Particle Azimuthal Correlations

As explained in Chapter 2, the collective expansion of the QGP under anisotropic pressure

gradients leads to a characteristic azimuthal modulation in the final-state particle yield. Such

modulation can be explicitly visualized by constructing two-particle correlation functions in relative

η and φ using final-state hadrons. The leftmost panel of Fig. 3.2 illustrates such a correlation in

Pb+Pb collisions at
√
sNN = 5.02 TeV, after removing the underlying background originating from

uncorrelated particles pairs. The enhancement around ∆φ = π (i.e., the ‘away side’), extending

over many units in relative pseudorapidity arises from momentum conservation: jets from hard

parton scattering emerge azimuthally back-to-back, while variations in the momentum fraction x

of the partons give rise to correlations in ∆η. The sharp peak around (∆η,∆φ) ≈ (0, 0) comes

from particles within the same jet cone. However, the near-side (i.e., around ∆φ = 0) enhancement

of the correlation function at large ∆η reflects a global correlation attributed to the collective

expansion of the QGP medium. This near-side enhancement at large relative pseudorapidity is

commonly known as the ridge. When considering the correlation at large |∆η|, it is possible to see

a prominent dN/d∆φ ∝ cos(2∆φ) modulation extending over eight units in relative pseudorapidity,

which can be quantified as a substantial elliptic flow coefficient v2, directly related to the intrinsically

elliptical shape of the overlap region.

This very same near-side ridge over a large ∆η range was observed in p+Pb collisions at

√
sNN = 5.02 TeV, as shown in the central panel of Fig. 3.2. The existence of the ridge alone is a

striking aspect of the correlation function, prompting the question of whether the same feature in

two very different collision systems can be attributed to the same origin. However, although quali-

tatively similar to Pb+Pb, the azimuthal modulation in p+Pb is not predominantly proportional to

cos(2∆φ). The change in the correlation’s shape arises from changes in the relative strength of the

correlated flow signal and the signal from momentum conservation, and other non-flow processes.
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Figure 3.1: Two-particle correlations in ∆η−∆φ, measured among final-state particles in Pb+Pb,

p+Pb, and p+ p collisions at the LHC.

Finally, the right panel of Fig. 3.2 shows the two-particle correlation for the case of p + p

collisions at
√
sNN = 13 TeV. Though less pronounced than in the previous case, a long-range

near-side ridge is clearly also present. Notice, additionally, that the peak in the correlation at

(∆η,∆φ) ≈ (0, 0) becomes much more prominent with decreasing system size; in fact, it has to be

truncated in order to properly visualize the ridge in p+ p and p+Pb. This serves to illustrate the

substantial presence of non-flow effects in small collision systems. We define as a non-flow effect

any physical process—other than the collectivity of the bulk—that leads to angular correlations

between particles. These include jet fragmentation, resonance decays, Coulomb correlations, and

momentum conservation. While some can be trivially removed by requiring a large separation

in pseudorapidity between particle pairs, others persist even with the pseudorapidity gap. The

question of non-flow thus becomes central to the study of collectivity in small systems and will be

addressed in greater detail in upcoming subsections.

3.2.2 Geometry Engineering

Back when they were first observed, long-range azimuthal anisotropy signals in p+Pb col-

lisions at the LHC and in d+Au collisions at RHIC were compelling enough to warrant a close
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examination of long-held assumptions about what ‘collectivity’ meant, the minimal conditions for

it to come about, and its relation to the production of strongly interacting QGP matter. While

the operational definition of collectivity, as it relates to a specific experimental observable vn, was

never in question, the physics of what was being measured certainly was. Along these lines, we

distinguish two schools of thought:

• Final-State Interaction Picture

The final state interaction picture is based on the idea that azimuthal anisotropy in the final-

state (excluding non-flow contributions) can be directly traced back to the initial collision

geometry. The translation from geometry to the final momentum space is accomplished

by means of final-state interactions. That is, the interactions of physical entities produced

after the collision has taken place, such as fluid elements hydrodynamic theory, or scattering

partons in transport theory (discussed in Chapter 4).

In the context of hydrodynamics, the final-state interaction picture claims that the stan-

dard model of heavy ion collisions essentially applies unmodified to small collision systems.

That is, droplets of QGP are indeed formed during the collision, and their hydrodynamic

expansion is driven by pressure gradients related to the initial geometry. This line of reason-

ing implicitly assumes that the small amount of QGP formed lives long enough to achieve

the translation of initial spatial anisotropy into the final state; otherwise, no azimuthal

anisotropy would be measured.

• Initial-State Correlation Picture

Unlike the previous interpretation, the initial-state correlation picture explains the observed

collectivity as arising from space-momentum correlations in the gluon fields in the initial

state [178]. When nuclei are accelerated close the speed of light, otherwise short-lived

virtual gluon fluctuations within the nucleons become Lorentz-dilated [107]. As a result,

probing the nucleus on a time scale shorter than the characteristic lifetime of the fluctu-

ations will reveal a partonic structure consisting of an abundance of gluons over quarks,



46

which becomes more pronounced with increasing energy. This has been well established in

deep inelastic scattering (DIS) experiments, which reveal the dominance of gluons at low

momentum fraction x in the structure function of the proton. As gluon occupancy grows

with increasing(decreasing) energy(x), multi-parton processes involving gluon recombina-

tion become important, making the evolution of the parton distrubution function—as given

by the DGLAP or BFKL equations—non-linear. Even though QCD in this small coupling

régime should be normally tractable with pertubative techniques, the high gluon occupa-

tion and multi-parton interactions make such an approach unfeasible. In fact, when the

gluon occupation reaches approximately 1/αs, the use of perturbative techniques becomes

impossible as an infinite number of Feynman diagrams would need to be resummed. The

momentum scale below which these non-linear QCD effects become important is known as

the saturation scale Qs. Surprisingly, weak coupling methods can be applied to describe

this region of gluon saturation. The color glass condensate (CGC) theory [193, 108] is a

weakly coupled effective classical field theory, which treats ‘fast’ partons as static color

charges since their dynamics are slowed down by relativistic time dilation, allowing us to

track the evolution with energy of multi-gluon configurations.

As described above, CGC theory is a very general framework, of interest to many sub-

fields of nuclear and particle physics insofar as changes to the partonic structure of a fast

nucleon have a direct impact on particle production, which is interesting for a variety of

reasons. In the case of heavy-ion collisions, gluon saturation physics has been proposed as

influencing a variety of observables in small systems at RHIC and the LHC, including total

particle production, forward particle suppression, and dihadron correlations including—for

the purposes of this dissertation—ridge-like long-range two-particle angular correlations.

In this CGC framework, many approximations have been made to solve the Yang-Mills

equations [177] to explain small system collectivity. One such approach accounts for the

observed ridge in terms of the formation of color domains in the initial state of the collision.
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That is, color fields within the nucleon fluctuate on an event-by-event basis, forming distinct

regions where the field points in the same direction—conceptually analogous to magnetic

domains in ferromagnetic materials—whose characteristic spatial extent is 1/Qs. When

partons from the projectile nucleus impinge on the target, they will scatter off a given

domain, receiving a ‘kick’ in the direction of the field provided their charge matches that

of the domain. Therefore, the emission pattern of partons off the target will reflect the

anisotropy present in the color fields, independently of the geometric configuration of the

colliding nuclei. In principle, these domains exist both in large and small collision systems.

However, the large number of domains in A+A dilute the strength of the correlations,

since any preferred direction vanishes when averaging over all domains such that these

initial-state correlation effects are negligible.
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Figure 3.2: The leftmost column shows the spatial distribution of deposited energy in hydrody-

namic simulations of a individual p+Au, d+Au, and 3He+Au events, showing their intrinsic initial

spherical, elliptical, and triangular geometry, respectively. As a function of time, the hydrodynamic

evolution of each system is shown, where arrows indicate the momentum of individual fluid ele-

ments. The last column shows how the intrinsic initial geometry persists as a flow pattern in the

final state.

The problem is then to devise a way of experimentally discriminating between the two pos-

sibilities described above. The key insight [151] was the realization that, just as it is possible to

control the initial ellipticity ε2 of A+A collisions by selecting on various centrality classes, it is also

possible to control the initial geometry of asymmetric x+A small collisions by selecting projectile
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nuclei x with different intrinsic geometric shapes, based on their number of nucleons. Along these

lines, 3He is triangular, deuteron is elliptical, and a single proton is point-like2 , imparting their

shape to the initial energy density distribution of the collision. If QGP is indeed formed in these

small collisions, and if it is sufficiently long-lived, then the measured v2 and v3 should directly

correlate with the known intrinsic collision geometry; that is, one would expect 3He+A collisions to

have the highest v3 of all systems, and d+A to have the highest v2. This is analogous to peripheral

A+A collisions having a higher v2 than central collisions, owing to their larger ε2. This approach

has come to be known as geometry engineering, and is illustrated in Fig. 3.2 using hydrodynamic

simulations. The leftmost panels of the figure depict the initial energy density distribution for each

system, showing a number of distinct hot spots corresponding to the number of nucleons in the

projectile. Succesive panels towards the right show snapshots of the resulting hydrodynamic flow

field at selected times in the system’s evolution; it is clear from the figure that, at late times and

in this particular event, the intrinsic geometry of the first panel is still present in the flow field.

The suite of three collision systems, p+Au, d+Au, and 3He+Au at
√
sNN were delivered by

the RHIC machine during the years 2015, 2008, and 2014, respectively. The PHENIX collaboration

has measured v2 and v3 as a function of transverse momentum for 0-5% central events in these

systems [41, 26, 24, 27, 38], as shown in Fig. 3.3. For comparison, Fig. 3.4 shows the measurements

compared to results of hydrodynamic calculations. The sonic calculations use Monte Carlo Glauber

initial conditions, in which the eccentricity for the centrality class at hand is, in p+Au, d+Au,

and 3He+Au respectively, ε2 = 0.231, 0.540, and 0.504. We observe a good agreement between

data and calculations, and also that the relation between the measured elliptic flow coefficients

vd+Au
2 ∼ v

3He+Au
2 > vp+Au

2 mirrors that among the initial ellipticity of these systems εd+Au
2 ∼

ε
3He+Au
2 > εp+Au

2 . Similarly, the initial triangularity for d+Au and 3He+Au is ε3 = 0.190 and

0.283, respectively, and we correspondingly observe vd+Au
3 < v

3He+Au
3 . These observations, together

with the excellent agreement of hydrodynamic simulations with data constitute very strong positive

2 While a single projectile proton may be point like, there will be large fluctuations upon collision with the large
target nucleus. However, part of the intrinsic geometry of the projectile is preserved.
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evidence in support of the final-state interaction picture of small system collectivity. It is important

to mention, however, that while the measurements of v2 are carried out in the same centrality class

for every system, the multiplicity changes, necessarily impacting v2. Along these lines, 3He+Au has

the highest event multiplicity, followed by d+Au and p+Au in that order. However, hydrodynamic

calculations account for the effect of multiplicity on v2, as well as the effect of event-by-event

fluctuations in the initial geometry.

Additionally, the observations disfavor the initial-state correlation hypothesis, since color

domains are correlated within individual nucleons, but not within the larger nucleus. Thus, the

overall collectivity signal should decrease with an increasing number of nucleons in the projectile,

contrary to observations.
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Figure 3.3: (top) Elliptic and (bottom) triangular flow v2,3(pT ) for 0-5% central p+Au, d+Au, and

3He+Au collisions, as measured by the PHENIX experiment. Figure reproduced from [41].
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Figure 3.4: Elliptic and triangular flow, v2(pT ) and v3(pT ), for 0-5% central p+Au, d+Au, and

3He+Au collisions at
√
sNN = 200 GeV, as measured by the PHENIX experiment. The colored

bands correspond to the same quantity calculated using the sonic and iebe-vishnu hydrodynamic

models. Figure reproduced from [41].

Following the above discussion, it is of interest to further scrutinize the relation between

geometry and flow. The left panel of Fig. 3.5 shows the ratio v2/ε2 for all three systems. The

lack of a common linear scaling vn ∝ εn for all systems, as would otherwise be expected from

ideal hydrodynamics up to viscous corrections in A+A collisions, far from indicating the absence of

QGP, attests to the peculiarities of small systems as shown in the right panel of Fig. 3.5. There, the

v2/ε2 ratio is shown for individual events from hydrodynamic simulations as a function of the initial

ε. It can be seen that the desired scaling does exist, yet breaks for events with high ellipticity.

The physical interpretation of this observation may be of short-lived QGP droplets that—when

the initial hotspots are far enough apart—cannot achieve the full translation of the elliptical or

triangular geometry into the final state.
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Figure 3.5: Ratio of elliptic flow v2(pT ) to initial eccentricity ε2, for 0-5% central d+Au, and

3He+Au collisions at
√
sNN = 200 GeV, as measured by the PHENIX experiment. The colored

bands correspond to the same quantity calculated using the sonic hydrodynamic model. Figures

reproduced from [151, 38]

3.2.3 Multi-particle Correlations

Early measurements demonstrating collective behavior in small collision systems consisted of

correlations involving only pairs of particles. However, if it is truly collective behavior related to the

initial geometry that is being measured, then it should manifest itself as a global correlation among

many particles in every event. These multi-particle correlations are measured using mathematical

objects called cumulants [62], related to the moments of a probability distribution. The kth order

cumulant corresponding to the nth flow harmonic is denoted cn{k}, where k indicates the number

of particles over which the correlation is being measured. The expressions for two-, four-, and

six-particle cumulants are given below in terms of 〈〈k〉〉—the so-called k-particle correlator—where
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the double brackets denote the averaging over particles in a single event, and then over all events.

cn{2} = 〈〈2〉〉 = 〈〈cos[n(φ1 − φ2)]〉〉, (3.1)

cn{4} = 〈〈4〉〉 − 2〈〈2〉〉2 = 〈〈cos[n(φ1 + φ2 − φ3 − φ4)]〉〉 − 2〈〈2〉〉2, (3.2)

cn{6} = 〈〈6〉〉−9〈〈4〉〉〈〈2〉〉+12〈〈2〉〉3 = 〈〈cos[n(φ1+φ2+φ3−φ4−φ5−φ6)]〉〉−9〈〈4〉〉〈〈2〉〉+12〈〈2〉〉3.

(3.3)

The equations above explicitly contain averages taken over all combination of k particles, φ1 . . . φk

in a given event. In practice, finding all such combinations is computationally unfeasible even in

events with modest multiplicity, so closed-form expressions for 〈〈k〉〉 are used instead, as described

in [62]. Flow anisotropies vn{k} can then be calculated from the cumulants as follows:

vn{2} = (cn{2})1/2

vn{4} = (−cn{4})1/4

vn{6} = (cn{6}/4)1/6.

(3.4)

An advantage of the multi-particle cumulant formalism over other forms of calculating vn

is that many sources of angular correlations, collectively called non-flow, are not global, involving

only a small number of particles. Along these lines, the vn{k} calculated using multi-particle

cumulants becomes less sensitive to non-flow effects for higher values of k. Additionally, it has been

shown that cumulants can provide information on event-by-event fluctuations in vn [159], which

are particularly relevant in small systems where the initial energy density is highly sensitive to

fluctuations in nucleon coordinates upon impact.

Fig. 3.6 shows PHENIX measurements [40] of v2{2}, v2{2, |∆η| > 2}, and v2{4} for d+Au

collisions at a variety of center-of-mass collision energies, ranging from
√
sNN = 19.6 GeV, to

√
sNN = 200 GeV. In this last case, the figure also shows v2{6}. The salient feature of the plot
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is that a real-valued v2{4} is measured at all collision energies, which constitutes evidence for

collectivity. This point is reinforced at the highest collision energy where v2{2} < v2{4} ≈ v2{6},

indicating that the observed correlations are truly global in character and that non-flow involves

only a limited number of particles. Multi-particle correlation techniques were also applied to p+Au

collisions at
√
sNN = 200 GeV, in which case a negative c2{4} was found, leading to complex-valued

v2{4}. A limitation of cumulant-based analyses in small systems at RHIC is the low multiplicity of

this type of collisions making the results more sensitive to effects such as fluctuations, particularly

at the lower collision energies. A full discussion of these limitations is beyond the scope of this

thesis, and the reader is referred to Ref. [40].

On the other hand, small system collisions at LHC energies exhibit much higher event mul-

tiplicities than at RHIC. Fig. 3.7 shows v2{k} in p + p, p+Pb, and Pb+Pb at the LHC. Un-

like at RHIC, it is possible to measure even v2{8} in p+Pb collisions. It can be seen that,

just as in the large Pb+Pb system, small systems also exhibit a substantial elliptic flow, with

v2{2} > v2{4} ≈ v2{6} ≈ v2{8}.
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Figure 3.6: Multiplicity dependence of elliptic flow v2, measured in d+Au collisions at RHIC, at a

variety of collision energies, using multiparticle cumulants. Figure reproduced from [40].
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Figure 3.7: Multiplicity dependence of elliptic flow v2, measured in p+ p, p+Pb, and Pb+Pb colli-

sions at the LHC using multiparticle cumulants and Lee-Yang zeroes. Figure reproduced from [127].

3.2.4 Mass Dependence of Azimuthal Anisotropy

The final signature consequence of collectivity in large systems, as considered in this disser-

tation, is the dependence of vn on the mass of identified final-state particles. If we picture the

the QGP as experiencing a strong radial expansion during the hydrodynamic phase, then upon

hadronization of individual fluid elements each produced hadron will be subjected to a common

velocity boost. As a consequence, hadrons of higher mass will exhibit an azimuthal anisotropy

pattern that is shifted to higher pT , resulting in a mass ordering of the measured vn. This hallmark

signature of hydrodynamic expansion is shown in Fig. 3.8 for p + p, d+Au, and p+Pb. There, it

can be seen how heavy baryons appear to exhibit a ‘lower’ v2 than the lighter mesons, as the curve

is shifted to higher pT .
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Figure 3.8: Transverse momentum dependence of v2 as measured for identified protons and charged

pions in p+Au, d+Au, and 3He+Au collisions at
√
sNN = 200 GeV at RHIC. The data are

compared to hydrodynamic calculations from the iebe-vishnu model, with and without a hadronic

rescattering stage. Figure reproduced from [154].



Chapter 4

A Kinetic Transport Approach to Collectivity in Small Collision Systems

The previous chapter presented a comprehensive survey of collective behavior in small colli-

sion systems. A wealth of experimental observations prove that in most respects, with jet quenching

being a most notable exception, collectivity in both large and small systems is remarkably similar

and directly related to the spatial anisotropy of the initial state. However, since the identification of

collectivity signals with QGP formation is not yet univocal, it is of interest to examine other models

besides viscous hydrodynamics also capable of accomplishing the translation of intial geometry into

the final state.

Along these lines, this chapter will examine small system collectivity in the context of ki-

netic transport theory. Kinetic transport models are not new; in fact, they were being applied to

heavy-ion collisions long before the advent of modern relativistic hydrodynamic models, in order

to understand hot nuclear matter in terms of quasiparticle scattering. We begin by reviewing the

history of transport models, focusing on a particular model called ampt. We then systematically

examine the origin of collective behavior in this model, and the extent to which it can account for

experimental observations in a variety of small systems. Lastly, we examine the minimal conditions

and assumptions required to sucessfully account for the observed experimental results.

The results of this chapter have been published in the following journal articles:

• J. Orjuela Koop, A. Adare, D. McGlinchey, J.L. Nagle. Azimuthal anisotropy relative to

the participant plane from a multiphase transport model in central p + Au , d + Au , and

3He + Au collisions at
√
sNN = 200 GeV. Physical Review C 92 054903 (2015)
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• J. Orjuela Koop, R. Belmont, P. Yin, and J.L. Nagle. Exploring the Beam Energy Depen-

dence of Flow-Like Signatures in Small System d+Au Collisions. Physical Review C 93

044910 (2016)

• J.L. Nagle, R. Belmont, K. Hill, J. Orjuela Koop, D.V. Perepelitsa, P. Yin, Z-W. Lin, D.

McGlinchey. Minimal conditions for collectivity in e+e− and p + p collisions. Physical

Review C 97 024909 (2018)

• J.L. Nagle, J. Orjuela-Koop. A Quasiparticle Transport Explanation for Collectivity in the

Smallest of Collision Systems (p + p and e+e−). Proceedings of the 27th International

Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2018) Venice,

Italy, May 14-19, 2018. arXiv:1807.04619

4.1 Introduction to Transport Models in Heavy Ion Collisions

4.1.1 Why Transport Models?

The standard model of heavy-ion collisions relies on two different types of theoretical cal-

culations. On one hand, lattice QCD provides information on the bulk thermodynamics of the

QGP from first principles—most notably, the equation of state. On the other hand, the dynamic

evolution—impossible to derive from first principles—is described by relativistic viscous hydrody-

namics. Hydrodynamic models as applied to heavy-ion collisions have a long history, which can

be traced back to Landau [133] and his study of strong interaction phenomenology and statistical

particle production in p+p collisions. However, it was not until half a century later that the theory

of ultrarelativistic viscous hydrodynamics and its numerical implementation was developed to the

point of allowing key parameters of the QGP, such as the shear viscosity, to be constrained from

experimental data [171]. Prior to the hydrodynamic paradigm of the standard model of nuclear

collisions, a variety of models existed, each one addressing limited aspects of nuclear collisions.

Among these, transport models were developed starting in the late 1980s to provide a fully

microscopic description of high energy heavy-ion collisions, starting from as fundamental physi-
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cal principles as possible. Transport models make use of kinetic theory, a general mathematical

formalism suited to describe the dynamics of many-body systems of particles in terms of a dis-

tribution function in phase space, f(~r, ~p) [75]. Physically, the distribution function provides the

average number of particles f(x, p)d3xd3p with momenta between ~p and ~p + d~p, within a volume

d3x. Several important quantities can be defined in terms of the distribution function, such as the

energy momentum tensor

Tµν =

∫
d3p

p0
pµpνf(x, p), (4.1)

and the particle four-flow

Nµ(x) =

∫
d3p

p0
pµf(x, p). (4.2)

In turn, the above quantities can be used to calculate macroscopic system variables such as the

particle density n = Nµuµ, and energy density ε = uµT
µνuν , with uµ being the hydrodynamic

four-velocity.

When the system experiences an external perturbation that causes it to depart from equilib-

rium, the distribution function starts to evolve in space and time, governed by an integro-differential

equation known as the kinetic equation which describes changes in the occupancy of boost-invariant

elements of phase space. The earliest such equation is the Boltzmann equation. In a collisionless

system, the net flux of particles through the surface ∆3x of a 4-volume ∆4x vanishes,∫
∆4x

∫
∆3x

d4x
d3p

p0
pµ∂µf(x, p) = 0, (4.3)

leading to the Boltzmann equation, as follows(
∂t +

~p

p0
· ∇
)
f(x, p) = 0. (4.4)

If particle collisions are now included, the net flux of particles, as described by Eq. 4.3, will

no longer vanish. Instead, it will take the form∫
∆4x

∫
∆3x

d4x
d3p

p0
pµ∂µf(x, p) = ∆4x

∆3p

p0
C(x, p), (4.5)

where certain assumptions are needed to calculate the function C(x, p). Namely, Boltzmann trans-

port assumes (i) that the system is dilute enough so that only 2 → 2 scattering is important; (ii)
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that the momenta of interacting pairs of particles are uncorrelated; (iii) that f(x, p) is a slowly

varying function; and (iv) that scattering events are instantaneous. In that case, the Boltzmann

equation becomes

pµ∂µf =
1

2

∫
d3p2

p0
2

d3p3

p0
3

d3p4

p0
4

W (p3p4 | p1p2)

×[f(x, p3)f(x, p4)− f(x, p1)f(x, p2)],

(4.6)

where the W (p3p4 | p1p2) factor corresponds to the transition rate for the ~p1 + ~p2 → ~p3 + ~p4

scattering process [75].

As written above, the transport equation describes classical systems, such as the gases Boltz-

mann originally studied in the 19th century. However, various refinements are possible. The first

such refinement considered here is the inclusion of quantum effects arising from the bosonic or

fermionic nature of the particles. When dealing with fermions, certain scattering events can be

Pauli-blocked, whereas the probability of certain scattering processes will be enhanced for bosons.

It can be shown that the Boltzmann equation will then take the following form

pµ∂µf =
1

2

∫
d3p2

p0
2

d3p3

p0
3

d3p4

p0
4

W (p3p4 | p1p2)[f(x, p3)f(x, p4)f̄(x, p1)f̄(x, p2)

−f(x, p1)f(x, p2)ff̄(x, p3)f̄(x, p4)],

(4.7)

where f̄ = 1 + εh3f , with ε = 1 for bosons and ε = −1 for fermions. This equation is known as the

Boltzmann-Uehling-Uhlenbeck (BUU) equation [75].

The above semi-classical transport equation can be solved numerically with a Monte Carlo

approach, treating the partons as point-like particles following classical trajectories and undergoing

binary scattering. A collision between two partons is said to occur if they come within a distance√
σpart/π of each other. Ref. [106] provides a detailed description of how the Monte Carlo sampling

of particle pairs is carried out in accordance with the transport equation. This approach, while

admittedly Glauber-like, is referred to in the literature as a partonic cascade. It is particularly

useful for the study of hot nuclear matter since it makes no assumption about the phase space

distribution of partons, thus allowing for the study of systems far from equilibrium.
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4.1.2 A Multi-Phase Transport Model—AMPT

The ampt model was developed in the early 2000s to provide a unified description of the full

space-time evolution of heavy-ion collisions [138]. Organized as a workflow of various algorithms,

each modeling a specific stage of the system’s evolution as discussed in Chapter 3, it uses standard

kinetic theory to model the QGP stage as a collection of interacting quasiparticles, thus accounting

for its the non-equilibrium dynamics of the many-body system. Historically, this avenue of inves-

tigation was motivated by the belief that the QGP could never fully reach thermal equilibrium.

Even though such viewpoint eventually lost ground to the hydrodynamic paradigm of heavy-ion

collisions, ampt remained a useful model for the exploration of new ideas1 , particularly in regimes

where hydrodynamics is expected to break down, such as small collision systems.

There are two variants of the ampt model: the default and the string melting version, the

latter being applicable when the energy density is well above the critical density of the phase

transition in QCD, as is typically the case at RHIC collision energies. Both versions consist of the

same sequence of stages—(i) initial conditions, (ii) partonic scattering, (iii) hadronization, and

(iv) hadronic scattering—albeit with variations in their implementation. The present dissertation

analysis makes use of the string melting version with a series of custom modifications. We now

describe each stage of the model, with emphasis on the string melting implementation. Fig. 4.1

compares the stages involved in each implementation of the model, as described in the following

subsections.

1 A notable example of such use of ampt was the introduction of triangular flow v3 from event-by-event fluctuations
in the initial geometry of A+A collisions [46]. This study demonstrated that long-range azimuthal two-particle
correlations measured experimentally contain a third-order harmonic contribution whose magnitude is proportional
to the triangularity ε3 of the participant nucleons, as induced by nucleon coordinate fluctuations in an otherwise
intrinsically elliptic geometry. This finding definitively dispelled the notion that such higher harmonics originated
from Mach cones in the GQP [192].
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Figure 4.1: Structure and workflow of the ampt model in its (left) default and (right) string melting

implementations.

4.1.2.1 Initial Conditions

This stage consists of two distinct parts: the determination of initial geometry, and the

production of partons from nucleon-nucleon collisions. For both of these, ampt uses the hijing

event generator [197].2 The initial coordinates of the nucleons in the projectile and target nuclei

are sampled randomly from the appropriate density distribution for the nuclear species at hand.

By default, the coordinates for any nucleus are sampled from the Woods-Saxon distribution

ρ(r) =
ρ0

1 + exp((r −R)/a)
(4.8)

2 The hijing model is a Monte Carlo event generator for the study of p+ p, p+A, and A+A collisions developed
in the early 1990s for the study of various phenomenological aspects of heavy ion collisions. It is noteworthy in
that it incorporates both soft (i.e., production of Lund color strings) and hard physics for particle production (i.e.,
perturbative QCD processes as implemented in pythia), while also accounting for shadowing (as a cold nuclear
matter effect in the initial state) and energy loss (as a final-state effect in hot nuclear matter). This made the model
particularly useful for studying the initial conditions of heavy ion collisions, at a time of transition between the lower
SPS and AGS energies, and the higher RHIC energies where pQCD was expected to play a more significant role
in particle production than before. A full description of the hijing generator can be found in [197], with details
provided here only as necessary to describe the initialization of ampt.
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with R ∼ A1/3 and a being the diffuseness parameter. However, in the case of deuteron, the nucleon

coordinates are sampled from the Hulthén wavefunction [33]

ψd(r) =

√
αβ(α+ β)

2π(α− β)2

exp(−αr)− exp(−βr)
r

(4.9)

whose norm |ψd|2 corresponds to the probability of the proton and neutron being separated by a

distance r, with α = 0.228 fm −1 and β = 1.18 fm −1. Finally, in the case of 3He, we modified the

code to use the nucleon coordinates as determined from a Green’s function Monte Carlo calculation

using the AV18+UIX model of three-body interactions [73].

Having defined the coordinates of nucleons in the projectile and target, wounded nucleons

are determined based on a diffuse nucleon cross section, which we modified to be a sharp cross

section, or black disk, to better match the Monte Carlo Glauber approach in Ref. [139]. Multi-

nucleon interactions are treated in the eikonal approximation, in which projectile nucleons remain

undeflected as they bore a hole through the target. Particle production then proceeds depending

on the scale of momentum transfer. Above some cutoff momentum, pertubative QCD is used to

evaluate hard processes leading to the production of so-called minijets.3 Below the cutoff, soft

particle production is treated through the formation of Lund color strings [49]. In the default

version of ampt, only the minijet partons enter the subsequent parton scattering stage. On the

other hand, in the string melting version, the strings fragment into hadrons which disassociate

into their respective quark content, entering the partonic scattering stage along with the minijet

partons.

However, partons do not start interacting immediately after their production. A formation

time is imposed, defined as an interval during which the partons free-stream before being allowed

to interact. Such a construct is introduced to account for the early time multi-body dynamics

during which partons cannot be treated as independent particles. In reality, there is no reason

3 Technically, there is a distinction between jets and minijets. Jets are usually defined as correlated sprays of
particles associated with a hard parton scattering process, whose energy and shape can be determined experimentally.
Nevertheless, hard processes will lead to the same type of particle correlations even if their energy is too low to be
reconstructed over the underlying event background. In that case, they receive the name ‘minijets’. In the context
at hand, we are not interested in this distinction and the term is used simply to refer to particles originating from
hard processes, calculable with perturbative QCD.
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to believe that partons do not interact during this time, but the impossibility of modeling that

early-time physics leads to this simplifying assumption. In the string melting version of the model,

the formation time of a given parton is defined as

tf =
E

m2
T

, (4.10)

where E and mT are the energy and mass of the hadron from which it emerged. The form of this

particular expression can be shown to follow from uncertainty principle arguments, and is important

for the interpretation of ampt results. This will be the subject of subsection 4.2.6. However, the

dependence of the formation time on the hadron—rather than the parton—kinematics is an ad

hoc choice, intended as a bookkeeping device for the subsequent coalescence of partons back into

hadrons. For this very reason, all partons in the ampt model are exclusively (anti)quarks, with

gluons not being incorporated.

4.1.2.2 Partonic Scattering

The implementation of partonic scattering using Zhang’s Parton Cascade (zpc) [205] is com-

mon to both versions of the ampt model. This is the core of the model, where the hot nuclear

matter medium is represented as a collection of scattering quasiparticles, with the particular fea-

ture that all partons are (anti)quarks, with no gluons. In this stage, the partons produced in the

collision (both string and minijet partons in the string melting version, and only minijet partons in

the default version) are allowed to interact according to the following set of Boltzmann transport

equations for the time evolution of the phase space density distribution f(~x, ~p, t):

pµ∂mfa(~x, ~p, t) =
∑
m

∑
b1,b2,··· ,bm

∫ m∏
i=1

d3pbi
(2π)32Ebi

fbi(~x, ~pb, t)

×
∑
n

∑
c1,c2,··· ,cn

∫ n∏
j=1

d3pcj
(2π)32Ecj

|Mm→n|2

×(2π)4δ4

(
m∑
k=1

pbk −
n∑
l=1

pcl

)

×

− m∑
q=1

δabqδ
3(~p− ~pbq) +

n∑
r=1

δacrδ
3(~p− ~pcr)

 .

(4.11)
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The formulation of the above equations is very general, describing multiparton interactions

with matrix elements |Mm→n|. The equations are simplified considerably by restricting the model

to the case of two-body quark-quark interactions, which are then numerically solved in time steps

by the zpc code. Two partons are said to interact when at a given time step they come within a

distance b =
√
σ/π of each other. The scattering cross section σ is calculated in QCD to leading

order [205, 138], for scattering angles within 0 < φ < π, yielding

dσ

dt
≈ 9πα2

s

2t2
, (4.12)

where t is the standard Mandelstam variable and αs is the strong coupling constant. The expression

is undefined at t = 0, so a parameter µ is introduced to regularize the divergence as follows:

dσ

dt
=

9πα2
s

2(t− µ)2
. (4.13)

This regularization parameter is physically interpreted as the Debye screening mass, or equivalently,

the inverse screening length for a parton in the medium. The expression for the differential cross

section can be integrated to arrive at the total partonic cross section used in the ampt model:

σ ≈ 9πα2
s

2µ2
. (4.14)

In the model, a fixed scale αs = 0.47 is selected, and it is the parton screening mass that is specified,

uniquely related to the cross section as follows,

µ[fm−1] =
√

31.2287/σ[mb]. (4.15)

Another important feature of parton scattering, as calculated in QCD, is the anisotropic

distribution of parton-parton scattering angles. The left panel of Fig. 4.2 shows the probability

distribution of the scattering angle θ in 2 → 2 parton interactions. The solid black curve, for all

partons, demonstrates that partons are much more likely to scatter at forward angles. However, if

we discriminate by the center-of-mass energy of the scattering event, it is possible to see that the

distribution becomes more isotropic with decreasing energy. This preferential scattering direction

will be seen, in the following sections, to play a large role in the development of collectivity in
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very small collision systems without a clear initial geometry. For comparison, the right panel of

Fig. 4.2 shows the unnormalized distribution of scattering angles in another partonic transport

model, called bamps [202, 203]. In the particular case of 2→ 2 scattering, the distribution is also

anisotropic and qualitatively similar to ampt.
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Figure 4.2: (left) Distribution of scattering angles in ampt for various center-of-mass energies of

the parton-parton interaction. (right) Distribution of scattering angles in the bamps model.

4.1.2.3 Hadronization

The two versions of the ampt model have very different approaches to hadronization. The

string melting version uses a straightforward coalescence approach based on spatial proximity,

grouping nearby partons into quark-antiquark pairs to form mesons, and into groups of three

(anti)quarks to form baryons. Unlike other coalescence prescriptions [102], the model does not

consider the relative momentum of the partons as a criterion for recombination. That is, a pair of

partons with momenta in opposite directions have the same chance of recombining as they would

if their momenta were colinear, provided they are spatially close together. This process can take

place all throughout the partonic cascade stage, following the kinetic freezeout of individual partons,

resulting in a mixed parton-hadron phase. The species of the resulting hadron is determined by

the flavor of the recombined quarks, treated as valence particles. In the case of hadrons with the
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same valence quark content, the choice is disambiguated by selecting the hadronic state whose

mass is closest to the invariant mass of the quarks. In this coalescence procedure, the formation

of the η′, Σ∗, Ξ∗, K0
S , and K0

L states is explicitly precluded, as they are not implemented in the

hadronic cascade stage of the model. As described, this simple coalescence procedure violates the

conservation of four-momentum (though three-momentum is conserved), as well as the second law

of thermodynamics, which is a common feature of all coalescence models.

On the other hand, the default ampt model makes use of a more sophisticated approach to

hadronization, in which the minijet partons taking part in zpc recombine with the soft strings at

the end of the cascade. This leads to the formation of excited strings, which fragment into hadrons

according to the Lund string model [49].

4.1.2.4 Hadronic Scattering

Once hadronization has taken place, the hadrons enter a final scattering stage, including both

elastic and inelastic hadronic interactions, consisting of a modified version of the model known as

A Relativistic Transport (art) [136], common to both the default and string melting versions of

ampt. The art model was originally developed in the mid-1990s to study nuclear collisions at

AGS energies. It implements a numerical solution of the previously described Boltzmann-Uehling-

Uhlenbeck (BUU) kinetic equation, explicitly including (in)elastic processes for baryon-baryon,

meson-baryon, and meson-meson interactions with isospin degrees of freedom. The fundamental

reactions are as follows, with details on the cross sections found in [136].

• NN ←→ N∆, NN∗(1440), NN∗(1535)

• NN ←→ ∆∆, ∆N∗(1440)

• NN ←→ NNρ, NNω, ∆∆π

• NN ←→ ∆∆ρ

• N∆←→ NN∗(1440), NN∗(1535)



68

• ∆∆←→ NN∗(1440), NN∗(1535)

• ∆N∗(1440)←→ NN∗(1535)

• πN ←→ ∆, N∗(1440), N∗(1535)

• ηN ←→ N∗(1535)

• π +N(∆, N∗)→ π +N(∆, N∗)

• ρ+N(∆, N∗)→ ρ+N(∆, N∗)

• K +N(∆, N∗)→ K +N(∆, N∗)

• π + π → ρ

• π + π → π + π

4.1.3 Origin of Azimuthal Anisotropy in AMPT

Having described the structure and physics behind the ampt model, but before delving into

the analysis of various aspects of collectivity in the Section 4.2, it is necessary to first establish

the basic underlying mechanism by which azimuthal anisotropy in momentum space develops in

ampt. Even though ideal hydrodynamics follows from kinetic theory in the zero-mean free path

limit4 [169], the majority of the final-state azimuthal anisotropy in ampt does not build up

through repeated collisions of partons following some collective velocity field (i.e., a hydrodynamic-

like mechanism). Instead, He et al. have shown [117] that in ampt the dominant mechanism

responsible for final-state azimuthal anisotropy is the spatially anisotropic probability of partons

to ‘escape’ the partonic scattering stage—that is, to hadronize. This holds true both in large and

small collision systems.

To see how this comes about, consider Fig. 4.3(a), which shows the probability of a given

parton to freeze out after having undergone Ncoll collisions, or scatterings, during the partonic

4 Viscous hydrodynamics can be recovered from higher order corrections to this limit.
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scattering stage, in central d+Au and semi-central Au+Au collisions. In both cases, the most

likely outcome for a given parton is to not scatter at all (i.e., Nscatt = 0). The probability of not

scattering is much higher in d+Au because fewer partons are produced, even in central collisions,

compared to semi-central Au+Au events. Figure 4.3(b) shows the transverse radial distribution of

partons for various values of Nscatt. We see that the partons that freezeout without ever scattering

tend to reside far away from the center of the interaction region (solid red line), whereas those

that freeze out after Nscatt = 5 are found closer to the center (solid blue line). The dashed lines

correspond to partons that continue to scatter after a given number of collisions have taken place

(so-called active partons), again showing that those that scatter more are found near the center.

These plots suggest a picture of an inwardly moving freeze-out surface. The fact that most partons

do not scatter in d+Au lends credence to the idea that the hydro-like mechanism is subdominant in

this transport model. Instead, the geometry of the interaction region and the dynamics of freeze-out

become relevant to understanding how momentum azimuthal anisotropy develops.

Fig. 4.4(a) shows, for semicentral Au+Au collisions, the evolution of v2 for partons, as a

function of the number of scatters they experience, Nscatt. For a given value of Nscatt, partons

can be classified into two groups: those that scatter exactly Nscatt times before freezing out, and

those that will continue to scatter at least Nscatt + 1 times. The solid blue curve, corresponds to

both these groups combined. At Nscatt = 0, the v2 vanishes because, at the moment of creation,

all partons are emitted radially from a color string, regardless of whether they will subsequently

scatter. Then, a modest positive v2 develops with increasing number of parton scatters.

If we now examine the partons that scatter exactly Nscatt times before freezeout (red solid

curve), it is seen that partons with Nscatt = 0 have a very large v2. This can be understood if,

due to purely geometric effects, partons have a greater probability of freezing out along the minor

axis of the elliptic overlap region, than along the major axis. This is referred to as the anisotropic

probability of escaping the parton cascade. However, as partons continue to scatter, the initial

ellipticity of the interaction region becomes more circular, with the freezeout probability becoming

more spatially isotropic, leading to the observed decrease in v2.
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Figure 4.3: (a) Probability of partons to freeze out of the scattering stage following Nscatt scat-

terings, in central d+Au and semi-central Au+Au collisions in ampt with σpart = 3.0 mb. (b)

Transverse radial distribution of partons that freeze out after exactly Nscatt scatterings (solid line),

and those that continue to interact (dashed line). Plot adapted from [117].

scatt

Figure 4.4: Parton elliptic flow v2 as a function of the number of collisions Nscatt experienced by

freezeout and inclusive partons in ampt, in (a) semicentral Au+Au, and (b) central d+Au events.

Dashed lines correspond to the case where the azimuthal orientation of a parton is randomized

following each collision. Plot adapted from [117].
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It is now of interest to disentangle the anisotropic escape probability from the hydrodynamic-

like source of final-state azimuthal anisotropy. Since the hydro-like mechanism proceeds through

repeated parton scattering, it can be “turned off” by randomizing the angle of every scattered

parton in the lab frame. Clearly, this artificial procedure violates the conservation of momentum,

yet in doing so also gets rid of the hydrodynamic flow field, which depends on energy-momentum

conservation, ∂µT
µν=0. The dotted lines in Fig. 4.4(a) correspond to the randomization of scat-

tering angles. In such case, the v2 of inclusive partons collapses to zero, while that of partons

freezing after exactly Nscatt is still substantial, yet lower than when the angle is not randomized.

Panel 4.4(b) shows that this same argument holds in d+Au collisions

The anisotropic escape mechanism described above accounts for azimuthal anisotropy arising

from the partonic scattering phase alone. The other stages following partonic scattering, namely

hadronization and the hadronic cascade, also contribute to the the azimuthal anisotropy measured

among final-state hadrons, as will be discussed in Section 4.2.

4.2 Results of the Study of Small System Collectivity in AMPT

Having described the ampt model, we now turn to the study of small system collectivity

observations in the context of transport models, where the QGP is thought of as a collection of

scattering quasiparticles. In the context at hand, the term quasiparticle refers to the partons

having a well defined mass and momentum. We present the contribution of this dissertation to the

understanding of small system collectivity, regarding geometry engineering and the translation of

initial geometry into final-state anisotropy in transport models, proceeding then to examine the

lowest threshold, both in system size and collision energy, for the observation of collective behavior.

4.2.1 Geometry Engineering in Asymmetric Systems

Section 3.2 presented an argument for the formation of QGP droplets in the collisions of small

asymmetric systems, as a means of explaining observed momentum-space azimuthal anisotropy

among final state particles. The crux of the argument consists in varying the initial intrinsic geom-
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etry of the projectile nucleus in a controlled manner, and correlating the topology of the collision

with the angular emission pattern of the final-state particles, as quantified through anistropy mo-

ments vn. Independently of any comparison with theoretical models, the geometry engineering

experiments provide strong evidence that initial geometry is translated into the final-state momen-

tum space; any support for a given theory of small system collectivity then arises from agreement

between its calculations and experimental evidence. Nevertheless, objections regarding the validity

of the near-inviscid hydrodynamic calculations in small systems have been put forth in regards to

the expansion around steep energy density gradients in these systems, as well as their limited size

and lifetime [168, 167, 155].

It is therefore interesting to examine an altogether different kind of model—namely ampt, as

an instance of the broader class of transport models—which can also translate initial geometry into

the final state. Since the mechanism by which this translation comes about is very different from

hydrodynamics, the possibility of incoherent parton scattering also describing experimental data

related to small system collectivity is quite interesting. It has been shown [67, 141] that ampt can

reproduce long-range azimuthal correlations and elliptic flow in high-multiplicity p + p and p+Pb

at LHC energies. Therefore, it is of interest to determine whether ampt can provide a unified

framework to describe the results of geometry engineering experiments, involving p+Au, d+Au,

and 3He+Au at RHIC energies.

We use ampt in its string melting implementation, with the custom modifications described

in Section 4.1.2.1 relating to the initialization of event geometry. We ran approximately 10 million

central p+Au, d+Au and 3He+Au events at
√
sNN = 200 GeV, with an impact parameter b < 2 fm,

using a parton-parton cross section σpart = 1.5 mb, and a nucleon-nucleon cross section σNN = 42

mb. There is admittedly a lot of freedom in selecting the partonic cross section, since partonic

interactions in the energy scale at hand are highly non-perturbative and, therefore, not calculable

from first principles. Thus, we selected the smallest of the values usually used in the literature

to describe A+A collisions, which range from σpart = 1.5 mb to σpart = 10 mb [12, 144, 137],

to explore how a minimal partonic scattering strength leads to the development of collectivity in
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this model. The characterization of each class of collisions, both in initial geometry and particle

production, is shown in Table 4.1, where the initial eccentricity is calculated as

εn =

√
〈r2 cos(nφ)〉2 + 〈r2 sin(nφ)〉2

〈r2〉
, (4.16)

averaging over the individual nucleon coordinates ~xi = (ri, φi) in every event, smeared by a Gaussian

of width σ = 0.4 fm.

Table 4.1: Particle production and geometric characterization of central small-system collisions in
ampt. For each collision system, we show the mean number of participant nucleons per event, the
mean number of partons at freeze out, the mean number of hadrons after the hadron cascade, and
the mean initial ε2 and ε3.

System 〈Npart〉 〈Npartons〉 〈Nhadrons〉 〈ε2〉 〈ε3〉
p+Au 10.45 246 98 0.24 0.16
d+Au 18.3 436 168 0.57 0.17

3He+Au 22.3 586 245 0.48 0.23

We construct long-range two-particle correlations functions

C(∆φ, pT ) =
1

Ntrig

dN(pT )

d∆φ
(4.17)

by taking the angular difference ∆φ of charged hadrons pairs separated in pseudorapidity by 2.0 <

|∆η| < 3.0, with the trigger and associated hadrons belonging to the same pT bin. The correlations

C(∆φ, pT ) for 3He+Au and p + p collisions are shown in Fig. 4.5(a) for passocT , ptriggerT ∈ [0.9, 1.04]

GeV/c, and are observed to be qualitatively very different. The p+p correlation function has a flat

near-side (i.e., at small relative azimuth ∆φ ≈ 0) since particle pairs from a given jet fragmentation

in the same jet cone cannot be separated by more than two units in pseudorapidity. The away-

side, on the other hand, exhibits a prominent enhancement from jets, back-to-back in azimuth but

not in pseudorapidity, reflecting the fact that the two partons involved in the fragmentation carry

different fractions x of their nucleon’s momentum. On the other hand, the correlation function for

3He+Au has a prominent near-side enhancement which can be attributed to collective behavior, as

well as a more prominent away-side peak relative to p+p. If we assume that the jet contribution to

the away-side in p+ p remains unchanged in 3He+Au, we can subtract the former from the latter,

obtaining the correlation function shown in Fig. 4.5(b).
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Figure 4.5: (a) Two-particle correlation for charged hadrons within 0.90 < pT < 1.04 GeV/c in

p+p and 3He+Au ampt events at
√
sNN = 200 GeV. (b) Contributions to the correlation function

from jet fragmentation are removed by subtracting away the per-trigger yield from p+p events.

Figure reproduced from Ref. [161].

Although qualitative in nature, this exercise of constructing long-range azimuthal correlations

demonstrates the existence of collectivity signals in ampt, in the collision systems and energies of

interest. Additionally, it shows that part of the collectivity signals in ampt can be attributed to

non-flow effects, and that they must be accounted for in quantitative calculations. However, let us

define from the outset flow to be signals of collectivity related directly to the initial geometry of

the collision, and non-flow to be signals of collectivity unrelated to that geometry. This distinction

is artificial, in the sense that it cannot be made in experimental data. However, in ampt, where

we have access to the information of the entire collision evolution—including the initial state— it

becomes a useful tool for understanding small system collectivity.

In order to measure the true v2, that is, as it relates to the initial geometry, we calculate the

participant plane angle Ψn for every event from the coordinates of each participant nucleon

Ψn =
atan(〈r2 sin(nφ)〉, 〈r2 cos(nφ)〉)

n
+
π

n
. (4.18)

This approximates the orientation of the impact parameter vector of the colliding nuclei in space,

from the coordinates of the participant nucleons. Since we are interested in the angular emission
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pattern of particles relative to this plane, we compute the true azimuthal anisotropy of unidentified

charged hadrons within |η| < 2 as follows, where the average is taken over many events:

vn = 〈cos[n(φ−Ψn)]〉. (4.19)
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Figure 4.6: Transverse momentum dependence of v2 (red) and v3 (blue) in small systems as cal-

culated relative to the participant nucleon plane (NP) in ampt, compared to the corresponding

PHENIX measurements [38, 41].

Figure 4.7: Transverse momentum dependence of v2 (red) and v3 (blue) in small systems rela-

tive to the event plane (EP), as calculated using final-state hadrons in ampt, compared to the

corresponding PHENIX measurements [38, 41].
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The resulting vn(pT ) for all three systems under consideration are shown in Fig. 4.6, compared

to measurements by the PHENIX Experiment [38, 41]. It is noteworthy that these ampt results

were originally published [161] as predictions for 3He+Au and p+Au prior to the availability of

experimental data. We observe a reasonable agreement between the ampt calculation and the

published data below pT ≈ 1.5 GeV/c, demonstrating that the ordering of vn(pT ) is consistent

with the ordering of ε2, as in hydrodynamic calculations. However, the comparison shown in

Fig. 4.6 is not strictly like-for-like; the ampt curves correspond to true flow, whereas experimental

measurements include non-flow effects.

In order to compare the model and measurements on equal footing, we analyzed the output

of ampt with the same method used on PHENIX data, where the event plane is calculated from

final-state particles, as described in Ref. [196]. To briefly summarize, let A,B,C denote the set of

final-state particles in three different acceptance regions, referred to as ‘subevents’; and let the flow

vector for the jth subevent be

~Q(j) =

{∑
i

cos(nφi),
∑
i

sin(nφi)

}
, (4.20)

where the sum runs over all particles in the subevent. The event plane Ψn is given by

Ψ(j)
n =

arctan(Qy/Qx)/n

Res(Ψ
(j)
n )

, (4.21)

where Res(Ψ
(j)
n ) is the event plane resolution,

Res(Ψ(j)
n ) =

√
〈cos[n(ΨA

n −ΨB
n )]〉〈cos[n(ΨA

n −ΨC
n )]〉

〈cos[n(ΨB
n −ΨC

n )]〉
. (4.22)

The vn coefficients are then calculated as before, relative to Ψn. However, in this method, the

measurement will be sensitive to both flow and non-flow. Fig. 4.7 shows the measured vn compared

to vn{EP} from ampt. The third panel is particularly striking, since a good description of the data

is achieved for 3He+Au collisions; in the case of d+Au, v2 is well described by ampt, yet there is

no corresponding v3 calculation due to the third-order event plane resolution being an imaginary

number. Lastly, the first panel shows that ampt does not provide a good description of the p+Au
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data; the v2 overestimates the data due to an increased sensitivity to non-flow, whereas the v3 is

found to be negative.

Having determined the extent to which ampt can explain experimental measurements, it is

of interest to examine whether a quantitative scaling relation between the true vn{NP} and εn

holds in the model (e.g., in ideal hydrodynamics the scaling relation vn ∝ εn holds true [156]),

and whether the lifetime of the system is long enough to maximally translate the initial geometry

into the final state. To that end, Fig. 4.8 shows the ratio of vn/v
d+Au
n (solid circles) and εn/ε

d+Au
n

(dashed lines) for p+Au and 3He+Au. The vn ratios are approximately pT -independent above

pT ≈ 0.6 GeV/c, with strong deviations below that. The εn ratios are observed to be lower than

the vn ratios by approximately 15 − 30%. Thus, we are able to identify a scaling relation—albeit

an imperfect one—between geometry and momentum-space azimuthal anisotropy in ampt.
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Figure 4.8: (a) Ratio of elliptic and (b) triangular anisotropy as a functio of transverse momentum

in p+Au and 3He+Au compared to d+Au. The dashed lines indicate the ratio of elliptic and

triangular eccentricity from initial geometry. Figure reproduced from [161].
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In particular, while partonic scattering remains the core of the model, encapsulating the de-

scription of strongly interacting matter as a collection of quasiparticles scattering incoherently, our

understanding would be amiss if we failed to recognize that subsequent stages of the model—namely,

hadronization and hadronic cascade—also have an impact on the final-state vn. Therefore, we can

calculate v2 and v3 but disabling partonic and hadronic scattering in steps5 , as shown in Fig. 4.9

for p+Au and 3He+Au. Panels (a) and (b) corresponds to v2 and v3 in 3He+Au collisions, respec-

tively. The violet curves correspond to the azimuthal anisotropy when including both hadronic and

partonic scattering. If the hadronic scattering stage is disabled, vn drops substantially, as indicated

by the blue curves; the late-stage hadronic scattering stage is thus seen to increase v2 by about 20%

at pT > 1 GeV/c, and by over 100% at pT < 0.5 GeV/c, with the effect being more pronounced

in v3. Now, if partonic scattering is disabled, leaving only the hadronic scattering stage, the green

curves show that a sizable vn still develops from final-state hadronic interactions alone. Now, if both

hadronic and partonic scattering are disabled, the vn becomes zero, as expected and demonstrated

by the orange curves. If we now examine p+Au collisions, in panels (c) and (d), we observed that

including the hadronic scattering stage has a much smaller effect on vn, and that the vn originating

from hadron scattering alone is much less substantial than in 3He+Au, demonstrating that the

bulk of the anisotropy develops in the partonic scattering stage in this particular collision system.

Lastly, we turn to the role of hadronization on vn, as shown in Fig. 4.10, where v2 and v3

are calculated for p+Au and 3He+Au using partons at freeze-out, and hadrons immediately after

their formation, therefore allowing us to discern whether coalescence alone has any impact on vn.

We observe that, at high pT , hadronization increases both v2 and v3, yet decreases them below

pT ≈ 0.5 GeV/c. The exact mechanism responsible for this requires further elucidation, especially

when considering that coalescence in ampt proceeds by grouping together partons in close spatial

proximity. Nevertheless, it has been established that hadronization and the subsequent hadronic

cascade have a significant impact, enhancing the measured azimuthal anisotropy which begins to

5 While the hadronic cascade can be explicitly excluded from the ampt workflow, the partonic scattering stage
cannot. Hence, we effectively disable it by setting the parton scattering cross section to a very small number σ ∼ 10−3

mb.
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build up during the partonic scattering stage. The modifications to vn appear to be both pT - and

collision system-dependent, thus accounting for the deviations from geometric scaling shown in

Fig. 4.8.
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Figure 4.9: Impact on vn of the parton scattering phase and the hadronic cascade in ampt for

3He+Au—panels (a) and (b), and p+Au—panels (c) and (d). Figure reproduced from Ref. [161].
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Figure 4.10: Impact on vn of hadronization by coalescence in (left) 3He+Au and (right) p+Au

collisions in ampt.

4.2.2 Center-of-Mass Energy Dependence of Collectivity in d+Au Collisions

Geometry engineering has yielded valuable insight into small system collectivity, demonstrat-

ing that final-state collectivity signals can be traced back directly to the initial geometry of the

collision. However, if the hydrodynamic paradigm is to be applied to small systems, we must

recognize that the relative importance of its various stages may be different than in larger A+A

collisions. That is, pre-equilibrum dynamics and late-stage hadronic interactions are expected to

play a larger role in small systems, owing to a shorter stage of hydrodynamic expansion of the

QGP. Experimentally, these questions can be addressed by examining the behavior of collectivity

signals as a function of the center-of-mass energy in small collision systems, as delivered by RHIC

in its 2016 running period when d+Au was collided at
√
sNN = 200, 62.4, 39.6, and 19 GeV.

As before, physical insight is obtained by comparing experimental data [39, 40] with theoret-

ical calculations. Therefore, we begin by examining whether hydrodynamics predicts a threshold

below which no amount of QGP is produced. Fig. 4.11 shows the integrated hyper-volume in space

and time of all fluid elements in hydrodynamic simulations of d+Au collisions hotter than the
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transition temperature, as a function of the collision energy. That is, it effectively shows how much

QGP is produced overall at each collision energy. We observe a five-fold increase in the volume of

QGP between the lowest energy of
√
sNN = 7.7 GeV and the highest energy of

√
sNN = 5.02 TeV.

Yet, even at the lowest energy, a volume of approximately 8 fm2∆y fm/c is not insignificant. In

fact, it can be thought of as a 2 fm × 2 fm transverse area of QGP (a transverse area is quoted

since the sonic model used in this calculation implements 2+1 dimensional hydrodynamics.), living

for a 2 fm/c time interval within rapidity ∆y. For comparison, the volume at the highest energy

can be thought of as a 3 fm × 4 fm area living for 3 fm/c. Thus, within the context of viscous

hydrodynamics, there seems to be no sharp turnoff in the translation of geometry into the final

momentum space, as would follow from a negligible volume of hot nuclear matter.
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Figure 4.11: Collision energy dependence of the summed space-time hyper-volume of QGP in

viscous hydrodynamics calculations. Figure reproduced from Ref. [162].
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Figure 4.12: Beam energy dependence of v2(pT ) in central d+Au collisions, from
√
sNN = 7.7

GeV, to
√
sNN = 200 GeV; and for d+Pb collisions at

√
sNN = 5.02 TeV, from hydrodynamics

and ampt. Experimental results are shown where available for comparison. Figure adapted from

Refs. [162, 39].
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Figure 4.13: Beam energy dependence of v3(pT ) in central d+Au collisions, from
√
sNN = 7.7 GeV,

to
√
sNN = 200 GeV; and for d+Pb collisions at

√
sNN = 5.02 TeV, from hydrodynamics and

ampt. Figure reproduced from Ref. [162]
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Table 4.2: Nucleon-nucleon cross section as a function of collision energy.

√
sNN [GeV] σNN [mb]

7.7 31.2

20.0 32.5

39.0 34.3

62.4 36.0

200.0 42.3

5020.0 60.3

Fig. 4.12 shows PHENIX measurements of v2(pT ) in d+Au at
√
sNN = 19.6, 39.6, 62.4, and

200 GeV, along with a series of predictions from hydrodynamics and ampt for the previously

mentioned collision energies as well as
√
sNN = 7.7 GeV and d+Pb at

√
sNN = 5.02 TeV where no

experimental measurements have been made. Notice that theory calculations were not carried out

at
√
sNN = 19.6 GeV, but rather

√
sNN = 20 GeV, which constitutes a negligible difference. Let us

consider the hydrodynamic calculations first, from the sonic (blue curves) and supersonic (yellow

curves) models [168]. The latter is an extension of the former, where the AdS/CFT correspondence

has been used to arrive at a relation between the gradient of the initial energy density distribution

and the radial dependence of fluid cell velocities in order to account for pre-equilibrium dynamics. A

substantial v2 is observed at all energies, with the data being higher than hydrodynamic calculations

at the lowest collision energies, likely due to the substantial non-flow contribution there. At the

highest collision energies, a good agreement with the data is seen. At the time the predictions were

made, it was hoped that the experimental data would provide discriminating power between the

two models, effectively quantifying the extent to which, in small systems, the collectivity signal

from hydrodynamic expansion does not reach saturation, and does not come to dominate over flow

contributions from the pre-equilibrium stage. Unfortunately, the uncertainties on the data and the
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hydrodynamic calculations, as well as the dominance of non-flow at the lower energies, prevent any

such conclusion from being drawn.

From a kinetic transport perspective, Fig. 4.12 shows three different ampt calculations of

v2(pT ). The green curves correspond to the true flow computed relative to the nucleon participant

plane, following the procedure described in Section 4.2.1 using an energy-dependent nucleon-nucleon

cross section values for the Monte Carlo initialization of the initial geometry, as shown in Table 4.2.

Across collision energies, the result is consistent with hydrodynamic calculations at low pT , yet

with the characteristic drop for pT ' 1.5 GeV, previously discussed. On the other hand, the violet

curves correspond to a calculation of flow relative to the event plane that mirrors that which was

used to obtain the experimental measurements, also discussed in Section 4.2.1. In that case, very

good agreement with the data is seen, confirming the dominance—within ampt—of non-flow at

the lowest energies, as quantified by the difference between the green and violet curves. Finally, the

red curves correspond to a calculation of flow relative to the nucleon participant plane, yet with

no partonic scattering. This calculation was motivated by the hypothesis that, at a low enough

collision energy, no GQP would be formed such that the system might come to be described as purely

hadronic. In hindsight, given the large contribution of non-flow to the vn signal, this possibility is

not necessarily ruled out.
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Figure 4.14: Ratio of (a) v2 and (b) v3 in d+Au at different energies to
√
sNN = 200 GeV from

ampt relative to the nucleon participant plane. Figure reproduced from Ref. [162].

Fig. 4.13 shows predictions for triangular flow v3(pT ) from sonic, supersonic, and ampt

(the true flow relative to the nucleon participant plane, both with and without partonic scattering).

In this case, there are no experimental measurements to compare to except at
√
sNN = 200 GeV.

Fig. 4.14 quantifies the change of vn with collision energy, showing the ratio of vn(pT ) relative to

the nucleon participant plane at each energy relative to that at
√
sNN = 200 GeV from ampt. It

is possible to see that v2 decreases by about 25− 30% from 5.02 TeV to 200 GeV, and then about

25−40% from 200 GeV to 20 GeV. On the other hand, v3 decreases dramatically by approximately

300% between 200 GeV and 7.7 GeV. Thus, triangular flow is a more sensitive observable to the

duration of the QGP phase. This is also the reason why the inclusion of pre-equilibrium has a

much larger effect on v3 than v2 in the hydrodynamic calculations.
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Figure 4.15: Probability of a parton in ampt to undergo Nscatt scatterings in the parton cascade

stage, for d+Au collisions at a variety of center-of-mass energies. Figure reproduced from Ref. [162].

Having examined the collision energy dependence of vn in the ampt model, it is instructive

to examine the sensitivity of the underlying mechanism—namely, partonic scattering—to varying

the collision energy. Fig. 4.15 shows the probability of a given parton in d+Au events to undergo

Nscatt scattering events prior to freeze-out, for every collision energy. It is noteworthy that, even

at the highest energy in d+Pb, 65% of partons do not scatter at all, with the remainder scattering

only a limited number of times—mostly once. In the case of d+Au at RHIC energies, we observe

a monotonic increase with collision energy in the probability of not scattering. However, despite

the wide range of collision energies under consideration, the variation in the scattering probability

is of order 10%.
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4.2.3 Collectivity in p+ p Collisions with Constituent Quark Geometry

Section 4.2.1 dealt with the technique of geometry engineering, which relies on a detailed

characterization of the intrinsic collision geometry. Of the three asymmetric systems considered,

p+Au is the most unconstrained in this regard. Unlike d+Au and 3He+Au, the initial geometry

in this case is not driven by the number of ‘hotspots’ where individual projectile nucleons collide

with the target, but rather by parton-level fluctuations within the hotspot. This state of affairs

implies that if the geometry translation paradigm is to be tested in the problem of collectivity in

p+ p collisions, one must define the initial geometry at the sub-nucleonic level.

The first hydrodynamic studies of p + p collisions with the sonic model incorporated a

Monte Carlo Glauber geometry picture of a round proton with event-by-event shape fluctuations

and a varying relaxation time [113], demonstrating the applicability of hydrodynamics to this class

of collisions. However, the model predicted a vanishing v2 for very high multiplicity events on

account of the very round geometry, in conflict with experimental data. The calculation was later

refined by modeling the constituent quark structure of the proton [198], successfully describing

vn for a wide range of systems, namely p + p, p+Pb, and Pb+Pb, as shown in Fig. 4.16. While

describing collectivity in p+ p may be considered an exacting standard for hydrodynamics to have

met, it does not unequivocally establish the formation of QGP in this regime; it is now accepted

that a hydrodynamic description may be applicable even before the onset of equilibration [170].

Considering the success of hydrodynamics, it is of interest to determine whether kinetic transport

can also correctly describe collectivity in p+ p collisions, and to examine the specific assumptions

that have to be made for the quasiparticle picture to hold in this smallest of systems. In particular,

we focus on p + p collisions at LHC energies of
√
sNN = 13 TeV, where measurements have been

made by several experiments [5, 126, 1].
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Figure 4.16: Azimuthal anisotropy coefficients v2, v3, and v4, calculated using the sonic hydrody-

namic model, for p+p, p+Pb, and Pb+Pb collisions at LHC energies. Figure reproduced from [154].

The ampt model, by default, treats individual nucleons as disk-like with a diffuse interaction

radius. When pairs of nucleons interact, two color strings are extended between them, separated

by the impact parameter of the nucleon-nucleon collision. We have modified this default treatment,

giving the nucleon a three-constituent quark structure, following calculations detailed in [147] to

determine their spatial coordinates in every event. Each individual quark is modeled as disk-like,

with a sharp interaction radius corresponding to a quark-quark cross section of σqq = 19.7 mb. The

effective proton-proton interaction cross section is then σpp = 68 mb, which compares favorably

to the reference value of σref
pp = 72 mb at

√
sNN = 13 TeV. Two color strings are then extended

between every pair of interacting quarks, separated by the impact parameter of the quark-quark

collision. Notice that, in this simplified constituent quark picture, we do not model the parton

distribution function and thus all quarks carry exactly one third of the total nucleon’s momentum.
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Figure 4.17: (left) Multiplicity and (right) transverse momentum dependence of v2 and v3 in p+ p

collisions at
√
sNN = 13 TeV, modeled with constituent quarks in ampt. Figure reproduced from

Ref. [153].

We begin by measuring the true flow, vn = 〈cos[n(φ − Ψn)]〉, relative to the event plane

calculated from the initial coordinates of the participant quarks smeared by a Gaussian of width

σ = 0.2 fm, as well as from the string melting partons at early times. The result, as a function

of event multiplicity Nch (defined as the number of charged hadrons within |η| < 2.5), and pT is

shown in Fig. 4.17. The calculation is seen to reproduce the qualitative trends of the data, demon-

strating that—even without a careful tuning of model parameters—this simple physical picture

captures the gross features of the anisotropy. A small difference is observed when calculating flow

relative to the event plane defined by constituent quarks and string melting partons, particularly

at low Nch, owing to the fact that fluctuations in parton coordinates become more significant in

low-multiplicity events, making the difference between the two event planes more pronounced, as

depicted in Fig. 4.18.

However, the above calculation of the ‘true’ flow is not directly comparable to experimental

measurements of vn since non-flow effects can be substantial in p+ p collisions, following the trend

we have previously discussed of increasing relative importance with decreasing system size and
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multiplicity. While it would be desirable to be able to discriminate between flow and non-flow

effects in a data-driven manner, there is currently no experimental technique to unambiguously

resolve the issue.6 Various experimental collaborations have attempted to account for non-flow in

different ways, yet relying on assumptions, model dependencies, and comparisons with a baseline

event category where non-flow is assumed to be well understood in the absence of flow.

ψCQ

ψPP

Constituent
Quarks

Partons from
String Melting

Figure 4.18: Cartoon depiction of a p + p collision with constituent quarks, shown as green and

blue disks, and their associated event plane ΨCQ. Also shown in red are the partons emerging from

string melting at the site of every quark-quark collision, and their associated event plane ΨPP .

For instance, the PHENIX experiment [27] uses p+p collisions as a baseline, taking the ratio

of multiplicity at forward rapidity in the system of interest to that in the baseline, to estimate the

magnitude of non-flow which is usually reported as an uncertainty on the measurement. However,

other collaborations attempt to correct the measurement, effectively claiming to remove the non-

flow contribution from the flow signal. Along these lines, the ATLAS result shown in Fig. 4.17 were

extracted via two-particle correlations using a template fitting method [5] where the shape of mea-

sured correlation C(∆φ) is assumed to have a non-flow contribution, modeled using a reference low

multiplicity (“peripheral”) event category, plus a contribution from true flow. Mathematically, the

6 In a strict sense non-flow can be suppressed through the use of multi-particle cumulants, since such correlations
typically involve only a small number of particles, and cumulants are used to quantify correlations among arbitrarily
large number of particles. However, the applicability of such methods is limited in small systems due to their low
multiplicity [40].
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shape of the peripheral correlation function is extracted with fit, obtaining a template Cperiph(∆φ).

The measured correlation is then fit with the following function:

Cmeasured(∆φ) = Cridge(∆φ) + F × Cperiph(∆φ), (4.23)

with

Cridge(∆φ) = G

(
1 +

∞∑
n=1

2vn cos(n∆φ)

)
, (4.24)

where the true flow measurement is extracted from Cridge(∆φ). The identical procedure was carried

out in ampt, in order to provide a direct comparison with published data, as shown by the red and

blue lines in Fig. 4.18.

In this particular case, the agreement with ATLAS published data is merely qualitative, both

as a function of multiplicity and transverse momentum. However, the results presented demonstrate

that, within the framework of ampt, it is possible to interpret collectivity even in p+ p collisions

as being geometric in origin. The lack of quantitative agreement can be attributed to a number

of factors, including the simplicity of the constituent quark implementation, the particular tune of

ampt used, or the fact that the assumptions of the template fitting method do not hold in the

model.

4.2.4 Minimal Conditions Required for Collectivity in AMPT

Once considered an elusive hallmark indicating the formation of QGP, the observation of

collectivity in a variety of ever smaller collision systems, both in size and initial temperature, has

given rise to intense scientific interest in the minimum size, lifetime, and number of initial partons

required for QGP formation. While making the systems smaller may shorten the duration of the

QGP phase, the nearly-inviscid expansion of the liquid achieves the translation of initial geometry

into the final state. However, it is of interest to explore if such a threshold exists in the transport

picture of small system collectivity, as has been presented and discussed in this chapter. To that

end, we explore the smallest of systems in ampt: e+ + e− collisions. Given that a modest number

of scatterings among quasiparticles can give rise to collectivity signals even in p+ p collisions, can
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these leptonic collisions have a high enough partonic density for collectivity to be observed? First

attempts aimed at reexamining e+e− archived data from the LEP accelerator [135] have not yielded

any evidence of collective behavior among final-state particles in this collision system, yet this does

not invalidate the question at hand.

In order to model e+e− collisions, we exclusively consider e+e− annihilation as mediated by

a virtual Z boson which decays into a qq̄ pair, as depicted in Fig. 4.19. We carry out this study

with a custom version of the ampt generator, running at a center of mass energy corresponding

to the rest mass of the Z boson, mZ = 91.18 GeV/c2. A single color string is created between

the receding qq̄ pair, which then undergoes string melting. The parameters of the symmetric Lund

splitting function

f(z) ∝ z−1(1− z)a exp(−bm2
T /z) (4.25)

were tuned to a = 0.15 and b = 2.5 to match the experimentally observed average charged particle

multiplicity at
√
s = 91 GeV [48, 6].

Z

e+

e

q

q

Figure 4.19: Electron-positron annihilation mediated by a virtual Z boson.

Since we model the collision with a single color string, in a strict sense there is no intrinsic

initial collision geometry. Partons are emitted radially at an average distance of 0.1− 0.2 fm away

from the string in the transverse plane—as a consequence of the formation time prescription—with
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a strong space-momentum correlation, as shown in the left panel of Fig. 4.20. We construct two-

particle long-range azimuthal correlations for pairs of final-state charged hadrons satisfying pT > 0.5

GeV/c and |∆η| > 2, as shown in Fig. 4.21(a) for the two distinct cases of enabled and disabled

final-state interactions.7 As has been previously discussed, disabling interactions among partons

and hadrons prevents the transcription of the event geometry leading to no collectivity in the final-

state. Both correlation functions are observed to have very similar shapes, with no discernible near-

side enhancement, indicating that—in this regime—particle interactions play an almost negligible

role in the development of collectivity signals, quite unlike in the asymmetric systems we have

studied. The absence of a near-side peak should not be interpreted a the absence of any collectivity.

In fact, Fig. 4.21(a) quotes the magnitude of the second Fourier harmonic of the correlations,

which is small yet non-zero. We can gain further insight by examining Fig. 4.21(b), which shows

v2(pT ) = 〈cos[2(φ − Ψ2)]〉, quantifying collectivity relative to the initial event orientation Ψ2, as

defined by early stage partons. As there is no true intrinsic initial geometry, the negative anisotropy

should be interpreted as arising from fluctutions by which partons expand perpendicularly to Ψ2,

yielding negative v2 values by construction, since v2 = 〈cos[2(φ−Ψ2)]〉. Regardless of this feature,

we again see that final-state interactions play a minimal role in the development of v2, which can

be interpreted as consistent with no collectivity in our model of e+e− collisions.

It is now of interest to devise a different initialization of the geometry, to see how the final

results change. Motivated by the standard treatment of individual nucleon-nucleon collisions in

the standard version of ampt, we define two strings of energy equal to half the Z boson mass

and separated by a transverse distance of 0.5 fm. The introduction of the second string makes for

important differences relative to the one-string configuration. Most notably, the fraction of partons

that do not undergo scattering is reduced to approximately 60%, from 90% in the case of one

string. Additionally, the separation of strings in the transverse plane endows the collision with a

well-defined initial geometry in which the event plane is oriented normally to the axis connecting the

strings. The long-range azimuthal correlations—with and without interactions—for the two-string

7 The disabling of interactions refers to both partonic and hadronic scattering.
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case are shown in Fig. 4.22(a). When interactions are disabled, we observe no discernible near-side

structure and obtain a c2 value consistent with that of the one-string case. However, we see that

enabling final-state interactions now plays a substantial role in the development of collectivity, with

a prominent near-side peak, and large positive v2(pT ) relative to Ψ2, as shown in Fig. 4.22(b).

AMPT e+e- [One String] AMPT e+e- [Two Strings]

Figure 4.20: Spatial distribution and momentum orientation of partons in an ampt e+e− event

with one string (left) and two strings (right). Notice the difference in scale between the two panels.

Image credit: Jamie Nagle.
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Figure 4.21: ampt events with a single color string, modeling e+e− → Z → qq̄. (a) Long-range

azimuthal two-particle correlations with |∆η| > 2 among hadrons with and without final-state

interactions. (b) Elliptic flow v2 calculated relative to the initial parton plane, with and without

final-state interactions, as well as the difference between the two. Figure reproduced from Ref. [152].
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Figure 4.22: ampt events with two color strings. (a) Long-range azimuthal two-particle correla-

tions with |∆η| > 2 among hadrons with and without final-state interactions. (b) Elliptic flow v2

calculated relative to the initial parton plane, with and without final-state interactions, as well as

the difference between the two. Figure reproduced from Ref. [152].

Having found a configuration leading to collectivity in the final state, it is of interest to
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examine its dependence on collision energy. We carried out a scan in collision energy, from 4.5 GeV

to 184 GeV, as shown in Table 4.3, for the two-string configuration. Table 4.3 shows that particle

production, as measured by the mean number of partons and the mean number of charged hadrons

within |η| < 2, drops dramatically with energy, while the fraction of partons that do not undergo

scattering exhibits a much weaker dependence. Fig. 4.23 shows long-range two-particle correlations

for
√
s = 54, 30, and 10 GeV. At the highest of these energies, there is still a visible near-side peak

when interactions are enabled. The ridge structure disappears for
√
s = 30 GeV, yet the flattening

of the near side still indicates the presence of collectivity. At the lowest energy, the ridge disappears

completely as the away-side enhancement from momentum conservation becomes more prominent.

As has been discussed before, such non-flow effects become quite dominant with decreasing

energy and multiplicity. Thus, we examine the energy dependence of collectivity relative to the event

geometry as shown in Fig. 4.24. However, in order to avoid the effect of fluctuations, particularly at

the lowest energies, we compute v2 relative to Ψ2 = π/2 (i.e., perpendicular to the line connecting

the strings in the transverse plane). Unlike with the two-particle correlations, we observe a weak

dependence of v2 on collision energy, except for the lowest values below
√
s = 10 GeV. The figure also

shows the fraction of partons that undergo scattering as a function of collision energy, which follow

the same trend as v2, demonstrating an approximate scaling relation between the two quantities.

Table 4.3: Particle production and fraction of partons that do not undergo scattering as a function
of collision energy in e+e− collisions modeled with two color strings in ampt.

Energy [Gev] 〈Npartons〉 〈Nch〉 in |η| < 2 Partons w/ Nscatt = 0

184 95 11.6 59.6%

91 75 11.2 59.7%

60 63 10.5 60.8%

45 55 9.7 61.3%

30 44 8.3 62.4%

10 19 6.5 75.4%

4.5 9 3.7 88.7%
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Figure 4.23: Long-range two particle correlations from ampt events with two color strings, for

various values of the collision energy, with and without final-state interactions. Figure reproduced

from Ref. [152].
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Figure 4.24: Elliptic flow v2 at pT = 0.75 GeV/c, calculated in ampt relative to the true geometry,

as a function of the total energy, in two-string configuration. Also shown is the fraction of partons

that suffer at least one scattering. Figure reproduced from Ref. [152].

4.2.5 Parton Formation Time and the Limits of the Transport Picture

In a semiclassical picture, such as that of partonic scattering in the ampt model, the char-

acteristic range of parton interactions is simply the de Broglie wavelength λB = h/p. Now, par-



98

tons in ampt are endowed with a property known as formation time. As a feature of parton

cascades [105, 182], the introduction of the formation time attempts to account for complex early-

time, multi-body quantum interference phenomena during the time it takes for wave packets to

separate [132] and form well-defined quasiparticles. However, in practice it corresponds to the time

elapsed between parton formation and the moment when they are allowed to interact. For t < tform,

partons simply free-stream, since it is not known how to model these early dynamics. Therefore,

it is reasonable to identify the formation time with the time it takes the partons to travel one de

Broglie wavelength, or in natural units, tform = λB, with other possibilities being discussed below.
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Figure 4.25: Distribution of formation times as a function of total parton momentum in ampt

with string melting. For reference, the line tform = 0.1× λB is shown, indicating that, on average,

partons start to interact after traveling one-tenth of the de Broglie wavelength.
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In the default version of ampt, parton formation times are distributed following a Lorentzian

of half-width ~E/m2
T . In the string melting version of the model, parton formation times are

calculated as tform = ~E/m2
T , where E and mT are the energy and transverse mass of the parton’s

parent hadron, as a consequence of how string melting is implemented. This prescription gives rise

to a smearing, such that a parton of a given momentum can take on a range of possible formation

time values as shown in Fig. 4.25. The form of the ~E/m2
T factor is motivated by Heisenberg’s

uncertainty principle [205]. To see how this comes about, consider high-momentum particles at

midrapidity for which pT ≈ p. In that case,

tform =
~E
m2
T

=
~
√
p2 +m2

p2
T +m2

≈ ~√
p2 +m2

≈ ~
p
.

(4.26)

Using the uncertainty principle, one can estimate the characteristic distance traveled during the

early time as ∆x ≈ ~/∆p; asumming a 100% uncertainty on the value of the momentum yields

tform = ~/p, just like Eq. 4.26.

Thus, there are two similar “finger physics” arguments to estimate the length of the formation

time. In one case, one obtains tform = h/p = λB (well motivated in the semi-classical kinetic

theory approximation), while using the uncertainty principle (with the admittedly odd assumption

of p ∼ ∆p for on-shell particles, and using a given parton’s parent hadron kinematics) leads to

tform = ~/p = λB/(2π).8 The discrepancy of 2π between them, corresponding to almost an order

of magnitude, is no small matter. In general, longer formation times make partons travel for a longer

distance without interacting, hinder the build-up of collectivity, particularly at low-momentum. It

is even possible, if following the de Broglie prescription, for the distance traveled to be larger than

8 Factors of 2π matter. Another example where the uncertainty principle has been used, along with ∆p ∼ p, to
derive important properties of the QGP is in Ref. [82], which presents an early calculation of the famous KSS bound
on kinematic viscosity η/s > 1

4π
, long before its rigourous derivation from string theory. Had the thermal de Broglie

wavelength been used in the calculation, a values of η/s > 1
2

would have been found.
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the system size, particularly for low-momentum partons, as shown in the p + p event display in

Fig. 4.26. There, a blue circle of radius equal to λB is drawn centered on a particular parton with

p = 0.81 GeV, while a much smaller red circle is drawn for the same parton, of radius λB/(2π).

We can quantify the effect on v2 of extending the formation time, for the particular case of

p + p collisions with constituent quarks, as described in the previous section. Fig. 4.27 shows v2

as a function of parton formation time, where the calculation of tform has been modified to not

depend on the parent hadron of a given parton, but to be simply a multiple of its own de Broglie

wavelength. The red curve, corresponding to the partonic cross section σpart = 0.75 mb used in the

calculations of the previous section, shows a dramatic drop in v2 relative to the default formation

time prescription in ampt. The yellow and green curves demonstrate that even increasing the

cross section by a factor of nearly 7, which naturally tends to enhance v2, does not compensate

for the reduction stemming from a longer formation time. Thus, despite the various ways in which

the ampt model can be tuned, the formation time appears as a quantity of central importance to

constructing a theory of small system collectivity from the perspective of kinetic transport.

x [fm]
1.5− 1− 0.5− 0 0.5 1 1.5

y 
[f

m
]

1.5−

1−

0.5−

0

0.5

1

1.5

x [fm]
1.5− 1− 0.5− 0 0.5 1 1.5

y 
[f

m
]

1.5−

1−

0.5−

0

0.5

1

1.5

Figure 4.26: Event display showing partons from string melting in a simulated ampt p+p event with

constituent quark geometry. A circle of radius (left) r = h/p and (right) r = ~/p is drawn centered

on a particular parton of momentum p = 0.81 GeV, to illustrate the spatial extent corresponding

to its formation time. See text for discussion of the implications.
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The present chapter has shown that kinetic transport can provide a good account of ex-

perimental observations of small system collectivity. This is noteworthy because the mechanism

by which collectivity develops is fully independent of hydrodynamics. That is, in the context at

hand, it is not true that the validity of hydrodynamics necessarily requires kinetic transport to

also be valid. Thus, given that recent theoretical developments demonstrate that hydrodynamics

is no longer synonymous with the existence of a thermalized strongly coupled medium, the results

presented motivate the need for further examination of transport models and the implications for

the physical interpretation of hot nuclear matter in small systems.
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Figure 4.27: Elliptic flow v2 for p + p collisions with constituent quarks as a function of parton

formation time in units of the de Broglie wavelength. The result is shown for different values of

the partonic cross section σpart, showing that raising the cross section cannot compensate for the

reduction in v2 from a longer formation time.



Chapter 5

Introduction to Heavy Flavor in Nuclear Collisions

This chapter marks the beginning of the second part of this dissertation, dealing with an

experimental measurement of open heavy flavor production in p+p collisions at
√
sNN = 200 GeV.

The chapter at hand provides an introduction to heavy flavor production in hadron collisions, as

well as the role of open heavy flavor as a probe of hot nuclear matter, surveying recent experimental

results. Subsequent chapters will discuss the RHIC accelerator complex, the PHENIX detector,

and the actual displaced-vertex measurement of separated charm and bottom production using the

PHENIX silicon tracker.

5.1 Production of Heavy Flavor in Nucleon-Nucleon Collisions

In the context of ultrarelativistic nucleus collisions, the term heavy flavor designates charm

and bottom quarks, and it is sometimes also used as shorthand for the hadrons which contain them.

Along these lines, a distinction is drawn between open heavy flavor hadrons, consisting of a heavy

quark accompanied by a light quark, and hidden heavy flavor—or quarkonia—consisting of a heavy

quark-antiquark pair. We ignore the top quark in this discussion, as its production is precluded at

RHIC energies due to its large mass.

The study of heavy flavor production in elementary p + p collisions is of interest from a

variety of vantage points [53, 50]. For instance, such measurements provide a baseline against

which corresponding results in larger p+A and A+A collisions can be compared to, in the study

of cold and hot nuclear matter effects, respectively. Additionally, heavy flavor measurements in
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p + p provide a valuable testing ground for perturbative QCD (pQCD) calculations. Unlike with

light quarks, the large masses of charm and bottom (mc ≈ 1.3 GeV and mb ≈ 4.2 GeV) allow

for the perturbative calculation of quark production even at low pT . This can be understood by

considering that, in hadron collisions, the production of heavy quarks is dominated at leading order

(LO) O(α2
s) by gluon fusion and quark-antiquark annihilation, as shown in Fig. 5.1 (a) and (b).

Other processes, such as flavor excitation and gluon splitting, contribute at next-to-leading order

(NLO) O(α3
s), as shown in panels (c)-(f). In NLO calculations, the mass of the heavy flavor quarks

acts as an infrared cutoff on collinear singularities. However, this does not hold when the quark’s

pT is much greater than its mass. In that case, large terms of the following form appear at all

orders:

α2
s

[
αs ln

pT
m

]k
, (5.1)

α3
s

[
αs ln

pT
m

]k
. (5.2)

The logarithmic α2
s and α3

s terms are referred to as leading-log (LL) and next-to-leading-log (NLL)

terms, respectively. Currently, the most advanced available pQCD calculations of heavy flavor

hadroproduction incorporate schemes to resum these logarithmic terms. The fixed-order-plus-next-

to-leading-log (FONLL) approach [70] matches the massive NLO cross section calculated at low pT

using fixed order perturbation theory1 , with the massless NLO calculation at high pT where the

logarithmic terms have been resummed. The FONLL cross section is thus written as follows

dσFONLL = dσFO +G(mQ, pT )× (dσRS − dσFOM0), (5.3)

where dσFOM0 is the fixed order cross section dσFO in the limit where pT is much greater than the

quark mass, and dσRS is the resummed cross section. The interpolating function, dependent on

the heavy flavor quark mass mQ and some constant a, is given by

G(mQ, pT ) =
p2
T

p2
T + a2m2

Q

(5.4)

1 The calculation is carried out in the fixed-flavor number scheme (FFNS), where the massive heavy flavor quark
is not an active parton in the proton, appearing only in the final state. In this calculation, the number of light flavors
is fixed to n = 3 for charm, and n = 4 for bottom.
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such that the desired limits are recovered G(mQ, pT → 0)→ 0 and G(mQ, pT →∞)→ 1.
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Figure 5.1: Feynman diagrams depicting heavy flavor production at various orders. Panels (a)

and (b) depict leading order processes, while (d)-(f) represent next-to-leading order contributions.

Image reproduced from Ref. [70].

Other analytic pQCD approaches to heavy flavor hadroproduction, which will not be dis-

cussed here, include the Zero-Mass and General-Mass Variable Flavor Number Schemes (ZM-

VFNS and GM-VFFN) [190]. Additionally, a number of common Monte Carlo generators, such as

pythia [183] and herwig [57], have the advantage of modeling the hadronic final state in full, yet

calculate the partonic cross section only at the LO+LL level of accuracy. Other generators, such

as powheg [157] and mc@nlo [103] incorporate next-to-leading order calculations.



105

The pQCD calculations above provide the heavy flavor cross section, but the hadronization

of the qq̄ pair is described by fragmentation functions [69] which are considered to be universal, and

can be measured in e+e− collisions. Hadronization can proceed in two different ways. Namely, the

quark pair can remain together in a quarkonium state, or the quarks can fragment independently,

giving rise to two different open heavy flavor hadrons. The latter possibility is the most common,

occurring over 98% of the time [53].

Experimentally, the production of heavy flavor in hadron collisions can be determined by

studying heavy flavor decay products. Three main methods can be identified: (i) by measuring

the products of hadronic decays, either by reconstructing the full decays (e.g., B0 → J/ψ + K0
s ,

D0 → π+K−), or by focusing on a given type of decay particle (e.g., J/ψ) and selecting those

pointing back to a displaced vertex; (ii) by measuring leptons from heavy flavor decays, either by

identifying those pointing back to a displaced vertex, or using a cocktail to statistically remove

background; and (iii) by tagging charm and bottom jets. Fig. 5.2 shows a world data compilation

of the total charm and bottom production cross section in p + p, p + p̄, and p + A collisions as a

function of collision energy, along with NLO and FONLL pQCD calculations, which emcompass

the data within uncertainties.
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Figure 5.2: World data of total cc̄ left and bb̄ (right) cross section as a function of collision energy.

Points corresponding to small collision system data have been scaled down by the number of binary

collisions. Shown for comparison are NLO and FONLL calculations. Figure reproduced from

Ref. [50].

5.1.1 Heavy Flavor Measurements at RHIC

Of the three methods of measuring heavy flavor production mentioned in the previous sub-

section, the PHENIX experiment has focused primarily on measuring semileptonic decay products,

while STAR has additionally carried out direct decay reconstruction. In this subsection, emphasis

will be placed on existing heavy flavor measurements made by PHENIX prior to the installation

of the silicon vertex detector upgrade in 2011. This subsection will follow the reviews presented in

Refs. [53, 50].

As will be discussed in detail in the next chapter, the PHENIX detector has two spectrometer

arms, spanning |η| < 0.35 with tracking and particle identification capabilities, in which charged

hadrons, photons, and electrons can be measured. This allows for a clean sample of inclusive

electron candidates to be isolated, containing contributions from the decay of the desired heavy

flavor hadrons as well as abundant background particles. The heavy flavor contribution is isolated

by constructing a simulated background electron cocktail and subtracting it from the electron
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candidate sample. The dominant components of the cocktail correspond to electrons from the

Dalitz decay of π0 and from the conversion of photons in the detector material. When the inclusive

heavy flavor measurements were made in 2004, the material budget of the detector at midrapidity

amounted to less than 1% of a radiation length, such that the ratio of conversion to Dalitz electrons

was very low. In addition to neutral pions, the cocktail comprised other light mesons, most notably

the η, as well as the ρ, ω, and φ. The three-body decay electrons of K± and K0
s are also included,

as well as those from J/ψ and Υ decays, and the Drell-Yan process, which account for a substantial

fraction of the background above pT ≈ 5 GeV/c. In order to construct such a cocktail it is necessary

to have previously measured the production cross section of all the necessary primary particles in

order to simulate them.

At low pT < 2 GeV/c, the applicability of the cocktail method is limited by the increase

in signal-to-background ratio. To isolate the heavy flavor electrons in this kinematic region, the

PHENIX collaboration introduced a copper cylinder symmetrically around the beam pipe to act as

a converter for photons. Since photonic background has a fixed ratio of conversion to non-conversion

electrons, increasing conversions by a known factor allows for the subtraction of the entire photonic

background. Both the converter and cocktail methods are consistent in their overlap region. Full

details of this analysis can be found in Refs. [20, 15], with the inclusive invariant cross section of

heavy flavor electrons shown in Fig. 5.3. Also shown in the figure are FONLL calculations for all

heavy flavor electrons, as well as those from charm and bottom decays individually. The data are

in good agreement with FONLL within its large uncertainties, as evidenced by the ratio plot in the

bottom panel.
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Figure 5.3: Invariant cross section of inclusive heavy flavor electrons measured by the PHENIX

experiment. Shown for comparison are FONLL pQCD calculations of the total heavy flavor electron

c+ b→ e production, as well as the individual c→ e and b→ e contributions. The bottom panel

shows the ratio of the data to the FONLL calculation. Figure reproduced from Ref. [20].

The STAR experiment has also measured inclusive heavy flavor electron production, as de-

scribed in Ref. [36]. These results are consistent with those from PHENIX, as shown in Fig. 5.4.

However, it should be mentioned that STAR does not use the cocktail method for background sub-

traction. Instead, photonic background is identified by exploiting the fact that photonic electron

pairs have a very low invariant mass, in a procedure that does not require a detailed knowledge

of the detector’s material budget; although the limited acceptance of the detector does not allow

for all electron pairs of interest to be measured, the efficiency of the procedure can be determined

using simulations.
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Figure 5.4: Invariant cross section of heavy flavor electrons in p+ p collisions at
√
sNN = 200 GeV,

as measured by the PHENIX [20] and STAR [36] collaborations.

The comparison of the inclusive heavy flavor electron cross section to FONLL calculations,

as shown in Fig. 5.3, suggests that charm decays dominate heavy flavor production at low pT ,

with bottom coming to dominate above pT ≈ 4 GeV/c. It is, therefore, of interest to confirm this

experimentally by measuring the electron yield from each heavy quark flavor separately. To that

end, both PHENIX and STAR have measured electron-hadron correlations, relying on the fact

that electrons from charm and bottom decays are correlated differently with the hadronic decay

products.

The approach followed by PHENIX [17] is based on partially reconstructing the D± →

e±K∓X decay and measuring the invariant mass distribution of unlike-charge electron-hadron

pairs. The distribution will exhibit a correlation from the heavy flavor decay kinematics, as shown
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in the left panel of Fig. 5.5 for two different hadron pT bins, normalized to the inclusive heavy flavor

electron yield. Then, the evtgen [134] (a Monte Carlo event generator specialized in B physics)

and pythia generators are used to generate templates for the invariant mass distribution using

only charm and bottom decay electrons, as indicated by the dashed lines. The data are fit with the

sum of the two templates, with the only free parameter corresponding to the relative normalization

of charm and bottom. The resulting fraction of bottom-to-inclusive heavy flavor electrons is shown

in the right panel of Fig. 5.5. Despite large uncertainties on the measurement, the expected rise of

the bottom contribution with pT is seen, and agreement with FONLL is observed.
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Figure 5.5: (left) Invariant mass distribution of inclusive electron-hadron pairs measured by

PHENIX, compared with pythia templates for charm and bottom decay electrons. (right) Frac-

tion of electrons from bottom decays to inclusive heavy flavor electrons, as determined from the

correlations shown on the right. A comparison with a FONLL calculation is also shown. Figure

reproduced from Ref. [17].

Unlike PHENIX, the STAR experiment [37] measures azimuthal correlations between heavy

flavor electrons and charged hadrons, as shown for two pT bins in the left panel of Fig. 5.6. Due

to differences in decay kinematics, bottom correlations will exhibit a broader near-side peak than

those from charm. pythia is used to generate templates for charm and bottom correlations,

which are used to fit the data with a single free parameter, from which the corresponding bottom

electron fraction, shown in the right panel of the figure, can be extracted. Notice that, compared
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to the corresponding PHENIX measurement, the STAR result has more data points and smaller

uncertainties as a consequence of the larger detector acceptance. Notice that this approach to

heavy flavor separation using correlations can only be applied in p+ p collisions, as it is limited by

the very large combinatorial background in A+A collisions.
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bottom electrons as calculated with pythia. (right) Fraction of electrons from bottom decays

to inclusive heavy flavor electrons, as determined from the correlations shown on the right. A

comparison with a FONLL calculation is also shown. Figure reproduced from Ref. [37].

Besides heavy flavor electrons, the STAR experiment has also successfuly measured heavy

flavor by reconstructing exclusive decays in full, namely D0 → K−π+ and D∗+ → D0π+, as

discussed in Ref. [13]. This allows for the measurement of the cc̄ cross section, as shown in Fig. 5.7.

Notice that the data compares favorably with the FONLL calculation, yet lies very close to the

upper edge of its uncertainty band.

To finalize this subsection, in addition to measurements of electrons at midrapidity, the

PHENIX muon spectrometers allow for heavy flavor measurements at forward rapidity through

semimuonic decay channels. These results will not be reviewed here, and the interested reader is

referred to Ref. [35].
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5.1.2 Heavy Flavor Measurements at the LHC

Even though the focus of this dissertation is the measurement of heavy flavor production in

p+p to serve as a baseline for corresponding measurements in larger collision systems at RHIC, it is

of interest, for the sake of completeness, to discuss some heavy flavor production results from LHC

experiments. Here, a brief catalog of results is presented, which is not intended to be comprehensive.

For a full discussion, see Ref. [50].

LHC detectors explore heavy flavor through all three possible observables—leptons, full

hadron decay reconstruction, and jet tagging. Both the ALICE and ATLAS experiments have

measured electrons and muons from heavy flavor decays over wide rapidity ranges [8, 7, 2, 10], as

shown in Fig. 5.8 and Fig. 5.9. Like the results at RHIC energies, these measurements are well

described by FONLL, in addition to other NLO calculations such as that used in the powheg [157]
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Monte Carlo generator.
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Regarding open charm measurements, LHC experiments follow the same approach as STAR,

of reconstructing exclusive D meson decays in full. Thus, pairs or triplets of appropriately charged

tracks constitute D meson candidates, with substantial background being rejected by topological

cuts on secondary vertices. Fig. 5.10 presents a few selected D meson measurements. The left panel

shows the cross section of prompt D+ in p+p collisions at
√
sNN = 7 TeV as measured by ALICE,

whereas the right panel shows a rapidity-dependent measurement of the D+
s cross section by LHCb.

Comparisons to pQCD calculations are shown; both FONLL and GMV-FNS agree with the data

within uncertainties, with the former tending to under-predict and the latter to over-predict it.

Lastly, we briefly consider open bottom measurements. Like open charm production, B

mesons are identified by reconstructing their hadronic decays, through displaced charmonium mea-

surements, or jet b-tagging. Precision measurements of bottom production are important to con-

strain theoretical models which suffer from very large uncertainties arising from the quark mass,

as well as the factorization and renomalization scales. Fig. 5.11 shows two measurements, by

CMS [125] and ATLAS [3], of the B+ cross section, where the hadron is identified by reconstruct-

ing its B+ → J/ψK+ → µ+µ−K+ decay. Theory comparisons are also shown; again, FONLL

and NLO calculations yield reasonable agreement with the data within uncertainties, but pythia,
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shown in the leftmost panel, does not owing to its limited LO+LL accuracy.
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5.2 Heavy Flavors as Probes of the Quark-Gluon Plasma

In the context of ultrarelativistic nucleus-nucleus collisions, heavy flavor quarks are of par-

ticular interest since their mass (mc ≈ 1.3 GeV and mb ≈ 4.2 GeV) is well above the temperature

of the QGP. As a result, their thermal production is Boltzmann-suppressed in the QGP medium,

even at LHC energies, with heavy flavor quarks originating instead in hard partonic processes in

the early stages of nuclear collisions. As a result, heavy quarks transit through the full evolution

of the QGP medium, from equilibration to hadronization, without experiencing modifications to

their total yield in the process.

Heavy quark production measurements in p + p collisions provide a baseline for the cor-

responding observables in heavy-ion collisions, where a variety of nuclear effects are expected to

modify the heavy flavor spectra, inducing deviations from binary scaling. The nuclear modification

factor, as defined below, serves to quantify such deviations:

RAA =
1

〈Ncoll〉
dNA+A/dpT
dNp+p/dpT

. (5.5)



116

In the above equation, dNA+A/dpT and dNp+p/dpT correspond to the spectra measured in A+A

and p+p collisions, respectively, and 〈Ncoll〉 is the number of binary collisions in the A+A centrality

class under consideration. In the absence of nuclear effects, the expectation is for RAA = 1.

Equivalently, the nuclear modification factor can be written as

RAA =
1

〈TAA〉
dNA+A/dpT
dσp+p/dpT

, (5.6)

where 〈TAA〉 is the nuclear thickness function defined in Chapter 4, relating 〈Ncoll〉 to the nucleon-

nucleon cross section.

Two classes of nuclear modifications are possible. Initial-state effects, or so-called cold nu-

clear matter effects, are best studied in asymmetric p(d)+A collisions. These include a variety of

phenomena, which will not be discussed here, such as isospin effects, modifications of parton distri-

bution functions in nuclei, and initial-state energy loss. For a discussion of heavy flavor as probes

of cold nuclear matter, see Ref. [194]. On the other hand, final-state effects refer to modifications

to the phase-space distributions of heavy flavor quarks due to the presence of the QGP medium

in A+A collisions, which soften the heavy flavor spectra relative to those measured in the p + p

baseline.

The study of how heavy flavors are modified by the QGP medium is useful to understand the

dynamics of parton-medium interactions, particularly as they are responsible for the color-opacity

of the QGP. It has been known for quite some time that high-energy color charges traversing the

QGP lose energy in the process [112], manifested as a suppression of the nuclear modification factor

for a variety of hadronic observables including individual particles and fully reconstructed jets. As

an illustration, Fig. 5.12 shows a compilation of RAA measurements carried out by PHENIX for

a variety of species in Au+Au collisions at
√
sNN = 200 GeV. Notice how photons, which do not

interact strongly, exhibit an RAA consistent with unity, whereas pions are substantially suppressed.
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√
sNN = 200 GeV. Image credit: PHENIX

collaboration.

For a long time it was assumed that gluon radiation, or gluon bremsstrahlung, by moving

color charges constituted the dominant mechanism responsible for energy loss in the QGP medium.

In fact, the energy loss of light quark flavors, as evidenced by the suppression of light hadrons

shown in Fig. 5.12, can be well accounted for by models of radiative energy loss [174, 206, 81]. In

these models, the multiple rescattering of a fast parton traversing the medium is responsible for the

emission of gluons, with two regimes being distinguished. Let µ be the characteristic momentum

transfer in a single scattering.2 If the wavelength µ−1 associated with the typical momentum

transfer is much smaller than the mean free path λ in the medium, then successive scatterings can

be treated as independent and the energy loss cross section is given by the standard Bethe-Heitler

formula for bremsstrahlung [61]. On the other hand, if the typical momentum transfer is such that

the wavelength becomes much longer than λ, then scatterings are no longer independent and a

suppression of the radiated energy spectrum is observed, by a factor of
√
λµ2/ω, where ω is the

2 In the QGP, µ can be identified with the Debye screening mass.



118

energy of the gluon. This is the QCD analog of the Landau-Pomeranchuk-Migdal effect which,

in standard QED, leads to a suppression of photon emission at low energies, while in QGP it is

responsible for the suppression of gluons at high energies. In this regime, it can be shown that the

total energy loss of a fast parton is proportional to the square of the distance L traveled in the

medium, by integrating the following expression

−dE
dz

=
αs
π
Nc
µ2

λ
L, (5.7)

where Nc is the color charge of the parton. See Ref. [55, 86] for further details. From the above

expression, it is possible to see that gluons—with a larger color coupling Nc—will experience a

greater energy loss than quarks.

Furthermore, a distinction in the angular emission pattern of gluon radiation must be drawn

between light and heavy flavors. Namely, radiation is supressed at small angles relative to the quark

momentum, with the effect becoming more pronounced with increasing mass. This phenomenon is

known as the dead cone effect [86], in which gluon radiation for θ < θ0 is suppressed by a factor F

given by [189]

F =
k2
⊥

k2
⊥ + ω2θ2

0

=
sin2 θ

sin2 θ + θ2
0

. (5.8)

In the above equation, θ0 = m/E where m and E are the mass and energy of the quark, and ω is the

energy of the radiated gluon. From the expression, it becomes apparent that there is no difference in

radiation patterns between light and heavy quarks at very high pT . Nevertheless, in the kinematic

region of interest for the measurement at hand, namely 5 < pT [GeV/c] < 10, the expectation is

for light hadrons to exhibit a greater suppression than those with heavy flavor content. However,

the RAA compilation in Fig. 5.12 demonstrates that heavy flavor decay electrons are suppressed

just as much as light mesons within 5 < pT [GeV/c] < 10. Since the yield of heavy flavor quarks is

conserved—unlike that of light flavors—the observed suppression of heavy flavor electrons at high

pT is accompanied by corresponding enhancement at low pT . This state of affairs invites further

refinements to our understanding of energy loss in the QGP. In particular, the inclusion of elastic

collisional energy loss becomes important for heavy quarks, as its contribution to total energy loss
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has been estimated, at first order, to be equal to that of gluon radiation [149].

In addition to the nuclear modification factor RAA, the elliptic flow v2 of heavy flavor con-

stitutes another important observable of parton-medium interactions. While charm and bottom

were originally deemed too heavy to “flow” with the medium owing to their long relaxation (ther-

malization) times, it was realized [56] that the observation of a large heavy flavor v2 could provide

evidence for the existence of very strong interactions of partons with the QGP. Thus, models of

energy loss must necessarily account for both these observables, which originate from the same

parton-medium interactions. Fig. 5.13 shows RAA and v2 measured by PHENIX [15] for inclusive

heavy flavor electrons in Au+Au collisions. Also shown are a series of calculations from a variety of

theoretical models. Curves I corresponds to a pQCD calculation with radiative energy loss, using

a very large transport coefficient. Notice how this model alone, with no collisional energy loss, can

account resonably well for the RAA but not the v2. On the other hand, curves II incorporate elastic

scattering mediated by resonance excitations, achiving a description of both observables. Finally,

curves III represent another class of models, namely Langevin models with drag and diffusion. In

this stochastic picture, the large-scale motion of a quark is dictated by the viscous drag force,

but with a series of uncorrelated momentum “kicks” which give rise to fluctuations in the quark

coordinates, following Brownian motion.
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Figure 5.13: Fraction of bottom to inclusive heavy flavor electrons measured by PHENIX via a

displaced vertex analysis in Au+Au collisions at
√
sNN = 200 GeV. Image reproduced from [15].

Despite significant progress in understanding parton-medium interactions, including novel

approaches using the AdS/CFT correspondence [120], further study is required to fully elucidate

the physics underlying the strong suppression of heavy flavor electrons at RHIC. In recent years,

as the field of heavy-ion physics has moved towards a new era of precision measurements, new

instrumentation has become available. For instance, PHENIX and STAR have installed silicon

vertex detectors allowing for precision event vertex determination. In particular, this allows for the

differential measurement of charm and bottom production. Owing to the significant mass difference

between charm and bottom quarks, these new measurements can provide important discriminating

constraints for theories attempting to describe parton energy loss. For instance, the effect of varying
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the quark mass in a drag-diffusion model should be immediatly apparent.

The PHENIX experiment, using the first Au+Au data collected with its silicon vertex detector

in 2011, successfully carried out a separation of charm and bottom hadron production via displaced

vertex measurements of their decay electrons [29]. The measurement exploits the fact that bottom

hadrons have a longer lifetime than charm hadrons, traversing a longer distance before decaying.

Thus, electrons from b→ e originate from a displaced vertex farther away from the primary vertex

than those from c→ e. Experimentally, the distance of closest approach (DCA) of inclusive heavy

flavor electron tracks to the primary vertex was measured, and an unfolding procedure was used—

along with a model of heavy flavor hadron decay—to infer the yields of the parent hadrons. Fig. 5.14

shows the ratio of bottom to inclusive heavy flavor decay electrons, where the band corresponds

to the 1σ limits of the total point-to-point correlated errors. The bottom electron fraction is seen

to agree with FONLL within the large uncertainties of both the measurement and the calculation,

albeit with a steeper slope at low pT and hints of a peak around pT ≈ 3 GeV/c.

As of the date of publication of this heavy flavor separation analysis in Au+Au collisions, there

was no corresponding measurement carried out in p + p at RHIC. In fact, the first p + p dataset

using the PHENIX silicon vertex detector was collected in 2015. Thus, results from the STAR

heavy flavor separation analysis in p+ p collisions using electron-hadron correlations, as previously

discussed and shown in Fig. 5.6, were used as a baseline to calculate the nuclear modification factor

RAA for charm and bottom decay electrons separately. The result is shown in Fig. 5.15. The top

panel shows the individual RAA, indicating the stronger suppression of charm over bottom at low

pT . At high pT , which is the region of interest, bottom electrons appear to be more suppressed

than those from charm, yet the very large uncertainties on the measurement prevent any strong

conclusion from being drawn. The bottom panel of the figure shows the ratio between the two RAA

curves, consistent with unity within uncertainties at high pT .
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Figure 5.14: Fraction of bottom to inclusive heavy flavor electrons measured by PHENIX via

a displaced vertex analysis in Au+Au collisions at
√
sNN = 200 GeV. Figure reproduced from

Ref. [29].

Whereas the large uncertainties on the measured bottom electron fraction of Fig. 5.14 are

driven primarily by the size of the statistical sample of reconstructed electron tracks in Au+Au,

the uncertainties on the RAA measurement are driven additionally by the large uncertainty from

the baseline measurement used. Steps to improve the measurement in Au+Au have already been

taken, using a much larger dataset recorded by PHENIX in 2014 [150], allowing even for heavy

flavor separation in centrality categories. Thus, the next necessary step is to measure the charm

and bottom spectrum in p+ p collisions using the identical technique as was used in Au+Au. That

is the subject of the second part of this dissertation.
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Figure 5.15: RAA of charm and bottom decay electrons measured by PHENIX via a displaced

vertex analysis in Au+Au collisions at
√
sNN = 200 GeV. Figure reproduced from Ref. [29].



Chapter 6

Experimental Setup

6.1 The Relativistic Heavy Ion Collider—RHIC

The Relativistic Heavy Ion Collider (RHIC) [116] is currently the United States’ sole super-

conducting hadron collider, operating at Brookhaven National Laboratory (BNL) in Upton, New

York. As the world’s first dedicated relativistic heavy-ion collider, starting operations in the year

2000, it opened the door to a new age in the study of the QCD structure of matter in the high-

energy regime. In its now eighteen years of operation, RHIC has delivered collisions of a variety

of nuclear species, including Au+Au, Cu+Cu, Cu+Au, U+U, p+Au, p+Al, d+Au, 3He+Au, and

p + p at a variety of collision energies from
√
sNN = 7.7 to 510 GeV, as summarized in Fig. 6.1.

Moreover, its unique capability to collide spin-polarized protons has fostered a strong program in

spin physics, which is described in detail in Ref. [51]. The layout of the RHIC complex, consisting

of the main collider and a series of auxiliary accelerators for injection, is shown in the left panel of

Fig. 6.2.
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Figure 6.1: Operating modes of RHIC from years 2000-2017 and corresponding average store lumi-

nosity. Image credit: Collider Accelerator Department, Brookhaven National Laboratory.

The right panel of Fig. 6.2 shows a schematic diagram of the RHIC injection chain. The versa-

tility to collide such a wide array of nuclei originates in the Electron Beam Ion Source (EBIS) [165],

an electron beam ionization source installed in 2009 as part of the pre-injection system, capable of

delivering ions from He2+
3 to U38+

238 , replacing the previously used sputter ion source and tandem

van de Graaf accelerator. Let us follow the acceleration chain of Au ions, from EBIS to RHIC. Ions

from EBIS, housed in the proton linear accelerator (LINAC) area, are accelerated by a pair of small

LINACs and injected to the Booster synchrotron. The Booster accelerates them to an energy of

95 MeV, at which point they are transfered to the Alternating Gradient Synchrotron (AGS), with

any remaining electrons—except for a pair in the innermost K-shell of the atom—being stripped

away in the process. It takes four Booster cycles to fill the AGS, which accelerates the Au ions to

8.86 GeV. The ions are then transfered to the AGS-to-RHIC (AtR) beamline, at which point they

are completely stripped of electrons, and inserted into the RHIC rings, one bunch at a time. The

AGS cycle is repeated until 56 bunches are placed in the 360 RF buckets of the RHIC rings. In the

case of proton collisions, the EBIS source is not used; instead, hydrogen is ionized and accelerated
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in the 200 MeV proton LINAC, achieving an energy of 28.3 GeV after injection in the AGS. The

top energy at RHIC is 100 GeV per Au beam, and 255 GeV in the case of proton beams.

The RHIC machine comprises two concentric hexagonal storage rings, 3.8 km in circumfer-

ence, where particles are accelerated in opposite directions (called the blue and yellow rings, for

clockwise and counterclockwise acceleration, respectively). The rings comprise a variety of super-

conducting magnets, namely 288 arc-sized dipoles, 108 insertion dipoles, 276 arc quadrupoles, and

216 insertion quadrupoles. Dipole magnets are used to bend the beam, while quadrupoles are used

to focus it. The nominal magnetic rigidity for Au beams is Bρ = 8401 Tm, maintained by a

magnetic field of approximately 3.5 T at top energy. The rings intersect at six points along their

circumference, four of which house detector experiments with complementary physics programs, as

cursorily listed below.

(1) PHENIX (Pioneering High-Energy Nuclear Interaction Experiment) [90] comprises a cen-

tral axial field magnet, with a central spectrometer of limited acceptance consisting of

various layers of tracking, electromagnetic calorimetry and particle identification. Two

muon spectrometers, for muon identification, are located parallel to the beam direction

and consist of muon magnets, muon filters, and tracking detectors. PHENIX was oper-

ational from 2000-2016. It has since been decommissioned to make way for the future

sPHENIX detector [28] in the same experimental hall.

(2) STAR [91] (Solenoidal Tracker at RHIC) is built around a large solenoidal time-projection

chamber (TPC), allowing for charged particle tracking within |η| < 1 and 2π azimuthal

coverage, with particle identification (PID) capabilities. Electromagnetic calorimeters in

the barrel and endcap allow measurements of electron and photon energy. STAR has been

in operation since RHIC startup in 2000, and is expected to remain operational at least

through 2019-2020, when the Au+Au Beam Energy Scan II program (BES-II) will take

place, to search for the critical point of deconfinement.

(3) PHOBOS [88] (Not an acronym, but named after the largest moon of Mars), one of the two
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smaller RHIC experiments, comprises a two-arm magnetic spectrometer and a large number

of silicon detectors at various distances around the interaction region. The experiment

operated from 2000-2006.

(4) BRAHMS [93] (Broad Range Hadron Magnetic Spectrometers Experiment), the other small

RHIC experiment, comprises two magnetic spectrometers. One arm is oriented at forward

rapidity, and the other at mid-rapidity, covering a limited acceptance. BRAHMS, like

PHOBOS, operated from 2000-2006.

Figure 6.2: (left) Layout of the RHIC-AGS accelerator complex, to scale. (right) Schematic depic-

tion of the RHIC injection chain. Figures reproduced from [115].
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6.2 The Pioneering High-Energy Nuclear Interaction Experiment—PHENIX

6.2.1 Detector Overview

The PHENIX experiment [90], as one of two large detectors at RHIC, was designed to support

a very broad physics program. With a high rate capability, PHENIX can measure leptons, identified

hadrons, and photons over a wide pT range with excellent momentum and energy resolution. The

experiment comprises a number of subsystems organized into four spectrometer arms, and a series

of global event characterization detectors, as shown in Fig. 6.3. Since its inception, upgrades and

subsystems have been added to and removed from PHENIX over the years. The present discussion

focuses on the subsystem configuration for the 2015 run period, when the data for this dissertation

was recorded. Global detectors include (i) the Beam-Beam Counters (BBC), located symmetrically

at forward rapidity around the interaction point, providing timing information which can be used,

among other things, for vertex determination and triggering; (ii) Zero-Degree Calorimeters (ZDC),

located at very backward and forward rapidity, used to detect spectator neutrons; (iii) the Silicon

Vertex Detector (VTX), comprising various layers of silicon pixels and strips, used for precision

tracking and vertexing close to the interaction point; and (iv) the Forward Silicon Vertex Tracker

(FVTX), comprising two annular endcaps of silicon strips for tracking at forward rapidites.

Two central arm spectrometers, located at midrapidity, surround a central magnet that

creates a field predominantly parallel to be beam axis. The spectrometers comprise a layer of

electromagnetic calorimetry (lead-glass and lead-scintillator), tracking (with pad chambers, drift

chambers, and a time expansion chamber), and particle identification (with time-of-flight detec-

tors and a ring imaging Cherenkov detector). Finally, the muon spectrometer arms, providing

full azimuthal coverage at forward and backward rapidity, comprise a muon tracker made up of

layers of multi-plane drift chambers in a radial magnetic field, and a muon identifier consisting

of alternating layers of steel absorbers and low-resolution tracking. In addition to the above, a

series of specialized subsystems, known as the Muon Piston Calorimeter (MPC), and the Muon

Piston Calorimeter Extension (MPC-EX) [72] were in place during the 2015 run period, to explore
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previously inaccessible kinematic regions for the study of low-x physics.

Table 6.1 provides a summary of selected PHENIX subsystems. In the following subsections,

we will provide a detailed description of the subsystems used in this dissertation, namely the

BBC for global event characterization, the central arm spectrometers for tracking and electron

identification, and the VTX for precision tracking.

Table 6.1: Summary of selected PHENIX subsytems for global event characterization and spec-

trometry. Table adapted from [90].

Subsystem η Acceptance φ Acceptance Function

Global Detectors

Beam-Beam Counter (BBC) 3.1 < |η| < 3.9 360 Event timing, vertexing

Zero-Degree Calo (ZCD) ± 2 mrad 360 Triggering/centrality

Silicon Tracker (VTX) |η| < 1.2 140× 2 Precision tracking

Forward Silicon (FVTX) 1.2 < |η| < 2.2 360 Forward tracking

Central Arm Spectrometers

Drift Chambers (DC) |η| < 0.35 90◦ × 2 Tracking

Pad Chambers (PC) |η| < 0.35 90◦ × 2 Tracking

Cherenkov Detector (RICH) |η| < 0.35 90◦ × 2 Electron ID

PbGl EMCal |η| < 0.35 45◦ EM Calorimetry

PbSc EMCal |η| < 0.35 90◦ + 45◦ EM Calorimetry

Time of Flight (TOF) |η| < 0.35 45◦ Hadron ID

Muon Arm Spectrometers

Muon Tracker South(North) 1.15 < |η| < 2.25(2.44) 360◦ Muon tracking

Muon ID South(North) 1.15 < |η| < 2.25(2.44) 360◦ Muon identification
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Figure 6.3: Rendering of the PHENIX experiment showing the layout of various detector subsys-

tems, in their 2003 configuration. Recent detector upgrades, including the Silicon Vertex Detector

(VTX) and Forward Vertex Detector (FVTX) are not shown. Image credit: PHENIX Collabora-

tion.
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Figure 6.4: (top) Beam-line view of the PHENIX detector in its 2015 configuration, with cen-

tral magnet and central arm spectrometers visible. (bottom) Side view of PHENIX, with muon

spectrometers visible. Image credit: PHENIX Collaboration.

6.2.2 The Central Magnet

The PHENIX magnet system [96] makes use of three magnets: two for the muon arms, and

one for the central arm spectrometers. Fig. 6.5 shows a rendering of the central magnet and the
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muon magnets in the experimental hall. All three are warm iron yoke magnets with water-cooled

copper coils. The muon magnets, which will not be discussed here, produce a radial magnetic

field of strength 0.72 T. The central magnet was designed to produce an axial magnetic field at

midrapidity, with no mass in the aperture of the central arm spectrometers, yet with substantial

mass at forward and backward rapidity to act as a hadron aborber for the muon arms. The magnet

is 9 m tall, and weighs 421 metric tons. The field is created by two pairs of circular coils in the

pole faces, called the inner and outer coils, of radius 0.66 m and 1.73 m, respectively, as shown

in Fig. 6.6. Electric current through the two coils can be made to circulate in the same, or in

opposite directions, thus enhancing or reducing the strength of the magnetic field in the region

close to the beam pipe. When current runs in the same direction (i.e., the ++ configuration), a

maximum magnetic field of 0.9 T is achieved at a radial distance of r = 0, whereas when currents

run in opposition (i.e., the +− configuration), the magnetic field effectively cancels in that region.

Fig. 6.7 shows the total magnetic field strength as a function of r for the ++, +−, and + (i.e.,

outer coil alone) current configurations. In all cases, the strength of the field is the same at r & 1

m. In particular, notice that the field strength is close to zero for r > 2 m, in order to minimize

the smearing of low-momentum electron rings in the Ring Imaging Cherenkov (RICH) subsystem,

described in Section 6.2.3.2.
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Figure 6.5: Illustration of the PHENIX central magnet and muon arm magnets. Figure reproduced

from [96].

++ Configuration +- Configuration

Figure 6.6: Illustration of the PHENIX magnetic field lines when the central magnet runs in the

++ and +− configurations. Figure reproduced from [121].
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Figure 6.7: Total magnetic field strength as a function of radial distance from the beam pipe

when current runs only the outer coil (+ configuration); in the same direction in both coils (+−)

configuration; and in different directions (+−) configuration. Figure adapted from [96].

6.2.3 Tracking and Particle Identification: The Central Arm Spectrometers

6.2.3.1 The Drift Chamber

The drift chamber (DC) is the innermost subsystem of the central arm spectrometers [89, 173].

It consists of two independent partial cylindrical volumes, one in each arm, of length 2.5 m along

the beam axis, inner radius of 2.02 m, outer radius of 2.46 m, and subtending an azimuthal angle

of 90◦, as shown in Fig. 6.8. Each volume is filled with a gas mixture of equal parts Ar and C2H6

at atmospheric pressure, such that a charged particle traversing the chamber will ionize the gas,

leaving a trail of electron-ion pairs. Electrons then drift in an electric field towards a series of

sensing wires, such that position information can be inferred from the measured drift times.
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Figure 6.8: Geometry of a single DC arm frame. Figure reproduced from Ref. [89].

Each volume is divided into 20 independent sectors, each covering 4.5◦ in azimuth. Within

each sector are six sets of wires, called X1, U1, V1, X2, U2, and V2. The X wires are arranged

parallel to the beam axis, to allow measurements in the r − φ plane. The U and V wires provide

information along the longitudinal z direction since they are arranged at stereo angles of about 6◦

(specifically, U1, V1, U2 and V2 are oriented at 5.376◦, 5.512◦, 5.900◦, and 6.040◦, respectively)

relative to the X wires. Fig. 6.9 shows the detailed layout of wires in a given DC sector. In particular,

the figure inset illustrates how anode (i.e., sensing) wires—shown as dashed open circles—within a

given plane are separated by “potential” wires, and surrounded by “gate” and “back” wires. The

potential wires create the electric field, while gate wires limit the drift length, and the back wires

terminate drift lines thus limiting the region where charges can propagate. Anode wires are divided

into two electrically isolated halves, each being read out independently. Thus, the approximately

6500 anode wires in the DC correspond to 13000 readout channels.
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Figure 6.9: Wire configuration in a single DC sector. Figure reproduced from Ref. [89].

6.2.3.2 The Ring Imaging Cherenkov Detector

The Ring Imaging Cherenkov Detector (RICH) [94] is the main subsystem in PHENIX re-

sponsible for electron identification. The RICH comprises two CO2-filled volumes, one in each

central spectrometer arm, located radially within 1.5 < r < 4.1 m, between the inner (i.e., the DC

and PC1) and outer (i.e., PC2 and PC3) tracking subsystems. The physical mechanism underlying

the detector’s operation is straightforward. When a particle propagates in a dielectric medium of

index of refraction n, with a velocity greater than c/n, it will emit Cherenkov radiation in a distinct

conical shape of opening angle cos θ = 1/(nβ). Given the low mass of electrons, they radiate at a

much lower momentum than, for example, pions. In fact, for a particle of rest mass m, the momen-

tum threshold for producing Cherenkov radiation can be written as pmin = mc/
√
n2 − 1. Thus,

p
(e)
min = 0.017 GeV/c for electrons, and p

(π)
min = 4.65 GeV/c for pions in CO2. This large difference

in the momentum threshold provides excellent discimination between electron tracks and hadron

background up to p ≈ 5 GeV/c. For higher momentum tracks, other subsystems can be used to
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separate electrons from hadrons. Given the location of the RHIC, in between tracking detectors and

in front of electromagnetic calorimeters, it is desirable to minimize its material budget. Overall,

the gas-filled detector has a thickness equivalent to 2% of a radiation length.

Each RICH arm covers a volume of 40 m3, whose internal structure is depicted in Fig. 6.10.

Each arm is equipped with 48 mirror panels to reflect Cherenkov light, arranged in two intersecting

spherical surfaces with an area of 20 m2 overall. Reflected light is focused onto 1280 photomultiplier

tubes (PMTs), organized into two arrays, one on either side of the detector’s entrance window. The

angular segmentation of this arrangement is 1 × 1 degrees in polar and azimuthal angles. Since

Cherenkov light is emitted in a cone, its reflection will give rise to distinct annular arrays of

triggered PMTs for each particle track. If the projection of a given track reconstructed by the

central arm tracking subsystems lies within the center of the cluster of PMTs, the PMTs are said

to be associated with that track. As will be described in a later chapter, the number of hit PMTs

associated with a given track will provide an important criterion for electron/hadron discrimination.

Figure 6.10: View of a single RICH arm. Figure reproduced from [94].
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6.2.3.3 The Pad Chamber System

The Pad Chamber (PC) system [89, 173] consists of several layers of multiwire proportional

chambers, with three layers (PC1, PC2, PC3) in the West arm spectrometer, and only two (PC1,

PC3) in the East arm, as shown in Fig 6.4. The PC1 is located just outside the drift chamber, at

a radius of 2.49 m, while PC2 and PC3 are found between the RICH and the EMCal at a radius

of 4.19 m and 4.89 m, respectively. The PCs play several important roles, both in tracking and

false track rejection. For example, it is PC1 that measures the z coordinate of tracks as they exit

the drift chamber; additionally, hits in the PC can be correlated with information from the drift

chamber, RICH, and EMCal to reject contamination in the outer detectors arising from conversions

and particle decays.

Figure 6.11: Cross-sectional view of a Pad Chamber layer. Figure reproduced from [89, 173].

Each PC layer is made up of a number of independent chambers, each composed of a plane

of anode and field wires, strung between cathode planes, as shown in Fig. 6.11. One of the cathode

planes is segmented into pixels, while the other is an unsegmented sheet of copper. Cathode

pixels are grouped into 9×9 pixel arrays with a common readout. Unlike the drift chamber, which

determines track position from drift time measurements, the PCs determine 2D track positions by

sensing electron avalanches in the vicinity of a given anode wire and a 3 × 3 pixel cell. The PC1
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is divided into 8 azimuthal chambers, or sectors, of dimensions 49.5 cm × 197.5 cm (φ × z), each

with 58 anode wires. The PC3, in turn, is divided into 4× 2 chambers in φ and z. Each chamber

is filled, like the drift chamber, with a gas mixture of equal parts Ar and C2H6. The gas-filled

detector has a material budget corresponding to 1.2% of a radiation length.

6.2.3.4 The Electromagnetic Calorimeter

The electromagnetic calorimeter (EMCal) is the outermost detector of the central arm spec-

trometers [92]. Its main purpose is to measure the energy of electrons and photons, but it also plays

a role in particle identification and event triggering. The PHENIX EMCal was constructed using

two distinct detector technologies: a sampling calorimeter using lead-scintillator towers (PbSc),

and a Cherenkov calorimeter called using lead-glass crystals (PbGl). All four calorimeter sectors

in the West Arm are PbSc, while the East arm has two sectors of each type. The use of different

calorimeter technologies allows for cross checks on the calorimeter’s energy scale.

Figure 6.12: Cutaway view of a PbSc calorimeter module, comprising four individual towers. Figure

reproduced from [92].

The PbSc calorimeter consists of 15522 towers, each made up of 66 interleaved tiles of lead
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and plastic scintillator material, amounting to 18 radiation lengths. The light from each tower is

collected by 36 wavelength-shifting fibers running perpendicularly to the tiles, and amplified by

a photomultiplier tube. A set of four calorimeter towers—each read out individually—is called

a module, as shown in Fig. 6.12. A collection of 36 modules is called a supermodule, and 18

supermodules form a calorimeter sector, covering an area of 2× 4 m2. The energy resolution of the

PbSc calorimeter is

σE
E

=
8.1%√
E[GeV]

⊕ 2.1%, (6.1)

where the first term accounts for stochastic effects, and the second for intrinsic non-uniformity in

the detector [92].

The PHENIX PbGl calorimeter was repurposed from CERN’s fixed-target experiment WA98.

It is composed of individual modules of lead glass (i.e., a combination of glass and lead oxide), of

dimensions 4 × 4 × 40 cm. Each module is individually wrapped in mylar and shrink tube, and

read out by a PMT. Twenty-four modules are arranged into 6 × 4 structures glued with expoxy

resin, to form a supermodule. In turn, a PbGl calorimeter sector is composed of 192 supermodules,

arranged into a 16× 12 structure. The PbSc energy resolution is

σE
E

=
5.9%√
E[GeV]

⊕ 0.8%. (6.2)

The PbGl Cherenkov momentum threshold for muons, pions, and protons is p
(µ)
min = 81, p

(π)
min = 106,

and p
(p)
min = 715 MeV/c, respectively, thus allowing the PbGl to be used for electron identifica-

tion based on the mismatch between a given track’s momentum and its energy deposition in the

calorimeter. Fig. 6.13 shows a PbGl calorimeter supermodule, where the array of individual mod-

ules is visible, along with the PMT readouts and supporting structure.
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Figure 6.13: Cutaway view of a PbGl calorimeter supermodule. Figure reproduced from [92].

6.2.4 Global Event Characterization: The Beam-Beam Counter

The BBC [95] consists of two identical arms, called BBC-North and BBC-South, located

symmetrically along the beam axis, 1.44 m away from the interaction point, and surrounding the

beam pipe. Each arm covers 3.1 < |η| < 3.9 in pseudorapidity and 2π in azimuth. Each consists

of 64 mesh-dynode photomultiplier tubes (PMT), one inch in diameter, attached to 3 cm quartz

crystals which act as Cherenkov radiators. The PMTs are arranged in a ring of inner radius 10

cm, and outer radius 30 cm, as shown in Fig. 6.14(a). A single PMT-radiator element is shown

in Fig. 6.14(b). Each BBC arm is powered by 8 high voltage channels. An interlock mechanism

disables the high voltage when temperature exceeds 50◦C or no airflow is detected. The main

functions of the BBC include providing signals for the PHENIX LVL1 trigger, for the determination

of the longitudinal collision vertex, and for TOF timing.



142

(a) (b)

Figure 6.14: (a) Photograph of a single arm of the PHENIX BBC subsystem. (b) Photograph of

one of the BBC’s constituent quartz Cherenkov radiators and photomultiplier tubes.

6.2.5 Precision Tracking: The Silicon Vertex Detector

The Silicon Vertex Tracker (VTX), installed in 2011, was designed to provide charged particle

tracking capabilities near the interaction point, such that the primary vertex can be reconstructed

with a resolution of the order of 100 µm. The VTX consists of two arms, each comprising four

layers, covering an acceptance of |η| < 1.2 (for collisions within |z| < 10 cm) in pseudorapidity

and 140◦× 2 in azimuth, constructed using two different detector technologies. The two innermost

layers, called B0 and B1, were constructed using silicon pixel technology, developed at CERN. The

outermost layers, called B1 and B2, were constructed using a silicon strip-pixel hybrid technology,

developed at BNL. Each layer consists of a series of ladders running parallel to the beam axis

at various radii, as shown in Fig. 6.15. Notice from the figure that ladders are staggered in an

overlapping configuration to minimize gaps between the sensitive areas in each sensor. Table 6.2

provides a summary of the hardware specifications of each layer.
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Figure 6.15: Cross sectional view of the VTX detector along the beam axis, showing the radial

arrangement and numbering scheme of ladders in each layer. The innermost layers, B0 and B1,

consist of silicon pixel ladders, while the outermost layers B2 and B3 consist of stripixel ladders in

a staggered configuration.
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Table 6.2: VTX hardware specifications for every detector layer

Layer B0 B1 B2 B3

Type Pixel Pixel Stripixel Stripixel

Radius [cm] 2.63 5.13 11.77 16.69

Radiation Length 1.28% 1.28% 5.43% 5.43%

Ladders 10 20 16 24

Sensors per Ladder 4 4 5 6

Sensor Size
φ× z × d [cm × cm ×µm]

1.5 × 5.672
× 200

1.5 × 5.672
× 200

3.49 × 6.37
× 625

3.49 × 6.37
× 625

Active Area
φ× z [cm × cm]

1.28 × 5.56 1.28 × 5.56 3.072 × 6.0 3.072 × 6.0

Ladder Length [cm] 22.8 22.8 31.8 38.2

Chips per Sensor 4 4 12 12

Channels per Chip 8192 8192 128 ×8 bits 128 ×8 bits

Pixel/Chip
or Strip/Sensor

256× 32 256× 32 384× 2(X/U)× 2 384× 2(X/U)× 2

Pixel/Strip Size [µm×µm] 50× 425 50× 425 80× 30000 80× 3000

Stave

Bus

Readout Chip

Sensor

Sensor Module
(Sensor + 4 Readout Chips)

Cooling Tube

Figure 6.16: Schematic configuration of a hybrid pixel detector ladder, showing the arrangement

of the support, sensing, and readout elements.
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The two innermost layers B0 and B1, with 10 and 20 ladders, respectively, form the silicon

pixel detector. Ladders in these layers are divided into two independent half-ladders, each consisting

of two sensor modules. Each module comprises a sensing silicon pixel chip bump-bonded to four

readout chips. Each pixel in the chip has dimensions 50 µm×425 µm, and consists of n-type silicon

with p+ implants on one side. The pixels are arranged into lattices of 256 × 32 pixels, 200 µm in

thickness. The readout chip, known as the ALICE1LHCb chip [185] (originally designed for the

ALICE and LHCb experiments at the LHC), consists of an array of pixels which mirror those in

the sensor chip both in size and layout. The readout chip provides a binary signal for every pixel,

corresponding to the passage of charged particles. A pair of sensor modules is wire-bonded to a

single readout bus. The bus readout is controlled by a Silicon Pixel Readout (SPIRO) module

which transmits data to a front-end module (FEM), which in turn interfaces with the PHENIX

data acquisition (DAQ) system. The entire arrangement is mounted on a carbon composite support

stave which provides cooling and mechanical support, as shown in Fig. 6.16.

The silicon strip detector, comprising the outermost layers, consists of 18 and 26 ladders

in B2 and B3, respectively. Ladders in B2 comprise 5 stripixel sensor modules, while those in

B3 comprise 6 modules. Individual sensors, of size 3.43×6.46 cm, consist of single-sided pnn-type

silicon 625 µm in width, segmented into stripixels of dimensions 80µm × 1000µm. Individual

stripixels consist of of two serpentine metal strips which collect charge liberated in the silicon from

the passage of charged particles, as depicted in red and blue in Fig. 6.17, where two stripixels

are shown. The blue strip in a given stripixel is electrically connected with blue strips in adjacent

stripixels, whereas the red strip is connected with other red strips in stripixels located diagonally, at

an angle of 4.6◦. Such an arrangement defines two readout directions, called X and U , respectively,

which allow for the two-dimensional location of hits to be determined. Each sensor module has 1536

channels, with 768 in each readout direction. The stripixel sensor modules are read out by the SVX4

readout chip, developed by a collaboration between FermiLab and Lawrence Berkeley Lab [131].

Each radiation-hard chip provides readout capabilities for 128 stripixels with 8-bit ADCs, 46-deep

pipeline buffering, and 4-deep multi-event buffering. Readout control is carried out by a readout
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card (ROC), comprising 12 SVX4 chips, a custom readout control chip (RCC) designed at Oak

Rigde National Lab, as well as control buses, power, and ground. The mechanical assembly of a

stripixel ladder is shown in Fig. 6.18 Further information on the design, performance and testing of

the various components of the VTX detector and electronics can be found in Refs. [131, 42, 143, 43].

The final mechanical assembly of the VTX in the experimental hall is shown in Fig. 6.19.

The ladders are mounted on a space frame which provides mechanical support, inside an air-tight

gas enclosure filled with dry nitrogen to prevent condensation. Two circular structures, called ‘big

wheels’ house the detector’s readout electronics.

1000 μm

80 μm

X-Pixel
(1st metal)

Y-Pixel
(1st metal)

X-Strip
(2nd metal)

Y-Strip
(2nd metal)

Bonding Pad for
Y-Strip

Figure 6.17: Schematic configuration of two individual diagonal stripixels. Blue strips are connected

to blue strips in adjacent stripixels, defining the X readout direction, while red strips are connected

to red strips in stripixels located diagonally, defining the U readout direction.
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Sensor Module

Stripixel Sensor

Carbon Composite Stave

Bus Cable

Readout Control Chip (RCC)

Readout Card (ROC)

Figure 6.18: Schematic view of a strpixel ladder.

Beam Pipe

Big Wheel Structure

VTX Pixels

VTX Stripixels

Forward Silicon
Vertex Detector
(FVTX)

Figure 6.19: Assembly view of the VTX detector in its supporting frame, where the beam pipe has

been displaced for clarity. Also shown is the unrelated Forward Silicon Vertex (FVTX) detector.



Chapter 7

Open Heavy Flavor Separation in p+ p Collisions

7.1 Analysis Overview and Roadmap

The ultimate goal of the analysis presented here, as motivated in Chapter 1 and Chapter 5, is

to differentially measure the production of hadrons with open charm and bottom quark content in

p+ p collisions at a center-of-mass energy of
√
sNN = 200 GeV. These hadrons decay through the

action of the weak force, and their decay modes can be well approximated by the decays of their

heavy valence quark, with the lighter quark in the hadron being considered a spectator [179]. For

instance, in the case of B mesons, the bottom quark decays as b→ c+W ∗− and, in turn, the virtual

W can decay hadronically or through a process involving leptons in the final state, W− → lν̄. The

latter case corresponds to the semileptonic decay mode of the heavy flavor meson.

This analysis seeks to measure heavy flavor hadrons by reconstructing their semileptonic

decay electron tracks in the PHENIX VTX and central arm subsystems. The provenance, either

from a B or a D meson, of electrons can be determined based on the distance between the primary

collision vertex and the track’s displaced vertex; that is, the point where the parent hadron decay

took place. On average, the decay kinematics of the B states are such that the mesons will travel

a longer distance than D mesons before decaying, as shown in Table 7.1. This can be quantified

through the distance of closest approach (DCA) of a given track projection to the point relative to

which all tracks are reconstructed. Thus, B mesons will exhibit a broader DCA distribution than

D mesons.
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Table 7.1: Characteristic distance traveled before decaying by B and D mesons states

State Flight Distance cτ0

D0 129.9 µm

D+ 311.8 µm

B0 457.2 µm

B+ 491.1 µm

However, measuring the DCA distribution alone of inclusive heavy flavor electrons is not suf-

ficient to determine their origin, and an additional independent experimental observable is needed.

In this analysis, such additional observable corresponds to the inclusive spectrum of heavy flavor

electrons. Thus, with two independent quantities, one can construct a statistical model to in-

fer D and B production separately. Conceptually, this procedure is akin to solving a system of

independent simultaneous equations.

Fig. 7.1 provides a schematic roadmap of the various stages of this analysis. The leftmost

column corresponds to the processing of experimental data: first, the raw data is examined and

pruned to ensure a high-quality dataset. Then, electron tracks—consisting of heavy flavor electrons

plus background electrons—are identified in data, and their DCA distribution is measured. The

second column then corresponds to the use of simulations to model the electron background in

data, and to determine the DCA distribution of every source of background electrons. That way,

the DCA distribution of inclusive heavy flavor electrons in data can be isolated. The third column

corresponds to the inclusive heavy flavor electron spectrum, which is taken from existing PHENIX

publications. The results of all three columns then come together as input to a deconvolution

procedure, known here as unfolding, which uses Bayes’ Theorem and a pythia-based model of

heavy flavor decay, resulting in the separated yields of charm and bottom hadrons.
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DATA SIMULATION

Identify
Electron Tracks

Measure Candidate
Electron DCA

Simulate Background
Electron Sources

Construct DCA
of Background Electrons

Normalize background
relative to measured electrons

PHENIX Inclusive
HF Electron Yield

Heavy Flavor Separation via Bayesian Unfolding

PREVIOUS RESULT

Figure 7.1: Analysis roadmap for heavy flavor separation. Electron tracks are measured in data,

and their DCA distribution is constructed. Separately, simulations are used to construct the DCA

distribution of background electron sources. Finally, a Bayesian deconvolution method, called

unfolding, takes these DCA distributions as well as a previosuly published measurement of the

inclusive heavy flavor electron spectrum as input, to calculate the individual yield of electrons from

charm and bottom mesons.

7.2 Definition of Track Objects and Variables

This section defines and describes the relevant software objects used in this analysis, where

reconstructed particle tracks are the central object of study. Tracking is carried out in the cen-

tral arms, as well as in the VTX detector, defining three distinct types of track objects. Central

arm tracking, using the drift and pad chambers discussed in Section 6.2.3, is done via a combi-

natorial Hough transform, as described in Refs. [121, 123]. The result of this reconstruction is

called a PHCentralTrack, which most notably encapsulates the momentum of the particle, and the

information required for its identification as an electron.

Regarding the VTX, the passage of charged particles through the detector results in hits

consisting of individual fired pixels (in B0 and B1), or stripixels (in B2 and B3). The software object
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associated with such hits is called an SvxRawHit. These hits are reconstructed into SvxCluster

objects by grouping neighboring hit readout pixels, with the location of the cluster being determined

as the centroid of the constituent pixels (or strips). Once clusters have been reconstructed, VTX

tracking can proceed via two distinct approaches:

• Standalone Tracking: In this approach, tracks are reconstructed using VTX hits alone,

with no central arm information. The tracking algorithm begins by linearly projecting

pairs of hits different VTX layers towards the beam center, allowing for a rough collision

vertex to be calculated along the longitudinal direction; if not enough pairs are available,

the z-vertex provided by the BBC is used. In a second step, a recursive algorithm links the

vertex with hits in the innermost layer, and then with succesive layers by propagating a

helical projection outward. Poor quality tracks are then discarded, leaving a sample of good

standalone tracks. The corresponding software object is called an SvxSegment. These are

not only useful for physics analysis in their own right, but also because standalone tracks

are used to calculate the seed vertex for the primary event vertex determination. Full

details on the algorithms associated with standalone tracking can be found in Ref. [43].

• VTX-CNT Tracking: Of greater interest for the analysis described in this dissertation

are the track objects reconstructed by matching PHCentralTracks to hits in the VTX

detector. In this manner, the location of the track near the vertex can be determined

with a resolution of around 100 µm, while preserving the information associated with the

track provided by the central arm detectors, such as the momentum, calorimeter energy

deposit, etc. The software object representing these VTX-associated tracks is called an

SvxCentralTrack. The algorithm to reconstruct these tracks proceeds by associating a

PHCentralTrack with hits in the outer VTX layer, and then projecting a helical trajectory

inward, with the diameter of the helix determined by the track’s momentum. If several

reconstructed SvxCentralTrack are associated with the same PHCentralTrack, the one

providing the best fit to the VTX hits is selected, and the rest are discarded. Again, see
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Ref. [43] for full details.

In order to carry out VTX-level tracking with the desired resolution level, it is imperative

for the reconstruction software to precisely know where each detector element is located. While

the VTX detector has a reference engineering design, according to which it was built, the actual

installation of the detector in the experimental hall does not perfectly reflect this geometry. There-

fore, an alignment procedure has to be carried out to precisely determine the actual geometry of

the detector elements relative to each other, and of the detector as a whole relative to the rest of

the PHENIX apparatus. This is a large-scale least-squares minimization problem, solved using the

Millepede1 alignment software [64], and is documented in detail in Appendix B.

7.3 Event Triggers

This section provides a brief description of the triggers used in this analysis to collect “inter-

esting” events while rejecting those that are not. The PHENIX experiment counts with a suite of

high-level triggers for various physics objectives, of which the minimim bias (MB) and EMCal-RICH

(ERT) triggers are of interest for electron analyses.

7.3.1 The Minimum Bias Trigger

The minimum bias trigger in PHENIX is defined as a coincidence between signals from both

arms of the BBC subsystem. The trigger requires that at least one photomultiplier tube fire in each

arm of the BBC in a given crossing for it to be recorded. Additionally, since timing information

from the BBC can be used to compute an event vertex in the longitudinal direction, it is required

that the determined vertex be |zvtx| < 30 cm. The MB trigger cross section has been determined

to be σ = 23 ± 2.2 mb through a van der Meer scan in p + p collisions at
√
sNN = 200 GeV,

which means that the trigger effectively captures only 54± 6% of the total inelastic cross section of

σ = 42 mb. In this analysis, the MB event sample is used for quality assurance and run selection,

as detailed in Section 7.4.

1 http://www.desy.de/ kleinwrt/MP2/doc/html/index.html
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7.3.2 The ERT Trigger

The EMCal-RICH (ERT) trigger family is designed to maximize the sample size of electrons

by identifying large localized energy deposits in the EMCal. Additionally, if those calorimeter

deposits can be spatially matched to RICH hits, the trigger can be used to select events where

electrons are likely to be reconstructed in the central arms. Fig. 7.2 shows the logic behind the

ERT trigger: the EMCal and RICH are segmented into tiles, such that photons can be identified

by a large EMCal deposit, while electrons—in addition to the EMCal signal—require a matching

RICH tile hit.

Figure 7.2: Schematic diagram of the EMCal and RHIC subsystems illustrating the electron ERT

trigger. Figure reproduced from Ref. [129].

For triggering purposes, the EMCal is segmented into tiles consisting of 144 (12×12) calorime-

ter towers, while the RICH is segmented into tiles consisting of 20 (5[φ]×4[z]) photomultiplier tubes,

corresponding to units which are read out by common electronics. The first type of ERT trigger

considered, namely the ERT4×4 measures the summed energy in neighboring 4 × 4 calorimeter

towers within a given tile, such that the trigger fires if the energy exceeds a given threshold. Three

different thresholds are defined, giving rise to the ERT4×4a, ERT4×4b and ERT4×4c triggers. Addi-



154

tionally, the ERT-E trigger, for electron identification, measures the summed energy in neighboring

2 × 2 calorimeter towers, requiring a minimum deposited energy of 400 MeV. A lookup table is

then used to spatially match the calorimeter deposit to a hit in a RICH tile. The turn-on curves

for the 4 ERT triggers used in the analysis at hand are shown in Fig. 7.3. These correspond to the

ratio of the electron spectrum in each ERT trigger sample to that in the minimum bias trigger.
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Figure 7.3: Turn-on curves for each ERT trigger used in the analysis.

7.4 Dataset and Run Selection

The RHIC collider typically operates during the first half of a given calendar year. In 2015,

during the so-called Run15, it operated from early February to late June, colliding p+p, p+Au, and

p+Al at
√
sNN = 200 GeV. The p+ p data-taking period ran from February 10 to April 27, during

which 110 pb−1 of wide-vertex integrated luminosity were sampled by the PHENIX experiment.

Fig. 7.4 shows the integrated luminosity as a function of time for various event vertex selections.
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Figure 7.4: Integrated luminosity recorded, within various collison vertex selections, by the

PHENIX experiment during the 2015 p+ p data-taking period.

During data-taking, the PHENIX experiment collects data in approximately 90-minute inter-

vals known as ‘runs’. Overall, 844 p+ p runs suitable for physics analysis were recorded. However,

it is necessary to closely inspect certain variables of interest for the present analysis on a run-by-run

basis to exclude any anomalous runs for which these variable deviate from the mean in a statis-

tically significant manner. In particular, the following variables were examined in minimum bias

events, subject to the cuts in Table 7.2.

(a) Event Level Variables

• Fraction of events with a primary vertex determined with the VTX detector

(b) Cluster Variables

• VTX Clusters per event

(c) PHCentralTrack Variables

• Hadron tracks per event

• Electron tracks per event
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• Electron-hadron ratio

(d) SvxCentralTrack Variables

• Hadron tracks per event

• Electron tracks per event

• Electron-hadron ratio

• Mean of the distribution of the distance of closest approach to beam center (DCA; see Section 7.6)

for hadron tracks

• Width of the hadron track DCA distribution

(e) SvxStandalone Variables

• Standalone tracks per event
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Table 7.2: Cuts defining the variables used for quality assurance and run selection

variable cuts

MinBias Events

• Trigger: BBCLL1(>0 tubes) narrowvtx

• pmtbbcs > 0 && pmtbbcn > 0

• |BBC-z vertex| < 10 cm
• Tick Cut

Electron PHCentralTrack

• Quality = 31 or 63

• pT > 0.5 GeV/c
• χ2/ndf < 6
• n0 >= 1

• disp < 5

Hadron PHCentralTrack

• Quality = 31 or 63

• pT > 0.5 GeV/c
• χ2/ndf < 6
• n0 < 0

Electron SVXCentralTrack

• Quality = 31 or 63

• pT > 0.5 GeV/c
• χ2/ndf < 6
• n0 >= 1

• disp < 5

• Require B0, B1 hits

Hadron SVXCentralTrack

• Quality = 31 or 63

• pT > 0.5 GeV/c
• χ2/ndf < 6
• n0 < 0

• Require B0, B1 hits

SvxStandaloneTrack
• pT > 0.5 GeV/c
• χ2/ndf < 6
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B0 East B1 East

B2 East B3 East

Figure 7.5: Map showing the anomalous pixels(strips) in each layer of the East arm of the VTX

detector for a given Run15 p+ p run. Red indicates hot pixels; blue, cold; black, dead; and green,

unstable. Horizontal rows correspond to individual ladders, with boxes corresponding to chips in

the ladder. The number in each chip indicates the fraction normal live area.

It is a known fact that the acceptance of the VTX detector is not uniform, with a number

of silicon pixels(strips) in each layer exhibiting anomalous behavior. Fig. 7.5 shows a visual repre-

sentation, called a “dead map”, of the status of individual pixels(strips) during a given p+ p run.

Rows in the map correspond to detector ladders, which are further divided into individual chips.

The color of pixels(strips) in each chip indicates their status. In this manner, white pixels are

normal; red are hot; blue, cold; and green, unstable. The number quoted in each chip corresponds

to the percentage of normal live area. It is possible to see from the dead map that substantial dead

areas exist in the VTX, and that they are not correlated between detector layers. Furthermore,
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instabilities in detector performace result in the dead area changing over time, such that the dead

map for every other run will differ from the one presented here. A significant consequence of this

state of affairs is that it becomes impossible to calculate a correction for acceptance and efficiency

of the VTX detector, limiting the ability to measure fully corrected track yields.

Fig. 7.6 shows the number of clusters per event in every VTX layer as a function of run

number. Notice that this quantity is not constant over time in any layer, consistent with the time-

dependent changes in the VTX acceptance described above. Since the behavior is different in every

layer, it is of interest to examine track-level quantities to determine the impact of the changing

acceptance on track reconstruction. Along these lines, Fig. 7.7 shows the number of standalone

tracks reconstructed per event. The quantity is not constant, with large run-to-run variations

arising from the time-changing acceptance. It is of interest then to detect extreme outliers, where

severe detector malfunction may have ocurred.

An ad hoc procedure was devised for this purpose, dividing the entire run range into four

distinct blocks which can be identified by eye, marked by sharp changes in the number of tracks

per event. In Fig. 7.7, they are labeled as ‘run periods’. Each run period is fit independently

with a constant, as shown by the red line. The colored band around the line corresponds to a 3-

standard deviation cut on the distribution of residuals—that is, the difference between the number

of tracks for a given run and the fit value. Runs for which the number of standalone tracks per

event falls outside the limit of the band are marked as potentially unsuitable and set aside for closer

examination. Although not shown here, a similar variation in the number of tracks per event was

also observed for SvxCentralTracks.
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Figure 7.6: Clusters per event in each layer of the VTX as a function of run number.
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Figure 7.7: Number of good standalone tracks per event as a function of run number.

While the substantial time-dependent variation in the number of reconstructed tracks would

present difficulties for measurements of absolutely normalized track yields, the key variables to

examine for the analysis at hand are the ratio of electron to hadron tracks, and the shape of
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hadron DCA distributions. The electron-hadron ratio is shown in Fig. 7.8 for PHCentralTracks

and SVXCentralTracks, appearing to be remarkably flat with run number. This demonstrates that

the changes in acceptance, as well as other effects impacting the number of reconstructed tracks,

affect both electrons and hadrons equally.

Fig. 7.9 and Fig. 7.10 show the mean and the width of Gaussian fits to the DCA distributions

calculated relative to the primary event vertex and the beam center, respectively. In all cases,

the distributions appear to be of reasonably constant width and mean. A further check on the

uniformity of the DCA distribution shape can be obtained by examining the integral in the peak

region of the Gaussian fit relative to the tails, as shown in Fig. 7.11, which is again reasonably

constant.

The outlier runs, identified from fitting the variables of interest as discussed above, were

examined individually, attempting to ascertain the fundamental cause of the anomalous behavior

observed. In most cases it was possible to trace the observation to faulty VTX performance.

Overall, 73 runs were flagged as unsuitable for analysis, out of a total of 844.
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function of run number.
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Figure 7.9: Mean and width of the hadron (top) transverse DCA and (bottom) longitudinal DCA

distributions, calculated relative to the primary event vertex, as a function of run number.

Figure 7.10: Mean and width of hadron (top) longitudinal DCA and (bottom) transverse DCA

distributions, calculated relative to the beam center as a function of run number.
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Figure 7.11: Ratio of the integral of a Gaussian fit to the hadron DCAT distribution in the peak

(|DCAT | < 1σ) region to the tail (|DCAT | > 3σ) region.

7.5 The Conversion Veto Cut

As stated in Section 6.2.5, the pixel and stripixel layers of the VTX have a material budget

corresponding to 1.28% and 5.43% of a radiation length, respectively. Consequently, the VTX is

a source of considerable conversion electrons γ → e+e− from the interaction of photons with the

detector material. For comparison, the beam pipe has a material budget of X0(%) = 0.22. It is

desirable to reject as much of this electron background as possible, with several options available.

For instance, reconstructed tracks are required to have hits in the two innermost layers of the VTX,

thus eliminating electrons originating from conversions in the outer layers. However, it is possible

to construct a more general solution to reject conversion in the beam pipe and B0 by exploiting

the fact that conversion electron pairs have a very narrow opening angle, as shown in Fig. 7.12.

As a function of photon energy, this angle (in radians) is given by θopening = 8 × 10−4/E, with E

in GeV [160]2 , which is much smaller than the typical opening angle of hadronic decay products.

Thus, if a given VTX track has a hit in its vicinity, within a given window of size ∆φ×∆z, then

2 This originates from the calculation, in the Born approximation, of the cross section for high-energy pair
production, summed over the polarization of the electrons, and averaged over the the photon polarization.
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the track can be rejected as a conversion electron.
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Figure 7.12: Opening angle of an e+e− pair from the conversion of a photon of energy E.

This procedure to reject conversions is referred to as the conversion veto cut. A track is said

to be rejected by the conversion veto cut if a nearby hit is found within the window in any layer

of the VTX. The window sizes are different in every layer, as shown in Table 7.3. In azimuth,

the window is defined with the quantity labeled c∆φ, corresponding to the azimuthal separation

between the track and cluster ∆φ, multiplied by the charge c of the track. Notice that the window

size depends on the sign of c∆φ, being pT -dependent for c∆φ > 0. The pT dependence is given in

Table 7.4. Fig. 7.13 shows the azimuthal windows in pT and c∆φ for every layer.
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Table 7.3: Azimuthal and longitudinal conversion veto cut windows. The ? indicates that the upper

limit of the window is pT -dependent. The quantity c∆φ corresponds to the azimuthal distance

between a cluster and a track, ∆φ, multiplied by the track’s charge.

VTX Layer Window for c∆φ < 0 [rad] Window for c∆φ > 0 [rad] Window in |∆z| [cm]

B0 −0.04 < c∆φ < −0.001 0.001 < c∆φ < ? 0.1

B1 −0.04 < c∆φ < −0.001 0.001 < c∆φ < ? 0.1

B3 −0.08 < c∆φ < −0.002 0.002 < c∆φ < ? 0.2

B4 −0.04 < c∆φ < −0.001 0.001 < c∆φ < ? 0.2

The size of the conversion veto windows has been tuned to maximize the rejection of photonic

electron background while minimizing the rejection of tracks from random uncorrelated particles

falling within the window. Previous PHENIX analyses in Au+Au [29] have used conversion veto

windows narrower than the ones presented here by a factor of two, owing to the higher multiplicity

environment in these collisions. The rejection power of the conversion veto cut can be quantified

through the survival rate ε, or the fraction of tracks that pass the cut, of electrons and hadrons as

shown in Fig. 7.14. The figure shows the survival rate for hadrons in data, which deviates from 100%

due to the underlying uncorrelated background, and can thus be taken as a proxy for the survival

rate of non-photonic electrons, such as those from heavy flavor decays. The figure also shows the

survival rate of electrons from simulated direct photon conversions and π0 decays. Notice that

conversion electrons from the direct photons have a very low survival rate, as expected, while the

survival rate for π0 electrons is higher since they consists of a mixture of Dalitz (π0 → e+ + e−+γ)

and conversion electrons.
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Table 7.4: Upper limit of the pT -dependent azimuthal conversion veto windows for c∆φ > 0, as

used in the Run11 Au+Au heavy flavor separation analysis.

VTX Layer pT Range [GeV] Upper c∆φ Window Limit [rad]

B0

pT < 1.72857

1.72857 < pT < 3.63333

pT > 3.63333

0.08

0.01 + 0.1/(pT − 0.3)

0.04

B1

pT < 1.20909

1.20909 < pT < 3.63333

pT > 3.63333

0.12

0.01 + 0.1/(pT − 0.3)

0.04

B2

pT < 1.44286

1.44286 < pT < 2.96667

pT > 2.96667

0.16

0.02 + 0.16/(pT − 0.3)

0.08

B3

pT < 1.59032

1.59032 < pT < 40.3

pT > 40.3

0.16

0.036 + 0.16/(pT − 0.3)

0.04
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Figure 7.13: Conversion veto windows in track pT and charge×∆φ in every VTX layer.
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π0 decays and photon conversions.
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7.6 Measuring Track DCA in Data

A central component of this analysis is the measurement of the DCA distributions of tracks—

both hadrons and identified electrons—in data. Fig. 7.15 shows a useful diagram to understand

the definition of the DCA quantity used in this analysis. A track is shown in the transverse plane,

bending in the magnetic field—which is assumed to be constant over the region filled by the VTX

detector. The track projection is circular, with the center of the projection depicted by the black

dot. Notice that the track originates from a displaced vertex, since it does not point back to the

primary vertex of the collision, depicted by the red dot. The transverse DCA is then defined as

DCAT = L−R, (7.1)

where, as shown, L is the distance between the primary vertex and the center of the projection,

and R is the projection radius.

L

R
Collision

Vertex

Center of Circular
Track Projection

Particle
Track

Figure 7.15: Diagram illustrating the definition of the distance of closest approach of a track in the

transverse plane, DCAT .
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Figure 7.16: DCA distribution of hadron tracks within 1.8 < pT [GeV/c] < 2.1 relative to the beam

center.

According to this definition, DCAT is a signed quantity, which is useful since the distribution

is not, in general, necessarily symmetric about zero. The definition can be generalized for the DCAT

to be calculated about any abitrary point, not just the primary collision vertex. For instance,

Fig. 7.16 shows the DCAT distribution of charged hadron tracks within 1.8 < pT [GeV/c] < 2.1,

as calculated relative to the beam center. This consideration is of particular importance in this

analysis, since the resolution of the point relative to which the measurement is made necessarily

impacts the resolution of the DCAT itself. When using DCAT for displaced vertex analysis, it is

important to ensure that its resolution be comparable to the length scale of the displaced vertices

of interest. Otherwise, the discriminating power afforded by the method is lost. The following

subsection deals with just this question.
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7.6.1 Determination of the Beam Spread and Primary Vertex Resolution

The primary event vertex can be calculated from reconstructed VTX standalone tracks, with

the algorithm described in Ref. [43]. When the primary vertex is measured for many events, the

width of the resulting distribution is in reality a convolution of the beam spot size and the intrinsic

primary vertex resolution. It is of interest to determine these two quantities separately, since their

resolution directly impacts the resolution of the DCAT distributions that can be measured. In order

to separate them, one carries out two independent measurements of the primary vertex using only

tracks in the east and west arms of the VTX detector. Assuming a beam spot and primary vertex

distribution with transverse Gaussian profiles, let σb be the width of the beam spot; σres be the the

true intrinsic resolution of the primary vertex when measured using tracks in both arms; and σres,E

and σres,W be the intrinsic primary vertex resolutions for just the east and west arms, respectively.

Under the assumption above, it is possible to use these variables to write down expressions for the

width of the measured primary vertex resolution, as measured with inclusive tracks and also in

each detector arm independently, as shown in Table 7.5.

Eqns. (D) and (E) in Table 7.5 can be solved for the beam spot size as a function of measured

quantities, obtaining

σ2
b = σ2

(E+W
2 ) −

1

4
σ2

(E−W ). (7.2)

The expression above can be applied to events with N and M standalone tracks in the east and

west arms, respectively. Fig. 7.17 shows the determined beam spot size (in the x and y directions)

as a function of the number of tracks. As expected, a roughly constant value for the beam spot

size is found, broader in the x direction. The label ‘ANY’ corresponds to events with at least two

tracks in either arm.

Having determined the beam spot size, Eqn. (A) in Table. 7.5 can be used to obtain the true

resolution of the primary vertex,

σres =
√
σ2 − σ2

b . (7.3)

Fig. 7.18 shows the resolution of the primary vertex, in the x and y direction, as determined from the
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Table 7.5: Expressions for various measured quantities related to the primary vertex, as a function
of the beam spot size and intrinsic primary vertex resolution.

Quantity Expression

A. Inclusive primary vertex distribution σ =
√
σ2
b + σ2

res

B. Primary vertex distribution measured in east arm σE =
√
σ2
b + σ2

res,E

C. Primary vertex distribution measured in west arm σW =
√
σ2
b + σ2

res,W

D. Difference between the E and W primary vertices σ(E−W ) =
√
σ2
res,E + σ2

res,W

E. Average of the E and W vertices σ(E+W
2 ) =

√
σ2
b +

(
σ2
res,E+σ2

res,W

4

)

equation above, as a function of the total number of standalone tracks used in its determination.3

As expected, the resolution improves as more tracks are available to calculate the vertex, with

values ranging from σx ≈ 300 µm for events with two tracks, to σx ≈ 100 µm when 8 tracks are

available. However, approximately 50% of all events do not have enough tracks to determine a

primary vertex at all, owing to the low multiplicity of p+p collisons at RHIC as well as the limited

coverage and tracking efficiency of the VTX. Of the events for which a vertex can be determined,

only 20% have 5 tracks or more.

3 Recall that the primary vertex is calculated using reconstructed SvxStandalone tracks that pass a specific set
of quality cuts. Thus, the number of tracks available to calculate the vertex is different from the total number of
reconstructed tracks in the event.
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Figure 7.17: Beam spot size as calculated through independent measurements of the event vertex

in the east and west arm of the detector, as a function of the number of tracks in the E×W arms.
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Figure 7.18: Intrinsic precise vertex resolution, in the x and y directions, as a function of the

number of standalone tracks used in its determination.
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In addition to limiting the resolution of the primary vertex, having only a small number of

tracks available for vertex determination results in a biased DCAT distribution. By construction,

any track used to calculate the primary vertex has a DCAT value of—or very close to—zero.

If the VTX hits of such a track are matched to, say, an identified electron in the central arms

coming from a heavy flavor decay, then the DCAT of the electron will be biased towards a smaller

value. In order to overcome this issue, and in consideration of the fact that the beam spread and

the primary vertex have resolutions of comparable magnitude, the analysis proceeds by always

calculating DCAT relative to the beam center. The beam spread, in the x and y directions, as a

function of run number is shown in Fig. 7.19, demonstrating the stability of the transverse beam

size as a function of time.
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Figure 7.19: Beam spot size in the x and y coordinate as a function of run number.

7.6.2 Electron Identification

Table 7.6 lists the set of track cuts used for electron identification (using central arm vari-

ables), as well as those used to ensure a high quality track reconstruction. Electron identification in

the central arm proceeds primarily through the use of the RICH and electromagnetic calorimeter.

The dep variable quantifies, in standard deviations away from the mean, the ratio of energy de-

posited by a particle in the calorimeter to its track momentum. It is possible to use this variable to

discriminate electrons, since they have a low mass and lose most of their energy in the calorimeter,
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unlike hadrons which deposit only a fraction of their energy. The emcdphi and emcdz variables

correspond to the displacement of a shower in the calorimeter relative to the track projection, and

are constructed in such a way that their distribution is a standard Gaussian. The 3σ cut on these

variables guarantees a match between a track and calorimeter deposit corresponding to a given

electron.

Table 7.6: Electron identification and quality cuts.

E
le

ct
ro

n
Id

en
ti

fi
ca

ti
on

C
u

ts

• |dep| < 2

• |emcsdphi| < 3

• |emcsdz| < 3

• disp < 5

• Require that track pass conversion veto

If Track pT < 5 GeV

• prob > 0.1

• n0 > 1

If Track pT ≥ 5 GeV

• prob > 0.2

• n0 > 3

T
ra

ck
in

g
C

u
ts

• χ2/ndf < 3

• quality = 31 or quality = 63

• Require at least one hit in layers B0 and B1

• Require at least three hits in track

• |zed| < 75

Regarding the RICH subsystem, only electrons fire it below pT ≈ 5 GeV/c. Above that

threshold, charged hadrons—particularly pions—also emit Cherenkov light, which explains the pT -

dependent cut on RICH variables. The n0 variable corresponds to the number of fired PMTs in
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a Cherenkov ring associated with a given track. The disp variable measures, in centimeters, the

displacement of the center of a Cherenkov ring from a given track projection. Finally, prob is

related to the shape of a calorimeter shower, as quantified by

χ2 =
∑
i

(Epred
i − Emeas

i )2

σ2
i

, (7.4)

normalized between zero and unity. In the above equation, Epred
i and Emeas

i are the predicted and

measured energy in the ith calorimeter tower for a particle of energy E =
∑

iE
meas
i .

Finally, a set of cuts are imposed to guarantee good track reconstruction. Of these, the χ2/ndf

cut corresponds to the SvxCentralTrack fit, and the quality cut corresponds to the associated

PHCentralTrack. The particular values that quality takes on correspond to tracks reconstructed

in the drift chamber using the X1 and X2 sections, with unique hits in U and V wires, and with a

matching hit in the PC1.

7.6.3 Hadron Contamination in Electron Sample

The cuts of the previous subsection do not fully eliminate hadron contamination in the identi-

fied electron track sample. There are two sources of hadron contamination; (i) it can originate from

the association of an electron PHCentralTrack with unrelated random hits in the VTX, leading to

the reconstruction of a spurious SvxCentralTrack, or (ii) from legitimate hadron SvxCentralTracks

that are misidentified as electrons in the central arms. The former category contributes a negligi-

ble amount of background due to the low multiplicity of p + p collisions which makes it unlikely

for tracks to be associated with random VTX hits. On the other hand, misidentified hadrons do

contribute significantly to the identified electron candidate sample. At low track pT , misidentified

hadrons are associated with occupancy effects in which distinct tracks share hits in the RICH; at

high pT , this background is mostly asssociated with charged pions firing the RICH.

One way to quantify the fraction of candidate electron tracks attributable to hadron con-

tamination using EMCal information exploits the difference in the shape of the dep distribution

of electrons and hadrons. While, for real electrons, the distribution closely resembles a standard
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Gaussian, it strongly deviates from a Gaussian shape in the case of hadrons. Fig. 7.20 shows the

dep distribution of hadron tracks in various pT categories. Each distribution was fit separately,

as shown, to obtain templates describing the shape of the hadron dep. The dep distributions of

electron candidate tracks, in various pT bins, were subsequently fit with a function consisting of a

Gaussian plus the previously determined hadron templates, with the normalization of the hadron

template as the only free parameter. The results of the fit are shown in Fig. 7.21. The fraction

of hadron contamination then follows straightforwardly as the ratio of integrals of the normalized

template and the electron dep distribution, as shown by the blue dots in Fig. 7.23.
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Figure 7.20: Distribution of the dep variable for hadron tracks. The distributions are fit to obtain

a template describing the dep shape.
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The hadron contamination in the candidate electron sample can also be estimated indepen-

dently using RICH information, exploiting the differences in RICH signals when the detector is

triggered by electrons and hadrons. In particular, the cut on n0—used to identify electron tracks—

will reject substantially more hadron than electron tracks, since only electrons fire the RICH at low

pT . Let εe and εh be the fraction of electron and hadron tracks, respectively, that pass a cut on

the n0 variable, as shown in Fig. 7.22 for n0 > 1 and n0 > 3, determined from a geant simulation

of electrons, and from hadrons in data with dep < −6. Two different cuts are shown because the

n0 cut is pT -dependent, as shown in Table 7.6.

Let Nt be the number of measured electron candidate tracks (which include both electrons

and hadron contamination), and Ne and Nh be the ‘true’ number of electrons and hadrons in the

sample. Also, let Ñt be the number of measured electron candidate tracks that pass the cut on n0.

The following system of equations expresses Nt and Ñt in terms of the true number of hadrons and

electrons:  Nt = Ne +Nh

Ñt = εeNe + εhNh.

(7.5)

The system can be solved for Ne and Nh,

Nh =
Ñt − εeNt

εh − εe
(7.6)

Ne =
Ntεh − Ñt

εh − εe
, (7.7)

from which the fraction of hadrons Nh/Ñt can be obtained, as shown by the green points in

Fig. 7.23. The figure shows how the two independent measurements of hadron contamination differ

from each other. Therefore, the weighted average of two is taken as the final estimate of the hadron

contamination, as shown in Fig. 7.24. The systematic uncertainties on the points correspond to

the difference between the two independent estimates.
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Figure 7.23: Hadron contamination in candidate electron sample, determined independently using

EMCal and RICH information.
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7.7 Accounting for Electron Background

The previous section dealt with the identification and measurement of electron candidate

tracks and their associated DCAT . It was shown that the sample contains, in addition to electrons,

misidentified hadron tracks whose relative contribution to the total sample size was estimated in

two independent ways. The remaining true electrons can be described as belonging to one of two

groups, based on their provenance. We identify photonic electrons as those originating from the

Dalitz decay of pseudoscalar mesons, namely the π0 and η mesons4 , and from the conversion

of photons upon interacting with detector material; on the other hand, non-photonic electrons

originate from the decay of the J/ψ meson, and from the three-body decay of K± and K0
s—referred

to as Ke3 electrons—as well as the semileptonic decay of open heavy flavor hadrons. The desired

open heavy flavor electron signal can only be isolated by correctly accounting, via simulations, for

4 Light vector mesons, such the ρ, ω, φ, contribute negligibly to the candidate electron sample and are thus ignored
in this analysis. This was determined from a detailed electron cocktail constructed for an earlier electron analysis in
PHENIX [20], where the contribution of the light vector mesons was found to be several orders of magnitude smaller
than that of J/ψ decays.
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the electrons produced by all other sources, both photonic and non-photonic.

7.7.1 Constructing a Background Electron Cocktail

We account for electron background by constructing a simulated particle cocktail comprising

π0, η, direct photons, J/ψ, K±, and Ks
0 as primary particles. The first step is to produce these

particles using a Pythia-based single-particle event generator, in which the spatial and momentum

distribution of the particles can be specified. All primary particles were generated uniformly in

transverse momentum, within 0 < pT [GeV/c] < 20, and—with the exception of the J/ψ— uni-

formly in pseudorapidity |η| < 0.5. The J/ψ meson is an exception due to its decay kinematics. In

order for its decay electrons to fully populate the acceptance of the central arms, it was necessary to

distribute the primary particles within |y| < 2 following a Gaussian distribution of width σy = 1.8.

In all cases, particles were simulated as originating from a region in the transverse plane centered

on ~x0 = (0.1612, 0.07232) cm with a Gaussian profile of width ~σ = (0.0129, 0.0109) cm, simulating

the parameters of the beam spot in data, as described in Section 7.6.1. Longitudinally, the origin

of primary particles is uniformly distributed within |z| < 15 cm.

As a second step in creating the electron cocktail, primary particles—with the exception of

the direct photons—are forced to decay.5 . Since the objective is to construct an electron cocktail,

only decay modes involving electrons and photons were enabled in the decayer class, as listed in

Table 7.7 along with their corresponding branching ratios. The resulting decay particles are then

provided as input to a geant simulation of the PHENIX detector, in order to properly model the

interactions with the detector material and to reconstruct particle tracks with the identical code

used in PHENIX data reconstruction. As a digression, photon simulations can be used to obtain a

tomographic image reconstruction of the VTX detector by tracing conversion electron tracks back

to their point of origin, as shown in Fig. 7.25. This technique was used to quantify the material

budget of the detector’s geant description, ensuring that it accurately corresponds to that of the

5 ROOT’s TPythia6Decayer class was used for this purpose, with documentation available in https://root.

cern.ch/doc/v608/classTPythia6Decayer.html

https://root.cern.ch/doc/v608/classTPythia6Decayer.html
https://root.cern.ch/doc/v608/classTPythia6Decayer.html
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actual VTX.

Table 7.7: Decay modes for the primary hadron species included in the background electron cocktail.

Notice that not all decay modes were considered in this analysis, and hence the branching ratios in

the table do not add up to unity.

primary particle simulated decay modes branching ratio

π0
π0 → γγ

π0 → γe+e−

0.988

0.012

η

η → γγ

η → π0γγ

η → γe+e−

η → γπ+π−

η → π+π−e+e−

0.3923

0.0007

0.0049

0.0478

0.0013

J/ψ J/ψ → e+e− 0.0602

K± K± → e±νeπ
0 0.0482

K0
s K0

s → π0π0 0.3139
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Figure 7.25: Tomographic reconstruction of the VTX detector material from geant photon simu-

lations.

As a third, and final, step in creating the electron cocktail, the standard electron identification

and track quality cuts (described in Subsection 7.6.2) are applied to the simulated tracks. Since

the transverse momentum of primary particles is uniformly distributed, it is necessary to reweight

the reconstructed electron tracks to restore their appropriate pT spectrum. This is done by tracing

the ancestry of a given electron track back to its original primary particle, whether a hadron or a

photon. The weight assigned to the electron is thus the production cross section for the primary

particle species at hand, evaluated at the particular pT of the original parent particle. To facilitate

this evaluation, the published cross section of π0 [16], η [19], direct γ [34, 18], K± [21], and K0
s [22],

previously measured by PHENIX, were fit with a modified Hagedorn functional form,

E
d3σ

dp3
=

p0

[exp(−p1 × pT − p2 × p2
T ) + pT /p3]p4

, (7.8)

while the J/ψ cross section [23] was fit with a power law functional form,

E
d3σ

dp3
= p0 ×

(
1 +

p2
T

p2
1

)−p2
. (7.9)

All fits are shown in Figs. 7.26 to 7.28. It is notable that the fit to the K+ spectrum is very “hard”,

as the high pT behavior is unconstrained by experimental data. Nevertheless, the high-pT behavior
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of the fit does not affect the analysis, and systematic uncertainties associated with the quality of

the fit are assigned.
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Figure 7.26: Modified Hagedorn fit to published yield of π0 and η mesons in p + p collisions at

√
sNN = 200 GeV.
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Figure 7.28: Modified Hagedorn fit to published yield of K+ and Ks in p+ p collisions at
√
sNN =

200 GeV.

Fig. 7.29 shows, for every primary particle species in the cocktail, the correlation between
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parent hadron (or photon) momentum and reconstructed electron momentum, whose particular fea-

tures change depending on the decay kinematics of each particle. Finally, the cocktail is normalized

relative to the total photonic background, obtaining the result shown in Fig. 7.30.



188

π0 η

γ J/ψ

K± K0
s

Electron pT
Electron pT

Electron pT
Electron pT

Electron pT
Electron pT

H
ad

ro
n 

p T

H
ad

ro
n 

p T
H

ad
ro

n 
p T

Ph
ot

on
 p

T
H

ad
ro

n 
p T

H
ad

ro
n 

p T

Figure 7.29: Relation between the transverse momentum of primary particles and their recon-

structed decay electrons, for every species in the electron cocktail.



189

 [GeV/c]
T

p
1.5 2 2.5 3 3.5 4 4.5 5 5.5 6N

on
-P

ho
to

ni
c 

R
el

at
iv

e 
to

 T
ot

al
 P

ho
to

ni
c 

B
ac

kg
ro

un
d

2−10

1−10

1

10

 Decay ElectronsψJ/

Ke3 Decay Electrons

 [GeV/c]
T

p
1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Fr
ac

tio
n 

of
 T

ot
al

 P
ho

to
ni

c 
B

ac
kg

ro
un

d

2−10

1−10

1

 Decay Electrons0π

 Decay Electronsη

 Conversion ElectronsγDirect

(a) (b)

Figure 7.30: Fraction of electrons from (a) photonic and (b) non-photonic sources, relative to total

photonic electron background, as determined from the electron cocktail.

7.8 Normalizing Electron Background Relative to Electron Candidate Sam-

ple

The previous subsection dealt with the construction of an electron cocktail, with the goal of

determining the relative contribution of each primary particle species to the total electron back-

ground. Unfortunately, the cocktail does not provide information regarding the fraction of the

total electron candidate sample in data that consitutes the background. The present section will

discuss a data-driven approach to determine this fraction and, by extension, determine the number

of electron candidate tracks attributable to each electron background source.

7.8.1 Measuring the Fraction of Non-Photonic Electrons

Let us define the quantity FNP as the ratio of non-photonic electrons to inclusive electrons

(i.e., both photonic and non-photonic),

FNP =
NNP

NP +NNP
, (7.10)

whereNP andNNP are the number of photonic and non-photonic electrons in the electron candidate

sample, respectively. While these are not directly observable quantities, we can determine them
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by measuring the number of electrons candidates Ne, and the number of electron candidates which

pass the conversion veto cut Ñe, as previously discussed in Section 7.5. Given that the conversion

veto cut affects photonic and non-photonic electrons differently, with the latter having a lower

probability of passing the cut, it is possible to write a system of equations involving the above

quantities, as follows:  Ne = NP +NNP

Ñe = εP × εUC ×NP + εUC ×NNP .

(7.11)

In the above system, εP and εUC are the veto cut survival rates of photonic and non-photonic

electrons, respectively. The survival rate of photonic electrons, εP is calculated as the weighted

average of the survival rates for electrons from each individual photonic source; in the case of non-

photonic electrons, the survival rate of hadrons in data is taken as a proxy for εUC , as shown in

Fig. 7.31. More generally, εUC accounts for the fact that uncorrelated hits in the conversion veto

window can cause any track, not just non-photonic electrons, to be rejected by the conversion veto

cut. Hence, NP is multiplied by εP ×εUC in the second line of Eqn. 7.11. Solving for NP and NNP ,

we obtain

NP =
NeεUC − Ñe

εUC − εP
, (7.12)

and

NNP =
Ñe −NeεP
εUC − εP

. (7.13)

In the derivation presented, the survival rates are calculational tools to arrive at NP and

NNP , which correspond to electron yields unaffected by the conversion veto cut. However, since

the measured electron candidate sample consists of tracks that survive the veto cut, we redefine the

quantity FNP to reflect this fact by setting NP → εP εUCNP and NNP → εUCNNP . In that case,

we obtain FNP as shown in Fig. 7.32 as a function of pT . It is of interest to notice the dominance,

at over 90% of the total electron candidate sample, of non-photonic electrons at high pT .
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Figure 7.31: Conversion veto cut survival rate for non-photonic and photonic electrons. In the case
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their weighted average.
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sample as a function of pT .

Given the central importance of the FNP quantity in the isolation of the inclusive heavy flavor

electron sample, as described in the next subsection, it is of interest to validate the calculation by

comparing it to previous measurements. As described in Section 5.1.1, the PHENIX experiment

measured inclusive heavy flavor electron production using 2005 data [20] using a combination of the

cocktail and the converter method for background subtraction. Each of these methods was used to

calculate FNP , yet they cannot be directly compared to the same quantity obtained using 2015 data

because of changes to the material budget over the years. If the changes to the material budget

in the central arm acceptance can be quantified, then the 2005 FNP can be scaled to be directly

comparable to the most recent result, as shown in Fig. 7.33. In this case, an excellent agreement

is seen. The full details of how the comparison was made can be found in Appendix C. Another

independent way of estimating FNP relies on exploiting the differences in azimuthal track-cluster

correlations between photonic and non-photonic electron tracks. Appendix C describes how this
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calculation was carried out, and found to be in excellent agreement with Fig. 7.32.
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Figure 7.33: Comparison of FNP in the PHENIX 2005 and 2015 heavy flavor electron analyses. The

2005 measurement has been scaled to account for changes in the material budget of the detector.

7.8.2 Normalization of Background DCA Distributions

The electron cocktail, as shown in Fig. 7.30, specifies the relative contribution of each type

of primary particle to the total photonic electron background. Additonally, 1 − FNP measures

the fraction of electron candidate tracks in data that correspond to this photonic background.

Therefore, by combining these two pieces of information, it is possible to absolutely determine the

fraction of candidate electrons that can be attributed to each background source. For photonic

electrons from the ith source, such fraction is given by

fphot
i = (1− Fcontam)(1− FNP )

Ñi

Ñπ0 + Ñη + Ñγ

, (7.14)

where i = π0η, γ; Ñi is the number of electrons from the ith source that pass the conversion

veto cut in simulations, and Fcontam is the fraction of electron candidates attributed to hadron

contamination, shown in Fig. 7.24.
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A similar expression cannot be constructed for the fraction of electrons from non-photonic

sources, given that the background cocktail does not include heavy flavor electrons. Instead, non-

photonic electrons are normalized relative to the simulated π0 electrons, as follows

fnon-phot
i = fphot

π0

Ñi

Ñπ0

, (7.15)

with i = J/ψ,Ke3.
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Figure 7.34: Fraction of electron candidate sample attributed to each source of background elec-

trons, as a function of pT .

Fig. 7.34 shows the fraction of electron candidates attributable to each background source,

photonic and non-photonic, as a function of pT . At low pT , pions are the dominant source of

electron background, giving way to J/ψ at high pT . These fractions can be used to normalize the

DCAT distributions of the various background electrons relative to the total measured electron

candidates, as shown in Fig. 7.35, where the background distributions shown are constructed by

fitting the DCAT distributions to obtain a smooth template.
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Figure 7.35: DCAT distributions of electron candidate tracks in data, in several track pT selections,

along with the normalized contributions from individual background electron sources.
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7.9 Separation of Heavy Flavor Electron Yields

One of the main goals of the present analysis is to measure the fraction of heavy flavor elec-

trons arising from bottom quark decays. The previous section concluded by presenting the DCAT

distributions of electron candidate tracks, along with the corresponding normalized distributions

of background electrons; implicitly, this defines the DCAT distributions of inclusive heavy flavor

electrons. Now, if the shapes of the parent D and B meson spectra were known—but not necessar-

ily their total cross section—it would be possible to constrain the desired bottom electron fraction

from the inclusive electron DCAT distributions alone. Given that the decay kinematics are well

understood, it would be straightforward to determine the decay electron DCAT shape from each

heavy quark separately, and thus fit the measured inclusive distribution with these two components

to solve for the fraction of bottom electrons. Unfortunately, neither the spectral shape nor the total

cross section of D and B mesons are known.

However, the PHENIX collaboration has previously measured the invariant yield of inclusive

heavy flavor electrons in p+p collisions at
√
sNN = 200 GeV, and when combined with our measured

inclusive heavy flavor DCAT distributions, it becomes possible to separate the contribution of each

flavor to the electron sample. This is, in essence, an inverse problem in which model parameters

(i.e., the spectrum of charm and bottom mesons) are deduced from data observations (i.e., the

DCAT and spectrum of inclusive heavy flavor electrons). The key to solving an inverse problem is

being able to construct a mapping from the model parameters to the observed data; in this case,

knowing the heavy flavor decay kinematics allows us to assign a probability to the pT and DCAT of

a decay electron given the parent’s pT . Therefore, it is possible to determine how likely a given set

of parent hadron spectra are, based on how well the calculated electron spectrum and DCAT match

the data. In this thesis, and more broadly in the context of high energy physics, the procedure to

find the most likely set of model parameters is called unfolding.

Mathematically, inverse problems arise in a variety of fields, and numerous methods exist to

solve them. Many such problems, for which the mapping can be expressed as a linear transfor-
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mation, are commonly solved using matrix techniques such as singular value decompositon (SVD).

Nevertheless, the unfolding problem at hand is best solved through probabilistic methods. Here, we

briefly outline the solution strategy, providing a detailed description in the following subsections.

The probabilistic unfolding explores a wide range of possible spectra for D and B mesons. A

given set of trial spectra are multiplied by a matrix modeling the decay process, which encodes the

probability of a hadron, based on its pT , to decay to an electron at a given pT and DCAT value.

The result of applying the decay model to the trial spectra is then compared with the electron data

provided as input using a likelihood function, and the probability that the data come from the set

of trial parameters is calculated using Bayes’ theorem. An exhaustive exploration of the possible

parameter space using a Markov Chain Monte Carlo (MCMC) algorithm thus yields, not point

estimates for the desired D and B spectra, but rather full probability distributions. As a result,

the values that maximize the probability distributions are taken as the desired solution, with the

width of the distribution providing a natural metric of the uncertainty in the estimation.

7.9.1 Bayesian Inference in a Nutshell

Bayes’ theorem, a corollary of the the basic algebra of probability theory, reads as follows

P (θ | x) =
P (x | θ)π(θ)

P (x)
. (7.16)

The P (θ|x) term is called the posterior, P (x|θ) is the likelihood, and π(θ) is called the prior;

although less common, P (x), is sometimes called the evidence. The importance of Bayes’ theorem

for statistical inference can be made evident if it cast as

P (model parameters | data) ∝ P (data | model parameters)× P (model parameters). (7.17)

In this form, we see that the probability that the model parameters are true given the data—which

is the quantity of interest—is related to the probability that the data follow from some assumed

set of model parameters, which is admittedly an easier quantity to compute. In this analysis, that

information is provided by the decay model of heavy flavor hadrons. In Bayesian inference, the prior
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quantifies the knowledge of the true set of model parameters prior to the data being analyzed. On

the other hand, the likelihood modifies—or, in some sense, refines—the prior through the inclusion

of data to yield the desired posterior. In Eq. 7.17, the denominator P (data) is excluded, as it only

serves as a normalization for the posterior. In this case, that normalization is unncessary since we

are interested in finding the parameters which maximize the posterior.

In this analysis, the vector of model parameters θ = (θc,θb) corresponds to the yield of D and

B mesons in 17 pT bins for each flavor. The data x corresponds to the combination of the inclusive

heavy flavor electron yield in 21 data points, Y data, along with the electron DCAT distributions in

nine track pT bins, Ddata
i , previously shown in Fig. 7.35. All of this information is arranged in a

vector

x = (Y data,Ddata
0 ,Ddata

1 , . . . ,Ddata
9 ). (7.18)

The 17 bins of the heavy flavor hadron spectra define a 34-dimensional parameter space,

such that each point in the space corresponds to a full spectrum for both charm and bottom

hadrons. The prior θprior—set in this case to be the spectrum of charm and bottom as calculated

with the pythia generator—provides a starting point for the sampling algorithm. The unfolding

procedure then consists in a systematic drawing of trial sets of charm and bottom yields θtrial from

the parameter space. For each θtrial, the decay electron pT spectrum Y (θ) and DCA distributions

Dj(θ) are calculated as

Y (θ) = M (Y )θc +M (Y )θb, (7.19)

Dj(θ) = M
(D)
j θc +M

(D)
j θb, (7.20)

where M (Y ) : phT → p
(e)
T is a decay matrix encoding the probability that a hadron of phT decays to

an electron of p
(e)
T . Similarly, M

(D)
j : phT → DCA(e) encodes the probability that the decay electron

will have a given DCA(e) value. In this analysis, an additional matrix was introduced to model the

detector response, by mapping the true pT and DCA values with which M (Y ) were constructed,

to their reconstructed counterparts. This allows for a direct comparison between the data and the
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predicted electron distributions calculated from the trial parameters. The construction of these

matrices is described in detail in Section 7.9.2.

With the prediction corresponding to a given set of trial parameters, the likelihood P (x | θ)

is constructed using the data, as follows

lnP (x | θ) = lnP (Y data | Y (θ)) +
8∑
j=0

lnP (Ddata
j |Dj(θ)). (7.21)

In reality, the expression above corresponds to the log-likelihood function, which is more con-

venient to work with. Since the data Y data, corresponding to the inclusive heavy flavor spec-

trum, are assumed to have normally distributed and uncorrelated statistical uncertainties, the

term lnP (Y data | Y (θ)) is modeled as a multivariate Gaussian distribution with diagonal covari-

ance. On the other hand, since the DCA distributions Ddata
j correspond to individual counts, the

associated terms in the likelihod function are modeled by a Poisson distribution.

Since the θtrial consist of invariant yields of charm and bottom hadrons, the predicted electron

DCA distributions will not match the corresponding measurements in normalization, since they are

not corrected for acceptance and efficiency. Thus, while the predicted inclusive electron spectrum

can be directly compared to data, the DCA distributions must be normalized to be compared in

shape only.

7.9.2 Construction of the Heavy Flavor Decay Model

The decay matrices M (Y ) and M
(D)
j , introduced in the previous subsection, were con-

structed by examining heavy flavor decays using the pythia-6 event generator. Quark-antiquark

production was forced with with the MSEL=4 and MSEL=5 options for charm and bottom, respec-

tively. Decay electrons within the PHENIX central arm acceptance, |η| < 0.35, originating from

the decay of open charm (D±, D0, Ds,Λc) and open bottom (B±, B0, Bs,Λb) hadrons were used

to populate the matrices. Fig. 7.36 shows the charm hadron matrices M (Y ), and M
(D)
j for the

1.5 < p
(e)
T [GeV/c < 2.0 bin in electron pT .

The marginal probability distributions can be obtained by projecting the decay matrices, as
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shown for charm (top panel) and bottom (bottom panel) hadrons in Fig. 7.37. The figure shows

the probability that hadrons in five different p
(h)
T selections decay to electrons with p

(e)
T . Here, the

probabilities are integrated over all rapidities and decay channels. It is important to notice that

the construction of these matrices relies exclusively on the pythia generator, and thus introduces

a model dependence in the final result.

Figure 7.36: Decay matrices (left) M (Y ) : p
(c)
T → p

(e)
T and (right) M (D) : p

(c)
T → DCA(e) for

electrons from the decay of open charm hadrons. The intensity of the color scale corresponds to

the probability that a charmed hadron at p
(c)
T will decay to an electron of p

(e)
T and DCA(e). Figure

reproduced from [29].
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Figure 7.37: Probability of a charm (top) and bottom (bottom) hadron in a given p
(h)
T bin to decay

to an electron with a given p
(e)
T at midrapidity |η| < 0.35. Figure reproduced from [29].

7.9.3 Sampling the Posterior Probability Distribution

As previously stated, the posterior P (x | θ) is a distribution encoding the probability that

the data x are explained by a set of model parameters θ. Although the prior and likelihood are

well known, it is impossible to determine the shape of the distribution a priori. A näıve way of de-

termining its (multidimensonal) shape is to randomly draw samples uniformly from the parameter

space, evaluating the posterior at each point; ideally, one should arrive at a good approximation of

the shape after enough samples have been drawn. This Monte Carlo approach, while straightfor-

ward, is extremely inefficient and impractical due to the very large dimensionality of the parameter

space. Thus, the problem of estimating the shape of the posterior becomes that of finding a way of
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sampling elements in the parameter space, such that the probability of drawing θ is proportional

to P (x | θ). A random walk on the parameter space, guided by a Markov chain (i.e., using Markov

chain Monte Carlo methods) provides a way of doing just that.

In this section, we will provide an intuitive explanation of what Markov chain Monte Carlo

methods are, and how they relate to the problem at hand. More formal treatments can be found

in [142]. In general terms, a Markov chain describes transitions between a series of states, where the

probability of transitioning to the next state depends exclusively on the present state. If the Markov

chain satisfies certain conditions (namely, if it is possible to transition from a given state to any

other state), then the chain is said to have a unique stationary (or equilibrium) distribution. This

means that, if left to “run” for a large enough number of steps, there will be a unique probability

for the chain to arrive at any given state, regardless of its starting point. We thus seek a way of

constructing a Markov chain whose stationary distribution corresponds to the posterior P (x | θ).

In this manner, after convergence, the output of the random walk will correspond to samples drawn

from the desired distribution function.

In the unfolding problem at hand, the individual points in the 34-dimensional parameter

space correspond to the states of the Markov chain. In order to approximate the posterior, it is

required that successive random draws, or transitions, be “good” in the sense that they be more

likely than the current state to explain the data given the prior, as quantified by evaluating the

posterior. Thus, the Markov chain will, most of the time, move in the direction of more probable

points, while seldom moving towards those that are unlikely. As a result, the random walk will

return many more samples from high-density regions of the posterior, where the parameter that

maximizes the distribution is more likely to be found. This sampling scheme will result in correlated

samples, particularly if the step size is small.

The above sampling method corresponds to a qualitative description of the Metropolis-

Hastings (MH) algorithm, and serves to illustrate the logic behind Markov chain Monte Carlo

techniques. For the present analysis, we used a publicly available6 variation of the conventional

6 http://dfm.io/emcee/current/

http://dfm.io/emcee/current/
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MH sampler, called emcee. This particular sampler is special in that it is an emsemble sampler

and it is affine-invariant. The word “ensemble” refers to the fact that the sampler consists of N

“walkers” which explore the parameter space, allowing for more than one set of model parame-

ters to be updated at a given step, thus introducing parallelization to the problem. On the other

hand, “affine-invariant” means that the sampler is particularly good at sampling highly anisotropic

distributions with a minimal number of free parameters. In general, if a distribution is signifi-

cantly skewed, its associated difference of scales in different directions makes it hard to sample

from unless a detailed tuning of the sampler’s hyperparameters is carried out. An affine, or linear,

transformation can be used to scale the distribution to make it more symmetric and thus easier to

sample from. The emcee sampler thus uses affine transformations to generate update proposals for

the Markov chain, combining information from various walkers. The result is that relevant scale

differences are automatically adjusted, in a manner entirely transparent to the user. This is just

a cursory description of the affine invariance of the sampler, and the reader is referred to [101] for

further details.

7.9.4 Regularizing the Unfolded Solution

The Markov chain sampler described in the previous subsection looks for trial spectra driven

exclusively by the maximization of the posterior probability distribution. However, this can some-

times lead to unphysical, yet mathematically valid, solutions. It is therefore necessary to introduce

additional constraints on the solution, in a procedure known as regularization. In the analysis at

hand, it is desirable to favor smoothness in the unfolded spectra. To that end, an additional term

is added to the log-likelihood, as follows

lnπ(θ) = −α2(|LRc|2 + |LRb|2), (7.22)

where Rc,b are the bin-by-bin ratios of the trial charm and bottom spectra to those in the prior,

and L is a 17 × 17 second-order finite-difference matrix, representing a discretized version of the
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second derivative operator:

L =
17

2


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. (7.23)

From the form of the regularization term it is clear that excessive curvature, as quantified

by the second derivative of the spectra, is penalized by enhancing the log-likelihood such that the

Markov chain sampler will interpret transitions to such states as unfavorable, even if the likelihood

would otherwise be maximized in their direction.

The parameter α corresponds to the strength of the regularization penalty, and is a free

parameter of the model. It is possible to determine the optimal value of this parameter by carrying

out a scan of different values, running the unfolding procedure and calculating lnπ(θ)− (|LRc|2 +

|LRb|2) in each case. This quantity corresponds to the difference between the regularization penalty

for a given value of alpha and that for α = 1. Fig. 7.38 shows the result of such a scan plotted as

a function of α. A maximum is reached at α = 1.0, indicating the optimal value of the parameter.

Admittedly, there is a systematic uncertainty associated with this choice of α, which is discussed

further in Section 7.11.
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Figure 7.38: Total log-likelihood of the unfold solution as a function of the regularization strength

α. The optimal value is that for which the function is maximized.

7.10 Output of the Unfolding Procedure

The result of the unfolding procedure, consisting in a large joint probability distribution for

the desired model parameters, is shown in Fig. 7.39. The green (blue) area of the triangle shows

the joint probability distribution for pairs of pT bins in the same charm (bottom) heavy flavor

spectrum, indicating the correlation between the two. In general, a strong positive correlation—as

indicated by the positive slope of the elliptical shape—is seen between pairs of adjacent bins as a

consequence of the regularization requirement of smoothness. Non-adjacent bins at intermediate pT

exhibit a modest anti-correlation. The orange region of the triangle, on the other hand, shows the

corresponding correlations between pairs of pT bins in different spectra. We can see that the two

spectra, of charm and bottom, are largely uncorrelated except at intermediate pT , where a strong

anti-correlation is observed, reflecting how hadrons of each flavor can compensate for each other in

the production of electrons in this pT region. The zoomed distribution shows such anti-correlation,

along with the individual distribution of charm and bottom yield in the 2.5 < pT [GeV/c] < 3.0

bin.
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Figure 7.39: Joint probability distributions of heavy flavor hadron yields, with the marginalized

distributions shown in the diagonal. The blue and green areas in the triangle display the correlation

between pairs of pT bins within the same hadron spectrum (bottom and charm, respectively). On

the other hand, the orange area displays the correlations between pair of pT bins is different spectra.

The zoomed plot shows the correlations in the 2.5 < pT [GeV/c] < 3.0 bin.

In order to estimate the desired model parameters it is necessary to marginalize the joint

probability distribution, as shown along the diagonal of the triangle. There, an individual one-

dimensional distribution is obtained for each pT bin in the charm and bottom spectra. The value
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for which a given distribution is maximized is taken as the point estimate for the yield of hadrons

at that pT bin, with the width of the distribution providing a natural metric for the associated 1σ

uncertainty. Notice that some of the distributions appear truncated in the tails, particularly for

bottom hadrons, as a consequence of unsampled regions in the parameter space. This poses no

problem as long as the maximum of the distribution can be located. The unfolded invariant yield of

charm and bottom hadrons obtained in this manner is shown in Fig. 7.40. It is important to notice

that this invariant yield is not normalized per unit rapidity, but is rather reported as integrated

over all rapidities as a consequence of how the decay matrix was constructed. It also follows that,

like the decay matrix, these hadron invariant yields are model-dependent. Chapter 8 will discuss

and interpret these results further.

Ordinarily, errors on a measurement are classified as either statistical or systematic. However,

in this case, a qualification must be made: it is better to speak of “unfolding uncertainties” rather

than statistical uncertainties. The data provided as input to the unfolding procedure, consisting

of the measured electron track DCAT distributions and the inclusive heavy flavor yield, carry

statistical uncertainties. These are propagated through the unfolding procedure, contributing to

the errors in the final result. However, the final uncertainty also has contributions from the sampling

procedure itself. Due to the nature of the unfold, these uncertainties are correlated and therefore

shown as a band in Fig. 7.40. The figure also contains systematic errors added in quadrature, which

will be discussed in section 7.11.
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Figure 7.40: Unfolded charm and bottom hadron cross section, integrated over all rapidities, as

a function of pT . The bands represent the 1σ unfolding uncertainty, added in quadrature with

systematic uncertainties. See text for details.

The quality of the unfolding procedure can be assessed by multiplying the resulting charm

and bottom hadron spectra by the decay matrices, arriving at the spectra of separated heavy flavor

electrons, and their DCAT distributions. These “refolded” distributions can be directly compared

to the input data used to constrain the unfolding. Fig. 7.41 shows the refolded electron spectra

from charm and bottom decays. Their sum can be compared to the published inclusive spectrum.

A very good agreement is observed between the two, as evidenced by the ratio plot in the bottom

panel.
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PHENIX result (gray) compared to the refolded charm and bottom hadron yields (shown indi-

vidually in green and blue, and red when combined). The bottom panel shows the ratio of the

previously published to the unfolded result.
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Figure 7.42: DCAT distributions for inclusive electrons in data (black), with normalized back-

ground contributions (brown). The refolded heavy flavor DCAT are shown for inclusive heavy

flavor electrons (red), as well as separated charm (green) and bottom (blue).
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Similarly, the refolded DCAT distributions for 10 electron pT bins between 1.5 < pT <

[GeV/c] < 6.0 are shown in Fig. 7.42. The brown curves represent to the sum of the individually

normalized background sources, as calculated in section 7.8. The green and blue curves correspond

to the charm and bottom contribution, respectively. Notice that the DCAT for bottom electrons

is broader than that of charm, as expected. This implies that it is the tails of the distributions,

many orders of magnitude lower than the peaks, which provide the most discriminating power in

the unfolding procedure. The agreement between the refolded and the measured distributions is

quite good in all pT bins, as demonstrated by the ratio in the lower panel. The gray box within

|DCAT | < 0.1 cm indicates the region over which the DCAT is used to constrain the unfold.
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Figure 7.43: Fraction of electrons from bottom hadron decays to inclusive heavy flavor electrons

at midrapidity |η| < 0.35. The band represents the total uncertainty, which includes the 1σ unfold

uncertainty, as well as systematic uncertainties.

The refolded electrons can be used to compute the fraction of electrons from bottom relative

to inclusive heavy flavor decays at midrapidity |η| < 0.35, where electrons from the feed-down
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decay b→ c→ e are treated as part of the bottom electron sample. The bottom fraction is shown

as a red curve in Fig. 7.43, with systematic and non-systematic uncertainties added in quadrature.

The contribution of bottom decay electrons rises quickly with pT from approximately 5% at pT = 1

GeV, to dominate over charm electrons above pT ≈ 4 GeV. Again, a full discussion of these results

is presented in Chapter 8.

7.11 Systematic Uncertainties

The systematic uncertainties on the unfolded result originate from the following sources:

(1) The normalization of electrons from individual background sources in the construction of

the electron cocktail.

(2) The choice of the regularization strength α in the unfolding procedure.

(3) The propagation of the systematic uncertainty on the inclusive heavy flavor electron yield.

(4) The choice of prior used in the unfolding.
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Figure 7.44: Fractional uncertainty from each source of errors on the unfolded bottom electron

fraction.

The fractional contributions of each of these sources to the total error on the unfolded bottom

fraction, along with that of the unfolding uncertainty, are shown in Fig. 7.44. Notice how the

unfolding uncertainty dominates the total uncertainty across pT , being significantly larger below

pT ≈ 3 GeV/c. Such large contribution at low pT has been identified as arising from the uncertainty

on the heavy flavor invariant yield used as input for the unfolding procedure. The unfolding

uncertainty also increases at high pT owing to the lack of electron DCAT constraint for pT > 6

GeV/c. We now turn our attention to each individual source of systematic uncertainty.

7.11.1 Uncertainty from Background Electron Normalization

The dominant source of systematic uncertainty originates from the fits used to parameterize

the production cross section of primary particles in the background electron cocktail. To estimate
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it, individual points in the published primary particle cross section were randomly varied within the

bounds of their own statistical and systematic uncertainties. The procedure was carried out 1000

times, fitting the deformed cross section at each step. As illustration, Fig. 7.45 shows the “nominal”

fit to the J/ψ cross section (in red), along with the family of fits (in blue) obtained when carrying

out the randomization procedure. The spread of the family of fits around the nominal value was

quantified by their RMS value. As a function of pT , Fig. 7.46 shows the extent of the RMS

deviation for every primary particle species in the cocktail, except for direct photons. As expected,

the uncertainties are observed to be significant in regions where the fit is not constrained by data,

particularly at low pT for all species, and at high pT for species—such as J/ψ and K±— whose

cross section measurements have a limited reach in pT . The case of the direct photon cross section

is special; no randomization of the data points was carried out in that case. Instead, a constant

systematic uncertainty of 50% was assigned to the parameterization of that particular primary

particle cross section.
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Figure 7.45: Nominal parameterization of the J/ψ cross section (red), along with 1000 variations

(blue) obtained by fitting the spectrum when randomizing the data points within the bounds of

their respective statistical and systematic uncertainties.
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Figure 7.46: Systematic uncertainty associated with the parameterization of each primary particle

production cross section. See text for details on how this quantity is calculated.

7.11.2 Uncertainty from Choice of Regularization Strength

Section 7.9.4 discussed how the strength α of the regularization term in the log-likelihood

is tuned by running the unfolding procedure repeatedly, scanning over a wide range of parameter

values in search of the one that maximizes the difference between the regularization penalty for a

given value of alpha and that of α = 1. The result of the scan is shown in Fig. 7.38. We assign a
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systematic uncertainty to this determination of the optimal parameter by selecting the two values

of α for which there is a reduction of 0.5 in the total log-likelihood. It can be shown that a change

of half a unit in the log-likelihood corresponds to a 1σ variation in the underlying variable.

7.11.3 Uncertainty from Inclusive Heavy Flavor Electron Yield

The systematic uncertainty on the published spectrum of heavy flavor electrons is point-to-

point correlated in pT . Since the covariance matrix describing such correlations is not available and

cannot be constructed for a previously published measurement, we carry out a series of operations

to deform the spectrum by the extent allowed by its systematics. First, the spectrum is tilted

(counter)clockwise by 1σ about pivot points at pT = 1.8 GeV/c and pT = 5 GeV/c, such that points

on opposite sides of the pivot go (up)down by a fraction of their systematic uncertainty. Then,

in another operation, the spectrum is folded, or “kinked”, about those same points to introduce a

wedge-shaped deformation. Fig. 7.47 shows an example of the resulting spectrum when it is tilted

about pT = 5 GeV/c; the bottom panel shows the ratio of the modified to the nominal spectrum.

Various combinations of these tilting and kinking operations yield 8 different variations of the

spectrum. The two that deviate the most from the nominal spectrum are selected and propagated

through the unfolding, where the change in the refolded electrons constitutes the estimate of the

systematic uncertainty.
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Figure 7.47: Deformation of the inclusive heavy flavor electron spectrum by tilting about a given

pivot point. The ratio of the deformations to the unmodified spectrum are shown in the bottom

panel.

7.11.4 Uncertainty from Choice of Unfolding Prior

In Bayesian statistics, the prior quantifies the analyzer’s belief about the true model parame-

ters before taking any actual data into consideration. In this analysis, the choice of prior serves two

purposes. First, the shape of the posterior in Bayes’ theorem, while driven largely by the likelihood,

depends also on the prior. Second, the prior serves as the starting point of the Markov chain Monte

Carlo sampler. In order for the unfolding procedure to converge correctly, it is important that the

prior be well-motivated in terms of its physical content. Therefore, by default, it is taken to be

the yield of charm and bottom hadrons as predicted by the pythia generator. To evaluate the

systematic associated with selecting a different prior, we scale the pythia yields by a modified blast
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wave function, as described in Ref. [30]. Admittedly, the hydrodynamics-inspired blast wave model

is meant to be applied in A+A collisions; however, here we are not interested in physics it may

encapsulate, but in examining the change in the unfolded result when changing the prior. From

Fig. 7.44 it is seen that the choice of prior has the smallest effect of all systematic uncertainties, as

expected.



Chapter 8

Results of the Heavy Flavor Separation Analysis

Chapter 7 described in detail the analysis carried out to separately measure the production of

electrons from charm and bottom hadron decays in p+ p collisions. In brief, the distance of closest

approach to the beam center was measured for candidate electron tracks using the PHENIX silicon

tracker. This observable, along with the published invariant yield of heavy flavor electrons, was

used to constrain an unfolding procedure based on a decay model of heavy flavor hadrons, allowing

the independent production of charm and bottom to be statistically inferred. The current chapter

will summarize and discuss the results of this analysis.

8.1 Separated Heavy Flavor Hadron Cross Sections

As discussed in Section 7.9, the unfolding procedure explores a 34-dimensional parameter

space to find the most likely charm and bottom hadron spectra that explain the measured heavy

flavor electron data, constructing the associated probability distribution in the process. The joint

and marginal probability distributions shown in Fig. 7.39 (i.e., the large “triangle plot”) encapsulate

all the knowledge gained from the unfolding, providing a distribution for the value of each bin in

the heavy flavor spectra, as well as the correlations among them.

Fig. 8.1 distills the triangle plot, showing the spectra of charm and bottom hadrons, corre-

sponding to the values which maximize the probability distributions for each pT bin. The decay

matrix used in the unfolding procedure is normalized in such a way that a given bin contains the

probability that a heavy flavor hadron at any rapidity produce an electron within the PHENIX
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central arm acceptance. As a result, the spectra in Fig. 8.1 correspond by construction to the

production of heavy flavor hadrons integrated over all rapidites. Given that the decay matrix

was constructed using the pythia generator, the unfolded heavy flavor hadron spectra are nec-

essarily model-dependent quantities. In particular, they follow the rapidity distribution of heavy

flavor in pythia, as arising from the LO+LL QCD processes and the parton distribution functions

implemented in the generator.

Additionally, the pythia generator makes assumptions concerning the relative production

of various heavy flavor species, as quantified by the ratios of mesons to baryons—which, in any

case, are not fully constrained by data in p + p collisions. In the heavy flavor electron separation

analysis in Au+Au [29]—where clear baryon-to-meson enhancements arise as a final-state effect—

the baryon-to-meson ratios in pythia were systematically varied, leading to small changes within

uncertainties in the final result.
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Figure 8.1: Unfolded charm and bottom hadron cross sections, integrated over all rapidities, as

a function of pT . The bands correspond to the correlated 1σ uncertainties from the unfolding

procedure, added in quadrature with the systematic uncertainties.

As a check on the unfolding procedure, it is possible to use pythia to derive the spectra of

individual hadron species at midrapidity from the unfolded result. For instance, the ratio of the D0

at midrapidity |y| < 1 to inclusive charm production can be calculated in pythia as a function of

pT . Multiplying the charm spectrum in Fig. 8.1 by this ratio yields a model-dependent measurement

of the D0 spectrum, as shown in Fig. 8.2, compared to a corresponding measurement by the STAR

collaboration [13]. The PHENIX result is fit with a modified Hagedorn functional form, with the

ratios of the points to the fit shown in the bottom panel, demonstrating good agreement between

the two measurements within uncertainties.
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Figure 8.2: Invariant yield of D0 mesons at midrapidity |y| < 1, as calculated from the rapidity-

integrated charm yield in Fig. 8.1. The result is fit with a modified Hagedorn function and compared

to a measurement made by the STAR collaboration [13]. The STAR measurement includes both

statistical (lines) and systematic (boxes) errors. The unfolded PHENIX points include the uncer-

tainties arising from the unfolding procedure, as well as systematic uncertainties.

It is important to notice, however, that the comparison in Fig. 8.2 is model-dependent, and

that the errors shown on the D0 spectrum do not account for this dependence. Instead, rather

than provide a measurement of D0 production, the comparison with the STAR result is intended

to serve as a check on the unfolding procedure at the hadron level. Had the comparison been

unsuccessful, a closer investigation of the model dependence of the unfolding decay matrix would

have been warranted.
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8.2 Separated Heavy Flavor Electron Cross Sections

Fig. 8.3 shows the invariant cross sections of charm and bottom decay electrons at midrapidity,

which follow directly from the rapidity-integrated hadron yields through an application of the

decay matrix. For ease of visualization, the bottom electron cross section has been scaled down

by a factor of 102. The cross sections are compared to a FONLL pQCD calculation [71, 68],

shown as bands reflecting uncertainties in the quark masses and renormalization scales. The charm

electron spectrum is consistent with FONLL within uncertainties. The observation that, at low

pT , the measurement seems close to the upper edge of the FONLL band is consistent with other

charm production measurements (see, for example, Fig. 5.7). The bottom electron spectrum,

however, is undepredicted by the calculation, particularly for pT < 5 GeV/c. Above that point,

the measurement and calculation agree within uncertainties. Notice also that agreement with

FONLL improves with increasing pT , particularly for charm electrons. This is to be expected, as

the calculation is less sensitive to the quark masses in this kinematic region.



224

1 2 3 4 5 6 7 8 9
 [GeV/c]

T
Electron p

12−10

11−10

10−10

9−10

8−10

7−10

6−10

5−10

4−10

3−10

2−10

1−10]
-2

dy
) [

m
b 

(G
eV

/c
)

T
/d

p
σ2

) d T
 pπ

(1
/2

 = 200 GeVNNsp+p at 
PHENIX  e→c

-2 10× e) →(b

FONLL

1 2 3 4 5 6 7 8 9
 [GeV/c]

T
Electron p

0.5
1

1.5
2

2.5

 e
) /

 F
O

N
LL

→
(c

1 2 3 4 5 6 7 8 9
 [GeV/c]

T
Electron p

0.5
1

1.5
2

2.5

 e
) /

 F
O

N
LL

→
(b

|η| < 0.35

Figure 8.3: Refolded cross section of charm and bottom electrons compared to FONLL calculations.

Notice that the bottom electron curves have been scaled down by a factor of 100 for ease of visu-

alization. FONLL uncertainties account for uncertainties in the quark masses and renormalization

scales.

Having obtained the individual charm and bottom electron spectra, it is of interest to examine

their relative contribution to the total heavy flavor electron production. To that end, the bottom

electron fraction b→ e/(c→ e+ b→ e) is calculated, as shown in Fig. 8.4. At low pT , it is possible

to see that heavy flavor electron production is dominated by charm decays, with the contribution of

bottom decays rising sharply with pT . Eventually, at pT ≈ 4 GeV/c, both flavors contribute equally

to electron production, with bottom electrons dominating at higher pT . The figure also shows that

the unfolded bottom fraction is consistent with FONLL [71, 68] within the large uncertainties of

the calculation, with particularly good agreement observed below pT = 3 GeV/c.
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Figure 8.4: Fraction of electrons from bottom hadron decays to inclusive heavy flavor electrons

at midrapidity |η| < 0.35. The red curve corresponds to the bottom fraction obtained from the

unfolding procedure, with the surrounding band indicating the total uncertainty, accounting for

intrinsic unfolding and systematic errors. A comparison is made to a FONLL pQCD calculation,

where the outer bands represent the uncertainty on the central value from uncertainties on the

quark masses and renormalization scales.

Since the principal motivation behind the analysis at hand is to provide an updated baseline

of charm and bottom electron production in p + p to be used in measurements made in nucleus-

nucleus collisions, it is appropriate to quantify the extent to which the results at hand constitute

an improvement over the baseline used in obtaining the heavy flavor RAA shown in Fig. 5.15. Prior

to the displaced vertex analysis presented in this dissertation, the only comparable measurements

available in p + p at RHIC energies were the electron-hadron correlation results described in sec-

tion 5.1.1, from both PHENIX [17] and STAR [37]. Fig. 8.5 shows a comparison of those results

with the bottom fraction obtained via unfolding. It is immediately striking that the unfolded result

has significantly smaller total uncertainties than the correlation measurements. Furthermore, while
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the correlation measurements provide a limited number of data points between 3 < pT [GeV/c] < 8,

the unfolded result has an extended kinematic reach covering 1 < pT [GeV/c] < 8.5. It is therefore

apparent that this new measurement provides not only an improved baseline for heavy-ion mea-

surements, but also a valuable benchmark for pQCD calculations, which is another motivation to

carry out precision heavy flavor measurements in elementary p+ p collisions.
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Figure 8.5: Fraction of electrons from bottom hadron decays to inclusive heavy flavor electrons

at midrapidity |η| < 0.35. The red curve corresponds to the bottom fraction obtained from the

unfolding procedure, with the surrounding band indicating the total uncertainty, accouting for

intrinsic unfolding and systematic errors. A comparison is made to a FONLL pQCD calculation,

where the outer bands represent the uncertainty on the central value from uncertainties on the

quark masses and renormalization scales. Also shown are previous electron-hadron correlation

measurements by PHENIX [17] and STAR [37].

Of the correlation measurements, the PHENIX result exhibits the largest uncertainties which

cover the new unfolded bottom electron fraction. On the other hand, the two STAR measurements,
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from electron-hadron and electron-D0 correlations, agree with the unfolded result within their own

large total uncertainties, with central values that visually appear to be distinctly lower. In order

to quantify the statistical consistency of the unfolded curve and the STAR electron-hadron points,

a hypothesis test was carried out under the null hypothesis that the two results are identical.

Assuming Gaussian errors on both results, the following modified two-sample chi-square statistic

was constructed

χ̃2 = σε +

N∑
i=1

(Ai −B′i)2

σ2
Ai

. (8.1)

In the above equation, the sum runs over the number of points in the STAR measurement. Ai is

a sample drawn from a Gaussian centered on the ith STAR point, of width equal to the point’s

statistical error; B′i is the value of the unfolded bottom fraction at the pT of the ith STAR point,

modified by a fixed fraction σε of the curve’s total uncertainty. This fraction is the same for all i,

since the errors on the unfold result are correlated. The modified statistic is sampled repeatedly to

construct its distribution. The p-value for the observed difference between the two measurements

is then found to be 0.003. Under this conservative estimate, using only the statistical error on

the STAR result, the null hypothesis must be rejected. However, when the systematic errors are

considered, the p-value increases to 0.15, such that the null hypothesis can no longer be rejected.

The conclusion is that the two measurements are indeed consistent owing to the large systematic

uncertainty on the STAR result.

In terms of physics impact, the unfolded bottom electron fraction in p+ p shown in Fig. 8.5

demonstrates conclusively, with small uncertainties, that at high pT open heavy flavor production

is dominated by bottom quarks. Being more massive than charm quarks, their energy loss from

gluon radiation is strongly suppressed due to the dead cone effect [86], as previously discussed in

Section 5.2. Under the resulting mass hierarchy of radiative energy loss, the comparable suppression

of heavy flavor electrons and light hadrons at high pT , shown in Fig. 8.6, is reaffirmed as a puzzling

observation.
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Figure 8.6: Nuclear modification factorRAA of combined heavy flavor electrons and neutral pions, as

measured by PHENIX in Au+Au collisions. The theory calculation by M. Djordjevic incorporates

both collisional and radiative energy loss mechanisms in the context of a dynamical picture of

scattering center [85].

It has been known for some time that radiative energy loss alone is insufficient to account

for the comparable suppression of light and heavy quarks. In fact, the contribution of collisional

mechanisms to total energy loss has been shown to be about as large as that of gluon radiation [149],

with modern models of energy loss incorporating both mechanisms [84, 199]. However, problems

exist with traditional models of radiative energy loss which assume static scattering centers, since

this assumption necessarily leads to vanishing energy loss through collisional mechanisms. State-

of-the-art calculations [85] reconcile both energy loss mechanisms in the context of a finite-size

dynamical picture, where the constituents of the QGP medium are modeled as moving particles.

Fig. 8.6 shows RAA calculations by M. Djordjevic using such an approach with a number of further

refinements including the effects of finite magnetic mass and a running coupling. This unified

framework leads to a good description of the strong suppression of light hadrons, as well as of
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heavy flavor electrons within the large uncertainties of the data points at high pT .

Further insight and constraint for future theoretical calculations can be gained by separating

the inclusive heavy flavor RAA into independent measurements for charm and bottom electrons,

since the mass difference between the two quark flavors can be leveraged to provide insight into the

interplay of radiative and collisional energy loss. The first such measurement of separated charm

and bottom electron RAA, carried out by the PHENIX experiment, was done with the Au+Au

data set recorded in the RHIC 2011 run period, with the results shown in Fig. 5.15. The large

uncertainties, which prevent drawing strong conclusions, can be alleviated by (i) repeating the

measurement with a larger Au+Au dataset, and (ii) using the result presented in this dissertation

as a baseline. The PHENIX collaboration has made progress towards an updated separated heavy

flavor electron RAA [150, 100] using the Au+Au dataset recorded in 2014, which is 20 times larger

than that of 2011, allowing for the centrality dependence of the RAA to be measured. Forthcoming

results will additionally incorporate the updated baseline measurement, promising to shed light on

the relative suppression of bottom and charm quarks in the QGP.
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Appendix A

Centrality Categorization in p(d)+A Collisions

A.1 Categorizing Centrality with Monte Carlo Glauber Calculations

Characterizing event geometry by correlating centrality with particle production in small

asymmetric systems presents a number of challenges not encountered in large A+A collisions. For

starters, the identification of “centrality” with the size of the overlap area between the colliding

nuclei is no longer necessarily meaningful given the much smaller size of the projectile relative to

the target, such that other factors—like the separation between partons—have a greater bearing

on event multiplicity. In general, a collision with small impact parameter where the projectile goes

through the thickest part of the target, will result in higher particle multiplicity. However, certain

effects such as fluctuations in parton configurations within individual nucleons [47] can significantly

affect the interaction cross-section, resulting in deviations from the Glauber model assumptions.

This appendix presents the methodology used by the PHENIX experiment to categorize centrality

in d+Au—which is equally applicable to p+Au and 3He+Au collisions—and to correct for biases in

the measurement of centrality-dependent particle yields arising from auto-correlations between mul-

tiplicity measured at forward and central rapidity. This work was published, including contributions

from the author of this dissertation regarding the pT dependence of the above auto-correlations, in

Ref. [25].

The PHENIX experiment uses a standard Monte Carlo Glauber approach to centrality cat-

egorization in d+Au collisions. The nuclear density profile for the Au nucleus is taken to be the

Woods-Saxon distribution, from which individual nucleon positions are sampled. For the deuteron,
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the Hulthén wavefunction is used to model the internucleon separation of the proton and neutron

constituents. The inelastic nucleon interaction cross section is taken to be σNN = 42 ± 3 mb,

from measurements. A nucleon-nucleon interaction is said to have occured if two given nucleons lie

within a distance
√
σNN/π of each other. A sample event is shown in Fig. A.1. The event-by-event

random sampling of nucleon positions, along with the criterion to identify wounded nucleons, yields

immediately the number of participants, binary collisions, and eccentricity of the event.

Figure A.1: Initial geometry of a d+Au event in MC Glauber. The black circles represent spectator

nucleons; the red and green filled circles represent participant nucleons in the projectile and target,

respectively. Figure reproduced from [25].

In order to relate the geometric quantities above with measured charge at backward rapidity

(−3.9 < η < −3.1), as measured by the BBC-South detector (henceforth referred to simply as

“BBC”), we posit that the charge in the BBC is proportional to the number of binary collisions

Ncoll with fluctuations from each individual collision modeled by a negative binomial distribution

(NBD).

NBD(x;µ, κ) =
(

1 +
µ

κ

)−κ (κ+ x− 1)!

x!(κ− 1)!

(
µ

µ+ κ

)x
. (A.1)

If one then convolves the distribution of the number of binary collisions Gl(n) as determined using
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the Monte Carlo Glauber model with negative binomial fluctuations, one obtains

P (q) =

Nmax
coll∑
n=1

Gl(n)×NDB(q;nµ;nκ), (A.2)

where q is the charge in the BBC. As it stands, the equation above can be fit to the experimentally

measured distribution of charge in the BBC to determine the parameters of the negative binomial

distribution, µ = 3.03 and κ = 0.46. Fig. A.3 shows, in the upper panel, the distribution of summed

BBC charge (open circles) from experiment, along with the best Glauber+NBD fit (histogram).

The histogram is then sliced into quantiles, shown as colored bands, which correspond to individual

centrality classes. Events corresponding to centrality selections at high multiplicity are called

“central”, while those at low multiplicity are called “peripheral”. We observe a very good fit of

the experimental data, except at very low summed charge values due to the minimum-bias trigger

inefficiency in this region, as is shown in the lower panel of the figure. In fact, the minimum-bias

trigger condition of recording at least one particle in each arm of the BBC detector, was measured

to capture 88± 4% of the total inelastic cross section.

Having fit the data, the model provides distributions of the number of participants and binary

collisions in each centrality class, Npart and Ncoll, as well as other geometric quantities such as the

eccentricity εn and the spatial overlap area S. We will not reproduce these values here, but rather

refer the reader to Table I in Ref. [25], where the details of the calculation are also presented along

with a discussion on the sources of systematic uncertainty in the Glauber+NBD model.
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Figure A.2: (top) The open points show the distribution of charge measured in the BBC in d+Au

collisions at
√
sNN = 200 GeV. The histogram shows the results of the Glauber+NBD calculation,

where the colored bands correspond to the centrality classes 0%-5%, 5%-10%, 10%-20%, 20%-30%,

30%-40%, 40%-50%, 50%-60%, 60%-70%, and 70%-88%. (bottom) Ratio of measured BBC charge

to that calculated with Glauber. The line is a fit to the trigger efficiency turn-on curve. Figure

reproduced from [25].

A.2 Centrality Bias Effects in Small System Collisions

The procedure outlined in the previous section provides a means of classifying a given d+Au

event into a geometrical category based exclusively on the charge recorded in the BBC detector.

Therefore, any effect with the potential to alter the multiplicity in the acceptance of the BBC,

without affecting the true geometry of the event (e.g., a hard scattering between partons), can lead

to a miscategorization of centrality. In this section, we describe a framework to model and account

for autocorrelation bias effects between particle production at forward rapidity and mid-rapidity,
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deriving correction factors for measured centrality-dependent particle yields. First, we will describe

how pT -independent bias correction factors can be calculated from the Glauber+NBD formalism

previously presented, and then we will extend the calculation to pT -dependent factors using the

hijing event generator. The significance of this calculation is well motivated, since any bias in the

measurement of centrality-dependent particle yields will necessarily affect the calculation of nuclear

modification factors, RxA, a central quantity for the study of a variety of physics, including energy

loss and cold nuclear matter effects in small systems.

Let’s begin by considering the elementary case of p + p collisions. At
√
sNN = 200 GeV,

the PHENIX minimum-bias trigger captures 52± 4% of the total inelastic measured cross section

σNN = 42 mb. However, when considering events with hadrons detected at mid-rapidity (|η| <

0.35), the same trigger will fire 75±3% of the time. Since particle production at midrapidity can be

ascribed predominantly to non-diffractive (i.e., non-grazing, or head-on) collisions, which account

for only part of the total inelastic cross section, then the minimum-bias trigger can be said to be

biased towards this class of events. As a result, any invariant yield measured in p+ p collisions will

be biased towards a larger value. The same argument holds for peripheral d+Au collisions.

Now, for our purposes, d+Au events can be thought of a superposition of many individual

p + p collisions. Thus, if some of those individual nucleon-nucleon collisions produce particles at

midrapidity, there will be greater charge deposition in the BBC, as explained above, and thus a

bias towards a more central categorization of the event. If one then attempted to measure particle

production at midrapidity in peripheral events, one would obtain a lower value than expected, since

some peripheral events would have been misclassified as more central. Therefore, the yield would

need to be corrected up. Following the same logic, the migration of events from a peripheral to

a more central categorization implies that measured yields in central events would be artificially

inflated, and would need to be corrected down. We call these corrections bias factors.

The Glauber+NBD framework can be used to calculate the bias factors based on the ob-

servations that (i) the minimum-bias trigger fires 75% of the time when a particle is detected at

midrapidity in p + p collisions, and (ii) that BBC charge deposition increases by 55% when par-
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Table A.1: Bias factor correction and selected geometric quantities for different centrality bins in
d+Au collisions at

√
sNN = 200 GeV, as calculated using a Monte Carlo Glauber approach.

0-20% 20-40% 40-60% 60-88%

Bias Factor 0.94± 0.01 1.00± 0.01 1.03± 0.02 1.03± 0.06

〈Ncoll〉 15.1± 1.0 10.2± 0.7 6.6± 0.4 3.2± 0.2

〈Npart〉 15.2± 0.6 11.1± 0.6 7.8± 0.4 4.3± 0.2

ticles are detected at midrapidity in minimum-bias events, as determined from data. Therefore,

in a Monte Carlo Glauber d+Au event with N binary collisions, we select one of them to have

an increased contribution to particle production, as modeled by multiplying the NBD parameters

µ and κ by 1.55, leaving the other N − 1 collisions unaffected. Thus, the invariant yield can be

calculated using the above prescription, and divided by that calculated in the standard formulation,

obtaining the desired bias factor for each centrality class, as summarized in Table along with other

geometric quantities of interest.

The bias factor calculation, as presented above, does not account for their pT dependence,

which can be accounted for under certain assumptions by changing the input values corresponding

to the trigger efficiency and the increase in forward multiplicity when particles are detected at

midrapidity. However, in order to fully understand the pT dependence of the various effects that

contribute to the bias factors, it is of interest to carry out the calculation using a model where

the true event information is accessible, such as the hijing event generator to simulate p + p and

d+Au collisions at
√
sNN . In order to provide a comparison as close as possible to experimental

results—yet without requiring a full geant simulation of the PHENIX subsystems—we define a

set of selection cuts: charge deposition in the BBC detectors, and the central arm detectors is taken

to be the number of final-state charged particles from hijing within the corresponding acceptance

(3.1 < |η| < 3.9 and |η| < 0.35, respectively). The minimum-bias trigger is modeled by requiring

at least one charged particle in each of the BBC acceptance regions. Table A.2 compares the

minimum-bias trigger efficiency of simulated events against the measured values in real data. Also

displayed is the minimum bias efficiency in the presence of at least one high-pT (i.e., pT > 1 GeV)
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particle in the central arm region. While the results from simulation fail to agree quantitatively

with the data, they do qualitatively reproduce the expected trend. We now check the increase

in BBC multiplicity when a particle is detected at midrapidity; in data, it has been measured to

be 1.55, while in hijing it is 1.62, as shown in Table A.3. The pT dependence of the increase is

shown in Fig A.3. Even though the hijing results do not agree quantitatively with the reference

values measured in p+ p data, the qualitative agreement does confirm the existence of the desired

correlation effects. We can thus proceed to calculate the bias factor corrections for d+Au collisions,

bearing in mind that the lack of agreement might stem from the specific handling of single- and

double-diffractive events in the hijing generator.

Table A.2: Minimum bias trigger efficiency in hijing simulations of p+ p collisions

Method MinBias Efficiency MinBias Efficiency w/ Particle in |η| < 0.35 Ratio

hijing 0.48 0.62 1.29

p+ p Data 0.51 0.75 1.47

Table A.3: Change in mean charged particle multiplicity in the BBC-South acceptance when a high

pT particle is detected at midrapidity.

Method 〈BBC-S Charge〉 〈BBC-S Charge〉 with High pT Particle Ratio

hijing 1.40 2.27 1.62

p+ p Data − − 1.55

We begin by determining the distribution of BBC charge deposition in hijing d+Au collisions,

as shown in Fig. A.4. We compute the quantiles of the distribution, identically as in data, to define

centrality classes. Once defined, we determine the true Ncoll distribution for each centrality, as

shown in Fig. A.5. The mean and width of the hijing distributions compare favorably with those

determined for data using Monte Carlo Glauber+NBD, as shown in Table A.2, although they are



250
hijing Glauber + NBD

Centrality 〈Ncoll〉 RMS 〈Ncoll〉 RMS

0-20% 15.0 4.1 15.06± 1.01 4.87

20-40% 10.1 3.5 10.25± 0.70 4.25

40-60% 6.3 3.0 6.58± 0.44 3.59

60-88% 2.8 2.0 3.12± 0.19 2.31

somewhat narrower.
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Figure A.3: The pT dependence of the ratio of mean multiplicity in the BBC-South in triggered

events with particle production at midrapidity, to all inelastic p+p collisions in hijing simulations.

The dashed line indicates the reference inclusive mean multiplicity ratio of 1.55. Figure reproduced

from [25].
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Figure A.4: Distribution of BBC charge deposition in hijing d+Au events. The quantiles of this

distribution, as shown, correspond to centrality categories.

Figure A.5: Distribution of the number of binary collisions Ncoll for hijing d+Au, in various

centrality classes.

We then proceed to calculate the bias factors. This requires determining, for each centrality,

the measured particle yield at midrapidity (which is affected by the autocorrelation bias with

forward multiplicity), and the true particle yield (which, unlike in data, can be determined in
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simulations). The measured yield is straightforward to obtain, as one simply needs to count the

number of particles in the central arm acceptance. On the other hand, determining the true yield

requires sorting all events into centrality classes to match the Ncoll distributions determined from

the measured selections. In other words, in this approach it is the Ncoll distribution that determines

the centrality class. Computationally, this amounts to convolving, for each desired pT bin, the Ncoll

distribution of the centrality of interest with the yield per event of particles in the given pT range

as a function of Ncoll. This procedure is summarized schematically for the 0-20% centrality class

in Fig. A.6. The bias factor is then simply

C(pT ) =
True Yield(pT )

Measured Yield(pT )
. (A.3)

The d+Au bias factors, as a function of pT , for each centrality class are shown in Fig. A.7. In the

0-20% centrality class, we observe a slight rise in the bias factor with increasing pT . In peripheral

events we observe no discernible pT dependence. The same results are summarized in Table A.4

and compared to the values from the Glauber+NBD calculation, with which a good agreement is

observed.

Finally, we can apply the method we have developed to calculate bias factor corrections for

p+Pb collisions at
√
sNN = 5.02 TeV, as occur at the LHC. The results are shown in Fig A.8. In

this case, we observe the same qualitative behavior—namely, bias factors are less than unity in cen-

tral collisions, consistent with unity for mid-central, and greater than unity in peripheral. However,

quantitatively, we observe these bias factors to be quite large, about an order of magnitude higher

than the bias factors at RHIC energy, and strongly pT -dependent. The large magnitude of bias

factors at LHC energies can be understood from the autocorrelation between the particles produc-

tion at midrapidity and the multiplicity of the event. Whereas at RHIC energies the multiplicity

at backward rapidity—used to determine centrality—depends only modestly on the particle pT at

midrapidity, it exhibits a strong pT dependence at LHC energies [25]. Such increase in multiplic-

ity with particle pT has been investigated, and is well described by multi-parton interactions [180],

particularly within the range 1 < pT < 10 GeV/c. We verified that hijing accounts for the increase
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in multiparton activity with collision energy by examining the average number of hard scatterings

per nucleon-nucleon interaction, which goes from 0.24 in the case of d+Au at
√
sNN = 200 GeV,

to 1.36 for p+Pb at
√
sNN = 5.02 TeV.

The large magnitude of these bias factors is certainly a matter of concern, since any centrality-

dependent measurement of particle yields at LHC energies will be substantially affected. The

ALICE collaboration has investigated the bias [11] using various centrality estimators, and has

quantified its magnitude in p+Pb collisions at
√
sNN = 5.02 TeV through a quantity called Qp+Pb,

akin to a nuclear modification factor Rp+Pb, whose deviations from unity at high pT are inversely

proportional to the bias factors as defined in this dissertation. Fig. A.9 shows Qp+Pb calculated

using four different centrality estimators used by ALICE, which show a good qualitative agreement,

and a reasonable quantitative agreement with the hijing bias factors.
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Figure A.6: Histogram (A) is the BBC charge distribution used to define centrality categories as

one would experimentally. Once the range of BBC charge for a given centrality is known, we extract

histogram (B) correspondin to the Ncoll distribution for events in a given centrality. This histogram

defines the event category of interest. Histogram (C) is the yield per event of particles in a given

pT range as a function of Ncoll. Is is independent of event centrality. Finally, Equation (D) shows

the calculation of the true particle yield as a function of pT . It is calculated by summing, for each

bin, the product of the normalized Ncoll and the particle yield per event.
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Table A.4: Mean bias factors as a function of pT for each centrality class in hijing d+Au collisions,
compared to reference values from a Glauber+NBD calculation.

Centrality Glauber+NBD hijing hijing hijing hijing
1 ≤ pT < 5 5 ≤ pT < 10 10 ≤ pT < 15 15 ≤ pT < 20

0-20% 0.94 ± 0.01 0.951 ± 0.001 0.962 ± 0.001 1.000 ± 0.005 1.038 ± 0.020

20-40% 1.00 ± 0.01 0.996 ± 0.001 1.008 ± 0.001 1.010 ± 0.006 0.996 ± 0.021

40-60% 1.03 ± 0.02 1.010 ± 0.001 1.022 ± 0.001 1.019 ± 0.007 1.005 ± 0.025

60-88% 1.03 ± 0.06 1.030 ± 0.001 1.026 ± 0.001 0.999 ± 0.008 0.991 ± 0.030
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Figure A.7: Bias factor corrections for four different centrality classes in d+Au collisions at
√
sNN =

200 GeV. Figure reproduced from [25].
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Appendix B

Alignment of the PHENIX Silicon Vertex Detector

The VTX detector, as described in Chapter 6, was constructed and installed following design

specifications for the spatial layout and arrangement of the various detector elements relative to

each other in the PHENIX coordinate system. This design-level description of the coordinates and

orientation of each VTX ladder is known as the detector’s ideal geometry, as shown in Fig. 6.15 in

the transverse plane. Nevertheless, the placement of detector elements in the PHENIX experimental

hall necessarily differs from the ideal geometry due to mounting uncertainty. It is thus crucial to

quantitatively reconcile the extent of these differences since track reconstruction is carried out with

a software model of the VTX geometry, such that achieving the desired tracking resolution depends

on the software accurately describing the spatial coordinates of detector hits in space.

This appendix describes in detail the procedure—known as detector alignment—followed to

construct an accurate representation of the VTX geometry as installed in the experimental hall in

2015. Two types of alignment are discussed, namely the self-alignment, in which VTX ladders are

aligned relative to each other, and the global alignment, in which the orientation of the VTX as a

whole is aligned relative to the PHENIX central arms. The self-alignment procedure was carried

out a single time at the beginning of the 2015 data-taking period, while the alignment relative to

the central arms was carried out every time the carriage carrying the central arm subsystems was

moved for maintenance access.

The self-alignment procedure was carried out with the Millepede II software, version 04-01-01,

developed by V. Blobel to solve linear least squares optimization problems consisting of hundreds
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or thousands of parameters.1 While many software packages implement linear least squares,

Millepede is special in that it distinguishes between global and local parameters, eliminating local

parameters to reduce the dimensionality of the associated matrix inversion problem, which would

otherwise be intractable or would require an inordinate amount of processing time and resources.

While the implementation of the method in Millepede is perfectly general, it was developed for

and has been applied particularly to the problem of aligning large detectors in high-energy physics

experiments. For instance, see Ref. [99] for a description of the alignment of the CMS silicon

tracker. In particular, for tracking detectors, the alignment proceeds through the minimization of

residuals between track projections and the detector hits from which tracks are reconstructed.

B.1 Dimensionality Reduction in Global Least Squares Minimization

Before delving into the details of how Millepede was used to align the PHENIX VTX detector,

it is perhaps useful to first consider a generic example of how Millepede reduces the dimensionality

of large least squares problems [64, 145]. Consider a series of hits in a misaligned detector, which

are reconstructed into a finite number of tracks. Let ~y be a vector with the coordinates of the

detector hits, and ~x be a vector containing the parameters of the reconstructed tracks. Then, the

residuals ~r are given by

ri = yi − f(xi, ~β), (B.1)

where f(xi, ~β) is a linear function depending on the parameters ~β, describing the geometry of the

detector, as follows

f(xi, ~β) =
∑
j

βjXij . (B.2)

The problem is then to find the set of parameters ~β0 = argmin
β

(S) which minimize the squared sum

of residuals S. If V is the covariance matrix associated with the residuals, then the sum of residuals

is given by S = ~rTV ~r. This can be differentiated with respect to the parameters ~β to arrive at a

1 The Millepede manual, which is the primary documentation for the software, is available at http://www.desy.

de/~kleinwrt/MP2/doc/html/draftman_page.html. The source code, as well as other useful documentation can be
found under http://www.desy.de/~blobel/mptalks.html.

http://www.desy.de/~kleinwrt/MP2/doc/html/draftman_page.html
http://www.desy.de/~kleinwrt/MP2/doc/html/draftman_page.html
http://www.desy.de/~blobel/mptalks.html
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matrix equation—known as the normal equation—for ~β0, as covered in any standard reference on

least squares minimization. The normal equation takes the form

(XTV X)~β = XTV ~y. (B.3)

Ordinarily, the normal equation could be solved through a number of standard procedures

for overdetermined systems. However, the problem lies in the dimension of A, which makes the

inversion a very expensive procedure, in terms of computation. Consider an alignment problem, for

a detector of M modules and N degrees of freedom per module. In that case, M ×N parameters

are required to describe the detector. In addition to these global parameters, there will be a number

of local parameters associated with the number of hits per detector element and the parameters

required to describe a given track projection at each element. For example, the VTX has 70 ladders

(140 half-ladders), 8 degrees of freedom per ladder (which will be discussed later), two parameters

for a straight line fit per track. Thus, it is easy to see that the number of parameters becomes very

large for detector alignment problems.

The key insight of the Millepede approach is that only global parameters—those describing

the detector itself—are relevant. Thus, let global and local parameters be labeled with the super-

scripts (G) and (L), respectively. The matrix normal equation can be recast by writing the matrix

ATV A in ordered form, with global parameters in the upper left corner. In that case, the matrix

will take on a special block structure, and the normal equation (ATV A)~β = ATV ~y will read



∑
Ci G1 . . . Gi . . .

GT1 Γ1 0 0 0

... 0
. . . 0 0

GTi 0 0 Γi 0

... 0 0 0
. . .


·



~β(G)

β
(L)
1

...

β
(L)
i

...


=



~δ(G)

δ
(L)
1

...

δ
(L)
i

...


, (B.4)

where ~δ = (~δ(G), ~δ(L)) = ATV ~y. The block matrix
∑
Ci is a square matrix corresponding to the

global parameters; the matrices Γi on the diagonal correspond to local parameters from a given
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track; and the Gi matrices connect global and local parameters. The sparseness and block structure

of ATV A considerable simplifies the problem of finding its inverse by allowing it to be reduced to

a matrix problem of dimension equal to number of global parameters. With this approach, the

Millepede is capable of solving alignment problems with up to 105 parameters in a matter of a few

hours.

B.2 Self-Alignment of the PHENIX VTX

B.2.1 Track Fitting

The previous section outlined the mathematics of finding a set of global parameters (i.e., the

geometry of detector elements) that minimize the squared sum of residuals between detector hits

and track projections in Millepede. We now turn our attention to setting up this problem in the

context of the PHENIX VTX detector.

PHENIX carries out the alignment procedure using data collected when the magnetic field in

the central arms is turned off. In these zero-field runs, particle tracks in the VTX detector follow

straight trajectories that are fit independently in the transverse and in the r − z planes. In the

transverse plane, the fit is parameterized by

y′(x′) = m′x′ + y′0, (B.5)

where the primed variables indicate the rotated coordinate system about the z axis by the track’s

azimuthal angle, such that the track is aligned with the x axis. In this way, the errors have

the correct orientation required by the least squares fitting procedure, and m′ and y′0 become fit

parameters. In the r − z plane, the fit equation is

z(x′) = x′ cot θ + z0. (B.6)

The fit parameters of the above linear equations are determined through maximum likelihood

estimation assuming a multivariate Gaussian model for errors. Just as in the previous section,

we seek parameters ~β that minimize (~y − X~β)TV (~y − X~β), where V is the covariance matrix
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containing the measurement resolutions. In this case, the normal equation is solved using singular

value decompositon (SVD) since the dimensionality of the problem is small, corresponding to the

number of hits in the track.

Having obtained the fits as described above, the residuals are defined as

∆s = y′0 +m′x′ − y′measured (B.7)

in the azimuthal direction, and

∆z = z0 + x′ cot θ − z′measured (B.8)

in the longitudinal direction.

B.2.2 Beam Center and DCA Determination

Having fit straight line tracks, it is possible to determine the collision vertex (vx, vy) on an

event-by-event basis. This is done, again, by solving a linear system of equations through least

squares estimation. In the transverse plane, the system is given by

y
(i)
0 = −m(i)vx + vy, (B.9)

where the index i runs over the number of reconstructed straight line tracks, m is the track slope,

and y0 = y(x = 0). In the longitudinal direction, the system is given by

zi0 = − cot θ(i)vr + vz. (B.10)
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Figure B.1: Distribution of event vertices in the x and y directions prior to alignment. The position

of the beam center is extracted from fits to the distributions.

The distribution of event vertices in x and y obtained for a single zero-field run prior to

carrying out the Millepede alignment is shown in Fig. B.1. The location of the beam center is

extracted from fits to the distributions, as shown. This value, obtained prior to alignment, is held

constant and used for every iteration of the alignment procedure, as will be described in the next

section.

Having determined the beam center, the distance of closest approach (DCA) of tracks relative

to the beam center can be calculated, as a fundamental observable that can be used to assess the

quality of the alignment. In the transverse plane, the DCA is given by

DCAxy = n̂ ·~b, (B.11)

where n̂ = (− sinφ, cosφ) is the normal vector, and ~b is the impact parameter of the track. In the

rotated frame, it is just the distance between the track projection and the rotated vertex position,

~b′ = (0, y′0 +m′v′x − vyy). In the longitudinal direction, the DCA is given by

DCAz = z0 + v′x cot θ − vz. (B.12)

Note that the above definition of the DCA is distinct from that used in the displaced vertex analysis
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described in Chapter 7.

B.2.3 Alignment Procedure

The Millepede alignment of the VTX detector can be carried out for three different detector

units, corresponding to different levels of granularity. Namely, it is possible to carry out the

alignment at the half-ladder, ladder, and arm level. During alignment, all units are allowed to

move independently along Cartesian (x, y, z) or polar (r, s) degrees of freedom. In addition to

these, the arms are allowed to rotate about their principal axes, roll, pitch and yaw. The track fits

and their corresponding residuals as well as the beam center value, as described in the previous

subsection, are provided as input to Millepede, which then proceeds to iteratively carry out local

track fitting as the various detector elements move during alignment. Since the minimization of the

objective function requires the computation of its gradient, it is necessary to provide Millepede with

expressions for the derivatives, global and local. Local derivatives follow straightforwardly from the

expressions for y(x′) and z(x′) in subsection B.2.1, while global derivatives—corresponding to the

change in ∆s and ∆z when a detector element moves in a given direction—are listed in Table B.1.

Table B.1: Global derivatives of residuals relative to relevant coordinate degrees of freedom.

d.o.f ∆s ∆z

x − sinφ cosφ cot θ

y cosφ sinφ cot θ

z 0 1

s 1 0

r ∆s/r − cot θ

pitch −z cosφ −y + z sinφ cot θ

yaw −z sinφ x− z cosφ cot θ

roll 1 0
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The alignment was carried out in four steps, beginning with alignment at the arm level, then

at the half-ladder level, and finally at the ladder level. There is no fixed prescription to determine

the specific steps in which to carry out the alignment, but we find this heuristic approach from

coarse to fine granularity to yield good results. Table B.2 describes the steps involved in running

the Millepede alignment, specifying the detector elements that were aligned, the degrees of freedom

under consideration, as well as their respective constraints. The straight line tracking, described in

subsection B.2.1, which serves as input to Millepede, was carried out in between alignment steps.

Table B.2: Steps followed in the VTX self-alignment. Each step consists of a series of sub-steps

where the alignment is carried out along specific coordinates for specific detector elements subject

to a series of constraints on the possible degrees of freedom.

step description degrees of freedom constraints

Step 1 Arm (x, y, z) None

Step 2 Arm (x, y, z, P, Y ) None

Half-Ladder (x, y, z, s) (x, y, z, s) shear

Step 3 Half-Ladder (x, y, z, s) (x, y, z, s) shear

(s, z) translation

Ladder (s, z, r) (z, s) shear

(z, r) contraction/expansion

Step 4 Arm (x, y, z, P, Y ) None

The final results of the self-alignment procedure are summarized in Fig. B.2. The left(right)

panel shows the overall magnitude and direction of displacement in the transverse(longitudinal)

direction of individual detector elements, in units of microns.



266

East                 x [cm]                 West
20− 15− 10− 5− 0 5 10 15 20

y 
[c

m
]

20−

15−

10−

5−

0

5

10

15

20
ab

(x,y)∆

×

×

×

×

391

256

125

73
202

387
315

104

119
349

366
338

396

307

385

298

248
178

190206290
301

256
197

290

212

272

337
355

485

227

267

284

203

16

205

116
135225

267

651

195

84

298

350

335

390 82

182

601

178

370

769

168

457449

149

499
322

102

741583

245

334

812

433

498

971

731 315

b: 421822-13-1.par
a: svxPISA-hubert-mod.par

East                 x [cm]                 West
20− 15− 10− 5− 0 5 10 15 20

y 
[c

m
]

20−

15−

10−

5−

0

5

10

15

20

abz∆

×

×

×

×

511
531
537

596
539-498

-552
-625
-583

-631

591
676

617
653
650
685

650
662

619
725-507

-535
-570

-536
-556
-520
-571

-599
-593

-631

490

430

568

519

500

535

573
659-522

-394

-393

-457

-438

-536

-502

-578

469
377

343

467

334

393

351

273

389

319

439

418-330

-541

-281

-233

-161

-530

-408

-418

-477

-486

-542
-627

b: 421822-13-1.par
a: svxPISA-hubert-mod.par

Figure B.2: Summary of coordinate changes, in microns, in the (left) transverse and (right) longi-

tudinal direction for each ladder after the alignment procedure, relative to the ideal geometry.

On the other hand, Fig. B.3 provides an indicator of the quality of the alignment. Shown

in the figure are the residuals ∆s and ∆z for each ladder in every layer. The residuals prior to

te alignment procedure are shown in gray, appearing to be distributed around zero with large

fluctuations. After the alignment, the resulting residuals are shown in red and blue, for ∆s and

∆z, respectively. In this case, they appear to be consistent with zero with minimal variation, as

desired.

Furthermore, Fig. B.4 shows the xy vertex in the transverse plane as a function of the z vertex.

Before the alignment, there is a clear linear trend with z vertex, whereas after the alignment the

dependence is minimal. Fig. B.5 shows the azimuthal dependence of the DCA in the xy plane.

Prior to alignment, it exhibits a clear sinusoidal modulation, becoming flat after the procedure,

and centered around zero as shown in Fig. B.6. Lastly, Figs. B.10 to B.17 show the distribution

of residuals in each ladder, in each layer, of the VTX before and after alignment. Prior to the

procedure, the residuals are distributed normally with a non-zero mean, as shown by the gray

histograms, and afterwards the distributions become centered very close to zero, as expected.
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Figure B.3: Summary of residuals ∆s, ∆z in the azimuthal and longitudinal directions, respectively,

as a function of ladder number for each layer of the VTX. The residuals prior to the alignment

procedure are shown in gray, with the result after alignment shown in red and blue.
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Figure B.4: Vertex in the xy plane versus z vertex before (left) and after (right) the alignment

procedure. The top panels of each block show the east and west xy vertex versus the east z vertex,

and the bottom panels shown the same xy vertices versus the west z vertex.
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Figure B.5: Transverse DCA as a function of azimuthal angle before (left) and after (right) the

alignment procedure.
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Figure B.6: Distribution of transverse DCA for tracks in the east and west detector arms before

(top) and after (bottom) the alignment procedure.

B.3 Alignment of the VTX Relative to the PHENIX Central Arms

If the VTX detector were used exclusively to reconstruct particle tracks in standalone mode,

the self-alignment procedure of the previous section would be sufficient. However, since the analysis

described in this dissertation utilizes track objects reconstructed by matching tracks in the PHENIX

central arm tracking with VTX hits, it is necessary to ensure that the VTX and the central arms

are properly aligned. In this case, the entire VTX is taken as a single unit, with two degrees of

freedom in azimuth φ and polar angle θ, assuming that the detector is properly self-aligned.

This alignment of the VTX relative to the central arms is not carried out with Millepede,

and zero-field data is not necessary. The procedure begins by determining the beam center, as

previously described, which is then used to reconstruct tracks in the central arms. These tracks

are then matched to hits in the VTX detector, and residuals are calculated between the hits and
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the track projection as follows

∆φ = arcsin(∆s/rclus), (B.13)

∆θ = arcsin(∆z/rclus), (B.14)

where rclus is the radial coordinate of a given VTX hit. The distribution of residuals in each

detector layer can be plotted for each detector arm, as shown in Fig. B.7 for ∆φ, and in Fig. B.8

for ∆θ. The mean of the distributions can be estimated through a Gaussian fit. The left panel of

Fig. B.9 shows the mean ∆φ and ∆z in each arm prior to alignment, which are seen to be roughly

constant as a function of ladder number such that they can be fit with a constant, as is also shown

in the figure. The fit constant provides a set of parameters by which tracks in the central arms are

rotated. This procedure can be carried out iteratively, reconstructing tracks after every rotation,

until the extracted rotation parameters become arbitrarily small. The right panel of Fig. B.9 shows

the resulting mean residuals after the last step of the alignment procedure.

The alignment of the VTX relative to the central arms was carried out seven times during

the p + p run period in 2015, immediately after a carriage move, obtaining the average residuals

shown in Table. B.3.
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Table B.3: Average residuals for each arm, computed after each central arm carriage move.

Arm 1 Arm2

Run Number ∆φ ∆z ∆φ ∆z

421999 0.0038 0.0056 -0.0050 -0.0020

423268 0.0043 0.0043 -0.0047 -0.0060

425171 0.0037 0.0046 -0.0047 -0.0055

427020 0.0037 0.0048 -0.0047 -0.0054

429114 0.0035 0.0044 -0.0038 -0.0062

430124 0.0041 0.0044 -0.0042 -0.0058

431022 0.0042 0.0032 -0.0040 -0.0059
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Figure B.7: Distribution of ∆φ residuals in each layer in the East (top) and West (bottom) detector

arms for the alignment procedure relative to the central arms.
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Figure B.8: Distribution of ∆θ residuals in each layer in the East (top) and West (bottom) detector

arms for the alignment procedure relative to the central arms.
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Figure B.10: Distributions of ds residuals for every ladder in layer B0.
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Figure B.11: Distributions of dz residuals for every ladder in layer B0.
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Figure B.12: Distributions of ds residuals for every ladder in layer B1.
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Figure B.13: Distributions of dz residuals for every ladder in layer B1.
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Figure B.14: Distributions of ds residuals for every ladder in layer B2.
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Figure B.15: Distributions of dz residuals for every ladder in layer B2.
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Figure B.16: Distributions of ds residuals for every ladder in layer B3.
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Figure B.17: Distributions of dz residuals for every ladder in layer B3.



Appendix C

Validating the Calculation of FNP

Section 7.8.1 described the calculation of FNP , corresponding to the fraction of electron

candidates attributable to non-photonic sources as a function of electron pT . The FNP quantity is of

central importance to the isolation of the inclusive heavy flavor DCAT distributions, as it determines

the normalization of all electron background sources relative to the total electron candidate sample.

Therefore, it is of interest to carry out cross-checks to validate the calculation.

C.1 Comparing to Previous PHENIX Measurements

Section 5.1.1 described a previous measurement [20] of inclusive heavy flavor electrons by

PHENIX, where two distinct methods—namely, the converter and cocktail methods—were used

for electron background subtraction. That analysis, using data collected in the 2005 RHIC run

period, reported the ratio of non-photonic to photonic electrons, RNP = NNP /NP . Such quantity,

while related to our FNP , is not directly comparable to it as it depends on the material budget of

the PHENIX detector, which changed significantly between 2005 and 2015. However, if the changes

in the material budget can be quantified, it becomes possible to determine a scaling factor such

that the two measurements can be compared.

Table C.1 summarizes the changes in the material budget—in terms of radiation lengths—

in the central arm acceptance between the 2005 and 2015 run periods. In 2005, the beam pipe

was thicker and constructed out of steel, and a helium-filled bag was present to reduce in-air

conversions. In contrast, the 2015 beam pipe was constructed out of beryllium in an effort to
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minimize conversions, and the main converter was the innermost layer of the VTX detector. Notice

that succesive layers are not considered because of track hit requirements. Given the information

in the table, there are 3.9 times more conversion electrons in 2015 compared to 2005. We now

propagate this factor to derive a relation between the 2005 RNP and the 2015 FNP .

2005 2015

Beam Pipe X0(%) = 0.29 Beam Pipe X0(%) = 0.22

Air + Helium Bag X0(%) = 0.1 VTX Layer B0 X0(%) = 1.3

Total X0(%) = 0.39 Total X0(%) = 1.52

Table C.1: Changes in the PHENIX material budget between the 2005 and 2015 detector configu-

ration.

The non-photonic and Dalitz contributions to the electron background are independent of

material budget, and thus remain the same across run periods. Thus, the RNP in 2005 and 2015

read, respectively,

R
(05)
NP =

NNP

ND +N
(05)
C

, (C.1)

and

R
(15)
NP =

NNP

ND +N
(15)
C

. (C.2)

In the above, NNP , ND and NC are the number of non-photonic, Dalitz, and conversion electrons,

respectively. We want to find a pT -dependent function α such that R
(15)
NP = α(pT )R

(05)
NP . That is,

NNP

ND +N
(15)
C

= α(pT )
NNP

ND +N
(05)
C

, (C.3)

which simplifies to

α(pT ) =
ND +N

(05)
C

ND +N
(15)
C

. (C.4)

However, we know from the table how to relate N
(05)
C and N

(15)
C , such that α(pT ) can be cast



282

all in terms of 2015 information

α(pT ) =
ND + 1

3.9N
(15)
C

ND +N
(15)
C

=
1 + 1

3.9N
(15)
C /ND

1 +N
(15)
C /ND

.

(C.5)

The ratio of conversion to Dalitz electrons N
(15)
C /ND in the above equation can be evaluated using

geant simulations, obtaining α(pT ) as shown in Fig. C.1.

Figure C.1: pT -dependent scaling factor to compare conversions between the 2005 and 2015

PHENIX configurations.

Finally, having obtained the desired scaling for RNP , the equivalent FNP = RNP /(1 +RNP )

is shown in Fig. C.2. Excellent agreement is seen between the 2005 and 2015 results, thus validating

our calculation.
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Figure C.2: Comparison of FNP in the PHENIX 2005 and 2015 heavy flavor electron analyses. The

2005 measurement has been scaled to account for changes in the material budget of the detector.

C.2 Calculating FNP Through Azimuthal Track-Cluster Correlations

The calculation of FNP described in Section 7.8.1 relied on using the different conversion

veto survival rates of photonic and non-photonic electrons to separate their contributions to the

total electron candidate sample; let this be known as the “conversion veto method”. However, it is

also possible to estimate FNP by examining the distribution of the azimuthal separation between

pairs of clusters in a given VTX layer, where one of the clusters is associated with a reconstructed

track. The distribution of c∆φ in VTX layer B1, where c is the charge of the track and ∆φ

is the azimuthal pair separation, is shown in Fig. C.3 for charged hadron tracks in data within

1 < pT [GeV/c] < 1.5. In principle, hadron tracks should be uncorrelated with clusters such that

the c∆φ distribution be uniform. However, the prominent correlated peak structure seen in the

figure can be attributed to (i) charge deposits from a single track traversing overlapping ladders, (ii)

cluster splitting within a single ladder, and (iii) secondary ionization. Of these, the last two effects
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are dominant. The correlated part of the distribution can be isolated by fitting the underlying

uncorrelated background, as depicted by the dotted line in the figure.
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Figure C.3: Distribution of azimuthal separation of cluster pairs in VTX layer B1, where one of the

clusters in the pair is associated with a reconstructed hadron SvxCentralTrack with 1 < pT < 1.5

GeV/c.

Now, unlike hadrons and non-photonic electrons, photonic electron tracks should exhibit a

clear correlation with surrounding clusters owing to the kinematics of conversion pairs and Dalitz

decays. In fact, this is the logic behind the conversion veto cut. Therefore, the c∆φ distribution

of inclusive electrons in data should be amenable to be described as a linear combination of a non-

photonic template (obtained by proxy from hadrons in data) and a photonic template (obtained

from simulations) with a single free parameter, namely FNP :

1

Ntrack

dndata

d(c∆φ)
= FNP

1

Ntrack

dnphotonic

d(c∆φ)
+ (1− FNP )

1

Ntrack

dnnon-phot

d(c∆φ)
. (C.6)

The photonic template is obtained by running single-particle geant simulations of π0, η, and
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photons, and constructing the corresponding c∆φ distribution in VTX layers B0 and B1. Since

this procedure only captures the correlated signal, the underlying event is modeled by adding the

uncorrelated part of the hadron c∆φ distribution. Because conversions are rare, the size of the

statistical sample that can be collected by running single-particle simulations is very limited given

the computational resources available, leading to large statistical fluctuations in the template, as

shown in Fig. C.4. Therefore, the desired template is constructed by fitting the broad tails of the

distribution with a double exponential function, as shown in the figure.
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Figure C.4: Distribution of c∆φ for simulated photonic electrons in VTX layer B1. A template has

been constructed by fitting the broad tails of the distribution with a double exponential.

Having constructed the photonic and non-photonic templates for B0 and B1 in all pT bins

of interest, the c∆φ distribution of inclusive electrons in data is fit as described, obtaining the

results shown in Fig. C.5 for the specific bin of tracks with 1.5 < pT [GeV/c] < 2.0. Three different

fits are carried out, over three different c∆φ ranges, as shown in the figure. The average of the

three fits is the reported FNP value, with their standard deviation taken as an uncertainty on the

measurement. Fig. C.6 compares the result obtained with the template fits, to that obtained with

the conversion veto cut method. A very good agreement is seen between the two results.
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Figure C.5: Calculation of FNP with the template fitting method over various c∆φ ranges, in both

layers B0 and B1.
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Figure C.6: Comparison of FNP as obtained with the conversion veto cut method, and with the

template fitting method in B0 and B1. For ease of visualization, the blue points have been displaced

by a small amount in the horizontal direction.


