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Abstract

The problem of finding the naturally occurring structure of a protein is believed
to correspond to minimizing the free, or potential, energy of the protein. This is
generally a very difficult global optimization problem, with a large number of pa-
rameters and a huge number of local minimizers including many with function values
near that of the global minimizer., This paper presents a new global optimization
method for such problems. The method consists of an initial phase that locates
some reasonably low local minimizers of the energy function, followed by the main
phase that progresses from the best current local minimizers to even lower local
minimizers. The method combines portions that work on small subsets of the pa-
rameters, including small-scale global optimizations using stochastic methods, with
local minimizations involving all the parameters. In computational tests on the pro-
tein polyalanine with up to 58 amino acids (116 internal parameters), the method
appears to be very successful in finding the lowest energy structures. The largest
case is particularly significant because the lowest. energy structures that are found
include ones that exhibit interesting tertiary as opposed to just secondary structure.

1 Introduction

The naturally occurring three dimensional structure of a protein, called its “tertiary struc-
ture”, is believed to be uniquely determined from its “primary structure”, the sequence
of amino acids of which the protein is composed. The problem of finding the tertiary
structure given the primary structure is known as the protein folding problem. Scientists
believe that the tertiary structure of a protein is the structure that minimizes its free,
or potential energy. Thus the protein folding problem can be posed as an optimization
problem. This optimization problem is an extremely challenging global optimization
problem for even moderately sized proteins, because the number of optimization param-
eters for such problems is 100 or more, and the number of local minimizers is believed
to be exponential in the number of parameters. Moreover, many of the local minimizers
have function values near that of the global minimizer.

This paper presents a new global optimization method for protein folding problems,
and computational results for problems with up to 116 parameters. This problem of
minimizing potential energy is an instance of the general global optimization problem of
finding the lowest minimizer of a nonlinear function f(z) that has multiple local minima,
for z in a domain D defined by lower and upper bounds on each parameter z;. The
functions f(z) used in this research are well known empirical potential energy functions
which are described in more detail in later sections.

A major challenge in solving large-scale global optimization problems is that there is
no clean mathematical basis for efficiently reaching a global minimizer, such as an analog
to steepest descent or Newton’s method for local minimization. Many methods have been
developed for such global optimization problems (see the survey [17]), and these therefore
tend to be heuristic and often require large amounts of computation time. This is true
of the method presented here as well. We do aim in this research, however, to develop
a global optimization methodology that can be applied to a wide range of large-scale
problems, albeit with some application-dependent modifications. We also aim to assure
that our methods can effectively utilize powerful parallel computers, although this aspect



of our research is not addressed in this paper.

The new method described in this paper has the same top level structure as the
global optimization methods for molecular cluster problems that we introduced in [4, 2].
These methods have two main phases. The first, initialization phase generates a set of
configurations that are local minimizers of the energy function and have reasonably low
energy values. The second phase, which accounts for the overwhelming majority of the
computational effort, is an improvement phase that successively finds new and hopefully
lower local minimizers from the current lowest local minimizers. The key feature of each
step of this phase is the solution of a small-scale global optimization problem (typically
with 3-9 parameters) by a stochastic global optimization method. That is, the relatively
well developed methodology for small-scale global optimization problems is utilized within
the large-scale global optimization algorithm. At the level described above, the methods
for molecular cluster problems and the new methods for protein folding are similar;
beneath this level they differ significantly.

The remainder of the paper motivates and describes our new global optimization
method. Section 2 briefly summarizes our global optimization algorithm for molecular
cluster problems, which is the starting point for our new method, and also very briefly
summarizes our computational experience with this algorithm to justify that it appears
to be a viable approach. Section 3 present our global optimization method for protein
folding problems and computational results on the protein polyalanine. Section 4 gives
some conclusions and directions for future research in this area.

2 Global Optimization Methods for Molecular Cluster Prob-
lems '

The basic strategy of our algorithm was developed first to solve global optimization
problems for finding the configurations of macro-molecular clusters. The approach was
applied to potential energy functions for two different cluster problems. The first prob-
lem was that of identical atoms using the Lennard-Jones potential energy function, and
the second problem involved clusters of water molecules using the Coker/Watts energy
function [6]. These molecular cluster problems have some of the same challenges as the
protein folding problem, including many parameters, a huge number of local minimizers,
and many low local minimizers. In addition, the energy functions for both cluster and
protein problems include O(N?) 2-body energy terms, composed of similar functional
forms, for an N atom problem. The characteristic that makes molecular cluster prob-
lems much different from protein folding problems is the lack of the chain structure that
is inherent in proteins. This enables the movement of a single atom or molecule in the
structure to a completely different location without compromising the integrity of the
structure as would be the case in a chain of amino acids.

Lennard-Jones problems assume that the potential energy of the cluster is given by
the sum of the pairwise interactions between atoms, with these interactions being Van
der Waals forces given by the Lennard-Jones 6-12 potential. That is, if we define the
position of the molecular cluster by
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where z; is a three-dimensional vector denoting the coordinates of the i** atom, then the
potential energy function is
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where d;; is the Euclidean distance between z; and z;. In this formulation, the pairwise
equilibrium distance is scaled to one and the pairwise minimum energy is scaled to -
1. Lennard-Jones problems characterize the interaction of inert gasses such as argon;
more importantly, Lennard-Jones terms are a key part of many empirical energy models

including all commonly used energy functions for proteins.
The potential energy of water clusters that we use was developed by Coker and Watts
[6], and has also been used in global optimization research by Long [14]. It has the form

fle) =D ulei,z) + ) v(w) (2)
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where each vector z; gives the coordinates of three atoms in the i-th molecule, and the
functions u and v are composed of a number of terms that give the interaction energy
between pairs of molecules and the internal energy of the molecule, respectively. Note
that modeling water will be important in future research on protein folding, which will
need to consider the behavior of proteins in a water solvent.

The basic framework of our global optimization methods for molecular cluster prob-
lems is outlined in Algorithm 2.1 below. As mentioned in Section 1, the method combines
an initial phase that locates some low local minimizers with a second phase for progress-
ing from low to even lower local minimizers that accounts for most of the computational
effort, and the success, of the method. Both phases make use of techniques that vary
only a small subset of the variables (an atom for Lennard-Jones problems, a molecule for
water) at once. In the initial phase this approach is used to improve the sample points -
one atom or molecule at a time in step 1b. In the second phase, this approach is used
to move one atom or molecule in an existing configuration to new positions via the one
atom/molecule global optimization in step 2c. This global optimization finds the best
possible position for the selected atom or molecule in the current configuration with the
remainder of the configuration temporarily fixed. In both phases, the small subset of the
variables that is selected is the one that contributes the most to the energy function (a
quantity that is readily calculated due the partial separability of the energy function), an
indicator that moving this atom or molecule may be a fruitful way to reduce the overall
energy of the cluster. Both of the one atom/molecule steps are relatively inexpensive -
due to the small number of variables involved and the partial separability of the energy
function, which allows the energy to be recalculated at O(1/N) of the cost of a full energy
evaluation if only one atom or molecule is moved. In both phases, the one atom/molecule
steps are followed by local minimizations in all the variables; these steps allow the entire
configuration to change. This overall approach has been found to lead to improvements in
the sample points and local minimizers far more effectively and efficiently than strategies
that always work on all the variables at once.

The overall progress of the improvement phase is governed by the heuristic in step
2a. This heuristic has been developed to explore the enormous search space of possible



configurations in a manner that combines breadth and depth. Configurations that were
passed to Phase 2 from Phase 1 are considered to be roots of trees that first are each grown
to a specified depth, regardless of the energy function values produced at each consecutive
level. After this initial balancing portion in which all of the trees have been explored to
an equal (specified) depth, selections of configurations are based solely on energy criteria,
which tends to encourage only a few trees (with the lowest energy values) to.continue
growing. At both stages, the energy values do not necessarily decrease monotonically
as one descends a tree of configurations, since the best new configuration resulting from
a given configuration may not necessarily have a lower energy value. The balancing of
work over all of the initial configurations before working exclusively on the best few has
proven to be an extremely beneficial strategy in the overall success of the algorithm.

A final important feature of Algorithm 2.1 is the expansion step 2b. It was found,
particularly for water clusters, that by expanding the cluster prior to the one-molecule
global optimization step, the small global optimization could locate better new positions
for the molecule and the overall algorithm could make better progress. For Lennard-
Jones problems this step is sometimes helpful as well. There is no analog to this step in
our current protein methods.

2.1 Results for Cluster Problems

There has been extensive development of and experimentation with very special purpose
methods for Lennard-Jones problems [12, 16, 20], and many researchers have applied
more general approaches to these problems as well {7, 15, 13, 18]. As a result, the
optimal configurations are believed to be known for most clusters with up to 100 or so
atoms. Algorithm 2.1 has been applied to all Lennard-Jones clusters with 5 to 76 atoms
(15 to 228 parameters), and finds the best known solutions in all cases. A new best
minimizer was found for the 75 atom problem, with an energy value of -396.282, whereas
the best previously reported value for this case was -396.239 [20]. Recently discovered
lowest energy values for 66 and 72 cases [7] were also matched by Algorithm 2.1. These
results appear to be the best currently reported by any global optimization method on
Lennard-Jones problems.

For the water problem, we have mainly run our algorithm on clusters of 20, 21 and
32 water molecules (180, 189, and 288 parameters), because results of minimizing these
same clusters and energy function, using a dynamic simulated annealing procedure, have
been obtained by Long [14]. We have obtained many configurations with significantly
lower energies than those obtained in [14]. The best solutions obtained by running our
algorithm have energies of -0.348183,-0.369011 and -0.585062 atomic units (a.u.) for 20,
21 and 32 molecules respectively. These energy values are approximately 0.005, 0.01 and
0.02 a.u. lower than the best structures found in [14], whereas at room temperature, only
vibrational states with energies about 0.001 a.u. above the ground state are possible. The
structures for 20 and 21 molecules have collapsed dodecahedral (for 20) and dodecahedral
(for 21) shapes, which are in agreement with the shapes of the lowest energy clusters found
in [14]. ‘

These results appear to indicate that the approach of Algorithm 2.1 is a useful one
for the global optimization of energy functions for molecular clusters.



Algorithm 2.1 — Framework of the Large-Scale Global Optimization
Algorithm for Molecular Cluster Problems

1. Initial Generation of Configurations Phase :

(a) Sampling in Full Domain : Randomly generate the coordinates of the
sample points in the sampling domain, and evaluate f(z) at each new sample
point. Discard all sample points whose function value is below a global “cutoff
level”.

(b) One-atom/molecule Sampling Improvement : For each remaining sam-
ple point : While the energy of the sample point is above the threshold value,
Repeat:

o Select the atom/molecule that contributes most to the energy function
value ' : k

¢ Randomly sample on the location of the selected atom/molecule

o Replace this atom/molecule in the sample point with the new sample
coordinates that give the lowest energy value.

(c) Start Point Selection : Select a subset of the improved sample points from
step 1b to be start points for local minimizations.

(d) Full-Dimensional Local Minimizations : Perform a local minimization
from each start point selected in step lc. Collect some number of the best of
these minimizers for improvement in Phase 2.

2. Improvement of Local Minimizers Phase: For some number of iterations:

(a) Select a Configuration : From the list of full-dimensional local minimizers,
select the local minimizer and atom/molecule to be optimized.

(b) Expansion : Transform the configuration by multiplying the position of each
atom relative to the center of mass of the configuration by a constant factor
of between 1.0 (no expansion) and 1.75.

(c) One Atom/Molecule Global Optimization : Ap}Sly a global optimization
algorithm to the expanded configuration with only the atom/molecule chosen
in step 2a as a variable. ‘

(d) Full-Dimensional Local Minimization : Apply a local minimization pro-
cedure, using all the atoms/molecules as variables, to the lowest configurations
that resulted from the one-atom/molecule global optimization.

(e) Merge the New Local Minimizers : Merge the new lowest configurations
into the existing list of local minimizers.



3 Methods for Protein Conformation Problems

The problem of finding the native three dimensional structure of a protein given its
primary sequence of amino acids differs from the molecular cluster problems discussed in
the previous section, due mainly to the inherent chain-like structure of proteins. Before
expounding on the ramifications of this structural difference in our methods, we address
some fundamental issues regarding the protein problem. '

The basic building block of proteins is an amino acid. The amino acids are bonded
together by peptide bonds to form a polypeptide chain, and the sequence of amino acids in
the chain is referred to as the primary sequence of the protein. There are 20 amino acids
that exist in nature, and all proteins are composed from these. The secondary structure
of a protein refers to regular structure in portions of the polypeptide chain, such as alpha
helices, beta sheets and the turns that link them, whereas tertiary structure describes
the overall shape adopted by the polypeptide chain within a domain [8]. The tertiary
structure is believed to be the structure that minimizes the free, or potential, energy of
of the protein. 4

Chemists have developed a number of empirical potential energy functions to de-
scribe the interaction between atoms in proteins. In this study we use a version of the
CHARMM energy function [1] to compute the potential energy. This function depends
on the coordinates of the atoms in the protein and has the form

f(@)=)" Evond + > Eangle + Y, Edinedral + > (Evaw + Eelec) (3)
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. The first term, the bond length potential, is a sum over all pairs of of bonded atoms 7
and j, and depends on the deviation of the distance ||z; — z ;|| from its equilibrium value.
For each three atoms such that atoms ¢ and k£ are both bonded to atom j, the second
sum has a term depending on the bond angle formed by the three atoms, with vertex
at «;. The last bonded summation includes terms depending on certain dihedral angles
formed by sets of four atoms connected by bonds. The dihedral angle is formed by two
planes each containing a specified set of three of the four atoms, and is a measure of the
torsion of the configuration. The final summation in (3.1) runs over all pairs of atoms
not involved in bonds. It includes the Van der Waals (Lennard-Jones 6-12 as discussed
above)) interactions and the electrostatic potential between pairs of atoms.

The CHARMM function computes potential energy as a function of the cartesian
coordinates of the atoms, but it is convenient to express the protein configuration in terms
of an equivalent set of internal parameters given in terms of bond lengths, bond angles
and dihedral angles. This parameterization is useful for global optimization because the
dihedral angles are the crucial parameters to be varied in the optimization. Since the
energy to perturb bond lengths and bond angles from their equilibrium values is relatively
large, it is conventional in the bio-chemistry community to consider these parameters as
fixed, and to address the global optimization problem with just the dihedral angles as
the variables, and this is how we have formulated the problem. The main advantage of
this parameterization is that the number of variables is greatly reduced, generally by a
factor of ten or more. A disadvantage is that the energy function is no longer partially
separable in this parameterization, meaning that it is no longer much less expensive to



re-evaluate the energy if only a few parameters change than if they all change. This
loss of partial separability has some ramifications for our algorithmic strategy that are
mentioned below. '

The framework of our global optimation method for protein problems is outlined in
Algorithm 3.1 below. The highest level structure of the algorithm is the same as in the
molecular cluster algorithm. It consists of an initialization phase that locates some low
minimizers, followed by an improvement phase that finds better local minimizers from the
current best local minimizers. As in the molecular cluster algorithm, the improvement
phase utilizes a small-scale global optimization on a selected subset of the parameters
followed by local minimizations on all the parameters. Beyond this level there are many
differences between the two algorithms due to the chain structure of proteins.

One main difference of Algorithm 3.1 from the molecular cluster algorithm is in the
sampling improvement strategy of the first phase, where the cluster methods move one
particle at a time to random locations in order to improve the sample configurations.
Because it is not possible to move an arbitrary atom of a chain without affecting the bond
lengths and angles attached to neighboring atoms, the sample generation for proteins is
done entirely differently. The chain is built up one dihedral angle at a time, by sampling
dihedral angles in a sequential manner along the chain. Each dihedral angle is sampled a
fixed number of times, and the value that gives the configuration under construction the
best partial energy is selected. This initialization step seems to have worked well, and
overcomes the lack of partial separability since the change in energy due to adding on to
the end of a chain can be calculated efficiently. It is not the crucial part of the method,
however, since it just supplies some starting configurations for the main, improvement
phase. In fact, if a scientist knows some good candidate configurations, these could be
used as input to the improvement phase, instead of or in addition to the ones supplied
by the initialization phase.

The other key difference from the molecular cluster algorithm is that the small-scale
global optimization in the improvement phase of the method can no longer select and
move a single atom or molecule, for the reasons mentioned above, but instead optimizes
over a small number of dihedral angles with the remaining dihedral angles temporarily
fixed. The selection of the angles to optimize over is very important to the success of
the method, and involves interesting new tradeoffs. Selecting a small number of dihedral
angles that are dispersed throughout the protein chain offers the greatest possibility for
change in the tertiary structure of the protein during the small-scale global optimization.
However it means that the small-scale global optimization is relatively expensive because
the energy evaluations are nearly as expensive as full energy evaluations. Conversely,
selecting a small contiguous set of dihedral angles offers less possibility for change in
the overall structure of the protein during the small-scale global optimization, but it
allows the small-scale global optimization to be relatively inexpensive because the energy
evaluations can performed efficiently, as in the small subproblems for molecular clusters.
So far, our algorithms have been based on the first option, selecting a small, dispersed
set of dihedral angles, but we intend to experiment with the second possibility as well.

Given this overall strategy of choosing a small set of possibly dispersed dihedral angles
as the parameters for the small-scale global optimization, our algorithm must determine
which angles to select. The method for doing this is different and more difficult than the



Algorithm 3.1 — Framework of the Large-Scale Global Optimization
Algorithm for Protein Problems

1. Initial Generation of Configurations Phase :

(a) Protein Sample Point Buildup: Build up sample configurations from one
end of the protein to the other by sequentially generating each dihedral angle
in the protein: randomly sample the current dihedral angle a fixed number of
times and select the dihedral angle that gives the lowest energy function value
for the partial protein generated so far. »

(b) Start Point Selection : Select a subset of the best sample points from step
la to be start points for local minimizations.

(c) Full-Dimensional Local Minimizations : Perform a local minimization
from each start point selected in step 1b. Collect some number of the best of
these minimizers for improvement in Phase 2.

2. Improvement of Local Minimizers Phase : For some number of iterations:

(a) Select a protein: From the list of full-dimensional local minimizers, select a
local minimizer and a small subset of dihedral angles from that minimizer to
be optimized.

(b) Global Optimization on a small subset of variables : Apply a fairly
exhaustive small-scale global optimization algorithm to the energy of the se-
lected configuration using the selected small subset of the dihedral angles as
variables.

(¢) Full-Dimensional Local Minimization : Apply a local minimization pro-
cedure, with all dihedral angles as variables, to the lowest configurations that
resulted from the global optimization of the step 2b.

(d) Merge the New Local Minimizers : Merge the new lowest configurations
into the existing list of local minimizers.



analogous selection for cluster problems. Once again, we wish to use the energy function
to indicate which parameters, if varied, offer the greatest potential for reduction in the
energy function. But we can no longer calculate this directly by utilizing partial separa-
bility to compute the partial energy associated with each parameter. Instead, Algorithm
3.1 uses two different methods for selecting the parameters to optimize, both based upon
the interaction energies between all the atoms to the left of a given dihedral angle and all
those to its right. The methods differ in their normalization of the interaction energies.
The first method computes the interaction energy just described for each possible dihe-
dral angle, and normalizes it by the product of the number of atoms to the left times the
number to the right. Some specified number (generally five) of dihedral angles with the
highest normalized interaction energies are then selected. The second method computes
the interaction energy in the same manner as the first, but normalizes it by the maximum
of the number of atoms to the left and right. The first method exhibits a bias toward
selecting dihedral angles in the middle part of the conformation, whereas the second
method tends to pick dihedral angles closer to the ends. The first method appears to be
more effective in the earlier stages of the computation when the conformation is still far
from the global minimum, while the second method appears appropriate for polishing
the ends of the conformation after the middle part has been optimized.

In our experiments with the 58 amino-acid polyalanine mentioned in Section 3.1, we
have also used a third method for selecting the dihedral angles for the small-scale global
optimization. This method, used only in the last stages of the calculcation, is to chose
those dihedral angles that are close to where a hydrogen bond is expected to be but is
not currently present in the conformation. So far, this choice has been made manually
by visualizing the protein, although it should be possible to make it algorithmically.
Of course, including this type of heuristic in the code makes it a less general-purpose
global optimization method, but may be important in its ability to solve difficult protein
problems. We discuss this issue futher in the section on future research.

Finally, the heuristics used in step 2a of the cluster method to balance the breadth
and depth of the search have proven to be valuable in searching the space of possible
protein conformations as well, and are used in essentially the same manner.

3.1 Results for Protein Problems

We have run Algorithm 3.1 on the protein polyalanine with 20, 30, 40 and 58 residues
(amino acids). Polyalanine is a simple polypeptide in that each amino acid is the same and
the side chain in the amino acid is simple and contributes no additional dihedral angles to
the parameterization. It has been used commonly as a test problem in the bio-chemistry
community (see e.g. [19, 10]). In internal parameters, there are two parameters per
amino acid, meaning that the problems tested have up to 116 optimization parameters.
Our calculations have mainly been performed on a KSR1 multiprocessor using up to 64
processors, using a parallelization strategy similar to that described in [3].

In the problems with 20, 30, and 40 amino acids, the best structure found by our
algorithm in each case is a very regular alpha-helix. These results are expected, although
we have no comparative energy values from other methods using the same input data
and the CHARMM energy function to check against. Interestingly, in the 20 amino



acid problem the initialization phase already finds the best configuration, although the
improvement phase can also reach this configuration from poor starting configurations.
In the 30 and 40 amino acid problems, the initialization phase does not produce the best
configuration but it is found by the improvement phase.

The 58 residue problem is considerably more interesting. There are conflicting results
in the literature regarding what shape to expect for this problem. Wilson and Cui [19]
found alpha-helical structures for polyalanine with up to 80 residues using a simulated
annealing method; however, Head-Gordon and Stillinger [10] show that for 58 residue
polyalanine, a lower energy minimizer exists whose structure is two parallel alpha-helices
connected by a turn. Our work on this problem is still in progress, but interestingly,
so far our algorithm has found two very low energy minimizers with almost identical
energies, and with the two different shapes just mentioned. These configurations were
located using the normalized interaction energy strategies mentioned in the discussion of
Algorithm 3.1. Following this, we have been able to further improve the energies of both
of these conformations using the third technique for selecting parameters for the small-
scale global optimization mentioned above, that is visually choosing dihedral angles near
missing hydrogen bonds. At this point, the best straight conformation appears to be a
totally regular alpha helix with all of the expected hydrogen bonds present. The best bent
conformation has a somewhat lower energy value than the best straight conformation,
and its shape has changed such that the two alpha helices are no longer parallel, but
are almost crossing over each other. This conformation has a potential energy about
4 kcal/mole lower than that of the best straight configuration. Which of these two
ultimately is “best” is not the key issue, and in fact it appears that this may vary if one
uses different potentials or cartesian versus dihedral angle parameterizations. The most
exciting aspect of these results is that they indicate that our algorithm has the potential
to locate complex tertiary structures without knowing of them apriori.

4 Conclusions and Future Results

We have presented a new global optimization algorithm for locating the minimum en-
ergy configurations of proteins. The algorithm utilizes small-scale global optimization
calculations on selected subsets of the parameters, performed by a stochastic global op-
timization method, as a key part of its approach. Its structure is related to our previous
global optimization methods for molecular clusters but there are many important dif-
ferences due to the chain structure of proteins. In computational tests on the protein
polyalanine with up to 58 amino acids (116 internal parameters), the method appears to
be very successful in finding the lowest energy structures. The largest case is particularly
significant because the lowest energy structures that are found include ones that exhibit
interesting tertiary as opposed to just secondary structure.

The research reported here is part of an ongoing project that is continuing in many
directions. One of these is the extension of the methodology presented here to more
complex proteins composed of different amino acids and more complex side chains. This -
raises a number of new algorithmic issues. A second is the exploration of new strategies
for choosing the parameters to optimize over in the small-scale global optimizations.
This includes the option discussed in Section 3 of selecting a set of consecutive dihedral
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angles, as well as automatic strategies that correspond to the use of visual information
discussed at the end of Section 3. Another direction is exploring ways to incorporate
additional partial information that scientists have about the structure of proteins. For
example, scientists appear able to predict the secondary structure of portions of proteins
with high but not perfect accurary [11, 5], and it would seem useful to be able to utilize
these predictions in the global optimization algorithm in some manner.
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