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Sea-level projections representing 
the deeply uncertain contribution 
of the West Antarctic ice sheet
Alexander M. R. Bakker1,2, Tony E. Wong  1, Kelsey L. Ruckert  1 & Klaus Keller1,3,4

There is a growing awareness that uncertainties surrounding future sea-level projections may be much 
larger than typically perceived. Recently published projections appear widely divergent and highly 
sensitive to non-trivial model choices. Moreover, the West Antarctic ice sheet (WAIS) may be much less 
stable than previous believed, enabling a rapid disintegration. Here, we present a set of probabilistic 
sea-level projections that approximates the deeply uncertain WAIS contributions. The projections aim 
to inform robust decisions by clarifying the sensitivity to non-trivial or controversial assumptions. We 
show that the deeply uncertain WAIS contribution can dominate other uncertainties within decades. 
These deep uncertainties call for the development of robust adaptive strategies. These decision-making 
needs, in turn, require mission-oriented basic science, for example about potential signposts and the 
maximum rate of WAIS-induced sea-level changes.

Future sea-level rise poses nontrivial risks for many coastal communities1, 2. Managing these risks often relies 
on consensus projections like those provided by the IPCC3. Yet, there is a growing awareness that the surround-
ing uncertainties may be much larger than typically perceived4. Recently published sea-level projections appear 
widely divergent and highly sensitive to non-trivial model choices4. Moreover, the West Antarctic ice sheet 
(WAIS) may be much less stable than previously believed, enabling a rapid disintegration5, 6. In response, some 
agencies have already announced to update their projections accordingly7, 8.

The construction of sea-level projections is often largely motivated by scientific considerations, such as 
gaining a better understanding of the underlying physics2, 9. In this process, the translation from input data to 
model projections and full uncertainty estimates involves a wide range of non-trivial model choices and assump-
tions that can result in large discrepancies between different uncertainty estimates4. For example, many studies 
consider a high level of model detail indispensable for reliable projections3, whereas semi-empirical modeling 
approaches10–12 trade complexity for the ability to calibrate the model. Semi-empirical modeling approaches often 
rely on strong assumptions about the prior parameter distributions, what mechanisms to include, and how to 
interpret and represent the data-model discrepancies. These modeling choices can be nontrivial and the associ-
ated uncertainties hard to quantify13. On the other hand, projections based on multi-model ensembles (implicitly) 
focus on structural uncertainty which requires strong assumptions on which part of the overall uncertainty is 
covered4.

Decision makers often prefer “robust” over optimal decisions when faced with “deep” uncertainty14–18. Deep 
uncertainty refers to a situation when experts cannot agree upon or are not willing to provide probabilistic uncer-
tainty ranges15. In the context of decision-making, robustness has many different definitions that usually involve 
trading some optimality for relative insensitivity to deviations from the model assumptions or relatively good 
performance over a wide range of futures15–18.

Here we present sea-level projections to inform the design of robust strategies to cope with the deep uncer-
tainties surrounding sea-level change, i.e. “solutions capable of withstanding from deviations of the conditions for 
which they are designed”17. This notion of “robustness” deviates from scientific robustness that builds on arguably 
well understood physics and empirical/robust evidence19–21, which may lead to overconfident uncertainty ranges2, 4  
and getting surprised by new insights and data9.
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Our sea-level projections are constructed to support robust decision frameworks by i) being explicit about the 
relevant uncertainties, both shallow and deep; ii) communicating plausible ranges of sea-level rise, including the 
deep uncertainties surrounding future climate forcings and potential WAIS collapse; and iii) tending to err on the 
side of underconfident versus overconfident when possible.

Model design. We design the projections to be probabilistic where reasonable and explicit about deep uncer-
tainties (e.g. resulting from non-trivial model choices) when needed. Robust decision frameworks often apply 
plausible rather than probabilistic ranges to represent and communicate uncertainties17, 22. In the case of sea-level 
projections, the bounding of the plausible range usually involves both a probabilistic interpretation of the sur-
rounding uncertainties and estimates of which probabilities are still relevant. For example, a full disintegration of 
the major ice sheets is often not taken into account because the probabilities of this occurring are considered too 
small to be relevant3, 23. What probability is relevant is highly dependent on the decision context and therefore it 
makes sense to be explicit about the probabilities. Moreover, probabilities are the easiest and most unambiguous 
way to communicate uncertainties24, 25.

Our projections are designed to highlight the relatively large deep uncertainties, notably those resulting from 
future climate forcings and those surrounding potential WAIS collapse (even though representations of deep 
uncertainty often implicitly encompass probabilistic interpretations). The future climate forcing is, to a large 
extent, controlled by future human decisions.

The probability of a WAIS collapse is potentially much larger than previously thought due to the combined 
effects of Marine Ice Sheet Instability (MISI), ice cliff failure and hydrofracturing5, 6. The discovery of this new 
mechanism puts earlier expert elicitations in a different light as it is unclear if those were based on this combined 
effect. One approach when faced with deeply uncertain model structures and priors is to present a potential WAIS 
collapse as deeply uncertain by means of a plausible range. We stress that this range is not meant to represent an 
implicit probabilistic projection of the WAIS contribution to sea-level rise.

We merge some small deep uncertainties into the probabilistic part of the projections. According to Herman 
et al.17 “… a larger risk lies in sampling too narrow a range (thus ignoring potentially important vulnerabilities) 
rather than too wide a range which, at worst, will sample extreme states of the world in which all alternatives fail”. 
Thus, in the context of informing robust decision making, it can be preferable to be slightly under- than slightly 
overconfident. To minimize the risk of producing overconfident projections we only use observational data with 
relatively uncontroversial and well-defined error structure.

Model setup. We use a relatively simple (39 free physical and statistical parameters), but a mechanisti-
cally motivated model framework to link transient sea-level rise to radiative concentration pathways applying 
sub-models for the global climate, thermal expansion (TE), and contributions of the Antarctic ice sheet (AIS), 
Greenland ice sheet (GIS) and glaciers and small ice caps (GSIC) (see Methods). This approach extends on the 
semi-empirical model setup recently reported by Mengel et al.12.

We use a Bayesian calibration method, wherein paleoclimatic data is assimilated with the AIS model sep-
arately from the calibration for the rest of the model, which assimilates only modern observations. Modern 
model simulations are then run at parameters drawn from the two resulting calibrated parameter sets (AIS and 
rest-of-model) and compared to global mean sea-level (GMSL) data26 (see Methods). Only model realizations 
which agree with each GMSL data point to within 4σ are admitted into the final ensemble for analysis. 4σ was 
chosen so the spread in the model ensemble characterizes well the uncertainty in the GMSL data (Fig. 1f).

We choose, at this time, not to use paleo-reconstructions nor reanalyses, beyond incorporating a windowing 
approach into our calibration method for the Antarctic ice-sheet parameters. This choice is motivated by the 
highly complex and uncertain error structure of these data sets. Failure to account for such complex error struc-
ture can result in considerable overconfidence, especially for low-probability events27.

Observational data and hindcasts. Global temperature, ocean heat, and most sea-level contributions 
have typically been subject to upward, slightly accelerating trends since 1850 (Fig. 1)3. Only the sea-level con-
tribution from the AIS has been close to zero and might even have been slightly negative3. The reliability of the 
datasets decreases back in time due to the lower data availability and only the datasets for global mean surface 
temperature and global mean sea level go back to before 1950.

For the oceanic thermal expansion we use trends (together with the uncertainty estimates) as reported by 
the IPCC3 for the calibration (Table S1). The time scale and uncertainties of the paleoclimatic AIS data are sub-
stantially different from those of the observational data for other components of sea-level rise. For this reason, 
we calibrate the AIS model separately from the others, based on paleo-data as previously used by Shaffer28 and 
Ruckert et al.29 (see Methods).

Note that the calibrated model performance depends on the assumed statistical model, the observational data, 
and the adopted physical model structure. We have purposefully implemented a modular modeling framework 
that can be easily modified to incorporate new observational data and model structure; this framework will be 
the subject of a follow-up study.

In general, the calibrated hindcasts (including both statistical and parameter uncertainty) correspond 
reasonably well to the reported uncertainty ranges surrounding the observational data. After calibration and 
post-calibration our hindcasts of especially global temperature and global sea-level match the observations fairly 
well whereas the component models show some small deviations; the high AIS contribution during the Last 
Interglacial period is somewhat underestimated and GSIC uncertainty is slightly too large. However, the latter 
matches our premise that it is better to be slightly underconfident than overconfident.
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Projections. For the first decades, the choice of RCP hardly affects the overall uncertainty (Fig. 2). The proba-
bilistic part of the sea-level projections for 2050 yields 90% credible ranges of 0.19–0.32 m (RCP2.6), 0.21–0.34 m 
(RCP4.5), and 0.23–0.37 m (RCP8.5) sea level relative to 1986–2005 mean sea level. These ranges are largely 
shaped by the uncertain contributions of the AIS and thermal expansion (Fig. 3).

Around 2040–2050, a large and uncertain contribution of the GIS becomes important, of which the amount 
is highly dependent on the RCP (Fig. 3). This GIS contribution increases the 90% credible ranges for 2100 to 
0.40–0.71 m (RCP2.6), 0.54–0.97 m (RCP4.5), and 0.85–1.59 m (RCP8.5) sea level in 2100, relative to 1986–2005 
mean sea level (Fig. 2). This is slightly higher than projected by the recent and comparable study of Mengel et al.12 
(that projects 0.28–0.56 m, 0.37–0.77 m, and 0.57–1.31 m for RCP2.6, RCP4.5, and RCP8.5, respectively) and can 
be explained by the relatively large contributions from the large ice bodies (Fig. 3 and Table S2). Our projected 
5–95% uncertainty ranges in global sea-level are however quite similar to the results of Mengel et al.12.

This similarity seems somewhat surprising since we deliberately aimed to be conservative with our prior 
parameter choices, but can be explained by our two-step calibration approach (see Methods). In the first step we 
calibrate the individual components of sea-level rise separately (similarly to Mengel et al.12), which indeed gives 
much wider uncertainty ranges in the projected sea-level rise and its components (not shown). Yet, those separate 
ranges are considerably reduced by the second combined calibration step that also assimilates global sea-level 
data.

Deep uncertainties. Pollard et al.5 suggests that a WAIS collapse is possible on the order of decades. Yet, the 
timing of a rapid disintegration is deeply uncertain. DeConto and Pollard6 present four widely divergent uncer-
tainty ranges with, depending on the model choices, central estimates ranging from 64 to 114 cm for the sea-level 
contribution at 2100 following RCP8.5.

Figure 1. Past observations (red) and hindcasts (blue) global temperature, ocean heat content, sea-level 
contribution and global sea-level. Shadings represent the uncertainty (2σ) in the observational data and the 
5–95% range in calibrated hindcasts.
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Figure 2. Future probabilistic global sea-level projections for the 21st century under RCP2.6 (dark blue), 
RCP4.5 (light blue) and RCP8.5 (red) forcing scenarios30, compared to the projections for 2100 by Mengel 
et al.12 (vertical side bars).

Figure 3. Future probabilistic projections of global temperature, ocean heat content and sea-level contributions.
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Our study contributes to communicating this deep uncertainty in the cumulative contribution of the WAIS 
by characterizing the effect on plausible changes in global sea-level rise given the additional processes such as 
oceanic thermal expansion. We provide three projections based on three WAIS-collapse scenarios, following 
RCP8.5; no collapse (0 cm), a mid-range estimate (79 cm in 2100, based on DeConto and Pollard6, and a high case 
(3.3 m, full WAIS disintegration within a couple decades5) (Fig. 4). For 2100, this implies a factor of two to four 
wider uncertainty range. For the period prior to 2100, this factor could be even larger. This deep uncertainty is a 
potentially important input to the design of robust strategies to cope with the sea-level response to anthropogenic 
climate change. It is important to note that we do not intend to assign an implicit probability distribution to these 
deeply uncertain projections. We simply want to characterize and communicate key aspects of the deeply uncer-
tain WAIS contribution to sea-level rise.

Conclusions and Discussion
We presented a set of sea-level projections designed to represent important deep uncertainties and to inform 
robust decision-making frameworks. Our simple model framework includes semi-empirical models of the cli-
mate and sea-level contributions from thermal expansion, the Antarctic ice sheet, the Greenland ice sheet, and 
glaciers and small ice caps. Its relative simplicity is chosen to result in a transparent model structure and to enable 
a data-model fusion. Our calibration is designed to avoid overconstraining the projections. We hence only utilize 
observational data accompanied with clear uncertainty estimates, and aim for relatively non-informative prior 
distributions. We communicate divergent expert assessments and large structural uncertainties as deep uncer-
tainties surrounding the projections.

The deeply uncertain contribution of WAIS disintegration dominates the overall uncertainty surrounding the 
sea-level projections within decades. We present examples of low and high sea-level rise scenarios that could be 
expanded by relying more heavily on expert elicitation31, 32 or by incorporating strong priors on the characteriza-
tion of the West Antarctic deep uncertainties.

Methods
Semi-empirical model framework. We combine previously published, semi-empirical models (Table S1). 
The global temperature and ocean heat content are simulated with the coupled zero dimensional climate and 1D 
ocean model DOECLIM33. The global mean surface temperature anomaly (Tg) feeds into the four models of sea-
level contribution from thermal expansion12, glaciers and small ice caps (submodel of MAGICC)34, the Greenland 
ice sheet (SIMPLE)35, and the Antarctic ice sheet (DAIS)28.

The DAIS model also requires Antarctic ocean surface temperatures (TANTO) which we estimate from a simple 
linear relation with Tg bounded below at the freezing point of salt water (Tf = −1.4 °C),

= +
∗ + −

+ ∗ + −

T
T a

T T
a b T

1 exp[(a b T )/ ] (1)
ANTO f

ANTO g ANTO f

ANTO g ANTO f ANTO

where aANTO is the sensitivity of the Antarctic ocean temperature to global mean surface temperature (unitless), 
and bANTO is the Antarctic ocean temperature for Tg = 0 °C. aANTO and bANTO are both estimated as uncertain 
model parameters.

For the models with four or fewer physical parameters (thermal expansion (TE)-model, MAGICC-GSIC, 
SIMPLE, and ANTO) we calibrate all parameters. For DOECLIM we apply the same free (physical) parameters as 
Urban et al.36 (climate sensitivity (S), the aerosol amplification factor (α), and the ocean vertical diffusivity (κ)), 
and for DAIS the same as used by Shaffer28 and Ruckert et al.29.

Figure 4. Future sea-level projections including deeply uncertain contribution of the WAIS.
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Model calibration. The model calibration approach consists of two stages. In the first stage, the AIS model is 
calibrated using paleoclimatic data as in Ruckert et al.29, along with trends in the AIS mass balance from the IPCC 
AR53. The rest of the model components are similarly calibrated using modern observations. The reason for the 
separate calibrations is the vastly different temporal scale and characterization of errors between the paleoclimatic 
versus the modern data. All of the calibration data are detailed in Table S1. The model calibration is done using 
a robust adaptive Markov chain Monte Carlo (MCMC) approach37. For both the paleoclimatic and the modern 
calibrations, Gelman and Rubin diagnostics are examined to assess convergence38.

All parameters are assigned wide, physically-motivated prior ranges (Table S3), intentionally taken at least as 
wide as ranges considered in previous studies29, 36 or divergent estimates from the literature (Table S4). We rely 
on published ranges, if these ranges are derived from data other than we use for the full calibration. For example, 
climate sensitivity is one of the parameters of our climate model, but published uncertainty ranges rely often on 
the same past observational data. Using those uncertainty ranges as prior would double-count the information 
content in the data. If independent priors are not available, we formulate priors that are constrained by our mech-
anistic understanding, and pre-calibration39. This approach is one potential source of deep uncertainty, especially 
in case of limited availability of data to update the prior distribution. We are not aware of uncontroversial prior 
distributions for a potential rapid ice sheet contribution of the West Antarctic ice sheet and we therefore restrict 
ourselves to a deeply uncertain range.

In the paleoclimatic calibration, four parallel MCMC chains of 500,000 DAIS model realizations each are sam-
pled. The first 120,000 iterations of each is removed for burn-in, yielding 1,520,000 posterior parameter estimates 
for analysis. For the modern calibration, four parallel MCMC chains of 1,000,000 iterations each of the coupled 
DOECLIM-thermal expansion-GSIC-GIS model (modern calibration) are simulated. The last 500,000 iterations 
from each chain are used for analysis as the calibrated “rest-of-model” parameter estimates, yielding 2,000,000 
posterior parameter samples for analysis.

50,000 sample parameter sets are drawn from the DAIS and rest-of-model calibrated parameter sets. The 
entire parameter combination at which the models were run is preserved in this sampling. What is lacking at this 
stage is the joint rest-of-model and DAIS parameter distribution. The post-calibration step estimates this link 
by running the entire BRICK sea-level rise module (DOECLIM-ANTO-thermal expansion-GSIC-GIS-AIS) at 
these sampled parameter values. The parameter combinations are restricted to only those which yielded model 
realizations for global mean sea-level (GMSL) which matched data26 to within a four-sigma window around all 
GMSL data points. The four-sigma range was chosen so as not to overconstrain, but still restrict the ensemble to 
simulations with a realistic representation of GMSL. Out of the 50,000 posterior samples, 5,612 post-calibrated 
model simulations are found. These served as the parameter samples for projections of GMSL. Projections to 
2100 of GMSL and its components (thermal expansion, GSIC, GIS, and AIS) are made using Representative 
Concentration Pathways 2.6, 4.5, and 8.530. Experiments conducted using alternative windowing approaches 
for the GMSL post-calibration show little (at most five centimeters) variation in the 5–95% ranges of projected 
sea-level rise by 2100.

Data availability. The sea-level rise model (consisting of the subcomponents of sea-level rise used here, are 
available at https://github.com/scrim-network/BRICK/tree/robustslr. Large parameter files and model results files 
are available from https://download.scrim.psu.edu/Wong_etal_BRICK.
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