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Abstract
Unraveling general properties of renormalized phonons are of fundamental relevance to the heat
transport in the regime of strong nonlinearity. In this work, we directly study the temperature and
frequency dependentmean free path (MFP) of renormalized phononswith the newly developed
numerical tuning forkmethod. The typical 1Dnonlinear lattices such as Fermi–Pasta–Ulamβ lattice
and f4 lattice are investigated in detail. Interestingly, it is found that theMFPs are inversely
proportional to the frequencies of renormalized phonons rather than the square of phonon
frequencies predicted by existing phonon scattering theory.

1. Introduction

Phonon is a basic concept in solid state physics describing the collectivemotions of lattice vibrations. The
phonon description is rigorously precise only forHarmonic lattices. For nonlinear lattices especially when
nonlinearity cannot be treated as a small perturbation, the concept of renormalized phonons emerges and
theoretical efforts have been devoted to describe these novel collectivemotions. The renormalized phonons are
discovered by different groups independently in various research areas ranging from lattice vibrations [1, 2], heat
conduction [3], field thermalization [4] and nonlinear waves [5, 6]. The theoretical predictions of the dispersion
relations of renormalized phonons from these different approaches are found to be slightly different [7, 8]. This
puzzle is solved by a recent variational approachwhich unifies the renormalized phonon theory by applying
suitable approximations in a systematical way [9, 10]. The existence of renormalized phonons in general 1D
nonlinear lattices has been verified numerically in computer simulations [1, 2, 5–7, 11, 12]. The role of
renormalized phonons as the heat energy carriers has also been proposed and testified by numerical simulations
[11–16].

In the regime of strong nonlinearity, the validity of conventional perturbative phonon transport theories is
questionable. The phenomenological effective phonon theory [7, 11–13, 16] is developedwithin the framework
of renormalized phonons dedicated to the explanations of temperature dependence of thermal conductivities
for nonlinear lattices. This theory can predict the actual exponents of the power-law dependence of thermal
conductivities as the function of temperature for typical 1Dnonlinear lattices. For example, the effective phonon
theory predicts the temperature dependent thermal conductivities k( )T of 1DFermi–Pasta–Ulamβ (FPU-β)
lattice are inversely proportional to temperature as k µ -( )T T 1 at low temperature region and proportional to
the quartic root of temperature as k µ( )T T1 4 at high temperature region [13, 16]. It also predicts the
temperature dependence is k µ -( )T T n1 2 1 forHn lattices [16]. For lattices with on-site potentials, the
effective phonon theory predicts for 1D f4 lattice the temperature dependence is k µ -( )T T 4 3 [11]. For
general nonlinear Klein–Gordon lattices where f4 lattice is a special example of n=4, this theory predicts the
general temperature dependence as k µ - +( ) ( ) ( )T T n n4 2 2 [12]. Extensive numerical simulations have verified
these predictions quantitatively and consistently for FPU-β lattice [13, 16, 17],Hn lattices with =n 3, 4, 5 [16],
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nonlinear Klein–Gordon lattices with =n 1.25, 1.5, 1.75, 2.5, 3, 3.5, 4 [11, 12, 18]. It should be emphasized
that these theoretical predictions are derived from effective phonon theorywithout anyfitting parameter.

In determining the thermal conductivities, themost important information is the temperature and
frequency dependence ofmean free paths (MFPs) of energy carriers. In the framework of the effective phonon
theory, the dependence ofMFPs on the frequency is assumed to follow a phenomenological relation [11, 16]:

ew
µˆ ˆ

ˆ
( )l

v
, 1k

k

k

where w= ¶ ¶ˆ ˆv kk k is the group velocity of renormalized phonons. The dimensionless nonlinearity strength ε
is defined as the ratio of ensemble averaged nonlinear potential energyEn and total potential energy

= +E E Et l n to be e = +( )E E En l n where El is the ensemble averaged linear potential energy. However, the
validity of the conjecture (see equation (1)) in thewhole parameter regime remains an open question to us.

In this work, wewill directly test the validity of this conjecture by using the newly developed tuning fork
methodwhich enables us to calculate theMFPs for every phononmode in a direct way [19]. The temperature
and frequency dependentMFPs of renormalized phononswill be calculated and comparedwith the conjecture
for typical 1D FPU-β,H4 and f4 lattices. The good agreement between numerical results and the conjecture
indicates that theMFP of renormalized phonons is indeed inversely proportional to the renormalized phononʼs
frequency and the nonlinearity strength, which is beyond the scope of any conventional perturbative phonon
transport theory.

2. TheMFPs of renormalized phonons: conjecture andnumerical verifications

Weconsider the 1Dnonlinear lattices ofN atomswith the generalHamiltonian
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where pi and qi denote themomentum and displacement of the ith atom, respectively. For simplicity, periodic
boundary conditions of = +q qi N i and dimensionless units have been used. The ( )V x represents the inter-atom
potential energy where only nearest neighbor interaction has been considered and the ( )U x is the on-site
potential energy. In this work, three typical nonlinear lattices, namely, the 1DFPU-β,H4 and f4 lattices are the
focus of the investigation. The combination of = +( )V x x x2 42 4 and =( )U x 0 describes the FPU-β lattice
while the combination of =( )V x x 44 and =( )U x 0 denotes theH4 lattice. For the f4 lattice, the potential
energy takes the formof =( )V x x 22 and =( )U x x 44 .

The renormalized phonon frequency ŵk can be expressed in a general form as w aw g= +ˆ k k
2 where

w p p= - < k2 sin ,k
k

2
is the familiar phonon frequency of theHarmonic lattice [16]. The renormalization

coefficientα is determined only by the inter-atompotential energy ( )V x while the coefficient γ depends only on
the on-site potential energy ( )U x . ForHarmonic lattice, g = 0 and a = 1ensure that w w=ˆ k k is recovered.
The nonlinearity strength ε defined as e = +( )E E En l n is dimensionless. For simplicity, we only consider
lattices with symmetrical hard potential withwhich the εwill not be ill-defined to be negative value [20]. Since in
asymmetrical lattices, the situation ismore complicated as the energy diffusion is ballistic while the heat
conduction is anomalous instead of ballistic [21]. For theHarmonic lattice, the nonlinearity strength ε equals
zerowhich should be expected sinceHarmonic lattice is a linear system. The existence of renormalized phonons
in these lattices have been verified by numerical simulations [1, 2, 5–7, 9–12].

The newly developed tuning forkmethod is able to calculate the renormalized phonon dispersion relations
aswell as theMFPs for these anharmonic vibrations directly [19]. For a nonlinear lattice at thermal equilibrium,
one can first determine the correlation function between themomenta ofmth and nth atoms:

F = á ñ( ) ( ) ( ) ( )t p t p 0 , 3mn m n

where it only depends on the relative positions ofm−nhere. A Fourier transformof this correlation function
gives rise to the susceptibility c w( ):

òc w c w= F =w f
¥

-
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If the amplitude c w-∣ ( )∣∣ ∣m n decays exponentially as

c w µ w-
- -
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l

where w( )l is a frequency dependent characteristic length. This characteristic length w( )l can be explained as the
MFP for the nonlinear vibrationwith frequencyω.Most recently, a resonance phonon approachmethod has
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been proposedwhich is also able to calculate the renormalized phonon frequencies and relaxation times in
nonlinear lattices [20, 22].

2.1. The FPU-β lattice
For lattices without on-site potential, the renormalization coefficient γ is zero. The expression of renormalized
phonon frequency and its group velocity can be simplified as

w aw a= =ˆ ˆ ( )v v, , 6k k k k

where =v cosk
k

2
is the phonon group velocity for theHarmonic lattice. Here the renormalization coefficientα

can be analytically obtained as ò òa = +
¥ - + ¥ - +( ) ( )x x x x1 e d e dx x T x x T

0
4 2 4

0
2 2 42 4 2 4

which is only

temperature or equivalently nonlinearity dependent [15].
For the FPU-β lattice, the nonlinearity strength ε can be expressed as e = á ñ á ñ + á ñ( )x x x4 2 44 2 4

where á ñ· means ensemble average. It can further be analytically resolved as
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This temperature dependence of ε for the 1DFPU-β lattice is plotted infigure 1. At low temperature limit, ε
increases with temperature linearly as e µ T , while ε approaches tomaximumvalue 1 at the high temperature
limit. The temperatures of these data points will be the temperatures at which theMFPs of renormalized
phonons are calculated. It can be seen that the range of ε values considered here is about one order ofmagnitude.

According to the conjecture of equation (1), theMFPs of renormalized phonons for the FPU-β lattice is
ewµˆ ( )l vk k k since the coefficientα is canceled for v̂k and ŵk. If we only consider the temperature dependence

ofMFPs l̂k, we have

e
µˆ ( )l

1
, 8k

which is a global effect. It says that for the temperature effect, theMFP of every renormalized phonon is inversely
proportional to the nonlinearity strength ε.

Infigure 2(a), theMFPs of renormalized phonons are plotted for different temperatures from =T 0.1 to
T=20. The lower the temperature, the longer theMFPs due to its small nonlinearity strength ε as indicated
from equation (8). In order to quantitatively verify the dependence of equation (8), we plot the rescaledMFPs of
el̂k as the function of temperature infigure 2(b). It can be seen that all the rescaledMFPs el̂k at different

temperatures collapse into a single curve, which is a clear verification of the equation (8).
It should bementioned that the numerically calculatedMFPs diverges as µ -l̂ kk

1.70 at low frequency limit
as k 0 as observed in [19], which finally gives rise to a divergent thermal conductivity as k µ N 0.41known as
the anomalous heat conduction [23–56]. Since the raw frequency wk is proportional towave vector k as w µ kk

in the low frequency limit, the calculatedMFPs thus follows the behavior of wµ -l̂k k
1.70. However, theMFPs

should depend on the renormalized frequency as wµ -ˆ ˆlk k
1 as seen from figure 2(b). As w wµˆ k k, the extra w-

k
0.70

dependence cannot come from the renormalized phonon frequency ŵk whichwill bring additional temperature

Figure 1.The dimensionless nonlinearity strength ε as the function of temperature for the FPU-β lattice. The ε increases linearlywith
temperature as e µ T in the low temperature regime and saturates tomaximumvalue of 1 as e  1 in the high temperature limit.
These values are evaluated from equation (7) and these temperature points will be used to calculate theMFPs of renormalized phonons
as infigure 2.
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dependence toMFPs l̂k. This property is unique formomentum-conserving lattices and the reason for this is still
an open issue.

Since the phonon group velocities a=v kcos 2k approach to zero as pk , theirMFPwill approach to

zero as well. However, the phononMFP l̂k ismeaningless if it is comparable to the lattice constant which is set as
unit here. The higher the temperature, the shorter the phononMFP. In numerical simulations, we only calculate

theMFP for >l̂ 1k which occurs for p<k as can be seen from figure 2(a).

2.2. TheH4 lattice
As amomentum-conserving lattice, theH4 lattice has the same expression for renormalized phonon frequency
and its group velocity as in equation (6). But the renormalization coefficientα has a different expression as
a = G G( ) ( )T2 5 4 3 4 1 2 [15].

TheH4 lattice is the high temperature limit of the FPU-β lattice and is a pure nonlinear lattice untreatable for
any perturbative phonon transport theory. There is only pure nonlinear term in the inter-atompotential energy
of =( )V x x 44 . By definition, the nonlinearity strength ε achieves themaximumvalue as e = 1 for all

temperatures. Same as the case for the FPU-β lattice, theMFPs l̂k ofH4 lattice shares the same temperature

dependence as eµ -l̂k 1. However, since e = 1at any temperature for the specialH4 lattice, theMFPs

µˆ ( )l constant 9k

which does not depend on temperature at all. This behavior can also be obtained frompuremathematical scaling
analysis, while the physical consistence betweenH4 and FPU-β lattice cannot be recovered.

Infigure 3, theMFPs of renormalized phonons in theH4 lattice are plotted for temperatures from =T 0.1 to
T=20. All theMFPs collapse into a single curve showing no sign of temperature dependence. The remarkable
feature of equation (9) is clearly verified.

2.3. The f4 lattice
The f4 lattice has an on-site potential and exhibits normal heat conduction behavior [18, 57, 58]. According to
definition, the renormalization coefficientα can be obtained as a = 1. The expressions of renormalized
phonon frequency and its group velocity are

Figure 2. (a)MFP l̂k of renormalized phonons as the function of k for FPU-β lattice at different temperatures. The larger the
temperature, the larger the nonlinearity and the shorter theMFPs as revealed by equation (8). (b)RescaledMFP e(ˆ · )lk as the function
of k for FPU-β lattice at different temperatures. The dashed line of -k 1.70 is the guide for the eye. The calculations are performed on
lattices with sizeN=1024 for <T 5 andN=2048 for T 5.
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where the renormalization coefficient g = á ñ á ñx x4 2 can be derived from a classical field approach as
g » T1.230 2 3 [4].

According to equation (1), theMFPs l̂k of renormalized phonons of the f4 lattice should follow a
dependence on nonlinearity strength ε andwave vector k as

e w g
µ

+
ˆ ( )l

k1 sin
, 11k

k
2

where g » · T1.230 2 3 is valid for temperatures not high enough [11]. Since the heat conduction is normal for
the f4 lattice, we are able to test both the frequency and temperature dependence ofMFPs here.

Wefirst test the k or frequency dependence ofMFPs l̂k as in equation (11). By introducing a temperature

dependent but k independent fitting parameter eµ -( )A T 1, it is easy to have =
w g+

ˆ ( )l A Tk
ksin

k
2 . Infigure 4, the

numerical calculatedMFPs are plotted as hollow symbols at four different temperatures =T 0.4, 1, 2 and 5.

These data are comparedwith =
w g+

ˆ ( )l A Tk
ksin

k
2 with = =( )A T 0.4 25.8, = =( )A T 1 18.3, = =( )A T 2 15.0

and = =( )A T 5 12.0 plotted as the dotted, dashed, dashed–dotted and solid lines in figure 4, respectively. It
can be seen that the k dependence of numerically calculatedMFPs can be qualitatively described by the
conjectured k dependence of l̂k of equation (11). For =T 0.4, 1 and 2, the peak positions of conjectured curves
are left-shifted compared to the numerical data. AtT=5, the peak positions are consistent between numerical
data and the conjecture. TheMFPs around k 0 are underestimated by the conjecture and this effectmight be
understood by noticing that the numerical calculated renormalized phonon frequencies ŵk are smaller than
what are predicted by the renormalized phonon theory [19].

Figure 3.MFPs l̂k of renormalized phonons as the function of k forH4 lattice at different temperatures. TheMFPs are found to be
totally independent of temperatures which is exactly what the conjecture predicts. The calculations are performed on lattices with size
N=1024 for <T 5 andN=2048 for T 5.

Figure 4.MFPs l̂k of renormalized phonons as the function of k for f4 lattice at different temperatures at =T 0.4, 1, 2 and 5. The

hollow symbols are the numerical data ofMFPs. The dotted, dashed, dashed–dotted and solid lines are the curves of =
w g+

ˆ ( )l A Tk
ksin

k
2

where ( )A T is the fitting parameter for =T 0.4, 1, 2 and 5, respectively. Here the fitting ( )A T is = =( )A T 0.4 25.8,
= =( )A T 1 18.3, = =( )A T 2 15.0 and = =( )A T 5 12.0. The calculations are performed on lattices with sizeN=1024.
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TheMFP l̂k is also conjectured to be inversely proportional to the nonlinearity strength ε for the f4 lattice in
equation (11). The nonlinearity strength ε can be expressed as e = á ñ á - ñ + á ñ+( ( ) )q q q q4 2 4i i i i

4
1

2 4 by
noticing the ensemble average is independent of atom index i. Unfortunately the ε cannot be analytically
calculated here.We can only numerically calculate the nonlinearity strength ε at different temperatures at
thermal equilibrium. Infigure 5, thefitting prefactors ( )A T are plotted as the function of e-1 for temperatures
ranging from =T 0.1 toT=10. For higher temperatures, the numerical simulation is hard to achieve thermal
equilibrium as the f4 lattice approaches to the anti-continuous limit with onlyN separate nonlinear oscillators
located at each site. The linear dependence between ( )A T and e-1 verifies the dependence of nonlinearity

strength for theMFP l̂k conjectured as in equation (11) for the f4 lattice.Most interestingly, the slope of p2 of

this dependence suggests the renormalized phononʼsMFP l̂k of the f4 lattice can bewritten as


p
w

=ˆ ˆ
ˆ

( )l v
1 2

, 12k k
k

where p ŵ2 k is nothing but one period of renormalized phononwithmode k.

3. Conclusions

In summary, we have quantitatively investigated the temperature and frequency dependence ofMFPs of
renormalized phonons in 1Dnonlinear lattice with the newly developed tuning forkmethod. The conjecture
made in the effective phonon theory is verified suggesting theMFPs should be inversely linear proportional to
the renormalized frequency ŵk and nonlinearity strength ε. This is different from the analysis ofUmklapp
phonon scattering theory where aMFP wµ -2 dependence is predicted [59]. But ourwork is consistent with the
recent results numerically obtained for carbon nanotubes where the dependence ofMFP wµ -1 is claimed [60].
The current work reinforces the role of renormalized phonons during the heat transport process in strong
nonlinearmaterials where the nonlinear effect cannot be ignored.
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