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Abstract

Background: Despite their potential health and social benefits, adoption and use of improved cookstoves has been
low throughout much of the world. Explanations for low adoption rates of these technologies include prices that
are not affordable for the target populations, limited opportunities for households to learn about cookstoves
through peers, and perceptions that these technologies are not appropriate for local cooking needs. The P3 project
employs a novel experimental design to explore each of these factors and their interactive effects on cookstove
demand, adoption, use and exposure outcomes.

Methods: The P3 study is being conducted in the Kassena-Nankana Districts of Northern Ghana. Leveraging an
earlier improved cookstove study that was conducted in this area, the central design of the P3 biomass stove
experiment involves offering stoves at randomly varying prices to peers and non-peers of households that had
previously received stoves for free. Using household surveys, electronic stove use monitors, and low-cost, portable
monitoring equipment, we measure how prices and peers’ experience affect perceptions of stove quality, the
decision to purchase a stove, use of improved and traditional stoves over time, and personal exposure to air
pollutants from the stoves.

Discussion: The challenges that public health and development communities have faced in spreading adoption of
potentially welfare-enhancing technologies, like improved cookstoves, have highlighted the need for interdisciplinary,
multisectoral approaches. The design of the P3 project draws on economic theory, public health practice, engineering,
and environmental sciences, to more fully grasp the drivers and barriers to expanding access to and uptake of cleaner
stoves. Our partnership between academic institutions, in the US and Ghana, and a local environmental non-
governmental organization creates unique opportunities to disseminate and scale up lessons learned.

Trial registration: ClinicalTrials.gov NCT03617952 7/31/18 (Retrospectively Registered).
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Background
Low adoption rates of technologies with the potential to
improve public health have been observed in a number
of cases across a variety of contexts; examples include
bed nets [1], latrines [2], deworming drugs [3], and con-
doms [4], among many others. Explanations for this
phenomenon tend to focus on three key factors: the
prices of these technologies and the role of subsidies [1,
5, 6], the effect of peers and social learning [3, 7, 8], and
the ways in which users’ perceptions of technologies are
influenced by different factors and affect subsequent
adoption decisions [3, 6, 9]. The aim of this study is to
investigate the interactions among these three factors in
determining adoption of improved cookstoves, a tech-
nology with potential public health, social, and environ-
mental benefits.
Cooking with biomass over open fires is a widespread

practice throughout much of the developing world.
Wood, dung, agricultural residues, and charcoal produce
large amounts of respirable particles, carbon monoxide,
and other toxic pollutants when used to fuel simple
cooking stoves [10]. A growing body of evidence links
household air pollution (HAP) to acute lower respiratory
infections in young children and chronic obstructive pul-
monary disease and lung cancer (for coal) in adults [11–
13]. Biomass cooking also impacts regional and global cli-
mate through black carbon particulates and other emissions
[14]. Furthermore, gathering fuels is a time-consuming ac-
tivity in locations where environmental damage has often
already made resources scarce. This time burden, which
falls disproportionately on women, could be better spent on
domestic care or income-generating activities, aggravating
the problem of “time poverty” [15].
While a multitude of technologies exist that could po-

tentially address the suite of problems linked to current
biomass cooking practices, efforts to disseminate these
technologies and promote changes in cooking behaviors
have often fallen short [16, 17]. The Global Alliance for
Clean Cookstoves, a public-private partnership currently
in its second phase of “investment and innovation,” has
set a goal to foster the adoption of clean cookstoves and
fuels in 100 million households by 2020 [18]. However,
consistent adoption of cleaner stoves has proven elusive
in practice at larger, community-level scales. The
well-known RESPIRE study provided an improved chim-
ney woodstove to households in highland Guatemala
and saw encouraging results, finding a significant reduc-
tion in carbon monoxide exposure for groups receiving
the clean stove over an 18 month period [19]. On the
other hand, randomized trials of a locally-made mud
stove in India achieved disappointing initial adoption
and maintenance rates and, in the long run, failed to re-
duce exposure to dangerous air pollutants [16]. These
authors specifically contrasted their intervention with

the RESPIRE study and argued that they provided
households with greater ability to reveal their valuation
in usage rates: stoves were locally made and significantly
cheaper, were not inspected weekly [20], and were
followed for a longer period of time. In response, the
RESPIRE study’s lead investigator argued that the Indian
“improved” stove was not truly an improvement over
existing technologies since it failed to alter combustion
and reduce smoke in any meaningful way [21]. Essen-
tially, both sides of this debate contended that low per-
ceived benefits of the cookstove technology led to low
adoption and use. The cookstove example thus presents
itself as a useful context for examining the challenges
and dynamics of technology adoption.

Prior research on technology adoption
Technology adoption continues be a central research
topic in public health and social sciences because of its
importance in understanding development and health
outcomes and because of the kaleidoscope of models
explaining different economic, psychological, and socio-
logical factors at play. Two key strands of literature we
summarize here examine the roles of prices and peer ef-
fects on technology adoption.

Prices and technology adoption and use
Setting subsidy and end-user price levels for a new tech-
nology requires grappling with a fundamental tension
between rapid diffusion and sustainability [22, 23]. On
the one hand, subsidizing adoption of socially beneficial
technologies may be necessary to promote widespread
adoption, at least in the short-run. Indeed, recent evi-
dence has shown that new technologies offered at a
positive price tend to exhibit much lower demand than
identical products offered for free [24, 25]. In one ex-
ample that is particularly relevant for this study, Mobarak
and coauthors [23] analyze a field experiment with the
distribution of cookstoves in Bangladesh. The researchers
find demand for these modern stoves to be extremely
price elastic, with only 5% of households purchasing the
stoves with no discount and a 50% discount yielding 8–
12% higher demand (relative to the full cost treatment).
On the other hand, many argue that goods given away

for free or at low cost will be used at lower rates than
goods for which users pay higher prices. Economic the-
ory offers at least two mechanisms for this hypothesis.
First, price-based incentives for new technologies (or
any scarce good) ensure allocation of goods to those
valuing them the most (a basic principle in economics).
Second, higher prices may lead potential users to per-
ceive that a product is of higher quality [26], thus en-
couraging higher use. Empirically, however, there is little
evidence to support this hypothesized positive relation-
ship between price and technology use. In one of the
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few studies to directly test this hypothesis, Cohen and
Dupas [1] analyze data from a randomized controlled
trial of bednet distribution in Kenya in which health
clinics distributed nets freely or partially subsidized at
four different end-user price levels (between $0.15 and
$0.60 per net). The researchers identify significantly
price-elastic demand for bednets: Clinic patients charged
the highest price in the experiment exhibited 60% lower
demand for bednets relative to the free distribution
group. Moreover, despite thorough statistical analysis,
Cohen and Dupas do not find evidence that the free dis-
tribution group exhibits lower usage rates (conditional
on ownership) than the partially subsidized groups. Fur-
thermore, the free distribution group is the only treat-
ment group for which the researchers find a statistically
significant health impact (reduced anemia). To our
knowledge, these authors did not directly examine the
relationship between price and perceived quality of bed-
nets as an intermediate factor affecting product use.
Thus, empirical evidence to date seems to indicate that

highly subsidized or free distribution of health-promoting
technologies: a) may be required to promote their initial
adoption, and b) does not appear to reduce subsequent
technology use (although the latter finding has a thinner
evidence base and should be tested more broadly). Yet
free distribution strains public resources and may not be
sustainable over time or scalable to population-level tech-
nology diffusion. Additional work is thus required to
examine the dynamics of diffusion over time and space.
One particular question involves the possibility that sub-
sidizing adoption to an initial group of users can lead that
group’s peers to learn about and subsequently adopt a
technology and, assuming the technology is useful, posi-
tively affect individuals’ willingness to pay (WTP) for the
technology.

Peer effects and technology adoption
Peer effects present the possibility of a positively reinfor-
cing feedback for sustaining adoption and takeoff of new
technologies. The power of social contagion in technol-
ogy adoption has been measured in a number of con-
texts [e.g., 27]. Miller and Mobarak [9] estimate peer
effects on efficient cookstove adoption in Bangladesh, by
conducting randomized, sequential cookstove rollout
first with opinion leaders, then with a first round of ran-
domly selected members of the general population (in
the same neighborhoods as the opinion leaders), and
then with social contacts of the first round households.
Their results suggest statistically significant and positive
peer effects from opinion leaders’ adoption behaviors (at
least in some cases), but social ties to first round partici-
pants are found to reduce the likelihood of adoption
among second round households. The authors’ interpret-
ation of this finding is that second round participants held

initially high expectations about the modern stoves, and
revised these expectations downward via information
from social contacts. This negative peer effect finding and
its interpretation are similar to Kremer and Miguel’s [3]
analysis of deworming drugs in Kenya. Yet to our know-
ledge, neither study explicitly measured expectations or
beliefs about product quality. Both of these cases highlight
the fact that while the increasing availability of experimen-
tal data and appropriate econometric methods for analyz-
ing these data have gone a long way toward solving
Manski’s [28] “reflection problem” and enabling identifica-
tion of peer effects, this research has also raised a number
of new questions about the causal mechanisms underlying
observed effects.
In light of the previous research outlined above, we

aim to contribute to a more scientific understanding of
the interactions between economic incentives (“prices”),
social learning (“peers”), and subjective beliefs (“percep-
tions”) in technology adoption dynamics. Specifically, we
posit that prices and peer effects both operate – at least
in part – through separate and interactive effects on per-
ceptions of a technology’s quality and benefits.

Conceptual model
Figure 1 presents our conceptual model using an influ-
ence diagram of how we expect prices, peers, and per-
ceptions to interact, based on previous research. Prices
can be expected to have both direct and indirect influ-
ences on key outcomes (technology adoption and use):
The direct effect (the economic “law of demand”) is ex-
pected to be negative, while it is possible that there is a
positive indirect effect on both adoption and use via higher
perceptions of technology benefits for higher-priced prod-
ucts. Peer effects can be expected to affect individual adop-
tion and use through effects on individuals’ perceived value
of the new technology. This effect can be negative or
positive.
Importantly, the conceptual model in Fig. 1 also high-

lights the potential feedbacks (the dashed arrows) that
can confound causal identification, and which our ex-
perimental design seeks to address. First, a number of
factors determine prices for a new technology in an ob-
servational setting, including supply and retail costs. We
will address this confounding feedback using prices
which are randomly assigned across groups of house-
holds. Second, peer effects are well-recognized for their
potential to generate positive feedback loops. We will
control for this confounder by sampling households
neighboring participants in the previous study’s cook-
stove intervention, in conjunction with the recruitment
of new groups of households unexposed to the technol-
ogy. This identification strategy for peer effects appears
unique compared to previous research [3, 9, 29].
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Finally, an important question for sustainability science
and public health is how subjective expectations change
following technology adoption and subsequent use, and
how these revised expectations determine long-term use.
For example, we might hypothesize (e.g. based on the Pro-
spect Theory literature [30]) that discovering a new tech-
nology to yield smaller than expected benefits may be

have a greater downside effect on usage than the upside
effect of finding the technology to have greater than ex-
pected benefits.
Additional key questions emerging from this model

are how the individual factors affecting key outcomes of
interest are mediated by the other factors. A standout
issue along these lines is the possibility that peer effects

Fig. 1 Influence diagram showing technology adoption dynamics. The solid arrows in the diagram are influences that this study will examine in
detail. The dashed arrows are potential confounding feedbacks that our identification strategy will address. The signs in parentheses indicate
whether effects are expected to be positive or negative, based on previous literature

Fig. 2 Map of the study area. Source: Authors’ creation with map and imagery data from Google, ORION-ME, Data SIO, NOAA, U.S. Navy, NGA,
GEBCO, Landsat/Copernicus, U.S. Geological Survey, IBCAO
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may dampen the role of prices in subjective perceptions of
technology quality. This is one hypothesis suggested by
Ashraf et al. [6], who conducted an information-based
interventions in the case of improved water filter
subsidization in Zambia and found that information
provision increased the price elasticity of demand, making
price subsidies more effective. The authors remain agnos-
tic on the causal mechanisms behind this finding, but sug-
gest that uninformed consumers may use price as an
indicator of product quality.

Methods and study design
Study area
The P3 study takes place in the Kassena-Nankana Dis-
tricts (KND) in Northern Ghana (Fig. 2). The climate in
this region is hot and arid, with one rainy season lasting
from approximately May to October, and the vegetation
is dominated by woody shrubs and grassland. Much of
the land is used in subsistence agriculture, with millet as
the dominant crop. Since 1993, the Navrongo Health Re-
search Centre (NHRC) has conducted a district-wide
Health and Demographic Surveillance Survey (HDSS)
[31]. According to HDSS data, the total population of
the KND is about 156,000 (roughly 30,000 households),
with about 80% living in areas classified as rural while
20% are in more urban areas, primarily in and around the
central town of Navrongo. Eighty eight percent of rural
households report using biomass (wood or agricultural
waste) as their main cooking fuel, while another 9% rely
primarily on charcoal, and only about 3% of households
cook primarily with gas or electricity. The traditional cook-
ing method in these rural areas is a three-stone open fire,
with many households also using charcoal stoves. Cooking
is done both indoors and outdoors. Ghana has one of the
highest deforestation rates in Africa with the country’s for-
est an estimated quarter of its original size [32].

Prior research: The REACCTING study
The P3 project builds on an earlier cookstove study that
our research team conducted in this region, the Research
on Emissions, Air Quality, Climate, and Cooking Tech-
nologies in Northern Ghana (REACCTING) study [33].
The primary objective of the REACCTING study was to
assess the effectiveness, feasibility, and sustainability of
scaling up use of improved cookstoves in Northern
Ghana through a coupled natural-human systems ap-
proach that explores the linkages among human behav-
iors (i.e., cooking practices), detrimental air quality at
multiple spatial and temporal scales, and health out-
comes (respiratory illness).
For the purposes of the P3 project, the key feature of the

REACCTING study was a randomized household-level
intervention which distributed two types of improved bio-
mass stoves for free to 200 participating households in the

rural areas of the KND. Based on extensive feedback from
households in the KND that tested several stove models
during a pilot phase (2012–2013), two different stove tech-
nologies were selected for the REACCTING intervention
study: the Gyapa Woodstove and the Philips Smokeless
Woodstove (HD4012). The Gyapa Woodstove was specific-
ally designed for use by populations in the Northern Re-
gions of Ghana by Relief International/Gyapa Enterprises.
A similar model was used in a past intervention study in
Accra, and saw significant decreases in kitchen CO and
PM2.5 levels [34]. This model includes a combustion cham-
ber, often called a rocket-stove design, with a ceramic liner
on the inside and an outer liner of insulation and sawdust
to increase heat retention. Meanwhile, the Philips stove was
a gasifier stove produced in Lesotho. This stove was visually
perceived as “high-tech,” required power (supplied, in our
context, through a small solar panel) to perform properly,
and had been observed to be a low emitting technology,
Tier 3 stove, during lab testing [35].
The target population for the REACCTING interven-

tion study was rural households in the KND that used
biofuels (wood, animal waste, and crop residue) as their
main cooking fuel source, and that contained women
and young children (demographic groups typically in
closest proximity to cooking activities). Data from the
HDSS enabled a cluster random selection of households
from the district population that met the REACCTING
eligibility criteria. The social structure in this region is
such that groups of related households live in connected
compounds. For the purposes of the HDSS, compounds
are grouped into geographic clusters. These clusters are
grouped into five geographic regions: four of these are
primarily rural (North, East, South, and West), while the
Central region contains Navrongo town and surrounding
areas. For the REACCTING sample, we first eliminated
households from the Central region, and then randomly
selected 25 clusters using population weighting to deter-
mine the number of clusters selected per region. Within
each cluster, eight households were randomly selected
from the population of households that met the study eligi-
bility criteria, resulting in a total sample of 200 households.
The stove intervention of the REACCTING study in-

cluded four different intervention arms: Group A re-
ceived two Gyapa stoves, Group B received two Philips
stoves, Group C received one of each type of stove, and
Group D served as the control for the duration of the
study and received two stoves of their choice at the
study’s conclusion. Stove stacking (i.e., households using
new cookstoves alongside traditional cooking methods)
had been observed in prior studies and we had earlier
observed multiple stove use by the households in the
study area. Multiple stoves were thus provided to each
intervention household to increase the probability that
households would begin to substitute away from
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traditional stoves rather than simply adding a new
stove to their cooking technology mix. Randomization
into intervention groups was done at the cluster level:
i.e., within each of the 25 clusters, there are 2 house-
holds in each of the 4 REACCTING intervention
groups. Stove distribution for the three intervention
arms (A-C) occurred in December of 2013 and Janu-
ary of 2014. The control group (D) received their
stoves in mid-2016.

P3 intervention design
To investigate how prices, peers, and perceptions affect
adoption of improved cookstoves, our study leverages
the fact that the REACCTING study’s free distribution
of stoves to randomly selected households provides
those households’ peers with information about these
new technologies. Building on this prior work, the P3
study offers new stoves at different price levels to groups
of households with and without social ties to the house-
holds that received stoves as part of this prior study.
Through these experiments, we will be able to identify
the interacting feedbacks between prices and peer ef-
fects on perceptions of stoves, as well as adoption, use,
and personal exposure outcomes across different groups.
Our study design is targeted towards these specific re-
search questions:

1. How are prior perceptions of the benefits of a new
technology affected by the technology’s price? For
example, does higher price signal higher quality to
target users?

2. How do prior perceptions of a new technology vary
based on connections to peers that have experience
with that technology? Specifically, how do peers’
adoption and use histories help potential users of a
technology learn about product quality?

3. How does peers’ experience influence the
relationship between price, on the one hand, and
perceptions, technology adoption and use
outcomes, on the other? Do peer effects increase or
decrease the price elasticity of demand for the new
technology?

4. How do perceptions of a technology change over
time among households that adopt that technology
initially? How do these perceptions relate to objective
measures of stove performance (e.g., personal
exposure to pollutants), and what is the relationship
between perceptions and technology use over time?

5. How much cleaner are the improved stoves,
operated by end users, than traditional stoves?
What emission and pollutant exposure differences
exist among the improved and traditional stoves
and how does user behavior impact these
outcomes?

We address these questions, which are of central inter-
est to the public health community, using interdisciplin-
ary methods, data collection and analysis.

Stove selection
The design of our intervention requires that we offer
stoves that are similar to those offered for the REACCT-
ING study, since we are measuring whether learning
about these technologies through peers influences adop-
tion decisions. However, our experience in the REACCT-
ING study revealed some key challenges with the two
specific stove models used in that study (the Gyapa rocket
stove and Philips forced draft stove). We thus elected to
use slightly different stove models for the P3 project. A re-
view of available technologies and consultation with man-
ufacturers led us to select the ACE1 forced draft stove as a
replacement for the Philips. Similar consultations and lab
testing at CU Boulder allowed us to narrow our rocket
stove options down to two: the Greenway Jumbo and the
EcoZoom Dura. A focus group discussion was conducted in
September 2016 with participants similar to our target cus-
tomers to compare and assess preferences for these two
models. During the focus group discussion, the team dem-
onstrated the use of these stoves to participants. Participants
were then divided into groups and given the necessary in-
gredients/materials to use the stoves to cook a common dish
(jollof rice). Participants gave positive feedback on both
stoves, but expressed a slight preference for the Greenway
Jumbo, which we subsequently selected for our intervention.

Sample selection
The study design is summarized in Fig. 3. For the pur-
poses of this design, we refer to the REACCTING study
sample as the R Group. Newly enrolled households that
are the primary focus of the P3 study, are referred to as
the S Group. Our two-phase sample selection procedure
involves first selecting clusters, and then selecting
households within each cluster. In the first phase, the S1
subgroup was selected to include the same clusters as
the R Group households (25 clusters), while the S2 sub-
group consists of 25 clusters randomly selected from the
rural areas of the KND outside of a certain buffer dis-
tance from the R Group clusters. Given that there are
more than 300 clusters in the district and only 25 were
included in the R Group, social ties between S2 and R
Group households are expected to be minimal (and are
measured as part of our data collection).
Next, the required number of households was selected

from each cluster. We used the same inclusion and exclu-
sion criteria used to select households in the REACCT-
ING study (i.e., rural, using biofuel, having one woman
18–55 and one child under 5). S1 group households were
selected as nearest eligible neighbors of each of the 6
REACCTING intervention households in each cluster. In

Dickinson et al. BMC Public Health         (2018) 18:1209 Page 6 of 17



the non-peer clusters, 6 seed households, each meeting
the above eligibility criteria, were randomly selected, and
then non-peer group households were selected as the
nearest neighbors of those seed households.
By using a uniform set of selection criteria and sam-

pling methods between the peer and non-peer groups,
and given that both the R/S1 group and the S2 group
clusters were randomly selected, the study design en-
sures that in expectation the only differences between S1
and S2 group households is the former’s higher level of
contact with peers that have cookstove experience, enab-
ling us to test the impacts of peers on our outcomes of
interest (perceptions and technology adoption and use).

Setting stove prices
To examine the effects of price (and the interactive ef-
fects of prices and peers) on perceptions and technology
adoption, both S1 and S2 Groups were randomly subdi-
vided into multiple price treatment groups. The price
randomization is done at the cluster level – i.e., all house-
holds in a cluster are offered stoves at the same price.
In order to generate variation in stove purchasing be-

havior that we can use to assess impacts of prices and
peers, we require information on an approximate range
for households’ willingness to pay (WTP) for the differ-
ent stove models in the study population. Estimates of
WTP come from two primary sources. First, during the
REACCTING study, we measured participants WTP for
improved stoves at multiple time points. During the
study’s baseline survey, a choice experiment was con-
ducted to assess stated WTP for hypothetical stoves with
different attributes (e.g., less smoke, faster cooking time
relative to traditional stoves). These stated WTP values
were quite high; for example, average WTP for stoves

that produced less smoke was on the order of 200 GHC
(~USD$50) [36].
Due to concerns that these stated WTP values may have

been larger than households’ true willingness and ability to
pay for improved stoves in this area, we decided to collect
revealed preference information on WTP during the P3 de-
sign phase. Specifically, in November of 2015 we conducted
a series of five focus group discussions (FGDs) in which we
conducted a 2nd price, sealed-bid auction of different stove
models. Under classical economic assumptions, participants
should bid their true ex ante WTP for the good [37]. The
bid data from these auctions therefore provide some guid-
ance on the range of households’ WTP for different stove
models. We auctioned one “mid/low-quality” stove – the
Gyapa stove used in the REACCTING study – and two
“high-quality” stove models – the ACE1 and the Philips.
The mean bid for the higher quality stoves was 67% higher
than for the Gyapa (Table 1). A quarter of participants in
the higher-quality stove auctions bid at least 30 cedis,
whereas only 5% of participants in the lower-quality stove
auctions bid at least this amount (Fig. 4).

Randomizing prices across clusters
The experimental design for these interventions involves
selecting price levels for the two stoves and distributing
these prices across the peer and non-peer clusters. These
price levels are set with the aim of maximizing the statis-
tical precision of estimated economic demand for the
stoves. The design procedure adopts methods from the
economic discrete choice experiment literature, to select
price levels which maximize the D-efficiency criterion [38]
and uses prior, preliminary information on households’
WTP for the stoves elicited in auctions during the FGDs.

Fig. 3 Study design
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We use a D-efficiency method, which follows the stand-
ard principle of seeking a set of experimental treatments
which minimize the asymptotic covariance of the
treatment effect estimates given a fixed sample size.
We follow standard practice in the discrete choice
econometric literature and base our D-efficiency de-
sign on a conditional logit model [39, 40], in which
the probability of an experimental subject selecting
stove j from a choice set t is:

pjjt βð Þ ¼ expβx jP
k∈ J expβxk

where xj is a column vector of the stove’s K attributes
(in our application, price and the stove model) and β are

regression coefficients to be estimated. D-efficiency seeks
to identify a series of choice sets t = 1, …, T that minimize
the expected asymptotic variance of maximum-likelihood
estimate (MLE), βMLE. The asymptotic variance of the
MLE is inversely proportional to the Fischer information
matrix, which in the conditional logit model with T choice
sets compromised of A alternatives each is:

I βjXð Þ ¼
XT

t¼1

X 0
t diag pt β;Xtð Þð Þ−pt β;Xtð Þ0pt β;Xtð Þ� �

Xt

where Xt is the K ×A matrix of attributes of each alter-
native in choice set t, X is the collection of these matri-
ces over all T choice sets, and pt(β, Xt) is the 1 ×A vector
of conditional logit predicted probabilities given re-
gression estimates β and attributes Xt. (In matrix no-
tation, the diag(x) function of a vector x forms a
square matrix with the elements of x along the diag-
onal and zeros everywhere else, and X′ denotes the
transpose of X.) The D-efficiency objective is to find
a collection X of alternatives and attributes which
maximize the determinant of IðβMLEjXÞ . In practice,

Table 1 Bid amounts for three types of stoves sold in auctions

Stove Number
of Bids

Bids (Ghanian cedis)

Mean Std. Dev.

Gyapa 31 13.10 8.19

Philips 23 19.35 16.88

ACE 27 24.04 25.25

Fig. 4 Distribution of bids for the higher quality (upper panel) and lower quality (lower panel) stoves in the stove auctions
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βMLE is not known a priori, and so an initial guess β0
is used in experimental design.
Based on study resources, we decided that each house-

hold would be offered the option of purchasing up to
two stoves consisting of any combination of the higher
and/or lower quality stove models at prices randomly
assigned to that household’s cluster. Therefore, each
choice set consisted of 6 alternatives (1–2 stoves of only
one model, 1 of each model, or no stoves), and the only
components of X that were experimentally controlled
were these price levels. For logistical ease, we prespeci-
fied the possible price levels to be 0, 30, 60, 120 or 240
Ghanian cedis, which encompassed a range of prices
from free-distribution to near 100% the cost of the
stoves. Following standard practice, dominated alterna-
tives were also eliminated from the design: in our case
price configurations in which the lower-quality stove
was sold at a higher price than the higher quality stove.
The initial guess β0 of the conditional logit regression
coefficients was obtained first from logit curves fitted to
the FGD auctions (Fig. 5 above). The experiment was
also stratified by study subregion (North, South, East or
West), and replicated in S1 and S2 clusters. After
launching the sales experiment in the North, we ob-
served higher than expected stove demand, based on
the FGD auctions; we therefore redesigned the price
treatments again with the D-efficiency method for the
remaining three regions based on this higher observed
demand.

Assessment of intervention impacts
In order to measure the impacts of the intervention,
we collect data on multiple covariates and outcomes
using surveys and other monitoring instruments. The
variables that will be measured are summarized in
Table 2.

Baseline household survey
For all 300 household participants, we conducted a com-
prehensive baseline survey between Dec 2016 and Feb
2017. This survey measured household composition and
demographics, attitudes and priorities, cooking behaviors
(including type(s) of stoves used, fuel use, foods cooked,
who cooks within household), knowledge and percep-
tions of issues related to cooking practices, demand for
new stoves, and self-reported health measures. In each
household, the primary cook (typically female, aged 18–
55 years old) served as the main survey respondent. In
households where another male household member
makes financial decisions, we also conducted a second-
ary survey with this individual. All baseline and follow
up surveys are conducted using electronic tablets and
the Open Data Kit (ODK) software.

Perceptions survey
After stove orders were made, but before the recipients re-
ceived their new stoves, we conducted a short follow up
ODK survey with all 300 households to measure their per-
ceptions of the different types of stoves (Jun-Aug 2017).
Since our central research questions involve the roles of
both prices and peers in shaping stove perceptions, these
surveys provide important data on how participants per-
ceive the different stoves and what benefits they expect to
derive from them a priori.

Endline survey
An endline survey will be conducted with all households
in Aug-Oct 2018. This survey will collect information on
the same topics measured in the baseline and perceptions
surveys. A focus will be on measuring use of both trad-
itional and improved stoves, satisfaction with stoves’ per-
formance, and perceptions of stoves’ impact on household
air quality (to be compared with objectively measured air
quality and exposure data).

Stove orders, payments, and refusals
The intervention is being implemented by a local envir-
onmental NGO, the Organization for Indigenous Initia-
tives and Sustainability (ORGIIS). Between March and
May of 2017, ORGIIS and NHRC staff held a series of
cluster-level meetings (6 households per cluster) during
which they demonstrated the two types of stoves and ex-
plained their benefits, and then provided participants the
choice to purchase 0, 1, or 2 stoves (total) of either type
at the cluster-randomized price levels. Stoves were then
ordered from manufacturers and imported; stoves ar-
rived in Navrongo in August, and were distributed to
participants in October of 2017. ORGIIS staff will collect
payments for stoves over a six month period, with first
payment due at the time of delivery. (This payment ar-
rangement was explained during the stove offer meet-
ings, so households were able to make their purchasing
choices with this information.) ORGIIS staff are also
trained in stove maintenance and repairs, and are available
to troubleshoot any problems that households face in
using their stoves. In addition, follow-up visits are being
conducted periodically to encourage households to use
their stoves and assess any challenges users are facing.
Detailed data on stove orders and payments are being

collected and shared with the research team. This in-
cludes any instances in which households who initially
ordered stoves decide not to follow through with their
purchases at the time of delivery, or fail to make all ne-
cessary payments within a six month period (in which
case stoves will be recovered by ORGIIS, and any pay-
ments made by the household will be returned).
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Stove use monitors
Out of the 300 household participants, a subset of about
50 households will have their stove use monitored con-
tinuously throughout the follow up period using elec-
tronic Stove Use Monitors (SUMs). These households
have been selected to represent variation in bid out-
comes (number and types of stoves chosen) as well as
price levels and peer groups.
The SUMs units we have developed for this project

consist of thermocouple data loggers (Thermocouple
Temperature Data Logger SSN-61, Wellzion), Type K
thermocouples (1 M K Screw Thermocouple and 2 M
Customized K Thermocouple, Wellzion), and PVC en-
closures that protect the units from water and heat ex-
posure. The total unit cost is ~USD$25. The SUMs have

a measurement range of approximately − 270 °C to
1200 °C, a substantially larger range than devices such as
the iButton or Labjack Digit SUMs that have been fre-
quently used in previous cookstove studies [41] and op-
erate from about − 40 °C to 85 °C. The higher upper
limit operating temperature allows us to place these
SUMs as close to the hottest portion of the cookstove as
desired without concern of overheating, resulting in
clearer designations between heating due to the sun or
ambient temperature rises and actual cooking events.
In each of the 50 selected SUMs households, all stoves

within the household (improved and traditional) will be
equipped with SUMs. Different types of stoves require
slightly different SUMs placement to optimize data qual-
ity and cooking event detection (see Fig. 5). For the

Fig. 5 Placement of stove use monitors (SUMs) on improved stoves (Jumbo and ACE) and traditional stoves (Three Stone Fire and Coal Pot).
Images source: study authors
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improved stoves, SUMs units are secured to the side
using metal tube brackets screwed into the stove, and
the thermocouple probe is screwed directly into the
tapped metal side of the stove. Placement for traditional
stoves (charcoal stoves and three stone fires) is somewhat
more complicated given variation in stove designs through-
out the study area. Examples of placements for each of
these stoves are shown in Fig. 5. SUMs measurements of
three stone fires have proven particularly challenging in
previous work [42]. Our protocol for these stoves involves
placing the probe within six inches of the center of the fire,
securing the probe and wire with multiple 6″ long ground
staples, and extending the PVC enclosure away from the
stove and covering it with stones or other objects to
stabilize and secure the unit. Pre-testing was completed to
ensure that the probe type and placement on each stove
type yielded a large enough temperature increase when the
stove was ‘on’ to recognize a cooking event.
SUMs units are set to log a temperature reading every

five minutes. Using this logging interval, SUMs have

enough memory to log for 111 days, so team members
visit these households to download data at least once
every three months. Units are equipped with a water-
tight screw-top adapter that allows the field team to re-
move the SUM and download data in the field. Each
SUM and stove is labeled with a QR code sticker, which
allows us to keep track of which SUM corresponds to
which stove as well as which stoves are in each house-
hold. At each data download visit, an electronic survey
(ODK) is completed to record reported stove use, any is-
sues with the stove, stove location, fuel use, and any
problems with the SUMs.

Personal exposure and household air quality
Expanding on previous personal exposure and household
air quality assessments completed in the KND [43, 44],
this study aims to further quantify the effects of new stove
technologies on personal exposure and household air
quality and explore relationships between the two. Per-
sonal exposure and household air quality will be measured

Table 2 Summary of measurements to be included in study

Variable Description Data Source Groups Measured Timing of
Measurements

Social Networks Linkages among and between S Group and R Group households Surveys All households
(R and S Groups)

Baseline, Endline

Stove
Perceptions

Likert-scale and subjective expectation questions measuring
perceptions of stove quality / performance for both stove types
along multiple dimensions: smoke, fuel use, cooking time,
durability, ease of use, suitability for cooking common dishes.

Surveys All households
(R and S Groups)

Baseline,
Endline

Stated willingness to pay / accept for stove types Surveys Already measured for
R Groups pre-
intervention;
Measurements added
for S Groups

Baseline, Endline

Stove Choice Number (0, 1, or 2) and type(s) of stoves selected and purchased Stove orders and
delivery /
payment

S Groups
R Control Group

Baseline and
Stove Delivery

Stove Use Reported use of all stoves (traditional and improved) in all
households on day and week prior to surveys

Surveys All households
(R and S Groups)

Baseline, Endline

Electronic monitoring of stove temperature Stove Use
Monitors (SUMs)

Subset of stoves &
households across all
groups

Continuous

Stove Impacts Kitchen concentrations of and personal exposure to carbon
monoxide (CO) and particular matter (PM2.5) among study
participants

CO and PM
monitors

Same households as
SUMs (above)

48-h
measurements
every 3 months

Self-reported health symptoms Surveys All households Baseline,
Endline

Cost of illness: direct and indirect costs of treating any reported
illnesses

Surveys All households Baseline,
Endline

Household
characteristics

Household location, size and demographics, baseline cooking fuel,
socioeconomics

HDSS All households in
district

Every 1–2 years

Additional
socioeconomic
variables

Education, occupation of respondent and household heads
Expenditure inventories
Agricultural practices

Surveys All households in
study

Baseline, Endline

School
attendance

Number of absences for school children enrolled in study School records All households in
study

Yearly
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in a subset (n = 40) of households receiving SUMs. Bi-
weekly, eight households are visited for exposure sam-
pling: four from Monday to Wednesday and another four
from Wednesday to Friday. This sampling allows 2–3 re-
peat visits to each household over the follow up period to
explore within-household variation.
Personal exposure to carbon monoxide (CO) and par-

ticulate matter less than 2.5 μm in diameter (PM2.5) are
measured using near real-time CO loggers (EL-USB-CO
~USD$125, Lascar Electronics) and light scattering
PM2.5 sensors (HAPEx Nano ~USD$120, Climate Solu-
tions Consulting). Each device is set to store data with
one-minute time resolution although longer sampling
intervals are optional. The HAPEx averages three 20-s
samples for each minute reading. Monitors are affixed to
lanyards or waist packs and worn by the primary cook
and, if present, children under the age of 5 for a dur-
ation of 48 h to account for day-to-day variability. Young
children are given custom t-shirts with pockets sewn on
the lapel to hold the instruments.
The Lascars and HAPEx loggers represent some of the

strongest exposure monitoring tool candidates balancing
price, size and data quality. Lascar loggers are one of the
most prevalent CO monitoring tools in personal expos-
ure assessment due to the ease of use and general reli-
ability. They have been found to be reasonably accurate
and precise yet require calibration before use and con-
tinued characterization over time due to sensitivity
changes and response time lags, due in part to sensor
fouling [44]. The Lascars house electrochemical sensors
which are calibrated in the lab using a normalization
technique and at the field site every 2 months using zero
air and span gases. The HAPEx Nano (Climate Solutions
Cons.) instrument is a proxy for PM2.5 and incorporates
the Sharp GP2Y sensor. The Nano has been found to be
one the highest performing low-cost portable sensors for
exposure assessment during lab tests and, more import-
antly, in field validation [45]. The Nanos are zeroed once
a week in a clean chamber and rotate through a 48-h
collocation with a set of pump and filters at a focus
household (described below). These cumulative PM2.5

filter measurements act as a reference with which to
normalize the Nano readings. The HAPEx Nano also
employs an accelerometer to measure compliance.
Personal exposure has been found to be highly

dependent on a participant’s time-activity [46–50]. In
order to gain a better understanding of the exposure in-
curred from each stove type, proximity monitors are
employed at each deployment household in the primary
and secondary kitchen areas. Using a network of Blue-
tooth Low Energy (BLE) emitters (beacons worn by par-
ticipants, Roximity) and receivers (Android cell phones
positioned next to the cookstoves), distance to cooking
areas can be estimated using registered signal strengths

indications (RSSI) akin to the method conducted in
REACCTING and similar to other time-activity moni-
toring approaches [51]. Coupled with SUM information
and proximity data, exposure to CO and PM2.5 can be
apportioned to various activities and stove types. More-
over, monitoring a subset of participant’s location using
a GPS-enabled watch (Suunto Ambit3 Peak) offers par-
ticipant time-activity information for validation of mea-
sured proximity categories (e.g., at home, away from
home) and the ability to indicate exposure incurred out-
side the household, a potentially large fraction of total
exposure [43, 44, 52]. Proximity information will also be
integrated with SUM data to explore how cooking be-
havior (e.g., time tending fire) changes based on stove.
During each deployment period, one of the four

households (rotating across the groups) is selected to
participate in a series of supplementary measurements
conducted in the primary kitchen. This focus household
receives a G-Pod (mobilesensingtechnology.com) which
is positioned one meter away from and one meter above
the most used cookstove [33]. The G-Pod is a custom
air quality sensor platform which measures CO, CO2,
temperature, humidity and pressure at sub-minute inter-
vals and is integrated with two HAPEx Nanos for mea-
surements of kitchen level PM2.5 (Fig. 6). Lastly, the
G-Pod is outfitted with two pumps and filter sampling
trains to measure PM2.5 mass and carbonaceous PM2.5.
Train one is composed of a cyclone inlet (URG-
2000-30EQ) followed by a filter holder (URG-2000-30FG)
containing a 47 mm PTFE filter (Teflo FPTPMP247) and
then a pump (SKC PCXR8) adapted to pull a constant vol-
ume (3.0 ± 0.02 Lpm) of air for 48 h. Train two incorpo-
rates an impactor (URG-2000-30PASS-1), then a filter
holder (URG-2000-25F-2-2.5) containing a 25 mm quartz
fiber filter (Pall Tissuquartz 7200), and subsequently a
pump (SKC AirLite) adapted to pull a constant volume
(2.0 ± 0.02 Lpm) of air for 48 h. The G-Pod and filter sam-
pling trains are powered by a 12-V car battery and last a full
week without recharging. The pumps are both housed in a
protective case with reflective surfaces to reduce overheat-
ing (see Fig. 6). The duration of the pump sampling is re-
corded by one pump (SKC PCXR8) and a custom PCB
located within the pump enclosure acts as a redundant
measure of total elapsed time.

Emissions measurements
Building on the REACCTING work, the research team has
been collecting a set of emissions samples from multiple
different types of sources in the study area. These samples
help to characterize emissions from other sources, beyond
residential cooking, that contribute to ambient air pollution
and personal exposures. These include samples from the
following sources: commercial cooking, traffic, kerosene
lighting, trash burning, charcoal making, bush burning,
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diesel generators, and pito (local fermented beverage) brew-
ing. These will continue with the goal of informing the pol-
lutant exposure apportionment and cooking behavior study
activities.

Analysis and integration
To analyze stove purchase outcomes, we will estimate
models of stove demand using discrete choice econo-
metric methods [53], based on the experimental design
described above. This analysis will be used first to statisti-
cally test the basic hypothesis that higher stove prices lead
to lower demand for the stoves, all else equal (i.e. the ‘Law
of Demand’ in economics). We also hypothesize that the
higher-quality stoves will be in higher demand and that
more of one or both stoves are weakly preferred, ceteris
paribus.
After testing these basic hypotheses, we will then

examine between-cluster heterogeneity in stove demand
to investigate a primary research question of this study:
whether households in the S1 group, previously exposed
to peers with improved cookstoves, have statistically dif-
ferent demand for stoves compared to the S2 group.
Formally, this will be tested first by jointly estimating
stove demand using conditional logit and other discrete
choice models for both groups. By interacting an indica-
tor for S1 and S2 group assignment with stove model
and price coefficients in the regression analysis, we will
examine whether being in the peer group affects demand

by shifting it up or down, or by changing price elasticity
(i.e. making the demand curve flatter or steeper).
While assignment to S1 and S2 groups is random, by
virtue of the previous REACCTING study, we also in-
clude household characteristics collected from surveys
in these demand models, to improve statistical effi-
ciency of the analysis. We will also estimate mixed
logit and latent class discrete choice models, to test
whether unobserved preference heterogeneity is a sta-
tistically significant factor driving stove demand, and
whether this preference heterogeneity is altered by
S1/S2 group assignment.
Stove demand models will be estimated using both ini-

tial stove orders and completed stove purchases, with the
understanding that some households who order stoves
initially may ultimately be unwilling or unable to complete
their purchases. If defaults are common, we will analyze
factors associated with this outcome, including stove price,
peer contact, and socioeconomic status, among other vari-
ables. In addition, we will conduct similar analyses to as-
sess whether prices, peers, and/or perceptions affect stove
use (measured by surveys and SUMs).
From an air quality perspective, there are three main

objectives to the analysis: (1) apportion CO and PM2.5

exposure to various cooking and non-cooking related ac-
tivities at and away from the household (see Fig. 7), (2)
estimate what effects the improved cookstoves have on
CO and PM2.5 exposure across groups in addition to

Fig. 6 Monitoring equipment arrangement at an outdoor cooking area with a three stone fire. Images source: study authors
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comparing within- and between-household variation,
and (3) investigate relationships between mixing ratios
of various combustion species (CO/CO2, CO/PM2.5) at
the personal and microenvironmental levels to in-
form models estimating cumulative exposure [see 43].
These three objectives depend on contemporaneously
measured stove usage, time-activity and exposure data at
the various study households.
To briefly illustrate the synthesis of these data, Fig. 8

depicts preliminary data from a 48-h deployment time-
series indicating measurements of a) participant proxim-
ity to the nearest cooking area and GPS location
classification (at home or away, green band) with b) PM
and CO exposure and c) stove usage for all five cook-
stoves at this household (normalized to individual-stove
maximum temperature). The colored bands indicate a
stove usage event and extend vertically to highlight the
concurrently measured user proximity and exposure. Ex-
posure incurred at moments in which participants are
near a stove, and that stove is in use (see blue band on
left) can be apportioned appropriately. Contrast this with
the interval marked by the yellow band representing a
clear three stone fire event, however, the proximity data
indicates the participant is not near the stove and has
minimal incurred exposure.
To advance the analysis, we plan to perform a compre-

hensive uncertainty assessment of each data stream in-
cluding a rigorous in-field photo validation of stove use
and proximity, a task seldom pursued in large scale in-
terventions. We also aim to improve the explanation of
variation between mean HAPEx Nano measurements
and cumulative gravimetric PM2.5 measurements with
the inclusion of temperature, humidity, pressure, kitchen
level CO and CO2 concentrations as well as the sample

chemical composition (e.g. elemental carbon, organic
carbon) from speciated PM2.5.
A final type of integration involves using both survey

and measurement data to examine relationships among
stove perceptions, stove use, and stove performance. For
example, we will assess whether households that per-
ceive stoves to be cleaner actually use their stoves more
and/or experience reduced exposure to pollutants.
Results will be disseminated through peer reviewed

publications and scientific conferences, as well as
through community meetings with study participants.

Discussion
The P3 project seeks to provide a much needed integra-
tion of approaches to understanding the drivers and im-
pacts of public health-related technology adoption. In
many prior cookstove studies, epidemiologists have
sought to measure the health effects of cleaner cooking
devices, only to be confronted with the problem of “im-
perfect compliance”: that is, households’ failure to switch
to exclusive use of the cleaner stoves [e.g., 54]. This con-
founder, from the perspective of epidemiologists, is the
main research question for social scientists: how and
why do people decide to adopt and use a new technol-
ogy? To fully understand the potential real-world public
health effects of stoves and similar technologies, an
interdisciplinary approach that embeds rigorous social
science methods is needed.
The P3 study is uniquely positioned to address a policy

relevant set of research questions in the context of pub-
lic health technology adoption. Despite widespread ac-
knowledgement that prices, peers, and perceptions are
key drivers of households’ decisions to adopt new tech-
nologies and behaviors, rigorous study designs testing

Fig. 7 Example cumulative CO exposure (pie) with source contributions (slices) identified
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the separate and interacting effects of these factors have
been elusive. By taking advantage of the randomized
introduction of free stoves in the REACCTING project,
we aim to fill this gap.
Our project integrates state-of-the-art social science and

exposure analysis methods. Our experimental methods
are rooted in economic program evaluation approaches,
and incorporate stated and revealed preference methods
to inform our price levels within the experiment. Notably,
our inclusion of survey measures capturing users’ percep-
tions of stoves over time will allow us to build better the-
oretical models of the adoption process by clarifying
mechanisms linking prices and peer effects to adoption
outcomes. In other words, we hope to shed light on why
prices and peers shape technology choice, with implica-
tions for policy design.
Simultaneously, our exposure measurement approaches

enable a more complete assessment of the linkages be-
tween stove use, emissions and exposure outcomes. The
additional information offered from time-activity mea-
surements (proximity and GPS) in concert with stove
usage data enables us to apportion exposure to various
at-home sources (e.g. stoves, kerosene lamps, trash burn-
ing etc.) while allowing us to identify exposure incurred
outside of the home. Breaking the cumulative exposure
“pie” into “slices” of source-identified contributions will
enable us to disentangle cooking-related exposures,

facilitating direct comparisons across stove groups and in-
dividual stove (and fuel) types. Likewise, we are well
poised to explore how cooking behavior (e.g. cooking dur-
ation, proximity/tending to stove) may be affected by new
stove technology adoption.
The integration of these approaches in the P3 project

allow us to examine how and why technology adoption
occurs and how these processes influence exposures, with
key implications for public health policy and practice.
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