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Abstract. This study presents and applies three separate
processing methods to improve high-order moments esti-
mated from 35 GHz (Ka band) vertically pointing radar
Doppler velocity spectra. The first processing method re-
moves Doppler-shifted ground clutter from spectra collected
by a US Department of Energy (DOE) Atmospheric Radi-
ation Measurement (ARM) program Ka-band zenith point-
ing radar (KAZR) deployed at Oliktok Point (OLI), Alaska.
Ground clutter resulted from multiple pathways through
antenna side lobes and reflections off a rotating scanning
radar antenna located 2 m away from KAZR, which caused
Doppler shifts in ground clutter returns from stationary tar-
gets 2.5 km away. After removing clutter in the recorded ve-
locity spectra, the second processing method identifies multi-
ple separate and sub-peaks in the spectra and estimates high-
order moments for each peak. Multiple peaks and high-order
moments were estimated for both original 2 and 15 s aver-
aged spectra. The third processing step improves the spec-
trum variance, skewness, and kurtosis estimates by removing
velocity variability due to turbulent broadening during 15 s
averaging intervals.

Applying the multiple peak processing to Doppler veloc-
ity spectra during liquid-only clouds can identify cloud and
drizzle particles and during mixed-phase clouds can identify
liquid cloud and frozen hydrometeors. Consistent with pre-
vious studies, this work found that spectrum skewness as-
suming only a single spectral peak was a good indicator of
two hydrometeor populations (for example, cloud and drizzle

particles) being present in the radar pulse volume. Yet, after
dividing the spectrum into multiple peaks, velocity spectrum
skewness for individual peaks is near zero, indicating nearly
symmetric peaks. This suggests that future studies should
use velocity skewness of single-peak spectra as an indicator
of possible multiple hydrometeor populations and then use
multiple-peak moments for quantitative studies. Three future
activities will continue this work. First, KAZR spectra from
several ARM sites have been processed and are available
in the ARM archive as a principal investigator (PI) product.
ARM programmers are evaluating these processing methods
as part of future multiple-peak products generated by ARM.
Third, MATLAB code generating the Oliktok Point products
has been uploaded as supplemental material for public dis-
semination.

1 Introduction

Vertically pointing radars operating in the Ka band (35 GHz)
are important remote sensing instruments providing quan-
titative and high-resolution observations for studying the
vertical structure and dynamics of clouds and precipitation
(Görsdorf et al., 2015). Vertically pointing radars increase
their sensitivity by transmitting multiple pulses and produce
Doppler velocity spectra for each range gate and dwell. The
temporal evolution and vertical structure of these spectra
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contain microphysical and dynamical cloud and precipitation
information.

Using narrow-beam-width antennas reduces spectrum
broadening due to sub-pulse volume turbulence. The result-
ing recorded spectra are often non-Gaussian shaped and con-
tain multiple peaks due to the presence of different parti-
cle size distributions within the radar pulse volume (Kollias
et al., 2016). Under certain atmospheric conditions, mixed-
phase clouds occur and contain both liquid- and ice-phase
particles within the same radar pulse volume (Shupe et al.,
2004; Kalesse et al., 2016). Thus, the number of spectrum
peaks and their shape provide microphysical information of
the particle size distributions. Estimating higher-order spec-
tral moments, including velocity spectrum skewness and
kurtosis, extracts microphysical information from the full
Doppler spectrum (Luke and Kollias, 2013). These high-
order moments are inputs to time–height analyses explor-
ing microphysical and dynamical cloud processes (Maahn
and Löhnert, 2017). One caveat for this analysis paradigm
is the need for clean radar Doppler velocity spectra void of
non-atmospheric signals, including ground clutter. Thus, pre-
processing and cleaning of Doppler spectra are often needed
before microphysical and dynamical information can be ex-
tracted from vertically pointing cloud radar observations.

This study presents three separate methods to improve
high-order moments estimated from Doppler spectra. First,
Doppler velocity spectra are cleaned by removing ground
clutter. Second, multiple peaks are identified within the
Doppler spectra. Finally, spectrum skewness estimates are
improved by removing turbulent broadening effects at the
15 s scale.

Ground clutter in scanning and vertically pointing radar
observations is a pervasive problem (Sato and Woodman,
1982). Ground structures (including buildings, trees, and
power lines) act as hard targets reflecting radar waves back to
the radar. Since these ground structures are stationary, except
for oscillatory trees and power lines swaying due to wind
(Barth et al., 1994), the ground clutter has a zero Doppler ve-
locity shift. Bandpass filters can isolate clutter and hydrom-
eteor signals as long as the hydrometeor signal has a non-
zero velocity. As the weather signal approaches zero veloc-
ity, more sophisticated methodologies are needed to separate
clutter from desired weather signals (Siggia and Passarelli,
2004).

For scanning weather radars, both the clutter and weather
signals have Gaussian shape peaks that enables removing the
clutter signal and recovering any overlapping weather signal.
Within the Doppler velocity spectrum domain, the Gaussian
model adaptive processing (GMAP) method (Siggia and Pas-
sarelli, 2004) uses the saved coherent and quadrature time-
series observations (i.e., I and Q voltages) to calculate multi-
ple spectra to adaptively determine the Gaussian-shaped clut-
ter and remove it from the Gaussian-shaped weather signal.
The GMAP methodology applied to time-domain calcula-
tions (called GMAP-TD) accounts for scanning radars utiliz-

ing staggered pulse repetition time (PRT) sequences (Nguyen
and Chandrasekar, 2013). Since vertically pointing radars in
mixed-phased clouds routinely observe signals from two hy-
drometeor types (e.g., liquid clouds and falling ice particles,
Shupe et al., 2004; Kalesse et al., 2016), the GMAP method
cannot be implemented to remove clutter without signifi-
cantly modifying the GMAP logic. In addition, the time-
series I and Q voltages needed to resample the spectra with
different amplitude weightings are often not available for re-
analysis from vertically pointing radars.

Receiving backscattered energy from moving trees and
cars through antenna side lobes is a common clutter problem
with wind profilers (Barth et al., 1994). Due to the relatively
large antenna beam widths in wind profilers (e.g., 6◦ to 9◦

for main beams and larger for side lobes), clutter tends to be
broad Gaussian-shaped features near zero velocity (May and
Strauch, 1998). Birds and bats are often detected in higher-
frequency wind profilers (e.g., 915 MHz) with wavelet trans-
forms and time-domain Gabor transforms being effective in
identifying and removing these short-time duration targets
(Jordan et al., 1997; Lehmann, 2012). In addition, the Gabor
transform technique has been shown to improve wind pro-
filer horizontal wind estimates (Bianco et al., 2013). Note
that clutter is dependent on the radar operating frequency.
For example, longer wavelength radars (e.g., VHF) are not as
susceptible to clutter from flying birds as shorter wavelength
915 MHz wind profilers (Wilczak et al., 1995). In contrast
to wind profilers, Ka-band cloud radars have significantly
higher frequencies and very narrow beam widths (on the or-
der of 0.3◦) such that Doppler velocity spectrum broadening
due to horizontal motion through the radar beam is negligi-
ble (Shupe et al., 2008; Kollias et al., 2007). These narrow
beam widths result in very narrow clutter peaks in the Ka-
band cloud radar velocity spectra with insects appearing as
very narrow spectral peaks (Luke et al., 2008).

Recent studies have shown that velocity spectrum skew-
ness provides information of drizzle onset (Kollias et al.,
2011; Luke and Kollias, 2013; Acquistapace et al., 2017)
and for deriving properties of ice clouds (Maahn et al., 2015;
Maahn and Löhnert, 2017). Since there is a trade-off between
temporal resolution and spectrum noise variance, the spectral
moment estimates tend to be noisy for short-duration spec-
tra (Giangrande et al., 2001; Luke and Kollias, 2013; Ac-
quistapace et al., 2017). By shifting spectra to a reference
velocity before averaging spectra, Luke and Kollias (2013)
showed that spectrum skewness estimates improved and were
more coherent in time and height.

There is a long history of estimating multiple peaks in
radar Doppler velocity spectra (Clothiaux et al., 1994). These
multiple peaks need to be estimated before applying fuzzy
logic (Cornman et al., 1998; Cohn et al., 2001; Morse et
al., 2002), neural network (Gardner and Dorling, 1998), or
wavelet (Lehmann and Teschke, 2001) frameworks to dis-
criminate atmospheric signals from clutter and radio interfer-
ence. Estimating multiple peaks is a form of data reduction,

Atmos. Meas. Tech., 11, 4963–4980, 2018 www.atmos-meas-tech.net/11/4963/2018/



C. R. Williams et al.: Clutter mitigation, multiple peaks, and high-order spectral moments 4965

Table 1. Operating parameters for AMF-3 KAZR deployed at Oliktok Point, Alaska, from 1 October 2015 through 31 October 2017 (at
the time of publishing, the radar was still operating at Oliktok Point, Alaska). Operating modes included general purpose (GE), medium
sensitivity (MD), and precipitation (PR) modes. Tabulated parameters include pulse repetition frequency (PRF) (Hz), inter-pulse period
(IPP) (µs), number of points in fast Fourier transform (FFT) (NFFT), number of averaged spectra (also known as number of incoherent
integrations) (Nave), unambiguous velocity (Vunambiguous) (m s−1), velocity resolution (1v) (m s−1), range to first range gate (m), range
resolution (m), time-on target (which is calculated using IPPNFFTNave) (s), and time between samples (s). Radar operating modes changed
on 16 June 2016 at 14:00 UTC. A clutter screen was installed on the antenna on 27 August 2016.

Before 16 June 2016 (on or after 16 June 2016)

Parameter GE MD PR

Pulse repetition frequency (PRF) (Hz) 2777 2777 2777
Inter-pulse period (IPP) (µs) 360 360 360
Number of points in FFT (NFFT) 256 (512) 256 (512) 256 (512)
Number of incoherent integrations Nincoh 18 (9) 18 (9) 4 (2)
Vunambiguous (m s−1) 5.97 5.97 5.97
1v (cm s−1) 4.67 (2.33) 4.67 (2.33) 4.67 (2.33)
Range to first range gate R1 (m) 40 (57) 707 (737) 40 (57)
Range resolution 1R (m) 30 30 30
Time-on target ttarget = IPPNFFTNincoh (s) 1.66 1.66 0.37
Time between samples tsample (s) 2.0 2.0 2.0

or feature extraction, that can be used as input to algorithms
that estimate boundary layer heights (Allabakash et al., 2017)
or horizontal winds (Liu et al., 2017).

This paper has the following structure. Section 2 de-
scribes the radar deployment and operating parameters of
a US Department of Energy (DOE) Atmospheric Radia-
tion Measurement (ARM) program Ka-band zenith pointing
radar (KAZR) installed at Oliktok Point (OLI), Alaska. Sec-
tion 3 describes signatures of clutter and atmospheric sig-
nals observed in KAZR velocity spectra. Section 4 develops
a clutter identification and mitigation method. This section
also discusses how multipath scattering from a nearby scan-
ning radar antenna caused the clutter to have either approach-
ing or receding radial motion. Section 5 describes a method
to identify multiple peaks in the spectra and estimate high-
order spectral moments. Section 5 also discusses a method
of shifting individual spectra to the 15 s mean velocity before
averaging. Section 6 provides concluding remarks. For com-
pleteness and repeatability, Appendix A provides the equa-
tions to estimate high-order spectral moments. The MAT-
LAB code used to perform the analysis is available as sup-
plemental material.

2 Radar observations

Since the early 1990s, the US Department of Energy (DOE)
Atmospheric Radiation Measurement program has deployed
atmospheric observing systems around the globe to measure
and characterize the radiative properties of the atmosphere
(Mather and Voyles, 2013). The radiative properties of clouds
are dependent on many factors including cloud composition,
cloud thickness, and temperature. Measurements from ver-

tically pointing cloud radars, lidars, and radiometers provide
the input observations needed to estimate and to better model
the radiative properties of clouds (Clothiaux et al., 2000).

In 2015, DOE installed their third ARM Mobile Facil-
ity (AMF-3) at Oliktok Point, on the North Slope of Alaska
(NSA), which is approximately 264 km east-southeast of the
long-term ARM North Slope of Alaska core-observing site
near Utqiaġvik (formally known as Barrow). The AMF-3
instrument suite includes a Ka-band (35 GHz) ARM zenith
pointing radar (KAZR) and a Ka/W-band (35/94 GHz) scan-
ning ARM cloud radar (SACR, until September 2017). Both
antennas are installed on top of the same shipping sea con-
tainer as shown in Fig. 1. The SACR antennas are less than
2 m from the KAZR antenna with a direct line of sight to
the KAZR feed horn. As will be investigated in Sect. 3, the
rotating SACR antennas are in the KAZR near-field, which
caused the stationary ground clutter targets to be Doppler
shifted alternating between approaching and receding.

The KAZR and SACR at Oliktok Point became opera-
tional after an intensive calibration, grooming, and align-
ment (CGA) field campaign conducted by the ARM Radar
Engineering Group in October 2015. The KAZR operates
in three modes: general mode (GE), medium mode (MD),
and precipitation mode (PR). The initial operating pa-
rameters recorded 256-point Doppler velocity spectra. On
16 June 2016, the number of incoherent integrations were
reduced in order to record 512-point spectra and maintain
the same time-on target (Table 1). Raw spectra used in this
study are available on the DOE ARM archive (ARM Climate
Research Facility, 2015).

At Oliktok Point, oil refineries, pipelines, and power lines
within 2.5 km range are detected by KAZR as backscat-
tered energy reflects back toward the radar and leaks into
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Figure 1. (a) Photo of AMF-3 Ka/W-band scanning ARM cloud radar (Ka/W-SACR) antennas (left) and Ka-band ARM zenith radar (KAZR)
antenna (right) as deployed at Oliktok Point, Alaska (photo credit: Gijs de Boer). (b) Photo of clutter screen mounted around KAZR antenna
with snow on the KAZR radome (photo credit: Joe Hardin).

Figure 2. Time–height cross sections of original KAZR Doppler
velocity spectral moments and attributes from 19 June 2016 during
hour 12:00 UTC. (a) Reflectivity (dBZ), (b) mean radial velocity
of dominant single peak (m s−1) (positive values are approaching
the radar), and (c) maximum power drop from peak magnitude to
either nearest neighbour (dBm). At least three consecutive spectral
points needed to be above the noise threshold before estimating the
moments. Large power drop from peak to nearest neighbour is an
indicator that clutter peak was selected as the dominant peak.

the radar system through antenna side lobes. To mitigate
the ground clutter observed in the KAZR spectra, a tem-
porary clutter screen was installed around the KAZR an-
tenna on 27 August 2016 (Fig. 1b). Thus, there are three
different KAZR configurations partitioned by date: (prior to
16 June 2016) 256-point spectra with no clutter screen, (be-
tween 16 June 2016 and 26 August 2016) 512-point spectra
with no clutter screen, and (after 26 August 2017) 512-point
spectra with clutter screen.

3 Atmospheric and non-atmospheric signal signatures

Stationary ground clutter will appear in the Doppler velocity
spectra near zero velocity. This section examines and quanti-
fies the characteristics, or signatures, of KAZR ground clut-
ter and KAZR atmospheric signals due to clouds and precip-
itating particles. Appendix A provides details of calculating
spectral moments from raw velocity spectra.

3.1 Ground clutter contamination

Figure 2 shows time–height cross sections of measured radar
reflectivity (Fig. 2a) and mean radial velocity (Fig. 2b, pos-
itive values are approaching the radar) for 1 h of observa-
tions starting at 12:00 UTC on 19 June 2016. For this fig-
ure, instead of imposing a user-defined signal-to-noise ra-
tio (SNR) threshold to discriminate spectra with signal-plus-
noise versus spectra with just noise, moments were estimated
only for spectra containing at least three consecutive spectral
points above the noise threshold. While the actual observa-
tions for this precipitation event extend above 6000 m, the
vertical axis in Fig. 2 is limited to 2500 m to show details
of the ground clutter signatures. There are four general ar-
eas of interest in this figure: one area contains atmospheric
signals and the other three areas contain clutter signatures.
The atmospheric signals are due to cloud and precipitating
particles that are identifiable by reflectivities greater than ap-
proximately −10 dBZ and downward velocities greater than
1 m s−1 reaching the surface after minute 25. There is also a
bright band in reflectivity near 1500 m and a large gradient in
downward motion near 1500 m indicating the melting of ice
particles into raindrops (e.g., Williams et al., 1995).

Clutter is visible in Fig. 2a and b within two height ranges
prior to minute 20. Clutter signatures are either below 600 m
or within 1500–2000 m. In both height regions, the clutter re-
flectivity is nearly constant at each height and the radial ve-
locity is near zero. Note that the radar continuously detects
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clutter within these two height ranges throughout the hour.
The clutter signature is not visible after minute 20 because
signal power from the cloud and precipitation is larger than
the clutter power and the spectral-peak-picking routine is se-
lecting the larger atmospheric peak. At a height near 500 m
and minutes 30–60, there are intervals when the clutter peak
is larger than the atmospheric peak such that the spectral-
peak-picking routine has selected the clutter peak instead of
the atmospheric peak. These clutter peaks appear near min-
utes 31 and 50–57 and are distinguished by discontinuities in
reflectivity and near-zero radial velocities.

3.2 Drop in power from peak to nearest neighbour

There are significant differences in the characteristics of
backscattered return power from distributed targets and from
point targets (Mahafza, 2017). In the case of distributed hy-
drometeor targets, the hydrometeors have different sizes and
velocities that are constantly moving within the radar pulse
volume. These motions cause the radar-received backscat-
tered power to fluctuate from pulse to pulse (i.e., Swerling
type II targets). In addition, there is a distribution of differ-
ent particle sizes falling at different velocities leading to a
broad velocity distribution in the recorded Doppler velocity
spectrum.

In contrast, received power return from stationary point
targets is nearly constant from pulse to pulse with small ran-
dom statistical fluctuations (i.e., Swerling type 0 or V tar-
gets). The constant path length between the radar and the
target results in zero Doppler motion. In an ideal signal-
processing environment, the stationary target in the time do-
main would transform into a delta function of finite energy
at zero velocity in the frequency domain. However, in real-
world signal processors, the delta-function energy spreads
over several velocity bins following a sinc function. The sinc
function breadth and amplitude are determined by the win-
dowing function applied to the time series before performing
a fast Fourier transform and by the delta-function amplitude
(Mafazha, 2017).

In general, distributed hydrometeor targets produce
broader velocity spectra than stationary targets. To explore
these attributes in the recorded spectra, Fig. 2c shows the
drop in received power from the velocity bin with peak mag-
nitude to its directly neighbouring velocity bin expressed in
units of dBm (i.e., power relative to 1 mW). Since there are
two neighbouring velocity bins bounding the peak value, all
calculations use the largest power drop. Figure 2c shows that
the power drop for the clutter signal is approximately 6 dBm
(i.e., red colours) and occurs prior to minute 25, as well as
near 500 m during minutes 31 and 51–57. For the spectra
with clouds and precipitation, the drop in power is a distribu-
tion of values with a central value near approximately 2 dBm
(i.e., blue colours). Figure 2c suggests that the power drop
from the peak magnitude to the nearest neighbour is a good
indicator of whether the spectrum peak is due to point-target

Figure 3. Doppler velocity spectra for profile collected on
19 June 2016 at 12:05:01 UTC. (a) Original Doppler velocity spec-
tra at each range gate as a function of radial velocity. (b) Similar to
panel (a), expected spectra were interpolated across DC (zero veloc-
ity) to mitigate the clutter signal. (c) Original spectrum (black line
and pluses) and decluttered spectral points (red line and circles) at
447 m range (black line in a and b).

scattering (approximately 6 dBm drop) or due to distributed
hydrometeor target scattering (less than 2 dBm drop).

To explore details of how clutter signals appear in the
recorded velocity spectra, Fig. 3a shows a profile of spec-
tra selected from Fig. 2 at 12:05:01 UTC on 19 June 2016.
The radial velocity is on the abscissa and only extends from
1 m s−1 upward (left side) to 1 m s−1 downward (right side).
The ordinate is height above the ground in metres and ex-
tends from the surface up to 800 m. The pseudo-colours rep-
resent received power in dBm. In nearly all range gates,
ground clutter power is identifiable as an increase in received
power at zero velocity with additional power leaking into
neighbouring velocity bins.

The black line at 447 m in Fig. 3a indicates the height of
the spectrum shown in Fig. 3c, which contains both a clutter
peak and an atmospheric peak due to cloud droplet particles
(black line with pluses). An interpolation in linear units is
performed across the three points centred about zero veloc-
ity and is shown in Fig. 3c with a red line and circles. It is
important to note that the three-point interpolation only mod-
ifies power recorded at three velocity bins. Figure 3b shows
stacked spectra after applying this three-point interpolation
to each spectrum. Note that this simple interpolation was suf-
ficient to remove or suppress the clutter near zero velocity
such that the atmospheric signal can be resolved.

To illustrate the relatively constant amplitude of the clut-
ter signal with time, Fig. 4a shows 1774 consecutive spec-
tra at 447 m height for hour 12:00 UTC on 19 June 2016
(which is the same hour shown in Fig. 2). Radial velocity
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Figure 4. Time series of radial velocity spectra on 19 June 2016
during hour 12:00 UTC at 447 m range. The first spectrum of the
hour is at the bottom of the panel (minute 0) and last spectrum of the
hour is at the top of the panel (minute 60). Horizontal axis is upward
(left side) and downward (right side) radial velocity. (a) Original
spectra and (b) decluttered spectra.

is on the abscissa with upward motion on the left and down-
ward motion on the right. Time is on the ordinate with time
increasing up the page. Pseudo-colours represent measured
return power in dBm. A clutter peak near zero velocity is
present during the whole hour while there are two fluctu-
ating atmospheric signals at this height. A liquid cloud is
present for most of the hour with updraft–downdraft mag-
nitudes less than 0.5 m s−1. After approximately minute 28,
raindrops appear at this height with downward radial veloc-
ities ranging from approximately 0.25 to over 4 m s−1. The
small-magnitude power signals with upward motions after
minute 28 are artefacts due to large-magnitude downward
power signals causing harmonics in the radar receiver. Fig-
ure 4b shows the spectra after applying the three-point in-
terpolation across the zero velocity. This simple three-point
interpolation is sufficient to remove the clutter peaks without
disturbing the atmospheric signals.

4 Clutter identification and mitigation

As shown in Fig. 2 during the first 20 minutes of obser-
vations, without clutter peak mitigation, standard single-
peak-picking algorithms (e.g., Carter et al., 1995) will select
ground clutter as a viable peak and will estimate the spec-
tral moments of this clutter peak. If the clutter peak is in
the middle of the atmospheric signal as in the example spec-
trum shown in Fig. 3c, then the estimated reflectivity will
be biased high and the mean radial velocity will be biased
toward zero velocity. If clutter mitigation is applied to all

spectra regardless of whether clutter signals are present, then
low-magnitude atmospheric signals centred on zero velocity
could be eliminated from the dataset. Thus, this section ex-
amines the power drop near zero velocity in order to establish
a threshold to determine where and when not to apply clutter
mitigation.

4.1 Clutter-to-noise ratio (CNR)

To determine whether the spectrum contains point-target
signatures, three statistics are calculated for each spec-
trum: the drop in power from the zero velocity bin to the
nearest-neighbour velocity bin (Pdrop), the clutter-to-noise
ratio (CNR), and the signal-to-noise ratio (SNR) of the de-
cluttered spectrum. Pdrop is a clutter indicator while CNR
quantifies the clutter power. Figure 5a shows a typical spec-
trum containing clutter power near zero velocity, collected
at 00:14:33 UTC on 4 July 2016 at range 387 m. While the
recorded spectrum extends to upward and downward Nyquist
velocities of 5.9 m s−1, this figure only shows radial ve-
locities out to 0.4 m s−1. A peak power of approximately
−60 dBm occurs at zero velocity and Pdrop is approximately
6 dB. The thick dashed line shows the three-point interpo-
lation with the light grey shaded area indicating the clutter
power. The dark shaded area represents noise power. The
CNR is defined as the clutter power (light grey shaded area
but expressed in linear units) divided by total noise power
(dark grey shaded area extended to Nyquist velocities and
expressed in linear units) with CNR expressed in decibel
units (dB).

In Fig. 5a, notice the large power drops between the zero
velocity bin and the first and second neighbouring velocity
bins. The power drops are approximately 6 and 25 dBm, re-
spectively. These large power drops are consistent with the
expected sinc function from point targets. A large power drop
to the second neighbouring bin is not always observed be-
cause either (1) the spectrum power falls below the noise
threshold or (2) the power drop is masked by an atmospheric
signal power as in the case shown in Fig. 5c. In this dataset,
the clutter peak was narrow enough that a three-point inter-
polation removed clutter power from the peak value and two
neighbouring velocity bins were sufficient to remove most of
the clutter power. For other radar datasets, a three-point inter-
polation may not be sufficient to remove the clutter. There-
fore, the clutter characteristics in other datasets should be ex-
amined before adjusting the width of the interpolation.

After removing the clutter power using a three-point in-
terpolation (Fig. 5a), the spectral moments are estimated us-
ing the decluttered spectra (Fig. 5b) to determine whether or
not the spectrum contains residual clutter or contains atmo-
spheric signals. In Fig. 5b, the decluttered spectrum has eight
consecutive spectral points above the noise threshold and is
shaded medium grey. The signal-to-noise ratio of this resid-
ual peak is −8.3 dB, the largest magnitude power occurs at
one of the velocity bins used in the three-point interpolation
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Figure 5. Selected spectra to illustrate clutter signal, three-point interpolation, and residual signal power. (a) Original spectrum from
4 July 2016 at 00:14:33 UTC at 387 m range with clutter power shaded in light grey. (b) Same spectrum as in (a) except for a three-point
linear interpolation across zero velocity to remove clutter power with residual signal peak power shaded in medium grey colour. The noise
power is shaded the darkest grey in all panels. Panels (c) and (d) are similar to panels (a) and (b) except spectra were collected on 7 July 2016
at 17:14:31 UTC. The solid circle in panels (b) and (d) indicates the velocity of the peak magnitude in the residual spectra. Due to this peak
magnitude velocity, the residual signal in panels (b) and (d) is deemed residual clutter and atmospheric signal, respectively.

(indicated with a filled circle), and this velocity bin is called
the “peak magnitude velocity”.

The spectrum shown in Fig. 5c contains both clutter
and atmospheric signals (range 387 m at 17:14:31 UTC on
7 July 2016). The clutter peak is clearly identifiable in the
spectrum. A thick dashed line shows the three-point interpo-
lation across zero velocity and the clutter power is shaded
in light grey. Figure 5d shows the decluttered spectrum with
the residual signal power and noise power indicated with the
medium and dark grey shadings, respectively. For this spec-
trum, the residual peak SNR is 3.3 dB and the peak magni-
tude velocity (indicated with a filled circle) occurs away from
the three-point interpolation velocity bins and is associated
with the atmospheric signal.

In order to determine when to apply the three-point inter-
polation across zero velocity, we need to compare the drop
in power in spectra with and without ground clutter. Figure 6
shows a time series of radial velocity spectra at a range of
987 m for the same 1 h interval shown in Fig. 4a. There is
no clutter in the raw spectra at 987 m shown in Fig. 6 so it
can be used as a reference. Note that there are no saved spec-
tra prior to minute 21 because the automated data reduction
and archiving algorithm did not detect any spectral points
(clutter or atmospheric signals) with power greater than the
Hildebrand and Sekhon (1974) noise threshold.

The power drop from zero velocity to the nearest-
neighbour Pdrop and CNR statistics were calculated for all
spectra shown in Fig. 6. Only 210 spectra had a positive
power drop, with Fig. 7a showing a scatter plot of CNR vs.
power drop (squares). The CNR vs. power drop for the simul-

Figure 6. Similar to Fig. 4a except for 987 m range. In contrast
to the range gate at 447 m shown in Fig. 4, this range gate does
not contain ground clutter for this hour and does not contain any
atmospheric signal before minute 21. Since no signal was detected
above the noise threshold before minute 21, the data reduction and
storage algorithm did not save any spectra before minute 21.

taneous 210 spectra at 477 m (Fig. 4a) is shown in Fig. 7a us-
ing circles. The CNR for the spectra with and without ground
clutter is approximately +10 and −25 dB, respectively. Fig-
ure 7b shows the power drop cumulative distribution func-
tions (CDFs) and illustrates that clutter-free spectra have a
broad distribution ranging from 0 to 4 dBm (dashed line) and
the clutter spectra have a narrow distribution centred around
6 dBm (solid line). Note that all clutter spectra power drops
are greater than 3 dBm (Fig. 7a) and that 90 % of the clutter-
free spectra have power drops less than 3 dBm (Fig. 7b).
Thus, this study used a 3 dBm power drop threshold as a cri-
terion to identify clutter pixels. This threshold needs to be
estimated for every radar dataset, as clutter statistics are dif-
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Figure 7. (a) Scatter plot of clutter-to-noise ratio (CNR) vs. power
drop Pdrop from zero velocity to nearest neighbour for the same
profiles at ranges 477 m (circles) and 987 m (squares) for hour 12
of 19 June 2016. Spectra at 477 m contained clutter and spectra
at 987 m did not have clutter. (b) Cumulative distribution function
(CDF) of power drop for estimates shown in (a). These estimates
were derived from spectra shown in Figs. 4a and 6. There are 210
simultaneous samples during this rain event.

ferent for different datasets. To help determine appropriate
thresholds in other radar datasets, the MATLAB code used
in this study is available in the Supplement.

4.2 Ground clutter Doppler shift

Time–height clutter patterns occurred with a repeatable tem-
poral cadence. Specifically, there were periods of narrow-
symmetric clutter and periods of broader-asymmetric clutter.
While the peak magnitude velocity rarely deviated from zero
velocity, the asymmetry caused the mean velocity moment to
deviate from zero velocity. Figure 8 shows an hour’s worth of
observations on 3 July 2016 (hour 20:00 UTC) when no hy-
drometeors were above the radar. Figure 8a shows the clutter-
to-noise ratio (dB), Fig. 8b shows the residual peak SNR
(dB), and Fig. 8c shows the residual peak magnitude veloc-
ity expressed in m s−1. Note that the peak magnitude veloc-
ity alternates between negative and positive radial velocities,
suggesting that the stationary ground clutter has a Doppler
motion component and is either receding or approaching the
radar, respectively.

Figure 9 shows the pointing direction of the SACR scan-
ning radar antennas (solid line) for minutes 20–30 during
hour 20:00 UTC on 3 July 2016. During this 10 min inter-
val, the SACR antennas were rotating at 2◦min−1 in a clock-
wise direction. The white and grey shading in Fig. 9 rep-
resents the column median residual peak magnitude veloc-
ity estimated from Fig. 8c and is either receding (white) or

Figure 8. Time–height cross section of clutter statistics from spec-
tra collected on 3 July 2016 during hour 20:00 UTC. (a) Clutter-to-
noise ratio (CNR) based on clutter power from three points centred
around zero velocity (see Fig. 6), (b) signal-to-noise ratio of resid-
ual peak after removing clutter peak, and (c) velocity of spectral
peak in the residual spectrum indicates a skewness of the residual
peak. Positive peak velocities correspond to targets approaching the
radar.

Figure 9. Diagram showing SACR antenna azimuth pointing di-
rection (solid line) and Doppler shift of residual clutter (shading)
for 10 min of observations shown in Fig. 7. With a rotation rate
of 2◦min−1, the Ka/W-SACR antenna completed a rotation every
3 min. The residual clutter Doppler shift contained two phases per
rotation indicating the antennas receding and approaching.

approaching (grey). There is a clear relationship between
clutter Doppler motion and the SACR antenna pointing di-
rection. As the SACR antennas complete one rotation, the
clutter motion completes one receding–approaching cycle.
We postulate that the pulse-to-pulse change in path length
between the KAZR antenna and the stationary targets via
multipath reflections off the rotating SACR antenna caused
the Doppler shift. The different durations and occurrences
of residual peak magnitude velocities shown in Fig. 8c cor-
respond to the different SACR scanning modes (not shown
here). While a relationship between clutter occurrence and
SACR scanning mode is interesting, the focus of this work
is to identify and mitigate clutter signatures occurring in the
spectra.
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Figure 10. Clutter identification and mitigation flow diagram. Processing is performed on individual spectra without knowledge of clutter
being identified in neighbouring spectra.

4.3 Clutter mitigation logic diagram

This section describes a clutter mitigation routine that iden-
tifies and removes static and non-static clutter signals from
recorded velocity spectra. Over the course of analysing clut-
ter signatures, several complex clutter removal routines were
developed. After comparing the results from these routines,
the clutter removal methodology was simplified until this fi-
nal routine had only three conditions based on two thresh-
olds:

– Is power Pdrop greater than a threshold?

– Are there enough spectral points above the noise thresh-
old to estimate moments?

– After interpolating across the clutter peak, is the new
peak magnitude velocity at an interpolation edge veloc-
ity?

The use of static thresholds is simple to implement, but not
easily transferred to other radar systems that have different
clutter statistics. Thus, the MATLAB code used to process
the Oliktok Point KAZR dataset is made available as sup-
plemental material. Figure 10 shows a flow diagram for the
clutter mitigation routine. Starting with box no. 1, a single
spectrum is loaded into the routine. The power drop from
zero velocity to the nearest neighbour is calculated as Pdrop
(box no. 2). If Pdrop is greater than a threshold as derived
from Fig. 7b (box no. 3), then this spectrum is flagged to
contain clutter and passed to box no. 5; else, this spectrum
does not contain clutter (box no. 4) and is saved for future

spectral and moment processing (box no. 13). If the spectrum
gets into box no. 5, the three-point interpolation is performed
across zero velocity and the residual moments are estimated
in box no. 6.

Box no. 7 requires that at least five consecutive spectral
points have magnitudes greater than the noise threshold. Note
that there are trade-offs using a fixed number of consecutive
spectral points above the noise threshold. First, increasing the
number of spectral points increases the minimum detected
SNR. Second, a fixed number of spectra bins corresponds to
a minimum velocity range, expressed in m s−1, which is de-
pendent on spectrum velocity resolution and number of FFT
points. Third, high-order moments of velocity skewness and
kurtosis require four and five spectral points, respectively, to
make physical sense. The pros and cons of these trade-offs
must be considered when analysing a dataset. Due to the clut-
ter in the Oliktok Point dataset, the five-point threshold elim-
inated narrow clutter signals at the expense of a higher mini-
mum detected SNR. Since the MATLAB code is available in
the Supplement, users can change thresholds and reprocess
the Oliktok Point dataset. Without enough spectral points in
Box no. 7, this spectrum is flagged as not containing an at-
mospheric signal (box no. 8) and is barred from being used
in any temporal spectral averaging techniques discussed in
Sect. 4 (box no. 9). If there are five or more spectral points
above the noise threshold, then an evaluation is performed
to see whether the residual peak magnitude velocity is at the
edge of either three-point interpolation edge velocity (box
no. 10). If it is, then this residual likely still contains clutter
(box no. 11) and the spectrum is barred from further anal-
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Table 2. Attributes and integration limits for three spectral peak regimes: single peak, sub-peak, and separate peak. All spectral peaks need
at least five consecutive spectral points with magnitudes greater than the noise threshold (Hildebrand and Sekhon, 1974).

Peak name Attributes Integration limits

Single peak Contains the largest magnitude spectral point Determined by noise threshold
(every valid spectrum has a single peak)

Sub-peak Sub-peaks are within integration limits of the single peak Determined by noise threshold
or
determined by valley of at least
6 dB between sub-peaks

Separate peak There are spectrum points below the noise threshold Determined by noise threshold
separating this peak from the single peak

Figure 11. Similar to Fig. 2 except spectra were decluttered (see
Sect. 3) before estimating (a) reflectivity, (b) mean radial velocity,
and (c) power drop from peak power to nearest neighbour.

ysis (box no. 9). If the peak magnitude velocity is different
from either three-point interpolation edge velocity, then this
spectrum likely contains an atmospheric signal (box no. 12)
and is saved for future spectral and moment estimations (box
no. 13).

To illustrate the performance of the clutter identification
and mitigation routine, the same spectra used to construct
Fig. 2 were processed through the flow diagram shown in
Fig. 10. Figure 11 shows the decluttered spectra calculations
of reflectivity (Fig. 11a), mean radial velocity (Fig. 11b), and
power drop from peak power to nearest neighbour (Fig. 11c).
Figure 11 shows a vertically thin cloud layer just below
500 m that was not visible in Fig. 2 because of the contami-
nating ground clutter. This is consistent with the spectra anal-
ysis shown in Figs. 3 and 4 that showed an oscillatory cloud
layer near 500 m. In addition to providing the MATLAB code
as supplemental material, the processed Oliktok Point KAZR
datasets are available on the ARM archive (see data availabil-

Figure 12. Profile of spectra and moments collected on 15 Octo-
ber 2016 at 11:55:55 UTC. Top row corresponds to single-peak mo-
ments and bottom row corresponds to multiple-peak moments. Top
row: (a) pseudo-colour represent spectral power (dBm) with mean
velocity shown with black pluses and± spectrum bread shown with
black lines, (b) reflectivity, and (c) velocity skewness. Bottom row:
similar to the top row, except blue symbols represent sub-peaks and
red symbols represent separate peaks.

ity section for details). These netCDF datasets also include
a 3× 3 time–height continuity filter quality flag so that the
user can choose to remove isolated pixels (see Appendix B
for details).

5 Multiple peaks and high-order spectral moments

After identifying and removing clutter in the effected spectra,
this section describes how to identify multiple-peaks in the
spectra, how to estimate high-order moments for each spec-
tral peak, and how to construct 15 s average spectra using a
“shift-then-average” procedure.
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5.1 Identifying multiple peaks

One advantage of processing radar velocity spectra is that
different hydrometeor habits can be identified by their veloc-
ity signatures. For example, Fig. 12a shows a velocity spectra
profile when both cloud particles and ice particles are occur-
ring in the same height between 500 and 800 m. This profile
was collected on 15 October 2016 at 11:55:55 UTC with the
pseudo-colours representing received power in dBm. Visu-
ally, we can see two return power patterns in the spectra pro-
file. One pattern is limited in height between 500 and 800 m
and has downward motions between 0 and 0.4 m s−1 that cor-
respond to signals from cloud particles. Another return sig-
nal extends from the top of the panel to the surface with
downward motions ranging from 0 to 2 m s−1. While more
analysis is needed to determine whether these return signals
are from liquid- or ice-phase particles – e.g., cross-polarized
spectra could provide linear depolarization ratio (LDR) esti-
mates to discriminate spherical (likely liquid) particles from
non-spherical particles – we can confidentially state that
faster falling particles are larger than the cloud particles that
are confined to the 500 to 800 m range.

Super imposed on the spectra in Fig. 12a are the mean ve-
locity Vmean (black vertical ticks) and ±1 velocity spectrum
standard deviation Vsig (horizontal black lines) estimated as-
suming that one spectral peak exists in each spectrum (see
Appendix A for spectrum moment equations). These mo-
ments are known as “single-peak” moments and have a long
lineage in vertically pointing radar research (see Carter et al.,
1995) and the DOE ARM community (see Clothiaux et al.,
2000). We can see that the single-peak moments do not rep-
resent the dual-peak nature of the recorded spectra. To over-
come this limitation, multiple spectral peaks are identified
with Vmean and Vsig estimated for each peak and shown in
Fig. 12d. The black symbols are from single-peak moments
while the blue and red symbols are from sub-peaks and sep-
arate peaks identified in the spectra.

Identifying multiple peaks (Luke and Kollias, 2013) is
a process of identifying boundaries, or integration limits,
which will be used in the spectrum moment equations. To
help describe how boundaries are identified, Fig. 13 shows
how single peaks, sub-peaks, and separate peaks are identi-
fied in example spectra pulled from heights 807 and 777 m
in Fig. 12. Table 2 provides a description of the three types
of peaks. Every spectrum with at least five consecutive spec-
tral points above the noise threshold will have a single peak.
However, not every spectrum with a single peak will have
sub-peaks or separate peaks.

The spectrum from 807 m (Fig. 13a) has two spectral
peaks. The peak on the right is the most significant peak be-
cause it contains the spectral point with the largest magni-
tude. The integration limits for the single peak extend over all
consecutive points above the noise threshold. The triangles in
Fig. 13a indicate the single-peak integration limits and Vmean
and Vsig are plotted near 0.8 m s−1 downward velocity. Since

Figure 13. Radial velocity spectra on 15 October 2016 at
11:55:55 UTC at ranges (a) 807 m and (b) 777 m. The spectrum
in (a) contains two peaks separated with spectral power below the
noise threshold. The single peak is the dominant peak due to the
larger peak amplitude. The spectrum in (b) contains a single peak
that spans from approximately 0.25 m s−1 upward to 1.3 m s−1

downward. This single peak contains two sub-peaks with a valley
(or local minimum) near 0.3 m s−1 downward.

there are spectral points below the noise threshold between
the single peak and the left peak, the left peak is called a
separate peak. Circles indicate the integration limits for this
separate peak. The separate peak must have five consecutive
spectral points above the noise threshold.

Figure 13b shows the spectrum from 777 m. The sin-
gle peak is very broad and extends from approximately
0.25 m s−1 upward to 1.3 m s−1 downward as indicated with
the triangles. Sub-peaks are peaks within the single peak sep-
arated by a local minimum, or valley. It is important that the
valley is deeper than the bin-to-bin variability observed in the
velocity spectrum. From Figs. 2 and 7, the variability from
the peak magnitude value to the nearest neighbour exceeds
4 dB. Thus, this study used a valley threshold of at least 6 dB
of concavity to limit the number of falsely identified sub-
peaks. The circles indicate the integration limits for two sub-
peaks in Fig. 13b. The Vmean for all three peaks are shown
with triangles and circles, with±Vsig shown with lines. Sim-
ilar to the other peaks, sub-peaks must have five consecutive
spectral points above the noise threshold.

5.2 High-order spectral moments

After identifying integration limits for all spectral peaks,
the high-order moments are calculated for each peak using
the equations shown in Appendix A. The spectral moments
range from the signal-to-noise ratio (the zeroth moment) to
the velocity spectrum kurtosis (the fourth moment).

www.atmos-meas-tech.net/11/4963/2018/ Atmos. Meas. Tech., 11, 4963–4980, 2018



4974 C. R. Williams et al.: Clutter mitigation, multiple peaks, and high-order spectral moments

Table 3. Spectral moments of averaged spectrum after averaging eight spectra using two different methods. All eight spectra were collected
during 15 s interval on 15 October 2016 between 11:55:45 and 11:56:00 UTC and are shown in Fig. 14. The averaged spectrum was con-
structed by averaging individual spectra as shown in Fig. 14a. The mean radial velocity from this averaged spectrum is used as the reference
velocity. The shifted-then-averaged spectrum was constructed by first shifting individual spectra to a reference mean radial velocity and then
averaging as shown in Fig. 14b.

Spectral moment Averaged Shifted-then-
spectrum averaged

spectrum

Signal-to-noise ratio, (SNR)dB (dB) 23.24 23.24
∗Mean radial velocity, Vmean = V

15 s,inc
mean (m s−1) 1.22 1.22

Velocity spectrum standard deviation, Vsig (m s−1) 0.32 0.28
Velocity spectrum skewness, Vskewness (unitless) −1.11 −1.44
Velocity spectrum kurtosis, Vkurtosis (unitless) 4.63 5.38

∗15 s averaged spectrum mean velocity used as reference velocity in the shifted-then-averaged procedure.

The scatter-plot profiles on the right side of Fig. 12 show
the spectral moments of reflectivity and velocity skewness
for the single, sub-, and separate peaks. The top row shows
only the single-peak moments while the bottom row shows
moments from different peaks. Note that if sub-peaks exist
in a spectrum, then the single-peak moments are not plotted
in the bottom row. The reflectivity vertical structure for the
multiple peaks (Fig. 12e) shows both a continuous pattern
with height and two patterns that are limited in height. The
continuous pattern mimics the single-peak reflectivity pattern
shown in Fig. 12b and has a local maximum near 400 m. The
two height-limited patterns occur near 700 and 1400 m where
there are two distinct hydrometeor populations in the spectra
profile (Fig. 12d). Near 700 m, the smaller reflectivity values
correspond to the cloud particles with mean velocities near
0.2 m s−1 downward.

With regard to the velocity skewness, the single-peak es-
timates (Fig. 12c) show large negative values below 800 m
with maximum value near 600 m. A negative velocity skew-
ness indicates that the long distribution tail is on the neg-
ative velocity side of the peak, which is upward motion in
this dataset. Yet, Fig. 12f shows near-zero velocity skewness
for the sub-peaks between 500 and 800 m. This suggests that
large-magnitude single-peak velocity skewness could indi-
cate the existence of multiple sub-peaks. Yet, after identify-
ing sub-peaks, velocity skewness represents the asymmetry
of each individual spectral peak. Thus, single-peak velocity
skewness could be used to identify the existence of multiple
sub-peaks and moments from multiple peaks should be used
to perform quantitative microphysical analyses.

5.3 Shift-then-average spectra

As discussed in Luke and Kollias (2013), the velocity spec-
trum skewness can be a noisy estimator due to velocity bin-
to-bin spectrum power fluctuations. To improve the velocity
spectrum skewness estimate, Luke and Kollias (2013) sug-
gested shifting consecutive spectra to a common reference,

averaging the shifted spectra, and then estimating the veloc-
ity spectrum variance and skewness. Shifting the spectra be-
fore averaging reduces the spectrum broadening and smear-
ing due to vertical air motion variability that occurs during
the averaging interval (Giangrande et al., 2001). Several dif-
ferent averaging intervals were tested ranging from 4 s (sim-
ilar the KAZR-ARSCL resolution) to 60 s. The 4 s interval
only contained two profiles, while the cloud system often
evolved and changed shape during the 60 s interval. A com-
promise of 15 s is used assuming that the atmospheric mi-
crophysical processes (e.g., evaporation, breakup, and coa-
lescence) are stationary over this interval, yet dynamical pro-
cesses (e.g., air motions and turbulence) are not stationary.

The method of shifting all spectra to line up all peak mag-
nitude velocities appeared to work well for the maritime driz-
zle clouds (Luke and Kollias, 2013), but it did not work well
with Arctic mixed-phase clouds observed at Oliktok Point
because the peak magnitude sometimes jumped to a different
spectral peak during the 15 s integration interval. To over-
come this occasional issue, the spectra were shifted to the
15 s mean velocity. Specifically, shift-then-average process-
ing consisted of nine steps performed at each range gate:

1. Estimate the single-peak mean velocity for each 2 s
spectrum V 2 s

mean.

2. Incoherently average (no shifting) all spectra within a
15 s interval.

3. Identify the single peak in this 15 s averaged spectrum.

4. Estimate the single-peak mean velocity V
15 s,inc
mean and ve-

locity spectrum variance V
15 s,inc
var for this 15 s incoher-

ent averaged spectrum.

5. Shift each 2 s spectrum by V shift
mean so that V 2 s

mean+V shift
mean =

V
15 s,inc
mean .

6. Average the shifted spectra.
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Figure 14. Eight radial velocity spectra collected on 15 Octo-
ber 2016 during 15 s interval starting at 11:55:45 UTC at 447 m
range. (a) The eight spectra (thin lines) were averaged to form an
averaged 15 s spectrum (thick line). The spectral moments for the
averaged spectrum are calculated with the mean radial velocity used
as the reference velocity. In (b), each spectrum is shifted to have the
same reference velocity (thin lines) and the mean value (thick line)
is the shifted-then-averaged 15 s spectrum. The spectral moments
are tabulated in Table 3.

7. Identify multiple peaks in these shifted-then-averaged
spectra.

8. Estimate high-order moments for each identified peak.

9. Save all multiple-peak moments as well as the incoher-
ent averaged spectra mean velocity V

15 s,inc
mean and velocity

spectrum variance V
15 s,inc
var .

As an example of the shifting process, Fig. 14a shows eight
spectra (thin lines) collected at 447 m on 15 October 2016
during the 15 s interval starting at 11:55:45 UTC. The aver-
age of these eight spectra is shown with a thick line. The
spectral moments of this averaged spectrum are listed in Ta-
ble 3. The mean radial velocity V

15 s,inc
mean is used as the refer-

ence velocity. Each spectrum is shifted as shown in Fig. 14b
(thin lines). The mean of these shifted spectra is shown in
Fig. 14b with a thick line and the spectral moments are listed
in Table 3. The shift-then-averaged spectrum (thick line in
Fig. 14b) has a narrower breadth than the simple incoher-
ent averaged spectrum (thick line in Fig. 14a). In addition,
velocity spectrum skewness and kurtosis become more pro-
nounced and have larger magnitudes after shifting and then
averaging the spectrum. One benefit of shifting the individ-
ual spectra to the 15 s mean velocity before averaging is that
there is an additional spectrum breadth estimate available for
turbulence studies. Namely, the spectrum breadth of the shift-
then-average spectrum does not have the broadening caused
by 2 s velocity shifts during the 15 s interval.

6 Concluding remarks

This study is a combined science and engineering effort de-
signed to improve high-order moments estimated from Ka-
band (35 GHz) vertically pointing radar Doppler velocity
spectra by developing three different signal-processing meth-
ods. First, a decluttering method identifies and removes clut-
ter in the Doppler spectra. Hard targets produce narrow spec-
tral peaks. Identifying clutter peaks is based on identifying
large power drops between neighbouring velocity bins. In
our observations, the narrow clutter peak occurred near zero
velocity. After identifying narrow spectral peaks, a linear in-
terpolation is performed to remove the narrow peak from the
velocity spectra. All spectra void of clutter and those with
mitigated clutter are used in the subsequent processing meth-
ods. As an interesting side note, we found that a rotating an-
tenna within 2 m of the Ka-band vertically pointing radar is
causing the clutter to be Doppler shifted. We postulate re-
flected waves bouncing off the rotating antenna cause the
path length between the Ka-band antenna feed horn and the
stationary targets to change from pulse to pulse, which ar-
tificially changes the target range during the 2 s dwell pro-
ducing a Doppler shift. Note that insects are hard targets and
produce narrow peaks in Ka-band spectra with non-zero ve-
locities as shown in Luke et al. (2008). Thus, insect clutter
can be removed from spectra by identifying large drops in
power between neighbouring velocity bins and then interpo-
lating across these narrow peaks.

The second method developed in this study identifies mul-
tiple peaks and calculates high-order moments for each sin-
gle peak, sub-peak, and separate peak. Identifying multiple
peaks is a process of identifying the integration limits that are
used in the high-order moment calculations. The high-order
moments included velocity spectrum skewness and kurto-
sis. This work found that spectrum skewness from the single
spectral peak is a good indicator of whether two hydrometeor
populations are present in the radar pulse volume. Yet, the
sub-peak and separate peaks are symmetric with skewness
estimates near zero. This suggests a two-step process of us-
ing single-peak velocity skewness as an indicator of possible
multiple peaks and multiple-peak moments for quantitative
studies.

The third method developed in this study is shifting indi-
vidual 2 s spectra during 15 s intervals to the mean velocity
before averaging the spectra. This shift-then-average method
improves the velocity spectrum skewness estimates by re-
moving the spectrum turbulent broadening effects at the 2 s
temporal scale.

Data availability. Original raw KAZR spectra are available on the
DOE ARM archive (https://www.arm.gov/data) (last access: 18
May 2017), https://doi.org/10.5439/1025218 (ARM Climate Re-
search Facility et al., 2015). Also, 6 months (May–October 2016) of
Oliktok Point KAZR spectra were processed using the clutter mit-
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igation, multiple-peak, and shift-then-average techniques discussed
in this study and are available at the DOE ARM archive as evalua-
tion data (https://iop.archive.arm.gov/arm-iop/0eval-data/williams/
(last access: 31 August 2018), Williams, 2018a).

Code availability. The MATLAB code used to generate the Olik-
tok Point moments stored on the DOE ARM archive is avail-
able in the Supplement and from GitHub (https://github.com/
ChristopherRWilliams/Oliktok_Point_KAZR_spectra (last access:
31 August 2018): Original Release, Williams, 2018b). This source
code has been assigned http://doi.org/10.5281/zenodo.1328196
(last access: 31 August 2018). With this source code, users can start
with the thresholds used for Oliktok Point KAZR spectra and adapt
the thresholds to fit the characteristics of their recorded spectra.
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Appendix A: High-order spectral moment equations

This appendix defines the equations used to calculate high-
order spectral moments. The spectral moments are calculated
for each recorded radial velocity spectrum S(i) which has
a length Npts, indices i range from 1 to Npts, and has units
of watts. The radial velocity v(i) for this spectrum has ve-
locity resolution 1v, velocity range from receding Nyquist
velocity (v (1)=−VNyquist) to maximum approaching veloc-
ity (v

(
Npts

)
= VNyquist−1v), and has units of m s−1. Zero

velocity has the index izero velocity =
Npts

2 + 1. Note that the
sign of the radial velocity is negative for receding targets
(sgn(v) < 0) and positive for approaching targets (sgn(v) >

0). This physical notation ensures that falling particles have
positive radial velocities that correspond to positive physical
diameters.

Noise statistics are determined after sorting the spectrum
magnitudes using the method described in Hildebrand and
Sekhon (1974). Essentially, this method sorts all spectrum
values and then determines a threshold that divides the data
into either noise-only data or noise-plus-signal data. Using
the noise-only data, three noise statistics are defined: mean
noise nmean; noise standard deviation nstd; and noise thresh-
old nthreshold which is the largest magnitude noise-only data
point. The mean noise nmean is used for moment power cal-
culations (i.e., noise power and SNR). The noise threshold
nthreshold is used to identify spectral points containing signal
power. Before estimating the spectral moments, integration
limits, or summation limits for discretely sampled spectra,
need to be determined. Following Carter et al. (1995), the
largest magnitude spectral value is determined (S (imax)=

max(S)) and a logical pointer is positioned at this velocity
v (imax). The left integration index ileft is determined by mov-
ing the pointer down the left side of the spectrum until the
spectrum magnitude is less than the noise threshold. Since
the integration limit needs to start above the noise threshold,
the left index is incremented so that S (ileft) > nthreshold. The
right integration limit is determined in a similar way by start-
ing at the largest magnitude value and progressing the pointer
down the right side of the spectrum. Thus, spectral moments
are calculated using the consecutive spectra and velocities
from S(ileft) and v(ileft) to S(iright) and v(iright).

As discussed in the section 5, identifying multiple spectral
peaks is a procedure to identify integration limits for each
single peak, sub-peak, and separate peak. After identifying
the left and right indices, ileft and iright, for each peak, the
following moments are calculated for each peak.

Noise power:

npower = nmeanNpts. (A1)

Signal-to-noise ratio:

(SNR)dB = 10log


iright∑
ileft

(S (i)− nmean)1v

nmeanNpts1v

 [dB]. (A2)

Reflectivity-weighted mean velocity:

Vmean =

iright∑
ileft

S (i)v(i)1v

iright∑
ileft

S (i)1v

(ms−1). (A3)

Velocity spectrum variance:

Vvar =

iright∑
ileft

S (i)(v (i)−Vmean)
21v

iright∑
ileft

S (i)1v

(m2 s−2). (A4)

Velocity spectrum standard deviation:

Vsig = [Vvar]0.5
=


iright∑
ileft

S (i)(v (i)−Vmean)
21v

iright∑
ileft

S (i)1v


0.5

(ms−1). (A5)

Velocity spectrum skewness:

Vskewness =
1

V 3
sig


iright∑
ileft

S (i)(v (i)−Vmean)
31v

iright∑
ileft

S (i)1v


[dimensionless]. (A6)

Velocity spectrum kurtosis:

Vkurtosis =
1

V 4
sig


iright∑
ileft

S (i)(v (i)−Vmean)
41v

iright∑
ileft

S (i)1v


[dimensionless]. (A7)

Spectrum peak magnitude Speak and index ipeak:

Speak = S(ipeak)=max(S) . (A8)

Velocity at spectrum peak magnitude

Vpeak = V (ipeak). (A9)
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Appendix B: 3 × 3 time–height continuity filter

A 3× 3 time–height continuity filter was applied to pro-
cessed moments to identify observations that were not con-
tinuous in time and height. For every 3× 3 (time-by-height)
matrix of observations, each pixel was assigned to be either a
valid or invalid observation using a binary flag. If the centre
pixel was valid and there were not enough valid neighbouring
observations in the 3× 3 matrix, then the centre pixel was set
to invalid. In this study, in order to remove pixels that did not
have any temporal neighbours, at least three neighbouring
pixels were needed to retain a valid centre pixel. The 3× 3
filter does not modify the moments saved in the netCDF data
file, but the binary 3× 3 filter flag is available for the end user
in the saved netCDF data file. Note that the 3× 3 time–height
filter is not part of the decluttering procedure described in
Fig. 10, but is a stand-alone quality control procedure.
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