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Abstract: The application of time-correlated single photon counting hardware and techniques to
atmospheric lidar is presented. The results establish the viability of adapting photon time-tagging
techniques to atmospheric lidar systems, facilitating high-range resolution (millimeter-level
precision) and dynamic system observing capabilities that address the variety of atmospheric
scatterers often present in atmospheric lidar profiles. The technique is demonstrated through
measurements made by a high repetition rate, low pulse energy, elastic scattering, photon
counting lidar. Detection probabilities with a non-zero system dead-time are derived and tested
using acquired data. Atmospheric point cloud generation and the statistical implications on
data retrievals utilizing this approach are presented. The results show an ability to preserve
backscattered intensities while generating photon detections at picosecond resolution from a
variety atmospheric scatterers.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Photon counting has been widely used in lidar remote sensing as a tool to remotely derive
properties of the atmosphere from backscattered intensity profiles. This low signal-to-noise
(SNR) approach has been successful with applications spanning across many atmospheric
retrievals including: quantitative measurements of clouds and aerosols [1–3], water vapor mixing
ratios [4, 5], upper atmospheric temperature [6], and others. A breadth of measurements are
achievable with photon counting lidar systems, establishing them as multi-functional in their
ability to observe a variety of phenomena and properties by a single system. However, the
desire to observe highly dynamic targets at high resolutions often introduces stringent spatial and
temporal requirements, which cannot be met due to the prescribed nature of most acquisition
systems — the measurement dynamics can result from the nature of the target or the implemented
observational method, such as aircraft or satellite based instruments. Consequently a dynamic
observing capability is necessary to match the variety and variability of atmospheric scattering
targets while also accounting for the inherently low probability of detection associated with
photon counting experiments.

Common photon counting lidar systems rely on acquisition and detection processing schemes
that bin received photons into discrete pre-allocated time intervals over a user defined altitude
range. Multichannel scaler (MCS) averagers are an example of such a data acquisition system and
are the photon counting equivalent of a transient recorder [7]. These units build up a histogram
of detections in defined memory locations (range bins) over a time period (integration time),
typically over many laser firings, before reading out an atmospheric profile. The MCS approach,
albeit very successful, is limited in its description of geophysical observations by the range and
time confines imposed by the prescribed binning procedure. This serves to limit the flexibility of
investigation and establishes a priori what spatial and temporal scales a particular atmospheric
property must have to be observable. In addition, typical range bin resolutions do not allow for
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fine feature extraction and generation of single shot profiles over the full unambiguous range of
the instrument at high bin resolution provides an arduous data overhead. For example, recent
work by [8] gives a geophysical requirement for bounding range resolution as ∼1-10 mm in
order to resolve the sharpness of cloud edges, a feature lost to spatial ambiguity in typical
MCS implementations. Photon time-tagging offers the ability to approach this range resolution
requirement and the agility to manage the varying signals in an atmospheric lidar profile.

The approach of photon time-tagging, where individual times of each laser firing and detected
photon event are recorded relative to an absolute timing reference, is rooted in nuclear decay
and fluorescence spectroscopy. Leveraging decades of advances in single-photon-sensitive
detectors, data acquisition electronics, and statistical methods, Time-Correlated Single Photon
Counting (TCSPC) techniques have been developed by these fields [7, 9]. Implementation of
TCSPC, referred to here as photon time-tagging, for Time-of-Flight (TOF) measurements has
proven advantageous as it offers shot-noise limited detections of range and the ability to generate
integrated backscattered intensities with picosecond system response from "hard" targets [10,11].
The essentials of these advancements — fast response detectors, constant fraction discriminators
(CFD), and fast time-to-digital converters (TDC) — allow photon time-tagging to be applied in
atmospheric backscatter measurements. This technique can address the dynamic measurement
resolution needs of a single, or multi-functional, atmospheric photon counting lidar.

The technique’s agility in range and time allows the measurement of atmospheric backscattered
intensity profiles over the system’s unambiguous range with picosecond base timing resolution.
In addition, configurations of a single start (laser firing) with multi-stop detections (photon events)
allow measurements beyond the first scattered return, if they lie outside the system dead-time. The
system dead-time defines a time period after an initial detection in which the acquisition cannot
respond to subsequent photon events, and is an important consideration when implementing
photon time-tagging for atmosphere profiling. System dead-time can be associated with the type
of detector or the acquisition electronics, but only acquisition dead-time is considered in this
paper as the photomultiplier tubes (PMTs) used for demonstration operate with essentially zero
dead-time.
This paper establishes for the first time the viability of photon time-tagging for atmospheric

lidar systems. It describes the probability of detection with a non-zero system dead-time, details
the experimental setup and resulting data, introduces the concept of an atmospheric point cloud,
and discusses the statistical implications on data retrievals utilizing this technique. The presented
results show an ability to preserve backscattered intensities from the atmosphere while generating
photon detections at picosecond resolution from atmospheric scatterers. The technique is
demonstrated with measurements made by a high pulse repetition frequency (PRF), low pulse
energy, elastic scattering, photon counting lidar.

The outline of this manuscript is as follows. The photon time-tagging technique is introduced
and described in Section 2. Sample observations made with this technique are shown in Section
3. A discussion of the advantages and limitations of photon time-tagging is given in Section 4
with a conclusion presented in Section 5.

2. Photon time-tagging technique

The technological advances associated with TCSPC experiments have yielded a class of time-
tagging acquisition hardware that reliably measures and processes individual photon detections
with picosecond precision (millimeter scale in range through the atmosphere) and nanosecond
dead-times [12]. Implementing a combination of stable crystal oscillators, CFDs, and TDCs,
modern TCSPC instrumentation can simultaneously measure MHz count rates across multiple
channels and retain laser synchronization information for post processing time differencing.

Three-dimensional imaging of hard targets by lidar successfully implementing TCSPC acqui-
sition has yielded dense sub-centimeter point cloud generation [10, 13, 14] and simultaneous
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estimation of backscattered intensity. Early implementations were limited to near field measure-
ments [13], due to the short unambiguous range of the high PRF lasers used, but advanced
transmitters have led to far field point cloud generation of "hard" targets [14–16]. As a product of
the targeted experiments, many of these implementations relied on a temporally gated detection
scheme, with a priori information on the standoff distance of the scatterer. This implementation
limits the ability to build a detection profile across the full measurement range, typically desired
in atmospheric sensing, and confines the probability of a detection to a specific range gate.
Atmospheric lidar applications involve volume backscattering from "soft" targets distributed

continuously and non-uniformly throughout the sensed column. Range resolution within the
measurement column is dictated by the overall timing resolution of the system, described by the
width of the instrument response function (IRF). In typical atmospheric lidar applications, the
IRF is dominated by the data acquisition timing resolution, often several nanoseconds. However,
when employing photon time-tagging, the data acquisition timing resolution is on the order of
picoseconds. This then emphasizes the laser pulse-width as the limiting resolution of the IRF, see
the discussion in Section 4. In addition to range resolution, atmospheric lidars also experience
wide ranges of signal intensities, often 5-6 orders of magnitude or more. This dynamic signal
intensity represents information content of the atmospheric scatterers and therefore requires an
acquisition system capable of providing signals that are linearly proportional to the backscattered
intensity. Consequently applying photon time-tagging to atmospheric profiling has different
considerations than previous applications to gated hard target sensing.
Single photon events with detection probabilities of much less than one per laser firing can

produce highly precise time-tags, whose estimate of intensity and range improves with temporal
integration [17]. For single photon events in atmospheric sensing, this is especially applicable.
Due to an altitude-dependent count rate, detections across the instrument’s unambiguous range
can vary in detection probability from near 100% to�1%. Under high count rates, the probability
of detection, and thus part of the atmospheric profile, can experience dead-time distortions.
Theoretical models for correcting such distortions have been well established [18,19], but are
generally specific to the measurement being pursued. In the next section, system dead-time
effects resulting from the photon time-tagging technique are investigated.

2.1. Detection probability - system dead-time effects

Photon detectability at any specific time is impacted by the presence of a non-zero system
dead-time, backscattered signal strength, and noise. For a photon counting lidar system, the
arrival of backscattered signal and noise can be modeled as a Poisson random variable [20–22].
For a Poisson process, the probability of k events in the timing bin bounded by t1 and t2 is

P(k; t1, t2) =
λk(t1, t2)

k!
exp(−λ(t1, t2)), (1)

where the mean value of the distribution is given as

λ(t1, t2) =
∫ t2

t1

[SRX (t ′) + ξ(t ′)]dt ′ (2)

For the case of atmospheric lidar systems discussed here, Eq. (2) at any measurement
time is composed of a backscattered signal count rate, SRX (t), and a noise contribution,
ξ(t) = NSB(t) + Ndark(t) from solar background and detector dark counts respectively. Both
SRX (t) and ξ(t) represent photon rate functions with units of counts/second evaluated over the
bin width. From Eq. (1) the probability of no photon events occurring between t1 and t2 is given
by exp(−λ(t1, t2)), therefore the probability that there is at least one or more photon events in the
time bin is P(k ≥ 1; t1, t2) = 1 − exp(−λ(t1, t2)). It should be noted that in photon time-tagging
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the time bin width is short enough, typically tens of picoseconds, and the unambiguous range
long enough that it can be considered a point.
In the presence of system dead-time, τD , and for some fixed time bin width, τB = t2 − t1, the

integer number of time bins within a dead-time period is ND = dτD/τBe. Considering a single
laser pulse, the system will register a detection in the jth bin if the ND bins before the jth bin
have not registered a detection [23]. The probability that the acquisition registers a photon event
in the jth bin is then

Pj =

[
j−1∏

i=j−ND

P(k = 0; i)
]

P(k ≥ 1; j)

= exp

(
−

j−1∑
i=j−ND

(Si + ξ)
)
[1 − exp(−Sj − ξ)],

(3)

where it is assumed that the number of events per bin is generated by independent Poisson
processes. The rate function is now expressed as the backscattered signal strength in the jth
bin and a constant noise term, assuming that the solar background and detector dark counts are
constant over the laser’s inter-pulse period (IPP) for single shot analysis.
Expansion of the first term in Eq. (3) introduces a combined expression for the dead-time

weighting function for a given signal count rate, noise count rate, system dead-time, and bin
width as

Wj(S, ξ, ND) =


1 ND = 0

exp(−ξND) exp
(
−∑j−1

i=j−ND
Si

)
ND > 0

(4)

Separate terms describe the impact of noise and signal on the weighting function. As the
system dead-time goes to zero, the summation yields the bounds i = j > j − 1, giving the empty
set. This maximizes Wj to unity and removes dead-time effects from the estimated signal.

Combining Eqs. (3) and (4) yields the probability of detection in the jth bin as

Pj = Wj(S, ξ, ND)[1 − exp(−Sj − ξ)], (5)

where the probability of one or more positive detections in the jth bin is scaled by the value of
Wj . When the number of events per laser firing is small, Taylor expansion of the last term in Eq.
(5) approximates the expression as

Pj ≈ Wj(S, ξ, ND)(Sj + ξ), (6)

showing a direct relationship between the detection probability and the signal count rate.
Figure 1 shows the results of Eq. (5), with contributions by Wj and SRX . Modeling of

the single-shot backscattered signal was performed utilizing the Stokes Vector Lidar Equation
formulation from [24] and the instrument parameters listed in Table 1, which are the actual
parameters for the lidar system used in Section 3 for demonstration. The signal count rates were
generated for a vertically pointing lidar with a 4 mm range resolution (27 ps timing resolution)
and a bounding altitude equal to the instrument’s unambiguous range of ∼ 10.49 km. A 100
kHz Poisson noise source is assumed, re-sampled to the IPP of the laser at 4 mm bins. The case
of randomly oriented particles and single scattering was assumed using the scattering matrix
described in [25, 26] combined with a clear air depolarization value of δ = 0.0036 [27,28]. The
NRLMSISE-00 atmospheric model was used to generate height-dependent atmospheric density
values, providing estimates of the volume backscatter coefficient and path extinction by molecular
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scattering. The simulation results were scaled by an optical efficiency factor to match the actual
values measured by the demonstration instrument to generate realistic single-shot probabilities.
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Fig. 1. Simulated curves for the individual terms of Eq. (5). The dashed line shows the
weighting function Wj - the null detection probability within ND bins prior to the jth bin, the
dot dashed line shows the probability of one or more detections in the jth bin, P(k ≥ 1, jth),
and the red line shows the combined probability Pj . The figure inset shows the effects of
dead-time distortion by comparing the shape of Pj , red line, and SRX , blue line.

Figure 1 demonstrates the interplay between backscattered signal strength, the k = 0 probability
in the prior ND bins, and the k ≥ 1 probability in the jth bin. High signal strengths in the lower
atmosphere result in Wj being less than one, as there is a high probability of detecting a photon
within prior ND bins. As the backscattered intensity falls off with altitude, Wj increases to
unity and the k ≥ 1 probability for the jth bin dominates Pj . The two curves are of opposite
tendency, resulting in a peaking of the combined probability curve. The dead-time weighting
function continues to contribute to the overall detection probability past this peak until it reaches
unity. This behavior is similar, but distinct, from the description often attributed to the geometric
overlap function of a monostatic lidar system.
The inset of Fig. 1 shows an overlay of the simulated signal, SRX , and combined probability,

Pj . The curves indicate that with a non-zero system dead-time the shape of Pj will deviate from
the incident signal count rate if Wj < 1, leading to intensity distortions. At lower altitudes, where
count rates are high, the integrated intensity profiles are non-linear with the backscattered signal.
With the given relationship between the impinging photon rate and the acquired signal, signals
outside of the linear regime can be recovered through non-linear fitting [19, 29]. The magnitude
and extent of the intensity distortion directly depends on Wj .

Figure 2 shows Eq. (5) evaluated at the demonstration instrument’s 4 mm range resolution with
different system dead-time values. As τD approaches zero, detectability of count rates increases,
leading to a linear detectability across a larger altitude range, i.e. expanding the linear signal
dynamic range of the system. Computing the percent deviation between the signal waveform and
the combined probability shows that when assuming a large system dead-time (190 ns, accurate
for the counting system described in Section 3) the shape of Pj nears linearity to SRX (within 1%
error) at 1.0 km, whereas a shorter system dead-time of 2.5 ns (commercially available) nears
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Fig. 2. Pj curves simulated with Eq. (5) and varying the system dead-time with a fixed
timing resolution of 27 ps. The signal term, SRX , is shown in blue. The resulting Pj curves
computed with different system dead-times of: 2.5 ns (dashed), 25 ns (dot-dashed), and 190
ns (solid), shown in red. The inset zooms in to the 2.5 and 25 ns curves at low altitude.

linearity at 125 m. This improves linear signal dynamic range, and thus detectable photon rates,
by nearly two orders of magnitude.

A figure of merit for signal dynamic range coverage can be defined as ΛD = 1/ND = τB/τD ,
which is the ratio of timing resolution to system dead-time. For a fixed bin width, ΛD increases
as system dead-time is decreased, thus maximizing Wj at a lower measurement altitude and
effectively improving the linear signal dynamic range. A short system dead-time with high
timing resolution is the most desirable, but not always achievable with current TCSPC acquisition
units. Often, a short system dead-time is accompanied by poorer timing resolution. This
simple relation can facilitate assessing trade-offs between covering a large signal dynamic range
with reduced range resolution or achieving high range resolution, but over a smaller signal
dynamic range. With an appropriate value of ΛD , a given set of instrument parameters can
be tuned to generate accurately modeled signal strengths that account for Pj . This provides
realistic detectability estimates and defines signal dynamic range limits that adequately suit the
measurement requirements.

3. Photon time-tagging observations

Photon time-tagging hardware has been incorporated into an existing lidar system to demonstrate
the applicability of this technique for advancing atmospheric lidar applications. System parameters
of the demonstration instrument are summarized in Table 1. This lidar transceiver was adapted
from an airborne shallow water bathymetric sounder [30].

A passively Q-switched, frequency-doubled Nd:YAGmicrochip laser with a central wavelength
of 532 nm, a PRF of 14.3 kHz, 35 mW of average power, and a full width half max (FWHM)
pulse-width of <500 ps was used as the transmitter source. The PRF implemented gave the
system a range ambiguity of 70 µs, ∼ 10.49 km, sufficient for lower tropospheric detections. The
beam is passed through a 5X Galilean beam expander to set the outgoing divergence at 2 mrad.
A half-wave plate and Glan-Thompson polarizer ensure that the transmitted light has no excess
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loss in average power and a high degree of linear polarization. The beam is steered through
adjustable Risley prism pairs for far field alignment. A back reflection from the steering system
is directed to a commercial photodiode, providing the start signal for time correlations.
The transmit and receive channels are arranged biaxially, separated spatially so that full

geometric overlap is achieved after 30 m. The backscattered photons are collected with a
commercial 90 mm aperture F13.9 Maksutov-Cassegrain telescope and spatially filtered by an
adjustable field stop at the telescope focus. Collected photons are spectrally filtered by 300
pm interference filter, allowing operation under high background conditions. A Glan-Taylor
polarizer splits the received photons into co/cross-polarized signals relative to the transmitter,
and each are focused onto separate Hamamatsu H7422P-40 PMTs. The detectors have an average
dark count rate of 300 Hz and the time transient spread (TTS) was measured as approximately
280 ps, matching previously published values [7]. Detector outputs are routed to CFD/TDCs
providing stop signals for post processing. The FWHM of the IRF was measured to be 530 ps,
equivalent to 7.945 cm in range. The laser’s temporal width dominates the convolved IRF for
our PMT/CFD/TDC setup, such that the measurement resolution of the acquisition system over
samples the IRF/target response function. Therefore, interpretation of the target at the TDC’s
millimeter range resolution cannot be realized unless the IRF is deconvolved from the signal
waveform. However, there are instances where measurements of multiple targets can be attained
at the TDC resolution independent from detector bandwidth and laser pulse-width, see [30].

Table 1. Summary of demonstration lidar system parameters

System Parameter Value

Wavelength 532.00 nm

Laser Repetition Rate 14.3 kHz

Laser Pulse-Width < 500 ps

Laser Output Energy 2.45 µJ

Transmitter Divergence 2 mrad

Transmitter Polarization > 99% Linear Vertical

Telescope Type/Diameter Maksutov-Cassegrain/90 mm

Receiver Field of View Adjustable - nominally set at 2 mrad

Receiver Filter Bandwidth 300 pm FWHM

Receiver Detectors Hamamatsu H7422P-40, 40% QE,280 ps TTS

Data Acquisition Hardware SENSL CFD, SENSL HRMTime

Data Acquisition Dead-Time 190 ns

Minimum Acquisition Range Resolution 4 mm

System Dead-Time Metric (ΛD) 0.00014

Initial tests were performed using independent CFD/TDCs for each start/stop channel, with
190 ns dead-time per channel. A master clock synchronized the channels at 250 kHz and the
TCSPC module was configured with 27 ps timing resolution (4 mm in range), continuously
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streaming all channels to the host computer. Photon detections from each receiver channel are
correlated to the correct laser firing assuming all detections come from the first unambiguous
range (a reasonable assumption for low average power systems profiling the troposphere with no
high clouds, such as cirrus). Long term drift of the master clock is unimportant as only relative
timing between laser firing and photon event are needed. The resulting data produce a real-time
point cloud of photon TOF values for every photon event, with co-registered experiment detection
time at 27 ps resolution.
Figure 3 illustrates an integrated signal profile generated by the lidar described in Table 1

and implementing photon time-tagging acquisition. These data represent backscattered signals
received in the co-polarized channel by the zenith-directed configuration due to atmospheric
molecular and particulate scattering. Total counts are displayed versus altitude over a ten second
period with 4 mm acquisition range bins spatially integrated to 12 mm (Panel A) and 1 m (Panel
B). The data profiles in panels A and B indicate decreasing volume scattering with altitude due
to the exponential decrease in the density of molecular scattering and the inverse squared range
dependence of volume scattering. The summing of counts over a larger bin width (by a factor of
100) in Panel B improves the estimate of mean counts within a bin by the square root of the total
counts within that bin while sacrificing range resolution.
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Fig. 3. Intensity profiles integrated from 10 s of raw atmospheric point cloud data at 12 mm
(panel A) and 1 m (panel B) range resolution. Panel C shows the computed Pj from Fig. 1
using the instrument parameters in Table 1.

There remain challenges with photon time-tagging acquisition that were discussed in the
previous section - notably the effects of non-registered photon events due to system dead-time as
a function of count rate. Panel C of Fig. 3 illustrates the simulated Pj curve using the system
parameters given in Table 1, a geometric overlap function, and simulated count rates determined
from panels A and B. Panel C describes many of the features observed in the measurements. At
low altitudes the ideal counts are high, but the observed counts are low due to the probability of
having a detection prior to the observing bin - Wj is much less than one. Full geometric overlap
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occurs relatively quickly, at 30 m, leaving deviations of observed counts to ideal counts above
this altitude solely due to system dead-time effects. The simulated near ground spiked feature
is evidence of this fact and is also observed in the data, where geometric overlap and system
dead-time simultaneously influence the probability curve. This feature marks the location where
the decreasing backscatter signal and the fraction of transmitter/receiver geometric overlap are
such to produce signal behavior that is low and only weakly influenced by Wj . This condition is
eliminated quickly as the geometric overlap increases the signal count rate and, consequently,
a rapidly decreasing Wj reduces the probability of detection. According to the simulation, the
weighting factor approaches unity before 1 km altitude. Thus, for altitudes below 1 km the signal
intensity is distorted by the system dead-time. Per Fig. 2, reducing the system dead-time and
degrading timing resolution are means to reduce distortion, resulting in a greater linear signal
dynamic range and constraining systematic effects to lower altitudes.
Figure 4 illustrates the agility of the system where signals from different scatterers can be

handled separately in post processing to achieve the temporal/spatial resolutions and parameter
accuracy required for that particular investigation. Molecular scattering can be coarse and
slow in evolution, while cloud dynamics can be fine and rapid. Both aspects can be studied by
independently using a variety of post processing methods. Figure 4 shows the results for a simple
SNR based dynamic binning process, where a feature threshold of SNR ≥ 3 for signals beyond 1
km, was used to select bin widths. The resulting integrated profile gives 2 m bins from 1-2.7 km,
where individual diffuse aerosol scattering layers can be seen at 2, 2.3, and 2.6 km. From 2.7-3.3
km the profile structure increases bin resolution to 26 cm, capturing the sharp cloud returns.
Performing dynamic signal evaluations in post processing relies on the capability of recording
data at the highest resolution possible, every photon event per laser firing at the full TDC timing
resolution. The demonstrated method provides equivalent raw data to a typical MCS acquisition,
but at 14.3 kHz and 4 mm resolution.
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Altitude [ km ]

100
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SN
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2 m 26 cm

Fig. 4. Dynamically integrated intensity profile using a SNR≥3 feature filter, shown by
the labeled dot-dashed line, over 10 s of accumulated photon events. The aerosol features
present in the data from 1.5-2.7 km are extracted using a 2 m bin width, and the sharp cloud
features from 2.7-3.3 km are extracted using a 26 cm bin width. Background signal, ξ, was
computed as a geometric mean between 4-5 km.

This type of collection, per laser firing, may not be feasible for lidars utilizing MCS acquisition.
Every bin within the laser’s unambiguous range would be a memory location, and data recorded
(zero or non-zero) over a large range (∼ 10.49 km) at high resolution (4 mm) would require
unfeasible memory capacity and data transfer rates. Photon time-tagging removes this limitation
by tagging only the bin occupied by a photon event per laser firing. Due to the photon counting
condition of low probabilities of occurrence, resulting data transfer rates are small, as is the saved
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data file. For an available commercial unit with a system dead-time of 25 ns, sustained count
rates of 40 MHz with bursts upwards of 125 MHz [12] are possible. Considering that every
detection is a 32 bit number, the maximum sustained transfer rate for this unit then becomes 160
MByte/sec. Given that system operation is normally tuned to a lower probability of detection
to avoid pulse pile-up, the data rate can be reduced to kBytes/sec while generating single-shot
atmospheric profiles, as is the case for this work. A comparable MCS system, lacking this sparse
storage mechanism, would generate 150 GBytes/sec for the same measurement.

4. Discussion

A complete photon time-tagging lidar system for atmospheric applications is capable of measuring
backscattered intensity, estimate range at high resolution, and operate over a broad signal range.
These attributes are summarized by the overall timing resolution and system dead-time, as
described by ΛD in Section 2. The interplay between these two attributes affects the span of
recorded counts that are linearly proportional to the signal intensity. The linear signal dynamic
range can be extended if the system dead-time is shortened or a functional form for the system
dead-time effects can be applied to the non-linear portion of the recorded signal.
Complementary to the ability to measure backscattered intensities is the high resolution

ranging that the technique affords. As is often the case with photon time-tagging approaches,
the range resolution is not dictated by the TDC’s timing resolution, but by the IRF of the lidar
system. In photon time-tagging, the detected signal waveform is the convolution of the IRF
—dominated by the laser pulse-width and detector TTS as measured against a delta function
target — and the target’s temporal response. The detector’s TTS describes statistical variability
in the leading edge of the output pulse. With PMTs, the TTS is much less than the FWHM of the
detector pulse-width (often an order of magnitude lower), effectively reducing the system IRF
and emphasizing the laser pulse-width as the IRF limiting factor. Reduction of the lidar’s IRF,
through shorter laser pulse-widths and detectors with a small TTS, allows the time resolution
description of the atmospheric point cloud to be increased.
Implementation of a post detector CFD serves to reduce the time ambiguity introduced by

statistical pulse height variations, prevalent in PMT operations. Modern TCSPC units exhibit
combined CFD and TDC root mean square timing jitters of < 10 ps [12], effectively creating
a response that falls within the TDC’s timing resolution and has little impact to the system’s
IRF. For example, the 530 ps IRF reported for the demonstration instrument is dominated by the
laser pulse-width. The timing resolution of the TDC is much finer than the IRF resulting in the
measurements being limited in resolution not by the timing resolution, but by the IRF.
With a more complete understanding of the photon time-tagging approach, the augmented

lidar was directed vertically to acquire atmospheric backscattered signals over several hours. The
profiles shown in in Fig. 3 were integrated from the post-processing of singular photon time-tags.
Figure 5 illustrates the backscattered signals over time and altitude without any post processing.
These data are atmospheric point clouds where every photon is assigned a time-tag with 27 ps
resolution. The increased density of photons (darker shade of gray) indicates higher count rates
due to greater scattering efficiency - either an increase in cross section of the scatterers, a greater
concentration of the same scatterers, or both.
The point clouds show the ability of the detection scheme to acquire photon events at high

temporal and spatial resolutions and capture the measurement scene dynamics. In the atmospheric
point cloud, features and transitions are seen as clusters of dense returns. The backscattered
signal demonstrates variability consistent with molecular, aerosol, and cloud particle scattering.
The low-altitude, high-density signal is largely due to molecular scattering at close range. The
band of high-density points between 2 and 3.3 km are strong and frequent photons from the
base and interior of clouds. The cutoff of signal above the cloud is due to extinction of the laser
energy. Diffuse scatterers with significant variability are also observed in Figs. 5 and 6, possibly
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Fig. 5. Time-correlated portion of the collected atmospheric point cloud. Each photon was
correlated to the associated laser firing at the full 27 ps resolution of the TDC and plotted
as computed range versus collection time. The atmospheric density gradient and dense
locations of returns indicative of highly reflective cloud structures and rainfall are evident.

representing evaporating rain (virga) or actual rainfall at the end of the observations.

Fig. 6. Subset of Fig 5, showing zoomed in features representing dense structure amongst
the Poisson distributed noise field, showing what could be virga or actual rainfall.

Figure 6 shows the ability to detect density changes in diffuse and sharp atmospheric features
amongst the randomly Poisson-distributed noise field. A single co-polarized plane was used for
analysis. In the case of systems employing a cross-polarization receiver channel for depolarization
estimates, the crossed polarization planes will experience different time evolving count rates,
typically with co-polarized producing higher count rates than cross-polarized [31]. This results in
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a channel dependent Wj and Pj . However, time-tagging systems handle both regimes, as system
dead-times (including detector) exist within each channel independently, not across channels,
allowing cross-correlations between channels within the system dead-time [12]. Challenges arise
when analyzing the signals together, often in the form of a ratio to determine scatterer-induced
signal depolarization. Systematic effects can significantly impact signal depolarization [24,32,33]
and such effects require careful evaluation of signal behavior. Here, the signals can be evaluated
in the context of the Wj and the analysis presented in Section 2.
Scientific retrievals typically rely on inversions of integrated backscatter intensity, requiring

further processing of the atmospheric point cloud. Standard techniques employ histogram
generation at bin sizes greater or equal to the TDC resolution, typically driven by desired SNR.
Binning is performed over a selectable number of laser firings, allowing single-shot profile
generation to any multiple of the instrument’s IPP. This method allows a dynamic approach to
generating time series of photon detections, where the number of laser firings integrated and the
desired timing resolution can be approached in a manner that best suits the science retrievals
pursued. Performing an optimum search for the time and range integration scheme is then driven
by the the ability to resolve features, providing agility in the final product produced. Hence
photon time-tagging provides more flexibility over more traditional techniques, such as MCS.
The limit on the selectable binning resolution is driven by the Nyquist criterion, where the
oversampling of the signal waveform is bounded by the temporal structure of the IRF.

To demonstrate the applicability of the atmospheric point cloud for intensity based retrievals,
the data from Figs. 5 and 6 were binned to 10 m vertical spatial and 10 s temporal resolutions
using the methods discussed. The resolution choice was driven by the need for high SNR, 20
or above was chosen, to ensure that retrieval algorithms converged. The individual profiles
were background subtracted and passed through a speckle filter to reduce the noise field.
The normalized backscatter ratio was calculated using the Klett inversion technique [34]. A
combination of the implemented methods can be seen in [31]. The results for the retrieved
normalized backscatter ratio are shown in Fig. 7. Note that the cloud tops with low backscatter
ratio are not physical, but rather an artifact of the Klett inversion used to calculate backscatter
ratio.
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Fig. 7. Retrieved normalized backscatter ratio, computed according to [31, 34], from the
atmospheric point cloud shown in Figs. 5 and 6. White areas above 3 km are locations
where integrated signal fell below the SNR threshold for the retrieval algorithm.

Several of the macroscopic structures present in Figs. 5 and 6 (note that the time scales are not
equal) were captured in the binning and retrieval processes, shown in Fig. 7. However, many of
the finer structures, such as those in Fig. 6, become spatially ambiguous when employing these
processing techniques. These traditional processing techniques serve to significantly decrease the
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resolution of the photon time-tagging technique, opening opportunity for algorithm development
and applications that exploit the full utility of the technique.

Multiple techniques have been developed to estimate clustered target densities, not emphasizing
simultaneous intensity retrievals, amongst Poisson noise fields [35]. Methods to extract features
from noise in photon limited data, utilizing traditional histogram approaches for binning structure,
have been successful with the optimal estimation approach [3, 36]. However, the high resolution
atmospheric point cloud opens the possibility for applying vetted image processing techniques
that can maximize the usefulness of the temporal and spatial resolutions. Photon limited
non-parametric Poisson intensity and density estimations have been shown in [37], and [38] show
promising results reconstructing scenes using Poisson likelihood estimators. Leveraging the
known Poissonian nature of photon counting lidar and the time-tagging technique, these methods
provide alternative approaches, with enhanced flexibility, to working with atmospheric point
clouds. Initial investigation of these methods has been performed and shown to be viable for the
photon time-tagging techniques in this work.
The adaptation of TCSPC hardware to a photon-counting lidar system and the application

of photon time-tagging to atmospheric sensing has been demonstrated. In addition to the
demonstration discussed in this paper, the time-tagging approach was successfully implemented
on an airborne platform during the 2015 NASA SARP program, the 2016 NSF/NCAR sponsored
ARISTO campaign, and on a 30 Hz, 400 mJ, water vapor Raman system. The results are not be
shown in this paper. The results of that work are similar to that which is presented here, and
further emphasizes the added flexibility of the described photon time-tagging approach.

5. Conclusion

Implementation of the photon time-tagging technique provides an efficient method to acquire
photon events, with the advantages of generating detections per laser firing at picosecond timing
resolution throughout the atmospheric column. The resulting data are an atmospheric point cloud
in time and range, capable of revealing fine-scale features and enabling dynamic integration.
This capability can prove favorable for measurement scenarios with limited time on target due to
relative platform motion, such as aircraft and spacecraft observations. Low data rate demands,
due to the sparse nature of single-shot photon counting data, are also conducive to situations
where high bandwidth telemetry is not possible. Furthermore, nadir viewing airborne and
spaceborne lidar systems often capture both atmosphere as well as land and ocean backscattered
returns [39,40]. Acquisition system flexibility would allow for such diverse scattering scenarios to
be fully captured and post-processed for multi-functional retrievals requiring dynamic resolutions.
Several attributes of a photon time-tagging lidar for atmospheric applications that differ

from typical atmospheric lidar systems were presented. Acquisition dead-time is an important
parameter that can affect signal behavior in high count rate domains - such as occurs in the
low-altitude or cloud backscattered signals. A ratio of acquisition timing resolution to dead-time
was shown as a reasonable metric, see Fig. 2 for an example of dead-time induced count rate
reduction, for optimizing a system’s linear signal dynamic range. The discussed technique
significantly reduces the IRF, which is largely driven by the laser pulse-width and the detector’s
timing jitter. The detected signal waveform is then a convolution between the IRF and the uniform
spread of the atmospheric scatterers over the pulse width. Thus, backscattered signals recorded
with picosecond timing cannot be considered independent until integration to the IRF width has
been reached — approximately 500 ps, or 7.5 cm for the demonstration instrument discussed
here. In this situation, a decrease in timing resolution can be afforded if the system dead-time is
also reduced. Even so, centimeter range resolutions in atmospheric profiling is a new capability
and can begin to contribute to fine-scale atmospheric processes associated with cloud formation,
turbulence, laminae, and other phenomena. Furthermore, this technique can be applied to the
wide variety of lidars often applied to atmospheric studies, such as differential absorption lidar,
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Raman lidar, and resonance-fluorescence lidars, whose scattering properties may be conducive
to small-scale observation or dynamic integration.
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