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Direction of Arrival Estimation and 
Sensor Array Error Calibration Based 

on Blind Signal Separation 
 

Abstract—We consider estimating the direction of arrival (DOA) in the presence of sensor 
array error. In the proposed method, a blind signal separation method, the Joint Approximation 
and Diagonalization of Eigenmatrices (JADE) algorithm, is implemented to separate the signal 
vector and the mixing matrix consisting of the array manifold matrix and the sensor array error 
matrix. Based on a new mixing matrix and the reconstruction of the array output vector of each 
individual signal, we propose a novel DOA estimation method and sensor array error calibration 
procedure. This method is independent of array phase errors and performs well against 
difference of SNR of signals. Numerical simulations verify the effectiveness of the proposed 
method. 

 

Index Terms—Directions of arrival (DOA), sensor array error calibration, Joint 
Approximation and Diagonalization of Eigenmatrices (JADE). 

I. INTRODUCTIONEquation Section (Next) 

Direction of arrival (DOA) estimation has gained increasing attention due to its significance in 
practical applications such as sonar, radar and mobile communications [1]. In particular, various 
super-resolution algorithms like MUSIC [2], ESPRIT [3] and BCS [4] have demonstrated excellent 
DOA estimation performance. Most of these array signal processing techniques presume that the array 
manifold vector is precisely known. Consequently, the presence of sensor array error will seriously 
degrade the performance of the DOA estimation, resulting in spurious directions and poor angular 
resolution. 

In recent decades, some algorithms have been developed for estimating DOAs of signals and array 
errors [5] [6] [7] [8] [9] [10]. The method in [5] estimates array gain and phase errors and the DOAs 
simultaneously, but it is limited to small array perturbations and suffers from suboptimal convergence. 
Although [6], [7], [8] do not require an iteration process, these methods are confined to linear arrays. In 
[9] an eigenstructure approach is used to estimate DOAs and array error for nonlinear arrays. This 
study is based on the eigen decomposition of the covariance matrix which is derived from the dot 
product of a received vector with its conjugate. But it requires at least two signals which are spatially 
far from each other. Cao et al. estimate the DOAs using the eigen decomposition of the Hadamard 
product derived from a covariance matrix with its conjugate [10]. The approach proposed here 
subtracts the one component, which can cause a ridge close to the diagonal line of the spatial spectrum. 
Hence, it doesn’t require that the two signals are spatially far apart. This strategy, however, needs to 
decompose the covariance matrix many times to calculate the power of the signals. Moreover, both [9] 



 

 

and [10] require at least  receiving sensors for the DOA estimation of  signals. 

In this letter, we utilize a novel strategy to solve the problem of estimating signal DOAs and the 
associated sensor array error. A blind signal separation method, the Joint Approximation and 
Diagonalization of Eigenmatrices (JADE) [11] algorithm, is implemented to separate the signal vector 
and mixing matrix. Gain errors are estimated by a conventional method in [12]. The array output vector 
of each individual signal is reconstructed by the estimated mixing matrix and the signal vector. Based 
on a new mixing matrix derived from the estimated sensor array error matrix, a novel two-dimensional 
spatial spectrum is formed. By locating the peak of the spatial spectrum, the DOAs are estimated. Then 
the phase errors are obtained from the mixing matrix and estimated DOAs. The presented method is 
independent of array phase errors and performs well against difference of SNR of signals. Additionally, 
this method only requires  sensors for the DOA estimation of  signals.  

II. SIGNAL MODEL 

Given that  narrowband far-field signals impinge on an -sensor array from directions 

, where  represents the transpose operation. The array output vector  is 

described by 

   (1) 

and  denotes the vector of zero-mean signals.  represents the 

vector of zero-mean and  variance noise, which is supposed to be a spatially white Gaussian 

random process. Furthermore, we suppose that the first sensor of the array is the reference sensor and 
its location is fixed to the origin of co-ordinates. 

 denotes the ideal array manifold matrix, which is given by 

   (2) 

   (3) 

   (4) 

where  denotes the center wavelength of the signals.  are co-ordinates of the th sensor 

and  is the spatial distance between the th sensor and the first sensor in the direction of the 

th signal.  
 is an  diagonal array error matrix. In addition, the array error of the 

th sensor can be expressed as  

   (5) 

where  and  are gain error and phase error of the th sensor, respectively. 

Finally, define the mixing matrix as 
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   (6) 

We suppose that the signals are non-Gaussian and uncorrelated with each other. All the signals are 
independent of the noise have different DOAs and have different DOAs. 

III. THE NEW METHOD  

A. Mixing Matrix and Signal Vector Estimation 

The JADE algorithm has proven to be a successful algorithm to calculate the mixing matrix and 
the signal vector in terms of the computational complexity and estimation accuracy [13]. We apply the 

JADE algorithm for the signal vector  and mixing matrix  estimation based on the array 

output vector  and the number of signals . The detail implementation of this algorithm is 

discussed by [11]. The JADE algorithm statistically calculates a whitening matrix  and a unitary 
matrix . Thus, the mixing matrix can be estimated as 

   (7) 

where  is the pseudo-inverse and the signal vector is obtained as 

   (8) 

where  denotes the Hermitian transpose. 

B.  Gain Error Calibration 

The sample array covariance matrix is computed from the  data samples 

   (9) 

where  is the eigenvalues in descending order and  is the eigenvectors of 

. 

Then, the noise variance  can be calculated from the  smallest eigenvalues of  

   (10) 

Let  denote the th diagonal element of . Gain errors can be estimated as [12] 

   (11) 
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C. DOA Estimation 

Gain errors are not considered in the following discussion, because they can be estimated by (11). 
Consider two of the  signals from the directions  and , where  and  . 

According to (6) and (7), the mixing matrix of the . .th and th signal can be written as 

   (12) 

   (13) 

Let . and  denote the estimation of  with (12) and (13), respectively. The sensor array 

error matrix can be estimated as 

   (14) 

or 

   (15) 

where  and  represent the Hadamard product and the conjugate operation, respectively. 

Define a new mixing matrix as  , and insert (14) into it 

   (16) 

Consider the signal model in (1) with no noise. The array output vector of the th signal is 
defined as 

   (17) 

Based on the estimated mixing matrix and signal vector of the th signal by (7) and (8), 

respectively,  can be reconstructed as 

   (18) 

The covariance matrix of  is estimated as 

   (19) 

where  and  represent the signal subspace and the noise subspace of the th signal, 

respectively.  and  denote the diagonal array of the largest eigenvalues and the  

smallest eigenvalues of , respectively. 
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As a consequence, we can present a novel DOA estimation method based on subspace principle. 

Since the noise subspace is orthogonal to the new mixing matrix , a new two-dimensional 

spatial spectrum can be described by 

   (20) 

where  represents the 2-norm of a vector.  

Let  denote the DOA estimated by the reconstruction of the th signal. By locating the peak 

from the spatial spectrum , we can estimate the DOAs as 

   (21) 

On the other hand, the th signal can also be reconstructed to calculate the spatial spectrum 

, then the DOAs are estimated as 

   (22) 

 

Based on the above analysis, the DOA of the th signal can be estimated with the rest  
signals 

   (23) 

D. Phase Error Calibration 

As the DOAs have been estimated by (23), we can estimate phase errors by (14) and (15) with 

each pair of , where  and  . For all the  signals, there are  

pairs of DOAs. Hence, the phase errors  are obtained as 

   (24) 

where  denotes the phase of a complex number. 

In addition, phase errors can also be derived by the conventional algorithm in [5], which is used 
by [9] and [10]. 

E. Discussion 

First, we note that the JADE algorithm is applicable for mixing matrix estimation with 
non-Gaussian signals, but also note that there are many non-Gaussian signal models in radar systems. 
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Four of the five famous radar detection models described in [14] are non-Gaussian signal models [8]. 
The method presented also has value as a practical application. 

Second, for a linear array, the spatial distance is . Consider two pairs of DOAs 
 and ,  may be equal to  because 

. Hence, this method is applicable to nonlinear arrays. In addition, if four 

sensors of an array are located on each vertex of a square with its side no more than , respectively, 

the DOA estimation using the presented method is unambiguous [9]. 
Third, the proposed method only requires  sensors to estimate  signals while [9] and 

[10] requires at least  sensors. From Table I we know that as  increases, , as 

required by [9] and [10] increases more rapidly than that of the proposed method. Thus, this will 
increase the complexity of the receiving system, which means more sensors, more receiving channels 
and larger array. 

TABLE 1The minimum sensors required for DOA estimation against number of signals 

K 2 3 4 5 6 7 8 9 10 
M (Our Method) 3 4 5 6 7 8 9 10 11 
M ([9] and [10]) 3 7 13 21 31 43 57 73 91 

 

IV. NUMERICAL SIMULATIONS 

We carry out some representative simulations to verify the validity of the approach presented. The 
DOAs of the signals are within the region  to and we assume that two signals do exist. The 

array gain-phase errors of the sensors are generated as  and , 

respectively. In addition,  and  are independent and random variables with uniform 

distributions over . The standard deviations of  and are  and , respectively. 

 

 
Fig. 1 Spatial spectrum of the three methods. (a) Spatial spectrum of [9]. 

(b) Spatial spectrum of [10]. (c) Spatial spectrum of the new Method. 

In the simulations below we have, , the samples are  and the number of Monte 
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Carlo trials is . We use the following sensor configuration to get the unambiguous DOA 

estimation [9]: there are seven sensors with locations at , , , , 

, , . 

The methods discussed in [9] and [10] are selected for a performance comparison. As the three 
methods apply the same gain error calibration method in [12], we don’t discuss it in the experiments 
below. Both [9] and [10] implement the same phase error calibration method presented in [5], and we 
compare it with the new calibration method presented by (24). 

Fig. 1 shows the two-dimensional spatial spectrum of the three methods, where DOAs are 

, SNR of signals is 20 dB and . There is only one distinct peak in the spectrum of 

the new method compared with the spectrum in [9] and [10]. By locating the peak of the spectrum, the 
DOAs are estimated. 

Fig. 2(a) shows RMSE (root mean square error) of the DOA estimation and array error calibration 

against , where DOAs are  and SNR is 20 dB. This demonstrates that the three methods 

are independent of array phase error, and reveals that the new approach performs better. It can be 
clearly seen that this new method is efficient and achieves higher accuracy. 

Fig. 2(b) displays RMSE against DOA Separation, where DOAs are , SNR is 20 dB and 

.  and DOA separation is described by .  starts from  

because [9] fails when  is less than . Simulation curves in Fig. 2(b) indicate that [9] performs 
poorly while the DOA separation is small. Both the new approach and [10] perform better as the DOA 
separation increases. Furthermore, the new calibration method outperforms [5]. 

 

Fig. 2. RSME against  and DOA Separation. (a) RSME against . (b) 

RSME against DOA Separation. 

Fig. 3(a) displays RMSE against SNR, where . As seen in Fig. 3(a), the performance of 

the three methods improves as the SNR increases. In addition, the new estimation outperforms [9] and 
[10], and the new calibration method performs better than [5]. Here we also show the   
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confidence interval (CI) of the bias and variance of the DOA (from ) estimation in Fig. 4 when SNR 
is 15 dB. The CI of the new method is narrower than that of [9] and [10]. 

At last, we implement simulations to verify the performance of the new method against difference 

of SNR of signals when , where the SNR of the signal from direction  is fixed to 20 dB 

and SNR of the other signal varies from 20 dB to 0 dB. Simulation curves depicted in Fig. 3(b) verify 
that [9] tends to deteriorate with the difference of SNR increasing. The performance of [10] degrades 
substantially when the power difference is above 15 dB while the presented strategy still maintains 
considerable accuracy. Additionally, the two calibration methods have almost the same performance. 
The new calibration method performs better when the difference of SNR is less than 12 dB while the 
method in [5] only shows better performance when the difference of SNR is above 17 dB. 

 
Fig. 3 RMSE against SNR and difference of SNR. (a) RMSE against SNR. 

(b) RMSE against difference of SNR. 

 
Fig. 4 CI of the bias and variance of the DOA (from ) estimation of the new method (red), [9] (green) and [10] (blue) against 

the Monte Carlo trials. The lines are the lower and upper confidence limits. The point and plus represent the data in and out of the 

CI, respectively. 

V. CONCLUSION 

We propose a DOA estimation and sensor array error calibration method based on blind signal 
separation. The JADE algorithm is applied to separate the signal vector and mixing matrix. Based on a 
new mixing matrix and the reconstruction of the array output vector, we present a novel DOA 
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estimation and sensor array error calibration method. The method presented is independent of array 
phase errors and performs well against difference of SNR of signals. Furthermore, this method requires 
fewer sensors than the methods in [9] and [10] when the number of signals is greater than two. 
Numerical simulations demonstrate that the new method is efficient and effective. 
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