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Abstract: We present an approach for the design of refractive optical elements using 
materials degrees of freedom that are accessible via engineered materials. Starting from first 
principles and an unconstrained general material, we specify homogeneous refractive lenses 
that focus light with diffraction-limited resolution resulting from a tailored anisotropic 
refractive index. We analyze the performance, physical feasibility, and advantages over 
isotropic lenses. Materials degrees of freedom enable new flexibility for imaging system 
designs with lower complexity expanding the existing aspheric and graded index paradigms. 
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1. Introduction

Classical optical imaging systems consist of a series of refracting (or reflecting) surfaces 
interfacing among homogeneous isotropic materials that generally have a common axis of 
rotational symmetry. The surfaces are used to bend light rays originating from an object 
following the laws of geometrical optics to form an image. Fundamental considerations show 
that perfect imaging is possible in principle, but only with unit magnification [1]. According 
to the Gaussian optics approximation of small angles [2], the law of refraction takes a simple 
(linear) form. In this paraxial approximation, all the rays diverging from a point object and 
propagating through the system converge to a point named the Gaussian image point. 
However, beyond this approximation, rays are traced according to the exact geometrical 
optics laws and they generally do not converge to a point, resulting in aberrations. 

Traditional optical design aims at minimizing such aberrations via multiple surface and/or 
multiple material systems that meet a set of performance requirements and constraints [2]. 
Modern lens design can also take advantage of aspheric [3,4], gradient index [5], diffractive, 
or holographic lenses [6] to reduce aberrations and overall complexity and size. In effect, 
current approaches to isomorphic imaging take advantage of various freedoms to improve 
lens performance: Graded-index optics exploits the flexibility of slowly varying 
inhomogeneities [5,7,8], aspheric [2,3] and freeform optics [9,10] exploit departures of 
surfaces from sphericity, while diffractive lenses [6] take advantage of diffraction effects, 
possibly including metamaterials to enhance performance [11,12]. However, even with all 
these techniques at hand, optical systems often have significant complexity in the form of 
multiple elements, unwieldy form factor, size, and weight. 

In this work, we present a different and complementary approach for the design of 
refractive optical elements based on anisotropy, taking advantage of materials degrees of 
freedom without any a priori assumption on their physical properties. The materials 
characteristics are determined, based on first principles, to control the refraction angles while 
targeting a specific imaging task. In particular, we derive the required index anisotropy 
prescription for perfect focusing using a cylindrical homogeneous singlet. We show that, in 
principle, the resulting material specifications are accessible via artificial dielectrics and 
metamaterials. We explore the fundamental and practical limitations for implementation of 
this paradigm as well as application opportunities. 

This paper is organized as follows: In section 2 we present the mathematical and physical 
concepts defining tailored anisotropic refractive index optics. In section 3 we present design 
studies of plano-convex and bi-convex lenses, while section 4 discusses optical materials for 

Vol. 25, No. 25 | 11 Dec 2017 | OPTICS EXPRESS 31078 



implementing the design. Several appendices expand the topics presented in the prior 
sections. 

2. Specification of homogeneous material index n(θ) for optimal focusing

The design principle for tailored refraction via anisotropic materials (TRAM) seeks to specify 
an anisotropic homogenous material with refractive index n( ), where  is the direction of 
rays, such that the target imaging properties are optimal. We calculate n( ) for the desired 
optical response of the system to each incoming ray, effectively steering the rays to the 
desired focal point. While such geometric construction is always possible for a pair of 
conjugate points, to be physically meaningful, all resulting rays must satisfy Fermat’s 
principle. Therefore, the process involves solving for a material that produces a stationary 
point following general anisotropic ray tracing principles. While the direct problem of ray 
tracing given a geometry and material is well understood, the material inverse problem 
proposed here has not been tackled before. We therefore start by stating the fundamental 
TRAM inverse problem as follows: 

Given a lens geometry find the material anisotropic index n(θ) such that an optical 
performance quality metric is optimized, subject to anisotropic ray tracing rules including 
Fermat’s principle. 

Fig. 1. Principle of tailored refraction via anisotropic materials (TRAM) design. Aspheric and 
GRIN lens approaches are depicted for comparison. g(x) is the surface shape of the aspheric or 
freeform lens, n(x) is an arbitrary refractive index profile, and ( )n θ  is the anisotropic

refractive index described by an index that depends on the direction of propagation. For perfect 
focusing, we calculate the angle dependent refractive index that tunes the refraction angle at 
various positions of the interface. 

Here we focus on tailoring the material for a given geometry, e.g. a lens with given 
curvature and width. However, the process can be extended to the joint optimization of the 
geometry and material, such as radii of curvature, width, asphericity, multi-elements, etc. This 
process is not different from conventional optical design, with the key innovation offered by 
the flexibility to tailor the material anisotropy for a specific task. Pure TRAM design is 
different from aspheric and freeform design in that the material properties rather than the 
surface relief is optimized. As opposed to GRIN, in which the refractive index varies across 
the material, pure TRAM design utilizes homogenous materials with anisotropic properties. 
These differences are illustrated in Fig. 1. Notwithstanding, TRAM is ultimately not meant to 
compete with the other design approaches but rather complement and enhance them. 

TRAM ray tracing 

At the interface of air and a TRAM material, ray tracing follows the rules of anisotropic 
refraction. Accordingly, a ray follows the direction of the Poynting vector ŝ  (the direction of 
energy flux of the electromagnetic field), which is normal to the index surface and conserves 

transverse momentum. Characteristically, the iso-phase surfaces are normal to the k̂ -vector, 

as depicted in Fig. 2. The angle α  between the k̂ -vector and the Poynting vector is given by 
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tan  /  z xdn dnα = −  (see Fig. 2(a) and Appendix A); where xn  and zn  are the components of 

the index surface. Furthermore, 

1
tan

dn

n d
α

θ
= (1)

where /dn dθ  is the gradient to the index surface at the refractive point (See Appendix A). 

Fermat’s principle and optical path length 

Fermat’s principle establishes that the optical path length that light travels between the two 
points is stationary [13]. In order for the specified material to be physically meaningful (i.e. 
consistent with a given set of ray trajectories), rays have to follow this basic principle. The 
design process thus imposes a stationary optical path difference. We recall that the optical 

path length in anisotropic media is calculated by the projection of the k̂ -vector along the ray 

path multiplied by the respective refractive index: ˆPL ˆO  inl k s⋅= , as illustrated in Fig. 2(c)

[14]. 
As part of the design of an anisotropic lens, we calculate the optical path lengths of all 

rays and keep the optical path length stationary by imposing that the maximum of the path 
difference among any two rays is zero. The result is the selection of refractive index profiles 
that satisfy Fermat’s principle. This step is a physical validation of the design as illustrated in 
more detail in Fig. 3(d) and Appendix B. In this paper we consider perfect focusing in the 
geometrical optics sense, namely a diffraction limited spot size. We consider optimization for 
on axis foci and assume monochromatic light (or no chromatic dispersion). 

Fig. 2. Rays, wavefronts, refraction and optical path length in TRAM. (a) The direction of the 
ray ˆ( )s  is along the normal to the index surface at a given point, which is typically different 

from the direction of the k̂ -vector.
x

n  and
z

n  are the components of the index surface. (b)

Schematic of the relationship between angle of incidence and angle of refraction when 

transitioning between isotropic (ex: air) and a TRAM (anisotropic) material with a generic k̂ -
surface relationship. The dotted lines represent conservation of transverse momentum. (c) The 
optical path length is determined by the projection of the ray in the k direction and the index of 

refraction: ˆPL ˆO  
i

nl k s= ⋅ . 

Focusing by a single cylindrical interface 

In order to illustrate the procedure, we first describe perfect focusing with a single cylindrical 
interface. The geometry is depicted in Fig. 3(a), where rays parallel to the optical axis (i.e. 
object at infinity) are refracted at the cylindrical interface. R is the radius of curvature and si is 
the distance between the desired image and the interface in the direction parallel to the rays. 

 and s are respectively the angle of the k̂ -vector and the angle of the refracted ray with the 
direction of incoming rays. The ideal design should focus all parallel rays to one point, at 
distance si. We start by defining the Poynting vector angle as follows: 
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1 1
tan , s k k

k

dn

n d
θ θ α θ

θ
−  

= − = −  
 

(2)

( )tan
idealk s

k

dn
n

d
θ θ

θ
= − (3)

This is a first order linear ordinary differential equation (ODE) with the initial condition of 
 = 0 = 1.5 (or any other value for the index of the ray that is incident normal to the interface). 

Note that the angle 
idealsθ  in Fig. 3(a) can be calculated trigonometrically for each angle φ . 

Therefore, for tailored focusing of the Poynting vector to distance si, we can simply define the 
ideal 

idealsθ  as a function of the geometry ( )φ .

( )
1 sin

tan
1 cosideals

i

R

s R

φθ
φ

−  
=   − − 

(4)

We now combine Eqs. (2) and (3) and formulate an ODE that represents the ideal focusing as 
a function of ( ) n θ  and kθ , considering the anisotropic refraction rules

( )
1 sin

tan tan
1 cosk

k i

dn R
n

d s R

φθ
θ φ

−
  

= −    − −  
(5)

where 0 1.5nθ = =  is the initial condition, and ( )( )1tan sin / cos 1k kn nφ θ θ−= −  is a 

trigonometric relation of angles at the point of refraction. Using Snell’s law, 

( )2sin sin  sin( )kn nφ θ φ θ= = − , where 2θ  is defined in Fig. 3(a), Eq. (4) provides solutions

for the index ( )kn θ  that generate a perfect focus. The equation has the form 

 / ( , )k kdn d f nθ θ= , with 0nθ =  as an initial condition, and can be solved numerically. 

The resulting ( )kn θ for a spherical surface with R = 1, object at infinity, and focusing to 

si = 3 (the paraxial value expected for an isotropic material of index 1.5) is shown in Fig. 3. 
Figure 3(b) presents the ray tracing (red) for the designed anisotropic material, showing 

ideal focusing. We also plot the k̂ -vector directions to illustrate the fact that they can be quite 

different, contrary to the situation in isotropic media. Here the k̂ -vectors do not converge to a 
point while the rays do. In order to be physically meaningful, rays have to follow Fermat’s 
principle. The design process thus imposes a stationary optical path difference. Hence, we 
calculate the optical path difference (OPD) for varying si to find a solution that satisfies 
Fermat’s principle, namely OPD = 0, for all its rays. This is exemplified in Fig. 3(d), showing 
a plot of the maximal OPD as the focal point is shifted around si = 3 (the isotropic paraxial 
solution). 
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Fig. 3. Focusing through a cylindrical interface. (a) Refraction of a ray at a cylindrical TRAM 
interface. The rays (red) refract in the direction of the Poynting vector ŝ whereas the phase 

fronts propagate in the direction of the k̂ -vector (blue). (b) Ray tracing (red) showing ideal 
focusing for the anisotropic material described in (a) and the wave vector directions (blue) for 
reference. Zoom in on the Ray tracing showed in the top right inset. (c) Optimized n( ) curve 
for the case of single spherical interface, si = 3, R = 1, object at infinity. (d) Fermat principle 
constraint – for each focal location si, a n(θ) curve is generated, ray tracing performed, and the 
OPD calculated. The blue curve shows the calculated OPD for each focal length. The red curve 
is OPD = 0. The crossing of the blue and red curves represents the solutions satisfying Fermat 
principle. The found solution is very close to the paraxial isotropic solution si = 3.005, and the 
deviation due to numerical accuracy. 

3. Design studies

Cylindrical plano-convex lens 

Let us consider next a plano-convex cylindrical lens composed of a homogeneous anisotropic 
material as shown in Fig. 4. As in the case of a single cylindrical interface, we formulate an 
ODE in the form of / ( , )k kdn d f nθ θ=  using the geometric definition of the ideal refraction 

angles along with anisotropic refraction rules and constrained by Fermat’s principle (see the 
full derivation of the plano-convex lens in Appendix C). 

We thus specify the material (Fig. 4(a)) to have the anisotropic refractive index required 
to attain diffraction limited focusing as shown by the fan diagram in Fig. 4(b), and ray traces 
(red lines) in Fig. 4(c). The fan diagram shows all rays within the pupil cross the axis within 
100nm of the nominal focus, which is well below the diffraction limit. Figure 4(c) also 

presents the k̂ -vector directions (blue lines), showing they do not converge to a single point 
but still generate rays (in red) that do focus within the diffraction limit. Figure 4(d) compares 
the rays traced for the TRAM design (in red) with the rays traced for an isotropic lens with 
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the same geometry (refractive index n = 1.5, in light blue). This shows that, for a given 
geometry, the optimal material improves the performance over the isotropic case. 

Fig. 4. Focusing for a plano-convex lens with an object on-axis at infinity. (a) Optimal n(θ); 
(b) Ray fan diagram showing tight focusing of the TRAM lens; (c) Ray tracing (red) showing

ideal focusing for the anisotropic material and k̂ -vector directions (blue) for reference. Zoom 
in on the Ray tracing showed in the top right inset. (d)- Comparison of plano-convex lens with 
isotropic material (top, light blue) and TRAM (bottom, red) shows enhanced focusing of the 
TRAM design. 

Cylindrical bi-convex lens 

The TRAM method can be extended to more general cases, such as a bi-convex lens. Here we 
also seek an anisotropic refractive index that will perfectly focus an on-axis object at infinity. 
However, due to more complex ray geometries, an analytic expression for an ODE cannot be 
attained without approximations. Therefore, we iteratively optimize the index anisotropy 
while performing anisotropic ray tracing to test its performance, as depicted in Fig. 5. 

For a given lens geometry (see Appendix D for bi-convex lens), the iterative process starts 
with an arbitrary curve ( )n θ that can be parametrized as a polynomial. Then follows 
anisotropic ray tracing through the lens and calculation of the ray fan at the chosen position. 
From the ray fan, the maximum spot size is extracted and defined as a cost function for the 
optimization (other cost functions can be defined as well). The cost function is fed back to 
iteratively improve the curve ( )n θ , namely by adjusting its polynomial coefficients to 
minimize the spot size. The process continues until a satisfactory solution is found, e.g. spot 
size below the diffraction limit. Details of the implementation of the optimization process as 
well as the anisotropic ray tracing are included in Appendix E. The anisotropic properties can 
also be tailored to off-axis performance for perfect focusing between two off-axis conjugated 
points. 
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Fig. 5. Enhanced focusing for a cylindrical bi-convex lens with an object on-axis at infinity. (a) 
Isotropic bi-convex lens; (b) Optimized TRAM lens. The iterative optimization for bi-convex 
lens is detailed in Appendix E. 

4. Physical implementation of TRAM

The design process described above produces an ideal anisotropic material for improved lens 
performance based on the optimization metric. In this section, we seek to further specify the 
design based on known electromagnetic properties of anisotropic materials. To determine 
specific material properties from the refractive index ( )n θ , a Fourier transformation from real 
space to k-space defines the anisotropic homogenous material. We use the dispersion relation 
 /k n cω=  for monochromatic waves as a scaling factor between n and k. 0/j jn k k= , where 

 /k n cω= . The k-space diagram provides information about the refractive index, phase 
velocity, and energy of propagating plane waves in a given propagation direction θ . To plot 
the diagram, we apply a polar-to-Cartesian coordinate transformation: 

0

sinxk
n

k
θ= (6)

0

coszk
n

k
θ=

The k-space diagrams define the TRAM and an exact realization can be pursued by dispersion 
engineering of a composite or meta-material [15–17]. Alternatively, it is possible to 
approximate the TRAM material by uniaxial materials that still preserve the quality of the 
lens design, for instance including artificial dielectrics [18–21]. The following examples 
compare the ideal materials to uniaxial birefringent materials, which are described by ellipses 
in k-space. Figure 6 shows the degree of fit of an ellipse (corresponding to uniaxial materials) 
to the designed TRAM. 

The refractive index plots of Fig. 6(a), 6(c), and 6(e) show that uniaxial birefringent 
materials are a good approximation for the type of designs presented above. In order to 
quantify the performance of the perfect focusing lens and uniaxial approximation, we analyze 
the lens performance for the extraordinary rays of a uniaxial approximation to the ideal 
design, as depicted in Fig. 6(g). In case of uniaxial materials, the angle between the wave-
vector and the Poynting vector is 

( )2 1 1
tan     sin 2

2
k

k
e o

n

n n

θ
α θ

 
= − 

 
 (7)
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Fig. 6. TRAM approximation and impact on ray fans. (a) k-space diagram for a single 
cylindrical interface (Blue - optimized refractive index curve. Red - an isotropic reference with 
n = 1.5. Black a fit to uniaxial material with no = 1.5 and ne = 1.6. (b) Single spherical interface 
error plot of the difference between the optimized material and uniaxial approximation. (c) k-
space diagram for a plano-convex case. (d) Plano convex error plot. (e) k-space diagram for a 
bi-convex case. (f) Bi-convex error plot (g) Bi-convex ray-fan comparison of TRAM (red), 
Uniaxial approximation (green), and Isotropic (blue). 

As depicted in Fig. 6(g), ray tracing of the approximated uniaxial material in the bi-
convex case shows 10x enhancement (evaluated by spot size) over the isotropic material 
despite the deviation from the ideal design. 

5. Discussion

The concept of materials degrees of freedom rather than being originated in materials 
properties determined a priori (e.g. negative refraction), starts from a systems approach 
pursuing the ideal material characteristics required to satisfy a given goal. The proposed 
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approach, possibly in combination with multi-surface optical design on one hand, and 
aspheric approaches on the other hand, enables new flexibility at the material level 
specification facilitating designs with potentially lower complexity (i.e. lower number of 
elements, lightweight materials, etc). Here, we have left aside macroscopically 
inhomogeneous materials (GRIN design) and freeform/aspheric optics to be able to evaluate 
the individual effect of anisotropy as a free design parameter. 

The TRAM methodology provides additional degrees of freedom to optimize lenses 
following specific cost functions as in traditional lens design. In the examples described 
above we optimized for perfect focusing over a limited field of view, but off-axis 
performance deteriorates rapidly (see Appendix F). An intrinsic limitation in the field of view 
stems from the fact that each time a TRAM material is specified for a given ray direction, the 
ray still undergoes refraction on two surfaces of the lens. Therefore, there are two variables 
(two refraction angles) to control with only one degree of freedom (refractive index for the 
given ray direction). As a result, there is a trade-off in performance over the field of view. 
Optimization of the TRAM lens over a wider field of view, namely compromising the on-axis 
performance for improved performance over the field of view is also possible, similarly to 
what is done in traditional lens design (see Appendix G). 

The optimal TRAM designs are inherently anisotropic. For linearly polarized light, the 
ideal designs presented here are valid for cylindrical lenses. In the case of non-polarized light, 
double refraction occurs, leading to walk-off effects with the improvement, in general, valid 
for only one polarization state. 

Although this report explored TRAM at a functional level, advances in 3D 
nanofabrication and computational power provide access to these degrees of freedom [22–
24]. In particular, direct-write techniques that use ultrashort laser pulses to modify transparent 
media such as glass [25,26] or polymers [26,27] have been used to create 3D integrated 
optical devices in bulk material and diffractive optics [25,28,29]. Such techniques in 
combination with traditional e-beam and multi-layer lithographic approaches could be 
adapted to scalable fabrication of TRAM adding to the toolbox of lens production approaches. 

The TRAM process described above did not consider chromatic dispersion by the 
material. Furthermore, artificial metamaterials are typically highly dispersive. Hence, the 
resulting chromatic aberrations will require correction by complementary methods. Still, the 
2D (and monochromatic) design is directly applicable to planar systems including photonic 
integrated circuits. 

The extension of TRAM design to 3D elements is beyond the scope of this report. It 
would be interesting to explore the performance gains arising from the inclusion of an 
arbitrary anisotropy as a free parameter into the design space. Even though existing optical 
design software cannot tackle this type of optimization, we expect this report will encourage 
the development of design tools along these lines. For spherical lenses the optimization is 
more intricate but still shows promise for improvement over isotropic designs (see Appendix 
G). 

In conclusion, we presented a framework for optical design based on tailoring the 
materials to optimize a given imaging metric. Within this framework, we implemented 
Fermat’s principle in the design phase and considered the physical realizability via artificial 
materials. The designed lenses generated perfect imaging even for non-paraxial rays but 
within a narrow field of view. These simple examples illustrate the best cylindrical (or 2D) 
lens achievable with a homogeneous (TRAM) material but the extension to use multi-
elements, aspherics, and graded index approaches is available to expand the design space. 

Appendix A: Ray tracing in anisotropic media 

In anisotropic materials, the ray travels in the direction of the pointing vector which is the 

normal to the gradient of the index surface. The angle k sα θ θ= −  between the k̂ -vector and 

the Poynting vector is called the walk off angle. Figure 7(a) depicts the index surface 
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description of anisotropic refraction from air into an anisotropic material. The walk off angle 
is defined as the gradient of the index surface at the point of refraction tan  /z xdn dnα = − . In 

polar representation and in small-angle approximation with small  intervals, the walk off 

angle can be written as 
1 dn

n d
α

θ
= .

Fig. 7. Diagram for the calculation of rays upon refraction at the interface between isotropic 
and anisotropic materials. Left- k-space diagram. Right- Zoom in highlighting the definition of 

the walk-off angle  between the k̂ - vector (blue) and the Poynting vector (red). 

Based on the index curve ( )kn θ , ray tracing for any imaging geometry can be 

implemented. The ray tracing procedure is described in this section. The refraction of the 
extraordinary polarized beam from air into the optimal anisotropic material, follows the 
generalized Snell law. 

( )1 2 2sin sinin nθ θ θ= (8)

This equation cannot be solved directly and the solution is obtained from the graphical 
solution of the k-space diagram, in its numerical version, as depicted in Fig. 8. Accordingly, 
the transverse conservation of momentum is obtained by calculating the projection of the 
incident beams and finding its corresponding k-surface refraction numerically. 

Fig. 8. Principles of anisotropic ray tracing. Left- k-space diagram showing a refraction of a 
ray traveling from air (red circle) into an anisotropic material (blue ellipse). Conservation of 
transverse momentum is calculated by projecting the ray onto the x axis, indicating the 

direction of the k̂ -vector in the anisotropic material ( )2θ . The local surface gradient at the

refraction point is calculated, indicating the Poynting vector direction (yellow). Right – real 
space refraction diagram with corresponding angles. 

Unlike a planar interface, at the cylindrical/spherical interface, each ray refraction occurs 
in a different, tilted, coordinate system, compared to the optical axis, as shown in Fig. 9. 
Therefore, the anisotropic ray tracing procedure involves rotating the coordinate system for 
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each ray according to the geometry of the interface and finding the refraction angles 
accordingly. 

Fig. 9. Numerical solution of the generalized Snell’s law in a spherical or cylindrical refractive 
surface. The anisotropic surface is tilted according to the refraction location at the lens 
spherical surface. Red, Blue, Green and Orange are examples for tilted anisotropic surfaces. 
Transverse momentum conservations (Black lines) are illustrated for two arbitrary incident 
rays (Red lines). 

The procedure starts with an optimized ( )n θ  curve in Cartesian coordinates

1 2

1 2

 . . . . . .

 . . . . . .
x x xm

z z zm

k k k

k k k

 
 
 

. For each ray ( )φ , the incident angle is calculated i  beamsθ φ α= +  as

well as an appropriate rotation matrix, R = 
cos sin

sin cos

φ φ
φ φ

 
 − 

, to adjust the k-surface, 

1 2

1 2

 . . . . . .cos sin
 

sin cos  . . . . . .
rotated m

rotated m

x x x x

y z z z

k k k k

k k k k

φ φ
φ φ

    
=    −       

(9)

where  rotated

rotated

x

y

k

k

 
 
  

 is the adjusted k-surface. 
2

nθ  is found graphically by projecting the 

refraction point ( k̂ -vector at angle tθ  intersects with the adjusted k-surface) on the transverse 

axis xk . Then the generalized Snell’s law can be applied to find the refraction angle of the 

k̂ –vector, ( )
2

1
2 sin sin  /i nθθ θ−= . We define 2kθ φ θ= −  as the angle from the optical axis

and calculate the walk off angle, between phase front and Poynting vector, 

1 1
tan

k

dn

n θ
α −  

=  
 

(10)

to finally obtain the direction of the refracted Poynting vector, s kθ θ α= − . 

Appendix B: Fermat’s principle calculation 

As described in Section 2 and shown in Fig. 3(d), rays have to follow Fermat’s principle. 
Hence, we calculate the optical path length (OPL) and optical path difference (OPD) for 
varying si to find a solution that satisfies Fermat’s principle. The OPL in anisotropic media is 
the projection of the phase propagation on the ray path. The OPD between two rays is 
calculated as 
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1 0OPD  OPL  -  OPL= (11)

where 

0 0ˆˆOPL cosi il nl s l lk n α= + ⋅ = + (12)

The ray path in air, 0l , and ray path in the material, il , are defined in Fig. 3(a). The angle α  

is formed by the k̂  and Poynting vectors, and n is the anisotropic index of refraction. 
Fermat’s principle is imposed by finding the point P where the maximal OPD of all rays 

crossing P is 0. This stationary point is found over all possible points P’ and the 
corresponding n(θ) For instance, in Fig. 3(d) the P’ is varied along the axis (enough due to 
symmetry) and P is found at si=3.005. 

Appendix C: Plano convex cylindrical lens – full derivation 

In the plano-convex lens example we seek the anisotropic refractive index of a cylindrical 
lens that will perfectly focus an on-axis object at infinity. In order to formulate an ODE in the 

form of ( ), k
k

dn
f n

d
θ

θ
=  we define the geometry of the refraction angles and apply the 

anisotropic refraction rules. 

Fig. 10. Plano-convex lens geometry. 

We seek again the anisotropic refractive index of a cylindrical lens that will perfectly focus an 
on-axis object at infinity. This case involves a second refraction at the planar interface as 
shown in Fig. 11. 

21tanideal
i

h

s d
θ −  

=  − 
(13)

We also know from conservation of transverse momentum that the second refracted angle is 

( )1sin sinideal knθ θ−=  (14)

The second refraction height can then be calculated: 

( )2 sin tan * cossh R d R Rφ θ φ= − − + (15)

Combining the two results: 

Vol. 25, No. 25 | 11 Dec 2017 | OPTICS EXPRESS 31089 



( ) ( )1 1 sin tan * cos
sin sin  tan s

k
i

R R

s d
n

R dφ θ φ
θ− − − − + 

=  − 
(16)

The goal now is to extract sθ  

( )1 sin tan * cos
tan(sin ( sin )) s

k
i

d
n

s

R

d

R Rφ θ φ
θ− − − +

=
−

(17)

( )
( )
1

1

tan(sin ( sin ))*( ) sin tan * cos

tan * cos sin  tan(sin ( sin ))*( )
k

s

i s

ik

n s d R d R R

d R R R n s d

θ φ θ φ
θ φ φ θ

−

−

− = − − +
− + = − −

 (18) 

( )
1

1 sin  tan(sin ( sin ))*( )
tan

cos
k i

s

R n s d

d R R

φ θθ
φ

−
−  − −

=   − + 
(19)

As before in the infinity corrected imaging: 

1 sin
tan

cos 1 
k

k

n

n

θφ
θ

−  
=  − 

(20)

Substituting Eq. (27) in to Eq. (26): 

1 1

1

1

sin
sin tan  tan(sin ( sin ))*( )

cos 1 
tan

sin
cos tan

cos 1 

k
k i

k

s

k

k

n
R n s d

n

n
d R R

n

θ
θ

θ
θ

θ
θ

− −

−

−

− −
−

=

− +
−

   
   

   
    
         

 (21) 

sθ  can be substituted into the OED 

( )tan
idealk s

k

dn

d
n θ θ

θ
= − (22)

Leading to 

1 1

1

1

sin
sin tan  tan(sin ( sin ))*( )

cos 1 
tan

sin
cos tan

cos 1 

i

k

k

k

k

kk

k

n
R

dn

d

n s d
n

n
n

d R R
n

θ
θ

θ
θ

θθ

θ

− −

−

−

− −
−

= −

− +
−

    
        
     

      
      

 (23) 

Solving this equation provides, in principle, a solution for perfect imaging for every si. 
However, only one of these solutions will satisfy the fundamental Fermat’s principle. 

We tested the Plano-convex anisotropic design (Sec. 3 and Fig. 4) using our developed ray 
tracing software. On axis illumination (0°) shows reduction of the Spot RMS size from 20 
microns with an isotropic singlet to <400nm using the anisotropic design. At larger fields of 
view of 4-10°, corresponding to illumination angles of 2-5°, the anisotropic design shows 
advantages over an isotropic solution. However, as the field of view grows the enhancement 
is reduced. 
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Appendix D: Bi convex cylindrical lens, non-paraxial, ray tracing in anisotropic 
media 

The anisotropic ray tracing described above can be directly applied in any cylindrical 
geometry. In the case of bi-convex lens, we perform the ray tracing without any 
approximations in the trigonometric expression by deriving the trigonometric relations needed 
for the optimization. The basic magnitudes of the non-paraxial ray tracing procedure are 
shown in Fig. 10. 

Fig. 11. Geometry of the bi-convex lens. All the angles and dimensions, required for non-
paraxial ray tracing, are indicated. 

According to the angles and distances, defined in Fig. 10, the trigonometric relations are: 

1 1 1sinRh φ= (24)

[ ]1 1 11 cosRx φ= − (25)

1 1
1 1 i 1

o 1

tan
x

h

s
φ φθ θ −  

= + = +  + 
(26)

( )
1

2
1

1

2

sin
sin

n

n φ
θ −  

=  
  

(27)

2θ  is calculated according to anisotropic ray tracing numerical / graphic calculation of 

appendix A. The ray tracing continues with the following trigonometric relations: 

2 1α θ φ= − (28)

( )1 2xL d x= − + (29)

1 1
2 2

2

1 cos sin
h

x
R

R −  
= −  

   
(30)

Next, we formulate two equations with two unknown variables,   and 2h ;  

1 2
2 2

2

1 cos sin
h

R
R

x −  
+ = −  

   
 (31)

( )2 1tanLh hα= − + (32)
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The analytic solution is not straightforward, extracting 2h  involves a numerical solution of 

the following equation: 

1
2 2

2
2 1

2

1 cos sin tan 0L x R
R

h
h hα−

   
− + − − − =        

(33)

With the exact numerical solution for 2h  we continue to ray trace: 

1 2
2

2

sin
h

R
φ −  

=  
 

(34)

3 2 θ φ α= − (35)

( )3 2 11
4

1

sin  
sin

n

n

θ φ
θ −  

=  
 

(36)

The refracted direction is calculated according to the anisotropic ray tracing numerical / 
graphic solution. Note that there is one angle of propagation in the lens, α , that corresponds 
to each ray at 1φ . The final imaging angle is: 

4 2θ θ φ= − (37)

Using this formalism, all rays can be accurately traced. The optimization procedure, described 
later, modifies the index curve to improve the lens performance iteratively. 

Appendix E: Bi-convex lens - anisotropic index optimization algorithm 

In the bi-convex lens we also seek an anisotropic refractive index that will perfectly focus an 
on-axis object at infinity. Without any approximations in the trigonometric expression we 
cannot attain an analytic expression for the ODE as in prior cases because the geometry is too 
complex. However, we can iteratively optimize the index anisotropy as shown below and 
preform anisotropic ray tracing to test the performance of the design. 

The calculation of optimal TRAM material starts with a given radii of curvature of the 
lens and an arbitrary initial curve n(θ ), parametrized as a polynomial. In this particular case, 
the initial curve was a solution of a similar plano-convex lens. Then follows an anisotropic 
ray-tracing through the lens and a calculation of the ray fan at the desired focal length. From 
the ray fan diagram, we extract the maximum spot size and define it as the cost function. On 
the following step, the curve n(θ ) is modified by adjusting its polynomial coefficients, and 
ray-tracing through the lens is performed. The cost function is calculated again and fed back 
to a minimization algorithm. The optimization algorithm we used is based on golden selection 
and parabolic interpolation and implemented in MATLAB. The optimization process 
continues until a satisfactory solution is found such that the polynomial coefficients of the 
n(θ ) curve generate a ray trace with minimal spot size. Fig. 12 depicts the iterative flow of 
the ray tracing. 
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Fig. 12. Iterative optimization of the index n(θ ) for a bi-convex lens. 0. Initial curve n(θ ), 
parametrized as a polynomial. 1. Anisotropic ray tracing. Principles (left) and biconvex lens 
example (right). 2. Ray fan diagram. The maximum divergence indicates the spot size, is 
defined as a cost function, and used as feedback for the minimization algorithm 3. 
Modification of the curve ( )n θ by changing the polynomial coefficients. 

In order to obtain a physically meaningful lens we verify Fermat’s principle is satisfied. In 
the bi-convex case, simulation of the OPD involves several steps of optimization and ray 
tracing. We optimize the curve n(θ) and look for a zero OPD point as well as perfect focusing 
around the paraxial focusing distance of the isotropic lens. 

Appendix F: Oblique focusing on single interface 

In this section, the performance of a single interface anisotropic lens is compared to isotropic 
simple lens. The anisotropic material properties were calculated for the case of on axis 
imaging (α = 0) and tested at various angles, α = 0, 5, 10, and 20 degrees. The depicted results 
in Fig. 13 show that the anisotropic material corrects well all the spherical aberration on axis 
(α = 0). However, as the oblique angle grows, aberrations appear. Table 1 compares the ray 
tracing maximal spot size between the isotropic and the anisotropic lenses at the designed 
focal plane (3mm). The table shows superior performance of the anisotropic simple lens over 
isotropic lens at the paraxial focal plane of 3mm. Note that aspheric surfaces would better 
correct for aberrations in the isotropic case. However, the rationale for comparing spherical 
surfaces is to understand whether or when anisotropic design can improve performance 
relative to isotropic design with all other parameters being equal. 

Table 1. Comparison of isotropic vs anisotropic oblique focusing in a single interface. 

angle Isotropic spot size 
[μm] 

anisotropic spot size 
[μm] 

Plane 
location 

0 359 2.9 3mm

5 465 173 3mm
10 591 342 3mm
20 902 647 3mm
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Fig. 13. Oblique focusing on single interface of isotropic (black) vs anisotropic (red) at an 
angle of (a) 0° (b) 5° (c) 10° and (d) 20°. 

Appendix G: Uniaxial spherical lens 

In the previous sections, we compared the performance of TRAM to conventional cylindrical 
lenses for input linear polarization. For spherical lenses, direct semi-analytical calculations to 
solve the material inverse design are more intricate. However, the observation that anisotropy 
can help improve performance is still valid and can be used as a free parameter in global 
optimizations. To illustrate this concept, in Fig. 14 we compare the performance of a 
spherical lens for isotropic and anisotropic designs using a commercial ray tracing software 
(Zemax). Because the commercial software cannot include a general material design, we 
restrict the design to a uniaxial material with c-axis along the lens optical axis and evaluate 
performance for the extraordinary rays, which in this case correspond to radial polarization. 
We consider no = 2.0 and ne = 1.5 and an image space F# 1. The performance is tested for 
input angles of α = 0, 5, 10, and 20 degrees with optimization weights of 1.0, 0.2, 0.1, and 
0.05 respectively, to emphasize best on-axis imaging performance. The geometry and the 
focal plane of the lenses were optimized to minimize the spot radius. 

Vol. 25, No. 25 | 11 Dec 2017 | OPTICS EXPRESS 31094 



Fig. 14. Oblique focusing through an (a) Isotropic and (b) Uniaxial spherical lens for incident 
angles of 0°, 5°, 10°, and 20°. 

Table 2 compares spot-size performance for both lenses showing better performance for 
the extraordinary rays in the anisotropic lens. The tangential and sagittal ray fan plots of the 
two lenses were also compared as shown in Fig. 15. It can be seen that for all field angles, the 
ray aberration of the uniaxial lens shows superior performance as compared to the isotropic 
lens. 

Table 2. Comparison of r.m.s. spot sizes for isotropic vs uniaxial oblique focusing 
through a spherical lens. 

Angle (o) Isotropic spot size [μm] uniaxial spot size [μm] 

0 6.71 1.88

5 7.48 1.57
10 11.96 4.94
20 41.27 24.57

Fig. 15. Tangential (top) and Sagittal (bottom) ray fan comparison between the isotropic (blue) 
and uniaxial lens(red) for incident angles of 0°, 5°, 10°, and, 20° (left to right). 
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