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This paper suggests a novel way to import the approach of axiomatic theories of
individual choice into strategic settings and demonstrates the benefits of this ap-
proach. We propose both a tractable behavioral model as well as axioms applied
to the behavior of the collection of players, focusing first on prisoners’ dilemma
games. A representation theorem establishes these axioms as the precise be-
havioral content of the model, and that the model’s parameters are (essentially)
uniquely identified from behavior. The behavioral model features magical think-
ing : players behave as if their expectations about their opponents’ behavior vary
with their own choices. The model provides a unified view of documented behav-
ior in a range of often studied games, such as the prisoners’ dilemma, the battle
of the sexes, hawk–dove, and the stag hunt, and also generates novel predictions
across games.

Keywords. Magical thinking, axioms/representation theorem, prisoners’ dilem-
ma, coordination games.
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1. Introduction

This paper suggests a novel way to import the approach of axiomatic theories of indi-
vidual choice into game-theoretic settings. We propose a behavioral model of play in
symmetric 2 × 2 games, which features magical thinking : players behave as if they ex-
pect that choosing an action a increases the likelihood that their opponents also select
action a. We then provide axioms and a representation result that establishes the equiv-
alence between the axioms and the equilibrium play of the behavioral model, focusing
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first on behavior in prisoners’ dilemma (PD) games. Further, the model’s parameters are
(essentially) uniquely identified from behavior.

The novelty lies in the behavioral data to which our axioms apply. The axioms con-
cern players’ preferences over actions contingent on the payoffs of the (one-shot) game,
rather than preferences over outcomes. In addition, they restrict not only individual be-
havior, but also place a joint restriction on the behavior of a finite collection of players.
We motivate our axioms as simple and intuitive behavioral regularities across games and
individuals, without reference to any particular strategic model.

The contribution of the paper is therefore threefold. First, we provide a tractable and
empirically plausible theory of magical thinking, a phenomenon that has received atten-
tion in psychology and philosophy (discussed below), applied to strategic games. Most
importantly here, we demonstrate that our model provides a unified view of observed
behavior in a range of often studied games including the battle of the sexes, hawk–dove
(also known as chicken), and the stag hunt, in addition to the PD.

Second, distinct from typical work in applied or behavioral game theory, we present
a representation result that establishes equivalence between the model’s predictions
and a set of empirically plausible axioms. This result allows for the evaluation and em-
pirical testing of the model, and facilitates its comparison to alternative theories. Fur-
ther, the model’s parameters can be identified from behavior, which is both useful for
comparative statics and allows the analyst to traverse between the model and the ax-
ioms whenever convenient. For example, observed behavior satisfying the axioms on
PD games can be used to identify the parameters of the model, which can be used in
turn to generate predictions for (not yet observed) behavior in a different set of games.
All of this is important for applied work.

Third, a key component of our approach is that the axioms apply to players’ pref-
erences over actions (rather than outcomes). Axiomatizing this type of data has the fol-
lowing benefits, numbered B1–B3. (B1) The primitive of our axiomatic analysis is exactly
the type of data we aim to address, namely players’ preferences over their own actions,
across games and across players. (B2) This type of data is straightforward and common
to collect in experiments. (B3) We do not have to rely on auxiliary assumptions about
an equilibrium concept or on commonality of beliefs. Instead, as we discuss below, we
can derive these, as well as individual value functions, from the data. We hope that our
approach will prove useful in future research beyond this one application.

The domain of games

For several reasons, we begin our analysis on the set of PD games. PD games consti-
tute perhaps the most important class of games in applications, and cooperation in the
(one-shot) PD is a much discussed behavioral puzzle.1 We demonstrate that our model

1Of course, cooperation is easier to explain in the repeated PD, provided players are patient enough. For
finitely repeated versions, reputation models starting with Kreps et al. (1982) offer a potential explanation.
For infinitely repeated versions, cooperation is part of some subgame perfect Nash equilibria. Interestingly,
in an infinitely repeated, noisy version, Fudenberg et al. (2012) find substantial levels of cooperation (over
30% across all rounds) under parameters for which the unique equilibrium strategy is always defect.
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makes behavioral predictions distinct from other explanations of cooperative behavior
in PD games. Further, focusing on PD games helps build intuition for the workings of the
model. Most importantly though, we demonstrate that behavior in PD games provides
sufficient data to precisely characterize the behavioral model via axioms and to identify
its parameters. Isolating such a small, yet economically interesting, domain for both the
representation and identification results has the same advantages as it does in theories
of individual choice.2

We then apply the behavioral model to all symmetric 2 × 2 games, where its pre-
dictions continue to align with experimental evidence.3 Hence, the model’s ability to
explain behavior is not tailored to PD games at the expense of descriptive accuracy in
other games in the class, but instead it provides a single account of observed play. Cor-
respondingly, the model generates novel predictions for how behavioral patterns should
correlate across games. Finally, we extend the model to allow for larger action sets, and
investigate the manner in which the connection between magical thinking and cooper-
ative behavior likewise extends.

Further extensions of the model are possible, but would require additional mod-
eling choices. At a very general level, the two key components are that players believe
their action choices have stochastic influence over the decisions of others and that equi-
librium beliefs are biased as a result (evidence for each is discussed in Section 4). In
principle, players could have arbitrary (magical) beliefs about how their choices affect
others. However, given the formulation of magical thinking (and related concepts) in
psychology and philosophy, we believe a natural starting point is for players to believe
they influence others to select the same action as they do. Although it is possible that
real-world context could imbue meaning into strategically irrelevant action labels, sym-
metric games provide a setting in which “the same action” is meaningful strategically.
Next, in games with more players, there would be the added modeling choice of which
other players i believes he is influencing and whether there is correlation in his per-
ceived influencing.4 These modeling choices will likely need to be tailored to the setting
at hand, but the two key features would remain.

Summary of results

Within the model, each player i in the collection of players, I, is endowed a type, αi, and
there is a cumulative distribution function (CDF) over types, F , from which players per-
ceive types to be independent and identically distributed (i.i.d.) draws. Given a game,

2First, it distills the behavioral implications of the psychological phenomenon (here magical thinking)
by abstracting from as many complications as possible. Second, the less data needed for identification
of the parameters, the better. Third, the model can be assessed by testing the individual axioms on the
small domain of interest (for example, see our comparison to alternative explanations of cooperation in PD
games in Section S.1 of the Supplement, available in a supplementary file on the journal website, http://
econtheory.org/supp/2099/supplement.pdf). In contrast, an axiomatization of the same model on a larger
domain might involve axioms that have less bite when restricted to the small domain, and can therefore
not serve as a checklist for testing the model on that domain.

3Extension of the axiomatic analysis is found in Section S.3 of the Supplement.
4For example, in a two-party voting game, player i might believe that turning out independently in-

creases the probability that others from his own party turn out, while not affecting the turnout of the op-
posing party.

http://econtheory.org/supp/2099/supplement.pdf
http://econtheory.org/supp/2099/supplement.pdf
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player i forms the following nonstandard beliefs. He assigns probability αi that the ac-
tion of his anonymous opponent, j, will correlate perfectly with his own, and probabil-
ity (1 − αi) that j’s action will be determined independently. In the latter case, i’s belief
about j’s behavior is consistent with j’s equilibrium strategy. We refer to αi as i’s de-
gree of magical thinking. A player with αi = 0 corresponds to a standard game-theoretic
agent—though, one who recognizes that he may be playing against a nonstandard op-
ponent. We characterize the equilibria of the model, and establish a necessary and suf-
ficient condition on F for the equilibrium to be unique in all PD games.

Turning to the axioms, as one would expect, some of them describe plausible regu-
larities of individual behavior. Specifically, we posit Monotonicity, which requires that a
player who is willing to defect in one PD does not prefer to cooperate in another PD with
greater payoffs from defection, as well as appropriate notions of Continuity, Convexity,
and Invariance to Positive Affine Payoff Transformations. In addition, we posit a novel
Interplayer Sensitivity Comparison axiom. Roughly, the idea behind the axiom is that the
behavior of a player who is more prone to defection is also more sensitive to changes in
the gains from defecting on a cooperating opponent. We will see that this pattern is
consistent with a player’s willingness to cooperate being responsive to the true cost of
doing so. In surveying the experimental literature, we find that our axioms are broadly
consistent with the available evidence and also offer new testable implications for future
studies.

Our representation theorem establishes that the axioms are equivalent to the behav-
ioral model with the condition on F that is necessary and sufficient for uniqueness of
the equilibrium in all PD games. Further, the collection of types (αi)i∈I and the quantiles
(F(αi))i∈I are uniquely identified from behavior, which allows us to provide stronger
comparative statics in terms of those parameters.5 Finally, note that in the represen-
tation, F is the common belief among players regarding the distribution that types are
drawn from. In the Supplement, Section S.2, we provide an axiomatic characterization
of this belief being empirically valid when the collection of players is arbitrarily large.

In addition to generating a positive degree of cooperation in PD games that de-
creases monotonically with the incentives for defection, the model comports with ob-
served behavior in other well known games. In hawk–dove games, our model predicts
that players will choose dove more often than is predicted by the symmetric (mixed-
strategy) Nash equilibrium of the standard model, in line with experimental evidence.
In battle of the sexes games, the prediction of our model matches the symmetric (mixed-
strategy) Nash equilibrium of the standard model, which also aligns with experimental
findings. Consider next coordination games with multiple symmetric Nash equilibria
that are Pareto ranked (e.g., the stag hunt game). Our model uniquely predicts coordi-
nation on the payoff-dominant Nash equilibrium only if it is also not “too risky,” in a
sense similar to the concept of risk dominance (Harsanyi and Selten 1988), and in line
with evidence. However, the prediction is more nuanced than risk dominance in that

5That is, because of identification, our comparative statics (Section 3) describe not only the implication
of changes in parameters for changes in behavior (as is common in applied game theory), but can establish
equivalence between them (as is standard in decision theory).
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whether the payoff-dominant Nash equilibrium is too risky depends on the (perceived)
distribution of types, F .

Note that the model’s ability to capture all of these findings does not owe to any flex-
ibility across different games. Our results show that play in PD games alone (essentially)
pins down the model, leaving no additional flexibility. Hence, the model also makes
predictions across classes of games that are often studied independently. For example,
collections with higher rates of cooperation in PD games also have a larger set of coor-
dination games in which the payoff-dominant Nash equilibrium is uniquely selected in
our model.

Of course, alternative explanations of nonstandard behavior in games—most no-
tably models based on other-regarding preferences—have been studied and shown to
align with important experimental findings. However, in both PD games as well as other
prominent games in our domain, there remains significant evidence of nonstandard be-
havior that is not explained by these theories, but is consistent with our model of magi-
cal thinking, as we discuss in Sections 4, 5.1, and S.1 in the Supplement.

Magical thinking

Psychologists have collected evidence that is consistent with individuals exhibiting mag-
ical thinking. Starting first with inanimate “opponents,” the term illusion of control was
coined by Langer (1975) to describe subjects who acted as if their choices had influence
over physical outcomes. For example, subjects placed higher bets on a coin about to be
flipped than on a coin already flipped, but whose outcome was still unknown.6

Section 4 discusses evidence suggestive of magical thinking in strategic settings. Pre-
senting one example here may be useful. Shafir and Tversky (1992) had subjects play a
standard PD with the twist that in some treatments the game was played sequentially,
such that one player knew the other’s action before choosing his own. They observed
that second-movers cooperate significantly less often in the sequential PD—even fol-
lowing cooperation by the first-mover—than in the standard, simultaneous-move ver-
sion of the game. This finding is inconsistent with standard forms of other-regarding
preferences (such as reciprocity), but can be explained by players believing that their
actions directly influence their opponents’ not-yet-chosen action, but cannot influence
those that have already been taken.

Throughout, we refer to magical thinking as the belief that one’s action choice influ-
ences one’s opponent to choose the same action. A related notion is found in a norma-
tive debate in philosophy that concerns Newcomb’s paradox (Nozick 1969) and extends
to the PD if one presumes a notion of self-similarity.7 Evidentiary decision theorists ar-
gue that one’s opponent is probably similar to one’s self, and hence one should believe
that the other player will go through the same deliberations and come to a similar con-
clusion as one’s self (Lewis 1979, Jeffrey 1983). They conclude from this that cooperation

6The interpretation that a decision-maker’s beliefs about random states of nature vary with his own
choice is also common in the theory of ambiguity aversion (see, for example, Gilboa and Schmeidler 1989).

7Such as described by Rubinstein and Salant (2016) (and citations therein) as the belief that others are
likely to make similar judgements and choices as one’s self.
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is the optimal choice. Hence, while their psychological mechanism is slightly different,
evidentiary decision theorists advocate for a player to behave as if his choice influences
his opponent’s choice, and the notion is observationally equivalent to magically think-
ing on our domain. In contrast, causal decision theorists argue that one should not be-
lieve that one’s own action affects the other player’s action, as the simultaneous-move
game leaves no room for a causal explanation (Joyce 1999).

We mention this debate not because we will participate in it—the nature of the be-
havioral data we consider presupposes that magical thinking is a cognitive error—but to
highlight that a number of intelligent, serious individuals have reasoned in such a man-
ner.8 Finally, a similar idea is apparent in common casual reasoning, such as, “I con-
tribute/recycle/volunteer because if I did not, then how could I believe that others are
doing it?”

The remainder of the paper is organized as follows. For PD games, Section 2 presents
our model, axioms, and representation theorem. Section 3 presents comparative statics,
and Section 4 compares our theory to experimental evidence and alternative theories of
play. Section 5 first applies the model to all symmetric 2 × 2 games and then extends it
to allow for larger action sets. Section 6 provides extended discussion including a com-
parison of our axiomatic methodology to alternative approaches. Proofs are given in the
Appendix. The Supplement comprises Sections S.1– S.3, which contain extended formal
results.

2. A theory of magical thinking

We begin with the class of prisoners’ dilemma games as shown in Figure 1, where r > p

and x� y > 0, which we refer to as PD0 (the reason for the superscript will become ap-
parent shortly).9 In each game, two players, i and j, can each choose to defect (d) or
to cooperate (c). Often r + x is denoted as t and p − y is denoted as s, but the above
parametrization will be more convenient for our purposes. Note that x captures the
benefit from defecting on a cooperating opponent, while y is the benefit from defect-
ing on a defector. We refer to an arbitrary game as g ∈ PD0 or, if it is useful to be more
explicit about its payoffs, as (r�p�x� y). We consider a finite collection of players, in-
dexed by I := {1� � � � � n}, and each player i’s preferred action for each possible game in
PD0 when played as a one-shot game against an anonymous opponent, as is typical in
experimental settings.

We present the behavioral model, or representation, first and then present the ax-
ioms in Section 2.2. Compared to axiomatic theories of individual choice, the most
notable procedural difference is the necessity to conduct equilibrium analysis (Sec-
tion 2.1.1) so as to apply our representation.10

8Experimental evidence suggestive of evidentiary reasoning is found in Quattrone and Tversky (1984).
9Throughout, we interpret game payoffs in monetary terms to facilitate comparison with experimental

findings. However, there is no formal sense in which our theory relies on this interpretation rather than
the interpretation of game payoffs as von Neumann–Morgenstern (vNM) utilities, as is customary in game
theory. (See the discussion of methodology in Section 6 for more.)

10This can be viewed as a generalization of the single-agent exercise. There the prototypical result is
the equivalence between axioms and a decision-maker acting as if he maximizes a certain utility function.
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Player j
c d

Player i c r� r p− y� r + x

d r + x�p− y p�p

Figure 1. An arbitrary prisoners’ dilemma in PD0.

2.1 The behavioral model

For the set of atomless probability distributions each with support [0�1] and differen-
tiable CDF, let F be the corresponding set of CDFs. In the behavioral model, each player
i ∈ I is privately endowed with a type αi ∈ [0�1]. In addition, there is a common prior
that types are drawn i.i.d. from a distribution with CDF F ∈ F . For each g ∈ PD0, player
i evaluates the expected payoff of action ai ∈ {c�d} as

Vi(c) = αi · r + (1 − αi)
[
Pi · (p− y)+ (1 − Pi) · r]�

Vi(d)= αi ·p+ (1 − αi)
[
Pi ·p+ (1 − Pi)(r + x)

]
�

(1)

where Pi is the probability i assigns to being defected on in game g, conditional on ai
and aj being determined independently. That is, i evaluates options as if he thinks that
there is probability αi that his opponent will match whatever action choice i makes,
and probability 1 − αi that his opponent determines aj uninfluenced by ai. This is the
sense in which player i exhibits magical thinking, and the degree to which he does so is
measured by αi.

Given a game g ∈ PD0, a strategy for player i (denoted σi) is completely characterized
by the probability with which he selects a ∈ {c�d} if his type is αi (denoted σi(a|αi) ∈
[0�1]), and his interim expected payoff from strategy σi is σi(c|αi)Vi(c)+σi(d|αi)Vi(d).11

Throughout, we consider only symmetric equilibria, defined as follows.

Definition 1. Fix any CDF F and g ∈ PD0. An equilibrium is a pair (σ�P), such that,
with Vi as given by (1), the following statements hold:

(i) For all i ∈ I, σi = σ .

However, each choice problem can be interpreted as a single-player game, with the notions of optimiza-
tion and equilibrium coinciding. Therefore, the standard result is identical to showing that the axioms are
equivalent to the decision-maker playing an equilibrium in every (single-player) game where payoffs are
defined by the utility representation.

11There can be measurability issues for mixed strategies with uncountable type spaces (Aumann 1964).
We use a convenient formulation that handles those issues. A strategy is a function σi : A × [0�1] → [0�1],
where A is the collection of all subsets of {c�d}, that satisfies two properties: (i) for every B ∈ A, the func-
tion σi(B|·) : [0�1] → [0�1] is measurable, and (ii) for every αi ∈ [0�1], the function σi(·|αi) : A → [0�1] is a
probability measure. In a slight abuse of notation, then, we write σi({a}|αi) as σi(a|αi), and if σi(a|αi) = 1,
we say that player i chooses/selects/plays action a when his type is αi . See Milgrom and Weber (1985) for
further details and equivalence between this and other notions of mixing with uncountable type spaces.
Finally, while the formula for interim expected payoff is standard (taking (1) as given), it implies that the
bias in a player’s beliefs depends only on his type and ultimate action choice, and not on σi(·|αi) directly.
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(ii) For all i ∈ I and a�a′ ∈ {c�d}, σ(a|αi) > 0 =⇒ Vi(a) ≥ Vi(a
′).

(iii) For all i ∈ I, Pi = P = ∫ 1
0 σ(d|α)dF(α).

The first two requirements are standard: the first is the symmetry condition; the
second states that the strategy assigns positive probability only to actions that yield the
highest expected payoff, given a player’s type and beliefs. The third requires that any
player’s belief conditional on not influencing his opponent is consistent with his oppo-
nent’s equilibrium strategy. If αi = 0, player i corresponds to a standard game-theoretic
agent in that he assigns probability zero to directly influencing his opponent, and his
belief about his opponent’s behavior is consistent with his opponent’s equilibrium strat-
egy. If αi > 0, player i’s belief is a convex combination of this belief and the belief that i’s
opponent will match the action played by i.12

2.1.1 Equilibrium analysis We now characterize the equilibrium properties of the be-
havioral model. First, we observe that the set of equilibria is invariant to positive affine
transformations of the payoffs.

Lemma 1. If (σ�P) is an equilibrium of the game (r�p�x� y) ∈ PD0, then it is also an equi-
librium of the game κ(r + ξ�p+ ξ�x� y) ∈ PD0 for all κ > 0 and ξ ∈R.

All proofs are located in the Appendix. From the lemma, the set of equilibria is iden-
tical in games (r�p�x� y) and (1�0� x

r−p�
y

r−p), the latter being the positive affine transfor-

mation of the former with κ = 1
r−p > 0 and ξ = −p. Let PD ⊂ PD0 denote the subset of

games in which r and p are normalized to 1 and 0, respectively, with (x� y) ∈ PD being an
arbitrary element. Given Lemma 1, it is sufficient to characterize equilibrium behavior
for games in PD, which we focus on for the remainder of Section 2.1.

Definition 2. An equilibrium (σ�P) is a cutoff equilibrium if σ is of the form σ(d|α)= 1
if α< α∗ and σ(d|α)= 0 if α> α∗, for some α∗ ∈ [0�1].

Proposition 1. For any F ∈ F and (x� y) ∈ PD, (i) any equilibrium is a cutoff equilib-
rium with α∗ ∈ (0�1), (ii) α∗ is an equilibrium cutoff if and only if it is a solution to (2)
below, and (iii) an equilibrium exists.

Fixing any (x� y) ∈ PD, the cutoff nature of the equilibrium is immediate: for any
(common) equilibrium belief Pi = P , Vi(c) − Vi(d) is strictly increasing in αi. Then, in
equilibrium, Pi = P = F(α∗), and the cutoff type, α∗, is indifferent between c and d. So

12Because players in the model seek to maximize their expected payoff (albeit, with nonstandard beliefs),
one could obviously employ an alternative, reduced-form assumption that a player simply receives a direct
utility gain from selecting c. In Section 4 we discuss how this modeling choice would require a counterintu-
itive form of dependence on the payoff parameters to emulate our model (which is only exacerbated when
we extend to games beyond PD0) and be at odds with additional experimental evidence.
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the set of equilibria is identical to the set of solutions to the equation13

Vi
(
c|αi = α∗) = α∗ · 1 + (

1 − α∗)[F(
α∗) · (−y)+ (

1 − F
(
α∗)) · 1

]
= α∗ · 0 + (

1 − α∗)[F(
α∗) · 0 + (

1 − F
(
α∗)) · (1 + x)

] = Vi
(
d|αi = α∗)� (2)

Noting that for αi = 0, Vi(c|αi = α∗) < Vi(d|αi = α∗) and for αi = 1, Vi(c|αi = α∗) >
Vi(d|αi = α∗), all solutions to (2) are interior and existence is guaranteed by the conti-
nuity of both the left- and right-hand sides. This leaves only the question of uniqueness.

Proposition 2. For any fixed F ∈F , there is a unique equilibrium cutoff in each (x� y) ∈
PD if and only if F ′(α)

F(α) ≤ 1
α−α2 for all α ∈ (0�1) (hereafter referred to as Condition S).

Condition S restricts how steep F can be, by limiting its reverse hazard rate, in a man-
ner that depends on α. For example, the CDF F(α) = α1/k, k≥ 1, satisfies the condition,
even though F ′(α)

F(α) → ∞ as α → 0. Note, then, that by taking k arbitrarily large, we can
generate arbitrarily close approximations of the standard model (in which F(α) = 1 for
all α ∈ [0�1]), while continuing to satisfy Condition S.

To gain intuition for the potential multiplicity of equilibria, first note that for type
αi, defection carries the cost of r −p = 1 with perceived probability αi, while the benefit
of defection is F(α∗)y + (1 − F(α∗))x with perceived probability 1 − αi. If x > y, then
the benefit of defection is decreasing in F(α∗) (i.e., the probability that one’s opponent
defects if his choice is made independently), and the indifference equation (2) has a
unique solution.14 But if x < y, then the benefit of defection is increasing in F(α∗). If F
is steep on some range this means that (in expectation) there are many players making
essentially the same calculation; so each is happy to cooperate if the equilibrium calls for
all of them to do so, but each prefers to defect if the equilibrium calls for them all to do so.
These types face a coordination problem. This problem is ameliorated if F is never too
steep. Not surprisingly, the most difficult games in which to maintain uniqueness are
those with the smallest x values, which are used to derive the tightness of Condition S
for uniqueness (see the proof in the Appendix).

2.2 The axioms

We now present the axioms, doing so without reliance on the model. The data we con-
sider are each player i’s preferred action for each possible game in PD0 when played as
a one-shot game against an anonymous opponent. The behavior of player i partitions
PD0 into three sets: the set of games D0

i for which i strictly prefers d, the set of games
C0
i for which i strictly prefers c, and the set of games M0

i = PD0 \ (D0
i ∪ C0

i ) for which i

is indifferent in his choice of d or c. We denote by D
0
i = PD0 \C0

i and C
0
i = PD0 \D0

i the
sets of games for which i weakly prefers d or c, respectively. The primitive of our analysis

13Definition 2 does not specify the behavior of the cutoff type, who is indifferent between c and d. We do
not always distinguish equilibria that have the same cutoff, but in which the cutoff type behaves differently
since this type has measure zero and the distinction has no effect on payoffs.

14For x = y , (2) has a unique solution, which is independent of F : α∗ = x
1+x = y

1+y .
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is the collection of pairs (D0
i �C

0
i )i∈I , which fully summarizes the behavior of all players

in I.15

Our first four axioms consider individual behavior. It can be noted that a player who
adheres to the standard prediction of always defecting, D0

i = PD0, satisfies all of these
axioms (and can never generate a violation of our fifth and final axiom).

Axiom 1 (Invariance to Positive Affine Transformations). For all i ∈ I, if (r�p�x� y) ∈D0
i ,

then κ(r + ξ�p+ ξ�x� y) ∈ D0
i for all κ > 0 and ξ ∈R, and analogously for C0

i .

The axiom states that positive affine transformations of all game payoffs have no ef-
fect on individual behavior. For the dollar stakes used in the laboratory, evidence seems
to be consistent with the axiom, both in the prisoners’ dilemma and also in many other
games (see Section 4). The axiom has a flavor of risk neutrality (which we have already
seen is part of the behavioral model). One interpretation is that subjects themselves
treat strategic risk differently from environmental risk, focusing on the strategic aspects
of their choice rather than their attitude toward risk.16

Axiom 1 implies that any player i behaves identically in games (r�p�x� y) and
(1�0� x

r−p�
y

r−p). Hence, under Axiom 1, it is sufficient to characterize behavior on the

subset PD ⊂ PD0. We pose the remainder of our axioms on PD, meaning that, on their
own, they are weaker than their obvious counterparts applying to PD0. To do so, let
Di = D0

i ∩ PD, and analogously for Ci, Mi, Di, and Ci.
The remaining two payoff parameters, x and y, correspond to the two motives for

defection: the exploitative motive of gaining at the expense of a cooperating opponent
and reaping an extra payoff of x, and the defensive motive to avoid being the “sucker”
and losing y. Our remaining axioms describe the effects of changing x and y on behavior.

Axiom 2 (Continuity). For all i ∈ I, Di and Ci are open.

The axiom says that no individual has a jump from a strict preference for defection
to a strict preference for cooperation as the motives for defection vary continuously.

Axiom 3 (Monotonicity). For all i ∈ I, if (x� y) ∈ Di, (x′� y ′) ≥ (x� y), and (x′� y ′) = (x� y),
then (x′� y ′) ∈Di.

The axiom requires that strengthening the motives for defection (at least one of
them strictly) will lead a player who initially weakly prefers to defect to strictly prefer
defection.

15Our primitive differentiates the games where i strictly prefers d or c from those in which he is indif-
ferent. This is analogous to the standard assumption in axiomatic decision theory that the primitive is a
preference relation (not simply choice), which also distinguishes strict from weak preferences. Formally,
for every g ∈ PD0, i ranks the actions in {d� c}. Each ranking is a complete binary relation �g

i . Our primitive
is (D0

i �C
0
i )i∈I , where D0

i and C0
i are the subsets of PD0 for which d �g

i c and c �g
i d, respectively.

16Of course, the axiom is also consistent with the alternative interpretation of game payoffs as vNM
utilities as is customary in game theory. See the discussion of methodology in Section 6 for more.
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Axiom 4 (Convexity). For all i ∈ I, Di and Ci are convex.

The intuition behind the axiom is that a larger change in the motives for defec-
tion should have a weakly larger effect on behavior than does a proportionally smaller
change. Suppose that player i strictly prefers to, say, defect in both (x� y) and (x′� y ′).
The change from (x� y) to (x′� y ′) can be interpreted as trading off the two motives at
a rate, y ′−y

x′−x , and a scale, normalized to 1. Comparatively, the change from (x� y) to
(γx + (1 − γ)x′�γy + (1 − γ)y ′), where γ ∈ (0�1), is unambiguously smaller: it trades
off the two motives at the same rate, but on a smaller scale. Axiom 4 states that if the
larger change in payoffs does not alter i’s strict preference for d (or for c), then neither
should this smaller change in the payoffs.17

While we allow different players to behave differently in a given game, we now pose
a new type of axiom that compares the behavior of any two players across games. In-
formally, the interplayer axiom says the following: Suppose that player i defects under
lower incentives for defection than does j. Then, when i is at the cusp of flipping be-
tween d or c, his choice is more sensitive to changes in x (the exploitative motive) than
is j’s choice when j is likewise at the cusp.

It seems natural that the interpretation of an interplayer axiom would be contin-
gent on at least some basic properties of individual behavior; in our case this will be
Monotonicity (Axiom 3). Intuitively, if a player cooperates in a given prisoners’ dilemma
game, he does so at a cost to his own game payoff. This cost depends on his opponent’s
behavior: specifically, the more likely the opponent is to cooperate, the greater is the
influence of x on this cost. Hence, if all players satisfy Axiom 3, then in games where
player i (who defects under lower incentives for defection) is on the cusp of flipping his
behavior it must be that the arbitrary opponent is more likely to be cooperating than in
games where player j (who defects only under higher incentives for defection) is simi-
larly on the cusp. If behavior is responsive to the true cost of cooperation, then player i’s
behavior should be more sensitive to changes in x than is player j’s. We now present the
formalisms.

Definition 3. For H�H ′ ⊂ PD we write H < H ′ if, for all (x� y) ∈ H and (x′� y ′) ∈ H ′,
x < x′ and y < y ′.

Axiom 5 (Interplayer Sensitivity Comparison). For all {i� j : i = j} ⊂ I and ε�δ ∈ R++, if
(i) {(x� y)� (x+ ε� y −δ)} < {(x′� y ′)� (x′ + ε� y ′ −δ)}, (ii) (x� y) ∈Di, (iii) (x+ ε� y −δ) ∈Ci,
and (iv) (x′� y ′) ∈ Cj , then (v) (x′ + ε� y ′ − δ) ∈ Cj .

The axiom is illustrated in Figure 2. To see that it captures the pattern described
above, note first that, in the context of Axiom 3, (i), (ii), and (iv) imply that player i in-
deed defects under lower incentives for defection than does player j in the four games.18

17It may be useful to note that while reminiscent of the classic two-good consumer-preference diagram,
in our context the choice objects are c and d, not (x� y) bundles; so Mi is not an indifference curve, and Di

and Ci are not better than/worse than sets, meaning Axiom 4 is not related to the standard convexity-of-
consumer-preferences assumptions (for example, Mas-Colell et al. 1995, Chapter 3.B).

18Let H denote the set of four games. To see that i is more prone to defection than j in H, note that
Axiom 3 implies that {(x′� y ′)� (x′ + ε� y ′ − δ)} ⊂Di and that {(x� y)� (x+ ε� y − δ)} ⊂ Cj . Therefore, Dj ∩H �

Di ∩H and Ci ∩H �Cj ∩H.
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Figure 2. Depiction of Axiom 5. Notice that (i) holds, so (ii)–(iv) imply (v).

Second, (ii) and (iii) imply that i is willing to flip between choosing d or c when moving
from (x� y) to (x+ ε� y − δ). Third, (iv) says that j is willing to cooperate in (x′� y ′). Now,
clearly, the movements from (x� y) to (x + ε� y − δ) and from (x′� y ′) to (x′ + ε� y ′ − δ)

entail the same increase, ε, in the exploitative motive and the same reduction, δ, in the
defensive motive. Hence, if, contrary to (v), j were willing to defect in (x′ + ε� y ′ − δ),
then j would have to be more sensitive to changes in x (relative to changes in y) than is i,
which violates the pattern described at the outset. Hence, Axiom 5 requires that (i)–(iv)
imply (v).

We note that insofar as one views both defection in more games and a greater re-
sponsiveness to the exploitative motive to be features of a more “aggressive disposition”
on the part of player i, the axiom is consistent with the view, and the motivation based
on objective incentives and Axiom 3 provides a microfoundation for this correlation.

Finally, as this type of interplayer axiom is novel to our approach, it may be worth
previewing the role it plays in the representation result. The intuition provided for the
axiom above refers to behavior being responsive to the true cost of cooperation. In the
representation, player i’s behavior is a response to the cost of cooperation as measured
by his perception of the distribution F , call it Fi. The axiom, then, disciplines the het-
erogeneity in this perception. As we will see, it ensures that Fi(αi) ≤ Fj(αj) if and only if
αi ≤ αj , which must hold if all players perceive the same F .19

2.3 The representation theorem

Having studied the behavioral model and the axioms, we present the representation
result.

19Conversely, if the behavioral model were expanded to accommodate heterogenous perceptions of F ,
and Fi(αi) > Fj(αj) despite αi ≤ αj , the implied behavior would violate Axiom 5.
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Definition 4. For I ′ ⊂ I, the behavior of the players in I ′, (D0
i �C

0
i )i∈I′ , can be explained

by the behavioral model [F� (αi)i∈I] if for all g ∈ PD0 there exists an equilibrium such
that, with Vi as defined by (1), the following statements hold:

(i) For all i ∈ I ′, g ∈ C0
i if and only if {c} = argmax{c�d}{Vi(c)�Vi(d)}.

(ii) For all i ∈ I ′, g ∈D0
i if and only if {d} = argmax{c�d}{Vi(c)�Vi(d)}.

Theorem 1. The primitive (D0
i �C

0
i )i∈I satisfies Axioms 1–5 if and only if it can be ex-

plained by a behavioral model [F� (αi)i∈I], where F ∈ F satisfies Condition S. Further-
more, for all i ∈ I, αi and F(αi) are unique.

Before sketching the proof, it is worth noting a few interesting features. First, a cen-
tral concern in representation results is the degree to which the parameters in the rep-
resentation, here F and (αi)i∈I , are unique. Theorem 1 establishes that each player’s αi

(the degree to which he exhibits magical thinking) is uniquely determined by the primi-
tive and will, in fact, only depend on (D0

i �C
0
i ) as we sketch below. Further, the quantiles

of F at all αi in the collection are also unique.
Second is the interpretation of the magical-thinking component. Given the nature

of our primitive, we have taken the position that this is an error, and the choices of each
player are not directly influenced by the choices of any other player. In other words, our
assumptions about the nature of human agency are the standard ones, but we allow that
the players act as if they have nonstandard ones. There is also an important subtlety in
understanding the F in the representation: (it is as if) F is the CDF of the distribution
that all players perceive the α-types to be drawn from. This suggests an interpretation
in which the players conceive of a grand population of which I is a random sample. In
Section S.2, we provide an axiomatic characterization of this belief being empirically
valid when the collection is large.

Third, a common concern in game-theoretic analysis is the issue of equilibrium mul-
tiplicity.20 A reader might therefore object to the terminology that a model can explain
behavioral data if the data are always consistent with one of the model’s equilibria (Def-
inition 4) as too permissive. The definition was chosen so that equilibrium uniqueness
is not forced into the very notion of representation. Nevertheless, this objection is easily
addressed. Notice that Theorem 1 includes the provision that F satisfies Condition S.
Under this provision, Proposition 2 (with Lemma 1) guarantees that the equilibrium
cutoff is unique for all g ∈ PD0 (and all equilibria are cutoff equilibria (Proposition 1)).
It is immediate, therefore, that the representation satisfies the more stringent defini-
tion of can explain attained if the requirements of Definition 4 must instead hold in all
equilibria.

20In single-player games/decision problems, the agent may be indifferent between multiple payoff-
maximizers, which can be interpreted as equilibrium multiplicity. However, in this scenario, the payoff to
all agents is equivalent across all equilibria (by hypothesis). In general, the same statement does not hold
for multiplayer games with multiple equilibria. This is one reason why the multiplicity issue is of perhaps
greater concern in game theory than in decision theory.
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Figure 3. (a) A player i’s behavior in PD, for whom Di�Ci = ∅. (b) The M-lines for four distinct
players; note how they fan out.

A couple of notational definitions will simplify exposition for the remainder of the
paper. Let FS denote the set of CDFs in F that satisfy Condition S. Let α−i denote an
arbitrary assignment of types to players in I \ {i} (i.e., (αj)j∈I\{i}).

Sketch of proof of Theorem 1 It is clear that Lemma 1 is the precise behavioral content
of Axiom 1. Hence, we need only prove that Axioms 2–5 are equivalent to the behavioral
model on PD.

As is typical, showing that the representation implies the axioms is the easier di-
rection. First, extreme players, αi = 0�1, either always defect or always cooperate, so
trivially satisfy our axioms. Next, recall that in the behavioral model, the unique equilib-
rium of any game (x� y) ∈ PD is of cutoff form, where the cutoff, α∗, is characterized by
(2). To find the set of games in PD for which i is indifferent between c and d, fix αi ∈ (0�1)
and solve (2) for y as a function of x to get

Mi =
{
(x� y) ∈ PD

∣∣∣y = αi

(1 − αi)F(αi)
− x

(
1 − F(αi)

F(αi)

)}
�

Note that Mi is a downward sloping line in PD. The games Di and Ci are the strict-
upper- and strict-lower-contour sets of Mi, respectively (Figure 3(a)). Axioms 2–4 follow
immediately.

In addition, observe that αi
(1−αi)F(αi)

is weakly increasing and 1−F(αi)
F(αi)

is strictly de-
creasing in αi; the former by Condition S, the latter by F ∈ F . This implies that if
0 < αi < αj < 1, then Mi and Mj do not intersect in PD and, further, that they “fan
out” as x increases (Figure 3(b)). It is straightforward to verify that this property ensures
Axiom 5.

The proof that the axioms imply the representation has two main parts. In the first
part, we show that for any individual player i, if (Di�Ci) satisfies Axioms 2–4, then
there exists a pair (αi�Fi) ∈ [0�1]2 such that (Di�Ci) can be explained by any model
[F� (αi�α−i)] satisfying F ∈ F and F(αi) = Fi. Further, αi and Fi are unique. In other
words, the axioms on individual behavior are enough to establish that each individual is
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playing in accordance with our behavioral model—though not necessarily with agree-
ment among individuals about F . The second part of the proof establishes that there
is a common F ∈ FS that can simultaneously explain all of (Di�Ci)i∈I . This relies on
Axiom 5.

To begin the first part suppose that (Di�Ci) satisfies Axioms 2–4: Continuity, Mono-
tonicity, and Convexity. By Continuity, it is straightforward to show that either (i) Di =
PD, (ii) Ci = PD, or (iii) Mi = ∅. If (i), then (αi�Fi) = (0�0), and if (ii), then (αi�Fi) =
(1�1). Suppose now that (iii) holds. Continuity and Monotonicity imply that there
is a continuous, strictly decreasing function y such that Mi = {(x� y) ∈ PD|y = y(x)},
Ci = {(x� y) ∈ PD|y < y(x)}, and Di = {(x� y) ∈ PD|y > y(x)}. Finally, Convexity of Di and
Ci means y is linear, so can be summarized by two scalars that we denote inti and slpi:
Mi = {(x� y) ∈ PD|y = inti − slpi · x}.

Having established the linearity of Mi from behavioral data, recall from the argu-
ment above that in the behavioral model,

Mi =
{
(x� y) ∈ PD

∣∣∣y = αi

(1 − αi)F(αi)
− x

(
1 − F(αi)

F(αi)

)}
�

Inverting the bijection (inti� slpi)= ( αi
(1−αi)Fi

� 1−Fi
Fi

) establishes the first part of the proof.

For the second part, consider two players i and j, such that Mi�Mj =∅ and who sat-
isfy Axiom 5. This means inti < intj implies slpi > slpj .

21 The translation of this condi-

tion under the bijection yields that 0 < αi < αj < 1 implies Fi < Fj ≤ Fi
αj(1−αi)

αi(1−αj)
. The first

inequality means that there exists a strictly increasing CDF F that, together with (αi)i∈I ,
can simultaneously explain the behavior of all players (the inclusion of the αi = 0�1 play-
ers is trivial). The second inequality is a discretized version of Condition S. It is then
straightforward, but cumbersome, to show that it is without loss of generality to take F

to be differentiable and to satisfy Condition S.
Finally, a comment on the properties of F in the representation. As made clear from

the sketch above, the axioms do not require F to have full support or to be differen-
tiable, but merely allow for these properties. This is because the data of a finite number
of players generate values for F at only a finite number of points (Section S.2 provides
an analysis with a continuum of players). These features are chosen to be part of the
representation because they are commonly assumed, appealing properties for applied
models that facilitate a tractable analysis (recall Section 2.1). For example, they allow
for a simple statement of Conditions S. It is not difficult to show that a larger class of
behavioral models satisfies the axioms, and that any primitive that satisfies the axioms
can be explained by another model [F� (αi)i∈I], where F lacks full support and/or is not
everywhere differentiable. It is worth noting, however, that the unique identification of
parameters in Theorem 1 continues to hold across this larger class of models since, as
outlined above, these parameters are pinned down by individual behavior that satisfies
Axioms 1–4.

21To see this, note that inti < intj implies that there are games (x� y), (x + ε� y − δ), (x′� y ′), and (x′ + ε�

y ′ − δ) that satisfy (i) {(x� y)� (x+ ε� y − δ)}< {(x′� y ′)� (x′ + ε� y ′ − δ)}, (ii) (x� y) ∈ Mi, (iii) (x+ ε� y − δ) ∈ Mi,
and (iv) (x′� y ′) ∈ Mj . Axiom 5 then implies that (x′ + ε� y ′ − δ) ∈Cj and, consequently, slpi > slpj .
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3. Comparative statics

In this section we illustrate how the predictions of the model vary with the parameters.
In light of Axiom 1/Lemma 1, we do so on the smaller set of games, PD, without loss.

Definition 5. Let |A| be the size of any finite set of players A. Consider two arbitrary
sets of players A and Ã such that |A| = |Ã|.

• We say that, in H ⊂ PD, the set of players A defects (weakly) more than Ã if
|{i ∈A|(x� y) ∈ Di}| ≥ |{j ∈ Ã|(x� y) ∈Dj}| for each (x� y) ∈H.

• We say that the set of players A is (weakly) more influenced by x relative to y than
is Ã if A defects more than Ã in {(x� y)|x ≥ y} and Ã defects more than A in
{(x� y)|x ≤ y}.

The notion of defects more is straightforward. For singletons A= {i} and Ã = {j}, it is
simply that in H ⊂ PD, player i defects (weakly) more than player j if Dj ∩ H ⊂ Di ∩ H.
When convenient, we use the term cooperates (weakly) more for the obvious analog. The
notion of more influenced by x isolates the idea that players in set A are more driven to

defection than players in Ã when x is relatively large but without being more prone to
defection overall.

We begin with comparative static results that, as is typically done in applied work, in-
vestigate the effects of varying one parameter, assuming (rather than determining from
behavior) that all other parameters stay fixed. The cutoff feature of equilibria (Proposi-
tion 1) immediately gives us our first comparative static: for fixed F ∈ FS , a player of type
α cooperates more in PD than does a player of type α̃ if and only if α ≥ α̃. Intuitively, a
player who believes he has more influence over his opponent’s behavior cooperates in a
larger set of games.

Proposition 3 below explores how predictions change as the population becomes
more inclined toward magical thinking (in the sense of first-order stochastic domi-
nance). It shows the equivalence between a first-order stochastically ranked pair of dis-
tributions and properties of both choice behavior in the observable domain (i.e., (b)
and (d)) and their manifestations in the behavioral model (i.e., (c) and (e)). This may
also serve to illustrate the usefulness of the equivalence between the axioms and the
representation.

Proposition 3. For any F� F̃ ∈ FS , let I and Ĩ be independently drawn collections of
common size n from F and F̃ , respectively. For any (x� y) ∈ PD, let α∗

x�y and α̃∗
x�y be the

unique equilibrium cutoffs for F and F̃ , and let the random variables kx�y and k̃x�y be the
number of players cooperating in their respective collections. The following statements
are equivalent:

(a) The CDF F first-order stochastically dominates (f.o.s.d.) F̃ (i.e., F(α) ≤ F̃(α) ∀α ∈
[0�1]).

(b) For all (x� y) ∈ PD, the distribution of kx�y f.o.s.d. the distribution of k̃x�y .
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(c) For all (x� y) ∈ PD, F(α∗
x�y) ≤ F̃ (̃α∗

x�y).

(d) For any α ∈ [0�1], a player of type α is more influenced by x relative to y when facing
F than when facing F̃ .

(e) For any (x� y) ∈ PD, α∗
x�y ≤ α̃∗

x�y if and only if x≤ y.

Interpreting the proposition, (b) and (c) show specific manners in which greater de-
grees of population-wide magical thinking and of cooperation are synonymous. Notice
that (b) is only useful if the analyst either assumes the empirical validity of F and F̃ (see
Section S.2), or if she is interested in understanding how much cooperation the players
themselves predict as their common belief about the distribution of α-types changes—
which does provide some useful intuition for the final two claims.

The final two statements are perhaps a bit more surprising. They can be interpreted
as answering the question, “How does the behavior of the player with magical-thinking
type α change if (the players believe that) the magical thinking of the population in-
creases/decreases?” The answer depends on the relative magnitudes of the two motives
for defection. From (b) and (c), F f.o.s.d. F̃ means more cooperation from the F pop-
ulation than from the F̃ population. As discussed following Proposition 2, when x < y,
players want to cooperate if enough others are cooperating, which (d) and (e) reflect.
However, when x > y, the gain from defecting on cooperators is relatively large, and the
α-type takes advantage of increased cooperation in the populace by defecting in more
games when facing F than when facing F̃ .

In axiomatic theories of individual choice, customarily, the aim of comparative stat-
ics results is to disentangle the behavioral content of different parameters, relying cru-
cially on the separate identification of those parameters. Consider first the individual
types (αi)i∈I . If the analyst wishes to know if differences in the behaviors of two collec-
tions are at least partially due to differences in individual types, she can leverage the facts
that in the model, equilibrium behavior is independent of F when x = y (Section 2.1.1),
and that any player’s type can be identified from play in such games. Intuitively, when
x= y any player’s incentive to defect is independent of what he believes about his oppo-
nent’s decision. This is formalized in Proposition 4(a) below.

For the commonly believed distribution of types, F , part (b) of the proposition cap-
tures the exact behavioral content of keeping the actual types in the collection fixed and
changing only these beliefs. Similar to Proposition 3(a) and (d), (the discretized ana-
log of) a first-order stochastic shift in beliefs is equivalent to players becoming more
influenced by x.

Proposition 4. Consider two collections I and Ĩ such that |I| = |Ĩ| = n, and whose be-
havior is described by [F� (αj)j∈I] and [F̃� (̃αj)j∈Ĩ], respectively, with F� F̃ ∈ FS and each
collection ordered by increasing α values.

(a) In {(x� y)|x = y}, player i ∈ I defects more than player j ∈ Ĩ if and only if αi ≤ α̃j .

(b) Collection I is more influenced by x relative to y than is Ĩ if and only if, for all i ≤ n,
αi = α̃i and F(αi) ≤ F̃(α̃i).



926 Daley and Sadowski Theoretical Economics 12 (2017)

4. Evidence and alternative theories

In this section, we first discuss how the available experimental evidence aligns with our
axioms. We then discuss additional evidence, drawn from studies of manipulated vari-
ants of PD games, finding support for the magical-thinking interpretation of the behav-
ioral model.

The rationale for discussing both types of evidence is as follows. The utility of our
representation result is that it establishes (a) the (nonobvious) behavioral content of a
model built on a documented psychological phenomenon (see the Introduction), ap-
plied to a domain of economic interest, and (b) that empirically plausible axioms on
the domain of interest can be explained by a tractable model that is not obvious from
mere inspection of those axioms. Hence, the first set of evidence presented speaks to
the plausibility of the axioms as empirical regularities, while the second set speaks more
to the relevance of the psychological decision-making process.

Starting with Rapoport and Chammah (1965), experimentalists have investigated
how the payoffs in the prisoners’ dilemma affect observed levels of cooperation.22

For the stakes typically used in experiments, a positive affine transformation of the
game payoffs seems to have little effect on the level of cooperation in the prisoners’
dilemma (for example, Jones et al. 1968), or on play in games more generally (Camerer
and Hogarth 1999, Kocher et al. 2008), consistent with Axiom 1. For very significant
stakes, evidence from televised game shows where contestants play a one-shot pris-
oners’ dilemma (of course, without anonymity) paints a similar picture (List 2006,
Van de Assen et al. 2012). In fact, Axiom 1 is commonly assumed, and most experiments
do not even test it. Also, as in more familiar contexts, continuity (Axiom 2) is hard to
falsify empirically and should be thought of as a technically useful abstraction.

The main experimental finding for prisoners’ dilemma games is that a substantial
proportion of subjects choose to cooperate (see Dawes and Thaler 1988 for a survey),
and that cooperation monotonically decreases with the motives to defect: x and y. For
example, Charness et al. (2016) find that cooperation levels decrease monotonically
from 60% to 23% when varying (x� y) on an increasing path from ( 1

4 �
1
4) to (4�1) (mod-

ulo positive affine transformations). Monotonicity has also been verified within subject
(Ahn et al. 2001, Engel and Zhurakhovska 2016), giving strong support to Axiom 3. Any
theory that aims to explain observed play in PD games should account for this evidence.

Axiom 4 is testable, but the available evidence on play in the PD is too incomplete
to evaluate it directly. However, again starting with Rapoport and Chammah (1965), var-
ious unidimensional indices have been proposed (though with little theoretical foun-
dation) to capture the magnitude of the incentive to defect, depending on the payoff
parameters, and then used to forecast the level of cooperation across different prison-
ers’ dilemma games. Empirically, the best validated of such indices are increasing in

22Ignoring the possible differences in behavior between the one-shot game and its finitely repeated ver-
sion, early experimental works simply report aggregate behavior across rounds and subjects (for example,
Rapoport and Chammah 1965, Steele and Tedeschi 1967, Jones et al. 1968). More recent studies of the one-
shot game either randomly rematch subjects after every round of play (for example, Ahn et al. 2001), or use
the “strategy method” (Engel and Zhurakhovska 2016), or truly have each subject play just a single game
one time (Charness et al. 2016).
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r−p
r−p+x+y (see Steele and Tedeschi 1967, for example). This ratio is invariant to positive

affine transformations of game payoffs, consistent with Axiom 1, and becomes 1
1+x+y in

PD. Therefore, these indices predict that the level curves of constant aggregate coop-
eration will be thin, linear, and downward sloping, as they are in our model, owing to
Axioms 1–4 and the fact that individual Mi lines do not cross, an implication of Axiom 5.
The empirical support for these indices then provides indirect evidence in support of
Axioms 1–4, but not of the differing slopes of level curves that are also implied by Ax-
iom 5 (illustrated in Figure 3(b)), meaning our axioms/model provide a more nuanced
prediction.23

Axiom 5 is a novel type of assumption that is central for our theory. It describes
the correlation of behavior across players and games. This correlation has not been a
focus of experimental investigation. Recall that if players are sensitive to the true cost of
cooperating, Axiom 3 implies Axiom 5. The strong support in favor of Axiom 3, therefore,
strengthens the empirical plausibility of Axiom 5. Ultimately, however, the validity of the
axiom is an empirical question, and in that sense our theory suggests a fruitful avenue
for future experiments.

Because the axioms distill the precise behavioral content of our theory, they fa-
cilitate comparison not only with the experimental evidence, but also with alterna-
tive models. In Section S.1, we formally demonstrate that canonical models with the
three most common forms of other-regarding preferences—altruism (Ledyard 1995,
Levine 1998), inequity aversion (Fehr and Schmidt 1999), and reciprocity (Rabin 1993)—
violate our axioms, and hence make different predictions on our domain.24 In McKelvey
and Palfrey’s (1995) notion of quantal-response equilibrium (QRE) each player chooses
every available action with positive probability, which can be interpreted as random er-
rors. Immediately then, QRE predicts a positive degree of cooperation in the prisoners’
dilemma. Further, given the distribution of opponent play, the probability of selecting
an action increases with the expected payoff from doing so, as is also true in our model.
However, despite the many degrees of freedom afforded QRE, its implications for ag-
gregate behavior differ from those of our model.25 More importantly though, instead

23We are unaware of studies that provide detailed enough data to test the predictions of our model
against the predictions based on these indices.

24A succinct intuition is that the most altruistic players in a population always fail Axiom 3 because,
in games where they (correctly) predict their opponent will defect with probability 1, increasing their op-
ponent’s payoff from doing so increases the altruistic player’s preference for cooperation. The models of
inequity aversion and reciprocity have a coordination feature to them: players are willing to cooperate if
and only if they believe cooperation by their opponent is sufficiently likely. This leads to equilibrium mul-
tiplicity: for every game, all players defecting is an equilibrium, but in some games cooperation by some
players occurs in other equilibria. Further, because of this coordination component, the set of games that
have equilibria with some cooperation end abruptly, as coordinated cooperation unravels due to a small
increase in the incentive to defect, leading to abundant violations of Axiom 2.

25For example, even though the expected payoff from defection is always larger than from cooperation,
(in expectation) the majority of individuals in our model will cooperate for small enough x and y , in line
with evidence (Charness et al. 2016), but in contrast to QRE. Also, beyond PD games, there are games for
which our model predicts that some actions are never played; for instance, any game where the socially
optimal action is also dominant (Proposition 5). See also Proposition 10 on games with larger action sets.
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of attributing differences in observed behavior to randomness, our axioms and model
speak directly to heterogeneity in individual behavior.

We now discuss evidence suggestive of magical thinking from games that are in nat-
ural extensions of our domain (which for brevity we do not formalize here):

(i) Most immediately, players in our model would have completely standard prefer-
ences over the domain of final game-payoff vectors (unlike altruistic or inequity-
averse players). Consistent with this, when the prisoners’ dilemma is modified to
have a passive opponent (so the unconstrained player is unilaterally selecting the
payoff vector), higher rates of “defection” are found (Ellingsen et al. 2012).

(ii) Shafir and Tversky’s (1992) observation that the level of cooperation by second-
movers is significantly lower in the sequential prisoners’ dilemma than in the
standard, simultaneous-move version of the game—even if the first-mover
cooperates—is highly suggestive of magical thinking, but inconsistent with stan-
dard forms of other-regarding preferences. Reciprocity, notably, predicts that
second-movers should be more likely to cooperate following cooperation than in
the simultaneous-move game.26

(iii) In a similar vein, Morris et al. (1998) find that the temporal order of moves affects
cooperation even when the decision of the first-mover is not revealed. Consistent
with magical thinking being the belief that one may directly influence the (yet
unchosen) action of one’s opponent, they find greater cooperation when play-
ers move first compared to second. Other-regarding preferences (as well as the
evidentiary-reasoning interpretation of the beliefs in our model; see the Intro-
duction) provide no rationale for this discrepancy, as play should be invariant to
this strategically irrelevant difference in the games.

(iv) In a number of studies, experimental subjects played prisoners’ dilemma games
and were also asked to predict the behavior of their opponents. Subjects who
defected were more likely to predict that their opponents would defect.27 This
feature is implied by the interpretation of our model, but absent from models
with other-regarding preferences. While there may seem to be a sense in which it
is consistent with reciprocity—players are more likely to cooperate when they ex-
pect cooperation from others—it is clearly inconsistent with standard notions of

26In the sequential-move game almost no second-movers cooperated after observing defection by their
opponent. Perhaps more surprisingly, only about 15% of second-movers cooperated after observing coop-
eration. At the same time, and in line with other PD experiments (Dawes and Thaler 1988), 37% of subjects
cooperated in the standard, simultaneous-move PD. In the study only a small subset of the games each
subject played were prisoners’ dilemma games. There is some evidence that repeated play of the one-shot,
sequential prisoners’ dilemma can reverse their observation (Clark and Sefton 2001), possibly because eth-
ical considerations, like reciprocity, become more salient through frequent, uninterrupted repetition.

27See Dawes et al. (1977), Orbell and Dawes (1991), Engel and Zhurakhovska (2016), Rubinstein and
Salant (2014). Rubinstein and Salant (2014) suggest that players’ ex post reported beliefs will accurately
reflect the beliefs their choices were based upon in prisoners’ dilemma games (which feature a dominant
strategy), but that this may not be the case in games such as hawk–dove (where either action is a best
response to some belief).
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equilibrium, even if players care about reciprocity. Either the cooperators are too
optimistic or the defectors are too pessimistic about their opponents’ behavior.

Finally, it is clear that magical thinking introduces a perceived benefit from cooper-
ation. One could, of course, consider a reduced-form model in which each player may
have a direct utility gain from choosing c over d. This gain might be interpreted as a form
of “warm glow” (as introduced by Andreoni 1989 in the context of public-good games).
As an alternative explanation for our data, such a model would have the following flaws.

First, to align with the expected-payoff calculations in our model on PD0, this utility
gain would have to be independent of x and y, but increase proportionally when simul-
taneously scaling r and p. That is, even though the warm glow a player would obtain by
cooperating would have to vary across games, it would not depend on how strong were
the motives for defection that he overcame—including them being arbitrarily small. The
reduced-form model would give the analyst no intuition for this seemingly curious form
of dependence. In contrast, our model provides a psychological mechanism, that of
magical thinking, which generates it. Second, this model of warm glow would be at
odds with the evidence in (i)–(iv) above. Third, in the next section we extend our model
beyond the prisoners’ dilemma to games in which it is unclear how to interpret as warm
glow the utility gain a player would need to receive from selecting one action over the
other so as to match the predictions of our model. For example, for any battle of the
sexes game there would need to be no warm glow attached to either action choice, but
there are two games, arbitrarily nearby, such that a player would need to receive a warm
glow from selecting his preferred meeting event (instead of his opponent’s) in one game
but the reverse in the other game.

5. Beyond prisoners’ dilemma games

We now extend our game-theoretic analysis beyond PD games. Section 5.1 takes the be-
havioral model characterized by Theorem 1 and investigates its predictions for all sym-
metric 2 × 2 games.28

 Section 5.2 extends the model to accommodate arbitrary finite
action sets.

5.1 Symmetric 2 × 2 games

Let S0 := {(r�p�x� y)|r ≥ p}, with labels as in Figure 1, denote the set of all symmetric
2 × 2 games. As discussed in the Introduction, such games give strategic meaning to
the notion that magical thinkers believe they influence others to select the same action
as they do, without having to rely on arbitrary labels of actions. Therefore without loss,
c (respectively, d) still corresponds to the action leading to the weakly superior (infe-
rior) symmetric outcome, but outside the prisoners’ dilemma we no longer refer to it as
cooperate (defect).

We find that our model provides a unified explanation of the experimental evidence
in several of the most often studied games: hawk–dove/chicken, the stag hunt, and the

28In Section S.3, we explore the extension of the axiomatic component to this domain.
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Figure 4. Depiction of the set of symmetric 2 × 2 games in which r = 1 and p= 0.

battle of the sexes (in addition to the prisoners’ dilemma). We also compare the predic-
tions of our model to Nash equilibrium in the standard model (hereafter, simply Nash
equilibrium).29 We consider first the generic case in which r = p, followed by the non-
generic complement.

5.1.1 If symmetric outcomes are not payoff equivalent Let S0
G be the (generic) set of

games {(r�p�x� y)|r > p}, of which PD0 is a subset. Lemma 1 remains valid, so we nor-
malize r = 1 and p = 0, and again denote this normalized subset as SG (represented as
the plane in Figure 4). It remains true that for any g ∈ SG, all equilibria are cutoff equi-
libria (Definition 2), and that a player of type α satisfies the indifference equation (2) if
and only if

g ∈ M̃α :=
{
(x� y)

∣∣∣y = α

(1 − α)F(α)
− x

(
1 − F(α)

F(α)

)}
�

Let B : R− → R be the lower envelop of (M̃α)α∈(0�1) on the domain x ≤ 0. Notice that
(i) B(0) ≥ 0, (ii) B is decreasing and concave, and (iii) limx→−∞B(x) = ∞. Figure 4 de-
picts B (and four sample M̃-lines) for the case of F(α) = √

α.

Proposition 5. For any g ∈ SG, an equilibrium exists, all equilibria are cutoff, and the
following statements hold:

• If x > 0, then the equilibrium cutoff α∗ is unique, interior (i.e., α∗ ∈ (0�1)), and
characterized by (2).

• If x≤ 0, then α∗ = 0 is an equilibrium cutoff. It is unique if and only if y < B(x).

The labeled quadrants of Figure 4 serve as a useful taxonomy for our discussion
of the games in SG. Quadrant I corresponds to PD, which we have focused on up to

29We maintain our focus on symmetric equilibria (of both our model and the standard one). In a truly
symmetric, anonymous, one-shot setting, asymmetric equilibria seem implausible as neither player would
have any way of knowing if he were player 1 or player 2.
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now. We proceed clockwise. For brevity, we focus the discussion on the interiors of each
quadrant.

Quadrant IV. The defining feature of prisoners’ dilemma games is that there are strict
gains to a player for selecting d whether his opponent is playing d or c (i.e., x� y > 0). The
games of quadrant IV retain the latter, meaning there are still gains from unilaterally
deviating away from the better symmetric outcome (c� c). A particularly well know ex-
ample of such games are hawk–dove (also known as chicken) games, where y ∈ (−1�0).
Action c corresponds to dove and d to hawk.

Proposition 5 establishes that the equilibrium characterization results for PD (Sec-
tion 2.1) extend unchanged to these games, and it is straightforward to show that Propo-
sition 3 extends verbatim as well. In addition, we find the following result. For any g ∈ S0

G

with x > 0, let πg be the probability with which a player selects d in the unique symmet-
ric Nash equilibrium of g. The corresponding probability in our behavioral model is
F(α∗

g).

Proposition 6. For any g ∈ S0
G with x > 0, πg > F(α∗

g). In addition, if x and y are held

fixed and (r −p)→ 0 (or, more generally, if r−p
x+|y| → 0), then (πg − F(α∗

g)) → 0.

The result states that players are drawn to the action that produces the superior sym-
metric outcome more often than is predicted by the symmetric Nash equilibrium. This is
consistent with experimental findings in the hawk–dove game (for example, Rubinstein
and Salant 2014). However, as the difference between the symmetric outcomes disap-
pears so too does the difference in the two models’ predictions. Intuitively, as the dif-
ference between the symmetric outcomes disappears, the magical-thinking component
has a vanishing impact on any player’s ranking between c and d (even though players
with different α-types still differ in their expectations over opponent play). Section 5.1.2
covers the limit case where r = p.

Quadrant III. In these games c is both the action leading to the better symmetric
outcome and a dominant strategy (even without magical thinking). It seems natural that
all players should then choose c—as they do in the unique equilibrium of our behavioral
model by Proposition 5.

Quadrant II. Quadrant II consists of coordination games, such as the stag hunt, in
which both symmetric outcomes constitute Nash equilibria, but (c� c) Pareto dominates
all other outcomes. The choice of d in such games seems empirically implausible if
the loss x ≤ 0 of playing d rather than c against an opponent playing c is large, and the
gain y > 0 of playing d rather than c against an opponent playing d is small. Players
should find it natural to coordinate on c in such a game. At the same time, if the gain y

of playing d against d is large compared to the loss x ≤ 0 of playing d against c, then it
becomes risky to rely on the opponent to play c, and d also becomes a plausible choice.
These intuitions are supported by experimental evidence (for example, Straub 1995).

From Proposition 5, our behavioral model is consistent with all players selecting c,
and it uniquely predicts this behavior for a subset of those games where coordinating
on c is not “too risky” in the sense just described. This set is precisely characterized
as the strict-lower-contour set of B. Hence, our behavioral model generates a unique
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equilibrium prediction in more games than does the standard model. More generally,
the set of games for which our model makes a unique prediction is larger (in the sense
of set inclusion) with the more magical thinking there is in the population (in the sense
of a first-order stochastically dominant shift of F). For games in the upper-contour set of
B, where the trade-off between the overall payoffs (higher under (c� c)) and riskiness is
more pronounced, our model does not make a unique prediction and can accommodate
a significant proportion of players selecting d.30

The intuition we gave for the implausibility of selecting d when |x| is large compared
to y is reminiscent of the motivation for the risk dominance criterion (Harsanyi and Sel-
ten 1988). It is easy to verify that, in the standard model, (c� c) is risk dominant when
|x|> y and (d�d) is risk dominant when |x|< y. Our boundary, B, is more nuanced than
the fixed linear one implied by risk dominance, as it depends on the (perceived) distri-
bution of α-types. Our model, therefore, provides flexibility, though within constraints,
for explaining behavioral data in this quadrant of games by varying F , and at the same
time connects behavior in this quadrant to behavior in other games. For example, col-
lections with higher rates of cooperation in prisoners’ dilemma games also have a larger
set of quadrant-II coordination games in which the payoff-dominant Nash equilibrium
is uniquely selected in our model.

5.1.2 If symmetric outcomes are payoff equivalent Consider now the (nongeneric) set
of games S0

N := {(r�p�x� y)|r = p}. In such games our model of magical thinking is not
behaviorally distinct from the standard model.

Proposition 7. For any g ∈ S0
N , an equilibrium exists.

• If (σ�P) is an equilibrium (of our model), then there exists a symmetric Nash equi-
librium characterized by πg = P .

• If πg characterizes a symmetric Nash equilibrium, then there exists σ such that
(σ�πg) is an equilibrium (of our model).31

In line with the limit property established in Proposition 6, when there is no pay-
off difference between the symmetric outcomes, magical thinking does not influence
behavior in one direction or the other. Hence, the cutoff property is no longer a require-
ment for equilibrium, as there is no reason that players with higher α-types are more
drawn to c.

Though not always labeled as a symmetric game, battle of the sexes games are a
subset of S0

N in which x > 0 > y, x = −y. In our theory, action labels are only for the
convenience of the analyst; it is the symmetry of the game that determines what “taking

30For (x� y), y ≥ B(x), α ∈ (0�1) is an equilibrium cutoff if and only if (x� y) ∈ M̃α. Hence, the number of

equilibria in (x� y) in which not all types select c is the number of M̃α-lines that pass through (x� y).
31More specifically, (i) if πg characterizes a weak Nash equilibrium, then any σ such that∫ 1

0 σ(d|α)dF(α) = πg constitutes an equilibrium; (ii) if πg characterizes a strict Nash equilibrium, then in
any equilibrium, σ(d|α)= πg for all α ∈ [0�1), but σ(d|1) can be arbitrary since α = 1 players are indifferent
between c and d when r = p.
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the same action” means. In a battle of the sexes game then, c and d do not correspond to
“go to the ballet/boxing match,” but to “go to my own/my opponent’s preferred event”
(with the labeling depending on the ranking of x and −y).

For a magical thinker i, therefore, both c and d are self-defeating: by being “selfish”
and choosing his preferred event, i believes it more likely that his opponent j will like-
wise choose j’s preferred event, but also analogously if i tries to be “accommodating”
by choosing j’s preferred event. The magical-thinking component then has no effect on
preferences over actions, and equilibrium play is just as in the standard model.

Any battle of the sexes game has a unique symmetric Nash equilibrium, and hence
our behavioral model predicts the same distribution of observed behavior. Notably, this
common prediction is substantiated by the experimental studies of battle of the sexes
games.32 The ability to explain experimental findings across the well known games sur-
veyed in this paper serves as another key distinction between our model and models
of other-regarding preferences discussed in Section 4, each of which predict patterns of
play in the battle of the sexes that differ from the prediction of the standard model.33

5.2 Accommodating arbitrary finite action sets

Allowing arbitrary finite action sets requires the following additional notation. Let A :=
{0�1� � � � �K} and let v(k�k′) be the (finite) game payoff a player receives from selecting
action k when his opponent selects k′. Define s(k) := v(k�k), and, without loss, order
the actions such that s(·) is nondecreasing in k. To avoid technicalities, we consider the
generic case in which s(k) < s(k+ 1) for all k<K.34 Let � denote the set of such games.

In the extended behavioral model, each player i ∈ I is still privately endowed with a
type αi ∈ [0�1] and there is a common prior that types are drawn i.i.d. from a distribution
with CDF F ∈ F . For each game, player i evaluates the expected payoff of action ai = k ∈
A as

Vi(k) = αis(k)+ (1 − αi)
∑
k′∈A

Pi

(
k′)v(k�k′)� (3)

where Pi(k
′) is the probability i assigns to aj = k′, conditional on ai and aj being de-

termined independently. His strategy, σi, is again characterized by the probability with

32Camerer (2003, Chapter 7.2) summarizes the evidence and concludes, “Even if the subjects are not
deliberately randomizing, the data are consistent with the idea that, as a population, they are mixing in the
[symmetric Nash] equilibrium proportions.” Note that one could have imagined an alternative concept of
magical thinking in the battle of the sexes: by choosing to go to the ballet, for example, a player believes it
is more likely that his opponent will choose to go to the ballet as well. In addition to relying on strategically
irrelevant action labels, this alternative model would predict that players select their preferred event more
frequently than is found in the experimental evidence.

33This result is not difficult to demonstrate. We omit the analysis for the sake of brevity.
34If the ranking is not strict, our characterization (Proposition 8) holds only up to payoff equivalence: an

equilibrium exists and for any equilibrium there exists a payoff-equivalent increasing equilibrium. Also, if
s(1) = s(K), then Proposition 7 extends and the predictions of our model are not behaviorally distinct from
symmetric Nash equilibrium in the standard model.
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which he selects each k ∈ A if his type is αi (denoted σi(k|αi)). The equilibrium notion
is the immediate extension of Definition 1.35

When evaluating a potential action k, it is clear from (3) that the importance given to
s(k), the payoff generated by the symmetric profile (k�k), is increasing in αi. This leads
to the following increasing-in-type property of equilibrium.

Definition 6. A strategy σ is increasing if there exists α∗
0 = 0 ≤ α∗

1 ≤ · · · ≤ α∗
K+1 = 1 such

that σ(k|α)= 1 for all α ∈ (α∗
k�α

∗
k+1).

Proposition 8. For any F ∈ F and g ∈ �, an equilibrium (σ�P) exists, and in all equi-
libria σ is increasing.

5.2.1 Pure dilemma games Given that the bulk of our analysis has focused on PD
games, for brevity, we focus our remaining analysis on their natural extension, which
we refer to as pure dilemma games.

Definition 7. A game g ∈ � is a pure dilemma if v(k�k′) > v(k+ 1�k′) for all k, k′.

In terms of game payoffs then, there is always a strict individual incentive to play
a lower (indexed) action, but higher actions can be viewed as “more cooperative.” In
the standard model there is a unique Nash equilibrium: all players select ai = 0. By
comparison, in any equilibrium of our model, a positive measure of types select actions
other than 0. Hence, just as in PD games, magical thinking generates a positive degree
of cooperation, while the standard model predicts none.

As in Section 3, we can investigate whether there are connections between notions of
more magical thinking and more cooperative behavior. Again, it is immediate from the
increasing property of equilibrium (Proposition 8) that in any pure dilemma, a player’s
cooperation level is increasing in type. What about increases in population-wide mag-
ical thinking, as measured by a first-order shift in F? The following proposition iden-
tifies a sufficient condition on the underlying game under which this change leads to
uniformly greater cooperation.

Definition 8. For pure dilemma game g ∈ �, an increasing strategy σ is more coopera-
tive than increasing strategy σ̂ if α∗

k ≤ α̂∗
k for all k.

Proposition 9. Let g ∈ � be a supermodular pure dilemma game.36

(i) For any F ∈ F , there exists a most and a least cooperative equilibrium, denoted
(σM

F �PM
F ) and (σL

F �P
L
F ), respectively.

35With P = (P(k))k∈A and requirement (iii) of the definition generalizing to Pi(k) = P(k) =∫ 1
0 σ(k|α)dF(α) for all i ∈ I and k ∈ A. This specification represents the literal extension of magical thinking

as “players believe they influence others to select the same action as they do,” as discussed in the Introduc-
tion. With more than two actions, one could envision more general notions of magical thinking that still
capture its essence: players believe they influence the opponent to select an action more similar to their
own action than the opponent otherwise would have. For simplicity, we consider only the literal extension.

36That is, for all k′ ≥ k and l′ ≥ l, v(k′� l′)− v(k� l′)≥ v(k′� l)− v(k� l).
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(ii) If F ∈ F first-order-stochastically dominates F̃ ∈ F , then σM
F is more cooperative

than σM
F̃

and σL
F is more cooperative than σL

F̃
.

First consider PD games. A PD game is supermodular if and only if y ≥ x. Notice
that such a PD game satisfies the very common assumption that (c� c) maximizes the
sum of game payoffs: 2r > (r + x)+ (p− y) or, equivalently, y > x− (r −p). This feature
generalizes: if g ∈ � is supermodular, then 2s(k) > v(l� l′) + v(l′� l) for all l ≤ l′ ≤ k with
l < k.

For a supermodular PD game, from Propositions 2 and 3, we know that if F� F̃ satisfy
Condition S, then each has a unique equilibrium, (σF�PF) and (σF̃ �PF̃ ), and F f.o.s.d.
F̃ implies σF is more cooperative than σF̃ . Proposition 9 generalizes this comparative
static along two dimensions: it does not assume Condition S—so there may be multi-
ple equilibria even if g ∈ PD0—and it applies to pure dilemma games beyond the PD.
The intuition remains similar. Fix a game and imagine first that the equilibrium was
unchanged following a shift from F̃ to F . Then a given α-type would face a more coop-
erative (perceived) distribution of play. But just as Section 3 demonstrated for PD games,
depending on payoff parameters, this change could make the α-type more or less coop-
erative (i.e., seeking to take advantage of the population’s greater degree of cooperation
in the latter case). Supermodularity of g implies the latter case never obtains.37

We conclude by identifying a class of games for which all of the analysis from pre-
ceding sections (both game-theoretic and axiomatic) applies.

Definition 9. A pure dilemma game g ∈ � has increasing returns to joint cooperation
if, for all k, k′,

s(k+ 1)− s(k)

v
(
k�k′) − v

(
k+ 1�k′) ≥ s(k)− s(k− 1)

v
(
k− 1�k′) − v

(
k�k′) �

Notice that this condition is neither weaker nor stronger than supermodularity. It
requires that the benefit to increased joint cooperation increase at a rate greater than
the increase in the individual benefit from lowering one’s own action, independent of the
action selected by the opponent. Consider, for example, a public-good game where both
players can contribute any amount between 0 and K dollars to the public good, and the
function  (with 1

2 <′ < 1) measures the individual benefit derived from the amount of
public good provided given the total contribution. That is, v(k�k′) = K − k+(k+ k′).
If  is (weakly) convex, then the returns to joint cooperation are (weakly) increasing.

Proposition 10. If a pure dilemma game g ∈ � has increasing returns to joint cooper-
ation, then in any equilibrium, α∗

1 = α∗
K ∈ (0�1) and is equal to an equilibrium cutoff of

the PD game generated by deleting actions {1� � � � �K − 1}.

37Notice that the notion of “more cooperative” in Definition 8 is a strong one: each α-type plays a
(weakly) higher action. Alternatively, for F� F̃ ∈ F and corresponding equilibria (σ�P)� (σ̃� P̃), one could
view the first population’s behavior as more cooperative if its F-measured distribution of play, P , f.o.s.d. the
second population’s F̃-measured distribution of play, P̃ , even if fixed α-types play less cooperative actions
under σ than under σ̃ . Under Condition S, Proposition 3 shows that a first-order shift in F implies more
cooperation in this weaker sense for all PD games. It is not difficult to construct further examples outside
PD games.
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Under increasing returns to cooperation, (almost) all types play either 0 or K and
intermediate actions play no (meaningful) role. Therefore, our equilibrium characteri-
zation and tight condition for uniqueness, our comparative statics, and even our axiom-
atization all apply to this class of games with the obvious additional axiom that interme-
diate actions are never chosen.

An example of an experimental study of linear two-player public-good games is
Capraro et al. (2014), who investigate how the distribution of play responds to changes
in the social benefit from cooperation, captured by the scalar φ, where (k + k′) =
φ(k + k′). They find that, independent of the value of φ, about 20% of subjects con-
tribute half their endowment (ai = K

2 ), and argue that these subjects are likely following
a simple heuristic. The predictions of our model are well aligned with behavior in the
remaining 80% of subjects. The vast majority of these subjects (75% of the total popula-
tion) choose an extreme action ai ∈ {0�K} (in line with Proposition 10), and the propor-
tion of them choosing K increases with φ (as predicted by Axiom 3 (Monotonicity), in
the aggregate).38

6. Discussion

Methodology

Our approach connects behavioral axioms on the observed play of a collection of players
to a representation that suggests a procedural interpretation of individual behavior and
an equilibrium concept. This is analogous to the standard axiomatic analysis of indi-
vidual choice (see footnote 10). Throughout the paper we have stressed this analogy, as
well as the differences that arise when leveraging our richer domain of group behavior.

At the outset, we discussed several benefits of this methodology. Here we compare
it to related, alternative approaches. In (what we refer to as) the standard approach
for connecting behavioral axioms to strategic, multi-agent environments, first, axioms
characterize a specific utility representation of individual preferences regarding (lot-
teries over) physical allocations; then, second, physical games are described in terms
of those utilities; finally, strategic analysis is performed according to an exogenously
given solution concept (usually an equilibrium notion). The prototypical example of
the standard approach assumes that players care only about their own physical payoffs
and have risk preferences as axiomatized by Von Neumann and Morgenstern (1944).
As another example, Rohde (2010) provides axioms for the inequity-averse utility func-
tion employed in the game-theoretic analysis of Fehr and Schmidt (1999). (See also
Dillenberger and Sadowski 2012, Saito 2013.)

Relative to the benefits of our axiomatic approach that were listed as (B1)–(B3) in the
Introduction, the standard approach has the following differences. In contrast to (B1),
it relies on the assumption that behavior observed in the individual context is tightly
connected to behavior in the strategic context. Clearly, it cannot achieve (B3), as it is
not possible to derive that behavior corresponds to any particular equilibrium notion,

38In the experiment, v(k�k′) = K − k + wk′, with 2 ≤ w ≤ 10. So each game is a pure dilemma and
strategically equivalent to our description of a linear public-good game with φ= w

w+1 .
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or that prior beliefs are common, by axiomatizing the objective function of each player
separately.

Notably, once preferences over physical allocations are accounted for, if a given
physical game remains a PD when represented in terms of these utilities, then the stan-
dard approach cannot explain cooperative behavior in this game—as each player should
like higher utility payoffs for himself and be indifferent toward the utility payoffs of
others. That is, explanations of cooperative behavior via altruism or inequity-aversion
merely establish that games that look like PDs in terms of physical game payoffs may not
actually be PDs in terms of utility payoffs. In contrast, our theory is robust to this alter-
native interpretation of game payoffs as utilities. Insofar as cooperation in such games
is plausible, the standard approach’s inability to explain it could be due to a discrep-
ancy between preferences in the individual and strategic contexts (related to (B1)), or to
inappropriate assumptions about beliefs or the equilibrium notion (related to (B3)).

Segal and Sobel (2007), Segal and Sobel (2008) go beyond the standard approach by
fixing a single game and using as an additional primitive individual preferences over
own (mixed) strategies, which may depend on what the (mixed) strategy profile is “sup-
posed to be,” which is referred to as the “context.” They axiomatize a representation
that can, for example, accommodate reciprocal preferences (Rabin 1993), and then em-
ploy the natural extension of Nash equilibrium as the solution concept. Clearly, their
model differs from (B3) in the same manner as does the standard approach. In addition,
the elicitation of the primitive requires that, for a single game, the analyst uncover the
player’s preferences over his own strategies given each possible mixed-strategy profile.
In contrast to (B2), this is not data that is commonly collected, and faces the potential
difficultly that the analyst must meaningfully communicate to each subject (i.e., have
them truly believe) that the opponents are actually using that profile. At the very least
this is more involved than simply asking subjects how they would like to play.

Our approach also differs from well known axiomatic treatments in bargaining and
cooperative game theory, most prominently in Nash bargaining, where axioms directly
characterize the outcome rather than a model of play in the strategic setting coupled
with a solution concept.39 Given the difficulty of accurately capturing the nuances
of, say, bilateral negotiations, that such analysis does not rely on explicit modeling of
the strategic situation is often seen as a strength. However, in the simplified setting of
simultaneous-move, one-shot games, characterizing play seems a more natural objec-
tive. In addition, our representation suggests an intuitive explanation of the individual

39See Thomson (2001) for a thorough review of this approach. In addition, while axiomatic approaches
in cooperative game theory characterize solutions without a strategic model, axiomatic approaches in non-
cooperative game theory typically take as given the structure of the strategic model—by assuming that all
players and the analyst view the game in the same way and that players are “rational” (i.e., they maximize
excepted utility with respect to some (nonmagical) belief about opponents’ play)—with the aim of charac-
terizing particular solution concepts (e.g., rationalizability, Nash equilibrium, correlated equilibrium, etc.).
Again, see Thomson (2001, Section 12.3), and Blonski et al. (2011) for an application to equilibrium se-
lection in repeated games. Outside the axiomatic literature, Bergemann et al. (2017) consider behavior in
games to identify interdependent preferences over outcomes. Because the aim is identification of prefer-
ences, they take as given both the structure of the model and the solution concept.
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Approx. Periods Approx. Stable
(x� y) Until Stabilization % of Cooperation Study

(1�00�3�00) Study ended after 10 �7% Bó et al. (2010)
(2�33�2�33) 20 out of 200 10% Bereby-Meyer and Roth (2006)
(1�67�1�33) 0 out of 200 19% Andreoni and Miller (1993)
(0�44�0�78) 10 out of 20 22% Cooper et al. (1996)
(0�33�0�11) 20 out of 75 37% Aoyagi and Fréchette (2009)

Table 1. Studies of the one-shot prisoners’ dilemma with random, anonymous rematching.

decision-making process, which enables us to provide comparative statics in terms of
the model’s parameters.

For any fixed physical game, our behavioral model resembles a Bayesian game, in
that each player is endowed with a type that affects how he evaluates the expected pay-
off of a potential strategy. The difference, of course, is that in standard Bayesian games, a
player’s type maps outcomes into payoffs, whereas in our model, type affects the player’s
expectations about what outcomes will obtain depending on his action choice. Follow-
ing Savage (1954), the derivation of subjective beliefs is a central concern in the context
of individual choice. Our model provides an example where beliefs (here, about both
the opponent’s type and action choice) are derived from behavior in a strategic setting.

Repetition

There are various experimental studies that report on the evolution of cooperation when
the same one-shot prisoners’ dilemma is played repeatedly, with opponents randomly
and anonymously rematched after every round. Many of these studies find an initial
decline in the incidence of cooperation before it stabilizes at a nonzero level. For a sam-
ple of studies Table 1 reports each of their featured one-shot games (x� y) ∈ PD (modulo
positive affine transformations), the approximate number of periods after which stabi-
lization was reached, and the approximate average levels of cooperation thereafter.40

Note that the stable levels of cooperation summarized in the table give further support
to Monotonicity (Axiom 3) in the aggregate.

As with most theories of behavior in one-shot settings, our theory does not formally
provide any explanation for the dynamics before steady state is reached. The typical
explanation for a pattern of initially varying behavior followed by stability is that sub-
jects are initially learning about the game (e.g., how it works, how others play, etc.); see
Camerer and Fehr (2003) for a discussion. The interesting feature in this particular in-
stance is that initial play is systematically more cooperative than steady state. While
a formal model along these lines is beyond the scope of this paper, one possible ex-
planation for this pattern is that subjects (act as if they) revise their estimates of their

40Not all studies provided these numbers explicitly. In these cases, they are estimates based on the infor-
mation the studies do provide.
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own α-types based on play. Because they are not in fact magical, the updating will be
systematically biased downward, leading subjects to cooperate less.41

Magical-thinking-like notions in other strategic models

In models of oligopolistic competition, the notion of conjectural variation (Bowley 1924,
Pigou 1924) bears some resemblance to magical thinking. However, in this literature
a firm’s belief about how its rival will respond to its action is typically interpreted as
capturing a sequential response. In Roemer’s (2010, 2013) Kantian equilibrium, each
player prefers the equilibrium to any strategy profile that features identical deviations
by all players. Related features are found in Feddersen and Sandroni (2006), who in-
troduce rule-utilitarian players into a model of voting (see also Coate and Conlin 2004,
Ali and Lin 2013). As suggested by their names, the modeling of both Kantian equilib-
rium and rule-utilitarian players are motivated by ethical concepts, in contrast to our
psychological interpretation of magical thinking. While these different motivations may
have similar behavioral consequences in some settings, our motivation more naturally
allows for heterogeneity among players that is absent from these models.42 In addi-
tion, the interpretation of magical thinking is more in line with the evidence discussed
in Section 4.43 Of course, as we have stressed throughout, this paper is also—and most
importantly—distinguished by providing a tight axiomatic characterization of our be-
havioral model.

We conclude by noting that magical thinking is likely not an appropriate description
of behavior in all games for which the standard game-theoretic predictions are unsat-
isfying, be they inaccurate and/or weak due to multiplicity (impeding applied/policy
research, argues Pakes 2008). An ideal axiomatization would alleviate both problems
by avoiding false predictions and ruling out multiplicity where it is descriptively inap-
propriate. Our model alleviates the first concern in prisoners’ dilemma games, and im-
proves on the second in coordination games by eliminating equilibrium multiplicity in
games where coordination on the better symmetric outcome is intuitive.44 While our
representation features an equilibrium concept, this need not be the case in other con-
texts. As in theories of individual choice, the goal should be to connect testable and
plausible behavioral axioms to an intuitive, tractable, and identified representation that
may, or may not, have the strategic flavor of equilibrium.

41This could perhaps be because the αi in our behavioral model (of the single-iteration game) represents
only the expected influence i believes he possesses, but his beliefs allow that his influence may vary across
subject pools or other environmental features. That play stabilizes at nonzero levels of cooperation suggests
that the lower bound on αi is believed to be positive by some i.

42Specifically, because in these models all Kantians or rule utilitarians evaluate strategies in the same
way, any heterogeneity in nonstandard behavior is driven completely by asymmetry in the physical aspects
of the game (e.g., variations in the cost of voting). In contrast, even in symmetric games, our model captures
heterogeneity in behavior (e.g., in the sets of PD games that different players choose to cooperate in).

43Additional models in which players’ beliefs about opponent play may be biased include Orbell and
Dawes (1991), Bernheim and Thomadsen (2005), Masel (2007), Capraro and Halpern (2015), al Nowaihi
and Dhami (2015).

44In addition, our behavioral model introduces the possibility of equilibrium multiplicity even in the PD,
depending on F . It is then the axioms that rule out models with multiplicity, again showing that the second
concern can also be addressed axiomatically.
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Appendix: Proofs

Proof of Lemma 1. Fix any (r�p�x� y) ∈ PD0, and suppose that (σ�P) is an equilibrium
according to Definition 1. Then, for any player i,

Vi(c)− Vi(d)= αi

[
r −p+ (1 − P)x+ Py

] − [
(1 − P)x+ Py

]
� (4)

and player i strictly prefers c, strictly prefers d, or is indifferent if (4) is positive, negative,
or zero, respectively. Hence, it is sufficient to show that the sign of (4) is unchanged for
all αi when the payoffs are transformed to κ(r + ξ�p+ ξ�x� y), where κ > 0. Then

Vi(c)− Vi(d)= αi

[
κr + κξ − κp− κξ + (1 − P)κx+ Pκy

] − [
(1 − P)κx+ Pκy

]
= κ

(
αi

[
r −p+ (1 − P)x+ Py

] − [
(1 − P)x+ Py

])
�

(5)

Because κ > 0, the signs of (4) and (5) are identical. �

Proof of Proposition 1. Claim (i). Fix any (x� y) ∈ PD, and suppose that (σ�P) is an
equilibrium according to Definition 1. Then

Vi(c)− Vi(d) = αi

[
1 + (1 − P)x+ Py

] − [
(1 − P)x+ Py

]
� (6)

Player i strictly prefers c, strictly prefers d, or is indifferent if (6) is positive, negative, or
zero, respectively. For any P ∈ [0�1], (i) if αi = 1, then (6) is positive, and (ii) (6) is linear in
αi. It follows that the equilibrium must be a cutoff equilibrium and that α∗ < 1. Suppose
now that α∗ = 0. Then, by Definition 1, P = 0. But then Vi(c|αi = 0)−Vi(d|αi = 0) = −x <

0, which contradicts α∗ = 0, establishing the result.
Claims (ii) and (iii). That solutions to (2) and equilibrium cutoffs are identical fol-

lows immediately from the properties of (6) discussed in the proof of Claim (i). It is
therefore sufficient to establish existence of a solution to (2). If x = y, (2) has a unique
solution: α∗ = x

1+x = y
1+y . If x = y, any solution to (2) is (implicitly) characterized by

F
(
α∗) = T

(
α∗|x� y) := α∗ − (

1 − α∗)x(
1 − α∗)(y − x)

� (7)

If x > y, then limα→0 T(α|x� y) = x
x−y > 1 and limα→1 T(α|x� y) = −∞. Further, T is con-

tinuous and strictly decreasing in α. Hence, it must intersect F , a continuous CDF on
[0�1], exactly once. If x < y, then limα→0 T(α|x� y) = x

x−y < 0 and limα→1 T(α|x� y) = ∞.
Further, T is continuous and strictly increasing in α. Hence, it must intersect F , a con-
tinuous CDF on [0�1], at least once. �

Proof of Proposition 2. From Proposition 1, the number of equilibrium cutoffs is
the number of solutions to (2), and existence is established. For x ≥ y, the arguments
given in the proof of Proposition 1 demonstrate uniqueness of the solution for any F ∈ F .
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Now fix arbitrary x < y and suppose F ′(α) ≤ F(α)
α−α2 for all α ∈ (0�1). Consider a solution

α∗ ∈ (0�1):

F ′(α∗) ≤ F
(
α∗)

α∗ − (
α∗)2 = T

(
α∗|x� y)

α∗ − (
α∗)2 = α∗(1 + x)− x

α∗(1 − α∗)2
(y − x)

� (8)

Further,

T ′(α∗|x� y) = 1(
1 − α∗)2

(y − x)
� (9)

It is a matter of simple algebra to see that the rightmost term in (8) is strictly less than
(9) for any x, y, α∗ such that 0 < x < y and α∗ ∈ (0�1). Hence, at any solution to (2), T
intersects F from below. Because both functions are continuous they can intersect at
most once.

To see that uniqueness fails if the condition is not satisfied, suppose there exists
α0 ∈ (0�1) such that F ′(α0) >

F(α0)

α0−α2
0

. For any (x� y) ∈ PD such that y > x, T is contin-

uous, limα→0 T(α|x� y) = x
x−y < 0, and limα→1 T(α|x� y) = ∞. Hence, there must exist

at least one solution in which T intersects F from below. Therefore, if for the same
game there exists a solution in which T intersects F from above, then there are mul-
tiple solutions. Let Y(x|α�F(α)) be the function such that α solves (2) given F(α), x, and
y = Y(x|α�F(α)); that is,

Y
(
x|α�F(α)) = α− (1 − α)

(
1 − F(α)

)
x

(1 − α)F(α)
�

Notice that given any (α�F(α)) ∈ (0�1)2, for all x < α
(1−α)(1−F(α)) , Y(x|α�F(α)) > 0, mean-

ing for such x, (x�Y(x|α�F(α))) ∈ PD. Finally, it is straightforward that

lim
x→0

(
T ′(α|x�Y (

x|α0�F(α0)
))|α=α0

) = F(α0)

α0 − α2
0

�

By supposition, F ′(α0) >
F(α0)

α0−α2
0

. Therefore, because T ′ is continuous in both x and y,

there exists x > 0 small enough such that T intersects F from above at α0 for the game
(x�Y(x|α0�F(α0))). �

Proof of Theorem 1. Representation =⇒ Axioms. Consider a collection I with prim-
itive (D0

i �C
0
i )i∈I that satisfies the representation. Because each game has a unique

equilibrium cutoff, Lemma 1 immediately implies Axiom 1 is satisfied. To verify that
the primitive satisfies the remaining axioms it is sufficient to focus only on PD and
(Di�Ci)i∈I .

Propositions 1 and 2 immediately imply the following. First, if αi = 0, then Di = PD,
and if αi = 1, then Ci = PD. Second, if αi ∈ (0�1), then Mi = {(x� y) ∈ PD|α∗

x�y = αi}. Third,
if αi = αj , then (Di�Ci) = (Dj�Cj).

Now fix arbitrary αi ∈ (0�1) and solve (2) to get that

Mi =
{
(x� y) ∈ PD|α∗

x�y = αi

} =
{
(x� y) ∈ PD

∣∣∣y = αi

(1 − αi)F(αi)
− x

(
1 − F(αi)

F(αi)

)}
�



942 Daley and Sadowski Theoretical Economics 12 (2017)

That is, Mi forms a line in PD. Define inti = αi
(1−αi)F(αi)

and slpi = 1−F(αi)
F(αi)

. It follows that

if 0 < αj < αi < 1, then inti ≥ intj and slpi < slpj . The latter is obvious since αi > αj =⇒
F(αi) > F(αj) because F ∈F . To see the former,

d

dα

(
α

(1 − α)F(α)

)
= F(α)− (

α− α2)F ′(α)(
(1 − α)F(α)

)2 ≥ 0 ∀α ∈ (0�1) ⇐⇒ Condition S�

For arbitrary player αi ∈ (0�1), let MUi and MLi be the strict-upper- and strict-lower-
contour sets of Mi (within PD), respectively. Now, consider (x� y) ∈ MUi. From Proposi-
tion 2, there exists unique α∗

x�y , and it is distinct from αi by (x� y) /∈ Mi. From the argu-
ment above, whenever αj ≤ αi then MLj ⊆ MLi. Therefore, α∗

x�y > αi. By the cutoff form
of the equilibrium, (x� y) ∈Di. Therefore, Di = MUi. An analogous argument establishes
Ci = MLi.

Having completed the description of the data, (Di�Ci)i∈I , that the representation
generates, we are ready to verify the axioms. That extreme players, αi = 0�1, satisfy
Axioms 2–4 is clear, so consider any player i such that αi ∈ (0�1). Axiom 2 is satisfied
since the sets Ci = {(x� y) ∈ PD|y < inti − x · slpi} and Di = {(x� y) ∈ PD|y > inti − x · slpi}
are open in PD. For Axiom 3, if (x� y) ∈ Di, then for any (x′� y ′) ≥ (x� y) such that
(x′� y ′) = (x� y) it follows that (x′� y ′) ∈ MUi = Di. To verify Axiom 4, suppose both (x� y)

and (x′� y ′) are elements of Di. Then

y > inti − x · slpi =⇒ γy > γ(inti − x · slpi)�

y ′ > inti − x′ · slpi =⇒ (1 − γ)y ′ > (1 − γ)
(
inti − x′ · slpi

)
=⇒ γy + (1 − γ)y ′ > γ(inti − x · slpi)+ (1 − γ)

(
inti − x′ · slpi

)
=⇒ γy + (1 − γ)y ′ > inti −

(
γx+ (1 − γ)x′)slpi�

Hence, (γx + (1 − γ)x′�γy + (1 − γ)y ′) ∈ Di. A symmetric argument holds if {(x� y)�
(x′� y ′)} ⊂Ci.

Finally, Axiom 5. Suppose the hypotheses of the axiom are satisfied for two distinct
players i and j. Then it must be that 0 <αi < αj . If αj = 1, then Cj = PD and the axiom is
trivial. If αj < 1, then 0 < αi < αj implies slpj < slpi (above). Further, by hypotheses (ii)

and (iii), slpi ≤ δ
ε . Finally, slpj <

δ
ε and (x′� y ′) ∈ Cj imply (x′ +ε� y ′ −δ) ∈ Cj , completing

the proof.
Axioms =⇒ Representation. The majority of the proof concerns behavior in the

set of games PD (that is (Di�Ci)i∈I ). In a series of lemmas we establish that Axioms 2–
5 imply the representation on this smaller domain. Lemmas A.1 and A.2 demonstrate
that if (Di�Ci) satisfies Axioms 2–4, then there is a unique value for αi and a unique
scalar Fi such that any behavioral model [F� (αi�α−i)] with F ∈ F and F(αi) = Fi can
explain the behavior of player i. Lemmas A.3–A.5 then show that there exists F ∈ FS that
simultaneously satisfies the required values for all i ∈ I. Therefore, by Proposition 2, for
all (x� y) ∈ PD, under this F there is a unique equilibrium cutoff. This ensures that in
each game there is an equilibrium consistent with the behavior of all players; hence, the
behavioral model using this assignment of F and the mandated αi-values can explain
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(Di�Ci)i∈I (Lemma A.6). It is then an immediate corollary that the addition of Axiom 1
implies the representation on the full domain, PD0 (Lemma A.7). This completes the
proof. �

Fact A.1. Fix any player i. If (Di�Ci) satisfies Axiom 2, and Ci = ∅ and Di = ∅, then for
any (x� y) ∈ Ci, (x′� y ′) ∈ Di, and continuous path p : [0�1] → PD such that p(0) = (x� y)

and p(1) = (x′� y ′), there exists t ∈ (0�1) such that p(t) ∈Mi.

Proof. Let t = sup{t|p(t ′) ∈ Ci ∀t ′ ∈ [0� t]}. Because (x� y) is an arbitrary element of Ci,
it is sufficient to show that p(t) ∈ Mi. Suppose that p(t) ∈ Ci. Then, by definition of t, for
any ε > 0 there exists t ∈ (t� t + ε) such that p(t) /∈ Ci. Because p is continuous, this con-
tradicts Ci being open (and, hence, Axiom 2). Now, suppose that p(t) ∈Di. By definition
of t, for all ε > 0 there exists t ∈ (t − ε� t) such that p(t) ∈ Ci, and therefore p(t) /∈ Di.
Because p is continuous, this contradicts Di being open (and, hence, Axiom 2). Hence,
p(t) ∈Mi. �

Lemma A.1. Fix any player i such that (Di�Ci) satisfies Axioms 2–4. If Di = ∅ and Ci = ∅,
then there is a unique pair (inti� slpi) ∈ (0�∞)2 such that Di = {(x� y) ∈ PD|y > inti −
slpi · x} and Ci = {(x� y) ∈ PD|y < inti − slpi · x}. If Di = ∅, then Ci = PD, and if Ci = ∅,
then Di = PD.

Proof. Consider the three possible cases.
Case 1: Di = ∅ and Ci = ∅. Axiom 2 implies that not only is Mi nonempty, but is

nonsingleton (see Fact A.1). Therefore, let {(x1� y1) = (x2� y2)} ⊂ Mi, with x1 ≤ x2. By
Axiom 3, x1 < x2 and y1 > y2. Again employing Axioms 2 and 3, we see that Mi ∩ {(x� y) ∈
PD|x ∈ [x1�x2]} must consist of a strictly decreasing function y, where y(x1) = y1 and
y(x2) = y2. For any x ∈ [x1�x2], if y > y(x), then (x� y) ∈ Di, and if y ∈ (0� y(x)), then
(x� y) ∈ Ci. Hence, Axiom 4 implies that y is linear. Let slpi := y1−y2

x2−x1
∈ (0�∞) and inti :=

(y1 + slpi · x1) ∈ (0�∞).
Since the above applies to any pair of games in Mi, all games in Mi must fall on the

same line: Mi ⊆ {(x� y) ∈ PD|y = inti − slpi · x}. But, if the inclusion were strict, Axiom 2
would be violated (again, see Fact A.1). Hence, Mi = {(x� y) ∈ PD|y = inti − slpi · x}. The
claimed structures of Di and Ci follow from Axiom 3.

Case 2: Di = ∅. It must be that Mi = ∅. Suppose to the contrary that some (x� y) ∈
Mi. Then, by Axiom 3, for x′ > x, (x′� y) ∈Di: a contradiction. Hence, Ci = PD.

Case 3: Ci = ∅. It must be that Mi =∅. Suppose to the contrary that some (x� y) ∈Mi.
Consider then a game (x′� y) where x′ ∈ (0�x). By Ci = ∅, (x′� y) ∈ Di. Axiom 3 implies
that (x� y) ∈ Di: a contradiction. Hence, Di = PD. �

Lemma A.2. Fix any player i. If (Di�Ci) satisfies Axioms 2–4, then there exists a unique
pair (αi�Fi) ∈ [0�1]2 such that (Di�Ci) can be explained by any behavioral model
[F� (αi�α−i)] such that F ∈ F and F(αi)= Fi. Further, (αi�Fi) is given by

(αi�Fi)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
inti

1 + inti + slpi

�
1

1 + slpi

)
if Di�Ci =∅�

(1�1) if Di =∅�

(0�0) if Ci =∅�

(10)
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Proof. First inti� slpi > 0 (Lemma A.1) implies that (αi�Fi) from (10) is always in [0�1]2.
Consider, again, the three possible cases.

Case 1: Di = ∅ and Ci = ∅. Recall from Proposition 1, that in the behavioral model,
for any (x� y) ∈ PD, each equilibrium is of cutoff form, with α∗

x�y being any solution to (2).
So, it is sufficient to show that for arbitrary (x� y) ∈ PD and F ∈ F such that F(αi) = Fi,
(i) (x� y) ∈Mi if and only if αi solves (2), (ii) (x� y) ∈ Ci implies that there exists α ∈ (0�αi)

such that α solves (2), and (iii) (x� y) ∈ Di implies that there exists α ∈ (αi�1) such that α
solves (2). We take them in turn.

(i) By Lemma A.1, (x� y) ∈ Mi ⇐⇒ y = inti − slpi · x > 0. Solving (2) for y gives y =
αi

F(αi)−αiF(αi)
− 1−F(αi)

F(αi)
x. The pair of equations inti = αi

F(αi)−αiF(αi)
and slpi = 1−F(αi)

F(αi)

has a unique solution: αi = inti
1+inti+slpi

and F(αi) = 1
1+slpi

. This establishes the

claim.

(ii) Suppose that (x� y) ∈ Ci. By Lemma A.1, this implies that y < inti − slpi · x.
Let d(α) := V (c|α = α∗) − V (d|α = α∗) = α[1 + (1 − F(α))x + F(α)y] −
[(1 − F(α))x+ F(α)y]. Using the assignments of (αi�F(αi) = Fi) from (10), it
follows that d(αi) > 0. Notice that d(0) = x(F(0) − 1) − yF(0) = −x < 0. Be-
cause F ∈ F , d must be continuous on [0�αi]. Hence, there exists α ∈ (0�αi) that
achieves d(α) = 0 and is therefore an equilibrium cutoff in the game (x� y) ∈ Ci

(by Proposition 1).

(iii) Suppose that (x� y) ∈ Di. By Lemma A.1, this implies that y > inti − slpi · x. Using
the assignments of (αi�F(αi)= Fi) from (10), it follows that d(αi) < 0. Notice that
d(1) = 1. Because F ∈ F , d must be continuous on [αi�1]. Hence, there exists
α ∈ (αi�1) that achieves d(αi) = 0 and is therefore an equilibrium cutoff in the
game (x� y) ∈Di (by Proposition 1).

The following text is relevant for the next two cases. In the behavioral model, for any
F ∈ F , Proposition 1 establishes that a player with type αi = 1 strictly prefers c in all
equilibria of all games, and that a player with type αi = 0 strictly prefers d in all equilibria
of all games. Further, for any F ∈ F and any α ∈ (0�1), the game (x� y) = ( α

1−α�
α

1−α) is in
PD and has a unique equilibrium cutoff α∗

x�y = α.
Case 2: Di =∅. From above, in the behavioral model, for any F ∈F , a player i strictly

prefers c in every (x� y) ∈ PD if and only if his type is αi = 1. Further, for all F ∈ F ,
F(1) = 1.

Case 3: Ci =∅: From above, in the behavioral model, for any F ∈ F , a player i strictly
prefers d in every (x� y) ∈ PD if and only if his type is αi = 0. Further, for all F ∈ F ,
F(0) = 0. �

Lemma A.3. Fix any two players i and j such that (Di�Ci) and (Dj�Cj) satisfy Axioms 2–
5 and Di, Ci, Dj , and Cj are all nonempty. Using (inti� slpi), (intj� slpj) from Lemma A.1,
if inti < intj , then slpi > slpj .

Proof. By Lemma A.1, Mi = {(x� y) ∈ PD|y = inti − slpi · x} and Mj = {(x� y) ∈ PD|y =
intj − slpj · x}. Fix any (x� y) ∈ Mi, and for ε ∈ (0� y

slpi
), let δ = ε · slpi. It follows
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that (x+ ε� y − δ) ∈Mi. Next, inti < intj implies that for sufficiently small choices
of x and ε there exists (x′� y ′) such that (x′� y ′) ∈ Mj and {(x� y)� (x + ε� y − δ)} <

{(x′� y ′)� (x′ + ε� y ′ − δ)}. By Axiom 5, (x′ +ε� y ′ −δ) ∈ Cj = {(x� y) ∈ PD|y < intj − slpj ·x}.

Thus, slpj <
δ
ε = slpi. �

Definition A.1. Fix any player i such that (Di�Ci) satisfies Axioms 2–4, Di = ∅, and
Ci = ∅. Assign (αi�Fi) as done by (10) in Lemma A.2. Define the function Hi : [0�1] →
R∪ ∞ as Hi(a) = Fi

a(1−αi)
αi(1−a) for a ∈ [0�1) and Hi(1) = ∞.

Fact A.2. For all i such that Hi is defined, (i) Hi(0) = 0, (ii) Hi is strictly increasing,
differentiable, and strictly convex on [0�1), (iii) Hi(αi) = Fi, (iv) lima→1 Hi(a) = ∞, and
(v) H ′

i(αi) = Fi
αi−α2

i

.

The proof is by direct calculations.

Lemma A.4. Fix any two players i and j such (Di�Ci) and (Dj�Cj) satisfy Axioms 2–5.
Assign (αi�Fi) and (αj�Fj) as done by (10) in Lemma A.2. The following statements are
valid:

(i) If αj < αi < 1, then Fj ∈ [Hi(αj)�Fi).

(ii) If 0 <αi < αj , then Fj ∈ (Fi�Hi(αj)].
(iii) If αi = αj , then Fj = Fi.

Proof. First, if αi ∈ {0�1}, then (i) and (ii) have no implications, and (iii) is immediate
from Lemma A.2. Now fix αi ∈ (0�1). If αj ∈ {0�1}, then the claims follow from Fact A.2.
If αj ∈ (0�1), then from Lemma A.3,

(intj� slpj) ∈ {
(int� slp)|int ≤ inti and slp > slpi

} ∪ {
(int� slp)|int ≥ inti and slp < slpi

}
∪ {

(int� slp)|int = inti and slp = slpi

}
�

Inverting the bijection from (10) in Lemma A.2,

(αj�Fj) ∈
{
(α�φ)

∣∣∣ α

(1 − α)φ
≤ αi

(1 − αi)Fi
and

1 −φ

φ
>

1 − Fi

Fi

}

∪
{
(α�φ)

∣∣∣ α

(1 − α)φ
≥ αi

(1 − αi)Fi
and

1 −φ

φ
<

1 − Fi

Fi

}

∪
{
(α�φ)

∣∣∣ α

(1 − α)φ
= αi

(1 − αi)Fi
and

1 −φ

φ
= 1 − Fi

Fi

}
�

Rearranging and using Definition A.1 gives

(αj�Fj) ∈ {
(α�φ)|Hi(α) ≤φ and φ< Fi

} ∪ {
(α�φ)|Hi(α) ≥φ and φ> Fi

}
∪ {

(α�φ)|Hi(α) = φ and φ= Fi

}
�
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which, by (ii) and (iii) of Fact A.2, is equivalent to

(αj�Fj) ∈ {
(α�φ)|α ∈ [0�αi) and φ ∈ [

Hi(α)�Fi

)}
∪ {

(α�φ)|α ∈ (αi�1] and φ ∈ (
Fi�Hi(α)

]}
∪ {

(α�φ)|α = αi and φ = Fi

}
�

This establishes the result. �

Corollary A.1. Fix any two players i and j such (Di�Ci) and (Dj�Cj) satisfy Axioms
2–5. Assigning (αi�Fi), (αj�Fj) as done by (10), if 0 < αi < αj < 1, then either Hi = Hj or
H ′

i(a) >H ′
j(a) for all a ∈ [0�1).

Proof. We have

H ′
i(a)−H ′

j(a) = Fi · αj(1 − αi)− Fj · αi(1 − αj)

αi · αj(1 − a)2 � (11)

By Lemma A.4, either (11) is zero for all a ∈ [0�1), in which case Hi = Hj since Hi(0) =
Hj(0) from Fact A.2, or (11) is positive for all a ∈ [0�1). �

Lemma A.5. Fix a primitive (Di�Ci)i∈I that satisfies Axioms 2–5. Assign (αi�Fi)i∈I as
done by (10) in Lemma A.2. There exists F ∈ FS with F(αi)= Fi for all i ∈ I.

Proof. Order and (re-)index the distinct pairs featuring αi ∈ (0�1) such that (0�0) �
(α1�F1) � (α2�F2) � · · · � (αm�Fm) � (1�1), where m ≤ n and the ordering is strict by
Lemma A.4. For each k ∈ {1�2� � � � �m}, set F(αk) = Fk and F ′(αk) = Fk

αk−α2
k

. Set F(0) = 0,

F(1) = 1, and F ′(1) = 0. Next, in F we fill in the intervals between the pairs to produce a
strictly increasing, differentiable CDF that satisfies Condition S. In doing so, we say that
a differentiable function f1 smoothly pastes the ordered pair of differentiable, increasing
functions (f2� f3) on an interval (z� z) if (i) f1(z) = f2(z), (ii) f ′

1(z) = f ′
2(z), (iii) f1(z) =

f3(z), and (iv) f ′
1(z) = f ′

3(z).

Step 1. On (0�α1), set F = H1, which satisfies all of the necessary properties (see
Fact A.2).

Step 2. Identify all k ∈ {1�2� � � � �m−1}, such that Hk = Hk+1. For all such k, set F =Hk

on (αk�αk+1), which satisfies all of the necessary properties (see Fact A.2).

Step 3. Fix arbitrary k <m such that Hk = Hk+1, and let L be the linear function tan-
gent to Hk at αk. There are two cases: (a) L(αk+1) < Fk+1 or (b) L(αk+1) ≥
Fk+1.

(a) In this case, L intersects Hk+1 at some α0 ∈ (αk�αk+1), where L′ <
H ′

k+1(α
0). Now for any ε > 0 small enough, there exists an elliptical arc

E that smoothly pastes (L�Hk+1) on (α0 − ε�α0 + ε). By construction, for
sufficiently small ε, setting F = L on (αk�α

0 −ε], F =E on (α0 −ε�α0 +ε),
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and F = Hk+1 on [α0 + ε�αk+1), satisfies differentiability and strict mono-
tonicity. To see that it satisfies Condition S, let H̃α�F be the Hi function of
a hypothetical player with (αi�Fi) = (α�F). By (v) of Fact A.2, it is suffi-
cient to demonstrate that F ′(α) ≤ H̃ ′

α�F(α)(α) for all α ∈ (αk�αk+1). Notice

that Corollary A.1 implies that this holds with equality on [α0 + ε�αk+1).
For α ∈ (αk�α

0 − ε], F is (weakly) concave and crosses the strictly convex
function Hα�F(α) from above at α. Hence, the inequality must be satisfied.
Finally, if ε is small enough, then since E >Hk+1 on (α0 − ε�α0 + ε), so as
to smoothly paste with Hk+1, it must be that E′ < H ′

k+1 on this interval.

From Corollary A.1, H̃ ′
α�F(α) >H ′

k+1, which establishes the inequality.

(b) In this case, let L̂ be the line that passes through (αk�Fk) and (αk+1�Fk+1),
so L̂′ ≤ L′ by hypothesis. Next, let L̂δ be the line that passes through the
midpoint between (αk�Fk) and (αk+1�Fk+1) with slope L̂′ − δ. For any
δ > 0 small enough, there exists ε > 0 small enough such that (Hk� L̂δ) can
be smoothly pasted by elliptical arc E1 on (αk�αk +ε), and (L̂δ�Hk+1) can
be smoothly pasted by elliptical arc E2 on (αk − ε�αk+1). By construction,
for sufficiently small δ and ε, setting F = E1 on (αk�αk + ε), F = L̂δ on
[αk + ε�αk+1 − ε], and F =E2 on (αk+1 − ε�αk+1) satisfies differentiability
and strict monotonicity. The arguments that it satisfies Condition S are
analogous to those made in Step 3(a) above, since F is weakly concave on
(αk�αk+1 − ε), and E′

2 < H ′
k+1 on (αk+1 − ε�αk+1) when ε is sufficiently

small.

Step 4. For α ∈ (αm�1), given the properties of Hm from Fact A.2, there exist α0 ∈
[αm�1) and an elliptical arc E that smoothly pastes (Hm�1) on (α0�1) and is
concave. Set F = Hm on (αm�α

0] and F = E on (α0�1) to satisfy differen-
tiability, strict monotonicity, and Condition S (by the same arguments from
Step 3). �

Lemma A.6. If (Di�Ci)i∈I satisfies Axioms 2–5, then it can be explained by a behav-
ioral model [F� (αi)i∈I], where F ∈ F satisfies Condition S. Furthermore, (αi�F(αi))i∈I is
unique.

The proof is an immediate corollary of Lemmas A.1–A.5.

Lemma A.7. If (D0
i �C

0
i )i∈I satisfies Axioms 1–5, then it can be explained by a behav-

ioral model [F� (αi)i∈I], where F ∈ F satisfies Condition S. Furthermore, (αi�F(αi))i∈I is
unique.

The proof is an immediate corollary of Lemmas 1 and A.6.

Proof of Proposition 3. The proof is ordered: (a) ⇐⇒ (c), (b) ⇐⇒ (c), (a) ⇐⇒ (e),
(d) ⇐⇒ (e).
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(a) ⇐⇒ (c). Suppose F f.o.s.d. F̃ . Recall that if x = y, then α∗
x�y = α̃∗

x�y (Section 2.1.1),
implying F(α∗

x�y) ≤ F̃ (̃α∗
x�y) by f.o.s.d. If x = y, then the cutoffs are implicitly char-

acterized by F(α∗
x�y) = T(α∗

x�y |x� y) and F̃ (̃α∗
x�y) = T (̃α∗

x�y |x� y). Further, if x > y, then

T(0|x� y) > 0 = F(0) = F̃(0), and T(·|x� y) is strictly decreasing. Hence, by f.o.s.d., both
α̃∗
x�y ≤ α∗

x�y and F̃ (̃α∗
x�y) ≥ F(α∗

x�y). If x < y, then T(0|x� y) < 0 = F(0) = F̃(0), and T is
strictly increasing (but intersecting F and F̃ each exactly once since both satisfy Condi-
tion S). Hence, by f.o.s.d., both α̃∗

x�y ≥ α∗
x�y and F̃ (̃α∗

x�y)≥ F(α∗
x�y). So (a) implies (c).

Now suppose that (a) does not hold; there exists α0 ∈ (0�1) such that F(α0) > F̃(α0).
In the game x = y = α0

1−α0 , we have that α∗
x�y = α̃∗

x�y = α0, which then violates (c).

(b) ⇐⇒ (c). Notice that kx�y and k̃x�y are binomial random variables with n “tri-
als” (i.e., each players’ action) and probabilities of “success” (i.e., cooperation) of
(1 − F(α∗

x�y)) and (1 − F̃ (̃α∗
x�y)), respectively. Because n is common between the two

random variables, a simple “coupling” argument Lindvall (2002, Chapter 1) establishes
that kx�y f.o.s.d. k̃x�y if and only if 1 − F(α∗

x�y) ≥ 1 − F̃ (̃α∗
x�y).

(a) ⇐⇒ (e). That (a) implies (e) is shown in the proof of (a) ⇐⇒ (c) above. Now
suppose that (a) does not hold; there exists α0 ∈ (0�1) such that F(α0) > F̃(α0). In the
game x= y = α0

1−α0 , we have that α∗
x�y = α̃∗

x�y = α0. Because F , F̃ , and T are all continuous

in y, and T is decreasing in α when x > y, there exits an ε > 0 small enough such that in

the game (x� y) = ( α0

1−α0 �
α0

1−α0 − ε) ∈ PD, α∗
x�y < α̃∗

x�y , which violates (e).

(d) ⇐⇒ (e). That (e) implies (d) follows from the cutoff nature of equilibrium behav-
ior (Propositions 1 and 2). Now suppose that (e) does not hold in that there exists x0 ≤ y0

such that α∗
x0�y0

> α̃∗
x0�y0

. Let α0 ∈ (̃α∗
x0�y0

�α∗
x0�y0

). Then

{
(x0� y0)

} ⊂ Cα0�F̃ ∩Dα0�F ∩ {
(x� y)|x ≤ y

} = ∅�

violating (d). A symmetric argument applies if there exists x0 ≥ y0 such that α∗
x0�y0

<

α̃∗
x0�y0

. �

Proof of Proposition 4. When x = y, the unique solution to (2) is α∗ = x
1+x . Hence,

Proposition 1 implies that, for any (x�x) ∈ PD and any player i (of any collection),
(x�x) ∈Di if and only if αi <

x
1+x . Part (a) of the proposition follows.

For part (b), first suppose that I is more influenced by x relative to y than is Ĩ. Then
the behaviors of the two collections agree on the subset of games {(x� y) ∈ PD|x= y}. By

part (a) of the proposition, (αi)i∈I = (̃αi)i∈Ĩ . Immediately, if αi = 0�1, then F(αi)= F̃ (̃αi).
In addition, I defecting more in {(x� y) ∈ PD|x ≥ y} than does Ĩ implies that, for each i

with αi ∈ (0�1), it must be that the Mi line is weakly steeper under F than under F̃ , i.e.,
slpi ≥ s̃lpi (Lemma A.1). Next, by Lemma A.2, F(αi)= 1

1+slpi
≤ 1

1+s̃lpi
= F̃ (̃αi).

Second, suppose that for all i ≤ n, αi = α̃i and F(αi) ≤ F̃(α̃i). Immediately, if
αi = 0�1, then i’s behavior is the same in I and Ĩ. For each i with αi ∈ (0�1), Mi ∩ M̃i =
{( αi

1−αi
� αi

1−αi
)}. Also, slpi = 1−F(αi)

F(αi)
≥ 1−F̃ (̃αi)

F̃ (̃αi)
= s̃lpi. Hence, for any (x� y) ∈ PD, if x ≥ y,

then (x� y) ∈ D̃i =⇒ (x� y) ∈ Di, and if x ≤ y, then (x� y) ∈ Di =⇒ (x� y) ∈ D̃i, establish-
ing that I is more influenced by x relative to y than is Ĩ. �
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Proof of Proposition 5. First, the proof of Proposition 1, Claim (i) remains valid and
implies that all equilibria are cutoff with α∗ < 1 and that α∗ = 0 is an equilibrium cutoff
if and only if x ≤ 0. Second, if x > 0, the existence, uniqueness, and characterization of
the equilibrium cutoff follow identically from the proofs of Propositions 1 and 2. Third,
any α ∈ (0�1) is an equilibrium cutoff if and only if g ∈ M̃α (the argument given in the
proof of Theorem 1, “Representation =⇒ Axioms,” immediately extends to establish
this). Fix now x ≤ 0. By definition of B, (i) if y < B(x), then there does not exist an
interior equilibrium cutoff in game (x� y), and (ii) if y = B(x), then there does exist an
interior equilibrium cutoff in game (x� y). The final case is y > B(x). For α ∈ (0�1), define
y∗(α|x) := α

(1−α)F(α) − x( 1−F(α)
F(α) ) or, equivalently, (x� y∗(α|x)) ∈ M̃α. For any y > B(x),

there exists α1 < α2 such that y∗(α1|x) = B(x) < y < y∗(α2|x), where the final inequality

follows from limα→1
α

(1−α)F(α) = ∞ and limα→1
1−F(α)
F(α) = 0. Since y∗(·|x) is continuous, the

intermediate value theorem implies that there exists α3 ∈ (α1�α2) such that y∗(α3|x)= y,
meaning α3 in an interior equilibrium cutoff in the game (x� y). �

Proof of Proposition 6. First consider g ∈ PD0, so πg = 1. By Propositions 1 and
2 (and Lemma 1), α∗

g ∈ (0�1), implying F(α∗
g) < 1 = πg. Second, consider g such that

x > 0 ≥ y. It is straightforward to obtain πg = x
x−y . The analog to (7) in which r, p have

not been normalized is F(α∗
g) = α∗

g(r−p)−(1−α∗
g)x

(1−α∗
g)(y−x) . Therefore,

πg − F
(
α∗
g

) = α∗
g(r −p)(

1 − α∗
g

)
(x− y)

> 0� (12)

The inequality is due to α∗
g ∈ (0�1) (by Proposition 5), r > p, and x > 0 ≥ y.

For the general limit result, observe that Lemma 1 implies that it is sufficient to
establish that if r = 1 and p = 0, then for any ε > 0, there exists K ∈ R+ such that, if
x + |y| > K, then πx�y − F(α∗

x�y) < ε. Fix ε > 0, and define the terms αε = F−1(1 − ε),

K1 = αε

(1−αε)ε , and, letting (intαε� slpαε) be the (inti� slpi) generated by the equilibrium

behavior of a player i with αi = αε, K2 = max{intαε�
intαε
slpαε

}.

Setting K = max{K1�K2} establishes the claim. To see this, suppose that y > 0 and
x+|y|>K. Then y >K−x≥K2 −x≥ intαε −x · slpαε . Hence, (x� y) ∈Dαε and α∗

x�y > αε.
Therefore, F(α∗

x�y) > F(αε)= 1−ε and πx�y −F(α∗
x�y)= 1−F(α∗

x�y) < ε. Suppose instead
that y ≤ 0 and x+|y| >K. First, if α∗

x�y > αε, then 1 ≥ πx�y > F(α∗
x�y) > F(αε) = 1 −ε, and

the result holds. Second, if α∗
x�y ≤ αε, then by (12), we have

πx�y − F(αx�y) = α∗
x�y(

1 − α∗
x�y

)
(x− y)

≤ αε(
1 − αε

)
(x− y)

<
αε(

1 − αε
)
K1

= ε�

establishing the claim. �

Proof of Proposition 7. Let r = p. If αi = 1, Vi(c) = Vi(d) and player i is indifferent
between c and d. However, such players are measure zero, and their behavior has no
effect on the claims in the proposition. For the remainder, focus then on players with
αi ∈ [0�1), and therefore sign(Vi(c) − Vi(d)) = sign((1 − αi)[Pi · (−y) + (1 − Pi) · x]) =
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sign(Pi · (−y) + (1 − Pi) · x), which is independent of αi. Suppose now that (σ�P) is an
equilibrium. If σ(d|α) is constant in α on [0�1), then by condition (iii) of Definition 1,
σ(d|α) = P for α ∈ [0�1). Therefore, assigning probability P to d is a best response to P ,
regardless of αi, implying πg = P characterizes a symmetric Nash equilibrium. If σ(d|α)
is not constant in α on [0�1), then, since preferences are independent of αi, for any αi ∈
[0�1), any mixture over d and c is a best response to P . Again, then, πg = P characterizes
a symmetric Nash equilibrium. Now suppose that πg characterizes a symmetric Nash
equilibrium. Let F(α̃) = πg, and let σ̃(d|α) = 1 if α < α̃ and = 0 otherwise. It is trivial to
verify that (σ̃�πg) is an equilibrium according to Definition 1. Finally, existence of an
equilibrium follows from the existence of a symmetric Nash equilibrium Osborne and
Rubinstein (1994, Section 20.4). �

Proof of Proposition 8. Fix g ∈ � and a (candidate) equilibrium (σ�P). Let α < α′
and k(α) := max{k : σ(k|α) > 0}. Hence, for all k < k(α),

Vi
(
k(α)|αi = α

) ≥ Vi(k|αi = α)�

αs
(
k(α)

) + (1 − α)
∑
k′∈A

P
(
k′)v(k(α)�k′) ≥ αs(k)+ (1 − α)

∑
k′∈A

P
(
k′)v(k�k′)�

α

1 − α

(
s
(
k(α)

) − s(k)︸ ︷︷ ︸
>0

) ≥
∑
k′∈A

P
(
k′)(v(k�k′) − v

(
k(α)�k′))�

α′

1 − α′
(
s
(
k(α)

) − s(k)
)
>

∑
k′∈A

P
(
k′)(v(k�k′) − v

(
k(α)�k′))�

α′s
(
k(α)

) + (
1 − α′) ∑

k′∈A
P

(
k′)v(k(α)�k′)>α′s(k)+ (

1 − α′) ∑
k′∈A

P
(
k′)v(k�k′)�

Vi
(
k(α)|αi = α′)> Vi

(
k|αi = α′)�

Because A is finite, but the set of α-types is continuous, σ must therefore be increasing
as described in Definition 6. Equilibrium existence is then an immediate application of
the argument in Athey (2001) (Theorem 1, as the above establishes that its single cross-
ing condition holds in our model). The only difference is that, since we are looking for
a symmetric fixed point, we apply Kakutani’s fixed point theorem to the single-player
best-response correspondence (in that paper’s notation, �i : �i → �i), rather than to the
two-player best-response correspondence (i.e., (�1��2) : �1 ×�2 → �1 ×�2). �

Proof of Proposition 9. Fix a supermodular pure dilemma game g ∈ � and let
W (k� l�α) := αs(k) + (1 − α)v(k� l) (i.e., Vi(k) given αi = α and P(l) = 1). Then W has
increasing differences in (k�α), and has increasing differences in (k� l). To see the first,
let k′ ≥ k and α′ ≥ α:(

W
(
k′� l�α′) −W

(
k� l�α′)) − (

W
(
k′� l�α

) −W (k� l�α)
)

= (
α′ − α

)(
s
(
k′) − s(k)︸ ︷︷ ︸

≥0

+v(k� l)− v
(
k′� l

)
︸ ︷︷ ︸

≥0

) ≥ 0�
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To see the second, let k′ ≥ k and l′ ≥ l:(
W

(
k′� l′�α

) −W
(
k� l′�α

)) − (
W

(
k′� l�α

) −W (k� l�α)
)

= (1 − α)
((
v
(
k′� l′

) − v
(
k� l′

)) − (
v
(
k′� l

) − v(k� l)
)

︸ ︷︷ ︸
≥0

) ≥ 0�

Both statements in the proposition are then implications of Van Zandt and Vives
(2007) (VZV). Part (i) follows from VZV Theorem 14 (they note that for symmetric
games/models such as ours, the greatest and least equilibria are symmetric (VZV
p. 346)). Part (ii) follows from VZV Proposition 16. �

Proof of Proposition 10. Fix g ∈ � that has increasing returns to joint cooperation
and a (candidate) equilibrium (σ�P). From Proposition 8, σ is increasing. Suppose
now that α∗

1 < α∗
K . Then, by Definition 6, there exists k /∈ {0�K} and α > α′ such that

σ(k|α) = σ(k|α′) = 1. So Vi(k|αi = α′) ≥ Vi(k − 1|αi = α′), which implies Vi(k|αi = α) >

Vi(k− 1|αi = α) (see the proof of Proposition 8). It follows that

αs(k)+ (1 − α)
∑
k′∈A

P
(
k′)v(k�k′)>αs(k− 1)+ (1 − α)

∑
k′∈A

P
(
k′)v(k− 1�k′)�

1 >
(1 − α)

α

∑
k′∈A

P
(
k′)v(k− 1�k′) − v

(
k�k′)

s(k)− s(k− 1)
�

Increasing returns to joint cooperation imply

∑
k′∈A

P
(
k′)v(k− 1�k′) − v

(
k�k′)

s(k)− s(k− 1)
≥

∑
k′∈A

P
(
k′)v(k�k′) − v

(
k+ 1�k′)

s(k+ 1)− s(k)
�

Hence,

1 >
(1 − α)

α

∑
k′∈A

P
(
k′)v(k�k′) − v

(
k+ 1�k′)

s(k+ 1)− s(k)
�

αs(k+ 1)+ (1 − α)
∑
k′∈A

P
(
k′)v(k+ 1�k′)>αs(k)+ (1 − α)

∑
k′∈A

P
(
k′)v(k�k′)�

Vi(k+ 1|αi = α) > Vi(k|αi = α)�

which contradicts that σ(k|α) = 1 in equilibrium. Therefore, α∗
1 = α∗

K . So, at most a
measure-zero set of α-types assigns positive probability to any action other than 0 or K.
This has no effect on the best responses of other types, so equilibrium analysis is identi-
cal to that done in the PD game (r�p�x� y)= (s(K)� s(0)� v(0�K)− s(K)� s(0)− v(K�0)) ∈
PD0. �
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This supplement contains extended formal results for Daley and Sadowski (2017)
(henceforth DS16). Specifically, Section S.1 establishes that in prisoners’ dilemma (PD)
games, the model of DS16 is logically distinct from three models that employ well known
forms of other-regarding preferences: altruism (Ledyard 1995, Levine 1998), inequity
aversion (Fehr and Schmidt 1999), and reciprocity (Rabin 1993). Section S.2 provides
an axiomatic characterization of F—the perceived distribution of types in the model—
being empirically valid when there are infinitely many players. Section S.3 extends the
axiomatic analysis to symmetric 2 × 2 games beyond PD games. All references to num-
bered sections/axioms/results/etc. are from DS16, unless otherwise indicated.

S.1. Models with other-regarding preferences

Consider the class of games denoted PD from Section 2, in which each game is param-
eterized by a pair (x� y) ∈ R2++.1 The representation result (Theorem 1) establishes that
under a condition on the slope of F , the data generated by the unique equilibrium be-
havior in PD of any such model satisfies four axioms, and for any data set that satisfies
the axioms there exists a model, satisfying the same slope condition on F , that can ex-
plain it.2

Of course, there may exist other equivalent representations. As well-known mod-
els employing what are referred to as “other-regarding preferences” can sometimes ac-
commodate cooperation by some players in some games in PD, they may seem can-
didates for this equivalence. In this section, we demonstrate that the models endowed
with three of the most popular forms of other-regarding preferences are logically distinct
from our model on PD.

Let ui, uj be the payoffs to players i and j as specified by the outcome of a two-player
game. In each of the three models, player i seeks to maximize a different objective, which
we denote vi.

Brendan Daley: bd28@duke.edu
Philipp Sadowski: p.sadowski@duke.edu

1Because the purpose of this supplement is to demonstrate that the alternative models are behaviorally
distinct from that of DS16, it suffices to establish the result on the subclass of games PD ⊂ PD0.

2Recall that the four axioms are Axioms 2–5, as Axiom 1 is needed only for the larger set of games PD0.
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1. Altruism. As proposed by Ledyard (1995) and further studied by Levine (1998): vi =
ui + αiuj , where 0 ≤ αi < 1; player i may care about his opponent’s payoff, but not
more than his own.

2. Inequity Aversion. As proposed by Fehr and Schmidt (1999): vi = ui −
αi max{uj − ui�0} − δαi max{ui − uj�0}, where 0 ≤ αi and 0 < δ < min{1� 1

αi
}; player

i may dislike inequity, but dislikes it more if his is the smaller payoff, and is not
willing to “burn” his own payoff to create equity.3

3. Reciprocity. As proposed by Rabin (1993), player i cares about how “fair” he and
his opponent are being to one another. Fixing the action of player i, ai, how fair
player j is being to player i is captured by the “kindness” function Kj(aj|ai). In the
prisoners’ dilemma, once ai is fixed all outcomes are Pareto optimal. In this case,

Kj(aj|ai) =
ui(ai� aj)− 1

2
(
uhi (ai)+ uli(ai)

)
uhi (ai)− uli(ai)

�

where uhi (ai) and uli(ai) are, respectively, the highest and lowest possible payoffs to
i given ai. Finally, vi = ui + αiKj(1 +Ki), where αi ≥ 0.

The original specifications of these models did not include heterogeneity in the de-
gree to which players are other-regarding. To incorporate heterogeneity into these mod-
els, in each we assume there is a common prior that α-types are drawn i.i.d. from a
continuous distribution with support [α�α], where α ≥ 0, and CDF F . Complete homo-
geneity can be thought of as a limiting case as (α − α) → 0. The equilibrium notion
remains as in Definition 1, with Vi(·) suitably adapted to each model.

It is not our goal here to provide a comprehensive analysis of these models (which,
while doable, would require a considerably longer treatment), but to establish the
following.

Proposition S.1. Fix any model of those described above and an equilibrium, (σg�Pg),
for each game g ∈ PD and consider the resultant data of all collections of arbitrary size n.
Either, for all collections I, Di = PD for all i ∈ I, or there is a positive measure of collections
(according to the common prior, F) each of whose data violates Axioms 2–5.4

The result is proved in the subsequent analysis.

S.1.1 Altruism

Fixing any (x� y) ∈ PD and an equilibrium (σ�P),

Vi(c|x� y�P) = (1 − P)(1 + αi · 1)+ P
(−y + αi(1 + x)

)
�

Vi(d|x� y�P) = (1 − P)
(
1 + x+ αi(−y)

) + P(0 + αi · 0)�

3One could consider a more general version in which the δαi term is replaced by βi. That is, players can
have two-dimensional types. This would not alter our result.

4Further, the proposition remains valid if collections are formed via i.i.d. draws from any distribution
with support [α�α], even if its CDF differs from the one perceived by the players, F .
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Therefore, Vi(c|x� y�P)−Vi(d|x� y�P)= αi(1+Px+(1−P)y)−(1−P)x−Py. This expres-
sion is strictly increasing in αi for all (x� y), P . Hence, all equilibria are cutoff equilibria.

For any given (x� y) ∈ PD, there exists an equilibrium with cutoff type α if and only if
given αi = α, Vi(c|x� y�F(α)) = Vi(d|x� y�F(α)). For any α, let M̃α be the set of games in
which there exists an equilibrium in which α is the cutoff type. Algebraically,

M̃α =
{
(x� y) ∈ PD|y = α

(1 + α)F(α)− α
− 1 − (1 + α)F(α)

(1 + α)F(α)− α
· x

}
�

Clearly, for all i ∈ I, Mi ⊂ M̃αi .
We now argue that for any F , there exists a (generic) collection drawn from its sup-

port whose equilibrium play violates the axioms. First, let α0 <α be the unique solution
to F(α0) = 1

1+α0 . For all α ∈ [α0�α], M̃α forms a line in PD that is weakly upward slop-

ing. So, for any player i with αi ∈ [α0�α] to be consistent with Continuity (Axiom 2) and
Monotonicity (Axiom 3), it must be that Mi = ∅.5 Second, fix arbitrary α ∈ [α0�α]. Simple
algebra shows that in the game ( α

1−α�
α

1−α) ∈ PD, α is the unique equilibrium cutoff, so
must be in Mi for any i such that αi = α. Hence, any player drawn from a high enough
quantile of the distribution will have a violation.

The intuition for this is easy to see. Suppose that αi = α, so F(αi) = 1. Then, if in
game (x� y), i is indifferent between c and d, all other players are choosing d. Therefore,
i’s indifference condition is Vi(c|x� y�1) = −y + αi(1 + x) = Vi(d|x� y�1) = 0. An increase
in x increases Vi(c) because it increases i’s opponent’s payoff, which i values altruisti-
cally. This makes player i strictly prefer c to d, and violates Monotonicity.

S.1.2 Inequity aversion

Fixing any (x� y) ∈ PD and an equilibrium (σ�P),

Vi(c|x� y�P) = (1 − P)(1 − αi · 0)+ P
(−y − αi(1 + x+ y)

)
�

Vi(d|x� y�P)= (1 − P)
(
1 + x− δαi(1 + x+ y)

) + P(0 − αi · 0)�

Therefore, Vi(c|x� y�P)− Vi(d|x� y�P)= αi(1 + x+ y)(δ−P(1 + δ))− (1 −P)x−Py. This
expression is negative for αi = 0, monotonic in αi, and increasing in αi if and only if
P < δ

1+δ ≤ 1
2 . This immediately implies that all players defecting regardless of type (i.e.,

P = 1) is an equilibrium for any (x� y) ∈ PD. It also implies that if, for a given game, there
exists an equilibrium in which a type cooperates, then it is a cutoff equilibrium where
the cutoff type α∗ must satisfy F(α∗) < δ

1+δ ≤ 1
2 .

Fix now any player i with αi such that F(αi) >
1
2 . From above, Mi = ∅. Notice,

though, that in any game, in any equilibrium where any type cooperates, player i co-
operates. Therefore, we have the following two cases:

Case 1: Suppose Ci = ∅. Then, by the previous paragraph, in every game players are
coordinating on the “all defect” equilibrium. Therefore, Dj = PD for all j ∈ I, consistent
with Proposition S.1.

5Suppose not, and that (x� y) ∈Mi . Then to satisfy Axiom 3, (i) all other (x′� y ′) ∈ M̃αi cannot be in Mi (so
Mi = {(x� y)}), and (ii) Ci 	= ∅ and Di 	= ∅. But then Axiom 2 is clearly violated.
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Case 2: Suppose Ci 	= ∅. Then, given Mi = ∅, for player i to satisfy Continu-
ity (Axiom 2), it must be that Di = ∅. We now show that this cannot hold. To see
this notice that (i) Vi(c|x� y�P) − Vi(d|x� y�P) is monotonic (in fact, linear) in P , and
(ii) Vi(c|x� y�1)−Vi(d|x� y�1)= −y−αi(1+x+y) < 0 for all αi and (x� y) ∈ PD. Therefore,
if Vi(c|x� y�0) − Vi(d|x� y�0) < 0, then there is no equilibrium for game (x� y) in which i

cooperates.

Vi(c|x� y�0)− Vi(d|x� y�0)= δαi(1 + y)+ x(−1 + δαi)�

Since δαi < 1, this is negative if x > δαi(1+y)
1−δαi

. For any fixed y, there exist large enough
x-values to satisfy this inequality for all αi. Hence, Di 	=∅, violating Axiom 2.

S.1.3 Reciprocity

It is easy to calculate that for any pair of players i� j and (x� y) ∈ PD, regardless of ai,
Kj(aj = d|ai) = − 1

2 and Kj(aj = c|ai) = 1
2 . So, fixing any (x� y) ∈ PD and an equilibrium

(σ�P),

Vi(c|x� y�P) = (1 − P)

(
1 + 3

4
αi

)
+ P

(
−y − 3

4
αi

)
�

Vi(d|x� y�P) = (1 − P)

(
1 + x+ 1

4
αi

)
+ P

(
0 − 1

4
αi

)
�

From here, the analysis is analogous to that performed for inequity-averse players.
Vi(c|x� y�P) − Vi(d|x� y�P) = αi(

1
2 − P) − (1 − P)x − Py. This expression is negative for

αi = 0, monotonic in αi, and increasing in αi if and only if P < 1
2 . This immediately im-

plies that all players defecting regardless of type (i.e., P = 1) is an equilibrium for any
(x� y) ∈ PD. It also implies that if, for a given game, there exists an equilibrium in which
a type cooperates, then it is a cutoff equilibrium where the cutoff type α∗ must satisfy
F(α∗) < 1

2 .
Fix now any player i with αi such that F(αi) >

1
2 . From above, Mi = ∅. Notice,

though, that in any game, in any equilibrium where any type cooperates, player i co-
operates. Therefore, we have the following two cases:

Case 1: Suppose Ci = ∅. Then, by the previous paragraph, in every game players are
coordinating on the “all defect” equilibrium. Therefore, Dj = PD for all j ∈ I, consistent
with Proposition S.1.

Case 2: Suppose Ci 	= ∅. Then, given Mi = ∅, for player i to satisfy Continu-
ity (Axiom 2), it must be that Di = ∅. We now show that this cannot hold. To see
this notice that (i) Vi(c|x� y�P) − Vi(d|x� y�P) is monotonic (in fact, linear) in P , and
(ii) Vi(c|x� y�1) − Vi(d|x� y�1) = −(αi2 + y) < 0 for all αi and (x� y) ∈ PD. Therefore, if
Vi(c|x� y�0) − Vi(d|x� y�0) < 0, then there is no equilibrium for game (x� y) in which i

cooperates:

Vi(c|x� y�0)− Vi(d|x� y�0)= αi

2
− x�

This is negative if x > αi
2 . Hence, Di 	= ∅, violating Axiom 2.
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S.2. Large collections and empirically valid F

We say that F , the commonly perceived distribution of types in the model, is empiri-
cally valid if it agrees with empirical distribution of types in the collection. If so, magical
thinking is the sole source of error in players’ beliefs, and we refer to them as being cal-
ibrated. One issue that arises in our context, but not in axiomatic theories of individual
choice, is the lack of data in the primitive itself. There, the primitive is typically assumed
to be the agent’s preference relation over all possible acts/choices. While our primitive
includes each player’s preferences over actions in all games in the domain, the collection
of players is assumed to be finite.6 It is easy to see that this precludes the observation of
almost all α-types in [0�1] and therefore the recovery of a unique F from the primitive.
In addition, even if adhering to the population/sample interpretation discussed in Sec-
tion 2.3, it is difficult to give behavioral meaning to the empirical validity of F when the
analyst’s data is generated by a finite collection.

To address both of these issues, in this supplement we let the collection of players
be the interval I = [0�1], endowed with the Lebesgue measure. This can be thought of
as an approximation of an arbitrarily large collection or of drawing an arbitrarily large
(and therefore completely representative) random sample in the population/sample in-
terpretation, or as simply satisfying a theoretical curiosity. For simplicity, we consider
the domain to be PD, and primitive (Di�Ci)i∈I .7 In order for analysis to be tractable,
we assume that the following are Lebesgue measurable: for all (x� y) ∈ PD, the sets
{i ∈ I|(x� y) ∈Di} and {i ∈ I|(x� y) ∈ Ci}, and for any arbitrary individual behavior (D�C),
the set {i ∈ I|(Di�Ci) = (D�C)}.

Axioms 2–5 immediately apply to the larger set of behavioral data, but they are more
restrictive in the following sense.

Definition S.1. Let M be the set of behavioral models, [F� (αi)i∈I], for which (i) F is
continuous on [0�1), (ii) if α < α′, then F(α′) ≤ F(α)α

′(1−α)
α(1−α′) , (iii) if, for i ∈ I, αi ∈ (0�1),

then F(αi) ∈ (0�1), and (iv) if, for {i� j} ⊂ I, αi < αj , then F(αi) < F(αj).

Proposition S.2. The primitive (Di�Ci)i∈I satisfies Axioms 2-5 if and only if it can be
explained by a behavioral model [F� (αi)i∈I] ∈ M. Furthermore, for all i ∈ I, αi is unique,
and if αi > 0, then F(αi) is unique.

First, the convenient assumption that F is differentiable has no behavioral content
in the case of finite I, but is no longer without loss of generality when I is a continuum.
Consequently, the class of behavioral models M does not require differentiability. Fur-
ther, (ii) is the meaningful content of Condition S without differentiability.8 We show
that it is both necessary and sufficient for uniqueness of the equilibrium cutoff in all

6There are common experimental techniques to circumvent the requirement of collecting infinite data
on individual choice. In particular, infinite data can be approximated by finite data, indifference points can
be elicited directly, or the individual can be asked to specify a decision rule. In contrast, the concern about
the number of players in the sample is novel.

7Extending results to PD0 is trivial via Axiom 1.
8If F is differentiable, then Conditions S ⇐⇒ (ii).
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games. Second, while full support is not implied by the axioms when I is finite, it does
encompass (iii) and (iv) (which are now joint restrictions on F and (αi)i∈I ). Finally, no-
tice that atoms at α = 0�1 are permitted.

Definition S.2. Given any (αi)i∈I , let F̂ be the CDF of types in I.

If the analyst views I as a perfectly representative sample of a grand population,
then it is easy to evaluate whether or not F(αi) is empirically valid for any αi > 0: simply
compare the uniquely recovered value F(αi) to F̂(αi), which is identical to the popula-
tion CDF by hypotheses. Any disagreement between the two represents miscalibration
of the players.

There are two concerns with this evaluation method. First, it is ad hoc in that the
analyst compares objects derived from the representation, instead of testing properties
of the primitive directly. Second, the analyst cannot be sure that players are correctly
calibrated regarding F(α) for α /∈ (αi)i∈I . We now establish the behavioral content of the
empirical validity of F (i.e., F = F̂), thereby eliminating both concerns.

Our first additional axiom rules out atoms of players with identical, nonextreme be-
havioral data. That is, there may be positive masses of players who strictly prefer to
defect in all games, or strictly prefer to cooperate in all games. But, of all the players who
exhibit both weak preference for defection and weak preference for cooperation some-
where within PD, it would seem nongeneric for a mass of them to cluster on any given
(D�C) pair. Formally, for arbitrary (D�C), let L(D�C) be the Lebesgue measure of the
set {i ∈ I|(Di�Ci) = (D�C)}.

Axiom 6 (Smooth Data). For all (D�C) such that D 	= PD and C 	= PD, L(D�C) = 0.

Next, in our behavioral model, player i compares the perceived benefit of coopera-
tion, αi, with the perceived cost of cooperation, (1−αi)(x(1−P(x� y))+yP(x� y)), where
P(x� y) is the perceived probability that a random opponent in I will defect contingent
on not being influenced by i. If (x� y) ∈ Mi, then i is indifferent between c and d, so
x(1 − P(x� y)) + yP(x� y) = αi

1−αi
. That is, x(1 − P(x� y)) + yP(x� y) is constant on Mi. If

player i is correctly calibrated, then the perceived probability P(x� y) should coincide
with the empirical frequency of defection in the population.

Definition S.3. Given (Di�Ci)i∈I , for each (x� y) ∈ PD, define P̂(x� y) as the Lebesgue
measure of the set {i ∈ I|(x� y) ∈ Di}, and let Q(x�y) := x(1 − P̂(x� y))+ yP̂(x� y).9

Because i cannot, in fact, directly influence his opponent’s action choice, for each
(x� y) ∈ PD, Q(x�y) represents the true expected (opportunity) cost of cooperating in
(x� y) against a random opponent in I. Our final axiom captures correct calibration by
requiring this true cost of cooperation to be constant on Mi.

9Notice that we are interpreting P̂(x� y) as the empirical analog of P(x� y). Within the context of our ax-
ioms this is valid. However, in general, the empirical frequency of defection in game (x� y) may depend on
the implementation of actions by players for which (x� y) ∈ Mi. This can be accommodated in a straight-
forward manner (see footnote 15).
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Axiom 7 (Willingness to Pay for Own Cooperation). For all i ∈ I, if {(x� y)� (x′� y ′)} ⊂Mi,
then Q(x�y) =Q(x′� y ′).

To motivate the axiom without invoking the representation, imagine that there is a
grand population, and that over time i plays various games in PD against random op-
ponents from the population. In addition, I is a perfectly representative sample from
this population. If player i cooperates in a given game, he does so at a cost to his own
game payoff due to some nonstandard feature affecting his choice behavior, commonly
referred to as a bias (not necessarily magical thinking). The axiom states that there is a
single level for this true cost such that i is equally drawn to playing optimally (defect-
ing) or being overcome by his bias to play suboptimally (cooperating). That is, Q(x�y)

for arbitrary (x� y) ∈ Mi, is the maximum cost associated with cooperation that i can
endure.10

Proposition S.3. The primitive (Di�Ci)i∈I satisfies Axioms 2–7 if and only if there exists
(αi)i∈I such that (i) [F̂� (αi)i∈I] explains (Di�Ci)i∈I and (ii) [F̂� (αi)i∈I] ∈ M. Furthermore,
for all i ∈ I, αi is unique.

Given Proposition S.2, this shows that Axioms 6 and 7 are the behavioral content of
empirical validity. In fact, the role of each of the two can be isolated. Axiom 7 is the
content of players being correctly calibrated about the types in the collection: F(αi) =
F̂(αi) for all i ∈ I. It is slightly more subtle to see that Axiom 6 is needed to ensure they
are also correctly calibrated in their beliefs about those types not in the collection (i.e.,
they do not assign them positive probability). This is because the original axioms (2–
5) require continuity of F on [0�1). If Axiom 6 fails, then F̂ will not be continuous on
[0�1)—there still exist behavioral models in M that can explain the data, but none with
F = F̂ .

S.2.1 Proofs

Proof of Proposition S.2. Representation =⇒ Axioms: Consider a collection I that
satisfies the representation. Our first step is to establish the analogs of Propositions 1–
2 in this setting generated by replacing every appearance of “F ∈ F” with “(i) of Defi-
nition S.1,” and “Condition S” with “(ii) of Definition S.1.” The proof of the modified
version of Proposition 1 follows easily. To prove the modified version of Proposition 2,
let F satisfy (i), and first suppose that condition (ii) is also satisfied. For the purpose of
contradiction, suppose there exists (x� y) ∈ PD that has two equilibrium cutoffs α∗

1 <α∗
2,

each of which satisfy (2). Writing out these two linear equations we can attempt to solve

10Recall that PD normalizes the payoff from (c� c) and (d�d). If considering all of PD0 and applying
Axiom 1, this maximum cost would be interpreted on a relative scale: if the stakes are higher all-around,
then this maximum cost is likewise higher. This is consistent with an interpretation that i perceives gaining
something from cooperating that scales with the game’s payoffs. It is inconsistent with a bias such as inat-
tention or cognitive costs, where i chooses cooperation only when the stakes are too small to bother figuring
out the correct choice.
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for x and y. Notice that when F(α∗
1) = F(α∗

2), the two equations are inconsistent, and
there is no solution, contradicting the hypotheses. If F(α∗

1) < F(α∗
2), then solving for x

and y yields unique values:

x= α∗
1
(
1 − α∗

2
)
F

(
α∗

2
) − α∗

2
(
1 − α∗

1
)
F

(
α∗

1
)(

1 − α∗
1
)(

1 − α∗
2
)(
F

(
α∗

2
) − F

(
α∗

1
)) �

y = x+ α∗
2 − α∗

1(
1 − α∗

1
)(

1 − α∗
2
)(
F

(
α∗

2
) − F

(
α∗

1
)) �

(S.1)

The denominator of x is positive. However, the numerator of x is weakly negative by con-
dition (ii) of Definition S.1. Therefore, (x� y) /∈ PD, contradicting the hypothesis. Hence,
condition (ii) is sufficient for uniqueness of the cutoff. Second, to see that it is necessary,
suppose that it is not satisfied, so there exists α< α′ such that F(α′) > F(α)α

′(1−α)
α(1−α′) , which

implies F(α′) > F(α). Then, setting α∗
1 = α and α∗

2 = α′, (x� y) as given by (S.1) is in PD
and simultaneously satisfies (2) for both types. Hence, there exists a game in which the
equilibrium cutoff is not unique.

With this established, the remainder of the proof is analogous to the one used for
Theorem 1.

Axioms =⇒ Representation: The proof follows the same steps as for Theorem 1.
Lemma A.1 remains valid. Lemma A.2 must be modified as follows:

Lemma S.1. Fix any player i. If (Di�Ci) satisfies Axioms 2–4, then there exists a pair
(αi�Fi) ∈ [0�1]2 such that (Di�Ci) can be explained by any behavioral model [F� (αi�α−i)]
such that F is continuous on [0�1) and F(αi) = Fi. Further, αi is unique, and Fi is unique
if and only if Ci 	=∅, as follows:

(αi�Fi)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
inti

1 + inti + slpi

�
1

1 + slpi

)
if Di�Ci 	=∅�

(1�1) if Di =∅�

(0�Ki)�Ki ∈ [0�1] if Ci =∅�

(S.2)

Proof. The proof is completely analogous to the proof of Lemma A.2 except in the fol-
lowing places: Case 1, parts (ii) and (iii); Case 3.

Case 1:

(ii) Suppose that (x� y) ∈ Ci. By Lemma A.1, this implies that y < inti − slpi · x.
Let d(α) := V (c|α = α∗) − V (d|α = α∗) = α[1 + (1 − F(α))x + F(α)y] −
[(1 − F(α))x+ F(α)y]. Using the assignments of (αi�F(αi)= Fi) from (S.2), it fol-
lows that d(αi) > 0. Notice that d(0) = x(F(0)−1)−yF(0) < 0 for any F(0) ∈ [0�1).
F continuous on [0�1) implies that d is continuous [0�αi]. Hence, there exists
α ∈ (0�αi) that achieves d(α) = 0 and is therefore an equilibrium cutoff in the
game (x� y) ∈ Ci (by the analog of Proposition 1).

(iii) Suppose that (x� y) ∈ Di. By Lemma A.1, this implies that y > inti − slpi · x. Using
the assignments of (αi�F(αi) = Fi) from (S.2), it follows that d(αi) < 0. Further,
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limα↑1 d(α) = 1. F continuous on [0�1) implies that d is continuous on [αi�1).
Hence, there exists α ∈ (αi�1) that achieves d(αi) = 0 and is therefore an equilib-
rium cutoff in the game (x� y) ∈Di (by the analog of Proposition 1).

Case 3: In the behavioral model, for any F continuous on [0�1), a player i strictly
prefers d in every (x� y) ∈ PD if and only if his type is αi = 0. Given αi = 0, the value of
F(0) is irrelevant for i’s behavior, so it cannot be determined. �

Lemmas A.3 and A.4, with references to Lemma A.2 now made to Lemma S.1, also
remain valid. Hence, for any collection whose data satisfy Axioms 2–5, using (S.2), each
player i can be assigned a unique αi and corresponding quantile Fi, that is also unique if
αi > 0, and i’s behavior can be explained by any model [F� (αi�α−i)] such that F satisfies
(i) of Definition S.1 and F(αi) = Fi.

We now show that there exists a model in M that simultaneously explains the be-
havior of all i ∈ I. Let A+ := {αi > 0|i ∈ I}. The four lemmas (A.1, S.1, A.3, A.4) imply
that any behavioral model that satisfies F(αi) = Fi for all i ∈ I also satisfies (iii) and (iv)
of Definition S.1 as well as (i) and (ii) restricted to the domain A+, where continuous on
A+ means: for every α0 ∈ A+, every sequence (αm)m∈N, αm ∈ A+ for all m, such that
limm→∞ αm = α0 also satisfies limm→∞ F(αm) = F(α0). All that remains is to establish
existence by extending F from A+ to [0�1) preserving continuity, (weak) monotonic-
ity, and condition (ii) of Definition S.1. From the proof of the opposite direction above,
these properties imply that the behavioral model emits a unique equilibrium cutoff in
all games (x� y) ∈ PD. This ensures that in each game there is an equilibrium consistent
with the behavior of all players; hence, the behavioral model using this assignment of F
and (αi)i∈I can explain (Di�Ci)i∈I .

To extend F from A+ to [0�1), consider arbitrary α0 ∈ [0�1) \ A+. There are three
exhaustive cases. First, if there exists a sequence (αm)m∈N, αm ∈ A+ for all m, such
that limm→∞ αm = α0, simply assign F(α0) = limm→∞ F(αm). Second, let α := inf(A+)
and α := sup(A+). If α0 < α, assign F(α0) = F(α), and if α0 > α, assign F(α0) = F(α)—
notice that even if α�α /∈ A+, F(α), F(α) are assigned in the previous case. Third,
and finally, if A+ does not contain a sequence converging to α0 ∈ [α�α], then α0 :=
sup{α ∈ A+|α < α0} < α0 < α0 := inf{α ∈ A+|α > α0}. Notice that even if α0�α0 /∈ A+,
F(α0), F(α0) are assigned in the first case. Let L0 be the line that passes through both
(α0�F(α0)) and (α0�F(α0)). For all α ∈ (α0�α0), assign F(α) = L0(α). It is immediate that
these assignments preserve continuity and monotonicity in each case and also condi-
tion (ii) in the first and second cases. For the assignments in the third case, it is trivial
to verify that the linearity of F between [α0�α0] preserves condition (ii) on this interval,
and then in general since condition (ii) is transitive. �

Proof of Proposition S.3. Representation =⇒ Axioms: Consider a collection I

that satisfies the representation. The fact that F = F̂ is irrelevant for the proof that
(Di�Ci)i∈I satisfies Axioms 2–5, so this is established by Proposition S.2. Next, F = F̂ ,
which is continuous on [0�1), immediately implies Axiom 6. Finally, verifying Axiom 7
is a straightforward calculation: fix any player i such that Mi 	= ∅ and recall that
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Mi = {(x� y) ∈ PD|y = αi
(1−αi)F(αi)

− x( 1−F(αi)
F(αi)

)}. Therefore, for any (x� y) ∈ Mi, we can

substitute the expression for y into Q(x�y) to get,

Q(x�y) = x
(
1 − P̂(x� y)

) +
(

αi

(1 − αi)F(αi)
− x

(
1 − F(αi)

F(αi)

))
P̂(x� y)� (S.3)

Given that F = F̂ and that αi is the cutoff type for (x� y) ∈ Mi, P̂(x� y) = F(αi); so (S.3)
simplifies to Q(x�y)= α

1−α , which does not vary with (x� y).
Axioms =⇒ Representation: The proof of Proposition S.2, establishes that if

(Di�Ci)i∈I satisfies Axioms 2–5, then it can be explained by any model [F� (αi)i∈I] ∈ M,
where αi and F(αi) = Fi are given by (S.2) (and therefore αi is unique and, if αi > 0, so
is F(αi)). Therefore, let (αi)i∈I be as given by (S.2), and F̂ be the resultant CDF. It is
sufficient to show that 1) for all i such that αi > 0, F̂(αi) = Fi, and 2) [F̂� (αi)i∈I] ∈ M.

To see the first, notice that the structure of (Di�Ci)i∈I characterized by Lemmas A.1,
S.1, A.3, and A.4 implies that for any i such that Mi 	= ∅, P̂(x� y) is constant and equal to
limα↑αi F̂(α) along Mi. By Axiom 6, limα↑αi F̂(α) = F̂(αi). Consider i such that αi ∈ (0�1),
so Mi 	=∅. For (x� y) ∈Mi,

Q(x�y) = x
(
1 − P̂(x� y)

) + yP̂(x� y)

= x
(
1 − F̂(αi)

) + yF̂(αi)

= x
(
1 − F̂(αi)

) + (inti − x · slpi)F̂(αi)�

By Axiom 7, Q is constant along Mi, so F̂(αi) = 1
1+slpi

= Fi. If instead, αi = 1, then be-

cause F̂ is a CDF on [0�1], F̂(αi)= 1 = Fi.
To see the second, we need to show that [F̂� (αi)i∈I] satisfies the four requirements of

Definition S.1. Axiom 6 implies (i), and Lemmas S.1 and A.4 imply (iii) and (iv). For (ii),
notice that if α and α′ are elements of (αi)i∈I , then the property holds due to Lemma A.4
and if α = 0 or α′ = 1, the property is trivial. Consider now an arbitrary pair 0 < α< α′ <
1, and for the purpose of contradiction suppose that F̂(α′)

F̂(α)
> α′(1−α)

α(1−α′) . Since F̂ is the CDF

of (αi)i∈I , and is continuous on [α�α′], for any ε > 0, there must exist {i� j} ⊂ I such that
α ≤ αi < αj ≤ α′, F̂(αi)− F̂(α) < ε, and F̂(α′)− F̂(αj) < ε. Hence, by our supposition that
F̂(α′)
F̂(α)

> α′(1−α)
α(1−α′) , for ε small enough,

F̂(αj)

F̂(αi)
>

α′(1 − α)

α
(
1 − α′) ≥ αj(1 − αi)

αi(1 − αj)
�

As we just discussed, Lemma A.4 implies that
F̂(αj)

F̂(αi)
≤ αj(1−αi)

αi(1−αj)
, producing a contradiction.

�

S.3. Axiomatic analysis beyond the PD

The defining feature of the prisoners’ dilemma is that there are strict gains to a player
for selecting d whether his opponent is playing c or d (i.e., x� y > 0). We first enlarge our
domain by relaxing the latter. That is, we consider games in which there are strict gains
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from unilaterally deviating away from the better symmetric outcome. To do so, let G0 =
{(r�p�x� y)|r > p�x > 0}, with labels as in Figure 1, and let our primitive, (D0

i �C
0
i )i∈I ,

as well as (M0
i �D

0
i �C

0
i )i∈I , be extended to this larger class of games in the obvious way.

Finally, define G = {(r�p�x� y)|r = 1�p = 0�x > 0} ⊂ G0, with arbitrary element (x� y),
and, as before, Di = D0

i ∩G and analogously for Ci�Mi�Di, and Ci. Notice that G is the
union of the games in quadrants I and IV of Figure 4.

Each of the Axioms 1–5 can be applied verbatim on this larger class of games (simply
replace each PD0 and PD with G0 and G, respectively). In addition, with the caveat of
changing all instances of “cooperate” and “defect” to “play c” and “play d,” respectively,
the interpretations of each of the axioms are also unchanged.

We introduce an additional axiom. Fixing all other payoff parameters, the societal
benefit from (either or both) players selecting c, the action corresponding to the better
symmetric outcome, is increasing in r. The following axiom requires that increases in r

should increase the propensity to select c.

Axiom 8 (Sensitivity to Benefits from Action c). For all i ∈ I, if (r�p�x� y) ∈C
0
i and r′ > r,

then (r′�p�x� y) ∈ C0
i .

It is not difficult to show that the representation in Theorem 1 satisfies Axiom 8 on
PD0, meaning Axiom 8 is implied by Axioms 1–5 on this domain. On G0, this is no longer
the case.

Fact S.1. Axioms 1–5 =⇒ Axiom 8 on PD0. Axioms 1-5 =⇒ Axiom 8 on G0.

Notice that the axiom is consistent with the experimental evidence discussed in Sec-
tion 5.1.11 Further, in line with the axiom, Rapoport and Chammah (1965) and Minas
et al. (1960) compare behavior across different Prisoners’ Dilemma games and provide
evidence that the fraction of players selecting c indeed increases with r.12

By adding Axiom 8, the representation result of Theorem 1 extends to G0.

Theorem S.1. The primitive (D0
i �C

0
i )i∈I , on G0, satisfies Axioms 1–5 and 8 if and only if

it can be explained by a behavioral model [F� (αi)i∈I], where F ∈ F satisfies Condition S.
Furthermore, for all i ∈ I, αi and F(αi) are unique.

The extended representation also satisfies the more stringent definition of can ex-
plain attained if the requirements of Definition 4 must instead hold in all equilibria (see
Section 2.3).

11It is easy to derive that for any hawk–dove game (r�0�x� y), x 	= −y , the game (0�0�x� y) is a battle
of the sexes game with the same symmetric Nash equilibrium. Hence, insofar as subjects adhere to the
symmetric Nash equilibrium in battle of the sexes games, but play c more frequently than in the symmetric
Nash equilibrium in hawk–dove games (see Section 5.1), their play is consistent with Axiom 8.

12Up to adding constants (as permitted once we assume Axiom 1), see games labeled G4 and G5 in Minas
et al. (1960) and games numbered 1 and 4 in Rapoport and Chammah (1965). This evidence is also summa-
rized in Table 1 of Steele and Tedeschi (1967).
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Next, one can extend the domain to include games in which x ≤ 0 and y ≤ 0 (i.e.,
quadrant III of Figure 4 when r and p are normalized). In these games c is both the
action leading to the better symmetric outcome and a dominant strategy (even without
magical thinking), with the dominance being strict on the interior of the quadrant. It
seems natural that all players should choose c then, as they do in the our behavioral
model (Section 5.1.1). In addition, for each player i such that Mi ∩G 	= ∅, this behavior
is a consequence of Axioms 1–5 and 8 when the primitive is likewise extended. Under
the (seemingly mild) additional requirement that in the extended domain Ci 	= ∅ for all
i ∈ I, the representation result extends with only minor alteration.13

How can our axioms be extended to the games with x ≤ 0 and y > 0 (i.e., quadrant
II of Figure 4 when r and p are normalized)? We suggest three possible ways. First, and
most immediately, one can add an axiom that specifies c as the preferred action for all
players whenever x ≤ 0 and restrict our other axioms to games with x > 0. Second, one
can extend our theory as discussed in the context of quadrant-III games, but additionally
weaken Axiom 5 to allow the extended Mi-lines to intersect when x ≤ 0. It can then be
shown that the resulting representation in terms of our behavioral model would entail
that, in each game, each player selects his action in accordance with an equilibrium,
implying his choice is rationalizable (but not all players will play in accordance with the
same equilibrium when there are multiple).

Third, one could try to really capture if/when there is multiplicity. For instance, sup-
pose players would be willing to participate in different profiles of play (as would be the
case if they actually conceived of multiple equilibria). How could this manifest itself in
behavior? Since our primitive requires each player to rank d and c for every possible
game, one would need to consider a richer primitive. One possibility mirrors the menu-
choice approach in theories of individual choice. The analyst could instruct players that
they will face an anonymous opponent in a game in period 2. In period 1, the analyst
could ask players to specify for each game whether they are willing to commit to d, to
c, or whether they have a preference for flexibility in the sense that they do not want to
precommit to an action choice for period 2. Such preference for flexibility could be inter-
preted as the anticipation of coordination on an equilibrium based on some state of the
world that is unobserved (or indecipherable) by the analyst and that realizes between
periods 1 and 2. One could try to formulate axioms that restrict period-1 preferences
over menus of actions across games and players to ensure that multiplicity is consistent
with our model. In particular, the axioms should correspond to Axioms 1–5 and 8 on
quadrants I and IV.

S.3.1 Proofs

The representation proof uses the following preliminary lemma.

Axiom 8′ . For all i ∈ I, if (x� y) ∈ Ci and κ ∈ (0�1), then κ(x� y) ∈ Ci.

13If extending the axioms verbatim, the representation will require that αi 	= 0 for all i ∈ I. Since this
event already has probability one according to any F ∈ F , no other change to the corresponding behavioral
model is required. Alternatively, one could slightly relax the extensions of Axioms 3 and 8 and maintain the
original class of behavioral models.



Supplementary Material Magical thinking 13

Lemma S.2. Under Axiom 1, Axioms 8 and 8′ are equivalent.

Proof. Suppose that Axioms 1 and 8 hold and that κ ∈ (0�1). Then

(x� y) ∈Ci =⇒ (1�0�x� y) ∈ C
0
i =⇒

Axiom 8

(
1
κ
�0�x� y

)
∈ C0

i

=⇒
Axiom 1

κ

(
1
κ
�0�x� y

)
∈ C0

i =⇒ (1�0�κx�κy) ∈ C0
i

=⇒ (κx�κy) ∈ Ci =⇒ κ(x� y) ∈ Ci�

Hence, Axiom 8′ is implied. Now, suppose that Axioms 1 and 8′ hold and that r ′ > r.
Then

(r�p�x� y) ∈ C
0
i =⇒

Axiom 1

(
1�0�

x

r −p
�

y

r −p

)
∈ C

0
i =⇒

(
x

r −p
�

y

r −p

)
∈ Ci

=⇒ 1
r −p

(x� y) ∈ Ci =⇒
Axiom 8′

1
r′ −p

(x� y) ∈ Ci

=⇒
(

x

r′ −p
�

y

r′ −p

)
∈ Ci =⇒

(
1�0�

x

r′ −p
�

y

r′ −p

)
∈ C0

i

=⇒
Axiom 1

(
r′�p�x� y

) ∈ C0
i �

Hence, Axiom 8 is implied. �

Proof of Fact S.1. Relying on Lemma S.2, we consider whether or not Axioms 2–5
imply Axiom 8′ on PD and G for the first and second claims, respectively. For the first
claim, fix player i, for whom (Di ∩ PD�Ci ∩ PD) satisfies Axioms 2–4, with Ci ∩ PD 	= ∅.
Then, from the proof of Theorem 1, we have that either Ci ∩ PD = PD or Mi ∩ PD =
{(x� y) ∈ PD|y = inti − slpi · x} and Ci ∩ PD = {(x� y) ∈ PD|y < inti − slpi · x}, where inti,
slpi are positive constants. In either case, Axiom 8′ follows immediately. For the sec-
ond claim, consider a player i with Mi = {(x� y) ∈ G|y = −1 − x}, and Ci and Di be-
ing the strict-lower and strict-upper contour sets of Mi, respectively. It is immediate
that (Di�Ci) satisfies Axioms 2–4. However, (Di�Ci) fails Axiom 8′: for any (x� y) ∈ Mi,
1
2(x� y) ∈Di. The fact that (Dj�Cj)j∈I satisfies Axiom 5 does not rule out the existence of
such a player, meaning the result is established. �

Proof of Theorem S.1. First, note that Lemma 1 and Propositions 1 and 2 (and their
proofs) remain valid when each PD0 and PD are replaced by G0 and G, respectively.

Representation =⇒ Axioms: Given that Lemma 1 and Propositions 1 and 2 extend to
the larger domain, the proof that the representation satisfies Axioms 1–5 is completely
analogous to that provided for Theorem 1. Using Lemma S.2, we are left to verify that
Axiom 8′ is satisfied. First, if αi = 0, then Di = G so the axiom is vacuous; and if αi = 1,
then Ci = G so the axiom is trivial. Second, if αi ∈ (0�1) and (x� y) ∈ Ci, then y ≤ inti −
x · slpi, where inti, slpi > 0. It follows that, for any κ ∈ (0�1), κy ≤ κ(inti − x · slpi) <

inti − (κx)slpi. Hence, κ(x� y) ∈MLi = Ci, verifying the axiom.
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Axioms =⇒ Representation: The only aspect of the proof that is not completely
analogous to that given for Theorem 1 is in extending the following aspect of Lemma A.1.
Consider a player i for which Di 	= ∅ and Ci 	= ∅. Such a player can be characterized by
a pair (inti� slpi), where slpi > 0. When the domain was PD, inti > 0 immediately. This is
no longer immediate when the domain is G. However, it is ensured by Axiom 8. Suppose
to the contrary that inti ≤ 0. Take now (x� y) ∈ Mi ⊂ Ci, which must then satisfy y =
inti−x ·slpi < 0. But then, for any κ ∈ (0�1), κy = κ(inti−x ·slpi) ≥ inti−(kx)slpi. Hence,
κ(x� y) /∈ MLi = Ci, violating Axiom 8′ (and therefore also Axiom 8 by Lemma S.2). With
this established, the remainder of the proofs follows identical steps to those in the proof
of Theorem 1. �
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