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Genetic influences on the human oral
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Abstract

Background: The human oral microbiome is formed early in development. Its composition is influenced by
environmental factors including diet, substance use, oral health, and overall health and disease. The influence of
human genes on the composition and stability of the oral microbiome is still poorly understood. We studied both
environmental and genetic characteristics on the oral microbiome in a large twin sample as well as in a large
cohort of unrelated individuals. We identify several significantly heritable features of the oral microbiome. The
heritability persists in twins even when their cohabitation changes. The heritability of these traits correlates with the
cumulative genetic contributions of over half a million single nucleotide sequence variants measured in a different
population of unrelated individuals. Comparison of same-sex and opposite sex cotwins showed no significant
differences. We show that two new loci on chromosomes 7 and 12 are associated with the most heritable traits.

Results: An analysis of 752 twin pairs from the Colorado Twin Registry, shows that the beta-diversity of monozygotic
twins is significantly lower than for dizygotic or unrelated individuals. This is independent of cohabitation status.
Intraclass correlation coefficients of nearly all taxa examined were higher for MZ than DZ twin pairs. A comparison of
individuals sampled over 2-7 years confirmed previous reports that the oral microbiome remains relatively more stable
in individuals over that time than to unrelated people. Twin modeling shows that a number of microbiome
phenotypes were more than 50% heritable consistent with the hypothesis that human genes influence microbial
populations. To identify loci that could influence microbiome phenotypes, we carried out an unbiased GWAS analysis
which identified one locus on chromosome 7 near the gene IMMPL2 that reached genome-wide significance after
correcting for multiple testing. Another locus on chromosome 12 near the non-coding RNA gene INHBA-AS1 achieved
genome-wide significance when analyzed using KGG4 that sums SNP significance across coding genes.

Discussion: Using multiple methods, we have demonstrated that some aspects of the human oral microbiome are
heritable and that with a relatively small sample we were able to identify two previously unidentified loci that may
be involved.

Background
Humans support the growth and maintenance of diverse
sets of microbes in niches in contact with the environ-
ment including skin, lungs, mouth and gut [1]. Studies
of these microbes in the gut and oral cavity have uncov-
ered key interactions between bacteria and human hosts
in a wide variety of normal and pathological states [2–6].
Many of these interactions are inferred from correlations

between the composition of the microbial populations
and changes in health status. For example, in gingivitis,
an increase in Gram negative and anaerobic bacteria
causes inflammation in the mouth [2–6]. Our under-
standing of the basis for changes in microbial compos-
ition, and of how these changes influence human
phenotypes, is still a work in progress. Clearly environ-
mental factors and host genetic factors have important
influences [3, 4, 6, 7], perhaps best demonstrated to date
by studies in the gut [8].
Candidate gene studies have been most effective at iden-

tifying human genetic influences on the microbiome. By
this approach, informed hypotheses about human genes
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that may conceivably influence a particular microbiological
phenotype (i.e. susceptibility to infection) are tested with
family or population-based studies to identify human vari-
ants that are statistically consistent with the hypothesis. Ex-
amples include MHC genes [9], SLC11A1 [10], the MEFV
gene [11], FUT2 gene [12], and loci linked to susceptibility
to infectious disease [13]. While often successful, the can-
didate gene approach is limited by the ability to formulate
hypotheses given current knowledge. They are neither
comprehensive nor sufficient to identify the entire range of
human genes involved in population changes associated
with complex phenotypes (i.e. obesity, gum disease) or with
maintenance of the composition of the “normal” micro-
biome. In addition the significant inter-individual variation
in microbiome composition often masks specific effects of
human genes if insufficient numbers of individuals are
studied. Moreover, the microbiome of a niche includes
complex mixtures of organisms and is in part defined by
interactions among its members making the identification
of a “microbial phenotype” complicated.
The oral microbiome is one of the most diverse micro-

bial niches in the human body, including over 600 differ-
ent microorganisms (Dewhirst et al., 2010). It is in
continual contact with the environment, and has been
shown to be susceptible to many environmental effects.
These environmental factors include tobacco use [14–22],
romantic partners [23], and cohabitation [6, 24]. The
microbes reside in sub-niches along the oral cavity in-
cluding on the tongue, cheek, and teeth [1, 25–28].
The salivary microbiome has been shown to be repre-
sentative of many the oral microbiome niches, which
is thought to be due to the fact that microorganisms
from the oral cavity surfaces shed into the saliva [28, 29].
Previous salivary microbiome studies have identified spe-
cific microbiota that are present in almost all individuals,
referred to as the core microbiome [6, 28, 30]. Saliva is
also accessible, making it ideal for surveys of populations
for microbiome studies.
In this paper, we describe an unbiased approach to

studying the effects of human genes on the oral micro-
biome with a two-step strategy. The first step utilizes
twin information to establish heritable phenotypes re-
lated to the microbiome; and the second identifies DNA
sequence variation associated with the identified highly
heritable traits. From 16S rRNA sequence information, a
large number of potential phenotypes can be explored
with the twin studies to allow identification of the most
heritable and therefore the phenotypes most likely to be
mapped in the association study. A key strength of this
approach lies in the independence of the data underlying
the two steps (i.e. MZ/DZ status in the twin study and
SNP association data in the second) reducing multiple
testing and type 1 effects on the power to carry out the
test for association. The ability to refine a phenotype

prior to carrying out an association study can lead to
greater likelihood of detecting specific SNPs that influ-
ence it [3, 4, 31]. We show, with the largest oral micro-
biome twin study to date, that multiple phenotypes of
the salivary microbiome are heritable. Using these phe-
notypes, we identify promising host gene candidates in a
genome wide association study of an separate sample
that may play a role in establishing the oral microbiome.

Methods
Sample selection and DNA extraction
Twin samples were obtained from the Colorado Twin
Registry (Rhea et al. 2006, Rhea et al. 2013). The twin
sample included 366 monozygotic pairs (MZ), 263 same
sex, and 123 opposite sex dizygotic pairs (DZ). Unrelated
individuals were ascertained from community and clin-
ical samples participating in the Colorado Center for
Antisocial Drug Dependence and isolation of DNA from
saliva and characterization of their genotypes was as pre-
viously described [32].

16S ribosomal specific PCR and MiSeq sequence
determination
Pooled DNA from triplicate PCR with the 16S V4 hyper-
variable primers 515F/806R was done according to the
Earth Microbiome Project 16S rRNA amplicon Protocol,
with unique barcode indices for multiplex sequencing
on the forward primer [33–35]. Concentration of pooled
products was determined by picogreen. 240 ng from
each sample was pooled for multiplex paired-end
(2X150) sequence determination on the Illumina MiSeq
platform.

Sequencing analysis
The fastx-toolkit (http://hannonlab.cshl.edu/fastx_toolkit/
commandline.html) and ea.-utils fastq-mcf package were
used to trim and quality filter the forward and reverse
reads (https://wiki.rc.ufl.edu/doc/EA-Utils) [36]. The com-
mand join_paired_ends.py in QIIME was then used to
merge reads using the fastq-join method. Reads with qual-
ity score < 25 and that were not between 251 and 254 bps
after merging with their paired end were removed. The re-
mainder of the read processing was completed using
QIIME v1.9 (Caporaso et al., 2010b). Merged reads were
demultiplexed, filtered to remove reads with uncalled
bases and barcode mismatches. De novo and reference
based chimeras were removed using the USEARCH61 al-
gorithm [37] implemented within QIIME against the gold
database (microbiomeutil-r20110519T). Filtered reads
were then classified in QIIME against the August 2013
Greengenes 97% reference database. Using closed refer-
ence alignment at 97% rather than recently described
methods based on high-resolution sequencing methods
such as DeBlur [38], DADA2 [39] roth, or MED [40] was
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used to permit limited but important phylogenetic group-
ing of likely functionally similar OTUs. Using the higher
resolution methods would increase OTU numbers at the
cost reducing the numbers of individuals harboring each
OTU and thereby reducing power to establish heritability.

OTU quality filtering
Samples from 1504 twins of whom 111 within-twin longi-
tudinal samples with at least 3500 reads and DNA samples
from 1481 unrelated individuals with at least 3000 reads
produced 2664 and 2679 OTUs respectively. All samples
were rarefied to 2500 sequences to retain as many samples
as possible to improve power with little effect to results
[41, 42].. To avoid analyses of OTUs that were the result of
sequencing or PCR error, OTUs that were not present in
at least 2 subjects and observed at least 10 times were re-
moved, resulting in 895 OTUs in the twins and 931 OTUs
in the unrelated individuals. One of the unrelated individ-
uals was later removed during analysis due to cryptic re-
latedness leaving 1480 people in the unrelated sample.

Beta-diversity analysis
β-diversity was analyzed via Bray Curtis and UniFrac
(Unweighted and Weighted) using QIIME (Caporaso et al.,
2010b) and R [43]. Analyses included 366 MZ pairs, 386
DZ pairs, and 37,832 unrelated pairs obtained by using age
and DNA collection year matched non-cotwin pairs from
the twin sets. β-diversity measures between groups were
compared via the Wilcoxon-Mann-Whitney test (two
tailed wilcox.test in R). P values were calculated similarly
to as previously described [8]. In short, the pair labels
(either MZ, DZ, or unrelated) were permuted 10,000 times
and the W test statistic collected from each permutation.
The P value was then calculated by dividing the number of
W test statistics greater than the observed W test statistic
plus 1 by the number of permutations plus 1. Biplot ana-
lyses were used as implemented in QIIME (Caporaso et al.,
2010b). In experiments where cohabitation was required,
only cotwins 18 and under and those over 18 who identi-
fied themselves as cohabitating were included, which re-
moved 328 subjects from the total twin sample who
were living separate from their cotwin. This population
of 588 twins pairs is referred to as the “cohabitation
sample.” Cohen’s D effect size for β-diversity measure-
ments was calculated using the R package ‘effectsize’
(command ‘cohen.d’) [44].

Categorization of microbial traits
Microbial traits included taxonomic groups, OTUs, α
-diversity measurements, and principal coordinates from
β-diversity measurements (Additional file 1: Tables S11–14),
collapsing all perfectly correlated traits. Microbial traits
were then processed within each population separately:
twin pairs, European unrelated (EUR), and Admixture

American unrelated (ADM). Traits were transformed to
z-scores and then categorized as either continuous (at
least 85% subjects must have a value >0 and Shapiro Wilk
P value greater then 1E-28) or categorical (all other traits).
Shapiro Wilk test was performed use the R packaged
‘stats’ (command ‘shapiro.test’) [44]. Categorical traits
were then binned based upon z-score transformation on
all non-zero values (zeros not transformed): zero counts,
less than or equal to −1, greater than −1 and equal or less
than 0, greater than 0 and less than or equal to 1, greater
than 1). Some traits failed to categorize due to lack of vari-
ation, resulting in the final trait counts: twins (41 continu-
ous and 955 categorical), EUR unrelated (55 continuous,
945 categorical), ADM unrelated (98 continuous, 807 cat-
egorical). Only the continuous traits were used in the EUR
and ADM populations so data is provided only for those
traits. Descriptions of all traits can be found in Additional
file 1: Tables S11–14.

Intraclass correlation coefficient
The MZ and DZ ICC values were calculated using the R
package ‘irr’ (icc command) [44] and were compared using
the Wilcoxon Signed Rank Sum test function in the R
package ‘stats’ (wilcox.test) [43]. The ICC values were cal-
culated for all taxonomic groups that were categorized to
be treated as continuous traits (24 taxonomic groups,
Additional file 1: Tables S4 and S11). P value was calculated
as similarly to as previously described in which the zygosity
labels of the twin pairs were randomized 10,000 times and
the ICC values then calculated [8]. This analysis compared
the overall distribution of the ICC values for the MZ twin
pairs compared to the DZ twin pairs. Because the entire
distribution was compared and not each taxa individually
multiple testing correction was not needed. In addition the
ICC values for the remaining 17 continuous traits were de-
termined (Additional file 1: Tables S4 and S11).

ACE twin modeling
The ACE/ADE univariate twin modeling used the
OpenMx package as implemented in R [43, 45, 46] (see
Additional file 2: Supplemental Methods). The following
covariates were included in the model: age, sex, sequen-
cing run (1–5), and year DNA was collected. The appro-
priate twin model was selected by analyzing the ratio of
2rDZ to rMZ (if 2rDZ > rMZ use ACE, if 2rDZ < rMZ
use ADE). The standardized A was reported as the herit-
ability estimate calculated from the appropriate twin
model for each trait (Additional file 1: Tables S5 and S6).

Host genome genotyping and imputation
Genotypes were obtained as previously described [32].
Ancestry was determined by weighting 43,413 SNPs
(MAF > 5%, no AT or GC, low LD) against 1000
Genomes principal components using PCo plots [47]. 469
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subjects were identified as Admixture (ADM) and 830
were identified as European (EUR). SNPs were filtered by
removing: AT or GC SNPs (107,670), allele switches in-
ferred by the imputation server (1733 SNPs), MAF < 1%
(ADM = 25,586, EUR = 76,142), and HWE failure thresh-
old of 0.0001 (ADM = 469, EUR = 25). No filtering based
upon missing subject or genotype was needed, because
there were no SNPs or subjects with a missing rate greater
than 10%. The remaining SNPs (561,204 ADM, 510,818
EUR) were then submitted to the Michigan imputation
server using the phase3 reference panel with SHAPEIT for
each of the two ancestry groups. The imputation analysis
produced 47,072,408 variants for both samples. SNPs with
MAF < 1% (based upon dosages), RSQ value <0.8, and
multiallelic SNPs were discarded. One ADM and 2 EUR
subjects with excessive or limited heterozygosity were re-
moved (heterozygosity ~4 standard deviations from the
mean). The imputed SNPs were then pruned for LD with
the INDEP function (window size = 50, number of SNPs
shift per step = 5, variance inflation factor = 2.0). This LD
pruning resulted in deletion of 634,065 SNPs in the ADM
population, and 437,921 SNPs in the EUR. These pruned
imputed SNPs were then used to calculate the first 10
principal components and the estimated identity by des-
cent (IBD) was used to delete one from each pair of sub-
jects with an IBD > 0.185 (estimated with PLINK v1.9,
[48] (number removed ADM = 12 and EUR = 0). In
addition subjects that were identified as outliers in the first
10 PCAs were removed (number removed: ADM = 111,
EUR = 0). Lastly, analyses were limited to subjects that
had no “missingness” for all of the covariates removed in
the model (number removed: ADM = 1, EUR = 5). There
were then 8,172,048 SNPs to be analyzed in the ADM
sample (n = 344) and 6,862,363 SNPs in the EUR sample
(n = 823).

Genome complex trait analysis
Genome Complex Trait Analysis (GCTA) was performed
on all traits categorized as continuous in both the twin and
unrelated populations using the GCTA software [49]. The
GCTA analysis was performed on the cleaned imputed ge-
notypes described above in the European sample (all IBS
estimates <0.025, n = 818). The following covariates were
included in the model: age; sex; sequencing run (1–5); year
DNA was collected; saliva collection method for 16S se-
quencing; DNA collection method for host genotyping;
and the first 10 PCs to control for population stratification.
GCTA estimates for the Admixture American sample were
not reported due to the small sample size after the thresh-
old of IBS estimates less than 0.025 were applied.

Genome wide association study
Genome wide association study analyses were performed
using the software EPACTS [50]. The Q.EMMAX function

was used, analyzing the dosage information for each vari-
ant. The GWAS analyses were performed in the ADM and
EUR ancestry groups separately. For both analyses a kin-
ship matrix and first 10 principal components were in-
cluded to control for population stratification within each
ancestry sample (described above). In addition to control-
ling for population stratification the following covariates
were included in the model: age; sex; sequencing run (1–
5); year DNA was collected; saliva collection method for
16S sequencing; DNA collection method for host genotyp-
ing; and tobacco use (for specific analyses). The kinship
matrix was created based upon all 22 autosomes using the
kinship function in EPACTS. To rule out the possibility
that stratification or computational method influenced re-
sults, three additional methods utilizing different programs
and methods for controlling for population stratification
were carried out. These were: EPACTS with only the kin-
ship matrix made from all SNPs (EPACTS kinship); PLINK
with the first 10 PCs (PLINK 10 PCs); and GCTA with the
leave-one-out kinship matrix (GCTA kinship loco). For all
methods the following covariates were included in the
model: age; sex; sequencing run (1–5); year DNA was col-
lected; saliva collection method for 16S sequencing; and
DNA collection method for host genotyping.

Genome wide association study meta-analysis across
ancestry
ADM and EUR GWAS analyses were combined in a
meta-study using the METAL package. METAL analyses
were performed on overlapping SNPs with the “sample-
size” scheme in which the P value and direction of effect
for each variant is weighted by sample size correcting
the test statistics for population stratification with the
“genomiccontrol” option. The results of the METAL
analysis were then re-run through the program to confirm
that population stratification was properly controlled for
as suggested by the METAL guidelines. QQ-plots were
created in R using the package “qq-man” [43, 51].

Data access
The 16S rRNA gene sequencing data from this study
has been submitted to the EMBL-EBI under study
numbers ERP023086, ERP023087, ERP023088, ERP023089,
ERP023090, and ERP023091. The host genome sequencing
data used in this study was made publically available by
Derringer et al. 2015.

Results
Twin analysis of the host genetic contribution to
microbiome composition
We performed an analysis of 752 twin pairs from the
Colorado Twin Registry [52, 53] to estimate host genetic
and environmental contributions to salivary microbiome
composition. The sample included 366 monozygotic
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pairs (MZ), 263 same sex, and 123 opposite sex dizygotic
pairs (DZ) that ranged from 11 to 24 years of age. Taxo-
nomic analyses using sequencing of variable region IV of
the 16S rRNA amplicon prepared from the saliva of each
twin was carried out using QIIME [54] on high-quality
Illumina MiSeq paired end reads as previously reported
[8, 54]. We determined phyla abundances to be Firmi-
cutes (56%), Proteobacteria (13%), Bacteriodites (13%),
Actinobacteria (12%), and Fusobacteria (6%) from the
2664 operational taxonomic units (OTUs) found, which is
consistent with the “core” salivary microbiome we and
others have previously reported [1, 6, 25–28, 55]. All of
our analyses included only OTUs that were present in at
least 2 subjects and observed at least 10 times in total after
rarefying at 2500 reads. This filtering yielded 895 OTUs
that were considered for all subsequent experiments.
Measurements comparing mean β-diversity among

MZ, DZ and unrelated individuals allows for assessment
of microbial population differences between groups.
With either Bray-Curtis [56] or Weighted UniFrac
[57, 58] measures of β-diversity among MZ twin pairs

were significantly more similar to each other than DZ
twin pairs, and for all 3 β-diversity measurements
(Bray-Curtis, Unweighted and Weighted Unifrac) MZ
and DZ twin pairs were significantly more similar to each
other than to unrelated individuals (see Fig. 1a). This
analysis was also carried out with abundant OTUs (i.e.
present in at least 50% of the subjects) and all OTUs (i.e.
no filtering or rarefaction) with very similar results
(Additional file 2: Figures S1 and S2). Rarefaction at 2500
reads produced consistent results across all rarefactions
(Additional file 2: Figure S5), so for subsequent analyses,
one rarefaction to 2500 reads is shown. We could detect
no significant effect on any β-diversity measure due to
sex when comparing same sex vs opposite sex dizygotic
twin pairs perhaps because the sample size did provide
enough power to differentiate sex effects from inter-
individual variation (see Additional file 2: Figure S6). In
subsequent DZ analyses therefore, opposite sex pairs
were included.
The Colorado Twin Registry [52, 53] includes highly

detailed phenotypic information that is invaluable in
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identifying and controlling for environmental con-
founders that may play an important role. Living to-
gether is a covariate influencing microbial populations in
humans [6, 24]. It is well-known that MZs tend to coha-
bitate longer than DZs [59, 60] and indeed our previous
work has shown that shared environment influences the
oral microbiome [6]. Therefore, it was possible that the
tendency of MZ cotwins to live together longer could be
driving the observed heritability. To examine this poten-
tial confounder, we reanalyzed the data in Fig. 1a based
on questionnaire data from the sample in which we re-
stricted the analysis to only cohabitating pairs (i.e.
18 years age or younger and removal of cotwins report-
ing living apart). While ideally we would have also ana-
lyzed only twin pairs living apart, our sample size did
not permit it. As seen in Fig. 1b, MZs remained signifi-
cantly more similar to each other than DZ twin pairs for
the Bray-Curtis and Weighted UniFrac measurement,
and was also observed in the abundant and unfiltered/
unrarefied OTU tables described above (Additional file 2:
Figures S3 and S4). We conclude that cohabitation does
not play a significant role in the observed microbiome
heritability.
To quantify the differences between groups the

Cohen’s D effect size was calculated for all β-diversity
measurements (Additional file 1: Tables S1 and S2) for
both the full sample and the sample limited to twin pairs
who were cohabitating (Cohen 1992). Comparisons be-
tween the unrelated and twin pairs yielded medium to
large effect sizes. All other comparisons were either
small or negligible, the largest of which being between
MZ and DZ pairs for Bray Curtis. To quantify the effect
cohabitation had on β-diversity measurements the effect
size between all twin pairs (either MZ or DZ) and just
pairs living together (either MZ or DZ) were compared
for all measurements yielding only negligible effect sizes
(Additional file 1: Table 3) consistent with a conclusion
that cohabitation was not driving observed heritability.
The stability of the oral microbiome over time in

adults is reported to be remarkably high relative to that
of other body sites [1, 30, 55, 61]. To confirm and ex-
tend this observation, we assessed the stability of the
oral microbiome in longitudinal samples from our co-
hort for 111 individuals, 2–7 years apart (mean = 5 yrs).
The mean β-diversity measurements between longitu-
dinal samples were compared to the mean of unrelated
individuals of different ages. For all three β-diversity
measurements examined (Bray Curtis, Unweighted and
Weighted UniFrac) subjects were significantly more
similar to themselves than were unrelated individuals
(Additional file 2: Figure S7).
Intraclass correlation coefficients (ICCs) are useful for

estimating heritability of individual observations within a
group of related observations (i.e. the abundance of

specific salivary taxa between MZ pairs); the higher the
ICC values for MZ pairs compared to DZ pairs, the
greater the heritability [62]. As shown in Fig. 2, ICC
values for essentially all abundant taxa are significantly
greater in MZ than DZ pairs. No significant difference
was observed between the same sex and opposite sex
DZ pairs across the taxa analyzed (Additional file 2:
Figure S8) [8]. The set of taxa analyzed were those that
were categorized as continuous (see Methods). Signifi-
cance was established with Wilcoxon Signed Rank tests
strongly supporting the heritability of taxon abundance
in this twin set. We also tested 4 different alpha diversity
measures (Shannon Index, Chao1, Observed OTUs, PD-
Whole Tree), the first 3 principal coordinates (PCo) for
three different β-diversity measurements (Bray Curtis,
Unweighted and Weighted UniFrac) and saw that most
traits were consistent with the conclusion that MZ cot-
wins are more similar than DZ cotwins. A complete list
of the 41 phenotypes tested and their ICC values can be
found in Additional file 1: Tables S4 and S11.

ACE modeling identifies heritable microbiome
phenotypes
Twin modeling approaches are used to estimate the
amount of variance attributable to additive genetics (A),
common environment (C) or dominance (D), and
unique environment (E) [46]. An ACE or ADE model
was constructed for each of 946 traits including alpha
diversity, principal coordinates (PCos) of β-diversity of
taxonomic groups, and individual OTUs. A complete list
of the A, C/D, and E values for each of these phenotypes
can be found in Additional file 1: Table S5. A power ana-
lysis shows that our sample is well powered to model
continuous traits but is underpowered for categorical
traits (Additional file 2: Figure S9). Traits that were not
categorized as continuous were treated as categorical
traits (see Methods). Therefore, while still of interest,
the categorical traits should be viewed with lower confi-
dence (see Additional file 2: Supplemental Methods). In
the twin models both C and D cannot be modeled at the
same time since each captures the same variance, but
the genetic contribution (A) can be compared between
phenotypes modeled with ACE or ADE models.
Of the 946 traits 55% were modeled as ACE and 44%

ADE. Averaging heritability estimates (A) for traits
within each phenotype category described above (i.E.
alpha diversity, β-diversity PCos, OTUs, taxa) a trend
that PCos of measurements have the highest mean herit-
ability estimates emerged for either the full sample or to
just twin pairs that are cohabitating (Additional file 2:
Figure S10). The most heritable were OTU4483015 that
corresponds to an unnamed species of Granulicatella
(55.8% heritable, 95% CI: 0.282–0.634, corrected P value
0.0405) and PCo 2 for Bray-Curtis (46.3% heritable, 95%
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CI: 0.233–0.551, corrected P value 0.0405) (see Additional
file 1: Table S5). To better understand which taxa were
driving this PCo a QIIME biplot analysis [54] identified
the genus Streptococcus as the most abundant taxon on
the first 3 principal coordinates from Bray-Curtis
(Additional file 2: Figure S12). Repeating the ACE models
excluding twin pairs who reported that they had moved
out after age 18 (i.e. modifying effects of C and/or E in the
model) did not greatly alter the heritability estimates or
other components of the model (Additional file 1: Table S6,

Additional file 2: Figures. S10 and S11). The unique envir-
onment (E) accounted for most of the variation of the traits
tested in both the full and cohabitation sample (Additional
file 2: Figure S11). Little change in the common environ-
ment (C) was observed between the full and cohabit-
ation sample analyses (Additional file 2: Figure S11).
We compared phenotypes deemed to be heritable in

our study (44 traits with Benjamin-Hochberg corrected
P values of less than 1) with phenotypes seen to be herit-
able in 5 studies of gut [63–67] and 1 in dental plaque,
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[68]. We found that 14 of the 44 traits were mentioned
with heritability estimates of at least 1% in one or an-
other study, though none showed high statistical signifi-
cance (Additional file 1: Table S16, Additional file 2:
Supplemental Methods). This is consistent with the possi-
bility that genes that may drive the heritability in the saliv-
ary microbiome may also have more general influences in
other human niches.

SNPs correlate with observed heritability
It is assumed that host genes interacting with the oral
microbiome are responsible for the observed heritability.
The best way to identify them is by the analysis of an as-
sociation between genetic variation (i.e. SNPs) and traits.
The power to detect this is a function of the number of
individuals, the number of tests and the number and
types of SNPs available. The greatest power to uncover
association given a fixed sample size is obtained by ana-
lyzing a limited number of phenotypes (hypotheses)
based on prior information rather than repeatedly test-
ing multiple hypotheses on the same data [69]. To limit
hypotheses to test we focused on the traits found most
heritable in twin studies. Traits found to be most herit-
able are expected to produce the best results in a
genome-wide association (GWAS) study.
DNA was previously prepared from saliva and blood

of 1480 individuals unrelated to the twins and to each
other [32]. Human DNA from this sample was sub-
jected to Affymetrix Chip-based genotype analysis
that resulted in 696,388 validated human SNP geno-
types per individual [32]. The age of subjects ranged
from 11 to 33 years and 29% were female. Ancestry
was assigned by weighting a subset of the genotyped
SNPs against the 1000 genomes dataset and assigning
individuals to ancestry group using principal coordinate
analysis plots [47]. The genotyped SNPs were then quality
filtered and submitted to the Michigan Imputation Server
(https://imputationserver.sph.umich.edu/index.html#!run/)
for phasing and imputation (see Methods). After quality
filtering this produced 6,862,363 European (EUR) and
8,172,048 American Admixed (ADM) imputed vari-
ants respectively that were used in all subsequent
analyses. Imputed SNPs from two different randomly
selected chromosomal areas in 68 individuals were
resequenced with Sanger sequencing to validate im-
putation. We found that 65/68 imputed calls validated
completely with 3 apparently incorrectly imputed
(data not shown). We conclude that imputation pro-
vides significantly greater resolution to SNP-based
maps at little cost to accuracy.
The salivary microbiome of the 1480 individuals was

characterized by 16S RNA sequencing identifying 2679
OTUs, where again as in the twin study, the most preva-
lent phyla were Firmicutes (55%), Proteobacteria (14%),

Bacteriodetes (14%), Actinobacteria (11%), and Fusobac-
teria (6%). Filtering by prevalence and abundance as de-
scribed above produced a total of 931 OTUs used for
our studies. The SNP-based heritability of microbiome
phenotypes in the unrelated population was assessed
using Genome Complex Trait Analysis (GCTA) [49] that
estimates the amount of phenotypic variance that can be
explained by SNP-based composite genetic variance. To
avoid false positives, the genetic relationship matrix was
limited to subjects that were estimated to have
IBD < 0.025. The first 10 ancestry principal components
from LD-pruned (linkage disequilibrium) SNPs were in-
cluded to control for population stratification (see
methods). Given the relatively small sample size, single
trait heritability estimates were not evaluated but rather
gross trends were observed across all continuous traits. A
positive correlation was observed between the heritability
estimates from AC/DE twin models and the European
GCTA analyses (Fig. 3) with a disattenuated correlation of
0.831 (Additional file 2: Supplemental Methods). The
mean heritability estimates across all continuous traits in
the European sample was 0.0563 (SE = 0.371, n = 55
traits). OTU4446902 (unnamed species of the family
Gemellaceae) and its corresponding taxa levels (order,
family, and genus) showed suggestive significant GCTA
heritability estimates after controlling for multiple testing
(OTU4446902 V(G)/Vp = 0.944 SE = 0.357 P value-BH
corrected = 0.053, see Additional file 1: Table S15,
Additional file 2: Supplemental Methods). However, these
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Fig. 3 Heritabiltiy estimate comparison: Twin model heritability
estimates vs amount of variate accounted for by common single
nucleotide (“heritability”) via GCTA for the Euoropean population
(n = 818) for traits continuous in both samples (n = 40). The correlation
between the estimates is significant with a P value of 0.00609
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traits were not observed to be heritable in the twin models
(Additional file 1: Tables S11, S13, S15). The small sample
size was not expected to result in significant GCTA P
values although it has been noted that the meaning of
such P values is limited but even in small samples observ-
able trends can be meaningful [70]. Nevertheless, it is
striking that both twin studies and GCTA on separate
samples show heritability across the same continuous
traits (Fig. 3). This is consistent with the expectation
that genome sequence variation is a basis of observed
heritability.

Genome wide association study with heritable
phenotypes
We ranked the continuous traits based on their herit-
ability (the top trait showing a significant Benjamin-
Hochberg corrected P value of 0.0405 shown in
Additional file 1: Table S5) and performed a genome-
wide association of the top six with the Efficient and
Parallelizable Association Container Toolbox (EPACTS)
[50]. This would be expected to reduce the loss of power
due to multiple testing of hundreds of phenotypes. The
family Carnobacteriacea was excluded from the GWAS
analyses since it was highly correlated with the genus
Granulicatella (R2 = 1) and the latter has a more refined
taxonomic resolution. It is well established that continu-
ous traits afford greater power in both twin studies and

in GWAS [71, 72]. Therefore, although some categorical
phenotypes (i.e. not observed to be continuously distrib-
uted) showed high twin heritability (see Additional file 1:
Table S5), for GWAS we only studied continuous traits.
The analyses were all controlled for age, sex, and se-
quencing run among other covariates (see methods).
Analysis was done independently with individuals from
the two major different ancestry groups of the unrelated
sample, European (n = 823) and Admixture (n = 344)
[71]. Due to the limited size of the admixture sample,
only the European sample is discussed and the admix-
ture was only considered for the meta-GWAS discussed
below.
To control for population stratification a kinship

matrix created from all the chromosomes and the first
ten principal components from the LD-pruned SNPs
were included as covariates (see methods). To control
for the fact that 6 traits were tested, the genome wide
significance level was lowered to 8.33e-09 (5e-08/6traits)
(Additional file 2: Figures. S13 and S14). Using this
threshold, we found that the genus Granulicatella was
significantly associated with the SNP chr7:110,659,581
(P value = 2.251e-09, Fig. 4a, QQ Plot Additional file 1:
Table S7, Additional file 2: Figure S14) within an intron
of the IMMP2L gene on chromosome 7. This gene is
known to be involved in mitochondrial protein traffick-
ing [73–75]. The regional Manhattan Plots in Fig. 4b

a

b c

Fig. 4 GWAS of genus Granulicatella. a Manhattan plot of the GWAS analysis in the European ancestry sample(n = 823). The red line represents the
threshold of genome wide significance(p-value < 5 × 10−8). The abundance of the genus Granulicatella was transformed to z-scores in R and used as
the phenotype for the European GWAS (see Methods). b Locus Zoom plot of the chromosome 7 at the most significant GWAS hit. c SNP plot for the
genes IMMP2L, INHBA-AS1, and full coding gene of INHBA of the KGG analyses of the GWAS for the abundance of the genus Granulicatella
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show that the peak locus includes SNPs of decreasing r2

values around the peak SNP lending greater confidence
to the association. Without a replication sample this re-
sult is provisional but potentially interesting. Using
PLINK 1.9 [48], which takes categorical imputed geno-
types rather than the probabilistic dosage calls produced
by imputation as input, produced results consistent
with this association (data not shown) showing the
association is independent of underlying computa-
tional method.
A comparison of the 100 SNPs with lowest P values in

each of the six phenotypes examined in the European
sample revealed that 7 SNPs were held in common be-
tween at least two of the phenotypes. Bray Curtis PCo2,
Unweighted UniFrac PCo2, and Weighted PCo2, all β-
diversity measures, were most often shared (comparisons
not shown). After the initial analyses of the 6 most herit-
able traits, a GWAS was completed in the remaining 64
continuous traits in the European sample. No variant
was found to be significant after controlling for multiple
testing for these additional tests ((5e-8)/70 = 7.142857e-
10) (data not shown).
We have used a relatively conservative approach to

controlling for population stratification (kinship matrix +
first 10 PCs). To evaluate if this may have produced false
negatives, we repeated the GWAS with EPACTS kinship
only, PLINK 10 PCs, and GCTA LOCO (leave one
chromosome out) (see Methods). Each consistently identi-
fied the same SNP at chr7:110,659,581 significantly associ-
ated with the trait along with nearby SNPs in high LD
associated as well (Additional file 1: Table S17). No
additional significant SNPs were identified consistent with
the hypothesis that stratification methodology had little ef-
fect on identifying the top SNPs and that we were not
“overfiltering” with rigorous kinship controls. For com-
pleteness, we then carried out a GWAS analyses for the
remaining 64 continuous microbial phenotypes using the
EPACTS kinship only analyses adjusting significance for
the additional multiple testing and found no SNPs to be
significantly associated. This is perhaps not surprising
given the relatively small sample size (data not shown).

Meta- and gene-based GWAS analyses
The size of the ADM sample made it unlikely to pro-
duce statistically significant results. To glean useful in-
formation from it we combined it with the EUR data
described using a meta-analysis approach that can effect-
ively deal with population issues inherent in mixing sam-
ples of different populations. METAL [76] is such a
meta-analysis package that takes as input individual SNP
P values and the direction of their effects weighted by
the sample size to arrive at composite P values. The test
statistics were also corrected for population stratification
(see methods). The METAL analysis identified the same

suggestive significant SNP on chromosome 7 that was
associated with Granulicatella abundance in the EUR
GWAS (chr7:110,659,581, P value = 2.51–09, see
Additional file 1: Table S8 for complete results). How-
ever, due to the small size of the ADM sample, this SNP
did not survive quality filtering in the METAL analysis
and so was not a factor in the METAL analysis outcome.
Analyses of Unweighted Principal Coordinate 3 yielded a
SNP on chromosome 12 that reached genome wide sig-
nificance in the same direction (positive beta) for the
combined sample, though it was not robust to multiple
testing correction (chr12:82,166,911, P value = 1.845–08,
Fig. 5a–b, Additional file 1: Table S9). Again, the re-
gional Manhattan Plots in Fig. 5c show the peak locus
includes SNPs of decreasing r2 around the peak SNP
consistent with the association. The minor allele C, was
shown to be consistent with lower PCo3 z-scored values
(Fig. 5d–e).
The most promising single SNP association occurred

with the phenotype defined as the abundance of the
genus Granulicatella. We reanalyzed the association
data with the gene-based tool Knowledge-based mining
system for Genome-Wide Genetic studies (KGG4, [77]
that constructs whole gene association scores from a
summation of SNP P values contained in each gene. The
abundance of Granulicatella identified two genes on
chromosome 7 as highly associated: a protein coding
gene IMMP2L (corrected P value = 0.0176) involved in
protein processing associated with mitochondrial import
and a non-coding antisense RNA INHBA- AS1 (cor-
rected P value = 0.0488) (Fig. 4c, see Additional file 2:
Supplemental Methods). A SNP in INHBA-AS1 had
been previously identified in a dental caries GWAS
along with a loci in the INHBA gene [78]. INHBA is
thought to be important to tooth development, which
could have potential interesting implications to the oral
microbiome [78–83]. The meta-GWAS results on the
PCo3 of Unweighted UniFrac most highly associated re-
gion was the gene LIN7A on chromosome 12 (corrected
P value = 0.2107, see Additional file 2: Supplemental
Methods).

A strong environmental covariate fails to influence
top-scoring associations
Tobacco use correlates with changes in the oral micro-
biome and the abundance of specific taxa [14–18, 20–22].
It was possible that tobacco or other factors influenced
our observation of genetic association. For example,
Streptococcus abundance, a highly heritable phenotype,
has also been shown to change in smokers [14, 16, 17,
20–22, 84]. In addition other substances could potentially
change the oral microbiome. Among these alcohol [20]
and marijuana, though these effects have yet to be deter-
mined. However, marijuana use is correlated with poor
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oral health, which is often indicative of changes in the oral
microbiota [85–88]. We had available the self-reported to-
bacco, alcohol and marijuana use in 92% of our subjects
for the previous six months. We therefore repeated the
analyses using the three substances as covariates (see
Additional file 2: Supplemental Methods). As seen in
Additional file 2: Figures. S15 and S16, controlling for
tobacco/alcohol/marijuana use had negligible impact on
the top hit on chromosome 7 for the genus Granulicatella
(see also QQ plots, Additional file 1: Table S10). For the 6
highly heritable continuous traits that were analyzed, both
with and without substance use covariates, results appear
to be consistent with and without substance (Additional
file 2: Figures S15 and S16).

Discussion
We have shown that microbe abundance and some as-
pects of the microbial population structure are influ-
enced by heritable traits in saliva. We have ranked the
“most heritable” traits using ACE/ADE modeling and
GCTA-based SNP heritability and carried out an
unbiased GWAS on the 6 most heritable traits. One
SNP on chromosome 7 in the gene IMMPL2 reached

genome-wide significance. Another gene IINHBA-AS1
on chromosome 7 achieved genome-wide significance
when analyzed by KGG4 that relies on a composite asso-
ciation score including all SNPs in each known gene.
The significance of these associations was not influenced
by “p-hacking” statistical biases common in GWAS
because phenotype choice was not based on previous as-
sociation tests. This approach is a model for using herit-
ability to reduce the multiple testing problems seen in
many GWAS reports and it could be the method of
choice in the design of GWAS studies in which sample
size may be limited.
Bray-Curtis, Weighted UniFrac, and to a lesser extent

Unweighted UniFrac β-diversity demonstrate that many
components of the microbiome community are heritable
(Fig. 1). While a shared environment and behavioral
habits contribute to a more similar microbiome (i.e. in-
dividuals living together have more similar microbial
populations [6, 24]), such studies did not control well
for the clear genetic influences in their populations.
When we examined the differences among MZ and DZ
cotwins and age-matched unrelated individuals that we
were confident cohabitated (i.e. removed those who did

a

b d

e

c

Fig. 5 GWAS of Unweighted UniFrac principal coordinate 3. Principal Coordinate 3 of Unweighted UniFrac was transformed to z-scores in R and
used as the phenotype for the GWAS analyses. a Manhattan plot of the GWAS analysis in the European ancestry sample(n = 823) and b Admixture
American ancestry sample (n = 344). c Locus Zoom plot of the chromosome 12 at the most significant Meta-GWAS hit. d-e. Violin plots of the Principal
Coordinate 3 of Unweighted UniFrac for each genotype within each ancestry population (d EUR: GG n = 705, GC n = 112, CC n = 6; e. ADM: GG
n = 193, GC n = 133, CC n = 18)
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not live together), the genetic influences remain clear. It
is significant that the genetic effects are detected using
measures that include all detectable OTUs. To assess
heritable influences of individual microbial components,
we carried out intraclass correlation analyses that show
that heritability extends across nearly all observed taxa
individually (see Fig. 2). The one exception is in the
fusobacteria where ICC does not distinguish MZ and
DZ. Possibly these organisms, known to be “bridges” be-
tween early and late colonizers on gum and tooth sur-
faces [89, 90], may not have interaction with host
proteins and could lack human genetic influences.
GWAS of complex traits on relatively small samples is

problematic due to the lack of statistical power. The in-
fluence of individual genes on traits that have multiple
genetic components may be small. Moreover, the micro-
biome is a highly complex population with interacting
networks of bacteria that all may have multiple interac-
tions with the host. A variety of covarying network mod-
eling approaches have demonstrated how complex these
communities are [91]. It has been shown that assuming
the number of causal variants and their frequency spec-
tra for a pair of traits are similar, more heritable traits
are more likely to be detectable in GWAS [31]. There-
fore we focused on those microbiome endophenotypes
with greatest additive genetic heritability for GWAS.
Both ACE/ADE modeling and GCTA SNP heritability
are suited to this approach.
The microbial phenotypes with greatest additive gen-

etic influence in the ACE/ADE model on the entire twin
cohort were the abundance of the OTU4483015 that
corresponds to an unnamed species of Granulicatella
(twintrait521, heritability 55.8%, 95% CI: 0.282–0.634)
and PCo2 of Bray Curtis (twintrait1022, heritability
46.3%, 95% CI: 0.233–0.551, Additional file 1: Table S5).
The influence of additive genetics was variable depend-
ing on the trait when comparing the full sample to herit-
ability only among cotwins that cohabitate (i.e. under 18
or 19 and older and reported living at home (Additional
file 1: Table S6, Additional file 2: Figures S10 and S11).
The variation in estimates may reflect environmental ef-
fects or loss of power between the full sample (n = 752
twin pairs) and the cohabitating sample (n = 588 twin
pairs) (Additional file 2: Figure S9. Nevertheless, co-
habitation did not remove the significant genetic influ-
ences. In comparing those OTUs identified as heritable
in saliva to those identified in recently reported studies
in the gut, we found no obvious overlap (Additional
file 1: Table S16). This again points to the complex
nature of the microbe-host interactions in primarily
aerobic and anaerobic environments and how human
genetic influences must also be complex.
As a further test of heritability prior to GWAS, we ex-

amined SNP-based heritability in our unrelated sample

with GCTA. A positive correlation was observed be-
tween the ACE/ADE and GCTA ‘heritability’ estimates
for continuous traits in both the full twin sample and
the EUR sample (Fig. 3). Previous studies have demon-
strated that large samples are needed to produce results
reaching statistical significance using GCTA. In their
original paper Yang et al. showed that while increasing
the sample size does decrease the error bars of the herit-
ability estimates, the heritability estimates themselves re-
main relatively stable. While the GCTA estimate was
not significant upon correction for multiple testing, the
positive correlation between the unrelated individuals
and the twin studies (0.1818) provides support for the
conclusion that for these continuous traits genetic vari-
ation influences microbial populations.
A GWAS analysis with the six most heritable continu-

ous traits determined from the twin modeling was car-
ried out in the European (EUR) populations (defined
above). The GWAS of the abundance of the genus Gran-
ulicatella identified a genome wide significant SNP on
chr7 (chr7:110,659,581, P value = 2.51–09). This SNP is
located in an intron of the IMMP2L gene. The GWAS
meta-analyses combining the EUR and ADM samples
using METAL with the same 6 traits showed no new
information about the chr7 SNP due to its low fre-
quency in the ADM population but did produce an
additional association with suggestive significance,
chr12:82,166,911 (P value = 1.845–08) for the phenotype
Unweighted UniFrac PCo3, though it was not robust to
correction for multiple testing. This SNP is located in
the gene LIN7A that is widely expressed in endothelial
cells. Markers in LD with the top SNPs (i.e. high r2) were
also highly associated with the phenotype, but in
addition, markers of somewhat lower LD (i.e. low r2)
that were nearby also displayed elevated significance for
both hits. This provides an argument that these loci may
not be due purely to chance (Figs. 4b and 5c).
To be adequately powered one must have a large sample

size or the single SNP effect must be very large. However,
most complex traits are polygenetic and so many loci with
small effects account for the variation of the trait. There-
fore, where sample size is limited, it may be difficult to ob-
serve significant SNP associations. To address this, it is
possible to use biological information to inform analyses
and increase statistical power. This may be done by aggre-
gating the association of multiple SNPs known to be
present within a known gene. By this approach, the pos-
sibly small effects of all SNPs in the gene are combined
and then the association of the entire gene may be deter-
mined. Even if no single SNP is found to be genome-wide
significant the combined SNP contributions across the
gene may be. One widely used gene-based GWAS analysis
method is the Knowledge-based mining system for
Genome-wide Genetic Studies (KGG4) [77, 92–95].
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An analysis by KGG4 confirmed the gene IMMP2L
(corrected P value = 0.0176) and additionally identified a
non-coding RNA INHBA- AS1 (corrected P value = 0.0488)
(see methods) as significant hits. IMMP2L functions in
the mitochondrion where it is involved with processing of
signal peptides as a peptidase directing transport to the in-
terior mitochondrial space [73–75]. INHBA- AS1 and
INHBA (closely linked) were previously associated with
dental caries in a GWAS, and INHBA was postulated to
influence the development of dental caries via its role in
tooth morphology development [78]. In support of this
hypothesis Zeng et al. discuss that INHBA has been
shown to be important for tooth development and knock-
out mice of INHBA have alterations in the eruption of
new teeth [78–83]. Attachment to the tooth surface is a
part of the establishment of the oral microbiome and dis-
ruption of this process could lead to changes in the com-
munity structure of oral biofilms. Ascribing functional
significance to IMMP2L, INHBA-AS1, or LIN7A, is
speculative in the absence of a replication experiment.
Nevertheless, this study is among the first to use her-
itability to refine microbiome phenotypes prior to
GWAS testing and the findings will provide a basis
for additional genetic studies in larger replication
samples and in future molecular analyses.
Of the 100 most significantly associated SNPs for each

of the 6 GWAS analyses in the EUR sample, 7 SNPs
were shared at least twice among Bray Curtis PCo2,
Unweighted UniFrac PCo2, and Weighted UniFrac PCo2
analyses probably due to shared underlying variation of
PCo2. A comparison of SNPS from the Granulicatella
GWAS and the PCo3 unweighted UniFrac Meta-
Analysis in our experiments with other published
GWAS studies of the microbiome found that the major-
ity of overlapping SNPs followed a normal distribution,
and those few that did deviate from expectation did not
reach genome wide significance in either study (see QQ-
plot, Additional file 2: Figure S18) [3, 64–67]. It is per-
haps not surprising that genes showing influence in gut
do not appear in salivary samples. There is very little
overlap in organism composition between niches and it
can be argued that one reason for this is that different
genes influence each niche.
Genes and environment potentially contribute to all

aspects of the microbiome. Whereas twin studies are
particularly powerful in differentiating between them,
GWAS is poorly suited to teasing these factors apart.
We show that tobacco/marijuana/alcohol use has little
influence on the ability to detect associations of our top
scoring loci. This is somewhat unexpected in that it is
well known that some microbes either increase or de-
crease in response to tobacco [14, 16, 17, 19–22]. This is
consistent with a hypothesis that the tobacco effects
seen (for example increases in streptococcus abundance)

are mostly free of significant genetic influences and that
conversely, the genetic effects we find do not dependent
on environmental perturbations to be observed. The re-
sults point out a need for well-controlled gene by envir-
onment experiments to fully understand how genes
work and how environmental factors actually influence
microbial communities.

Conclusions
In this study we have shown, using the largest twin oral
microbiome study to date, that the oral microbiome is
heritable. While cohabitation is clearly a factor in micro-
biome similarity between co-twins, the genetic effects
are observable independent of cohabitation. Twin mod-
eling and correlation of twin models with additive SNP
heritability in unrelated individuals determined by
GCTA confirmed that observed heritability is the result
of genome sequence variation. Prioritization of the most
heritable microbial phenotypes reduced the multiple
testing problems inherent in some GWAS analyses and
allowed us to carry out a successful GWAS analysis of 6
microbiome phenotypes. Future work will focus on repli-
cating these studies in a large independent sample but
on its own, it demonstrates that at least some aspects of
oral commensal populations are determined by host
genetic factors.
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