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Abstract 

Objective: Many tools have been developed to profile microRNA (miRNA) expression from small RNA-seq data. 
These tools must contend with several issues: the small size of miRNAs, the small number of unique miRNAs, the fact 
that similar miRNAs can be transcribed from multiple loci, and the presence of miRNA isoforms known as isomiRs. 
Methods failing to address these issues can return misleading information. We propose a novel quantification method 
designed to address these concerns.

Results: We present miR-MaGiC, a novel miRNA quantification method, implemented as a cross-platform tool in 
Java. miR-MaGiC performs stringent mapping to a core region of each miRNA and defines a meaningful set of target 
miRNA sequences by collapsing the miRNA space to “functional groups”. We hypothesize that these two features, 
mapping stringency and collapsing, provide more optimal quantification to a more meaningful unit (i.e., miRNA fam-
ily). We test miR-MaGiC and several published methods on 210 small RNA-seq libraries, evaluating each method’s abil-
ity to accurately reflect global miRNA expression profiles. We define accuracy as total counts close to the total number 
of input reads originating from miRNAs. We find that miR-MaGiC, which incorporates both stringency and collapsing, 
provides the most accurate counts.
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Introduction
MicroRNAs (miRNAs) are endogenous small (~ 23  nt) 
RNA molecules that contribute to post-transcriptional 
regulation of target messenger RNAs (mRNAs) in plants 
and animals [1, 2]. In recent years, many tools have been 
developed to estimate miRNA expression from small 
RNA-seq data. These include CAP-miRSeq [3], Chimira 
[4], CPSS [5], iSRAP [6], miRanalyzer [7], the miRDeep2 
quantifier [8], miRExpress [9], miRge [10], miRNAKey 
[11], mirTools [12], Oasis [13], omiRAs [14], Shortran 
[15], and sRNAbench [16]. Table  1 summarizes these 
methods. In a typical workflow, the read counts form 
the foundation for downstream analyses such as differ-
ential expression and co-expression analysis. Therefore, 

accurate expression quantification is essential for the 
validity of downstream results.

The effectiveness of quantification methods may be 
affected by three issues particular to miRNAs. One issue 
involves mapping accuracy. The small size of miRNA 
molecules leads to short sequencing reads after adapter 
removal. Short reads are less likely to be aligned uniquely 
to the genome [17]; this issue could be compounded by 
individual genetic variation at the endogenous locus 
producing the read [18]. The second issue involves chal-
lenges of functional interpretation. Identical or near-
identical miRNAs are often transcribed from multiple 
genomic loci [19, 20]. So as not to introduce count bias, 
quantification methods must deal with reads that map 
ambiguously to multiple loci or miRNA sequences. In 
addition, there are many fewer unique miRNA molecules 
than large RNAs. Normalization methods such as total 
read count or quantile normalization are less robust with 
fewer features and highly skewed distributions. There-
fore, the handling of multi-mapped reads can have a 
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larger impact on normalized counts for miRNAs com-
pared to larger RNAs. Third, isomiRs—miRNA variants 
that can be expressed in a cell type specific manner—
present a challenge for mapping and functional inter-
pretation. Research suggests that the three main classes 
of isomiRs (5′ isomiRs, 3′ isomiRs, and polymorphic 
isomiRs) may have differing functional consequences [21, 
22]. The question of whether isomiRs should be counted 
and, if so, which ones should be merged with their parent 
miRNA for expression analysis, is nontrivial and should 
be addressed by quantification methods.

Methods that fail to adequately address these issues can 
return misleading quantification results. We examined 
the accuracy of several published methods as well as a 
novel quantification pipeline that incorporates stringent 
mapping and collapsing of the miRNA space into mean-
ingful functional units.

Main text
Results
We designed a quantification method with the following 
objectives: (1) perform highly stringent mapping to a core 
region of miRNA sequences, minimizing the number of 
ambiguous mappings, and (2) perform collapsing to asso-
ciate reads with functional classes of miRNAs instead of 
individual annotated miRNAs. Functional classes of miR-
NAs, subsequently referred to as “functional groups”, are 
defined by the user to be groups of miRNAs that are con-
sidered equivalent in the context of the study goals. For 
instance, if the study aims to address binding of target 
mRNAs, families of highly similar miRNAs that bind the 
same targets can be considered equivalent. This consid-
eration allows reads to be counted at most once per func-
tional group; counts are then returned at the group level. 
We implemented a pipeline, miR-MaGiC, that incorpo-
rates these features. For details of the software and work-
flow, see Additional file 1: Additional material and Figure 
S1.

We tested miR-MaGiC and several publicly available 
methods on 210 mouse brain small RNA-seq libraries. 
This dataset was chosen due to the large number of sam-
ples and high sequencing depth, making it a valuable 
test case for comparing methods, while the variability in 
proportion of miRNA reads between libraries provided 
an interesting testing scenario. We ran 7 quantification 
schemes for each library: iSRAP [6], the miRDeep2 quan-
tifier [8], miRge [10], a modified version of miRge, and 
three collapsing conditions for miR-MaGiC. Our modi-
fied version of miRge removed its final round of align-
ments to mature miRNAs, a highly permissive alignment 
step that allowed up to two mismatches per read; we sus-
pected that this step may introduce noise to the counts. 
See Additional file 1: Table S1 and Additional material.

To evaluate the methods, we reasoned that methods 
which correctly handle the issues particular to miRNA 
quantification should return total counts that reflect the 
number of reads originating from miRNAs in the input 
library. We estimated the number of miRNA reads in 
each library as the number of adapter-clipped reads 
between 19 and 23 nucleotides in length; 95% of miRNA 
loci and 91% of unique mature miRNAs in miRBase fall in 
this length range. The libraries each had between 50% and 
72% of reads in this range. We examined how well each 
method reflected this estimated number of input miRNA 
reads in terms of total output read count, calculating the 
mean squared error between the estimated number of 
input miRNA reads and the output total counts. A lower 
score would indicate more accurate counts and therefore 
less distortion and bias introduced during normalization 
by the method-dependent total count.

Due to different implementation choices, the meth-
ods systematically return different levels of total abso-
lute counts (Fig. 1). The miRDeep2 quantifier returns the 
highest counts because it first matches mature miRNAs 
to precursors in a many-to-many mapping, then counts 
every instance of a read matching one of these mature 
miRNA/precursor pairs. As expected, miR-MaGiC 
returns reduced total counts when functional group 
collapsing is performed, as opposed to no collapsing. 
Because the read counts for miRNAs are right skewed 
(Additional file  1: Figure S2), double counting in any of 
the highly expressed miRNAs can dramatically change 
the total read count. See Additional file  1: Additional 
material and Figure S3 for a case study of miRNAs that 
are treated differently by different methods.

Comparing miR-MaGiC to published software, miR-
MaGiC with collapsing by functional group showed the 
best accuracy (Fig.  2). The least accurate method is the 
miRDeep2 quantifier, probably due to double count-
ing reads that map to multiple precursors. The closest 
method to miR-MaGiC is miRge, which also incorporates 
collapsing but uses permissive mapping. As expected, 
miR-MaGiC with no functional group collapsing is less 
accurate than with collapsing. When we modified the 
miRge code to remove the final round of highly permis-
sive alignments, performance improved dramatically and 
the method gained a slight advantage over miR-MaGiC 
with collapsing. One possible explanation for why the 
published version of miRge is less accurate than the more 
stringent modified version is that the permissive align-
ment step allows some non-miRNA reads to be mapped 
to miRNAs.

Conclusions
We have proposed a quantification method, miR-MaGiC, 
that addresses several issues particular to miRNAs, 
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including their small size, low complexity, family struc-
ture, and isoforms. miR-MaGiC uses stringent mapping 
to reduce noise associated with the small size and low 
complexity of miRNAs, while allowing for uncertainty 
at the endpoints of reads and miRNAs. Final counts 
are returned at the group level instead of the individual 
miRNA level. Recommended group tables are provided 
for common species on the miR-MaGiC web page, https 
://githu b.com/Kechr isLab /miR-MaGiC .

We tested miR-MaGiC as well as three published meth-
ods on a set of 210 small RNA-seq libraries. We evaluated 

the faithfulness of the final total counts to the original 
number of miRNA reads per library. Importantly, we 
found that methods which specifically address the above 
issues produced the greatest accuracy in overall counts. 
The novelty of miR-MaGiC is the combination of strin-
gent mapping to a core region of each miRNA and col-
lapsing by functional group.

To evaluate this combination of features we tested 
miR-MaGiC with and without collapsing, observing that 
collapsing in fact improves accuracy. Regarding map-
ping stringency, the published version of miRge, which 
performs collapsing, performed poorly according to our 
accuracy metric, but we suspected this may be due to 
over-permissiveness of one of its alignment steps. Once 
we modified this detail, miRge emerged as comparable to 
miR-MaGiC, with a slight advantage in accuracy. In sum-
mary, when methods use one feature but not the other 
(i.e., miR-MaGiC_noCollapse and miRge in Fig.  2), or 
neither feature (i.e., iSRAP and miRDeep2 in Fig. 2) there 
is a notable drop in accuracy.

Our analysis of miRge indicated that more noise than 
signal is introduced if methods try to capture isomiRs 
simply by allowing more mismatches. miR-MaGiC uses 
stringent mapping to reduce noise associated with the 
small size and low complexity of miRNAs. This deci-
sion effectively causes 5′ and 3′ isomiRs to be merged 
with their parent miRNA while discarding polymorphic 
isomiRs. 3′ isomiRs are the most common class of isomiR 
and are thought to be largely functionally redundant, 
while 5′ and polymorphic isomiRs are less common but 
can affect target binding [21, 22]. Therefore, miR-MaGiC 
merges most functionally redundant miRNA isoforms 
with their parent miRNA while also possibly including 5′ 
isoforms that may affect function. This decision has the 
effect of including the largest class of isomiRs which are 
currently believed to be largely functionally redundant 
while excluding polymorphic isomiRs which may have 
distinct functions.

Discussion
In this work, we examined accurate quantification of 
miRNA expression based on sequencing. Several issues 
particular to miRNAs can affect the accuracy of quan-
tification methods based on small RNA-seq. These 
issues include the small size of miRNAs, the low com-
plexity of the overall repertoire of miRNAs, the fact 
that highly similar miRNAs can be processed from 
different genomic loci, and the presence of isomiRs. 
Furthermore, it is important that quantification be 
performed at an appropriate level of granularity to be 
functionally meaningful. Implementation choices at 
the quantification step can have a significant impact on 
common downstream steps such as normalization and 
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For example, a dot lying on the 0.8 line would mean the total counts 
for that library and quantification method was 0.8 times the number 
of raw reads. For dots lying above the 1.0 line, the total counts for that 
library and method added up to more than the number of raw reads. 
See Additional file 1: Table S1 for detailed explanation of method 
abbreviations

https://github.com/KechrisLab/miR-MaGiC
https://github.com/KechrisLab/miR-MaGiC
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interpretation of expression results. When counts are 
split over multiple features, the multiple testing bur-
den is increased and statistical power is reduced. In 
addition, the relatively low complexity of the miRNA 
repertoire means that a handful of highly expressed 
miRNAs can have an impact on the library size used for 
normalization.

Our work demonstrates the importance of identifying 
the most meaningful unit of information when studying 
miRNA expression. We find that results are most accu-
rate when we associate each read with one meaningful 
unit such as a miRNA family. To accomplish this, our 
proposed method, miR-MaGiC, looks for a stringent 
match to one or more members of the family and then 
ignores which member(s) it matched and reports results 
for the family. The mapping is stringent in one sense, but 
also flexible at the ends of each miRNA, as these can be 
affected by isomiRs or artifacts in the reads. The most 
meaningful level of granularity for a particular study may 
vary. We therefore recommend that investigators under-
stand the implementation details of various quantifica-
tion methods and choose a method that will return the 
most meaningful expression profile for their study.

Materials and methods
Known miRNAs and creation of individualized miRNA 
sequences
We used the mouse miRNA database in miRBase version 
21 [23]. See Additional file 1 for details.

Defining functional groups of miRNAs
Our pipeline, miR-MaGiC, counts mappings of reads to 
functional groups of miRNAs instead of individual miR-
NAs. We evaluated three different groupings of miRNAs. 
The first was no collapsing by functional group. The sec-
ond combined miRNAs with the same miRBase acces-
sion number (“MIMAT” number) before an underscore. 
The final grouping combined miRNAs with the same 
core number, letter (if applicable), and 3p/5p identifier. 
See Additional file 1 for details.

Test with publicly available software packages
We chose publicly available methods to include in our 
comparison based on several criteria: (1) ability to be run 
in batch jobs on a Linux cluster, (2) success of installa-
tion and execution on our Linux environment, and (3) 

miRgeModified MaGiC_MIMAT MaGiC_miRBase MaGiC_noCollapse iSRAP miRge miRDeep2

M
S

E
 o

f t
ot

al
 c

ou
nt

s 
vs

. n
um

be
r o

f i
np

ut
 fr

ag
m

en
ts

 b
et

w
ee

n 
19

−2
3n

t
0.

0e
+0

0
5.

0e
+1

3
1.

0e
+1

4
1.

5e
+1

4

5.6e+12 6.8e+12 6.8e+12

2.2e+13
2.5e+13

5.8e+13

1.4e+14

Fig. 2 Method accuracy: total counts compared to number of input miRNA reads. Method accuracy was evaluated as the mean squared error 
(MSE) between the estimated number of miRNA reads used as input to the method (fragments 19–23 nt in length) and the total count derived 
by each quantification method. The error bars indicate ± one standard error of the mean. See Additional file 1: Table S1 for detailed explanation of 
method abbreviations



Page 7 of 8Russell et al. BMC Res Notes  (2018) 11:296 

methods representing a variety of quantification strate-
gies. These criteria led to choosing iSRAP [6], the miR-
Deep2 quantifier [8], and miRge [10]. 210 mouse whole 
brain small RNA-seq libraries were analyzed. Run details 
are in Additional file 1: Table S1 and Additional material.

Limitations
Our analysis demonstrates that for short sequences from 
a low-complexity repertoire, a high level of mapping 
stringency is important for minimizing noise. However, a 
limitation of this high stringency is that errors in reads or 
individual variation in miRNAs could lead to incorrectly 
missed read mappings, i.e., an increase in false negative 
mappings. Another limitation is that miR-MaGiC only 
generates counts and does not perform analyses such as 
normalization and differential expression, in contrast to 
other small RNA-seq analysis tools that perform multiple 
analyses in a pipeline fashion. Nonetheless, the resulting 
miR-MaGiC quantification is easily plugged into other 
downstream analyses.

Abbreviations
miRNA: microRNA; mRNA: messenger RNA; MSE: mean squared error; RPM: 
reads per million.
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