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Abstract.  Species-level responses to environmental change depend on the collective responses of their constitu-
ent populations and the degree to which populations are specialized to local conditions. Manipulative experiments 
in common-garden settings make it possible to test for population variation in species’ responses to specific climate 
variables, including those projected to shift as the climate changes in the future. While this approach is being applied 
to a variety of plant taxa to evaluate their responses to climate change, these studies are heavily biased towards 
seed-bearing plant species. Given several unique morphological and physiological traits, fern species may exhibit 
very different responses from angiosperms and gymnosperms. Here, we tested the hypothesis that previously 
detected population differentiation in a fern species is due to differentiation in thermal performance curves among 
populations. We collected explants from six populations spanning the species’ geographic range and exposed them 
to 10 temperature treatments. Explant survival, lifespan and the change in photosynthetic area were analysed as a 
function of temperature, source population and their interaction. Overall results indicated that explants performed 
better at the lowest temperature examined, and the threshold for explant performance reflects maximum tempera-
tures likely to be experienced in the field. Surprisingly, explant fitness did not differ among source populations, sug-
gesting that temperature is not the driver behind previously detected patterns of population differentiation. These 
results highlight the importance of other environmental axes in driving population differentiation across a species 
range, and suggest that the perennial life history strategy, asexual mating system and limited dispersal potential of 
Vittaria appalachiana may restrict the rise and differentiation of adaptive genetic variation in thermal performance 
traits among populations.

Keywords: Climate change; ferns; gametophyte; geographic range; manipulative experiment; population differenti-
ation; temperature; thermal performance curve; Vittaria appalachiana.

Introduction
Species’ responses to the environmental variation 
throughout their geographic ranges depend on the col-
lective tolerances of the constituent populations. The 
extent to which populations evolve different tolerances 

is expected to depend on the spatial scale of gene 
flow relative to the grain of environmental heterogen-
eity (Van Tienderen 1991; Sultan and Spencer 2002). 
High rates of gene flow among populations experi-
encing different selective pressures should favour the 
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evolution of phenotypic plasticity, while asexual repro-
duction and restricted dispersal will favour specializa-
tion to local conditions (Bradshaw 1965; Kawecki and 
Ebert 2004; Sherman and Ayre 2008; but see Gray and 
Goddard 2012; Sexton et al. 2014). Gene flow among 
populations can be heavily influenced by the spatial 
distribution of habitat across a species’ range, as pop-
ulations that are restricted to patchy or fragmented 
habitats will experience less interpopulation gene flow 
(Primack and Miao 1992; Thomas 2000). Furthermore, 
over evolutionary time, patchy habitat structure itself 
may generate selection for localized dispersal strat-
egies due to the fitness consequences of dispersing 
propagules that land in unsuitable habitat between 
patches, generating a feedback between the evolu-
tion of environmental specialization and localized dis-
persal (Cody and Overton 1996; Cheptou et  al. 2008; 
Schenk 2013; Van Den Elzen et  al. 2016). In species 
where populations are locally specialized, the species’ 
geographic range as a whole may reflect a broader 
range of environmental conditions than each individ-
ual population can tolerate.

Population-specific responses to environmental gra-
dients can be examined using a variety of lab and field 
experiments (Lawlor and Mitchell 1991; Norby et  al. 
1999; Charles and Dukes 2009; Marsico and Hellmann 
2009; Samis and Eckert 2009; Agren and Schemske 2012; 
Chambers and Emery 2016). Common garden experi-
ments that include experimental manipulations have 
proven to be a powerful tool for isolating the effects of 
specific environmental variables (such as temperature) 
that are hypothesized to drive population-level differ-
ences in performance (Marion et al. 1997; McLeod and 
Long 1999; Grime et  al. 2000) and the potential for 
populations to tolerate conditions that do not presently 
occur in their local environments. Reaction norms are a 
particularly useful way to quantify the effects of an envi-
ronmental factor (e.g. temperature) on the phenotype 
(e.g. plant size) of genotypes from different populations. 
Reaction norms that represent fitness across tempera-
ture gradients, often called thermal performance curves 
(Kingsolver et al. 2004; Gilchrist 2015), can be compared 
among genotypes using a variety of techniques, rang-
ing from relatively straightforward comparisons of the 
slopes and intercepts of the lines that represent phe-
notypic responses across two different environments 
(Bradshaw 1965, 1972; Schmitt 1993; Dorn et al. 2000), 
to more complex approaches that consider the shape of 
reaction norm curves across three or more environmen-
tal levels (Izem and Kingsolver 2005; Stinchcombe et al. 
2012; Murren et al. 2014). Quantifying fitness and phe-
notypic responses of multiple populations across mul-
tiple levels of an environmental axis makes it possible 

to test for microevolutionary divergence among popula-
tions (Murren et al. 2014).

To date, the majority of experimental research that 
has evaluated plant responses to climate change has 
focused on seed-bearing plants, with comparatively less 
attention directed towards other major land plant lin-
eages (Gignac 2001; Page 2002). Ferns are the second 
most diverse group of vascular plants on the planet, yet 
their ecology is severely understudied in comparison to 
seed-bearing plants. Ferns play significant ecological 
roles in their communities (George and Bazzaz 1999; 
Amatangelo and Vitousek 2008) and are often consid-
ered to be indicators of habitat quality and environmen-
tal change (Page  2002; Bassler et  al. 2010; Bergeron 
and Pellerin 2014). Furthermore, a number of unique 
life history and physiological traits may cause ferns to 
exhibit different responses to climate change compared 
to angiosperms and gymnosperms (see Banks 1999 for 
a thorough review). One important difference between 
ferns and angiosperms is that both the gametophyte 
and the sporophyte are free-living and independent 
in ferns, while the gametophyte is highly reduced and 
dependent on the sporophyte in angiosperms and gym-
nosperms. Most fern gametophytes are one cell-layer 
thick, photosynthetic, lack cuticle or stomata and pro-
duce antheridia, archegonia and rhizoids, and thus are 
physiologically quite different from their sporophyte 
counterparts in ways that may have significant conse-
quences for their responses to temperature variation. 
Despite their relatively small size and often delicate 
appearance, fern gametophytes are often more robust 
to environmental extremes than their respective sporo-
phytes (Farrar 1978; Sato and Sakai 1981; Watkins et al. 
2007; Pinson et al. 2017). Given the fact that fertilization, 
and even asexual reproduction in some species, occurs 
during the gametophyte portion of the life cycle, under-
standing how fern gametophytes respond to different 
temperatures is important for predicting the overall 
effects of climate change on fern lineages.

Throughout the Appalachian Mountains and 
Appalachian Plateau of eastern North America are a 
number of recesses in rock outcroppings called ‘rock-
houses’ or ‘rockshelters’. These formations developed 
from the weathering of soft bedrock located below 
layers of sandstone, generating large sandstone over-
hangs. The recesses below these overhangs support a 
diverse flora (Walck et al. 1996, 1997; Oberle and Schaal 
2011), including a variety of fern species, some of which 
are endemic to these unique habitats (Farrar 1967, 
1998; Watkins and Farrar 2002, 2005; Testo and Watkins 
2011). A handful of these endemics are temperate fern 
species that are phylogenetically nested within tropical 
clades that may have retreated to the buffered thermal 
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environments inside rockshelters during past glacia-
tion events (Farrar 1990; Walck et  al. 1996; Chambers 
and Emery 2016; Pinson and Schuettpelz 2016). Vittaria 
appalachiana is one of the few species endemic to these 
rockshelters that never produces a viable sporophyte, 
but rather reproduces only asexually via gemmae and 
vegetative spread (Farrar 1967, 1978, 2016). Populations 
of V.  appalachiana occupy rockshelters from northern 
Alabama to south-western New York, spanning a total 
of 9° in latitude (Farrar and Mickel 1991). While rockshel-
ters can buffer these populations from fluctuations in 
temperature (Farrar 1998; Chambers and Emery 2016), 
the latitudinal distribution exposes populations to differ-
ent average thermal conditions (Table 1).

Given the temperature variation encompassed within 
the species’ range, and results of previous studies docu-
menting dispersal limitation (Stevens and Emery 2015), 
and population differentiation (Chambers and Emery 
2016; Chambers et  al. 2017) among V.  appalachiana 
populations, we predicted that V.  appalachiana would 
exhibit population differentiation in their responses to 
a thermal gradient (i.e. their thermal tolerance curves). 
We also predicted that all V. appalachiana populations 
would have a relatively narrow range of temperature 
tolerances along a temperature gradient, as V.  appa-
lachiana is restricted to relatively climatically buffered 
microhabitats and therefore would not have experi-
enced selection to tolerate a broad range of tempera-
ture conditions.

Methods
Sample collection
We identified six populations from different loca-
tions across the geographic range of V.  appalachiana 
using occurrence information obtained from non-profit 

organizations (New York Natural Heritage Program and 
North Carolina Natural Heritage Program), state bota-
nists and previously published locality data (Farrar and 
Mickel 1991; Table 1). Populations included in this study 
were selected based on site accessibility and our ability 
to secure permission to collect samples from the resi-
dent populations. In October of 2012, 30 gametophyte 
explants were collected from each of the six source 
populations over an 8-day period (N  =  180). Based on 
the results of genetic studies that evaluated the distri-
bution of genetic variation within and among popula-
tions of V.  appalachiana (Farrar 1990), it is most likely 
that explants from a single site represented replicates 
of the same vegetative clone, but that clones differed 
between sites.

Within each rockshelter, samples were collected 
from random positions along a horizontal transect that 
spanned the length of each population. A blade was used 
to carefully detach gametophytes that were directly 
attached to rock surfaces or sandy substrates within 
rockshelters. After removal, each sample was trimmed 
to a standardized circle with a 4.5-mm diameter (which 
contained roughly 10–20 individual thalli), and placed 
on an agar medium containing half-strength Murashige 
and Skoog Basal Salt Mixture (Sigma, St. Louis, MO, USA) 
supplemented with 0.5  mL/L plant vitamins, 1.0  mL/L 
Benomyl, titrated to a pH of 6.5 using potassium hydrox-
ide, and solidified with 0.65 % agar (Sigma, St. Louis, MO, 
USA).

After samples were collected from all populations, 
each explant was transferred to a fresh agar plate to min-
imize growth of contaminants. The samples were then 
placed in a Revco RI-50-555-A growth chamber at 20 °C, 
under 0.8  μmol light levels following an 8-h light:16-h 
dark cycle, for seven  months to establish on the agar 
medium and recover from any stressors associated with 

Table  1.  Source population locality information and  summary temperature data for each site. Temperature data were collected within 
populations at each site between 2010 and 2013 (Chambers and Emery 2016). Temperature treatments used in the experiment spanned 
the range of average temperatures experienced by natural populations in the field as well as higher temperatures that are expected by 2100 
under climate change projections. 

Population Range  
location

Coordinates Daily  
average (°C)

Daily  
minimum (°C)

Daily  
maximum (°C)

Cane Creek Nature Preserve (Colbert Co., AL) Southern 34 37.27N 87 47.88W 15.38 14.06 16.77

Jones Property (Transylvania Co., NC) Eastern 35 11.44N 82 42.88W 12.40 11.08 14.17

Pennyrile State Park (Christian Co., KY) Western 37 04.54N 87 39.95W 14.77 13.61 15.99

Hemlock Cliffs (Crawford Co., IN) Central 38 16.38N 86 32.20W – – –

Deep Woods (Hocking Co., OH) Central 39 24.49N 82 34.60W 11.51 10.20 12.78

Rock City Park (Cattaraugus Co., NY) Northern 42 04.79N 78 28.62W 7.74 6.92 8.70

Temperature grand average 11.97 10.81 13.25
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collection. Field measurements indicated that popula-
tions experience light levels between 0 and 5.99 μmol 
m−2 s−1, averaging 0.5  μmol m−2 s−1, and temperatures 
between −3.70 and 27.60  °C (S. M.  Chambers, unpubl. 
data); thus, the growth chamber conditions in which 
explants were maintained fell within the conditions they 
experience in their natural habitat.

Temperature treatments
After transplants had established, we exposed each 
explant to 1 of 10 different temperature treatments and 
measured its response over 22 weeks. Temperatures 
were selected to span the average and maximum tem-
peratures that we had previously measured in each of 
the sampled populations over a 3-year period prior to 
this experiment (6–18 °C, measured between 2010 and 
2013), as well as the elevated temperature levels pro-
jected to occur by the end of the 21st century due to 
global climate change (21–30 °C; IPCC 2013; Table 1). 
Specific temperature level treatments were 6, 9, 12, 
15, 18, 21, 24, 26, 27 and 30  °C. The entire tempera-
ture gradient was replicated in three different growth 

chambers. Temperature was manipulated within each 
chamber placing explants from each population inside 
heated and insulated containers that increased tem-
perature above the base growth chamber temperature 
of 6 °C using seedling heating mats (Fig. 1). One explant 
from every population was exposed to each tempera-
ture treatment in each growth chamber, resulting in 
three replicates of the entire temperature gradient per 
population.

In May of 2013, each explant was transferred from 
the agar medium to a 2.5  ×  1.25  ×  0.5  cm section of 
rockwool, a suitable substrate for propagating V. appa-
lachiana because it resembles the porous sandstone 
that is the natural substrate for most V.  appalachi-
ana populations. Prior to transfer, the rockwool was 
moistened with a liquid nutrient medium (created as 
above without agar; see ‘Sample collection’) to facili-
tate establishment. A  pilot experiment indicated that 
explant performance was greatest when we mini-
mized the fluctuations in relative humidity experienced 
each time a container was opened to collect data. 
Consequently, we standardized the relative humidity 

Figure 1.  Schematic drawing of the experimental design for treatments in which temperatures exceeded 20 °C. Vittaria explants were placed 
on rockwool and arranged on a wire mesh tray. The explants and the wire mesh were placed together in a clear, plastic, polystyrene container 
that contained a sodium chloride salt solution to maintain a consistent humidity level. Each polystyrene box was placed on top of a seedling 
heat mat (Hydrofarm, Inc., Petaluma, CA, USA) that was programmed to a specified temperature, set in a plastic seedling tray and covered 
with a humidity dome (not depicted in this schematic). Each seedling tray, consisting of one temperature treatment, was placed in a hand-
made polystyrene box to insulate the seedling tray to maintain constant temperature conditions. Because the minimum temperature setting 
for the seedling heat mats was 20 °C, temperature treatments of 9, 12, 15 and 18 °C were generated by placing a heat mat set to 20 °C outside 
of the seedling tray and elevating the trays 5, 3, 1 and/or 0 cm, respectively, above a heat mat set to 20 °C. The lowest temperature treatment, 
6 °C, was imposed by placing the tray on a heat mat that was turned off.
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for all explants to 75 %, which was the level maintained 
in the laboratory during the course of the experiment, 
by placing explants on wire trays over a sodium chlo-
ride (NaCl) salt solution inside their container (Fig. 1). 
The 75  % humidity level is slightly lower than levels 
we have measured in the field during daylight hours 
in the summer months, which ranged between 85 
and 95 %, but are likely within levels experienced over 
the course of daily and annual temperature cycles (S. 
M. Chambers, unpubl. data).

One explant from each population was placed in each 
polystyrene container that was wrapped with parafilm 
and placed on a seedling heating mat inside a seedling 
tray. Each seedling tray was placed inside a large insu-
lated polystyrene box and covered with a clear humidity 
dome to help maintain temperature and humidity lev-
els within each treatment (Fig. 1). Sodium chloride salt 
solutions were replaced every 2 weeks to ensure rela-
tive humidity was kept at a constant level. To prevent 
explant dehydration, 500  μL of deionized  water was 
added directly to the rockwool substrate every 2 weeks 
for the duration of the experiment.

We measured explant fitness as (i) explant survival 
(binary yes/no), (ii) lifespan (days) and (iii) changes in 
the area of visible photosynthetically active tissue. Given 
that V. appalachiana only reproduces asexually via the 
production of gemmae along the margins of the gam-
etophyte thalli, the length of time an explant survives 
and thalli surface area together provide an estimate of 
the number of gemmae it produces and therefore serve 
as proxies for fitness. Explant survival and lifespan were 
monitored every 2–3  days for the first 6 weeks of the 
experiment, and once per week for the final 16 weeks. 
During each census date (i.e. the dates when data were 
collected), an explant was recorded as ‘alive’ if any 
photosynthetically active (green) tissue was visible to 
the naked eye. The amount of surface area occupied by 
photosynthetically active tissue was determined from 
digital photographs that were taken of each explant at 
the midpoint (week 9) and end (week 22) of the experi-
ment, thus capturing the change in photosynthetic area 
(PA) over two consecutive time periods. Photographs 
were taken with a Cannon PowerShot® SX130IS placed 
on a ProMaster® 7050 tripod to ensure a consistent 
pixel ratio among images. Using these photographs, we 
calculated PA by outlining photosynthetic tissue using 
GIMP 2.0 (Peck 2008; Solomon 2009), and calculating 
the area using ImageJ (Rasband 1997; Schneider et al. 
2012). Changes in PA during these two time periods 
were calculated for each surviving explant by divid-
ing the difference in PA (current PA − initial PA) by the 
initial PA, where the initial PA was the PA measured at 
the beginning of the experiment. Changes in PA were 

calculated for each explant at the midpoint and end of 
the experiment.

Statistical analyses
Survival.   We tested if variation in survival of V. appala-
chiana experimental explants was explained by popula-
tion identity, temperature treatment and the interaction 
between population and temperature using a general-
ized linear mixed model (PROC GLIMMIX; SAS v. 9.4) with 
a logit link function to account for the binary response 
variable (Liang and Zeger 1986; Ziegler et  al. 1998). 
Temperature was treated as a continuous predictor vari-
able, and source population was treated as a fixed cate-
gorical predictor variable. The temperature × treatment 
interaction was also included in the model. We applied 
a spatial power covariance structure (sppow), specifying 
‘census date’ as the spatial factor and the interaction 
between source population, temperature and growth 
chamber was identified as the ‘subject’ statement in the 
model. A separate random statement was also included 
to specify that growth chamber was a random factor. 
Census date was included in the ‘random’ statement to 
account for repeated measurements.

Lifespan.  The length of time that explants survived 
under the different temperature conditions was evalu-
ated in a mixed-model ANCOVA (PROC MIXED; SAS 
v. 9.4). Lifespan (i.e. the number of days that an explant 
survived under experimental conditions) was evaluated 
as a function of population identity (considered a cate-
gorical variable) and temperature (considered a continu-
ous variable). The population × temperature interaction 
was included in the analysis, and growth chamber was 
included as a random effect.

Changes in PA.   The change in PA ((current PA − ini-
tial PA)/initial PA) was analysed using a mixed-model 
repeated-measures ANOVA (PROC MIXED; SAS v.  9.4). 
We specified an autoregressive covariance structure 
with source population, temperature and time period 
(i.e. first or second half of the experiment) as fixed main 
effects. Growth chamber was treated as a random fac-
tor, and a repeated statement was used to account for 
the two estimates of the change in PA per explant (one 
at the midpoint of the experiment, and one at the end). 
We included all two- and three-way interactions among 
population, temperature and time period in the model. 
We included time period as a main effect to test if the 
change in PA differed significantly between the first and 
second time period of the experiment, while simultane-
ously accounting for the non-independence of repeated 
measures on the same explant. Tukey tests were used to 
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conduct pairwise comparisons of statistically significant 
main effects.

Pairwise comparisons of thermal performance curves.  
We evaluated population differences in thermal response 
curves by calculating the offset, slope, curvature, wig-
gle and total parameters for continuous reaction norms 
as defined by Murren et al. (2014). Four of these metrics 
(offset, slope, curvature and wiggle) partition the total vari-
ation that exists between a pair of thermal performance 
curves (TPCs) and the total metric represents the sum of 
those differences. For all metrics, smaller values indicate 
greater similarity. The metrics offset and slope are the 
most similar to traditional linear models and comparisons 
of performance curves, while curvature and wiggle repre-
sent higher-order statistical comparisons between perfor-
mance curves. Therefore, estimates of slope and wiggle for 
population pairs may reveal microevolutionary variation in 
reaction norms that are otherwise obscured using tradi-
tional linear analyses (Murren et al. 2014). Each metric was 
calculated separately for each measurement of explant 
performance (survival, lifespan, changes in PA), as follows:

The offset represents the average difference in perfor-
mance between a pair of populations in any treatment, 
and is calculated as:

Offset
D

n
i

n

= å  1

where D represents the difference in mean performance 
in treatment i, and n is the total number of treatments 
(here, n = 10).

The slope parameter calculates the average change 
in D from treatment i to i + 1 (e.g. between 6 and 9 °C):

Slope
S

n
i

n

=
-

-å1

1

1

where Si = Di+1 – Di.
Curvature is the average change in slope across 

treatments:

Curvature C
C

n
i

n

= =
-

-å1

2

2

where Ci = Si+1 – Si.
Wiggle captures any remaining variation in the com-

parison of two performance curves, and is calculated 
as the sum of the absolute value of the change in slope 
after removing the estimate of curvature:

Wiggle C
C

n
i

n

=
-

-å | |
1

2

2
−

A final metric, Total, summarizes the cumulative dif-
ferences between two tolerance curves, as estimated by 
the other four metrics:

	 Total O S C W= + + +

To facilitate comparisons among population pairs that 
varied in overall performance, each metric was stand-
ardized by dividing the estimated value for offset, slope, 
curvature, wiggle and total by the grand mean perfor-
mance measure of both populations in each pairwise 
comparison. Calculations for these equations were con-
ducted using the base package in R (R Core Team 2014).

Results
Survival
Survival rates differed significantly across temperature 
treatments (Temperature, Table 2; Fig. 2A), among popula-
tions (Population, Table 2; Fig. 2B), and with respect to pop-
ulations within each temperature treatment (Temperature 
* Population, Table  2). Overall survivorship was highest 
at temperatures below 15 °C and lowest at 15 and 24 °C 
(Fig.  2A). Explants from Kentucky (KY) had significantly 
higher survivorship than all other populations followed by 
New York (NY), which had significantly higher survivorship 
than Alabama (AL) and North Carolina (NC) (Fig. 2B).

Lifespan
The overall mean lifespan of explants during the experi-
ment was ~86 days. Explants exposed to temperatures 
of 15  °C or higher survived roughly a month less than 
explants grown at cooler temperatures (Fig. 3A), lead-
ing to an overall significant effect of temperature on 
lifespan (Temperature, Table 2). The length of time that 
explants remained alive did not vary significantly among 
populations overall (Population, Table 2; Fig. 3B), and the 
effects of the temperature treatments were relatively 
consistent among populations (see non-significant 
Temperature × Population interaction, Table 2).

Changes in PA
We observed a significant increase in the rate of decline 
in explant PA with increasing temperature (Table  2; 
Fig. 4A), and the total reduction in PA varied significantly 
among source populations (Population, Table  2), with 
Kentucky (KY) retaining the greatest amount of PA and 
Alabama (AL) losing the most, on average, over all tem-
perature treatments and the two time periods (Fig. 4B). 
The effect of temperature varied significantly between 
the first and second time periods (Temperature × Time 
period interaction, Table 2), and explants lost PA faster 
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in the first time period (Time period, Table 2). The change 
in PA for all remaining factors and interactions in the 
model were not statistically significant (Table 2).

Pairwise comparisons of thermal 
performance curves
Overall patterns in the cumulative differences between 
performance curves (total) indicated that Indiana (IN) 
and North Carolina (NC) had the most similar TPCs while 
New York (NY) and Indiana (IN) exhibited the greatest 
differences in all three measures of explant performance 
[see Supporting Information—Table S1a–c]. Additional 
differences among populations emerged when the 
four Murren metrics—offset, slope, curvature and wig-
gle—were individually examined. The mean difference 
in explant performance (offset) for all three explant 
performance metrics was greatest between explants 
from New York (NY) and Indiana (IN) [see Supporting 

Information—Table  S1a–c]. On the other hand, the 
average change in mean performance between tem-
perature steps (slope) was greatest between Ohio (OH) 
and Alabama (AL) for survival, Ohio (OH) and Indiana 
(IN) for lifespan, and New York (NY) and Indiana (IN) for 
change in PA [see Supporting Information—Table S1a–
c]. We detected a relatively large degree of dissimilarity 
between Alabama (AL) and Indiana (IN) in curvature and 
wiggle when lifespan was used as the measure of perfor-
mance [see Supporting Information—Table  S1b], but 
no clear patterns emerged for these two metrics when 
examining survival and change in PA [see Supporting 
Information—Table S1a and c].

Discussion
Our results indicate that patterns of population differen-
tiation in V. appalachiana that had been previously docu-
mented in the field and physiological studies (Chambers 
and Emery 2016; Chambers et al. 2017) are not driven by 
population variation in temperature tolerances. These 
previous studies detected a pattern of countergradient 
variation (Conover and Schultz 1995) in V. appalachiana 
in which explants from New York outperformed all other 
populations over much of the species’ geographic range. 
However, the results from this experiment suggest that 
in general populations have very similar temperature 
tolerance curves, with explants from Kentucky (KY) hav-
ing higher survivorship and PA retention than several 
other populations (Figs 2B and 4B). The Murren metrics 
identified more subtle differences between specific pop-
ulation pairs that were not evident in the linear analy-
ses, though the nature of these differences depended on 
the performance metric that is analysed. For example, 
estimates of curvature and wiggle detected the greatest 
difference between explants from Alabama and Indiana 
with respect to lifespan, suggesting that there may be 
slight differences in the effects of temperature variation 
on explant longevity between these two populations 
[see Supporting Information—Table S1b]. Nonetheless, 
only faint patterns of population differentiation in ther-
mal performance emerged in V.  appalachiana using 
both traditional linear analyses and higher order com-
parisons, suggesting that TPCs are relatively conserved 
within this species even though its populations span a 
relatively broad latitudinal range in North America.

The significant differences we detected among popu-
lations in the TPCs for explant survival and change in PA 
appeared to be driven by two populations, Kentucky (KY) 
and New York (NY). All other populations exhibited simi-
lar TPCs across the temperature gradient tested here, 
suggesting that temperature variation has not driven the 
patterns of population differentiation previously detected 

Table  2.  Statistical results of all analyses evaluating explant 
performance from six different populations across 10 temperature 
treatments. The ‘test statistic value’ column reports F statistics for 
the main effects in the survival, lifespan and PA analyses. For the 
latter two analyses, test statistic values for growth chamber are 
reported as Z statistics because this factor was a random effect. 
Subscripts identify the numerator and denominator degrees 
of freedom where appropriate. P-values that were statistically 
significant are indicated with bold text.

Factor Test statistic  
value

P-value

Survival

  Temperature 49.101, 4488 0.0004

  Population 4.525, 4488 <0.0001

  Temperature * Population 3.105, 4488 0.0086

Lifespan (days)

  Temperature 17.801, 166 <0.0001

  Population 0.775, 166 0.5749

  Growth chamber 0.722 0.2353

  Temperature * Population 0.705, 166 0.6250

PA

  Temperature 31.611, 330 <0.0001

  Population 3.145, 330 0.0087

  Time period 94.801, 330 <0.0001

  Growth chamber 0.792 0.2147

  Temperature * Population 1.775, 330 0.1178

  Temperature * Time period 29.061, 330 <0.0001

  Population * Time period 1.775, 330 0.1177

  Temperature * Population * Time period 0.885, 330 0.4978
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in field transplant experiments (Stevens and Emery 2015; 
Chambers and Emery 2016). It is possible that the pre-
viously detected patterns of population differentiation 
have been driven by factors other than mean tempera-
ture that are known to vary across the species’ range, 
such as relative humidity levels (Chambers et al. 2017). 
Responses to dry conditions share a metabolic pathway 
with responses to cold temperatures, such that organ-
isms that can tolerate colder temperatures can also tol-
erate lower levels of relative humidity (Knight and Knight 
2001; Sinclair et al. 2013). Therefore, if we had examined 
population responses to low temperatures, perhaps we 
would have identified the same pattern of differentiation 
that had been documented in field studies. While the 

high overall levels of senescence that we observed could 
generate concern that the experimental environment 
was unusually stressful for the explants, these levels of 
senescence are actually relatively typical for this species. 
A previously conducted reciprocal transplant experiment 
indicated similar patterns of senescence among gameto-
phytes transplanted back in to their home environment 
(Chambers and Emery 2016). Additional work conducted 
some 40 years ago also comments on the overall slow 
growth rate (Farrar 1978). Thus, the senescence rates 
observed here are not far from the norm with respect to 
experiments in this species.

It is quite possible that the biogeography and his-
tory of selection in V.  appalachiana can largely explain 

Figure 2.  (A) The proportion of individuals surviving in each temperature treatment averaged across all source populations and census dates. 
Data represent raw means ± 1 SE. (B) The proportion of individuals from each population surviving, averaged across all temperature treat-
ments and census dates. Data shown are raw means ± 1 SE.
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the surprisingly similar thermal responses we observed 
among widely distributed populations. Vittaria appa-
lachiana was likely once widespread in eastern North 
America, fully capable of producing a sporophyte when 
the climate resembled that of the contemporary neo-
tropics prior to the Pleistocene glaciations (Farrar 1998). 
It is thought that V.  appalachiana retreated into the 
rockshelters at that time to escape the cold climates 
of the Pleistocene glacial period. Selection during this 
time period may also have favoured the obligate gam-
etophyte life history strategy because the sporophyte 
may have been less tolerant of cold temperatures (Farrar 
1998). These pressures would have been imposed on all 
populations, and the loss of the sporophyte generation 
and highly fragmented distribution left these popula-
tions with no potential for sexual reproduction and lit-
tle potential for gene flow. As a result, there is little 

opportunity for adaptive genetic variation to arise in 
these populations, highly restricting their potential for 
adaptive differentiation. Furthermore, the buffered cli-
mate within rocksehlters may limit the extent to which 
populations experience temperature variation occurs 
across their geographic range. Under this biogeographic 
hypothesis, differences observed in the previous field 
studies are more likely due to genetic drift among popu-
lations that established in the Pleistocene rather than 
patterns of local adaptation to contemporary environ-
mental conditions.

While our results did not find strong evidence for adap-
tive differentiation among populations in their TPCs, we 
certainly observed that the species as a whole is highly 
sensitive to the temperature gradient that was experi-
mentally imposed. All populations exhibited a decline 
in performance in temperatures above 12  °C for all 

Figure 3.  (A) The lifespan, or number of days that explants remained alive in each temperature treatment, averaged across all populations 
(raw means ± 1 SE). (B) Mean lifespan for explants from each source population, averaged across all temperature treatments. Data shown 
are raw means ± 1 SE.
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performance metrics (Figs 2A, 3A and 4A). Previous stud-
ies have found that 15 and 18 °C are the highest average 
and maximum temperatures known to occur in natural 
populations (Table 1; Chambers and Emery 2016); thus, 
12–15 °C may represent a critical species-wide tempera-
ture threshold for V.  appalachiana. The experimental 
temperatures that represented climate change scenar-
ios (i.e. 21, 24, 26, 27 and 30 °C) resulted in rapid explant 
deterioration and senescence. The clear negative effects 
of temperatures above the 15  °C threshold for all pop-
ulations indicate that many, if not all, populations of 
V. appalachiana will be pushed beyond their physiological 
tolerance limits as temperature rapidly increases due to 
global climate change (IPCC 2013). Transplant experi-
ments beyond V. appalachiana’s northern range bound-
ary have shown that suitable habitat exists at higher 
latitudes but has not been colonized due to the highly 

limited dispersal potential of the species (Stevens and 
Emery 2015). Just as the lack of sexual reproduction and 
inability to disperse may have restricted the potential for 
populations to adapt to their local temperature regimes, 
these characteristics will also likely restrict the poten-
tial for rapid adaptive evolution in response to changing 
thermal environments. Management practices that aim 
to conserve this species, and others that are dispersal 
limited, asexual and physiologically sensitive to climate, 
may be required to use assisted migration techniques, 
which would facilitate the colonization of suitable habi-
tat that becomes available as climate change unfolds.

Conclusions
The results of this study indicate that the thermal perfor-
mance curves of V. appalachiana populations are highly 

Figure 4.  (A) Mean change in PA (current PA − initial PA/initial PA) for each temperature treatment averaged across all humidity treatments 
and source populations (raw means ± 1 SE). (B) Mean change in PA for each source population, averaged across all temperature treatments 
(raw means ± 1 SE). In all panels, a smaller reduction in PA indicates a larger amount of initial PA remaining. In both panels, values around 
−0.5 indicate that nearly half of the PA was lost, while those closer to −1 indicate nearly all of the PA was lost.
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conserved despite a relatively broad latitudinal range 
occupied by the species. This suggests that adaptive 
variation may not arise and spread in taxa with limited 
potential for gene flow within and among populations. 
Our results also highlight the importance of examining 
different aspects of reaction norm shapes to uncover 
differences not captured by traditional reaction norm 
comparisons.
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