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Topological solitons are knots in continuous physical fields classified by nonzero Hopf index values.
Despite arising in theories that span many branches of physics, from elementary particles to condensed
matter and cosmology, they remain experimentally elusive and poorly understood. We introduce a method
of experimental and numerical analysis of such localized structures in liquid crystals that, similar to the
mathematical Hopf maps, relates all points of the medium’s order parameter space to their closed-loop
preimages within the three-dimensional solitons. We uncover a surprisingly large diversity of naturally
occurring and laser-generated topologically nontrivial solitons with differently knotted nematic fields,
which previously have not been realized in theories and experiments alike. We discuss the implications
of the liquid crystal’s nonpolar nature on the knot soliton topology and how the medium’s chirality,
confinement, and elastic anisotropy help to overcome the constraints of the Hobart-Derrick theorem,
yielding static three-dimensional solitons without or with additional defects. Our findings will establish
chiral nematics as a model system for experimental exploration of topological solitons and may impinge on
understanding of such nonsingular field configurations in other branches of physics, as well as may lead to
technological applications.
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I. INTRODUCTION

When proposing one of the early models of atoms,
Kelvin and Tait considered knotted vortices as candidates
and attempted to explain the diversity of chemical elements
in the periodic table as that arising from a large variety of
knots, giving origin to the modern field of mathematical
knot theory [1–3]. Even before them, Gauss envisaged that
spatially localized knots in physical field lines, such as
magnetic or electric field lines, could behave like particles
[1], provided that the crossing of the field lines is prevented,
say, due to energetic reasons. Hopf later rigorously dem-
onstrated that, indeed, interknotted closed loops could be
smoothly embedded in a uniform far-field background,
introducing the celebrated mathematical Hopf fibration
[1,3,4]. Finkelstein applied these mathematical concepts
and Hopf mappings to three-dimensional (3D) physical

fields [5], so that the 3D topological solitons based on them
subsequently started attracting interest (mostly theoretical)
in many branches of physics [6–22]. However, the exper-
imental realizations and demonstrations of topological
solitons with knotted field lines typically deal only with
transient phenomena and out-of-equilibrium systems or are
accompanied by observation of additional defects [3,6–22],
and their detailed explorations are often hindered by the
need of 3D spatial imaging of the physical fields. More-
over, according to the Hobart-Derrick theorem [7,8],
physical systems cannot host the static 3D solitons in
continuous fields described within the simplest field
theories because of energetic reasons, except for within
the nonlinear theories with higher-order derivatives, such as
the Skyrme-Faddeev model [6,9,10]. Thus, not surpris-
ingly, the challenge of reliable experimental realization and
robust control of topological solitons persisted for decades.
Since the 3D topological solitons smoothly embed into

the uniform far-field background, their solitonic field
configurations in the 3D space can be effectively “com-
pactified” to a three-sphere S3 and the field topology is then
characterized by the S3 → S2 maps, bringing about the
beautiful analogy with the famous mathematical Hopf
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and Seifert fibrations [1,3,4]. Within the homotopy theory
classification of topological defects, the 3D solitons in
vector fields, with a two-dimensional sphere S2 as the
ground-state manifold, belong to the third homotopy group
π3ðS2Þ ¼ ℤ and are classic examples of nonsingular
topological defects. In the nonpolar systems with line
fields, such as the director field in nematic liquid crystals
(LCs) [23] that describes the spatial changes of the local
average orientation of rodlike molecules, the ground-state
manifold is a projective plane RP2 (or, equivalently, the
sphere with antipodal points identified, S2=Z2), so that
the corresponding 3D topological solitons are labeled as
π3ðRP2Þ ¼ ℤ or π3ðS2=Z2Þ ¼ ℤ [14,22,23]. An intriguing
and important feature of these topological solitons is that
they have closed-loop preimages (regions within the 3D
sample that have the same orientation of the physical field)
corresponding to all points of the order parameter space
(e.g., S2 for the vector fields) and that each two distinct
preimages are linked with each other an integer number of
times. This linking number is the so-called Hopf index
topological invariant Q characterizing the topology of the
3D topological solitons.
The scientific and technological potential of 3D topo-

logical solitons can be appreciated by considering the
recent advances in the studies of their two-dimensional
counterparts called “Skyrmions” or “baby Skyrmions”
[24–30], which belong to the second homotopy group
π2ðS2Þ ¼ ℤ. Being a subject of purely theoretical studies a
decade or so ago [24], they have been recently successfully
realized in experimental systems, both in the form of
isolated individual solitons and as novel phases with arrays
of such solitons in the ground state [25–30]. These
Skyrmions have attracted a great deal of fundamental
interest and define foundations for Skyrmionics and other
emerging technologies [25–30], albeit their experimental
study is still largely restricted to chiral condensed matter
systems such as noncentrosymmetric ferromagnets and
chiral nematic LCs [29,30]. One condensed matter system
that has been considered for experimental realization of the
3D topological soliton structures with nonzero Hopf index
values is a cholesteric LC. Short-pitch cholesteric LCs are
topologically similar to the still elusive biaxial nematic LCs
[31,32] and are characterized by three mutually orthogonal
nonpolar director fields [23]. Some of the transient local-
ized director structures from experimental observations
[33] could be potentially interpreted as being nonsingular
in one of these three director fields while also having
nonzero Hopf invariants [31], albeit unambiguous demon-
stration of this topological nature of such structures
remained impossible due to the lack and limitations of
3D director field imaging capabilities. Furthermore, such
localized field configurations were found only as transient
structures [33] and could be potentially nonsingular only in
one out of the three director fields of this rather complex
condensed matter system [31–33], thus being only loosely

related to the hopfions envisaged to exist in many other
branches of physics [9,10], albeit realization of various
localized structures in biaxial condensed matter systems
is also of great fundamental interest [23,34]. With the
advent of 3D director imaging capabilities [13,14,35], the
reconstruction of complex field configurations became
possible, but only a small variety of spatially localized
3D solitonic structures have been found so far in LCs
and chiral ferromagnets [13,14,22,36–40]. Furthermore,
the understanding of topology, structural diversity, and
physical underpinnings behind the stability of such 3D
solitons is still limited and calls for new experimental and
theoretical approaches in their exploration. Most impor-
tantly, there is a need for the direct experimental charac-
terization of linking of preimages and Hopf indices
corresponding to different 3D solitonic structures.
In this work, we introduce a method of direct exper-

imental and numerical characterization of preimages of the
3D solitons. We then realize and study a series of stationary
3D solitons in a confined chiral nematic LC [23] with the
nonpolar director fieldnðrÞ describing spatial changes of the
local average molecular alignment direction of the constitu-
ent rod-shaped molecules. By using a combination of a
direct 3Dnonlinear optical imaging and numericalmodeling
through minimization of the free energy that both yield
3D nðrÞ spatial patterns, we construct the soliton preimages
corresponding to all distinct points of the order parameter
space. From a large variety of experimentally realized
solitonic structures, we focus on solitons with interlinked
preimages in the form of closed loops. These solitons are
characterized by preimage linking numbers and the corre-
sponding nonzero topological Hopf index invariants Q,
different from the 3D localized field configurations of
elementary torons with Q ¼ 0 that we studied previously
[13]. Numerical modeling provides insight into the role of
the medium’s chirality, confinement, and elastic constant
anisotropy in enabling the stability of these 3D solitons. We
discuss how a combination of these factors helps to over-
come the constraints of the Hobart-Derrick theorem [7,8]
and howour findingsmayprovide insights into the prospects
of obtaining stable topological solitons in other branches of
physics, both within condensed matter and well beyond it.
Furthermore, the experimental platform we develop may
lead to technological applications building on the particle-
like nature of topological solitons aswell as to the realization
of topological solitonic condensed matter phases.

II. THEORETICAL FOUNDATIONS

A. 3D soliton topology

The ground-state manifold of a physical system with a
characteristic vector quantity as an order parameter, such as
the magnetization in a ferromagnet, is a two-dimensional
unit sphere S2. An important property of the π3ðS2Þ ¼ ℤ
topological solitons with nonzero Hopf invariant, such as
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FIG. 1. 3D topological solitons in chiral nematic LCs. (a)–(c) Examples of closed-loop preimages of 3D topological solitons
corresponding to (a) the two distinct points on S2 (shown using cones) for vectorized nðrÞ and (b), (c) two distinct points on S2=Z2 and
nonpolar nðrÞ, with the ground-state manifold S2=Z2 depicted as a sphere with diametrically opposite points identified through coloring
and making the n and −n orientations nondistinguishable. Note that the diametrically opposite points in (b) appear simultaneously, so
that the two points on S2=Z2 are four points on S2 for the vectorized director field. (d), (e) Illustrations of Hopf maps of closed-loop
preimages of 3D topological solitons embedded in a uniform far-field n0 onto the (d) S2 ground-state manifold for vectorized nðrÞ and
(e) S2=Z2 order parameter space of the LC for nonpolar nðrÞ. The schematics show linking of the hopfion’s circlelike preimages that
reside on nested tori in the sample’s 3D space and correspond to color-coded points (cones) on S2 or S2=Z2. (f),(g) Polarizing optical
micrographs of the studied localized field configurations coexisting within the same LC sample. The images are obtained between
crossed polarizers (white double arrows). The green circles with crosses visible in the micrographs show locations of “invisible” infrared
laser traps used to manipulate the naturally occurring localized field configurations. The micrographs are obtained for a 5CB-based
partially polymerizable nematic LC mixture with chiral additive cholesteryl pelargonate, d ¼ 10 μm, and d=p ∼ 1.
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hopfions, is that the preimages of all points on S2 are closed
loops [Fig. 1(a)], which are topologically equivalent to
one-spheres S1. A preimage of the north pole point of S2

closes into an S1-like loop through infinity and is typically
associated with a uniform far-field background embedding
the soliton. The Hopf index invariant can be determined as
the linking number of any two preimages of two distinct
points on S2 and also describes how many times S2 is swept
in the process of mapping the vector field from the 3D
space of the soliton (and the corresponding S3) to S2. The
topological Hopf index of a soliton is commonly found as
the linking number Q ¼ ΣC=2 of preimages of any two
distinct points on the target S2 (Fig. 1) in the case of
vectorized nðrÞ, where the sign of crossings C ¼ �1
depends on the directions of consistently determined
circulations of the soliton’s preimages. In the case of
nematic LCs with nonpolar symmetry of the director field
nðrÞ≡−nðrÞ, the ground-state manifold S2=Z2 is a sphere
with the diametrically opposite points identified. The
implication of the LC’s nonpolar symmetry is that the
preimages with all single orientations of nðrÞ cannot be
distinguished from those with −nðrÞ [Fig. 1(b)]. Since the
director field can be vectorized and since there is a theorem
stating that all nonsingular π3ðS2=Z2Þ structures in the
director field are also nonsingular in the two collinear
mutually opposite vector fields decorating it [31], it is often
possible to determine the Hopf index invariant from the
linking of the two closed loops of a single preimage
corresponding to a single point on S2=Z2 [which would
correspond to the preimages with two single orientations n
and −n in the antiparallel vector fields decorating the
director field, as shown in Fig. 1(b)]. To explore the
implications of the nonpolar nature of the director field
nðrÞ on the 3D soliton topology and to compare the
solitons in director and vector fields, we use a color scheme
for S2=Z2 that is consistent with the identification of its
diametrically opposite points [Fig. 1(c)]. We illustrate
the spatial pattern of the director with the help of appro-
priately colored double cones [Fig. 1(c)], as opposed to the
single cones that we use for visualizing vectors and the
vectorized nðrÞ.
The 3D space within a topological soliton is smoothly

filled with closed-loop preimages that reside on nested tori
[Figs. 1(d) and 1(e)]. For the elementary solitons in vector
fields or in vectorized nðrÞ [Fig. 1(d)], the torus circular
axis and the far-field background correspond to the south
pole and the north pole of S2, respectively. In the case of a
director field nðrÞ≡−nðrÞ with a nonpolar nature, both
the far-field and the circular axis of the soliton have the
same up-down orientation parallel to the vertical z axis
[Fig. 1(e)]. For the simplest solitons, the topological Hopf
invariant Q can be found as a linking number of preimages
of any two distinct points on S2 [Fig. 1(d)] in the case of
vectorized nðrÞ or, equivalently, as the linking number of
two loops that comprise a preimage of a single point on

S2=Z2 in the case of analyzing the nonpolar nðrÞ≡−nðrÞ
field [Fig. 1(e)]. However, we also show that there are
more complex solitons that require a detailed analysis of
preimages with complex linking.

B. Free energy and stability

For chiral nematic LCs with helicoidal pitch p, the
elastic free-energy cost for producing spatial deformations
of nðrÞ reads [13,23]

F ¼
Z

dr

�
K11

2
ð∇ · nÞ2 þ K22

2
½n · ð∇ × nÞ�2

þ K33

2
½n × ð∇ × nÞ�2 þ K22q0n · ð∇ × nÞ

− K24f∇ · ½nð∇ · nÞ þ n × ð∇ × nÞ�g
�
; ð1Þ

where q0 ¼ 2π=p characterizes the LC chirality and the
Frank elastic constants K11, K22, K33, and K24 describe the
energetic costs of the splay, twist, bend, and saddle-
splay elastic deformations, respectively [23]. Within the
K ¼ K11 ¼ K22 ¼ K33 one-constant approximation and
while neglecting the energetic cost due to the saddle-splay
term and constant terms, Eq. (1) reduces to the form

F ¼
Z

dr½Jð∇nÞ2 þDn · ð∇ × nÞ�; ð2Þ

where J ¼ K=2 and D ¼ Kq0. The free energy within the
one-constant approximation is analogous to one of the
most common forms of the Hamiltonian describing solid-
state chiral ferromagnets, where coefficients J andD in this
case describe the strengths of exchange energy and the
Dzyaloshinskii-Moriya coupling, respectively [23,24,41].
In the case of D ¼ 0 (for the nonchiral systems), Eq. (2)
further reduces to the Hamiltonian in a form that was
considered by Hobart and Derrick [7,8] to demonstrate
instability of the localized nonsingular 3D field configu-
rations within such a model. For the solitons to be stable in
chiral nematic LCs, they need to emerge as local or global
minima of the free energy given by Eqs. (1) and (2) [23]. In
addition to chirality, which tends to stabilize the twisted
solitonic structures and may help to overcome the con-
strains of the Hobart-Derrick theorem [7,8], the anisotropy
of elastic constants in Eq. (1), confinement, and the surface
anchoring at confining surfaces may serve a similar role.
Chiral nematic LCs are dielectric and diamagnetic materials
that respond to external fields to minimize the correspond-
ing terms of the free energy. For example, in the case of
the applied electric fields, Eqs. (1) and (2) need to be
supplemented by adding the corresponding electric field
coupling term of the free energy,
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Felectric ¼ −ðε0Δε=2Þ
Z

ðE · nÞ2dV; ð3Þ

where E is the applied electric field, ε0 is the permittivity
of free space, and the dielectric anisotropy Δε can be both
positive and negative, depending on the LC material
system. This coupling term can potentially also promote
stabilization of solitonic structures.
The analytical treatment of Eqs. (1) and (2) from the

standpoint of view of stability of complex 3D solitonic
structures is prohibitively difficult, especially when sup-
plemented by field coupling terms such as the one given
by Eq. (3), and we therefore resort to the numerical
minimization of free energy to arrive at a host of field
configurations corresponding to local and global energy
minima. We note that the free energy of chiral nematic LCs
could also be described within the Landau–de Gennes
tensorial approach [23,42], which is a method of choice in
the cases of structures with singular line defects [42,43], but
the Frank-Oseen free-energy description is more suitable
for modeling nonsingular field configurations such as the
hopfions as well as torons with the additional point
singularities [13]. This approach not only allows us to
do the full treatment of anisotropic elastic properties of
LCs, explore the implications of the one-constant approxi-
mation and the relevance to systems such as chiral
ferromagnets, but also to operate with large sizes of grids
and samples in the numerical modeling, which is critically
important for elucidating the numerical results we present.
Furthermore, this Frank-Oseen approach and modeling
based on Eqs. (1) and (2) also allow us to better connect
our work to the efforts of observing topological solitons in
other branches of physics.

III. MATERIALS AND METHODS

A. Materials and sample preparation

To assure a broad impact of our work and its accessibility
to other researchers, we use commercially available LC
materials pentylcyanobiphenyl (5CB, Frinton Laboratories,
Inc.) and ZLI-2806 (EM Chemicals). To obtain chiral
nematic LCs, these nematic hosts are doped with small
amounts of chiral additives, either the left-handed dopant
cholesteryl pelargonate (Sigma-Aldrich) or the right-
handed chiral dopant CB-15 (EM Chemicals). The chiral
additive is added to the nematic host at a weight fraction
calculated as c ¼ ðξ · pÞ−1, allowing us to define the
helicoidal pitch p of the ensuing chiral LC, where ξ is
the helical twisting power of the additive in the nematic
host [30,36]. The obtained equilibrium pitch value is then
probed using the Gradjean-Cano method [13,22]. In addi-
tion, a polymerizable nematic mixture of 5CB (69%) with
12% of RM-82 and 18% of RM-257 reactive diacrylate
nematics and 1% Irgacure 184 photoinitiator (all from
CIBA Specialty Chemicals) [38] is also doped with the

same two chiral agents to obtain partially polymerizable
chiral nematic LCs. The initial powder mixture is first
dissolved in dichloromethane to homogenize, kept at an
elevated temperature of 85 °C for 1 day to remove the
solvent, and cooled down to obtain the final chiral nematic
mixture. We optimize the polymerization process by using
relatively low-light exposures for cross-linking of the
cholesteric films, so that the 3D structures of torons and
hopfions can be “frozen” by polymerization in a solid film
without altering their director configurations [38]. The
polymerization is achieved using relatively weak ultraviolet
exposure by means of a homebuilt setup with a 20 W
mercury bulb (obtained from Cinch) [38]. The unpolymer-
ized 5CB within this partially cross-linked system is
partially removed by addition of isopropanol and sub-
sequently replaced with immersion oil. This allows us to
reduce the medium’s effective birefringence by about an
order of magnitude (estimated to be ≈0.02) without
disrupting the director structure of this partially polymer-
ized sample [38], which is key for the mitigation of
depolarization and defocusing effects during the polarized
nonlinear optical imaging described below [13,38].
Chiral LC samples with uniform far-field director n0

orientation are prepared by sandwiching the LC mixtures
between glass plates with well-defined perpendicular
(homeotropic) surface boundary conditions [13]. The thin
(150-μm) or thick (1-mm) glass substrates forming cells are
treated with a homeotropic polyimide SE1211 (obtained
from Nissan Chemicals). The preparation of these align-
ment layers involves spin coating the polyimide on sub-
strates at 2700 rpm for 30 s and then baking it for 5 min at
90 °C, followed by additional baking for 1 h at 180 °C. This
treatment sets the strong perpendicular boundary condi-
tions for nðrÞ at the LC-glass interface. LC cells with gap
thickness d ¼ 5–50 μm are produced using glass micro-
spheres of the corresponding diameter or Mylar films of
corresponding thickness interspacing the glass substrates.
In some cases, wedge-shaped cells with small dihedron
angles ∼2° are prepared and studied for a detailed explora-
tion of the effects of cell thickness d relative to p on the
soliton stability. To avoid nematic flow-induced alignment
effects, the cells are filled at an elevated temperature, right
above the LC-isotropic transition, and then cooled down
to the room-temperature LC phase. The 3D solitons of
different types sometimes appear during the temperature
quench from isotropic phase spontaneously, but can also be
generated and robustly controlled using laser tweezers
when in the LC phase, as we discuss below.

B. Nonlinear optical imaging of preimages

The experimental identification of 3D topological sol-
itons relies on the analysis of preimages constructed on the
basis of the nonlinear optical imaging of nðrÞ within these
structures. This imaging is performed using a three-photon
excitation fluorescence polarizing microscopy (3PEF-PM)
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setup built around a IX-81 Olympus inverted optical micro-
scope [37,38]. The polarized self-fluorescence from the LC
molecules is detected within the 400–450-nm spectral range
and excited through a process of three-photon absorption
using a Ti:sapphire oscillator (Chameleon Ultra II,
Coherent) operating at 870 nm with 140-fs pulses at a
repetition rate of 80 MHz. The 3PEF-PM signal is collected
through an oil-immersion 100× objective with numerical
aperture NA ¼ 1.4 and detected by a photomultiplier tube
(H5784-20, Hamamatsu). We scan the excitation beam
through the sample volumewith the help of Galvanomirrors
(in lateral directions) and a stepper motor (across the sample
thickness) and record the 3PEF-PM signal as a function of
coordinates, which is then used to construct 3D images by
means of the ParaView software (freeware obtained from
KitwarePublic). The linear polarization of the excitation
beam is controlled using a polarizer and a rotatable half-
wave retardation plate. The detection channel utilizes no
polarizers. The 3PEF-PM intensity scales as∝cos6ψ , where
ψ is the angle between nðrÞ and the excitation beam’s linear
polarization (assumed to remain unchanged despite the
beam focusing through dielectric interfaces and the weakly
birefringent LC medium, with the sample design minimiz-
ing these changes), and is used to reconstruct the 3D nðrÞ
patterns [35,38].
The reconstruction of the 3D solitonic nðrÞ structures

takes advantage of the self-fluorescence patterns obtained
at different polarizations of excitation light, as described
elsewhere [30,35–38]. In order to eliminate the ambiguity
between the two possible opposite nðrÞ tilts in the analysis
of 3D images, additional cross-sectional 3PEF-PM images
are obtained at orientations of the LC cell’s normal tilted by
�2° with respect to the microscope axis for linear polar-
izations of excitation laser light parallel or perpendicular to
the plane of the corresponding vertical cross-sectional
image. The nðrÞ tilt ambiguity is then eliminated based
on the ∝cos6ψ scaling of the 3PEF-PM signal and the
ensuing spatial changes of intensity prompted by the �2°
tilts. To further narrow the angular sector of n orientations
corresponding to preimages of points on S2=Z2 with target
azimuthal angles φ, we each time obtain three 3D images
with azimuthal orientation of the linear polarization of
excitation beam at φ and φ� 3°. These 3D images are
smoothed using MATLAB-based software and then used in a
differential analysis to improve orientational resolution to
better than �3°. Consistent with the nonpolar nature of
nðrÞ and the ground-state manifiold of the LC [23], this 3D
imaging yields preimages corresponding to a single point
on S2=Z2 (without distinguishing the n and −n orienta-
tions). These experimentally reconstructed nðrÞ patterns
can be vectorized by exploiting the continuity of the
director field, which is done for some types of analysis
that we perform. To further probe the topology of 3D
solitons with nonzero Hopf indices, we then use an
experimental procedure equivalent to the mathematical

Hopf mapping [Figs. 1(d) and 1(e)] in order to relate all
interlinked closed-loop preimages in the LC sample’s
volume with all corresponding distinct points on S2=Z2.
This new approach allows us to experimentally probe
linking of preimages within the 3D solitons and determine
their Hopf indices, revealing a surprisingly large variety
of topological solitons described below. The 3D nonlinear
optical imaging is supplemented by conventional polariz-
ing optical microscopy observations in the transmission
mode by using the same multimodal imaging setup built
around the IX-81 Olympus inverted microscope (part of the
3PEF-PM setup described above) and a charge coupled
device camera (Flea, PointGrey).

C. Laser tweezers and optical
generation of solitons

To reliably control their topology, the 3D solitons are
generated with optical tweezers. This optical generation
utilizes an ytterbium-doped fiber laser (YLR-10-1064,
IPG Photonics, operating at 1064 nm) and a phase-only
spatial light modulator (P512-1064, Boulder Nonlinear
Systems) integrated into a holographic laser tweezers setup
capable of producing arbitrary 3D patterns of laser light
intensity within the sample [13,22,30]. The laser tweezers
are also integrated with the 3D imaging setup described
above [30], enabling fully optical generation, control, and
nondestructive imaging of the solitons. The physical mecha-
nism behind the laser generation of solitons is the optical
Fréedericksz transition, the realignment of the LC director
away from the far-field backgroundn0 caused by its coupling
to the optical-frequency electric field of the laser beam,
which is described by a corresponding term of free
energy [13], similar to that given by Eq. (3) and discussed
above for the case of low-frequency electric fields.
This coupling, enriched by holographically generated pat-
terning of the trapping laser beam’s intensity, phase singu-
larities, and translational motion of the individual traps
[13,14,22,30,35–38], prompts complex director distortions
that then relax to global or local elastic free-energy minima,
some of which are the topologically nontrivial solitons of
interest to this study. For example, the 3D solitons with Hopf
indices Q ¼ �1 are typically laser generated in a uniform
unwound background n0 by moving the laser focus of the
holographic optical trap along a circular trajectory within the
LC cell’s midplane. By limiting the laser power to about
50mWand by controlling thewinding direction and depth of
the circular lasers beam motion, we preselect generation of
the Q ¼ 1 or Q ¼ −1 solitons. The elementary torons and
twistions are laser generated as described elsewhere [13,37].
Alternatively, the 5CB-based chiral nematic LCs could be
locally heated to the isotropic phase of the material by a
focused laser beam of power >200 mW, so that the sponta-
neous appearance of solitons could then be prompted upon
quenching it back to the LC phase in a way similar to that
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after an initial entire-sample quench during the sample
preparation. By repeating this laser-induced heating and
subsequent cooling many times, we generate the desired
structures despite the low probability or yield of inducing
topological solitons. Although the studied 3D solitons
could be generated using both of the above approaches
and under multiple types of different conditions, to
assure that other researchers can reproduce our results,
we provide in the figures captions specific experimental
details corresponding to all solitons that we study
experimentally. Examples of polarizing optical micro-
graphs of several localized 3D solitonic structures with
different topologies, which were laser-generated next to
each other, are shown in Figs. 1(f) and 1(g). Although
the conventional polarizing optical imaging does not
provide insights into the complex and beautiful top-
ology of these structures [Figs. 1(f) and 1(g)], we are
able to analyze it both through computer simulations
and experimentally by using the 3D nonlinear optical
imaging.
All solitonic structures could be further optically manip-

ulated using laser tweezers at powers of 2–5 mW, signifi-
cantly lower than what is needed for their generation,
without altering their topological nature. The optical
gradient forces that enable this laser manipulation capabil-
ity arise from the contrast of the effective refractive index
between the solitons and the surrounding far-field back-
ground n0 [36]. With the trapping beam parallel to n0, the
refractive index of the soliton’s surrounding is the ordinary
refractive index of the LC, while that within the soliton is
changing with coordinates between the ordinary and
extraordinary values, depending on the orientation of
nðrÞ (which is the LC’s optical axis). The ensuing effective
refractive index contrast approaches the optical refractive
index anisotropy, which is ≈0.2 for 5CB and ≈0.04 for
ZLI-2806 [34–38], sufficient for an effective laser manipu-
lation [44]. Despite the fact that the solitons are just
localized structures of nðrÞ, without any foreign inclusions
in the LC medium, their optical manipulation resembles
that of particles and (at higher laser powers >10 mW) can
be further enhanced by elastic interactions between the
laser-induced director distortions and those due to the
localized nðrÞ patterns of the solitons themselves [44].

D. Numerical modeling approach

Numerical modeling of the energy-minimizing nðrÞ
structures is performed using a relaxation routine applied
to Eqs. (1) and (2). The Frank elastic constants K11, K22,
and K33 that describe the energetic cost of splay, twist, and
bend deformations, respectively, as well as the average
constant K, are based on literature data for the two nematic
hosts used in our study (Table I). We take K24 ¼ K22, as in
our previous studies (note that the K24 term can affect the
stability of toron structures with point defects) [13,36] and
use the same d and p values as in our experiments. We
assume that the surface free energy does not need to be
included in the minimization problem because of the strong
surface boundary conditions for n. The numerical relaxa-
tion routine calculates the spatial derivatives of nðrÞ on a
computational grid using the second-order finite difference
scheme [36]. Commonly, the periodic boundaries are
implemented along the lateral directions of the computation
box while fixed perpendicular surface boundary conditions
are applied at the top and bottom confining substrates to
define the uniform far-field director n0 ¼ ð0; 0; 1Þ. In some
of these simulations, the vertical conditions n0 ¼ ð0; 0; 1Þ
are also enforced at the lateral edges of the 3D simulation
box. Both the analytical ansatz configurations [45] and the
random fields are used as initial conditions in the free-
energy minimization, yielding similar results. At each time
step Δt of the numerical simulation, we compute the
functional derivatives corresponding to the Lagrange equa-
tion ½ðδFÞ=δni� ¼ 0 and then also the resulting elementary
displacement δni ¼ −Δt½ðδFÞ=δni�, where the subscript i
denotes orientations along the x, y, and z axes and the
equations are transformed to make all physical quantities
nondimensional, as needed for computation. The maximum
stable time step used in the relaxation routine is determined
as Δt ¼ 0.5 min ðhiÞ2=maxðKÞ [13], where minðhiÞ is the
smallest computational grid spacing and maxðKÞ is the
largest elastic constant appearing in Eqs. (1) or (2) (Table I).
The steady-state stopping condition is determined through
monitoring the change of the spatially averaged functional
derivative with respect to time. When this value asymp-
totically approaches zero, the system is assumed to be in a
state corresponding to a local or global energy minimum
and the relaxation procedure is terminated. The 3D spatial
discretization is performed on fairly large 3D grids, such as
the 112 × 112 × 32 grid. This allows us to exclude dis-
cretization-related artifacts influencing the structural sta-
bility of solitons.
For the grid spacing of hx ¼ hy ¼ hz ¼ 1 μm and 32 grid

points across the cell, the effective LC cell thickness
d ¼ 32 μm is tuned to match that used in experiments;
for LC samples of other thickness d mimicking that of
experimental cells, the h values are adjusted accordingly. In
order to speed up the relaxation of energy-minimizing nðrÞ
configurations corresponding to local or global energy
minima, the minimization is additionally performed with

TABLE 1. Elastic constants of the nematic LC hosts and helical
twisting power ξ of the used chiral additives when doped into
these nematic hosts.

Nematic
LC host

K11

(pN)
K22

(pN)
K33

(pN)
K24

(pN)

ξ of cholesterol
pelargonate
(μm−1)

ξ of CB-15
(μm−1)

5CB 6.4 3.0 10 3.0 −6.25 7.3
ZLI-2806 14.9 7.9 15.4 7.9 � � � 5.9
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a relaxation method for a two-dimensional grid of equally
spaced points that is used assuming the axial symmetry and
then rotated around the axial symmetry axis to obtain a
volume of equally spaced voxels on a 3D grid with
corresponding nðrÞ orientations. The grid spacing in this
case is equal in all directions and discretized into 192 ×
192 × 64 points. The free-energy-minimizing computer-
simulated nðrÞ configurations obtained using different
grids and discretization approaches are analyzed and
compared to each other and to experiments through the
generation of 3D isosurfaces (including the preimages of
single director orientations). This comparison allows us to
assure that our findings are independent of the type of the
numerical grid discretization used for computational
modeling that we discuss above. In order to construct
preimages within the 3D volume of the static topological
solitons, we calculate the magnitude of the difference
between a unit director (vector) defining a target point
on S2=Z2 (S2) and the solitonic 3D nðrÞ, which is then
visualized with the help of an isosurface of a small value
in the ensuing scalar field that confines a 3D volume of the
preimage. Combined with the experimental method of
construction of preimages described above, this procedure
allows us to unambiguously assure the correspondence
between numerically simulated and experimental solitonic
structures.

IV. RESULTS

A. Torons and hopfions with Q= 0

Our integrated numerical and experimental approach of
imaging preimages and identification of the 3D topologi-
cal solitons is analogous to the Hopf mapping from the
3D space R3 to the ground-state manifold of the LC,
S2=Z2, or S2 for the case of vectorized nðrÞ. The LC
sample’s spatial regions with director field nðrÞ orienta-
tions corresponding to target points on S2=Z2 (the
preimages) are imaged sequentially by varying linear
polarization of the 3PEF-PM excitation light, using the
differential analysis to improve orientational sensitivity of
this approach, and eliminating the director tilt ambiguity
(see Sec. III). This nonlinear optical imaging of preimages
within the solitons is based on orientation-dependent
self-fluorescence of rodlike molecules of the LC that
(on average) locally align with nðrÞ. Consistent with the
nonpolar symmetry of the LC, this 3PEF-PM-based
imaging approach simultaneously yields pairs of prei-
mages corresponding to n and −n, i.e., to a single point
on points on S2=Z2 and to two diametrically opposite
points on S2 in the case when this line field is vectorized
along n or −n. The far-field vertical alignment of n0 ¼
ð0; 0; 1Þ set by the strong boundary conditions at the
confining surfaces, along with the continuity of nðrÞ
evidenced by the absence of singular light-scattering
defects, provide the foundations for analyzing nðrÞ

structures based on the strong ∝cos6ψ orientational
dependence of the 3PEF-PM signal. The numerical
analogs of the experimentally reconstructed preimages
are obtained from analyzing the 3D director patterns
that minimize the elastic free energy, as described
above.
The simplest observed 3D solitonic structure is shown

in Fig. 2. The in-plane and vertical cross sections of its
spatially localized nðrÞ are presented with the help of
double cones, which are colored according to two different
schemes [Figs. 2(a)–2(d)], both designed to be consistent
with the nonpolar nature n≡−n of the director field. The
coloring scheme that shows the two cones within each
double cone in different colors corresponding to that of
their respective diametrically opposite points on S2 also
allows one to analyze the two mutually opposite vector
fields vectorizing nðrÞ [Figs. 2(a) and 2(c)]. The non-
singular axially symmetric structure of this soliton intro-
duces a spatially localized twisted region embedded in the
uniform far field n0. Mapping the vectorized nðrÞ from the
soliton’s cross section [Fig. 2(c)] onto S2 does not fully
cover it, albeit the similar mapping of nonpolar nðrÞ onto
S2=Z2 covers this ground-state manifold fully, with some
parts of S2=Z2 covered twice [Fig. 2(d)]. A similar analysis
can be done for preimages of vectorized and nonpolar nðrÞ
in the entire 3D volume of the soliton. The vectorized nðrÞ
pattern of these solitons has closed-loop preimages for a
majority of points on S2 [see examples in Fig. 2(e)], except
for the vicinity of its south pole. In the case of the nonpolar
nðrÞ and the S2=Z2 ground-state manifold, the preimages
of most of the points are pairs of unlinked closed loops
[Fig. 2(f)], albeit one of the two loops shrinks into a disk
and disappears for points near the north or south pole of
S2=Z2. The computer-simulated preimages closely match
their experimental counterparts, as shown by comparing
examples of two-loop preimages of the same single point
(marked by the blue double cone) on S2=Z2 in Figs. 2(g)
and 2(h), with the consistently chosen circulation direc-
tions marked using curved gray arrows. The numerical
energy-minimizing nðrÞ configuration allows us to plot
the handedness of the director twist [37,46], defined as
H ¼ −n · ð∇ × nÞ and normalized by q0, to observe that
H matches the intrinsic chiral nematic LC’s handedness
within most of the volume of the soliton, except for a
small region close to to one of the confining substrates,
where it reverses and becomes opposite [Fig. 2(i)]. This
observation hints that such a 3D soliton is stabilized by the
chiral LC medium’s tendency to twist, which is confirmed
by a 3D plot of free-energy density isosurfaces of the
soliton [Fig. 2(j)]. Importantly, the free energy within the
soliton is below that of the uniform unwound state almost
everywhere except for the small localized region matching
the region of H opposite to that of LC’s chirality [Fig. 2(i)
and 2(j)].
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FIG. 2. 3D solitons withQ ¼ 0. (a)–(d) Computer-simulated (a), (b) in-plane and (c), (d) vertical cross sections of nðrÞ depicted using
double cones and two different color schemes that establish correspondence between director orientations and the points on S2=Z2 (top
right insets). (e), (f) Computer-simulated preimages of a Q ¼ 0 3D soliton for two sets of the diametrically opposite points on S2=Z2

marked by double cones in the top right insets for two different coloring schemes of the S2=Z2. (g), (h) Comparison of representative
(g) computer-simulated and (h) experimental preimages of the Q ¼ 0 soliton for two diametrically opposite points on the “equator” of
S2=Z2 (top right insets). Gray arrows in (e)–(h) indicate the consistently determined circulations of the preimages. (i), (j) Perspective
views of the 3D computer-simulated isosurfaces of normalized (i) handedness and (j) free-energy density for this axially symmetric
solitonic structure, with the used color schemes provided in the right-hand side insets. The experimental preimages are reconstructed
based on 3PEF-PM images obtained for structures in a 5CB-based partially polymerizable nematic LC mixture with chiral additive
CB-15, d ¼ 10 μm, and d=p ∼ 1; before imaging, the unpolymerized 5CB is replaced by immersion oil. Computer simulations are
performed for 5CB elastic constants and assuming K24 ¼ 0.
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The nonsingular 3D soliton shown in Fig. 2 is rather
different from the simplest toron structure that we intro-
duced in Ref. [13], with π twist from its central axis to the
periphery in all radial directions (Fig. 3). The midplane
cross section of the toron is a two-dimensional Skyrmion
(baby Skyrmion) in the vectorized director field, which
belongs to the second homotopy group π2ðS2Þ ¼ ℤ [30].
Mapping the vectorized director from the elementary
toron’s midplane [Fig. 3(a)] onto the S2 order parameter
space covers the sphere once, indicating that the Skyrmion
number is equal one [30]. In the overall 3D configuration of
the elementary toron, the localized twisted region is capped
with two hyperbolic point defects near confining surfaces,

as we discussed in detail in Ref. [13]. The preimages of this
simplest toron have shapes of bands (two per single point
on S2=Z2 and a single band in the case of a vectorized field
and the S2 ground-state manifold) terminating on the point
defects. Interrupted by the two point singularities, the two-
band preimages of points on S2=Z2 of these torons do not
form closed loops [Figs. 3(c)–3(e)], albeit this behavior is
very different for the new types of torons with larger
amounts of twist and nontrivial closed-loop preimages that
we discuss below. The torons, ensembles of the nonsingular
solitonic twisted structures and singular point defect or
disclination loop entities, can be classified not only by the
types of the self-compensating singular defects [13], but

FIG. 3. Elementary toron structure in a confined chiral nematic LC. (a), (b) Computer-simulated (a) in-plane and (b) vertical cross
sections of nðrÞ of the toron depicted using double cones and the color scheme that establishes correspondence between director
orientations and the points on S2=Z2 (top right insets). (c) Computer-simulated preimages of the toron for two sets of the diametrically
opposite points on S2=Z2 marked by double cones in the top right inset. (d), (e) Comparison of representative (d) computer-simulated
and (e) experimental preimages of the toron for two diametrically opposite points on the “equator” of S2=Z2 (top right insets). The
experimental preimages in (e) are reconstructed based on 3PEF-PM images of structures in a 5CB-based partially polymerizable nematic
LC mixture with chiral additive CB-15, d ¼ 10 μm, and d=p ∼ 1; before imaging, the unpolymerized 5CB is washed out and replaced
by immersion oil. Gray arrows indicate the consistently determined circulations of the preimages. Computer simulations are performed
for 5CB elastic constants while also assuming K24 ¼ 0.
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also by the linking of preimages of their solitonic parts [36],
as we discuss in detail below for the cases of new, complex
toron structures.

B. Elementary hopfions with Q=�1
and linking of preimages

The solitons shown in Figs. 4 and 5 also embed
the axially symmetric twisted regions into the uniform
background n0, but their solitonic nðrÞ twists by 2π in all
radial directions from the 3D soliton’s central axis (parallel
to n0) to the far-field periphery [Figs. 4(a), 4(b), 5(a), and
5(b)]. For both of these solitons, all points on S2=Z2 have
preimages in the form of two interlinked closed loops
[Figs. 4(c)–4(e) and 5(c)–5(e)]. Experimental closed-loop
preimages closely match their theoretical counterparts
[Figs. 4(d), 4(e), 5(d), and 5(e)] and all wind around each
other to link once. In the case of a vectorized nðrÞ, for both
solitons, the preimages of every single point on S2 are
single closed loops and such preimages of any two distinct
points on S2 are linked once. As discussed above, the Hopf
index of such a soliton Q ¼ ΣC=2 (determined by analyz-
ing the crossingsC) is the linking numbers of preimages for
vectorized nðrÞ or, equivalently, the linking number of the
two closed loops that form a single preimage of any point
on S2=Z2 [31]. By vectorizing nðrÞ of the two types of
observed solitons (Figs. 4 and 5), so that n0 points in the
same directions for both of them and so that the corre-
sponding circulations of the far-field preimages define
circulations of all other preimages through the requirement
of continuity, we find the opposite Q ¼ �1 Hopf indices
characterizing the two solitons. The Hopf links of the two
closed loops that constitute preimages of all points on
S2=Z2 for these two different solitons in the case of
nonpolar nðrÞ, the corresponding Hopf links of single-
loop preimages of any two points on S2 for vectorized nðrÞ,
and the LC in which these solitons are hosted are all chiral
in nature. By using a vectorized nðrÞ and choosing the
circulation of the preimage of the north pole on S2 to be
along n0 through the soliton’s center, we consistently
define circulations of all other preimages while smoothly
exploring S2. We find that the thus determined linking
number stays conserved for all pairs of vectorized nðrÞ
preimages of S2 points within the same soliton, yielding its
Hopf index, which is Q ¼ 1 for the soliton shown in Fig. 4
andQ ¼ −1 for the soliton depicted in Fig. 5. Interestingly,
the Q values stay the same upon inverting the vectorization
direction nðrÞ → −nðrÞ, which is different from the case of
hedgehog charges of point defects in LCs [47] that change
sign in response to the nðrÞ → −nðrÞ operation. However,
taking a mirror image negates the linking numbers of all
Hopf links and the corresponding Q values while also
transforming a left-handed LC host into its right-handed
counterpart, which is again different from the hedgehog
charges of point defects that would stay unchanged during

this operation [14,47]. These Q ¼ �1 solitons are topo-
logically similar to their counterpart in colloidal fluid chiral
ferromagnets [22] that we observed recently (to be reported
elsewhere), albeit here they are realized in a nonpolar line
field rather than in a vector field. Because of the nonzero
Hopf index values, similar to the case of their ferromagnetic
counterparts, we refer to these solitons as “hopfions.” Any
changes of their quantized Hopf index require destroying
the orientational order or generating singular defects and,
thus, overcoming free-energy barriers associated with
them. This helps to stabilize such topological solitons with
Q ≠ 0 as metastable or stable field configurations, albeit
the main physical mechanism responsible for their stability
is the same as for the solitons with Q ¼ 0 (Figs. 2 and 3)
and is related to the LC medium’s tendency to twist nðrÞ
with the spatial periodicity comparable to its intrinsic
helicoidal pitch p. Prevailing parts of the soliton’s volume
have twist handedness matching that of the LC hosting
them [Figs. 4(f) and 5(f)], although there are some small
regions within the solitons with H opposite to that of the
LC’s intrinsic chirality. The 3D isosurfaces of free-energy
density convincingly show that such a 3D topological
soliton embeds a large region of low-energy twisted
nðrÞ (lower than that of the surrounding unwound uniform
background) and that its stability is helped by the medium’s
chirality [Figs. 4(g) and 5(g)].

C. 3D solitons with multiloop preimages

The elementary Q ¼ �1 hopfions are not the only 3D
solitons with linking of closed-loop preimages. Many
interesting topologically nontrivial configurations arise
with the increase of the amount of nðrÞ twist embedded
in the uniform unwound background n0. For example, nðrÞ
twists by 4π in all radial directions from the localized
configuration’s central axis (parallel n0) to the periphery of
the 3D solitons shown in Figs. 6, 7, and 8. These axially
symmetric solitons [Figs. 6(a), 6(b), 6(j), 6(k), 7(a), 7(b),
8(a), and 8(b)] have two closed-loop preimages of all S2

points in the case of a vectorized nðrÞ while the preimages
of each point on S2=Z2 of the nonpolar director field
comprise four individual closed loops [Figs. 6(d), 6(e),
6(m), 6(n), 7(c), 7(d), 8(c), and 8(d)]. The preimages of S2

points for the same polar angle θ of vectorized nðrÞ with
respect to n0 but corresponding to its different azimuthal
orientations tile into tori surfaces [Figs. 6(f), 6(o), 7(e),
and 8(e)]. There are always two such tori for a given
θ[Figs. 6(f), 6(o), 7(e), and 8(e)], which is different from
the case of elementary hopfions (Figs. 4 and 5), for which
there is only one torus surface for each θ value. Although
all four examples of solitons shown in Figs. 6–8 have
preimages in the form of two separate closed loops for
every single point on S2 for vectorized nðrÞ, the nature and
topology of interlinking of these closed-loop preimages is
different, as we discuss below.
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FIG. 4. 3D topological soliton with Q ¼ 1. (a), (b) Computer-simulated (a) in-plane and (b) vertical cross sections of the axially
symmetric nðrÞ structure of the hopfion depicted using double cones and the color scheme that establishes correspondence between
director orientations and the points on S2=Z2 (top right insets). (c) Computer-simulated preimages of the hopfion for two sets of the
diametrically opposite points on S2=Z2 marked by double cones in the top right inset. (d), (e) Comparison of representative
(d) computer-simulated and (e) experimental preimages of the hopfion for two diametrically opposite points on the “equator” of S2=Z2

(top right insets). Computer simulations are performed for elastic constants of 5CB while also assuming K24 ¼ 0. The preimages are
reconstructed based on 3PEF-PM images of structures in a 5CB-based partially polymerizable nematic LC mixture with a chiral additive
CB-15, in a cell with d ¼ 10 μm and d=p ∼ 1; before imaging, the unpolymerized 5CB is replaced by immersion oil. Linking of the two
closed loops establishes the Hopf index Q ¼ 1, as discussed in the text. Gray arrows in (c)–(e) indicate the consistently determined
circulations of the preimages. (f), (g) Perspective views of the 3D computer-simulated isosurfaces of normalized (f) handedness
and (g) free-energy density for this axially symmetric hopfion, with the corresponding color schemes provided in the right-hand side
insets.
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FIG. 5. 3D topological soliton with Q ¼ −1. (a), (b) Computer-simulated (a) in-plane and (b) vertical cross sections of the axially
symmetric nðrÞ structure of the Q ¼ −1 hopfion depicted using double cones and the color scheme that establishes correspondence
between director orientations and the points on S2=Z2 (top right insets). (c) Computer-simulated preimages of the hopfion for two sets of
the diametrically opposite points on S2=Z2 marked by double cones in the top right inset. (d), (e) Comparison of representative
(d) computer-simulated and (e) experimental preimages of the hopfion for two diametrically opposite points on the “equator” of S2=Z2

(top right insets). Linking of the two closed loops establishes the Hopf indexQ ¼ −1, as discussed in the text. Computer simulations are
performed for elastic constants of 5CB while also assuming K24 ¼ 0. The preimages are reconstructed based on 3PEF-PM images of
structures in a 5CB-based partially polymerizable nematic LC mixture with a chiral additive CB-15, in a cell with d ¼ 10 μm and
d=p ∼ 1; before imaging, the unpolymerized 5CB is replaced by immersion oil. Gray arrows in (c)–(e) indicate the consistently
determined circulations of the preimages. (f),(g) Perspective views of the 3D computer-simulated isosurfaces of normalized
(f) handedness and (g) free-energy density for this axially symmetric hopfion, with the corresponding color schemes shown in the
right-hand side insets.
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FIG. 6. 3D topological solitons formed by coaxial arrangement of two different elementary hopfions of the same signsQ ¼ �1. (a), (b)
Computer-simulated (a) in-plane orthogonal to n0 and (b) vertical containing n0 cross sections of the axially symmetric nðrÞ structure
of a soliton with two-loop preimages depicted using colored double cones; the color scheme establishes the correspondence between
director orientations and the points on S2=Z2 (top right insets). (c) A polarizing optical micrograph of such a 3D soliton in a confined
chiral nematic LC; white double arrows show crossed polarizers. (d) Computer-simulated and (e) experimental preimages of the
soliton for the diametrically opposite points on S2=Z2 marked by double cones in the right-hand side inset. By analyzing such
preimages of all points on S2=Z2, we find no interlinking between the preimages of the two separate hopfions and their Hopf indices
Q ¼ 1. (f) For a constant polar angle value (inset), the closed-loop preimages of individual points on S2 tile into two separate tori
surfaces sharing the same vertical axis parallel to n0. (g) Preimages of the north and south poles of S2 for the vectorized director
field. (h), (i) Perspective views of the 3D computer-simulated isosurfaces of normalized (h) handedness and (i) free-energy density for
this axially symmetric soliton, with the corresponding color schemes shown in the insets above them. (j), (k) Computer-simulated
(j) in-plane and (k) vertical cross sections of an axially symmetric nðrÞ structure of a soliton with two-loop preimages depicted using
colored double cones and the same color scheme as in (a),(b) that establishes the correspondence between director orientations and the
S2=Z2 points. (l) A polarizing optical micrograph of such a 3D soliton. (m) Computer-simulated and (n) experimental preimages of
the hopfion for the diametrically opposite points on S2=Z2 marked by double cones in the right-hand side inset. (o) For a constant
polar angle value, the closed-loop preimages of the individual points on S2 tile into two separate tori that share the vertical axis
parallel to n0. By analyzing preimages of all points on S2=Z2, we find no interlinking between the preimages of the two separate
hopfions and also their Hopf indices Q ¼ −1. (p) Preimages of the north and south poles of S2 for the vectorized director field.
(q), (r) Perspective views of the 3D computer-simulated isosurfaces of normalized (q) handedness and (r) free-energy density for this
soliton, with the corresponding color schemes shown in the insets. Computer simulations are performed for elastic constants of 5CB
while also assuming K24 ¼ 0. The polarizing optical micrographs in (c) and (l) are obtained for structures in a 5CB-based partially
polymerizable nematic LC mixture with a chiral additive CB-15 in a cell with thickness d ¼ 10 μm and d=p ∼ 1. Gray arrows in
(d), (e), (m), (n), (g), and (p) indicate the consistently determined circulations of the preimages. The 3D preimages are reconstructed
based on 3PEF-PM images of these structures after the unpolymerized 5CB is replaced by immersion oil.
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FIG. 7. 3D soliton with complex linking and 4π twist from its central axis to the far-field periphery. (a),(b) Computer-simulated
(a) in-plane and (b) vertical cross sections of the axially symmetric nðrÞ structure of the 3D soliton depicted using double cones and
the color scheme that establishes correspondence between director orientations and the points on S2=Z2 (top right insets). (c) A
representative computer-simulated preimage of the hopfion for the diametrically opposite points on S2=Z2 marked by double cones in
the top right inset. The preimage is composed of four interlinked closed loops. (d),(e) Computer-simulated preimages of the 3D soliton
in a vectorized nðrÞ (d) for two diametrically opposite points on S2 corresponding to its north and south poles (top right inset) and (e) for
a set of points characterized by a constant polar angle θ and forming a circle parallel to the sphere’s equator (top right inset). Note that the
preimages in (e) reside on two nested tori surfaces. A large variety of preimages of this soliton are shown in Video 1. (f)–(h) Three
representative views on the isosurfaces of θ ¼ π=2 (nz ¼ 0) colored by azimuthal orientations of nðrÞ according to the scheme shown in
the right-hand side inset of (f). The numbers on top of the tori shown in (f) indicate the linking numbers that characterize the interlinking
of colored closed-loop bands and preimages of nðrÞ corresponding to points on the equator of S2=Z2. (i),(j) Perspective views of the 3D
computer-simulated isosurfaces of normalized (i) handedness and (j) free-energy density for this axially symmetric 3D soliton, with the
corresponding color schemes shown in the right-hand side insets. Gray arrows in (c) and (d) and on the green bands of (g) indicate the
consistently determined circulations of the preimages. Computer simulations are performed for elastic constants of ZLI-2806 (Table I)
and d=p ¼ 2.
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FIG. 8. 3D soliton with complex linking and 4π twist from its central axis to the far-field periphery. (a),(b) Computer-simulated
(a) in-plane and (b) vertical cross sections of the axially symmetric nðrÞ structure of the 3D soliton depicted using double cones and
the color scheme that establishes correspondence between director orientations and the points on S2=Z2 (top right insets). (c) A
representative computer-simulated preimage of the hopfion for the diametrically opposite points on S2=Z2 marked by double cones in
the top right inset. The preimage is composed of four interlinked closed loops. (d), (e) Computer-simulated preimages of the 3D
soliton in a vectorized nðrÞ (d) for two diametrically opposite points on S2 corresponding to its north and south poles (top right inset)
and (e) for a set of points characterized by a constant polar angle θ and forming a circle parallel to the sphere’s equator (top right
inset). Note that the preimages in (e) reside on two nested tori surfaces. A large variety of preimages of this soliton are shown in
Video 2. (f)–(h) Three representative views on the isosurfaces of θ ¼ π=2 (nz ¼ 0) colored by azimuthal orientations of nðrÞ
according to the scheme shown in the right-hand side inset of (f). The numbers on top of the tori shown in (f) indicate the linking
numbers that characterize the interlinking of colored closed-loop bands and preimages of nðrÞ corresponding to points on the equator
of S2=Z2. (i),(j) Perspective views of the 3D computer-simulated isosurfaces of normalized (i) handedness and (j) free-energy density
for this axially symmetric 3D soliton, with the corresponding color schemes shown in the right-hand side insets. Gray arrows in (c)
and (d) and on the green bands of (g) indicate the consistently determined circulations of the preimages. Computer simulations are
performed for elastic constants of ZLI-2806 and d=p ¼ 2.
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For all S2 points in the case of the vectorized nðrÞ of the
soliton shown in Figs. 6(a)–6(i), the individual preimages
are formed by two separate unlinked closed loops while
preimages of two separate S2 points form two Hopf links
with the linking number þ1 for each of them [Figs. 6(d)
and 6(e)]. The solitons shown in Figs. 6(j)–6(r) also have
preimages composed of two separate unlinked closed loops
and preimages of two separate S2 points forming two Hopf
links, but the linking number characterizing these two
individual Hopf links is −1 [Figs. 6(m) and 6(n)]. For all
constant values of the polar angle θ characterizing ori-
entation of nðrÞ, the series of preimages with different
azimuthal orientations of nðrÞ tile into two separate tori
surfaces [Figs. 6(f) and 6(o)]. By scanning the nðrÞ
orientations from nðrÞ ¼ ð0; 0;−1Þ to the far nðrÞ ¼
ð0; 0; 1Þ ¼ n0, we find that the two tori formed by
preimages of constant θ remain separate until merging
with the far-field background when nðrÞ becomes parallel
to n0 [Figs. 6(g) and 6(p)]. The behavior of the individual
S2=Z2 preimages corresponding to nonpolar nðrÞ is rem-
iniscent of that of pairs of preimages of S2 points for
vectorized nðrÞ [Figs. 6(d)–6(g), 6(m)–6(p)]. The prei-
mages of S2 points in the vicinity of the north pole are two
separate tori that characterize nðrÞ orientations smoothly
transforming to n0, with the far-field preimages connected
through infinity [Figs. 6(g) and 6(p)]. Thus, one can
interpret the two solitonic structures shown in Fig. 6
as being formed by a coaxial arrangement of two
separate hopfions of Q ¼ 1 [Figs. 6(a)–6(i)] and Q ¼ −1
[Figs. 6(j)–6(r)]. In addition to these two examples, we
observe other variations of such solitons that could be
thought of as being formed by elementary hopfions of
opposite signs of Q, including the ones with a Q ¼ 1
hopfion in the interior and aQ ¼ −1 hopfion in the exterior
of the coaxial hybrid solitons and vice versa.
A series of other solitons with 4π twist in radial

directions have a very different linking of preimages
(Figs. 7 and 8 and Videos 1 and 2). To analyze them, we
first observe that the so-called “Pontryagin-Thom con-
structions” [14], isosurfaces of the z component of the
director, nz ¼ 0 (corresponding to θ ¼ π=2), colored by
the azimuthal orientation of the in-plane nðrÞ
[Figs. 7(f)–7(h) and 8(f)–8(h)], also form two separate
tori. The like-colored closed-loop bands of constant
azimuthal nðrÞ orientation on these surfaces of two
separate tori link with each other once, with the con-
sistently determined circulation directions shown with the
gray curved arrows on the green bands. These colored
bands covering the θ ¼ π=2 tori surfaces represent all
preimages of points on the equator of the S2 (or S2=Z2)
and are shown using the color scheme chosen to
be consistent with the nonpolar nature of nðrÞ
[Figs. 7(f)–7(h) and 8(f)–8(h)] (note that the n and −n
bands are shown using the same color). The linking
number of each pair of like-colored closed-loop bands is

�1, opposite for the two tori comprising each of
the solitons [Figs. 7(f)–7(h) and 8(f)–8(h)]. By
analyzing only the Pontryagin-Thom constructions in
Figs. 7(f)–7(h) and 8(f)–8(h), one could assume that
the two structures are homeomorphic to each other,
despite the structural differences seen in the cross
sections in Figs. 7(b) and 8(b). However, we show below
that the two solitons are topologically distinct from each
other. Interestingly, the θ ¼ π=2 preimages shown as
closed loops colored according to azimuthal orientations
of nðrÞ link differently from preimages of the north
pole point on S2 and the S2 points in its vicinity
[Figs. 7(c)–7(e) and 8(c)–8(e)]. Moreover, the two-tori
surfaces of constant θ are nested one in another for
θ < θc, but become separate from each other within
θc < θ < 180°, where the critical polar angle is θc ≈
74° for the soliton shown in Fig. 7 and θc ≈ 87° for that
in Fig. 8. Most interestingly, such transformation of the
two-tori surfaces upon changing θ takes place without
compromising the soliton’s nonsingular nature and the
preimages on the different tori align with each other
during the relinking (Videos 1 and 2). For the vectorized
nðrÞ, the two-loop preimages of single S2 points are
linked once at θ < θc but unlinked at θ > θc. The linking
of preimages of different S2 points of such 3D
solitons depends on the locations of these points on S2

[Figs. 7(c)–7(h) and 8(c)–8(h)] and is not a conserved
quantity. The nature of the linking of four-loop preimages
of distinct points on S2=Z2 for these solitons in a nonpolar
nðrÞ is even more complex. To characterize it, we use
simplified topology and graph presentations (Fig. 9) of
the closed-loop preimages and their linking. In these
graphs, the closed-loop components of preimages are
shown as filled circles colored according to the positions
of corresponding points on the ground-state manifold and
the individual links are indicated by black edges con-
necting the corresponding circles. This presentation
allows us to provide an exhaustive set of possibilities
for interlinking of preimages of two distinct points on the
S2=Z2 or S2 depending on their relative locations (Fig. 9).
Moreover, the summary of the preimage linking in Fig. 9
reveals differences in topology of the two solitons shown
in Figs. 7 and 8, which is manifested by the differences in
consistently defined preimage circulations.
A detailed analysis of the linking diagrams (Fig. 9)

shows that the Pontryagin-Thom construction does not
fully reveal the topology of complex 3D solitons, which
requires directly analyzing preimages of all points on the
ground-state manifold and their interlinking, not just a
subset of them. Indeed, the linking numbers for the n and
−n preimages forming two separate tori at θ > θc [marked
on the Pontryagin-Thom surfaces in Figs. 7(f) and 8(f) for
θ ¼ π=2] change with varying θ (Fig. 9). Videos 1 and 2
show that this change in the linking of preimages is directly
related to the transformation of the two tori corresponding
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to constant θ values, which occurs at θc. This trans-
formation is manifested by a transition from two separate
concentric tori [similar to the ones shown in Figs. 7(f)–7(h)
and 8(f)–8(h)] to two internested tori like the ones depicted
in Figs. 7(e) and 8(e). The alignment and merging of
preimages residing on two different tori that leads to the

change of linking of constituent two rings comprising
the individual preimages is interesting and calls for
exploration of similar field configurations in other branches
of physics. Finally, similar to the case of elementary
hopfions (Figs. 4 and 5), comparison of 3D isosurface
plots of normalized handedness and free-energy density

Fig. 9. Linking diagrams and graphs of complex 3D solitons. The figure presents the analysis of linking of preimages of two separate
points on S2 and S2=Z2 for composite 3D topological solitonic field configurations on the basis of both nonpolar and vectorized nðrÞ of
the studied structures. The insets in the red boxes at the top of the columns “linking diagrams” depict the order parameter spaces of
vectorized (top) and nonpolar (bottom) nðrÞ, with arrows or double arrows indicating the points for which the preimage linking is
analyzed. The dashed lines on the S2 and S2=Z2 schematics separate the fragments of the S2 and S2=Z2 with θ < θc (top parts) and
θ > θc (bottom parts). The locations of the points corresponding to preimages, shown using single and double arrows on S2 and S2=Z2,
are the same for all solitons within the same column. In the graphs, the individual links are indicated by black or gray lines connecting
the corresponding colored filled circles that represent closed-loop preimages (the black lines indicate positive signs of linking of
preimages as determined by circulations, while the gray lines correspond to the negative ones). The colors of the filled circles are
indicative of the points on S2 (for schematics shown above the horizontal dashed lines of the table) or S2=Z2 (for schematics shown
below the horizontal dashed lines of the table); for nðrÞ at θ < θc, two out of eight filled circles of the graphs are shown as red and the
rest as orange to distinguish them on the basis of the number of times the corresponding preimages are linked. The mutually linked
preimage rings in the simplified topology presentations are also shown in colors corresponding to their locations on S2 or S2=Z2 and
have arrows denoting circulation consistent with the far-field preimage. The point defects of torons within the topological skeletons are
shown using black stars. Both the topological skeleton and graph representations of the preimage structures are constructed for the same
solitonic field configurations and are provided next to each other for the case of vectorized nðrÞ.
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[Figs. 6(h), 6(i), 6(q), 6(r), 7(i), 7(j), 8(i), and 8(j)] shows
that the stability of such 3D solitons is greatly enhanced by
the medium’s chiral nature and tendency to form twisted
structures consistent with the intrinsic pitch p of the used
chiral LC.

D. Torons with closed-loop preimages

In addition to the elementary torons with π twist of
nðrÞ from their central axis to the n0 periphery in all
radial directions (Fig. 3) [13], torons with larger amounts
of such twist also exist [Figs. 10(a), 10(b), 11(a), 11(b),
12(a), and 12(b)] [36]. For example, the torons shown in
Figs. 10 and 11 have 3π and the ones in Fig. 12 have 5π
twist of nðrÞ in all radial directions from the toron’s
central axis (parallel to n0) to the far-field periphery
(Fig. 9), respectively. The preimages of the distinct
points on the S2=Z2 or S2 are either closed loops or
bands terminating on the two hyperbolic point defects
[Figs. 10(c)–10(e), 11(c)–11(h), and 12(c)–12(h)]. Some
of the high-twist torons exhibit re-linking of preimages
[Figs. 11(c)–11(h), 12(c)–12(h), and Videos 3 and 4],
similar to that observed for the solitons shown in Figs. 7
and 8. The critical polar angles of relinking are θc ≈ 63°
and θc ≈ 74° for the structures shown in Figs. 11 and 12,
respectively (see also Fig. 9). For the toron structure
shown in Fig. 10, on the other hand, θc ≈ 180°, and,
therefore, they effectively can be thought of as separate
elementary hopfion (Figs. 4 and 5) and an elementary
toron (Fig. 3) arranged coaxially in such a way that their
vertical axes coincide and are parallel to n0. The analysis
of linking of closed-loop preimages for single and distinct
points on S2=Z2 and S2 reveals that such complex toron
structures could be thought of as hybrids of elementary
torons (Fig. 3) and different nonsingular solitons that we
discuss above. Interestingly, the multicomponent prei-
mages are composed of closed loops and half-loop bands
that terminate on the point singularities. The components
of preimages intertransform between one another,

revealing a large diversity of torons (Fig. 9). These
findings show an unexpected large diversity of torons
and that the torons should be classified not only based on
the types of the constituent self-compensating singular
defects [13] but also by the types and linking of preimage
components and different preimages of the nonsingular
solitonic part of the torons (Fig. 9).

E. Twistions as composite solitonic structures

Our method of analyzing preimages can also be applied
to twistions, localized structures that embed twisted regions
into a uniform background of the far field but lack axial
symmetry and (unlike torons) contain more than two self-
compensating point defects [37] (Fig. 13). Although we
provide here an example of a twistion with the amount of
twist from its interior to periphery by ∼π, the analogs of
twistions with larger amounts of twist in the director field
can exist, too, and will be a subject of our future studies.
The configuration of such a twistion with a stretched closed
loop of π twist of nðrÞ and four self-compensating hyper-
bolic point defects is shown with the help of in-plane and
vertical cross sections in Figs. 13(a)–13(c). The preimages
of single points on S2=Z2 (S2 for the vectorized director) are
bands spanning between the four point singularities
[Figs. 13(d) and 13(e)]. This example of the twistion
shows that the localized toronlike and hopfionlike field
configurations in confined chiral nematic LCs are not
restricted to hosting none (as in hopfions) or only pairs
(as in the torons) of self-compensating singular defects, but
that such self-compensation can occur in a number of other
more complex ways, e.g., through the coexistence of four
self-compensating hyperbolic point defects shown in addi-
tion to various solitonic components with bandlike or
closed-loop preimages (Fig. 13). In addition to the number
and types of singular defects, another source of diversity of
solitonic structures can emerge from the large variety of
nonsingular twisted regions and preimages that they can
exhibit, which we will explore elsewhere.

VIDEO 2. Preimages of different points on S2 for vectorized
nðrÞ for a 3D soliton depicted in Fig. 8. Note that the linking of
preimages changes at θ ¼ θc.

VIDEO 1. Preimages of different points on S2 for vectorized
nðrÞ for a 3D soliton depicted in Fig. 7. Note that the linking of
preimages changes at θ ¼ θc.

DIVERSITY OF KNOT SOLITONS IN LIQUID CRYSTALS … PHYS. REV. X 7, 011006 (2017)

011006-19

http://link.aps.org/multimedia/10.1103/PhysRevX.7.011006
http://link.aps.org/multimedia/10.1103/PhysRevX.7.011006
http://link.aps.org/multimedia/10.1103/PhysRevX.7.011006
http://link.aps.org/multimedia/10.1103/PhysRevX.7.011006


FIG. 10. 3D toron-hopfion hybrid solitons formed by coaxial arrangement of an elementary toron and elementary hopfion of Q ¼ 1.
(a), (b) Computer-simulated (a) in-plane orthogonal ton0 and (b) vertical containingn0 cross sections of the axially symmetricnðrÞ structure
of a solitondepicted using colored double cones; the color schemeestablishes the correspondence betweendirector orientations and the points
on S2=Z2 (top right insets). (c) Computer-simulated and (d) experimental preimages of the soliton for the diametrically opposite points on
S2=Z2 marked by double cones in the right-hand side insets. Gray arrows indicate the consistently determined circulations of the preimages.
By analyzing such preimages of all points on S2=Z2, we find no interlinking between the preimages of the hopfion and toron, as well as the
hopfion’s Hopf index Q ¼ 1. The 3D preimages are reconstructed based on 3PEF-PM images of these structures after the unpolymerized
5CB is replaced by immersion oil. Computer simulations are performed for elastic constants of 5CBwhile also assumingK24 ¼ 0. (e) For a
constant polar angle value, the closed-loop preimages of individual points onS2 tile into a torus and a sphere surface sharing the samevertical
axis parallel to n0, with the sphere having two small holes at the poles corresponding to the location of the hyperbolic point defects. (f) A
polarizing optical micrograph of such a 3D soliton, with the white double arrows showing crossed polarizers. The polarizing optical
micrograph in (f) is obtained for a structure in a 5CB-based partially polymerizable nematic LCmixturewith a chiral additive CB-15 in a cell
with thickness d ¼ 10 μm and d=p ∼ 1. (g), (h) Perspective views of the computer-simulated isosurfaces of normalized (g) handedness and
(h) free-energy density for this axially symmetric soliton, with the corresponding color schemes shown in the right-hand side insets.
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FIG. 11. Toron with complex linking and 3π twist from its central axis to the far-field periphery. (a), (b) Computer-simulated (a) in-plane
and (b) vertical cross sections of the axially symmetric nðrÞ structure of the toron depicted using double cones and the color scheme that
establishes correspondence between director orientations and the points onS2=Z2 (top right insets). The two small regions of discontinuity in
orientation of the double cones are the hyperbolic point defects. (c) A representative computer-simulated preimage of the hopfion for the
diametrically opposite points onS2=Z2 marked bydouble cones in the top right inset. The preimage is composed of two closed loops and two
half-loop bands terminating on the point defects. (d),(e) Computer-simulated preimages of the toron in a vectorized nðrÞ (d) for two
diametrically opposite points on S2 corresponding to its north and south poles (top right inset) and (e) for a set of points characterized by a
constant polar angle θ and forming a circle parallel to the sphere’s equator (top right inset).Note that the closed-looppreimages in (e) resideon
a torus surface while half-loop bands form another surface spanning between the point defects. A large variety of preimages of this solitonic
configuration are shown in Video 3. (f)–(h) Three representative views on the isosurfaces of θ ¼ π=2 (nz ¼ 0) colored by azimuthal
orientations ofnðrÞ according to the scheme shown in the right-hand side inset of (f). The “þ1” on top of the torus shown in (f) indicates the
linking number that characterizes the interlinking of colored closed-loop bands and preimages ofnðrÞ corresponding to points on the equator
of S2=Z2. Gray arrows in (c) and (d) and on the green bands of (g) indicate the consistently determined circulations of the preimages. (i),(j)
Perspective views of the 3D computer-simulated isosurfaces of normalized (i) handedness and (j) free-energy density for this axially
symmetric toron, with the corresponding color schemes shown in the right-hand side insets. Computer simulations are performed for elastic
constants of ZLI-2806 and d=p ¼ 2.
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FIG. 12. Toron with complex linking and 5π twist from its central axis to the far-field periphery. (a), (b) Computer-simulated (a) in-
plane and (b) vertical cross sections of the axially symmetric nðrÞ structure of the toron depicted using double cones and the color
scheme that establishes correspondence between director orientations and the points on S2=Z2 (top right insets). The two small regions
of discontinuity in orientation of the double cones are the hyperbolic point defects. The inset in (a) shows a polarizing optical
micrograph of such a structure. The optical micrograph is obtained for a 5CB-based partially polymerizable LC in a cell of d ¼ 10 μm.
(c) A representative computer-simulated preimage of the hopfion for the diametrically opposite points on S2=Z2 marked by double cones
in the top right inset. The preimage is composed of four interlinked closed loops and two half-loop bands terminating on the point
defects. (d), (e) Computer-simulated preimages of the toron in a vectorized nðrÞ (d) for two diametrically opposite points on S2

corresponding to its north and south poles (top right inset) and (e) for a set of points characterized by a constant polar angle θ and
forming a circle parallel to the sphere’s equator (top right inset). Note that the closed-loop preimages in (e) reside on two nested tori
surfaces while half-loop bands form another surface spanning between the point defects. A large variety of preimages of this solitonic
configuration are shown in Video 4. (f)–(h) Three representative views on the isosurfaces of θ ¼ π=2 (nz ¼ 0) colored by azimuthal
orientations of nðrÞ according to the scheme shown in the right-had side inset of (f). The numbers on top of the tori shown in (f) indicate
the linking numbers that characterize the interlinking of colored closed-loop bands and preimages of nðrÞ corresponding to points on the
equator of S2=Z2. Gray arrows in (c) and (d) and on the green bands of (g) indicate the consistently determined circulations of the
preimages. (i),(j) Perspective views of the 3D computer-simulated isosurfaces of normalized (i) handedness and (j) free-energy density
for this axially symmetric 3D soliton, with the corresponding color schemes shown in the right-hand side insets. Computer simulations
are performed for elastic constants of ZLI-2806 and d=p ¼ 2.
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V. DISCUSSION

Although the 3D solitons with nonzero Hopf invariants
are theoretically predicted to exist in many branches of
science, ranging from particle physics to cosmology, their
experimental identification and detailed study is often
prohibitively difficult. Even in the case of solid-state chiral
ferromagnets, in which the two-dimensional counterparts
of the 3D solitons have been recently extensively studied
[25–29], experimental imaging techniques are lacking the
ability to resolve details of field configurations within the
nanometer-sized localized structures with high resolution
in 3D. So, in fact, the 3D topological solitons may [under
certain circumstances, considering the similar description
by Eq. (2) within the simplest models [24,25] ] exist in the
solid-state chiral ferromagnet systems, but the lack of
appropriate imaging and analysis techniques prohibits
their experimental identification and classification. Chiral
nematic LCs provide an experimental advantage of hosting
micrometer-sized 3D solitonic structures, so that their
structure is accessible to the direct 3D nonlinear optical

imaging [35]. The experimental 3D configurations of nðrÞ
within the studied solitons closely agree with numerical
modeling, allowing us to robustly identify and classify the
nonsingular π3ðS2=Z2Þ ¼ ℤ topological defects with dif-
ferent Hopf indices. This will provide important insights
needed for the realization of topological solitons in other
physical systems. We also envisage that chiral LCs will
serve as a test bed for theories of 3D topological solitons.
The possibility of realizing 3D localized field configu-

rations embedded in a uniform far-field background as
static solitons is a subject of active studies in different
branches of theoretical physics and applied mathematics
[3]. The Hobart-Derrick theorem states that the static 3D
solitons cannot have finite energy for the free-energy
functional resembling the first term in Eq. (2) [7,8].
Indeed, our numerical modeling confirms that all com-
puter-simulated 3D solitons discussed above become
unstable after removing the chiral terms of free energy
in Eqs. (1) and (2) for the nonchiral nematic LC with
q0 ¼ 0 while using all other parameters within the
experimentally accessible ranges, consistent with the
corresponding experiments at otherwise identical condi-
tions. However, the chiral LC medium’s tendency to twist
nðrÞ in the frustrated confined geometry of unwound
homeotropic cells helps to embed energetically favorable
twisted regions of solitons into the uniform unwound
background of n0. When the LC cell thickness d is
comparable to the intrinsic helicoidal pitch of the chiral
nematic medium, with d=p ¼ 0.5–2, a large number of
spatially localized structures with twisted nðrÞ can
become embedded in the uniform far-field background
(Figs. 2–8, 10–13) to locally relieve the frustration
imposed by the incompatibility of homeotropic boundary
conditions and the helicoidal structure of the chiral LC’s
ground state. Interestingly, all of the studied 3D solitons
emerge as local minima of the free-energy functionals
given by both Eqs. (1) and (2), albeit at somewhat
different d=p ratios and other parameters. The analysis
of 3D isosurfaces of the twist handedness H reveals how
LC’s chirality mediates the appearance of the twisted
solitons with finite dimensions comparable to p by
showing that H within the localized structures is mostly
the same as that of the ground-state chiral nematic LC in
which they are hosted. However, an interesting, unex-
pected observation is that the localized structures also
possess small energetically costly regions with H oppo-
site to that of the ground-state LC medium. This finding
may imply that the twisted solitons require reversal of H
to match their internal field configurations with the
uniform far-field n0; however, this aspect will require
separate detailed studies.
A comparison of Eqs. (1) and (2) helps to identify elastic

constant anisotropy as (unique to LC systems) an additional
mechanism for stabilizing the 3D knotted solitons. Indeed,
although we find that the studied solitons and torons are

VIDEO 3. Preimages of different points on S2 for vectorized
nðrÞ for a toron depicted in Fig. 11. Note that the linking of
preimages changes at θ ¼ θc.

VIDEO 4. Preimages of different points on S2 for vectorized
nðrÞ for a toron depicted in Fig. 12. Note that the linking of
preimages changes at θ ¼ θc.
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solutions of both Eqs. (1) and (2), the parameter space of
stability is different. For example, the studied structures
of elementary hopfions (Figs. 4 and 5) tend to be stable at
smaller d=p values roughly within 0.8–1 for the case of
one-elastic-constant approximation but are found to emerge
as solutions of Eq. (1) for the elastic constants of 5CB
roughly within 0.95–1.2 when we set K24 ¼ 0. In addition
to the chirality and elasticity, the stability of 3D solitonic

structures can likely be further controlled by varying the
strength of vertical surface boundary conditions for the
director and by applying external fields that would dielec-
trically or diamagnetically couple to nðrÞ. For example,
in the case of LCs with positive dielectric anisotropy, the
applied low-voltage fields (1–5 V) and the electric field
coupling term of the free energy given by Eq. (3) tend to
extend the range of stability of elementary hopfions to

FIG. 13. A twistion structure in a chiral nematic LC. (a)–(c) Computer-simulated (a) in-plane and (b),(c) vertical cross sections of the
3D nðrÞ structure of the twistion depicted using double cones and the color scheme that establishes correspondence between director
orientations and the points on S2=Z2 (top right insets). The locations of vertical cross sections (b) and (c) are depicted in (a) using arrows.
(d) Computer-simulated preimages of the twistion for two sets of the diametrically opposite points on S2=Z2 marked by double cones in
the top right inset. (e) Computer-simulated preimages of the twistion for points on the “equator” of S2=Z2 (top right inset). Computer
simulations are performed for elastic constants of 5CB and d=p ¼ 0.85. (f) A polarizing optical micrograph of the twistion, with the
white double arrows showing crossed polarizers. The polarizing micrograph is obtained for a structure in a 5CB-based partially
polymerizable nematic mixture doped with a chiral additive CB-15 in a cell with d=p ∼ 1.

PAUL J. ACKERMAN and IVAN I. SMALYUKH PHYS. REV. X 7, 011006 (2017)

011006-24



larger d=p values. Since the focus of our study is on
topology of the 3D solitonic structures, the exploration of
detailed structural diagrams of hopfion and toron stability is
beyond the scope of this work, but will be a subject of our
future studies.
An interesting observation is that fully nonsingular

solitons in nðrÞ emerge when the twist of the director
from the central axis of these axially symmetric structures
to the periphery is an even integer of π (2π and 4π in the
provided examples in Figs. 4–8) while several different
torons with point singularities have an odd number of π of
such twist (π, 3π, 5π in the provided examples in
Figs. 3,10–12). This observation provides insight into
one of the sources of diversity of studied solitonic struc-
tures in confined chiral LCs, which stems from the amount
of the director twist in radial directions of the axially
symmetric structures of solitons, as well as insight into how
such structures can be generated on demand experimen-
tally. Another interesting observation is that the far-field
distortions of nðrÞ corresponding to most of the studied
solitonic configurations are symmetric with respect to the
sample midplane, a plane crossing centers of the localized
structures orthogonally to n0, except for the topologically
trivial soliton with Q ¼ 0 shown in Fig. 2 and the twistion
structure presented in Fig. 13. These structural features
can be analyzed based on vertical cross sections of the
field configurations in the planes containing n0 (Figs. 1–8,
10–13) and are related to the multitude of different ways of
embedding localized twisted regions within the uniform
far-field background n0. Consistently with the peculiarities
of the up-down symmetry of the solitonic configurations in
the homeotropic cells, we find that the solitons exhibit
richness of elastic interactions and self-assembly. We
previously explored such interactions and self-assembly
for the elementary torons [36], but will also extend such
studies to the other solitonic structures, which will be
reported elsewhere.
We demonstrate that our method of preimage analysis

provides a comprehensive way of exploring the topology
of 3D solitons, providing insight into the nature of both
nonsingular topologically nontrivial structures and the
singular defects such as the point singularities found in
the studied torons. This approach further expands the
capabilities of the method of Pontryagin-Thom construc-
tion that we also used for this purpose [14]. A detailed
analysis of preimages allows us to uncover a number of
rather unexpected features of 3D solitons in LCs. For
example, the 3D soliton with Q ¼ 0 shown in Fig. 2 has
closed-loop preimages for the majority of S2 points (for the
vectorized director field), except for the vicinity of the
south pole of the S2 sphere. This information could have
been missed had we not analyzed preimages of all S2 points
but only some of them, as in the case of the Pontryagin-
Thom construction. A comparison of topological linking of
preimages of the solitons shown in Figs. 7 and 8 based on

the summary presented in Fig. 9 additionally emphasizes
the need to analyze both vectorized and nonpolar nðrÞ.
Indeed, the different topological nature of these two
solitons could not be revealed based on the Pontryagin-
Thom constructions, which are rather similar for the
two structures [compare Figs. 7(f)–7(h) and 8(f)–8(h)].
Moreover, we find exactly the same linking of the pre-
images of all pairs of points on S2 and S2=Z2 (Figs. 7–9) of
these two different solitonic structures, and the difference
between them can be seen only when the preimage
circulations are consistently defined. For both nonpolar
and vectorized nðrÞ, we can see the difference between
topologies of these two solitons on the basis of circulation
directions (Figs. 7–9), with the differences in preimage
linking apparent when one S2 point is at θ < θc and one at
θ > θc or both are at θ < θc, but not when both of the
analyzed points are at θ > θc. In principle, 3D solitons with
different structures could have the same topology of pre-
image linking, being homeomorphic to each other, but this
is not the case for the solitons shown in Figs. 7 and 8, which
cannot be smoothly morphed one to another. The detailed
analysis of preimages allows us to identify and demonstrate
such subtle differences between the 3D solitons. In a
similar way, the important differences between the four
different types of torons that we present in this study could
be missed without a detailed analysis of preimages of all
points on S2=Z2 for nonpolar and on S2 for vectorized nðrÞ
(Figs. 3, 9–12). On the other hand, an analysis of only the
closed-loop preimages, but not the ones terminating on
point defects, would fail to reveal differences between
certain types of torons and solitons without point defects
(compare Figs. 7 and 12, as well as the corresponding
summaries presented in Fig. 9).
The 3D solitons that we discuss in this work constitute a

nonexhaustive, illustrative set of examples of topologically
nontrivial field configurations that can be stabilized in
chiral liquid crystals and ferromagnets, but a much larger
variety of π3ðRP2Þ≡ π3ðS2=Z2Þ ¼ ℤ and π3ðS2Þ ¼ ℤ
topological defects can exist in these condensed matter
systems and will be the subject of our future studies.
Among many interesting questions that remain to be
answered, one concerns finding the different ways in which
various stable and metastable states with the same topology
(andQ) can be realized in the studied system. For example,
the uniform unwound state and the 3D solitons shown in
Figs. 2 and 3 are all characterized by Q ¼ 0, but it remains
to be found whether other solitons with Q ¼ 0 can be
realized experimentally and as local free-energy minima in
modeling. Importantly, our approach of imaging preimages
is ideally suited to reveal the diversity and complexity
of the 3D solitons in LCs. Indeed, we note that despite the
fact that polarizing optical micrographs [Figs. 1(f), 1(g),
6(c), 6(l), 10(f), 12(a), and 13(f)] of different solitons differ
from each other, they do not allow for determining the type
of preimages and their interlinking, which is only possible

DIVERSITY OF KNOT SOLITONS IN LIQUID CRYSTALS … PHYS. REV. X 7, 011006 (2017)

011006-25



to do on the basis of the 3D nonlinear optical imaging and
with the help of the method of preimages that we introduce.
Although 3D topological solitons have been studied as

part of dynamic and transient phenomena in many different
physical systems (for example, see Refs. [14,16,22,48]),
chiral nematic LCs are perhaps the only system in which
these solitons are realized as long-term stable configura-
tions accessible to detailed experimental studies of their 3D
structure and topology, which makes them ideally suited to
serve as model systems for the study of π3ðS2=Z2Þ ¼ ℤ and
π3ðS2Þ ¼ ℤ topological defects. For example, the initial
interest in 3D topological solitons emerged in the fields of
particle physics and cosmology [1,3,6–10,48], where they
continue to play important roles [3]. Although the Skyrme
model (and related models such as the Skyrme-Faddeev
model [9]) was initially proposed as a model describing
strong interactions of hadrons [6], Witten and colleagues
later demonstrated that similar ideas could be derived on
the basis of QCD [49]. In the low-energy pion dynamics
model, certain elementary particles (including protons) can
be thought of as π3 textures or solitons [48,49,50]. In
addition, the 3D topological solitons are also predicted to
occur in cosmology [48,50] and in many other physical
systems [3], in which their detailed study is typically
inaccessible to direct experimentation. We thus expect that
the use of chiral nematic LCs as a model system to study
3D topological solitons may impinge on their understand-
ing in contexts of physics phenomena in other branches of
physics. Furthermore, since the solitonic structures with
different Hopf indices are topologically distinct from each
other, transformations between them are discontinuous and
involve energetic barriers. Thus, different types of solitonic
structures can be obtained as long-lived states correspond-
ing to locally different optical and other properties. Since
the different solitons incorporate different patterns of the
effective refractive index distribution, they could serve as
means of realizing reconfigurable phase gratings [44],
pixels for bistable and multistable displays, etc. If the
3D topological solitons we discuss here can also be
discovered in solid ferromagnets [24–29], they can poten-
tially revolutionize the field of Skyrmionics currently
enabled by their two-dimensional counterparts, the so-
called baby Skyrmions [28,29].
To conclude, we introduce an approach for experimental

and numerical analysis of 3D topological solitons with
nonzero Hopf invariants. Within this approach, inspired by
the mathematical Hopf maps, point by point, we exper-
imentally scan the order parameter space (the S2 sphere or
S2=Z2) and find regions within the sample that have
orientations of the director or vector corresponding to
the point of S2 or S2=Z2. The same procedure is imple-
mented numerically based on field configurations arising
from the minimization of free energy, allowing for the
unambiguous characterization of the topology of 3D
solitons. We apply this analysis of experimental and

numerical preimages and Hopf maps as a means of
uncovering an unexpectedly large diversity of 3D spatially
localized solitonic structures in confined chiral nematic
LCs. We reveal a host of torons, hopfions, and other
solitons with complex linking of closed-loop preimages
and both with and without singular point defects. Self-
assembly of such 3D solitons with different topological
characteristics may result in the emergence of new con-
densed matter phases with rich phase diagrams and unusual
physical behavior. A comparison of nematic and ferromag-
netic hopfions and torons that we studied recently [22,51]
will allow for probing the role of field polarity in the
topology of knotted solitons. Finally, the experimental and
theoretical frameworks that we introduce will help establish
chiral nematic LCs as a test bed for the study of 3D
topological solitons, which are abundant in theories in
practically all branches of physics.
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