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Summary

In this work, we present an e�cient method for estimat-

ing active subspaces using only random observations of

gradient vectors. Our method is based on the bi-linear

representation of low-rank gradient matrices with a novel

initialization step for alternating minimization.

Active Subspaces

In modern computer simulations, scientists and engineers

seek to study the relationships between high-dimensional

spaces of input parameters and quantities of interest. Due

to the large number of input parameters and high cost

of simulations, many methods have been proposed to re-

duce the dimension of the input parameter space. These

methods often find small subsets or linear combinations of

the input parameters that approximately preserve input-

output relationships. This low-dimensional characteriza-

tion of complex problems with hundreds or thousands of

input parameters is a crucial tool for modern computer

simulations.

Active subspaces are powerful tools for identifying im-

portant directions in the high-dimensional space of input

parameters [1, 2]. Let x 2 Rm be a vector of simulation

inputs and assume that f(x) : Rm 7! R is the mapping

between x and a quantity of interest. The active subspace

is defined by the top n < m eigenvectors of the following

m⇥m symmetric positive semidefinite matrix

C =

Z
rf(x)rf(x)T ⇢(x)dx, (1)

where rf(x) 2 Rm is the gradient vector and ⇢ is a

user-specified probability density function. Consider the

eigenvalue decomposition of C = W⇤WT , where ⇤ 2
Rm⇥m is the diagonal matrix of eigenvalues, listed in

decreasing order, andW 2 Rm⇥m containsm orthonormal

eigenvectors. The matrix W can then be partitioned:

W = [W1,W2]. The column space of W1 2 Rm⇥n is

the n-dimensional active subspace, where n is usually

chosen so the first n eigenvalues are much larger than the

remaining m� n eigenvalues.

In high-dimensional settings, computing the integral in

(1) for constructing the matrix C is impractical. Moreover,

in some applications, the gradient vector rf(x) may not

have a closed-form expression. In such cases, gradients

can be approximated by the first-order finite di↵erence

with m+ 1 function evaluations

eTj rf(x) ⇡ (f(x+ hej)� f(x)) /h, j = 1, . . . ,m, (2)

where ej is the j-th canonical basis vector in Rm and

h > 0 is the finite di↵erence parameter.

In [4], it is shown that the matrix C and its eigenpairs

can be approximated using the following Monte Carlo

method. First, M samples x1, . . . ,xM 2 Rm are drawn

i.i.d. according to ⇢. Then, rfi := rf(xi) are estimated

via (2) using M(m+ 1) function evaluations to form

bC =
1

M

MX

i=1

rfirfT
i = cWb⇤cWT . (3)

The leading n eigenvectors of bC provide an accurate es-

timate of W1 when M is su�ciently large [4]. These

eigenvectors are equivalent to computing the top left sin-

gular vectors of the gradient matrix

G := [rf1, . . . ,rfM ] 2 Rm⇥M . (4)

In this work, we show that the low-rank structure of

the gradient matrix G allows us to find accurate estimates

of active subspace using fewer function evaluations. In

particular, we consider a scheme where only k entries of

each gradient vector rfi 2 Rm are computed uniformly

at random, thus the total number of function evaluations

required would be M(k + 1). To estimate the active

subspace, G is written in a bi-linear form G = AB and

then alternating minimization [5] is used to find A and B

that best fit the observed entries of gradient matrix. To

further improve the performance for small values of k, we

use an unbiased estimate of the left singular vectors of G

as the initial point for alternating minimization [6].

Estimating Active Subspaces with Gradient Sampling

Let us define the linear measurement operator L(·) as
L(G) :=

⇥
RT

1rf1, . . . ,RT
MrfM

⇤
2 Rk⇥M , (5)
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where each sampling matrix Ri 2 Rm⇥k contains k canon-

ical basis vectors in Rm chosen uniformly at random with-

out replacement. Given the incomplete observations and

the bi-linear parameterization ofG, our goal is to minimize

min
A2Rm⇥n,B2Rn⇥M

kL(G)� L(AB)kF . (6)

This problem can be reformulated by using the vector

operator and kronecker product

kL(G)� L(AB)kF= ky �R(IM⇥M ⌦A)vec(B)k2
= ky �R(BT ⌦ Im⇥m)vec(A)k2, (7)

where y = Rvec(G) and R 2 RkM⇥mM contains all

sampling matrices RT
i , i = 1, . . . ,M , on its main diagonal.

Thus, our method iteratively keep one of A,B fixed and

optimize over the other. Each subproblem is convex and

can be solved e�ciently

vec(B) [R(IM⇥M ⌦A)]
†
y,

vec(A) 
⇥
R(BT ⌦ Im⇥m)

⇤†
y. (8)

In [3], estimation of active subspaces is considered in a

similar framework where eachRi 2 Rm⇥k has independent

standard Gaussian entries. As we see from the update rule

in (8), our method is more e�cient in terms of computation

and memory. The proposed method in [3] must storeMmk

nonzero entries of matrix R, whereas our method requires

only Mk nonzero entries to be stored. Similarly, our

method reduces the cost of matrix-matrix multiplications.

We expect our proposed sampling method to perform as

well as Gaussian samples when the active subspaces are

incoherent with the standard basis.

Another contribution of our work is the novel initializa-

tion step based on [6]. The initial iterate for alternating

minimization is preferred to be chosen based on a good

estimate of A, rather than random initializations, to guar-

antee the convergence [5]. The recent work [6] presents

an unbiased estimator for the matrix bC
e⌃ := eC� ⌘ diag(eC), ⌘ =

m� k

m� 1
, (9)

where diag(eC) represents the matrix formed by zeroing

all but the diagonal elements of eC, which is defined as

eC :=
m(m� 1)

k(k � 1)

1

M

MX

i=1

(RiR
T
i rfi)(RiR

T
i rfi)T . (10)

Numerical Experiments

Let H 2 Rm⇥m be symmetric positive semidefinite and

f(x) = 1
2x

THx, defined on the domain x 2 [�1, 1]m with

a uniform density ⇢. Thus, the gradient is rf(x) = Hx.

The eigenvalues of C in are the eigenvalues of H, squared

and divided by 3. Moreover, the eigenvectors of C and

H are identical. The matrix H is constructed so that its

eigenvalues decay at a slow rate, except for a large gap

between the fifth and sixth eigenvalues. We set parameters

m = 100, M = 2000, and n = 5. The subspace estimation

error is defined as E := kcW1
cWT

1 � fW1
fWT

1 k2, where fW1

is the active subspace estimate using incomplete gradients.

In Fig. 1, the mean estimation error over 100 trials is

reported for various values of measurements k. Alternating

minimization with 20 iterations is used in two cases: (1)

our proposed initial point based on (9), and (2) random

initialization based on a Gaussian matrix.

10 20 30 40 50 60 70 80
Number of measurements k

10-2

10-1

100

A
ct
iv
e
su
b
sp
ac
e
er
ro
r

AltMin (random initial)
AltMin (our initial)

Figure 1: Active subspace estimation error for varying

number of measurements k and fixed dimension m = 100.

A good initialization point becomes more important for

small values of k, which are crucial for large-scale problems.

For example, at k = 20, the mean estimation errors for our

proposed initial point and random initialization are 0.08

and 0.18, respectively. Thus, our initialization procedure

reduces the error by almost a factor of 2 in this case.
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