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Thesis directed by Assistant Professor of Computer Science Sriram Sankaranarayanan

The satisfiability problem (SAT) and its extensions have become indispensible tools in artificial intel-

ligence, verification, and many other domains. Extensions of the problem such as model counting, quantified

Boolean formulae (QBF), and MAX-SAT have similarly seen increased study and applications. This thesis

provides a survey on SAT, and then presents novel results related to model counting and random QBF.

Chapter 3 gives a general technique for computing inclusion-exclusion sums more efficiently for the

purpose of model counting. The main contribution is a subsumption technique which reduces computational

overhead. Treating an inclusion-exclusion sum’s computation as tree exploration, subsumption allows us

to prune large subtrees. We also give a better worst-case upper bound on the algorithm’s running time,

improving it from exponential in the number of clauses to the number of variables in a CNF formula.

Chapter 5 describes a new phase transition in random QBF, along with related results on random

QBF models. The clause-to-variable ratio phase transition identified in random k-SAT has been the subject

of intense study on what makes a SAT instance intractable, and recent work has studied a similar transition

in random QBF. Here we show that a satisfiability threshold exists around phase transitions arising from

altering the fraction of existentially versus universally quantified variables in a formula. In chapter 6 we

revisit work on generating trivially false formulas in several related random QBF models, giving precise

bounds for how likely they are to occur.
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Chapter 1

Introduction

In the past twenty years, the Boolean propositional satisfiability problem (SAT) and its extensions

have become invaluable tools in artificial intelligence and formal verification. The problem remains important

in theoretical computer science as a canonical intractable problem, but researchers have made large advances

in developing algorithms for solving real-world SAT instances.

The handbook of satisfiability [7] gives a thorough survey of the history of the SAT problem, theoretical

concerns, practical solving and applications, and extensions of SAT including quantified Boolean formula

(QBF), model counting, constraint satisfaction problems (CSPs), and satisfiability modulo theories (SMT).

Here we provide context for the new results in this thesis with a survey on SAT, extensions of SAT, and

related solving algorithms.

1.1 Computational Complexity

We give several brief definitions regarding computational complexity, following the notation in [4].

Definition 1. We say that an algorithm requires DTIME(f(n)) if it takes a deterministic Turing machine

O(f(n)) steps to complete the algorithm in the worst-case given an input of size n. We define NTIME(f(n))

and DSPACE(f(n)) similarly for nondeterministic time and deterministic space respectively.

Definition 2. We define the complexity class P to be the set of decision problems which require polynomial

time to decide in the worst case.
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P =

∞⋃
c=1

DTIME(nc) (1.1)

We define the classes NP and PSPACE similarly with NTIME and DSPACE in place of DTIME

respectively.

1.2 The Satisfiability Problem

We start by introducing some terminology, following standard notation used in [7] and elsewhere. A

Boolean variable, or just variable, x may take the values of ‘true’ or ‘false’. A literal ` is a variable x or

its logical negation ¬x. Let v(`) denote the variable constituent of a literal. A clause Ci is a disjunction of

ki literals.

Ci =

ki∨
j=1

`i,j (1.2)

Definition 3. A k-CNF (k-conjunctive normal form) SAT formula ϕ with a set X = {x1, . . . , xn} of

Boolean variables is a conjunction of m clauses where the length kj of every clause Cj is fixed as k.

ϕ =

m∧
i=1

Ci =

m∧
i=1

k∨
j=1

`i,j (1.3)

For reasons which we will discuss later we may alternatively represent a SAT formula as a set of sets,

where the outer set is a set of clauses, and the inner sets are sets of literals. We will call this representation

the set representation of a formula.

Example 1.

(x1 ∨ x2) ∧ (¬x2 ∨ x3)→ {{x1, x2}, {¬x2, x3}} (1.4)

A partial assignment to the variables in a formula is a mapping f : X ′ ⊆ X −→ {0, 1}. If X ′ = X

then we say that f is a complete assignment.
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We say that a literal ` is satisfied by a partial assignment f if ` = x and f(x) = 1, or if ` = ¬x and

f(x) = 0. We also extend this definition to clauses and CNF formulas. A clause is satisfied if at least one

of its literals is satified, and a CNF formula is satisfied if all of its clauses are satisfied. A literal, clause,

or formula may also be falsified if its satisfiability condition is broken, meaning that no total assignment

extending the partial assignment could satisfy it. If a partial assignment is neither satisfying nor falsifying,

we say that a literal (resp. clause, formula) is unresolved.

The CNF-SAT (or SAT) decision problem asks whether there exists a complete assignment to the

variables of a CNF formula ϕ that satisfies it. That is, it asks whether ϕ is satisfiable. Because two opposite

literals x and ¬x make a clause trivially satisfiable (i.e. |= x∨¬x), and two copies of the same literal do not

affect satisfiability (i.e. (` ∨ `) ⇔ `), we assume without loss of generality that clauses do not contain any

repeated variables.

1.2.1 CNF

Any propositional formula with connectives in {¬,∨,∧,⇒,⇔} may be reduced to an equisatisfiable

CNF formula in polynomial time via Tseitin transformation [49, 9, 37], meaning that CNF formulas have the

same expressivity as general Boolean functions and that such a representation may be obtained efficiently.

One can also reduce an arbitrary propositional formula to CNF using DeMorgan’s laws without introducing

new variables, but may incur an exponential blow-up in formula size.

Additionally, any clause with k literals may be reduced to an equisatisfiable set of k − 2 clauses with

3 literals. By introducing auxiliary variables, we may “chain together” clauses. Therefore, 3-CNF-SAT

(3-SAT) is often taken as the normal form of choice.

Example 2.

x1 ∨ x3 ∨ ¬x6 ∨ x7 ∨ ¬x9 → (x1 ∨ x3 ∨ y1) ∧ (¬y1 ∨ x6 ∨ y2) ∧ (¬y2 ∨ x7 ∨ ¬x9)
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1.2.2 UNSAT cores

In certain cases we are interested in more than just detecting that solution is unsatisfiable. We may be

interested in specifically which constraints (clauses) cause the unsatisfiability of a SAT formula. Regarding

the set representation of an unsatisfiable formula ϕ, a subformula S ⊆ ϕ is called an UNSAT core if S is

unsatisfiable and ϕ \S is satisfiable. An UNSAT core which removing a single clause causes to be satisfiable

is called a min-UNSAT core.

Example 3. Given the formula ϕ = x1 ∧ (¬x1 ∨x2)∧ (¬x1 ∨¬x2)∧ (¬x2 ∨x3)∧ (¬x2 ∨x4), the subformula

x1 ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (¬x2 ∨ x3) is an UNSAT core, while x1 ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) is a

min-UNSAT core of ϕ.

1.2.3 Blocking Clauses

After obtaining a satisfying assignment A to a SAT formula, we may decide that we would like another

satisfying assignment, if one exists. The simplest method for doing this is to construct a new clause ϕ∧Cb(A)

where Cb(A) is the negation of the previous satisfying assignment converted to a clause via DeMorgan’s law.

This clause is called a blocking clause because it “blocks” the previous satisfying assignment from being

a model of the formula.

Example 4. Given the formula (x1 ∨ x2) ∧ (¬x2 ∨ x3) and satisfying assignment {x1 = 1, x2 = 0, x3 = 0}

we may negate the assignment and convert the negation into a clause using DeMorgan’s law.

¬(x1 ∧ ¬x2 ∧ ¬x3)→ ¬x1 ∨ x2 ∨ x3 (1.5)

This yields a new formula ϕ′ = ϕ∧Cb({x1 = 1, x2 = 0, x3 = 0}) = (x1∨x2)∧(¬x2∨x3)∧(¬x1∨x2∨x3)

for which the previous satisfying assignment is no longer satisfying.

1.2.4 History

Theorem 1 (Cook-Levin). 3-SAT is NP-complete
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The Cook-Levin Theorem [15, 30], proved independently by Stephen Cook and Leonid Levin in the

early 1970s, showed that SAT, and its restriction 3-SAT are NP-complete. This work gave rise to the P 6= NP

question which is still open today, and the largest outstanding question in computational complexity [14].

Shortly after Cook’s proof, Karp [28] published his seminal paper which showed that 21 well-known problems

are NP-complete. This showed that NP-completeness is a powerful notion describing a wide variety of

important, intractable problems.

Complexity theorists starting with Karp have worked to establish the NP-completeness of problems

by reduction from SAT. In the 40 years since Karp gave his 21 original NP-complete problems, thousands

of additional problems have been shown to be NP-complete.

However, in the last 20 years, more pragmatic work has been interested in giving reductions in the

opposite direction. By definition of NP-completeness, any problem in NP can be reduced to SAT in polyno-

mial time; such a reduction is called a SAT encoding. The aim of the SAT solving research program is to

develop efficient encodings and fast algorithms for SAT. Because many problems may be encoded in SAT,

by concentrating our algorithmic research effort on SAT solving we will be able to solve these problems as

well.

1.2.5 Complete Solvers

The basic setup for a tree-search based solver is to partially generate a complete binary tree of depth

n, representing all possible assignments to the variables in X. Each non-leaf node is labeled with a variable

x ∈ X, and its two outgoing edges are labeled with ‘true’ and ‘false’, indicating the two possible assignments

to x. Note that different branches of the tree may have different variables at different depths. Additionally,

each leaf node is labeled with ‘true’ or ‘false’, depending on whether the assignment to its ancestors satisfies

ϕ. Satisfiability can be checked in linear time.

The naive tree-search based SAT solving algorithm simply performs a depth-first search in this tree

until it has either found a leaf node labeled ‘true’ or exhausted all possibilities. One hallmark of tree-search

solvers is that they are complete, meaning that they are guaranteed to find a solution or a refutation in

finite time.
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Algorithm 1: DPLL SAT-solving algorithm based on algorithm 3.4 in [19]

Input: A SAT formula ϕ
Output: A satisfying assignment or UNSAT
(I, ϕ) = Unit-Resolution(ϕ)
if ϕ = ∅ then /* All clauses satisfied */

return I
if ∅ ∈ ϕ then /* Formula falsified */

return UNSAT

Choose x ∈ ϕ /* Choose an unassigned variable in ϕ */

if I = DPLL(ϕ|x = true) 6= UNSAT then /* Reduce formula setting x = true */
return I

else if I = DPLL(ϕ|x = false) 6= UNSAT then /* Reduce formula setting x = false */
return I

else
return UNSAT

1.2.5.1 DPLL

The vast majority of modern SAT solvers are based on the DPLL algorithm, shown in algorithm 1,

which is named after the authors of [20, 21]. The predominant modern variant is CDCL (conflict-driven

clause learning), introduced in [47].

The DPLL algorithm [20, 21] introduced two large improvements to the naive algorithm discussed

above. The first observation is that one need not always reach a leaf (give a complete assignment) before

concluding that a formula is falsified. If a formula is observed to be falsified at depth d (by a partial

assignment to d variables) then a subtree with 2n−d leaves may be pruned from the naive search, and the

search may backtrack early.

The second improvement in DPLL is the observation that a unit clause dictates how that literal must

be assigned. For a literal ` = x (resp. ` = ¬x), x must be assigned to true (resp. false) or the clause

becomes falsified. Making these forced assignments is called unit propogation or Boolean constraint

propagation (BCP). Although invented in the early 1960s, the DPLL strategy still forms the core of the

most important SAT solving technique today.

The algorithm given in 1 formalizes this technique. This algorithm is based on those given in [19, 46].
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x1

x2 x2

x3 x3 x3 x3

UNSAT UNSAT UNSAT SAT SAT SAT UNSAT SAT

0 1

0 1 0 1

0 1 0 1 0 1 0 1

Figure 1.1: Example of DPLL search based on [19] for solving (x1 ∨ x2) ∧ (¬x2 ∨ x3). The light yellow
indicates a decision node, while the darker yellow nodes indicate unit propagation, leading to the final
solution in green. Because the assignment x2 = 1 is forced by unit propagation, the left x2 is not a decision
node. However, if we “disabled” unit propagation, we would reach x3, shown in red, at which point we would
backtrack early without making an assignment.
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1.2.5.2 CDCL

Additional techniques used in modern CDCL solvers [46] include:

• Non-chronological backtracking

• Lazy data structures

• Random restarts

• Variable selection heuristics

• Clause deletion heuristics

1.2.6 Incomplete Solvers

The main alternative paradigm for SAT solving is local search, and particularly one of its variants,

stochastic local search (SLS). These algorithms are incomplete [29]. A greedy local search algorithm, GSAT,

and its successor which mixes greedy local search with a random walk in the solution space, WalkSAT, were

introduced in [44, 43] respectively.

Here we represent the SAT assignment state space as an n-regular undirected graph where the vertices

represent complete assignments to the variables in ϕ, and each vertex has edges to vertices with assignments

that are Hamming distance 1 away. For a SAT formula with n variables, this graph may be viewed as taking

the set of vertices and edges from an n-dimensional hypercube.

1.2.6.1 WalkSAT

The predominant SLS algorithm is WalkSAT [43]. We start with a seed solution in this graph, and

explore the state space by flipping one variable assignment at a time – that is, moving to an adjacent node

in the graph. Because we explore nearby solutions, this is called local search. We will consider two possible

ways to choose which edge to take:

(1) Greedy moves – Determine which variable, if flipped, would result in the highest net number

(possibly negative) of clauses being satisfied.
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0,0,0 1,0,0

0,1,0 1,1,0

0,0,1 1,0,1

0,1,1 1,1,1

SAT formula:
(x1 ∨ x2) ∧ (¬x2 ∨ x3)∧

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3)

Iter. Assignment
0 (x0

1, x
0
2, x

0
3) = (0, 0, 0)

1 (x1
1, x

1
2, x

1
3) = (0, 1, 0)

2 (x2
1, x

2
2, x

2
3) = (0, 1, 1)

3 (x3
1, x

3
2, x

3
3) = (1, 1, 1)

Figure 1.2: Example of a GSAT local search. The unsatisfying seed assignment (0,0,0) and intermediate
assignments (0,1,0) and (0,1,1) are given in yellow, while the final (satisfying) assignment (1,1,1) is given in
green. The notation xji indicates the assignment of variable xi at the jth iteration.
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Algorithm 2: WalkSAT algorithm based on the algorithm presented in [29].

Input: CNF SAT formula ϕ, number of tries t, steps per try s, random choice parameter p∗ ∈ [0, 1]
Output: Satisfying assignment to ϕ or none-found
for i = 1 to t do

σ := a random truth assignment to the variables in ϕ /* Seed assignment */

for j = 1 to s do
if σ is a model of ϕ then return σ
C := a random unsatisfied clause of ϕ
if ∃xi ∈ C such that xi := ¬xi breaks no clauses then

v := x
else

p := rand(0, 1) /* Generate a random ‘‘real’’ number between 0 and 1 */

if p < p∗ then /* Random move */
v := a variable chosen at random in C

else /* Greedy move */
v := a variable in C which when flipped satisfies the most clauses

Flip v in σ

(2) Random moves – Select a variable uniformly at random and flip it.

We may also discriminate between selecting variables from the whole formula, or just from a particular

clause when considering which move to take.

The GSAT algorithm [44], a predecessor to WalkSAT, simply makes greedy moves with respect to the

whole formula until a solution is found or the process times out.

The WalkSAT algorithm (algorithm 2) is slightly more complicated. At each decision point, it selects

an falsified clause uniformly at random. With this clause it uses the following decision process for selecting

a variable to flip:

• If a variable exists which, if flipped, does not falsify any other clauses flip it.

• Otherwise, with probability p select a variable in the clause to flip randomly, and with probability

1− p select it greedily.



Chapter 2

Extensions of SAT

In this section we discuss several important extensions and restrictions of SAT. The new results in

this thesis relate to model counting and QBF respectively, two problems which are conjectured to be strictly

harder than SAT.

Table 2.1 shows a number of restrictions and extensions of SAT which result in problems with different

complexity. It gives variations of the satisfiability problem in roughly increasing order of complexity.

2.1 2-SAT

The 2-SAT problem restricts clauses in a CNF-SAT formula to have length at most 2. While k-SAT

for k ≥ 3 is known to be NP-complete, and therefore not known to have a polynomial time algorithm, 2-SAT

is known not only to be in P, but the smaller class NL [3].

One algorithm for solving 2-SAT is in terms of graph exploration. A clause of length two is of the

form `i ∨ `j . This says that if one of the literals is false, then the other must be true. That is

(`i ∨ `j)⇔ (¬`i ⇒ `j)⇔ (¬`j ⇒ `i) (2.1)

Extracting these two implications from each clause in a 2-SAT formula ϕ allows us to form an im-

plication graph G = (V,E). In this graph, each vertex v ∈ V is labeled with one of the 2n possible

variable-assignment pairs in the formula. For each clause `i∨`j we add edges e¬`i,`j and e¬`j ,`i to the graph.

That is, E = {e¬`i,`j |{`i, `j} ∈ ϕ}. These edges denote implications, which translate to unit propagations:
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Variation Complexity Applications

2-SAT NL-complete digraph path
XOR-SAT ⊕L-complete
Horn-SAT P-complete prolog

SAT/3-SAT/Circuit-SAT NP-complete model checking, reg. allocation
MAX-SAT NP-hard

k-QBF ΣPi -complete/ΠP
i -complete max-clique

⊕SAT ⊕P-complete
MAJ-SAT PP-complete

#SAT/#2-SAT #P-complete model counting, model sampling
QBF PSPACE-complete game playing, planning

Table 2.1: A taxonomy of SAT variations.

in the clause `i ∨ `j , if `i is false then `j must be true.

We then get an algorithm for 2-SAT by identifying cycles in the implication graph which contain nodes

labeled with both a variable and its negation. This cycle says that given either assignment to a variable xi,

the opposite assignment will be implied resulting in a contradiction.

2.2 XOR-SAT

In the XOR-SAT problem, clauses contain the logical connective XOR ⊕ rather than OR ∨. A

XOR-SAT clause xi,1⊕ · · · ⊕ xi,k = b for some b ∈ {0, 1} is simply a linear equation over the finite field with

two elements GF (2) (also denoted Z2 or Z/2Z). Because a XOR-SAT formula is simply a conjunction of

linear equations, we may check for a solution in polynomial time using Gaussian elimination.

2.3 Model Counting

Counting the number of satisfying solutions (models) to a SAT formula is one natural extension of

SAT. The SAT problem on its own asks “are there one or more satisfying solutions to this formula?” without

discriminating between how many solutions more than one there might be.

Definition 4. The #SAT problem asks how many solutions there are to a SAT formula. This is the

canonical #P-complete problem.

While many #P-complete problems correspond to the counting version of NP-complete decision prob-
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x1

¬x1

x2

¬x2

x3

¬x3

x4

¬x4

2− SATformula :
x1 ∨ x2

¬x1 ∨ x2

¬x2 ∨ x3

¬x3 ∨ x4

¬x4 ∨ x2

Figure 2.1: A 2-SAT formula and corresponding implication graph.

lems, surprisingly the counting version of some problems in P are also intractible. For example, 2-SAT is in

P (more specifically, is NL-complete) and 3-SAT is NP-complete, however #2-SAT and #3-SAT are both

#P-complete. In his seminal 1979 paper that introduced counting complexity, Valiant [50] also proved that

computing the permanent of a matrix is #P-complete. This stands in contrast to computing the determinant,

which can be done in polynomial time.

2.3.1 Sampling

One of the most important applications of counting is sampling. In fact counting, sampling, and

enumerating solutions to #P-complete problems are all of about the same difficulty in the sense that given

an oracle for one we can perform the other two. Sampling solutions is useful in practice. For example,

suppose that we have modeled the correctness of a hardware system as a SAT formula, and wish to try

out how different solutions to the constraints affect performance. One may then want to select solutions

uniformly at random from the set of all possible solutions.

2.3.2 Counting via Blocking Clauses

A simple, naive algorithm for model counting use a SAT solving algorithm, “as-is”. This algorithm

simply counts the number of times it repeats the following two steps on a given CNF formula ϕ:

(1) Use a SAT solving algorithm to find a solution A to ϕ



14

(2) Add a blocking clause Cb(A) to the formula to obtain a new formula Cb(A)

In practice this is a good way to obtain a small number of solutions to a formula. However, because

a formula may have a number of solutions exponential in its number of variables n, this algorithm takes

not only exponential time but also exponential space in the worst-case. Improved variants may block more

than one satisfying assignment at a time by using blocking-style clauses shorter than n. However, the

standard algorithm for model counting is a variant of DPLL. Chapter 3 discusses another basic algorithm,

and improvements to it, which uses combinatorial techniques to count the number of models to a formula.

2.3.3 Counting via DPLL

The standard technique for solving #SAT uses a DPLL-based search [8, 26]. The technique is similar

to the algorithm for SAT with some exceptions. The main difference is that for #SAT we must search

the entire tree. This precludes the use of or reduces the effectiveness of several common optimizations to

the DPLL algorithm. For example, when model counting we want to backtrack not just when a partial

assignment falsifies a formula, but also when it satisfies it. When we identify a satisfying partial assignment

of size d then we may add 2n−d to our total solution count, and then backtrack.

2.4 Quantified Boolean Formulas (QBF)

The quantified Boolean formula (QBF) problem is a generalization of SAT which allows quantification.

In addition to the logical connectives allowed in SAT formulas, we also allow QBFs Φ to contain the existential

quantifier ∃ and the universal quantifier ∀. For much of the notation we follow [10].

We may α-rename subformulas of Φ to avoid the following two occurrences:

(1) Two quantifiers in Φ have the same variable x. For example, ∀x(y ∧ x) ∨ ∃x(y ∨ x).

(2) A variable occurs free in one subexpression and bound in another. For example, x ∨ ∀x(y ∧ x).

Formulas without these cases are called cleansed.

Definition 5. A prenex normal form formula Φ contains a block of quantifiers followed by a quantifier-

free subformula called the matrix, where Qi ∈ {∃,∀}.
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Φ = Q1x1 · · ·Qnxnϕ (2.2)

We may convert an arbitrary QBF into cleansed, prenex normal form in linear time [10]. Furthermore,

we may apply the transformations described in the previous section to the matrix to obtain a 3-CNF formula

in linear time. Therefore, we will define Q∗kCNF to be the set of QBFs in cleansed, prenex normal form

and having a 3-CNF matrix containing no free variables. This will serve as a normal form.

Determining the satisfiability of a QBF formula is a PSPACE-complete problem. PSPACE is a

complexity class known to contain, and conjectured to properly contain, NP.

2.5 MAX-SAT

Another optimization variant of the SAT problem, called MAX-SAT asks for the maximum number

of clauses which are satisfiable simultaneously in a given CNF-SAT formula. In particular, if the formula is

satisfiable, then the answer is trivially m, the number of clauses in the formula. Therefore an algorithm for

MAX-SAT easily solves SAT, meaning that MAX-SAT is NP-hard.

Two further generalizations of MAX-SAT are weighted MAX-SAT and partial MAX-SAT [31].

Weighted MAX-SAT assigns a positive weight wi > 0 to every clause Ci, representing the importance of that

clause being true. The resulting optimization problem asks for a variable assignment which admits a set

of satisfied clauses of maximal weight. The partial MAX-SAT problem divides clauses into two sets: hard

constraints and soft constraints. The problem is then to satisfy the maximum number of soft constraints

such that the hard constraints are all satisfied. That is, we treat the hard constraints as a normal SAT

problem, and the soft constraints as a MAX-SAT problem for assignments satsifying the hard constraints.

This is similar to linear programming where we seek to maximize a set of linear expressions subject to a set

of inequalities.



Chapter 3

Inclusion-Exclusion

The inclusion-exclusion formula is well-known and widely used in combinatorics and probability. Our

motivation in studying the inclusion-exclusion principle came from the observation that it can be used to

solve hard counting problems. Specifically, we can use the inclusion-exclusion principle to solve #SAT as

will be discussed in detail below. Other algorithms for solving #SAT are discussed in the previous chapter.

This chapter of the thesis draws heavily from work done jointly with and advised by Sriram Sankara-

narayanan. A preliminary version of this work was presented as a poster and short paper [6] at SAT 2011, and

an updated journal version is currently in preperation [41]. Specifically, this work presents two improvements

to existing techniques. First, we give an improved characterization of Bonferroni inequalities where we can

obtain provable upper and lower bounds on a larger class of subformulas. Second, we introduce a technique

called subsumption which asymptotically improves the worst-case running time of the inclusion-exclusion

based algorithm for solving #SAT, and (non-asymptotically) improves the average-case running time.

Work on improving Bonferroni inequalities, either in terms of generalization or reduced computation,

is prevelant in the literature [22, 24].

To the best of our knowledge, Linial and Nisan in [32] first introduced the idea of using the inclusion-

exclusion principle to count the models of a propositional formula, also showing that beyond depth O(
√
n) an

inclusion-exclusion sum converges rapidly. This work was furthered by Iwama [27] and Lonzinskii [35], both

of which take advantage of the structure of CNF SAT to analyze the average time complexity required for

exactly computing the number of models of a random CNF formula. However, as [32] points out, the idea of

using inclusion-exclusion to solve hard counting problems goes back to work in the early 1960s [40] in which
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Ryser uses it in an algorithm for computing the permanent of a matrix before the problem’s complexity was

formally established by Valiant [50].

Suppose we have a collection of sets A = {A1, . . . , An}. The inclusion-exclusion principle gives a

formula for computing the cardinality of the union of this collection of sets: |∪ni=1Ai|. The formula, expressed

as an alternating sum, plays an important role in combinatorics and probability. Bonferroni inequalities

generalize the inclusion-exclusion principle by showing that truncactions of the sum at odd (even) depths

give upper (lower) bounds. The inclusion-exclusion sum includes a term for each element in the powerset of

{A1, . . . , An} other than the empty set and therefore requires exponentially many computations in the worst

case.

Definition 6. Given a family of sets {A1, . . . , An}, the inclusion-exclusion principle gives a formula for

computing |∪ni=1Ai|. ∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ =
∑

S⊆[n],S 6=∅

(−1)1+|S|

∣∣∣∣∣⋂
i∈S

Ai

∣∣∣∣∣ (3.1)

where the notation [n] denotes the set {1, . . . , n}.

This sum has 2n − 1 terms, one for each element in the power set of [n] other than the empty set,

meaning that the number of operations we will have to perform to compute the sum is exponential in n

in the worst case. However, the inclusion-exclusion sum is alternating, a fact which plays a key role in the

optimizations presented in [6]. The main result in our work shows how we can identify large numbers of

terms with the same cardinality but different sign, and therefore conclude that their mutual contribution to

the sum is zero.

Definition 7. We also get a corollary to equation 3.1 called the Bonferroni inequalities in which we may

obtain an upper or lower bound on |∪ni=1Ai| by truncating the sum to sets of a given size k:

∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ ≤ ∑
S∈[n],0<|S|≤k

(−1)1+|S|

∣∣∣∣∣⋂
i∈S

Ai

∣∣∣∣∣ for odd k (3.2)

∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ ≥ ∑
S∈[n],0<|S|≤k

(−1)1+|S|

∣∣∣∣∣⋂
i∈S

Ai

∣∣∣∣∣ for even k (3.3)
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AB A

B

C

|A ∪B| = |A|+ |B| − |A ∩B| |A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| −
|B ∩ C|+ |A ∩B ∩ C|

Figure 3.1: Venn diagrams for two and three sets demonstrate the inclusion-exclusion principle visually.

3.1 Inclusion-Exclusion as Tree Exploration

The improvements discussed in [41] come from the observation that the inclusion-exclusion principle

may be viewed as tree exploration. We use a tree as a device for organizing the terms in an inclusion-exclusion

sum.

Definition 8. Given a family A = {A1, . . . , An} of sets, the inclusion-exclusion (I-E) tree of A has a

node for each subset S ⊆ [n].

We formally define an I-E tree using the following rules:

(1) The root node of an I-E tree is labeled with [∅]. Each non-root node S = [i1, . . . , id] at depth d in the

inclusion-exclusion tree is labeled with an ordered, increasing sequence of d integers 1 ≤ i1 < · · · <

id ≤ n.

(2) Each node S has n − id children [S, id + 1], [S, id + 2], . . . , [S, n], where the syntax S′ = [S, id+1] is

shorthand for [i1, . . . , id, id+1].

The tree shown in figure 3.2 gives the organizational layout for the tree representation of an inclusion-

exclusion sum for a collection of four sets, with leaf nodes colored green for clarity.

Remark 1. An I-E tree for a collection of n sets may be viewed as an organizational device for enumerating

the elements in the power set of the first n integers. Because the I-E tree representation of any collection of
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[∅]

[1] [2] [3] [4]

[1, 2] [1, 3] [1, 4] [2, 3] [2, 4] [3, 4]

[1, 2, 3] [1, 2, 4] [1, 3, 4] [2, 3, 4]

[1, 2, 3, 4]

Figure 3.2: Inclusion-exclusion tree for a family A = {A1, A2, A3, A4} consisting of four sets.

n sets is the same, all of these trees are isomorphic, although the cardinalities of the sets that they represent

differ.

There is a one-to-one correspondence between non-root nodes S = [i1, . . . , id] in the tree and terms

t(S) = (−1)1+|S| |∩i∈SAi|

in the inclusion-exclusion sum 3.1. Therefore, if we set t([∅]) = 0, we may compute the inclusion-exclusion

sum by performing a search of the tree, summing the contributions of each node.

One powerful improvement to this search comes from the observation that nodes S with ∩i∈SAi = ∅

contribute nothing to the sum. Furthermore, because ∅ ∩B = ∅ for any set B, no descendant of S will ever

contribute to the overall sum. Therefore we may optimize our algorithm by pruning any subtrees whose

roots ∩i∈SAi = ∅ from our traversal.

Algorithm 3 formally presents the basic I-E tree based technique for computing bounds on the car-

dinality of the union of a family of sets using a depth-first traversal of an I-E tree. Starting with the root,

we perform a depth-first traversal of the tree by pushing the children of each non-empty node (other than

the root) onto a stack, and then popping off the stack’s top element. We sum the contributions of each

non-empty node. Recall that for odd d algorithm 3 gives an upper bound, whereas for even d it gives a lower

bound. Note that if we replaced the stack with a queue, then our algorithm works by performing a breadth-

first traversal. Because the empty set pruning optimization works given either a depth-first or breadth-first

traversal order, the reduced space complexity of a depth-first search is desirable, but both traversals are



20

Algorithm 3: Basic algorithm for computing the cardinality of the union of a family of sets via an
I-E tree.

Input: Collection of sets A = {A1, . . . , An}, depth bound d
Output: Upper or lower bound on |∪ni=1Ai|
stack.push([∅]);
sum := 0;
while !(stack.isEmpty()) do

S := stack.pop();
v := t(S);
if (|S| ≤ d) && (S = ∅ || v > 0) then

stack.push(children(S));
sum := sum + v

return sum;

sound.

For each node S in the I-E tree, let subtree(S) denote the subtree rooted at S, and let subtree†(S) =

subtree(S) \ {S} denote the proper subtree of S. We also extend the valuation function t to subtrees as

the sum over all nodes in the subtree:

t(subtree(S)) =
∑

S′∈subtree(S)

t(S′)

t(subtree†(S)) = t(subtree(S))− t(S)

The following lemma makes the key observation that subtrees of the I-E tree are also I-E trees. Let

S = [i1, . . . , id] be a non-root node of the I-E tree with k > 0 children T1 = [S, id + 1], . . . , Tk = [S, id + k]

where n = id + k. Recall that the contribution of the proper subtree rooted at S is given by

t(subtree†(S)) =

k∑
j=1

t(subtree(Tj)) (3.4)

Lemma 1. ∣∣t(subtree†(S))
∣∣ = (−1)d

∣∣∣∣∣∣
n⋃

j=id+1

Intersect(S) ∩Aj

∣∣∣∣∣∣
where Intersect(S) = ∩i∈SAi.

Proof. The identity follows from applying the inclusion-exclusion principle to the LHS of the identity, and

noting the bijection between terms in the inclusion-exclusion sum to nodes in subtree†(S).
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3.2 Subsumption

Suppose that for some collection of sets S and some set Aj /∈ S we have that Intersect(S) ⊆ Aj . Then

it follows that Intersect(S) = Intersect(S)∩Aj . When computing inclusion-exclusion sums the situation may

arise where two sets have the same cardinality for the reason described above, but their contributions to the

sum will have opposite parity. Identifying the resulting cancellations in the inclusion-exclusion tree forms

the idea behind subsumption.

We can generalize the above observation as follows.

Definition 9. A node S is subsumed by its children children(S) = T1 = [S,Aid ], . . . , Tk = [S,An] if

Intersect(S) ⊆ ∪nj=id+1Aj

Remark 2. An elementary case of subsumption occurs when Intersect(S) = Intersect(Tj) for a single child

Tj of S.

The main result of this section is the following:

Theorem 2. If S is a node in an I-E tree that is subsumed by its children then t(subtree(S)) = 0.

Proof. By lemma 1 we have that

t(subtree†(S)) =

∣∣∣∣∣∣
n⋃

j=id+1

Intersect(S) ∩Aj

∣∣∣∣∣∣
Combining this with the definition of subsumption and noting that S has the opposite sign of

t(subtree†(S)) we have that

t(subtree(S)) = t(S) + t(subtree†(S))

= (−1)1+|S| |Intersect(S)| + (−1)|S|
∣∣∣⋃nj=id+1 (Intersect(S) ∩Aj)

∣∣∣
= (−1)1+|S| |Intersect(S)| + (−1)|S|

∣∣∣Intersect(S) ∩
⋃n
j=id+1(Aj)

∣∣∣
= (−1)1+|S| |Intersect(S)| + (−1)|S| |Intersect(S)|

= 0
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Algorithm 4: Improved algorithm for computing the cardinality of the union of a family of sets via
an I-E tree using subsumption.

Input: Collection of sets A = {A1, . . . , An}, depth bound d
Output: Upper or lower bound on |∪ni=1Ai|
stack.push([∅]);
sum := 0;
while !(stack.isEmpty()) do

S := stack.pop();
v := t(S);
if (|S| ≤ d) && (S = ∅ || v > 0) && !(isSubsumed(S)) then

stack.push(children(S));
sum := sum + v

return sum;

In algorithm 3 we used one pruning technique for our tree exploration based on null intersections.

Using theorem 2 we obtain a second pruning technique based on subsumption. This leads us to algorithm 4.

Notice that using classical Bonferroni inequalities, the algorithm with d < n would not give a guaranteed

bound. We show in the next section that given extended Bonferroni inequalities the algorithm is in fact

correct.

3.3 Extended Bonferroni Inequalities

In this section we show how characterizing an inclusion-exclusion sum as a tree leads to a natural

generalization of Bonferroni inequalities.

Recall that the inclusion-exclusion sum over subsets of size at most d yields an upper bound on the

overall sum if d is odd, and a lower bound if d is even. We give the following notation for this truncated

sum.

Bd =
∑

S⊆[n],1≤|S|≤d

(−1)1+|S| · |Intersect(S)| (3.5)

There is a natural correspondence between these partial sums Bd and subtrees of an I-E tree. Because

the nodes at depth d in an I-E tree correspond to terms in the I-E sum which take the cardinality of an

intersection of d sets, we get a alternative characterization of Bd. Given an I-E tree T let Td be the subtree

of T formed by removing all nodes at depth (strictly) greater than d, defined for 1 ≤ d ≤ n . Then we have:
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Bd =
∑
S∈Td

t(S) ≥

∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ if d is odd

Bd =
∑
S∈Td

t(S) ≤

∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ if d is even

Note that in this case, corresponding to classical Bonferroni inequalities, all “cutoffs” occur at the

same depth d. However, we now show that treating the I-E sum as a tree leads to an extension of these

inequalities.

Definition 10. From an I-E tree T and a set of non-root nodes S = {S1, . . . , Sk} where ∀Si Si ∈ T∧d(Si) >

0 ∧ d(Si) mod 2 = 0 we obtain an even depth cutoff tree T′ = {V ∈ T|∀Si V /∈ subtree†(Si)}, where

d(Si) indicates the depth of a node Si in the tree.

Conceptually, given an I-E tree T we may obtain an even depth cutoff tree T′ by the following

procedure:

(1) Select a cutoff frontier of non-root nodes S all at even depths in T.

(2) Remove all nodes from T contained in the proper subtree subtree†(Si) of every node Si ∈ S.

An odd depth cutoff tree is defined similarly, but with the restriction that ∀Si Si ∈ T ∧ d(Si)

mod 2 = 1.

Theorem 3. Given a cutoff tree T′ of an IE tree T

(1) If T′ is an odd depth cutoff tree then t(T′) ≥ |∪ni=1Ai|

(2) If T′ is an even depth cutoff tree then t(T′) ≤ |∪ni=1Ai|

Here we take advantage of the tree organization of the inclusion-exclusion sum. The proof of these

inequalities uses the observation that the nodes contained in the proper subtree of a node correspond to the

terms in a new inclusion-exclusion sum.

Proof. By lemma 1 we have that

t(subtree†(S)) = (−1)d

∣∣∣∣∣∣
n⋃

j=id+1

Intersect(S) ∩Aj

∣∣∣∣∣∣
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[∅]

[1] [2] [3] [4]

[1, 2] [1, 3] [1, 4] [2, 3] [2, 4] [3, 4]

[1, 2, 3] [1, 2, 4] [1, 3, 4] [2, 3, 4]

[1, 2, 3, 4]

[∅]

[1] [2] [3] [4]

[1, 2] [1, 3] [1, 4] [2, 3] [2, 4] [3, 4]

[1, 2, 3] [1, 2, 4] [1, 3, 4] [2, 3, 4]

[1, 2, 3, 4]

Figure 3.3: Cutoff tree corresponding to classical Bonferroni inequalities (top) and cutoff tree with cutoffs
occurring at different heights (bottom). Pruned nodes appear in red. The sum of the terms in the tree on
top yield a lower bound on the overall sum, while the terms in the lower tree yield an upper bound.
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Therefore, if d is odd then t(subtree†(S)) ≤ 0 and if d is even then t(subtree†(S)) ≥ 0.

Let T′ be an odd depth cutoff tree with cutoff frontier S = {S1, . . . , Sk}. Without loss of generality

we assume that no node in S is a descendant of another node in S. Using the inclusion-exclusion formula

we have

t(T′) =

∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣−
k∑
i=1

t(subtree†(Si))

A given cutoff node Si occurs at an odd depth, so

∀Si ∈ S t(subtree†(Si)) ≤ 0 =⇒
k∑
i=1

t(subtree†(Si)) ≤ 0 =⇒ t(T′) ≥

∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣
The proof for even depth cutoff trees is similar.

Corollary 1. The odd (even) depth cutoff trees induced by subsumption give upper (lower) on the inclusion-

exclusion sum represented by the original tree.

3.4 Model Counting via Inclusion-Exclusion

We now show how the #SAT problem may be formulated in terms of an inclusion-exclusion sum.

Let ϕ be a k-CNF formula with n variables x1, . . . , xn and m clauses C1, . . . , Cm. Using the set

representation of ϕ, we view a clause as a set of k literals: Ci = {`i,1, . . . , `i,k}.

We will use the inclusion-exclusion principle to count the number Nu of falsifying solutions to ϕ. Note

that given Nu we may easily compute the number of satisfying solutions to ϕ as 2n −Nu.

Let Ai denote the set of total assignments to x1, . . . xn that do not satisfy clause Ci. If Ci has k

distinct literals then we note that Nu(Ci) = |Ai| = 2n−k. This is because there is exactly one partial

assignment to the k variables in Ci that does not satisfy Ci. Then the remaining n − k variables may be

assigned arbitrarily, giving a total of 2n−k falsifying asssignments to Ci assuming that there are no repeated

variables in Ci. This assumption is without loss of generality; we may assume that we have preprocessed

the formula to remove any such repeats as described in the introduction.
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Given a subset S ⊆ {C1, . . . , Cm} of the clauses in ϕ, let lits(S) = ∪Ci∈SCi. That is, lits(S) is the set

of all literals appearing in one of the clauses in S.

Let Nu denote the number of falsifying assignments to the formula ϕ.

Definition 11. Given two clauses Ci, Cj in ϕ we say that Ci conflicts with Cj if Ci contains a literal `

and Cj contains its negation ¬`. A set of clauses S ⊆ {C1, . . . , Cm} is conflicting if there are two conflicting

clauses in S.

Using the base case counting scheme given for a single clause above together with the definition of

conflicting clauses, we get the following counting scheme for a set of clauses S.

⋂
Ci∈S

Ai =


0 if ∃j such that {xj ,¬xj} ⊆ lits(S)

(−1)|S|+1 · 2n−|lits(S)| otherwise

We may then represent the total number of falsifying solutions Nu to ϕ using the following inclusion-

exclusion sum:

Nu =
∑

S⊆{C1,...,Cm},S 6=∅

(−1)|S|+1 ·
⋂
Ci∈S

Ai (3.6)

By then applying algorithm 3 we can compute the number of satisfying solutions to a given proposi-

tional formula ϕ.

The average-case time complexity of this algorithm was studied in papers by Lonzinskii [35] and

Iwama [27]. The following theorem gives greatly improved time bounds over the naive algorithm by taking

into account conflicts, but does not account for subsumptions.

Theorem 4 (Lonzinskii, 1992). Given a random1 k-SAT formula ϕ with n variables and m clauses the

average time complexity of computing the exact number of models of ϕ using algorithm 3 is

O(mb+2 · n)

where

1 Variables are selected with uniform probability for each clause, and negated with probability 1/2, meaning repeated clauses
are allowed, but repeated variables within a clause are disallowed.
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No Subsumptions Subsumptions Perc. Change

Av. Time: 44.848 29.826 -0.335
Av. Nodes Explored 5437962 3649815 -0.329

Av. # Conflicts: 4440964 2887100 -0.35
Av. # Subsumptions: 0 19981 N/A

Table 3.1: Inclusion-exclusion based model counting with and without subsumption pruning. This table
shows averages over 50 trials on randomly generated SAT instances with 30 variables, 50 clauses, and 4
literals per clause.

b <
lnm

n

(
2n2

k2
− 3

8

)
Lemma 2. The maximum depth necessary to explore in an inclusion-exclusion model counting tree before

encountering a conflict or subsumption is minn+ 1,m.

Proof. Because the entire inclusion-exclusion tree with no pruning has depth m, the m bound is trivial.

Furthermore, by the pigeonhole principle, because the formula contains n variables, only n clauses may

introduce new, non-conflicting literals. Therefore a clause sequence S = [Ci1 , . . . , Cin+1
] is either conflicting

or a subsumption occurs, meaning that lits(Ci`+1
) ⊆ lits(Ci1 , . . . , Ci`) for some ` ≤ n.

3.5 Experiments

Our experiments show that subsumptions greatly improve the average-case performance of inclusion-

exclusion based model counting. Table 3.1 shows that for random SAT instances generated with 30 variables,

50 clauses, and 4 literals per clause that the subsumption-based inclusion-exclusion technique yields an over

30% speed-up. The plot in figure 3.4 shows that the subsumption-enhanced method converges approximately

and completely at lower depths.

Experiments comparing inclusion-exclusion based model counting to DPLL based model counting

were mixed. DPLL based model counting seems to be faster in many likely parameter settings, however

random instances with large clauses and low clause-to-variable ratios were solved much more quickly by the

inclusion-exclusion algorithm. Unfortunately instances with long clauses are not conducive to subsumptions

occurring (conflicts are very likely) so our improved algorithm did not yield a substantial speed-up.
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Figure 3.4: Plot showing the convergence of subsumption-enhanced inclusion-exclusion versus normal
ineclusion-exclusion based model counting based on averages over 50 trials. Subsumption enhanced inclusion-
exclusion converges more rapidly, and fully converges at a lower depth.
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3.6 Future work

One aim for future work is to perform average-case complexity analysis on algorithm 4 as Lozinskii

and Iwama did for algorithm 3. Doing this for subsumptions is more difficult than for conflicts because

subsumption is an ordered property – whether a given clause is subsumed depends on at what depth it

occurs at in the tree.



Chapter 4

Phase Transitions

One key question in constraint solving is understanding what makes SAT and related problems dif-

ficult. Many industrial SAT instances are solvable very quickly, such as those encountered in model check-

ing [13] and planning, while certain random instances seem to take a very long time to solve. Phase transi-

tions, the idea of which is taken from statistical physics, give insight into this question.

This chapter focuses on models for generating random SAT and QBF instances, while the next chapter

focuses on phase transitions occuring in formulas generated using these models. We start with a brief survey

of both of these topics.

There are two phenomena that constitute phase transitions:

(1) Satisfiability thresholds – when some input parameter α < α∗ − ε then random instances are

satisfiable with high probability (w.h.p.), whereas when α > α∗+ε they are unsatisfiable with w.h.p.

When α = α∗ roughly half of the instances are satisfiable.

(2) Hardness thresholds – when some input parameter α ∈ {α∗ − ε, α∗ + ε} then random instances

require exponentially more time than when α /∈ {α∗ − ε, α∗ + ε}.

4.1 Random SAT Models

One important part of generating random problem instances is to rigorously define a random model.

In the case of random SAT we wish to generate m clauses, each containing k random literals. This family of

models, where the number of literals per clause k is fixed are called fixed clause length (FCL) random SAT
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models. However, this notion is ambiguous in how it treats repeated variables and repeated literals within

clauses, as well as repeated clauses within a formula. There are two common definitions of random k-SAT,

both disallowing repeated variables within a clause. A model presented in [45] by Selman et al. allows

repeated clauses and one in [1] does not.

We let n denote the number of variables, m the number of clauses, and k the number of literals per

clause in a SAT formula.

Definition 12 (Selman Random SAT). A Selman random (n,m, k)-SAT instance is a SAT formula ϕ

where m clauses are generated by repeatedly selecting k variables uniformly at random, and negating each

with probability 1
2 .

Definition 13 (Achlioptas Random SAT). A random (n,m, k)-SAT instance is a SAT formula ϕ where m

clauses are chosen at random, without replacement, from the 2k
(
n
k

)
possible clauses.

The important difference between the two random SAT definitions is that Selman’s model allows

repeated clauses, while Achlioptas’ model does not. However, which of these models we pick is somewhat

irrelevant. As stated by Selman et al. in [45], “this method of generation allows duplicate clauses . . . However,

as n gets large, duplicates will become rare because we generally select only a linear number of clauses.”

The following lemma makes this precise in terms of its effect on the satisfiability threshold.

Let rsk be the k-SAT critical clause-to-variable ratio in the Selman random model, and rak the critical

ratio in the Achlioptas random model.

Lemma 3. rsk = rak for k ≥ 3

Proof. We will show that the expected number of identical pairs of clauses C(n,m, k) in a Fs(n,m, k) instance

is zero around the phase transition.

The probability that a pair of randomly selected clause are identical is p = 1

2k(n
k)

, while the number

of such pairs in a given formula is N =
(
m
2

)
. Therefore, by the linearity of expectation, we have

C(n,m, k) = N · p =

(
m
2

)
2k
(
n
k

)
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Fix k ≥ 3. Then by Equation 4.1 we have that rk = O(2k), so that the clause-to-variable ratio phase

transition for k-SAT will occur at m = O(2k ·n) = O(n). Furthermore, we have that
(
m
2

)
= O(m2) and that(

n
k

)
= O(nk). Combining this with the previous expression we get

(
m
2

)
2k
(
n
k

) =
O(m2)

2k
(
n
k

) =
O(n2)

O(nk)

We conclude that for fixed k ≥ 3, m = O(2k · n)

lim
n→∞

C(n,m, k) = lim
n→∞

O(n2)

O(nk)
= 0

Conceptually Lemma 3 shows that because the phase transition occurs when m = O(n), the number

of possible clauses drastically exceeds the number of selected clauses. This means that for large n there is a

very low chance of repeated clauses occuring in a formula in the Selman model. In the limit, the probability

is zero meaning that the value of rk is robust – it is not affected based on whether we allow repeated clauses

or not.

4.2 The Clause-to-Variable Ratio Phase Transition

Phase transitions in satisfiability problems have interested both the applied and theoretical parts of

the SAT community in the past three decades. Random SAT provides insight into which classes of formulas

are easy to solve, and which are hard. From a practical standpoint, this gives SAT-solver designers heuristics

for what types of formulas will be hard to solve, and good benchmarks for testing. Theorists use the SAT

phase transition as evidence for the intractability of hard instances of NP-complete problems.

Following [1], we introduce the notation Fk(n,m) to denote an Achlioptas random (n,m, k)-SAT

instance.

Conjecture 1 (Satisfiability Threshold Conjecture). For every k ≥ 3 there exists a constant rk such that
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Figure 4.1: Scatter plots showing the clause-to-variable ratio phase transition through the sharp satisfiability
threshold (left) and exponential hardness threshold (right) for randomly generated 3-SAT instances with 200
variables. The vertical red line at c/v = 4.25 shows the conjectured location of the phase transition [45].
Each data point represents 100 trials.

lim
n→∞

Pr[Fk(n, r · n) is SAT] =


1 if r < rk

0 if r > rk

Theorem 5 (Threshold bounds). There exist sequences δk, εk → 0 such that for all k ≥ 3

2k ln 2− (k + 1)
ln 2

2
− 1− δk ≤ rk ≤ 2k ln 2− 1 + ln 2

2
+ εk (4.1)

The upper bound is due to independent work by Dubois and Boufkhad, and Kirousis et al., while the

lower bound is due to Achlioptas and Peres [1].

4.3 2+p SAT

Another important random model in (2+p)-SAT. This model is meant to “interpolate” between

tractable (polynomial time solvable) 2-SAT formulas and intractable 3-SAT formulas by mixing clauses

of length 2 and 3. More formally, to generate (2+p)-SAT formula with m clauses and p ∈ [0, 1], we generate

a 2-SAT formula with pm clauses, and a 3-SAT formula with (1− p)m clauses, and take the disjunction of
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Figure 4.2: Scatter plot showing phase transitions in 2+p-SAT formulae with p = 0.2, p = 0.4 and p = 0.6.
All trials were performed with 200 variables. Each data point represents 100 trials.

the two.

The following two important results related to (2+p)=SAT appear in [2]. Let gp(n, r) be the proba-

bility that F2+p(n, rn) is satisfiable.

Theorem 6 (AKKK1). For every p ∈ [0, 1] there exists rp(n) such that for every ε > 0

lim
n→∞

gp(n, rp(n)− ε) = 1 and lim
n→∞

gp(n, rp(n)− ε) = 0

This theorem asserts the sharpness of the transition from satisfiable to unsatisfiable of any family

of (2+p) random formulas in the sense that formulas generated with r < rp(n) − ε are satisfiable w.h.p,

and formulas generated with r > rp(n) + ε are unsatisfiable w.h.p. Figure 4.2 demonstrates this property

experimentally; sharp phase transitions are shown for (2+p)-SAT instances with several values of p. As p

increases, the phase transition shifts to the right.

We may consider partitioning a given (2+p)-SAT formula ϕ into 2-clauses ϕ(2) and 3-clauses ϕ(3).

Let p∗ be the largest value of p such that a F2+p(n, rn) random instance ϕ is almost surely satisfiable if and

only if ϕ(2) is satisfiable. A priori it is not even clear that p > 0, but in fact p ≥ 0.4. The theorem given

below also gives an upper bound.
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Theorem 7 (AKKK2). 0.4 ≥ p∗ ≥ 0.695

To the best of our knowledge, the upper bound first appeared in [2] while the lower bound was known

from a variety of sources. It is conjectured that p∗ = 0.413.



Chapter 5

Existential-Universal Phase Transition

5.1 Introduction

In the past ten years a sequence of papers has aimed to extend the study of random SAT into the

harder quantified Boolean formula (QBF) problem domain. This work has mainly focused on adapting

study of the clause-to-variable phase transition into QBF. The main contribution discussed in this section

of the thesis is a new phase transition which arises from altering the fraction of variables in a quantified

formula which are existentially versus universally quantified. We give strong experimental data confirming

the existence of the phase transition given a variety of different parameter settings. This section of the thesis

is an improved version of our submitted work [5].

5.1.1 Related Work

Work on random QBF started with a paper by Cadoli et al. [11]. In this paper, the authors adapt the

fixed clause length (FCL) random SAT model to QBF, and give a number of experimental results showing

phase transitions arising from varying the ratio of clauses to variables per quantifier block. They also tweak

their random model to account for trivially unsatisfiable instances arising when a formula has a clause

containing all universally quantified variables.

Shortly afterward, Gent and Walsh [25] wrote a follow-up paper in which they point out a “flaw”

in the Cadoli-Giovanardi-Schaerf (Cadoli FCL) random QBF model stemming from the fact that a large

fraction of generated instances were trivially unsatisfiable. They proposed two models to fix this flaw, the

first of which we discuss in detail. They also describe new experimental results for the presence of a phase
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transition in 2-QBF arising from increasing the clause to existentially quantified variable ratio in each of

their models, and try to estimate the location of the phase transition formally using a general notion of

constrainedness.

In [12], Chen and Interian gave a new model for random QBF generation. The key difference in their

model is that the number of variables from each quantifier block appearing in a clause is fixed. They argue

that this model is less ad-hoc, and more conducive to mathematical analysis.

In a recent pair of papers [17, 18] Creignou et al. use the Chen-Interian model to study (1,2)-CNF

random formulas in detail by exploiting their close connection to 2-SAT. Additionally, they view their problem

as an interpolation as well – between P and coNP-complete. Another paper by Creignou and coauthors [16]

studies phase transitions in quantified XOR formulas.

A number of papers [11, 38, 17, 18] discuss the effect that the number of universal variables has

on the satisfiability and run time of a QBF. The paper by Cadoli et al. [11] discusses several experiments

they ran attempting to solve QBFs with a different ratio of universal to existential variables. A paper

by Rintanen [38] disusses randomly generated Σ3-SAT formulas. The paper explores how the fraction of

satisfiable formulas and their solution time change as a function of both the clause-to-variable ratio and

fraction of universal variables used in generating the formulas. Creignou et al. [17, 18] show that the critical

clause-to-existential-variable ratio in their work depends on the ratio of the total number of existential versus

universal variables. Although each of these papers implicitly observes the effect of altering the fraction of

universal versus existential variables in a QBF, none of them recognize that varying this fraction leads to a

sharp satisfiability threshold or examine the effect of altering this parameter in isolation.

5.1.2 Preliminaries

A quantified conjunctive normal form (QCNF) formula is a QBF formula with a closed CNF propo-

sitional formula ϕ (CNF matrix). Any QBF formula may be expressed in this form.

F = Q1x1 · · ·Qnxn ϕ(x1, . . . , xn) (5.1)
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As discussed in the introduction, versions of QBF with a fixed number of quantifier alternations

are complete for levels of the polynomial hierarchy, while QBF with an unbounded number of quantifier

alternations is complete for PSPACE [4].

Throughout this section, we will be considering Π2-SAT formulas, meaning the quantifiers consist of

a block of universals followed by a block of existentials. We let n be the total number of variables in F , m

the number of clauses in ϕ, and k the (fixed) number of literals per clause in ϕ. We also introduce nu, ne,

with n = nu + ne to represent the number of universally and existentially quantified variables in F .

That is, we will consider formulas of the following form:

F = ∀x1, . . . ,∀xnu∃xnu+1 . . . ,∃xnϕ (5.2)

5.2 The Existential-Universal Phase Transition

For all of the experiments in this section, we used the DepQBF solver [33, 34], the top solver in the

main division of the QBFEVAL‘10 [36]. The experiments were all run on a shared server with sixteen quad-

core Xeon X7350 CPUs running at 2.93GHz, and 32GB of memory. The random instances were generated

using Python scripts1 .

In each experiment, the maximum number of clauses corresponds to under 40% of the critical clause-

to-variable ratio for the corresponding k-SAT problem. Adding more clauses and increasing the fraction of

universally quantified variables are two separate ways to add constrainedness to a problem. We keep the

number of clauses below this point to ensure that when a small fraction of variables are universally quantified

that the formulas will be satisfiable with high probability.

5.2.1 Analysis of Experimental Data

The data given in the graphs in Figure 5.1 shows the existential-universal phase transition given a

number of parameter settings using Gent-Walsh model A [25], which we take as our standard model, and

two additional plots using the pure and Cadoli FCL random models. In each case, increasing the number

of universally quantified variables by a small number causes the fraction of randomly generated satisfiable

1 https://csel.cs.colorado.edu/~bennethd/randgen.html
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Figure 5.1: Plots showing satisfiability thresholds in Gent-Walsh Model A (ma), Cadoli FCL (fcl), and pure
(pr) random models for a variety of parameter settings. Row 1: Satisfiability thresholds for k = 4, n = 50
and k = 4, n = 100, Row 2: Satisfiability thresholds for k = 5, n = 50 in the pure and fixed-clause-length
random QBF models, Row 3: Satisfiability thresholds for k = 5, n = 50 and k = 6, n = 50.
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Figure 5.2: Averages and standard deviations of solution times for k = 4, n = 100. The scales on the left
and right correspond to the average and standard deviations of solution times respectively.

instances to go from 1 to 0. Table 5.1 gives the estimated location of the phase transition for each of these

models and clause settings. Interestingly, while the phase transition in the pure and FCL models occurs at

significantly lower nu values for 200 clauses, it is barely affected for 800 clauses. We explain this below using

our bounds from the previous section.

The existential-universal phase transition also shows another common trait of phase transitions – an

easy-hard-easy pattern centered around the critical value. This trend is show in Figure 5.2 where we use time

as a proxy for the solution complexity of a given instance. Instances with a number of universal variables

either slightly below or above the critical value are easy to solve, but instances at the critical value show an

exponential blow-up in required computation time.

An issue with determining the exact location of the phase transitions in our experiments is the

coarseness of the varying parameter, nu. Because solving QBF is much more resource intensive than solving

SAT, we were generally able to solve instances with no more than 100 variables consistently. In [17, 18] the

authors are able to solve instances with a much higher number of variables because they use shorter clauses

and very few universal variables. Because our experiments use so few variables, increasing nu by 1 causes

a pertubation of several percent in the input size. We compute the approximate phase transition locations
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Figure 5.3: Plot showing the effect of clause-to-variable ratio and fraction of universal variables on QBF
satisfiability.

shown in table 5.1 by interpolating between the two data points straddling the 50%-satisfiable mark.

5.2.2 Interpretation of Results

Although we have presented strong experimental evidence demonstrating the existence of the existential-

universal phase transition, there are several points remaining to be addressed:

a. The reason for the location of the phase transition.

b. The reason for the sharpness of the phase transition.

c. The relationship of the location of the phase transition to other parameters.

In addition to the upper bound on the location of the existential-universal phase transition that we

measure from c-conflicts, we also obtain an easy upper bound when a QBF’s CNF matrix has above the

critical number of clauses for the corresponding SAT problem. This is because changing the quantification

of variables from existential to universal may make a satisfiable formula unsatisfiable, but never the other

way around.

We can also use this idea to get a lower bound on the phase transition’s location by computing ke,
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Problem Number of clauses m

Model n k 100 150 200 250 300 350 400
ma 50 4 21.0 16.5 13.3 10.9 8.3 6.1 4.0

Model n k 200 300 400 500 600 700 800
ma 100 4 39.3 30.4 25.3 20.7 15.9 11.9 7.8
ma 50 5 21.1 18.1 15.4 12.8 10.6 8.4 5.9
fcl 50 5 17.5 15.5 14.0 12.3 10.3 8.3 5.8
pr 50 5 16.0 14.6 13.4 11.8 10.3 8.0 5.8

Table 5.1: This table shows the estimated of the phase transition in random formulas generated in a number
of different models and parameter settings. Tested models include pure (pr), Cadoli fixed clause length
(FCL), and Gent-Walsh model A (ma). All experiments were performed 50 times with each combination of
parameters nu and m. The entries give the expected location of the phase transition in terms of the number
of universal variables.

the expected number of existential variables per clause. The idea is that if the existential variables in the

formula alone can satisfy the formula, then the larger formula is satisfiable. In that case we may think of the

universal-existential phase transition as an extension of the clause-to-variable ratio transition for ke-SAT.

Key insight in understanding the SAT clause-to-variable ratio phase transition comes from the linear

relationship between number of clauses and number of variables in a SAT formula, and that this relationship

scales to different problem sizes. The projection of the phase transition shown in figure 5.3 suggests that there

is no linear relationship between the clause-to-variable ratio m/n and the fraction of universally quantified

variables nu/n, and hence none between m and nu.

Attempting to address each of these issues further will be an important goal for future work.



Chapter 6

Bounds on Trivially False Formula Generation

The model used for studying random QBF is crucial. Three of the first papers on random QBF [11,

25, 12] motivate and introduce new random models as a key part of their work. The importance of using a

robust random moBecause the entire inclusion-exclusion tree with no pruning has depth m, the m bound is

trivial. del motivates the bounds given in this section, which are relevant for the class of random model that

we use in our experiments.

We call a random QBF formula pure if its CNF matrix is generated without regard to how each

variable is quantified. Note that this is the same as the Cadoli model [11], except in that model clauses

with no existential literals are discarded and regenerated. Gent-Walsh Model A [25] discards clauses with

zero or one existential literals. We will call a random QBF generation model where the number of universal

variables per clause may vary a global random model.

Algorithm 5 shows a basic algorithm for generating qunatified Boolean formulas whose kernels are in

conjunctive normal form (QCNFs).

Pure random QBF has a simple definition, which makes it conducive to formal analysis. However, it

is flawed in the sense that a single clause with no existential literals trivially falsifies a formula. Gent and

Walsh [25] note that allowing clauses with a single existential literal may also cause trivial falsification. In

that case, assume we have a pair of clauses, one containing an existentially quantified literal, and the other

containing its negation. When all of the remaining literals in both clauses are universally quantified, with

none in common between the two clauses, this pair of clauses acts like a pair of conflicting unit clauses in
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Algorithm 5: Algorithm for generating pure random QCNF formulas

Input: Vector giving number of variables per quantifier block n1, . . . , nr with n =
∑
i ni, number of

clauses m, length of clauses k
Output: A quantified CNF formula ϕ
ϕ := ∅;
while m > 0 do

c = choose(n, k) ; /* Choose k of the n total variables uniformly at random */

negVars(c, 1/2) ; /* Negate variables in c with probability 1/2 */

ϕ := ϕ ∪ c;
m := m− 1;

return ϕ;

SAT and resolves to false. The observation by Gent and Walsh motivates this section of the thesis. We

derive precise bounds for the likelihood of a vast generalization of these local conflicts arising from instances

generated using a pure random model.

The birthday paradox [51] asks what the fewest number of people in a room must be for there to be

an over 50% chance for two people to have the same birthday. It is perhaps surprising that only 23 people

are necessary for this to occur. Furthermore, if we ask how the number of people present necessary would

scale based on a year with n days, the answer is O(
√
n). Noting the similarity between the probability of

generating pairs of conflicting literals and the birthday paradox, Gent and Walsh write, “As there are only

2n different unit clauses, we expect to generate complementary unit clauses when [the number of generated

clauses is] ≈
√

2n, just as we expect to find two people with the same birthday in a group of about
√

365

people.”

Although computing exact bounds for this simple “birthday paradox” is straightforward, more com-

plicated variants are difficult. Inspired by this connection between generating trivially false formulas and

the birthday paradox and Schmuland’s demonstration of how to use Poisson approximations to solve harder

forms of the birthday paradox [42], we vastly generalize Gent and Walsh’s observation about generating local

conflicts, and present rigorous bounds on the probability with which they occur.

6.1 Definitions

We introduce two probability distributions which will be useful [23]:

Definition 14. A Poisson distribution f(x;λ) gives the approximate probability that x occurrences of an
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event E will happen. The input parameter λ = N · p equals the expected number of events, where N is the

number of events and p is the probability of an event occurring.

Pr(NE = x) = f(x;λ) =
λx · e−λ

x!
(6.1)

Note that a Poisson distribution gives the approximate probability that E occurs x times, denoted

NE = x. In practice the approximation is good for large N , small p, and moderate λ [39]. A standard way

to compute the probability that E occurs at least once is to compute the probability that E occurs zero

times, and complement it.

Pr(x ∈ [1,∞)) = 1− Pr(0;λ) = 1− λ0 · e−λ

0!
= 1− e−λ

Definition 15. Suppose we have a set of elements J from which we draw elements uniformly at random

without replacement, and a subset of elements X ⊆ J which if drawn are “successes”. A hypergeometric

distribution H(x; J,X, j) gives the probability of x successes when drawing j elements without replacement

from J .

Pr(x successes) = H(x; J,X, j) =

(
X
x

)(
J−X
j−x

)(
J
j

) (6.2)

Note that when x = 0 or x = j one of the terms in the numerator drops out.

We will use hypergeometric distributions to represent the probability of selecting a certain number c

of existential variables when generating a clause:

(
ne

c

)(
nu

k−c
)(

n
k

) (6.3)

Given a set of c variables, there are 2c different sets of literals of length c containing the c variables

or their negations. We call each of these sets a negation assignment.

Example 5. The set of variables {x1, x2} has four negation assignments: {x1, x2}, {¬x1, x2}, {x1,¬x2}, {¬x1,¬x2}.
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xe,1 ∨ xe,2 ∨ xe,3 · · · ∨ xe,c ∨ `u,1 ∨ · · · ∨ `u,k−c
¬xe,1 ∨ xe,2 ∨ xe,3 · · · ∨ xe,c ∨ `u,k−c+1 ∨ · · · ∨ `u,2(k−c)
xe,1 ∨ ¬xe,2 ∨ xe,3 · · · ∨ xe,c ∨ `u,2(k−c)+1 ∨ · · · ∨ `u,3(k−c)
¬xe,1 ∨ ¬xe,2 ∨ xe,3 · · · ∨ xe,c ∨ `u,3(k−c)+1 ∨ · · · ∨ `u,4(k−c)

· · ·
¬xe,1 ∨ ¬xe,2 ∨ ¬xe,3 · · · ∨ ¬xe,c︸ ︷︷ ︸

Existential variables in the c-conflict

∨ `u,(2c−1)(k−c) ∨ · · · ∨ `u,2c(k−c)︸ ︷︷ ︸
Universal literals

Figure 6.1: 2c clauses involved in a c-conflict in a QBF with clauses of length k. xe denotes an existentially
quantified variable while `u denotes a universally quantified literal. The same c existential variables are used
in each clause. The universal literals may not be distinct but reuses have the same polarity.

Definition 16. A c-conflict for c ≥ 0 over c existential variables X = {xi1 , . . . , xic} is a set S of 2c clauses

where:

(1) Each clause in S contains a different one of the 2c negation assignments to the variables in X.

(2) If a clause C ∈ S contains existential variables then they are in S.

(3) Universal variables occurring in more than one clause have the same polarity.

The third condition generalizes an observation for c = 1 in [25], which requires that a universal variable

occur in at most one of the 2c c-conflict clauses. c-conflicts are a special class of min-UNSAT-cores. Recall

that a min-UNSAT-core is an unsatisfiable set of clauses such that if any one clause is removed then the set

of remaining clauses becomes satisfiable.

Example 6.

In the clauses shown in the example below existential variables are given first, followed by universal

variables.

(1) In the QBF formula

∀x1∀x2∀x3∃x4∃x5 (x1 ∨ ¬x2 ∨ x3) ∧ (x4 ∨ x5 ∨ x2)

the clause (x1 ∨ ¬x2 ∨ x3) forms a 0-conflict.
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(2) In the QBF formula

∀x1∀x2∀x3∃x4∃x5 (x1 ∨ x3 ∨ x5) ∧ (x4 ∨ x1 ∨ x3) ∧ (¬x4 ∨ x2 ∨ x3)

the clauses (x4 ∨ x1 ∨ x3) and (¬x4 ∨ x2 ∨ x3) form a 1-conflict.

(3) In the SAT formula

∃x1∃x2∃x3∃x4∃x5 (¬x2 ∨ ¬x3) ∧ (x1 ∨ ¬x4) ∧ (x4 ∨ x5) ∧ (¬x4 ∨ x5) ∧ (x4 ∨ ¬x5) ∧ (¬x4 ∨ ¬x5)

the clauses (x4 ∨ x5), (¬x4 ∨ x5), (x4 ∨ ¬x5), (¬x4 ∨ ¬x5) form a 2-conflict.

Lemma 4. Any QBF formula ϕ containing a c-conflict S for c ≥ 0 is unsatisfiable.

Proof. Because any common universally quantified variables between the clauses in S have the same polarity,

there exists a partial assignment to the universal variables which falsifies all universal literals occurring in

clauses in S. Furthermore, any assignment to the c existential variables in S falsifies the remaining variables

in one of the 2c clauses, meaning that the formula is falsified.

Several well-known types of UNSAT cores fall under the umbrella of c-conflicts.

a. When c = 0 in a QBF formula, S represents a single clause with all universally quantified variables.

b. When c = 1 in a SAT formula, S represents a pair of conflicting unit clauses

c. When c = 1 in a QBF formula, S represents a “flawed” pair of clauses as described in [25]

6.2 Local Conflict Bounds

The main contribution of this section is to give bounds for how likely c-conflicts are to occur, assuming

that clauses for random QBF formulas are sampled with replacement.

Lemma 5. The probability p of a k-conflict occurring in an (n,m, k)-SAT formula is approximately p ∼

1− e−λ, where λ =
(
m
2k

) (2k−1)!

(2k(n
k))(2k−1)
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Proof. Because we want to compute the probability of one or more k-conflicts occurring, we complement the

probability that no conflicts occur, giving p = 1− e−λ.

After selecting any given first clause we must pick the remaining 2k− 1 clauses, each with probability

1/2k
(
n
k

)
. There are (2k − 1)! orders in which to do so.

Then because there are
(
m
2k

)
possible k-conflicts in a given formula, by the linearity of expectation we

get

λ =

(
m

2k

)
(2k − 1)!

(2k
(
n
k

)
)(2k−1)

We now give a more general version for QBF. The third condition for c-conflicts stipulates that any

universal variables occuring in more than one clause in the c-conflict must have the same negation. Becuase

counting the number of ways that this can occur is difficult, we give upper and lower bounds instead. The

upper bound corresponds to picking 2c clauses whose existential variables form a c-conflict, but have arbitrary

universal literals. The lower bound corresponds to no repeated universal variables between clauses.

Theorem 8. The probability p of a c-conflict occurring in a pure random (n,m, k, nu, ne)-QBF formula is

1− e−λ1 ≤ p ≤ 1− e−λ2 , where

λ1 =
(
m
2c

) (ne
c )( nu

k−c)
(n
k)

2c−1∏
j=1

(2c − j) ·
(
nu−j(k−c)

k−c
)

2c
(
n
k

)
λ2 =

(
m
2c

) (ne
c )( nu

k−c)
(n
k)

2c−1∏
j=1

(2c − j) ·
(
nu

k−c
)

2c
(
n
k

)

Proof. We give the proof for the lower bound.

We will compute the probability of picking an initial clause with exactly c existential variables, followed

by 2c − 1 additional clauses containing the other negations of the c variables that satisfy conditions (2) and

(3).

Let pn denote the probability that exactly c existential variables are chosen in a clause.

pn =

(
ne

c

)(
nu

k−c
)(

n
k

)
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Let pe denote the probability that c given existential variables match the seed clause, with a different

negation from the previous j clauses.

pe(j) =
2c − j
2c
(
ne

c

)
Let pa denote the probability that k − c given universal variables have not been selected in the j

previous clauses.

pa(j) =

(
nu−j(k−c)

k−c
)(

nu

k−c
)

Then the probability q of a given set of c clauses being a c-conflict is

q = pn

2c−1∏
j=1

pnpe(j)pa(j)

The pn term on the outside comes from the seed clause for which only the number of existential

variables matters. We then have

q =
(ne

c )( nu
k−c)

(n
k)

2c−1∏
j=1

(
ne

c

)(
nu

k−c
)(

n
k

) · 2c − j
2c
(
ne

c

) · (nu−j(k−c)
k−c

)(
nu

k−c
)

=
(ne

c )( nu
k−c)

(n
k)

2c−1∏
j=1

(2c − j) ·
(
nu−j(k−c)

k−c
)

2c
(
n
k

)
Because there are

(
m
2c

)
possible c-conflicts, the result follows.

The proof for the upper bound is similar.

Remark 3.

• When nu = 0 Theorem 8 reduces to Lemma 6.2.

• When c = 0 the upper and lower bounds in Theorem 8 coincide.

• These bounds hold for arbitrary QBF formulas. They are not dependent on the number of quantifier

alternations, only on whether variables are existential or universal.

We may also compute the exact probability that a formula has all universal literals without using a

Poisson approximation:
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n k nu c 200 cl 400 cl 600 cl 800 cl

lb ub lb ub lb ub lb ub
50 5 10 0 0.024 0.024 0.046 0.046 0.069 0.069 0.091 0.091
50 5 10 1 0.0 0.004 0.001 0.016 0.003 0.035 0.004 0.061
50 5 15 0 0.247 0.247 0.433 0.433 0.573 0.573 0.678 0.678
50 5 15 1 0.034 0.135 0.131 0.44 0.271 0.729 0.429 0.902
50 5 20 0 0.769 0.769 0.946 0.946 0.988 0.988 0.997 0.997
50 5 20 1 0.444 0.79 0.905 0.998 0.995 1.0 1.0 1.0

Table 6.1: Lower and upper bounds on 0- and 1-conflict probabilities for m = 200, 400, 600, 800.

These bounds give us a framework for computing the probability of a c-conflict, a class of local conflicts

which falsify clauses. In practice this formula will be useful for computing bounds for small values of c, which

we will do in the experimental section to compare global random models.



Chapter 7

Conclusion and Future Work

This thesis has discussed new work in several areas related to the satisfiability problem and its exten-

sions.

We have introduced a subsumption-based improvement to the inclusion-exclusion based algorithm

for model counting which allows large subtrees to be pruned from the search space. By representing an

inclusion-exclusion sum as a tree we gain a natural characterization of subsumption, and achieve an extension

of elementary Bonferroni inequalities. Both of these contributions apply to general inclusion-exclusion sums.

There are currently two primary outstanding goals for this work. We would like to perform average-case

analysis on subsumptions. In terms of applications, we would like to find problem domains in which both

our results and the inclusion-exclusion counting method in general are particularly effective.

Another section of work discussed random QBF. In this work, we described a phase transition resulting

from alternating the fraction of existential versus universal variables in a formula, confirming experimentally

the existence of a sharp satisfiability threshold. One aim for future work is to tighten theoretical bounds on

where these phase transitions occur.

We also gave bounds on the probability of c-conflicts, a class of min-UNSAT-core, occurring in random

SAT and QBF formulae given a number of input parameters. We applied these bounds to determining the

location of phase transitions, and to identify when a given random model is applicable.
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