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Bates, A. R. (M.S., Computer Science)

Automated Software License and Copyright Analysis

Thesis directed by Prof. James H. Martin

The complex interactions of software licensing and intellectual property prove daunting hur-

dles for many individuals and businesses looking to open source software solutions. The financial

reproductions for misusing a piece of open source software is high, and require great attention.

Many resources are required to determine a software packages copyright holders and licensing in-

formation. The cost of such an analysis may become too costly to justify the use of the open source

solution. The existing tools for analysing software projects licenses and copyrights are lacking, and

much hand vetting is required. If these tool could be improved then free and open source software

would be more transparent and less costly to companies and individuals looking for open source

alternative.

This thesis describes a new approach to automated software license analysis and copyright

analysis, which results show are more accurate and easier to maintain than previous methods.

The use of machine learning and information extraction result in algorithms that produce abstract

models of software licenses and copyrights based on hand labelled data. We will show that these

models are more general and robust than previous techniques, and result in better accuracy.
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Chapter 1

Introduction

In recent year the availability of free and open source software (FOSS) has allowed software

developers to easily and quickly add functionality to their projects. Online shopping systems,

databases, webservers, and operating systems are just a few examples of software can be found

licensed as under a free or open source software. The advantages of using FOSS are that the initial

cost is zero and you not only get the software solution, but a community that helps maintain and

grow the product.

Although, free and open source software seems like a great option there are small hurdles

which must be tackled before a FOSS package can be chosen over a commercial package, or the

creation of the need software in house. The developers and contributors of the software have

attached a software license that governs what, if anything, you may do with the software. Many

of these licenses dictate that the users must state that they are using the software and where to

get a copy of the original source code and license. Some of the more strict licenses prevent use

in particular applications, such as nuclear facilities and defence projects, or require the release of

intellectual property, such as software patents, into the public domain.

The user of the software package may have to make changes to the original source code in

order to fit the specifics of the project. Many open source licenses require that the changes be

documented and contribute back to the public. This however may introduce a problem if the open

source packages is used for encryption, or secure communication. A recent case between the Free

Software Foundation and TiVo examined whether TiVo was violating the terms and conditions of
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the General Public License by refusing to provide encryption keys used by GLP’d software in the

TiVo digital recorder [2]. These types of conflicts have influenced changes to the general culture

behind FOSS. With the new version of the General Public License (version 3) brings new verbiage

that prevent situations where users are prevented from recreating the functionality of FOSS used

in a product, as TiVo did.

Given the importance of the licensing of open source software many developers are not well

versed in the differences in the many licenses that exist today. This is only made harder due to

license prolification. License prolification is the process where small changes to a software license

overtime results in a brand new family of software licenses. Another problem comes from the

confusion between copyright and licensing. Many software packages contain a phase such as “...this

software is copyright some license...” which is incorrect. Only a person or organization may hold

a copyright. The license only governs what extra privileges or restrictions a third party has to use

and modify a particular work.

These problems cause companies to spend countless man hours determining what open source

software is being used in their products, and ensure that the licenses don’t conflict with their

business model. This means that the companies avoid software licenses that require patents be

relinquished into the public domain, or determining which software must be accessible to the

customer and the appropriate method that are allowed for said software’s delivery.

The need to locate software licenses is very important, but there are no standard method

for declaring the governing license. This is left to the discretion of the developer. Some entities

like Debian require software included in there main distribution to adhere to a strict format when

declaring copyright and licensing information. Other entities such as Source Forge have no such

requirement. Because of this each and every file must be searched for a reference to a license when

determining what licenses are present in a software project.

Searching each and every source file requires resources that may not be available to even a

fortune 500 company let alone a small business or individuals. This is abundantly true for software

licenses that have been stitched together by the developer to define the usage of his or her software.
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These types of licenses require the attention of a lawyer and possibly contacting the copyright

holders for more clarification of their intentions of the license.

1.1 Software Licenses and Intellectual Propriety

Most large software organization have some sort of review board that determines whether a

product entering the consumer world or the public domain contains intellectual propriety which

will be lost by moving forward with product release. Many time this process is focused on the open

source software licenses that are included in the product. High paid intellectual propriety lawyers

spend countless hours along with project managers combing the products for licenses that may

unintentionally release IP into the public domain.

This process starts by locating, normally by hand, all software licenses included in the project.

These licenses are then classified based on there danger to the companies intellectual property, and

the lawyers familiarity with the particular license. License which are never or only frequently

encountered will be analysed by the IP lawyers for potential threats. In most cases these licenses

are rare and the known licenses can quickly be classified. If a ‘bad’ license is found the project

manager returns to the development team to determine if and alternative solution can be used. If

the an alternative does not exist then the project manager may contact the copyright holder of

the software and ask for permission to use the software without required adherence to the specific

license.

This process is tedious and requires many hours of work to locate software licenses and

copyrights contained in the software used in a project. The accuracy is dependant on the person

conducting the analysis, and varies on outside factors other than the software package being anal-

ysed. This process results in a large hidden overhead to the use of FOSS simply because software

licenses are hard to locate. If the software license could be ignored this process would be quite easy,

but the stakes are large, many times a large amount of a companies intellectual property is on the

line if a misclassification is made. Therefore, many companies forgo the use of FOSS to ensure the

protection of their intellectual property and develop custom software in house.
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1.2 Automated Solutions

If copyrights and software licenses are readily available then the issue of using FOSS becomes

a trivial matter. The licenses must be vetted for terms of use that contradict ones business model.

If a license encumbers business then the choice not to use the software is simple, and the cost to

investigate a FOSS alternative relatively inexpensive. Many other domains use automated tools to

analyse large amounts of data to determine information about products, individuals, and companies.

School now use automated software to locate scan term papers for plagiarism. There also exists

software to automatically grade term papers, and search source code to copied code. If a tool

was available that would automate the process of extracting copyrights and software licenses from

software packages it would cut a large amount of the cost out of using FOSS.

To date there are only a handful of automated solutions to tackle the problem of locating

the correct software licenses and copyright holders in a software package. These solutions can be

broken into two types: the Longest Common Substring approaches and the rule based approaches.

The Longest Common Substring (LCS) approaches use a relaxation of the LCS problem to find a

large string belonging to a template license in a piece of source code [7] and [19]. This matching

string is then given the same name as the corresponding template license. The full text comparison

results in an algorithm that is accurate but computationally expensive [9].

Alternatively, the rule based approaches employ a small set of phrases, sequences of unique

words, or regular expressions to capture definitive features of the license. Rule based approaches

only locate small strings in the license and disregard the rest of the license. The ignored text

defines the rights and restrictions that embody the license, thus leaving the algorithm prone to

monumental errors when the rule is not present but the basic license text is.

1.3 The creation of an Open Source Software License Analysis tool.

The goal of this work is to create an open source tool for software license analysis. We require

that the tool is able to take training data in the form of files previously labelled by lawyers or other
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expert as training data. This will allow non technical people to interface with the tool and add

knowledge needed to improve performance. This differs from current techniques which rely heavily

on customized regular expressions and other hand written rules that proof daunting to a naive

user. We also require that the tools be robust and accurate. This will be achieved by creating hand

labelled data sets to test the alogorithms performance.

1.4 License Prolification

There are many problems facing the creation of automated tools to locate and classify software

licenses. The first is the large number of different software licenses in existence. Many of which are

very similar to a single parent license, but contain a small set of important clauses that distinguish

it from it parent license. Locating the differences between these licenses is very important [14].

For example Figure 1.4 is an example of the standard BSD license (with advertisement clause).

Notice the last paragraph of the license is a non-standard addition to the BSD, that restricts the

use of the software in a nuclear facility. This last paragraph is very important in cases where the

software is used in a nuclear facility, but otherwise unimportant to the user. Many license analysis

tools ignore this last paragraph. The current Fossology implementation of bSAM ignores this last

paragraph since there is no matching template for the last paragraph in the database.

Figure 1.4 shows the first page of the General Public License version 2 (GPLv2). The full

GPLv2 is over 2400 words long and is a copyrighted document. This means that you are not

allowed to change the text of the GPLv2 except with express permission from the Free Software

Foundation, Inc. Although the GPLv2 is copyrighted there are many examples of modification to

the main text of the GPLv2. Many of these deviations are simple spelling mistakes or formatting

error, but a large percent are actual additions or deletions to GPLv2, see [8].

Although the GPLv2 has rules for the way in which to reference the full license text many

other none standard references exist. This creates problems determining licensing attributes even

with the most commonly used license. The first three paragraphs in Figure 1.4 are the standard

referencing text for the GPLv2, the last paragraph is an addition that removes a standard require-
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ment that all command line programs must abide by. Figure 1.4 is an example of a non-standard

license reference that has become popular because of its small size.

In order to automate the task of license analysis the algorithm must be able to locate all text

that looks like a license and report it to the user. If possible the license sections should be match

against a standard licenses. When a match is found a report of the additions and deletions should

be reported. Since Figure 1.4 has an additional clause, and should be flagged for user evaluation.

GNU GENERAL PUBLIC LICENSE Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc., 51 Franklin

Street, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to

copy and distribute verbatim copies of this license document, but changing

it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to

share and change it. By contrast, the GNU General Public . . .

Figure 1.1: The first page of the General Public License version 2

This file may be distributed and/or modified under the terms of the

GNU General Public License version 2 as published by the Free Software

Foundation and appearing in the file LICENSE.GPL included in the packaging

of this file.

Figure 1.2: Non standard GPLv2 reference

1.4.1 Locating Software Licenses

Locating software licenses is the single most import problem to solve when determining

what licenses govern the software package being analysed. This is because there are no rules that

dictate how a software license should be attached to a copyrighted work. This means that where

the software license is define is up to the description of the software developer. Many times the

software license is located in text form nested in either a license file or the header of the source

files. Some projects push standards to help ease the search for the governing software licenses.

The Linux distribution Debian has strict guidelines outlining the correct location of the governing
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software licenses and copyrights for all packages included in their distribution. Other products

such as Google Code, Source Forge and FreshMeat try to provide licensing information by allowing

the developers of the software to enter the licensing information. Google Code does provide some

search functionality for software licenses, but these sites rely heavly on the developers to provide

licensing information that is both correct and accurate.

1.4.2 Naming

Once the license is located it must be placed in a category. This maybe the parent license or

perhaps a category of licenses with similar governing rules. The simplest way to license you source

code is to place the software license at the top of your source files. This provides all copyright and

licensing information on a per-file basis, thus making it easy to allow multiple licenses per project.

Another common method is to place a reference to a software license by either name or point to

a “License” file. This lessens the amount of effort that the developer must put into maintaining

the licensing information and reduces the size of the source files. This method still allows for

the analysis of a single file to determine its governing license. A third method instead places an

umbrella license on all files in the project. In this case a single file will hold the license and state

that all files belonging to the project are under the spesific license. Searching for a particular files

licensing information becomes more difficult in this case, because a source file contains no reference

to the licensing file.

This suggests three types of software licensing types. The first is the best case situation, in

which each source file contains the full text of the software license. If a file contains a license of this

type we will say it contains a “Full-text License”. The second type of licensing is the “Reference

License” which embodies all files which contain a reference to the full text of the software license,

but does not actually contain the text of the software license. The third and final license type is

the the “Umbrella License”. This license type is retained for those license which claim governance

for all files with in a project. This might be distinguished by clauses or additional statements that

make claims to governance of all project files.
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1.5 Thesis Statement

This thesis will create two new algorithms for analysing software licenses and copyrights.

These algorithms will use learning based techniques in-order to allow users to continue to improve

the accuracy and results of the algorithms. This will help to combat problems when new licenses

are created or when new formats of copyright statements are found.
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Copyright (C) 1989-2006 Free Software Foundation, Inc.

Bash is free software; you can redistribute it and/or modify it under the

terms of the GNU General Public License as published by the Free Software

Foundation; either version 2, or (at your option) any later version.

Bash is distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE. See the GNU General Public License for more

details.

You should have received a copy of the GNU General Public License with

your Debian GNU/Linux system, in /usr/share/common-licenses/GPL, or with

the Debian GNU/Linux bash source package as the file COPYING. If not,

write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,

Boston, MA 02110-1301, USA.

The Free Software Foundation has exempted Bash from the requirement of

Paragraph 2c of the General Public License. This is to say, there is no

requirement for Bash to print a notice when it is started interactively in

the usual way. We made this exception because users and standards expect

shells not to print such messages. This exception applies to any program

that serves as a shell and that is based primarily on Bash as opposed to

other GNU software.

Figure 1.3: Standard GPLv2 reference with an exemption clause.
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JOGL is released under the BSD license. The full license terms follow:

Copyright (c) 2003-2007 Sun Microsystems, Inc. All Rights Reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are

met:

- Redistribution of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.

- Redistribution in binary form must reproduce the above copyright notice,

this list of conditions and the following disclaimer in the documentation

and/or other materials provided with the distribution.

Neither the name of Sun Microsystems, Inc. or the names of contributors

may be used to endorse or promote products derived from this software

without specific prior written permission.

This software is provided "AS IS," without a warranty of any kind. ALL

EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING

ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE

OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN MICROSYSTEMS, INC. ("SUN")

AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE

AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS

DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST

REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL,

INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE

THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS

SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You acknowledge that this software is not designed or intended for use

in the design, construction, operation or maintenance of any nuclear

facility.

Figure 1.4: BSD license with non nuclear clause



Chapter 2

Copyright Analysis

In this chapter we will explore techniques for locating copyright statements. This information

is critical when there are questions about the licensing and distribution of the software. The

extraction of the copyright along with the license allows intellectual property lawyers to quickly

contact the copyright holders with questions. The copyright information is even more important

when a critical piece of software does not contain a software license. In these cases the only

recourse is to contact the copyright holder and ask permission to use their software. A third

possible use for copyright statements, suggested by [6] and [20], is to extract the copyright holders

and track an individuals contributions over a set of projects. To our knowledge there is no learning

algorithm except ours which performs automatic extracting copyright statements, although the

idea is suggested in several papers ([3], [6] and [20]).

We will start this chapter by examining the most common copyright statements. Many of

these copyright statements fit a pattern that is easily captured by a regular expression. We will

show that the regular expression is too general and does not capture the more general cases. We

will show how replacing the regular expression with a naive Bayes classifier trained on hand labelled

data can achieve an accuracy of 88.8%. The final algorithm is composed of a naive Bayes classifier

that uses word tokens and noun phrase boundaries, which results in an algorithm with an observed

accuracy of 99%.

To test our algorithms 200 copyright files were selected from the Debian linux distribution

to serve as a training and test set. Each copyright statement was labelled by placing a < s > tag
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Token % Begin

contributed 1

authors 4

author 5

written 6

copyright 83

Table 2.1: Percent first word of copyright statements

at the begining and a < /s > tag at the end of the statement. To determine heuristics and train

our algorithms we broke the set of labelled files into two sets. A training set, fully observable, and

a test set which was kept separate and only used to determine an estimate on the accuracy of the

algorithms on unseen data. The training set consisted of 137 files and the testing set is composed

of the rest of the labelled files.

A quick analysis of the training set showed that a small set of keywords defined the start

of the copyright statements. Table 2 shows the top five tokens that start copyright statements in

the training data. Since nearly 99% of the copyright statements start with one of five words the

task of locating copyright statements seems a trivial one, but Table 2 gives the ratio of times that

the top five words are found inside vs. outside of a copyright statement. This suggests that even

though there are a small number of tokens that define the beginning of a copyright statement it is

still relatively hard to create a simple algorithm that has a low false positive rate.

The regular expression has the ability to locate the beginnings of 95% of the copyright

statements. This can be interpreted to mean that the start of a copyright statement is very regular.

The major problem with this regular expression is that it does not have the ability to determine the

Token Inside Outside

author 36 73

copyright 590 946

contributed 7 2

written 44 99

authors 29 107

Table 2.2: Word counts for inside copyrights vs. outside.



13

Figure 2.1: A regular expression for locating copyrights

ending of the copyright statement. In fact the regular expression only has a classification rate of

15% for copyright endings, if a period or carriage return is used to determine the ending. By looking

closer at the ending of the copyright statements we can see that many of these statements are ended

by the phrase “All right reserved.”. When this check is added the classification rate increases to

35% for endings. After adding more corner case checks the best a simple regular expression can

do is catch 65% of the endings of the copyright statements, see Figure 2, and has a final observed

accuracy of 78%.

Although a regular expression can’t locate the endings of copyright statements with the

precision required to automate the search for copyright information it is successful at locating the

start of the statements. For this reason we will use the regular expression to help extract useful

features, and spend the rest of this section exploring more precise algorithms for locating the ending

of a copyright statement.

2.0.1 Naive Bayes classifier

Naive Bayes classifiers are known for there simplicity and easy training and implementation.

This makes it a perfect candidate to help solve the problem of locating the ending of copyright

statements. The naive Bayes classifier estimaties the probability distribution function P (F1 =

f1, F2 = f2, ..., Fd = fd|C = c), where the vector F is a feature vector containing information about

the textual features in the document and c is the class which in our situation can be in the set ’I’:

INSIDE, ’O’: OUTSIDE, ’B’: BEGINNING. Naive Bayes make the simplifying assumption that the

features are independent, which allows the pdf to be simplified to P (F1 = f1|C = c)P (F2 = f2|C =

c)...P (Fd = fd|C = c). In theory all words are known and have a probability of belonging to each

of the classes. Many words such as names, and other proper nouns are never seen in the training

data, which means the naive Bayes classifier will produce a zero probability for the event. To
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account of this missing data a small amount of noise is added to each word count. We used Laplace

smoothing in our baseline algorithm which assumes that each feature has 1 extra observation than

truly exists in the training set. This allows the algorithm to easily account for unseen data, because

its frequency is now 1 and prevents divide-by-zero errors. Equation 2.3 gives the final formulation

of the naive Bayes algorithm used for the baseline, where J is the number of distinct values Fi can

take on, N is the number of training examples in the training set, and count (x) is the number of

observations of x in the training data.

P̂ (C = ck) =
count (C = ck)

N
(2.1)

P̂ (Fi = fi|C = ck) =
count (Fi = fi, C = ck) + 1

count (C = ck) + J
(2.2)

C ← argmax
ck

P̂ (C = ck)
∏
i

P̂ (Fi|C = ck) (2.3)

We created a simple naive Bayes classifier to serve as a baseline to test more advanced

algorithms. IOB tagging was used to label the copyright statements. IOB tagging allows the

labelling of phrases and chunks for use with classification algorithms, see [10] and [15]. A tri-nary

classifier is created which can locate the Beginning, Inside, and Outside of a copyright statement.

The previous label is then used as a feature in the classifier to encode information about the previous

state into the classifier. The baseline uses the current word, previous word and the previous label

as input features.

Figure 2.1 shows that the simple naive Bayes baseline algorithm already out performs the

regular expression. The performance of the baseline does depend significantly on the size of the

training set, where as the regular expression does not depend on training data, and does not fluc-

tuate with training size. By expanding the feature set of the naive bayes model and implementing

more advanced methods for smoothing we will show how the simple naive Bayes model can be

leveraged to provide a stable and accurate copyright extraction algorithm.
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2.1 Not so naive Bayes

Our first optimization to the simple naive Bayes model was to include bi-grams to the feature

set. The addition of bi-gram features allows the naive Bayes model to better fit non-linear trends

in data. By adding the bi-grams our classification accuracy went up by 2%. This is a great result

for a simple feature addition, but it still doesn’t provide a significant increase in f-measure, only

83.34. Since there are only 200 labelled files we added linear bi-gram smoothing [10] to help get a

better representation of the true parameter space with out having to label more data. This resulted

in a much better approximation of the data and an observed accuracy of 94% and an F-measure of

85.46.

Finally we observed that there exists at least one noun phrase in each of the copyright

statements. Further analysis showed that a copyright statement ends just after the end of the noun

phrase. This suggests that noun phrases should be included in our model so that a better fit of the

data can be made.

To locate noun phrases we first used the part-of-speech tagger included in the Natural Lan-

guage Toolkit [1] to label the parts of speech of the tokens in the document. Then we used the

grammar in Figure 2.1 to extract the noun phrases. A new feature variable was added with values

in the set (NPB, NPI , NPO). Using 10-fold cross validation it was found that the optimal feature

set consisted of the following features;

NP : {< DT |PP? >? < JJ > ∗ < NN |NNP |NNS|NNPS > + < CD >?}

Figure 2.2: Grammar used to construct noun phrases from parts-of-speech

• Current Token (Un-stemmed)

• Previous Token

• Previous Label

• Current Noun Phrase
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• Previous Noun Phrase

• Current Bi-gram

• Previous Bi-gram

Confusion Matrix
XXXXXXXXXXXTrue

Predicted
B I O

B 93.15% 0.68% 6.16%

I 0.60% 67.55% 31.85%

O 0.01% 0.21% 99.77%

Table 2.3: Confusion Matrix Naive Bayes with bi-grams and noun phrases

Accuracy 0.98

Precision 0.95

Recall 0.87

F-measure 0.91

Table 2.4: Results for Naive Bayes classifier using bi-grams and noun phrases

The naive Bayes model with bi-grams and noun phrases produced the best accuracy and

F-meausre. It was also able to model copyright statements with only a small number of examples,

seen in Figure 2.1. Table 2.3 shows the confusion matrix for the noun phrase model. Many of the

misclassification of the ‘I’ and ‘O’ tags result from inconsistent human labelling near the end of the

copyright statements. Table 2.1 contains the results of final naive Bayes classifier with bi-grams

and noun phrases.

Currently, the Fossology Project (http://www.fossology.org) is using the naive Bayes with

bi-gram version of the algorithm. This version will be packaged with the 1.2 version of Fossology

and the final version of the algorithm with bi-grams and noun phrases will be merged into the

testing version later this summer. The current implementation in Fossology can analyze a 1GB

DVD ISO in just over an hour. This is faster than the rest of tha analysis tools used in Fossology,

and has resulted in special work-a-rounds to prevent the Fossology scheduler from crashing due to

the high rate of transactions from the copyright analysis algorithm.
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Figure 2.3: Copyright algorithms: accuracy vs. training size



Chapter 3

Sentence Based License Analysis

3.1 Introduction

We propose a replacement of the current license analysis tool in the Fossology project, which

relies on technology from the 1980s [4] [17], with a novel algorithm that uses machine learning and

information extraction techniques. The new algorithm uses software licenses from a database of

known and categorized licenses labelled by experts to identify new licenses. Unlike other license

analysis tools, we utilized hand-labelled test data to determine the algorithm’s accuracy.

Using two hand labelled data sets we will show that the our approach out preforms the

competition in the following areas. First, our approach allows users to add new license templates

with out need of knowledge of software licensing, machine learning, nature language processing,

regular expressions or computer programming languages. This is because the algorithm uses simple

plain text formatted license templates to create models of license families, which can be used to

identify related licenses. This makes our analysis software more accessible to the people who are

most likely to use it, i.e. lawyers and project managers whose time is already spread thin with out

having to learn a special tool. Second, our algorithm uses a combination of machine learning and

natural language processing to classify both license reference licenses and full license texts correctly.

This is something that previous techniques have trouble handling correctly. Finally, We will show

how our algorithm is able to cope with license prolification.

We created two datasets and tested against an existing data set from [7]. The first data set

was created by the fossology.org team to test the accuracy of new license analysis algorithm for
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the 1.3 release candidate of Fossology. It consists of 294 licenses of which there are 132 unique

licenses. These tests are not only meant to test the algorithms accuracy, but also the tokenization

and general robustness when analysing large and complex files such as dictionaries and spelling

databases. The second dataset was created as a training set for the current algorithm used by

the Fossology project. It contains 285 license templates found in various software projects. Each

license template has been grouped with similar licenses to create families of licenses. This was done

by experts in software licensing from the Fossology project. The third test compares the analysis

that German et. al. [7] conducted on the prominent license analysis algorithms. These are hand

labelled files randomly selected from the main distribution of Debian linux.

Many of the sentences found in software licenses are shared by one or more other licenses.

This observation has lead to a unique algorithm that is both fast and accurate. Unlike other

algorithms that require a full test search over all template licenses or only searches for keyword and

may miss additions or deletions our algorithm uses sentences to quickly compare the whole license

text and accurately locate the defining features of the individual licenses.

3.2 The Algorithm

The algorithm proposed to replace the current out dated license analysis algorithm in the

Fossology project uses labelled reference licenses to learn important details about the structure and

language in families of software licenses. Before our algorithm can be used to classify new software

licenses it must be trained on a set of existing labelled licenses. During training the reference

licenses are tokenized, split into sentences, and then stored in a heirarchial vector space database

for quick retrial. Once in the database the new license can be compared to the vectorized sentences.

To analyse a file it is tokenized and a naive Bayes classifier is used to locate sections of text

that have a high probability of coming from a software license. These sections are then passed

to the sentence parser and turned into text frequency vectors so they can be compared to the

sentences in the database. To compare to the licenses in the database a similarity matrix is created

for each reference license and the file being analysed. These matricies are then converted to binary
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Figure 3.1: Regular expression used to tokenize the input files.

matching matricies. With these matricies the longest common subsequence of matched sentences

can be determined. The section is then classified based on the best match, or marked as “unknown”

if no match was found.

The following section delve into the technical details each of the sub-processes. These in-

clude tokenization, license location, sentence parsing and sentence matching. Each section has

information about the implementation and the accuracy of the algorithm used to accomplish the

task.

3.2.1 Tokenization

Figure 3.2.1 contains the regular expression was used to tokenize the licenses. The regular

expression used extracts words, number, email address, file paths and URLs. Notice that the regular

expression is setup in an if, else if, ..., else fashion to allow the regular expression to be optimized

once compiled. Groups, (?P<name>...), are used to easily extract features from the tokenized

text. All groups, except ‘words’, are replaced with ‘XXXgroupnameXXX’ to allow the algorithms to

generalize over features such as emails, urls, and dates. For example, “http://www.fossology.org/”

is of class ‘URL’ and will be generalized as ‘XXXurlXXX’. This helps account for software licenses

that allow for arbitrary URLs, emails, and version numbers to be referenced.

Figure 3.2.1 shows a small snippet of text from the Apache 2.0 copyright file and the tokens

produced by our tokenizer.

3.2.2 License Locator

We begin by creating a general model of a software license. We use a naive Bayes classifier

to calculate the probability of a word originating from a software license. Thus, providing a tool

to locate any license text in ant text document. Naive Bayes employs the initial labelled data set

along with Bayes’ theorem to generate two conditional distribution functions (cdf), which can then
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Copyright:

Licensed to the Apache Software Foundation (ASF) under one or more contributor

license agreements. The ASF licenses this work to You under the Apache License,

Version 2.0 (the "License"); you may not use this work except in compliance with

the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

On a Debian system, the license can be found at

/usr/share/common-licenses/Apache-2.0.

tokens = [‘XXXcopyrightXXX’, ‘:’, ‘..’, ‘Licensed’, ‘to’, ‘the’, ‘Apache’,

‘Software’, ‘Foundation’, ‘(’, ‘ASF’, ‘)’, ‘under’, ‘one’, ‘or’, ‘more’,

‘contributor’, ‘license’, ‘agreements’, ‘.’, ‘The’, ‘ASF’, ‘licenses’, ‘this’,

‘work’, ‘to’, ‘You’, ‘under’, ‘the’, ‘Apache’, ‘License’, ‘,’, ‘Version’,

‘XXXnumberXXX’, ‘(’, ‘the’, ‘"’, ‘License’, ‘"’, ‘)’, ‘;’, ‘you’, ‘may’, ‘not’,

‘use’, ‘this’, ‘work’, ‘except’, ‘in’, ‘compliance’, ‘with’, ‘the’, ‘License’,

‘.’, ‘You’, ‘may’, ‘obtain’, ‘a’, ‘copy’, ‘of’, ‘the’, ‘License’, ‘at’, ‘..’,

‘XXXurlXXX’, ‘..’, ‘On’, ‘a’, ‘Debian’, ‘system’, ‘,’, ‘the’, ‘license’, ‘can’,

‘be’, ‘found’, ‘at’, ‘XXXpathXXX’, ‘.’]

Figure 3.2: Example of the output of the tokenizor
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be utilized to calculate the probability of a word belonging to a software license. The advantage is

that it runs in linear time, and is easy to train and implement. Accordingly, we can locate all the

licenses in a project in a short time without needing to reference the license templates. We use this

technique to get a set of license sections for each file, that are then passed to the next stage of the

algorithm.

To train the naive Bayes classifier 500 documents with hand labelled software license sections

are used to calculate Pr(word|L) and Pr(word|L̄), where L is a license sections and L̄ is a non

license section. A windowing technique is used to classify sections of text. Window i, of size

w, is defined as the set of words {wordi, wordi+1, . . . , wordi+w}. The conditional probabilities,

Pr(L|word1, . . . , wordw) and Pr(L̄|word1, . . . , wordw), are calculated for a window of size w. If we

assume that words appear independently of each other, then the conditional probabilities simplify

to,

w∏
i=1

Pr(wordi|L) (3.1)

and,

w∏
i=1

Pr(wordi|L̄) (3.2)

.

This simplification is where the “naive” in naive Bayes come from, and allows use to easily

create a classifier that will classify future data based on the original 500 labelled files.

w∑
j=i

log
Pr(wordj |L)

Pr(wordj |L̄)
(3.3)

To classify new files a window of size w is scanned across the document producing n − w

samples. Each sample is then labelled based on the larger of the two conditional probabilities

in Equation 3.1 and 3.2. Because of numerical instability the log likelihood ratio is used instead

(Equation 3.3). The sample is then labelled L if the log likelihood ratio is greater than 0 and L̄
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Accuracy 99.3%

False Positive Rate 0.7%

False Negative Rate 0.001%

Table 3.1: License section classifier results.

otherwise. Equation 3.4 is used to fill gaps in the labelling of the license sections. The L labelled

sections are then passed to the sentence parser.

labeli =



L if labeli−1 = labeli+1 = L

L̄ if labeli−1 = labeli+1 = L̄

labeli otherwise

(3.4)

Using 10-fold cross validation the 500 training files were used to determine the accuracy of

the naive Bayes license section classifier. Table 3.2.2 gives the observed accuracy, precision, and

recall.

3.2.3 Sentence Parsing

We found that breaking the license text into sentences allowed for efficient comparisons

between different license templates. A family of licenses may share many of the same sentences,

but have one defining sentence. By locating this defining sentence, the license may be classified. We

used a maximum entropy sentence parsing algorithm [16] to extract sentences from the templates

and license sections.

There are existing MaxEnt models, for example [12] which is trained on the text from the Wall

Street Journal, but these model do not account for the law speak and ascii decoration that exist in

licenses found in source code. Because current models lack domain specific knowledge required for

parsing of sentences in licenses and source code, so we created our own MaxEnt sentence parsing

model.

To create the model we labelled 176 licenses files. We used a simple markup tagging system

to denote the beginning and endings of sentences. Figure 3.2.3 gives a brief example of a labelled
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<sentence>Academic Free License Version 1.1

</sentence>

<sentence>The Academic Free License applies to any original work

of authorship (the "Original Work") whose owner (the "Licensor")

has placed the following notice immediately following the copyright

notice for the Original Work:</sentence><sentence> "Licensed under

the Academic Free License version 1.1."

</sentence>

Figure 3.3: Example of a labelled sentence used for training a Maximum Entropy sentence parsing
model.

file.

To train the MaxEnt classifier the license section are tokenized into alpha-numeric and non-

alpha-numeric tokens and the following features are extracted:

• stemmed word (f1).

• first letter capitalized (f2).

• whole word capitalized (f3).

• includes numbers (f4).

• if not alpha-numeric then a hash of the characters is used (f5).

A windowing technique, as described in the previous section, is used to create a feature vector, i.e.

the set of features for window i is xi =
{
f1,wordi , . . . , f5,wordi , f1,wordi+1

, . . . , f5,wordi+w

}
. We would

like to know the conditional distribution Pr(BREAK|xi). With constraints
∑n

i=1 Pr(xi|BREAK)fk(xi) =

Fk and
∑n

i=1 Pr(xi|BREAK) = 1. This distribution can be found by maximizing its entropy

Ent(m) = −
∑

xE[x]m(BREAK|x) logm(BREAK|x), where m is a possible conditional distri-

bution function. The optimal m can be found by introducing the Lagrangian and finding the point

that satisfies the Karush-Kuhn-Tucker conditions. The solution to the optimal conditional distri-

bution is given in Equation 3.5, with Z as in Equation 3.6. Numerical methods are used to solve

Equation 3.7 for the λs.
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Pr(BREAK|x) =
1

Z(λ1, . . . , λm)
exp [λ1f1(x) + · · ·+ λmfm(x)] (3.5)

Z(λ1, . . . , λm) = exp

(∑
i

λifi(x)

)
(3.6)

Fk =
∂

∂λk
logZ(λ1, . . . , λm) (3.7)

Equation 3.5 can then be used to label sentence breaks in unseen sentences. We use an open

source implementation for calculating the MaxEnt model written by Zhang Le [12], which includes

both Python and C/C++ libraries. To test the resulting classifier we used 10-fold cross validation

to get an observed accuracy based on our dataset. The sentence parser has an observed accuracy

of 82.5%. Although this accuracy is low it is reliable, and tends to produce consistent parsings of

the same classes of licenses.

3.2.4 Sentence Based Classifier

The sentences must be converted into a form suitable for quick comparisons. We use a text

frequency vector to capture the structure of the sentences. Each sentence is converted into a text

frequency vector and normalized to length 1. Sentences can now be compared with each other

using the cosine similarity measure described in Equation 3.8. Notice how normalizing the vectors

makes the equation simpler.

cos θ =
svi · svj
‖svi‖‖svj‖

= svi · svj (3.8)

The vector space model allows for quick comparison of similar sentences. To generate the

sentence vectors, we start by splitting the sentence into word tokens, removing “stop words” such

as “and”, “the”, and “a”, and converting the remaining words to their respective roots using a

Porter stemming algorithm. We then create a vector in the space spanned by all possible roots

to represent the sentence, with each component representing the frequency that root appears in

the sentence. We define the similarity between sentences to be the cosine-similarity between the

respective vectors.
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In order to quickly calculate the nearest neighbours of a target sentences we create a database

of reference license sentences. Single-link clustering technique described in [13]. New sentences are

then compared to the top level cluster nodes which minimize the number of dis-similar sentences

that must be compared to. The new sentences is then moved down the tree until a sufficient level of

similarity is met(in our case dis-similar by two words). This helps to quickly remove large numbers

of sentences that are dissimilar to the new sentence. The comparison can now be calculated without

having to calculate distances between all n reference sentences in the database.

To analyse a particular license section, we extract the sentences and convert them into term-

frequency vectors, as above, again preserving sentence order within the section. We use the reference

license database of sentences to compare unknown licenses to known licenses. D similarity matrices

are created between the unknown document and the reference licenses, where D is defined as the

number of reference licenses. Similarity matrix i is of size m by ni, where m is defined as number

of sentences in the unknown license and ni is as the number of sentences in the reference license i.

The entries of the similarity matrix correspond to the cosine similarity of sentences in the unknown

license and the sentences in the ith reference license. The similarity matrix is converted into a

binary matching matrix, where an element of the matrix is 1 if the similarity of the sentences is

greater than 0.9, determined by 10-fold cross validation, and 0 otherwise. Each matrix is given

a score based on the longest common subsequence of similar sentences, see Equation 3.9, where

matched () is the length of the longest common subsequence. This score is then normalized to

be between 0 and 1. If the largest score is not greater than 0.9 then we flag it for a human to

examine. Otherwise we name it based on the reference license with the highest scoring matrix.

License sections that do not match any template licenses are reported as “unknown license”s.

s =
(

2
∗matched (d))(matched (d) + ni) (3.9)
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3.3 Competing Approaches

Few software solutions that locate licenses in project source code exist, and these can be

broken into three types: closed source commercial algorithms, the Longest Common Substring

(LCS) approaches and the rule based approaches. Two companies, Palimida (http://palamida.com)

and Black Duck Software (http://blackducksoftware.com), provide license analysis services. The

Fossology project has considered using these services but determined that the current algorithm,

bSAM [8], is comparable to services provided by Black Duck and Palimida.

The LCS approaches use a relaxation of the LCS problem to find a large string belonging to

a template license in a piece of source code, such as [9]. This matching string is then given the

same name as the corresponding template license. The full text comparison results in an algorithm

that is accurate but very computationally expensive, because each reference license comparison is

and O
(
n2
)

operation based on the number of tokens in each licence.

In contrast, the rule based approaches employ small phrases, sequences of unique words, or

regular expressions to capture definitive features of a license. Rule based approaches, although fast,

only locate a small string and disregard the majority of the license text. The text ignored may

define further rights and restrictions that embody similar but different licenses, thus leaving the

algorithm prone to substantial errors. ohcount is a regular expression algorithm and works well,

but maintaining it is set of hand crafted regular expressions is labour intensive and tedious.

Two mature license analysis tools, bSAM and ASLA, come from the LCS and rule based fam-

ilies, respectively. bSAM relies on technology which was designed for protein matching back in the

1980s. Since then, the protein matching community has moved from LCS-type algorithms to more

probabilistic models that are faster and more accurate. ASLA [19] runs an order of magnitude faster

than bSAM, but lacks full text matching, thus limiting its merit, and no tests on labelled data have

been conducted on this algorithm. OSLC uses a diff technique like bSAM to locate software licenses.

Table 3.4 shows that both algorithms have the same problem when scaling to large numbers of

reference licenses.
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3.4 Results

We tested our algorithm on 294 hand labeled license files without source code but including

all the comment characters. All test files were marked as licenses with one exception, consisting

entirely of “Copyright: GPL,” which may not be a valid license. This phrase should have been

marked as an unknown license, but GPL alone was not sufficient to trigger the license detector.

The classification accuracy when marking unknown licenses as missed was 60%. As we designed

the algorithm to refrain from classifying licenses that did not fully match template licenses, we

removed these test files for an accuracy of 87%. Because of the large number of difference licenses

our small set of reference licenses was missing templates for 30 of the license families present in the

test corpus. After the addition of these 30 template license the raw accuracy changed from 60% to

92%.

The majority of the 24 test licenses that were miss classified are from the “GPL”, “LGPL”,

“BSD” and “MIT” families of licenses. The misclassified “GPL” and “LGPL” licenses are reference

licenses and only differ by a single sentence near the end of the license. This last sentence is the

address of the Free Software Foundation, which changed after the writing of the General Public

License version 2. Our license references have a mix of the two addresses in both the “LGPL”

and “GPL” license templates. Since the only difference other than the address is the name of

the license, which can be “Lesser General Public License” or “General Public License”, this final

sentence biases the results causing a misclassification. Of the misclassified licenses only 4 are from

the “MIT” “BSD” family. These four licenses are so similar that there is still debate among experts

from the Fossology project on the correct classification, thus ignored for now.

To capture the true differences between the “LGPL” and the “GPL” reference licenses we

extracted noun phrases from the licenses as separate tokens. We used the same noun phrase tagger

used in the copyright analysis algorithm from Section 2.1. By extracting noun phrases and treating

them as separate tokens, like the ones in Table 3.4, they can be give weights based on there term

frequency inverse document frequency, tf-idf. Since the phrase “General Public License version
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‘On’ NPO

‘Debian’ NPB

‘GNU’ NPI

‘XXXpathXXX’ NPI

‘systems’ NPI

‘,’ NPO

‘the’ NPB

‘complete’ NPI

‘text’ NPI

‘of’ NPO

‘the’ NPB

‘GNU’ NPI

‘General’ NPI

‘Public’ NPI

‘License’ NPI

‘can’ NPO

‘be’ NPO

‘found’ NPO

‘in’ NPO

‘XXXpathXXX’ NPB

‘.’ NPO

Table 3.2: Example of Noun Phrase tags
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Bates ninka bSAM ohcount OSLC

Correct 221 200 137 83 57
Incorrect 6 7 112 167 193
Unkown 23 43 1 0 0

F-measure 0.938 0.889 0.708 0.498 0.371

Table 3.3: Example of Noun Phrase tags

2” is less frequent and more important than the individual words in the noun phrases it should bias

the similarity of sentences more than individual tokens.

We tested against the test set and found that the 20 “LGPL” and “GPL” licenses had been

correctly classified correctly. It should also be noted that the address were removed from the

template licenses. Although we greatly improved on the test set this result is invalidated, because

we peeked at the test set in order to make improvements. Therefore, a new test was conducted on

a set of licenses randomly chosen from Debian distribution by D. German et. al. [7]. This data set

consists of 250 files which include both source code and license text. The results of D. German et.

al. algorithm ninka, bSAM, ohcount, OSLC, and our algorithm Bates, can be seen in Table 3.4 along

with the results of our algorithms analysis. Our algorithm attains a better accuracy and f-measure

than the other four algorithms.

The algorithm shows a linear proportionality in time verses amount of license data analysed.

Figure 3.4 shows the tested speed on the test set. While the trend is 1.2 minutes per megabyte,

the analysis of real source code will be faster since it is less dense in license data.

3.5 Current Status

‘ The current algorithm has been prototyped in 1500 lines of Python code and is being

actively converted into C and integrated into the Fossology project. The goal is to replace bSAM,

the current full text license analysis algorithm, in the 1.3 release of Fossology. The ability to quickly

Figure 3.4: File size vs Performance
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add new template licenses and the overall speed and accuracy improvements mark our algorithm

as a candidate for inclusion into the Fossology project.
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Conclusion

We have demonstrated a reliable system for automating the task of locating and classifying

licenses in software. The naive Bayes classifier used to locate the license sections gives 99.3%

accuracy, with low false positive and false negative rates. The sentence parser provides an accuracy

of 82.5%, even with the limited number of training files. This provides a very sturdy foundation

for the sentence based classifier to determine the correct license(s). With noun phrases the license

classifier has the power to correctly classify both full text licenses and reference licenses. The noun

phrases also help increase the probability that unknown modified sections of licenses will be labelled

as unknown licenses.

The experimental results show that the license classifier is more accurate and robust than

the competition. This is the reason that the Fossology project is spending time to integrate our

solution into their software. We hope to have our algorithm fully functional by the release of the

1.3 version of Fossology. This is great new for the open source community and users of FOSS,

because our algorithm will help reduce cost and risk to the users of FOSS. Thus, allowing more

opportunity for people to use the software, and contribute tot eh projects.

The copyright analysis algorithm is also a great addition to the open source community.

Copyright analysis was one of the most requested tools on the Fossology mailing list. The current

bi-gram classifier being used in Fossology currently is very fast and produces adequate results but

returns a large number of false positives. This was done on purpose to help prevent false negative,

and missing important copyright information. The copyright analysis algorithm that uses bi-grams
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and noun phrases, suffers less effects from false positives and provides tighter fits to the copyright

statements. The noun phrase version of the copyright algorithm is already being incorporated into

the development branch of Fossology, and should be finished before the 1.3 release.
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Future Work

The copyright analysis algorithm yields an accuracy of 98%. This is very good, but there is

still room for improvement. The amount of training and testing data can be increased to provide

an even better span of the copyright statements that exist in the wild. This algorithm itself can be

improved. The noun phrases that are used to determine the endings of the copyright statements are

really named entities. Analysis of the structure of named entites in relation to copyright statements

might yield patterns in proximity and frequency relative to copyright statements. This information

could be used to create an even better and faster algorithm that could locate copyright statements

and copyright holders.

License analysis is very important to the Fossology project. Recently, a new regular expression

license analysis algorithm, from Hewlett Packard, has been added to the Fossology project. This

algorithm has been in development for over 7 years and has an extensive database of rules for

classifying licenses. There maybe advantages to using this new algorithm to classify the licenses

that our algorithm does not recognize, thus minimizing the number of unknown licenses returned.

The way that the license analysis algorithm matches licenses has potential to help other domains.

More work is needed to determine error bounds on the relaxation of the real valued similarities. The

method of clamping the similarities may allow for decreasing the error incurred by the relaxation,

and help to get better matches.
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