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Shervani-Tabar, N. (M.S., Mechanical Engineering)

Stabilized Conservative Level Set Method with Adaptive Wavelet-based Mesh Refinement

Thesis directed by Prof. Oleg V. Vasilyev

This study investigates one of the well-known shortcomings of the conservative level set

method, namely the ill-defined normal vector. A stabilized formulation is proposed which does not

rely on the unit normal vector anymore. Instead, the proposed stabilized conservative level set,

SCLS, utilizes a modified normal vector, magnitude of which is unit in the interfacial region of width

ε and approaches zero in the far field from the interface. Respective adjustments have been applied

on the reinitialization equation to comply with the proposed normal vector. This methodology is

general and robust and it is not topology dependent. Since the information in the interfacial region

are of a higher interest in comparison to the far field data, SCLS is specially well suited to be

used with adaptive mesh refinement, AMR. In this research a general AMR-type approach named

Adaptive Wavelet Collocation Method has been utilized, which makes use of wavelets to adapt on

meshes in the interfacial region. A number of benchmark numerical problems have been performed

to investigate the performance of the stabilized conservative level set approach. SCLS methodology

is intended to be a base for simulation of interfacial phenomena, especially multiphase flows.
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Chapter 1

Introduction

1.1 Interfacial Phenomena

Interface is the common boundary separating two immiscible phases. These two can be in

the form of two similar phases, like a water-oil system or two non-similar phases, like a water-air

system. Interfacial phenomena is refered to the behavior of the flows at the limit between the two

phases. Due to vast presence of these phenomena in such disciplines as mechanical engineering,

geophysics, biology, oceanography, and material science, much effort has been made to grasp their

physics and chemistry. Drops, bubbles, soap films, wetting phenomena, surfactants, marangoni

flows, and contact line dynamics are examples of these phenomena.

Experimental studies of interfacial phenomena are usually hard to conduct due to the nature

of the interface. Hydrodynamic simulation of problems involving multiphase flows or multi-fluids is

an important discipline within computational fluid dynamics. These problems normally involve a

moving or deforming interface, which dictates severe difficulties to the study. A number of numerical

methods have been developed for capturing the interface evolution. The main challenges that face

the performance of these methods are mass conservation and discontinuity of material properties.

Based on the depiction of interface in each method, interface capturing methods can be catagorized

into two classes of Eulerian and Lagrangian methods.

Lagrangian methods are referred to a group of methods which trace the interface using

markers. Front traking, marker, and particle-in-cell methods belong to this class. In front tracking

methods marker particles are explicitly introduced to represent the moving front. These connected
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set of particles can be described as moving internal boundaries. In the vicinity of the interface fluid

evolution is computed using irregular meshes. While these schemes are faster than other particle

methods, they pose many complications in reconstruction of the interface. The main drawback

associated with this class is the the growing distortion in the distribution of the markers.

Eulerian methods are a class of interface capturing methods that define the interface as a

scalar function. Some well known examples of this class include volume-of-fluid, boundary integral,

and level set methods. In the volume-of-fluid method, a volume fraction is assumed for each cell

in the domain. This volume fraction is defined as the area fraction of each cell located inside

of the bounded interface. After each iteration of the advection equation the volume fraction is

updated for the cells crossed by the interface and the interface is subsequently reconstructed based

on the new fraction. The boundary integral methods can be applied to the fluids, whose governing

partial differential equation is piecewise homogenious and could be represented or approximated

by a Green’s function. This group of methods is mainly used for simulation of inviscid potential

flows. In these flows the effect of viscosity is neglected. Lastly, level set method describes fluid field

as iso-contours of a signed distance function, which is the closest distance from each point in the

domain to the interface including a sign that indicates whether the point is inside or outside of the

bounded interface. Interface location is updated by advection of this function. Level set method is

described in more details in the following section.

1.2 Level set method

Level set is a mathematical method to investigate the evolution of curves and surfaces. Level

set has a wide range of applications in image processing, computer graphics, and Computational

Fluid Dynamics (CFD). In fluid mechanics, propagation of the boundaries and interfaces occur in

nature in the form of ocean waves, burning flames, bubble dynamics, etc. This method was first

developed by Sethian in 1982 [25]. Given a continuous function f(x), signed distance function

φ(x, t) represents the distance d(x) between each point in the domain to the bounded zero level set

of the function f(x), i.e. f = 0, with a sign indicating whether the point is inside or outside of the



3

bounded region. For simplicity, φ(x, t) may be represented as φ(x) here. The zero level set is the

zero iso-contour of φ(x) and represents an interface Γ in the domain Rd such that

Γ = {x ∈ Rd : f(x) = 0} (1.1)

which bounds a region Ω of the domain Rd in a fashion that

φ(x, t)>0 if x ∈ Ω, (1.2)

and

φ(x, t) ≤ 0 if x 6∈ Ω. (1.3)

Figure 1.1: Schematic representation of signed distance function.

The main difference between level set method and other interface capturing methods is that

in level set the front is defined by the zero iso-contour of a signed distance function φ(x) rather

than set of points being evolved and interpolated to find the front. The main evolution equation

of the level set method is [26]
∂φ

∂t
+ (F · ∇)φ = 0 (1.4)

where F denotes the speed of the front in the normal direction to the interface. This equation can

also be reorganize in the form
∂φ

∂t
+ u · ∇φ = 0 (1.5)
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where u expresses the velocity field in which the interface is being evolved. A unit normal vector n

is defined as the unit vector in the normal direction with respect to the interface Γ. The direction

of unit normal vector n is the same as gradient of signed distance function φ’s [26]. Therefore, unit

normal vector can be defined in terms of signed distance function φ as

n =
∇(φ)
|∇(φ)|

(1.6)

The distance function condition states that |∇φ(x)| be equal to unit at all time. At the

beginning of the iterations, φ might be a signed distance function but later on, after φ has been

evolved for some iterations, the function f(x) may be distorted and the gradient gets out of hand.

This especially happens when the velocity field u is not uniform. In this case, reinitialization is

necessary to make the modulus of the gradient of the signed distance function φ(x) to be unit

again. This ensures that for each unit step in the normal direction with respect to the interface Γ

the value of distance function d(x) also changes by 1. Therefore, a reinitialization procedure may be

introduced to be applied on the signed distance function φ by solving the following Hamilton-Jacobi

equation to steady state

φτ = sgn(φ0)(1− |∇φ|) (1.7)

with the initial condition

φ0 = φ(x, τ), τ = 0, (1.8)

and the sign function sgn(φ) defined as

sgn(φ) =


1 if φ>0,

0 if φ = 0,

−1 if φ<0.

(1.9)

Note that τ indicates the pseudo time steps. This updated function has the same zero level set as

the function f(x) and provides with an updated value for signed distance function φ(x) that has the

property of unity of the modulus of gradient of the signed distance function φ, or mathematically

speaking |∇φ| = 1.
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The accuracy of the function f(x) plays an important role when dealing with the level set

method. Since step functions like sign function sgn(φ) have sudden changes, it is numerically

hard to deal with them due to the possibility of introducing noise and oscilations to the solution.

Therefore, a smoothed version of the sign function sgn(φ) based on Heaviside function H(φ) is

used to compute the sign function in order to avoid instability. To smooth the edges, the Heaviside

function is discretized as

H(φ) =


1 if φ>∆x,

0 if φ<−∆x,

0.5
(

1 + φ
∆x + 1

π sin
(
πφ
∆x

))
Else.

(1.10)

Then the sign function sgn(φ) is calculated based on the Heaviside function H(φ) as

sgn(φ) = 2(H(φ)− 1
2

). (1.11)

Using explicit Euler method, reinitialization procedure could be discritized and expressed as fol-

lowing

φn+1
i = φni + ∆τ · c · sgn(φ0)|∇φn| (1.12)

where c is the constant added to the equation to meet the CFL condition. A first order upwind

scheme could be implemented to discretize gradient of φ(x) in the equation above.

|∇φ| =


max(max(D−x φi, 0),min(D+

x φi, 0)),

max(min(D−x φi, 0),max(D+
x φi, 0)),

(1.13)

where

D−x φi =
φi − φi−1

∆x
(1.14)

and

D+
x φi =

φi+1 − φi
∆x

(1.15)

However, the conventional reinitialization method perturbs the front from its original location

which subsequently results in a failure in conserving the area of the bounded region. In order to
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overcome this difficulty, various methods have been proposed to improve the results of reinitializa-

tion procedure and enhance the volume conservation, the most influentials of which are proposed

by Sussman and Fatemi [32], Russo and Smereka [23], and Enright et.al. [10].

Sussman and Fatemi in their novel work [32] suggested to put a constraint after solving the

reinitialization Hamilton-Jacobi equation to prevent the straying of the zero level set from it’s

initial position at τ = 0 due to the numerical errors of the reinitialization equation 1.7. Russo and

Smereka [23] pointed out that when discretizing using equations 1.13 through 1.15, derivatives are

calculated using upwind differencing according to the direction of the characteristics. Therefore,

when differencing across the interface, this property will be violated and discretization of the

derivatives in that region would not be truly upwind, because part of the information is coming

from the wrong side of the level set. Hence, they offered a modification to the discretization of the

gradient of the signed distance function within one cell from the front using the information that

the signed distance function φ is zero on the interface Γ. Enright et.al. [10] proposed a hybrid

particle tracing method to overcome the difficulty associated with the accuracy of the level set

method. In their work, marker particles are distributed close to the interface on both sides of the

zero level set. Detecting a particle in one side with initial location on the other side implies errors

associated with the volume conservation of the level set method. Properties of the escaped particles

are used to reconstruct the level set function. However, in this method redistribution of the makers

is necessary after a while. Also, depending on the topology of the problem, special modifications

might be required.

Qin et.al [21], on the other hand, have came up with a different methodology. They suggested

that reconstruction of the signed distance function by geometrically projecting interface topology

onto Cartesian grid using a second-order accurate interpolation can help with preventing the reini-

tialization errors to amplify. In this method not only is the reinitialization step kept, but also the

results are modified after each iteration by reconstruction of the signed distance function φ.

Although the proposed methods alleviate the error accumulation, the main shortcoming of

the conventional level set method is still its non-conservative nature. Therefore, it might violate
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the physics of the problem by gaining or losing mass, which can lead to serious errors. This has

resulted in attempts to come up with a new level set method formulation which conserves the area

within the interface.

Olsson and Kreiss [19] in their novel work proposed a new conservative level set method. In

this method, the two fluids in problem are represented by level set equal to 1 or 0, respectively. This

helps to emphasis the discontinuous nature of the interface. For the sake of numerical robustness,

interface is considered in a transitional region with thickness ε within the limit of two fluids. Level

set goes smoothly from 0 to 1 in this zone and the interface itself would be recognized as 0.5 level.

In other words

Γ = {x ∈ Rd : f(x) = 0.5} (1.16)

Sharper change in this zone would result in a lower conservation error. This requires a choice

of thinner interfacial region thickness ε. However, very low ε may cause numerical difficulties.

Therefore, choosing the most suitable value of ε is a matter of balance between a low conservation

error and a reasonable resolution [8].

When the conservative level set method is employed fluids and the interface are no more

defined as the signed distance function φ(x). In the conservative level set method, instead, level

set is defined as a regularized characteristic function

ψ(x) =
1

1 + e−
φ(x)
ε

(1.17)

which could be reformulated as a modified hyperbolic tangent function

ψ(x) = 0.5(tanh((2ε)−1φ(x)) + 1) (1.18)

Advection of the signed distance function φ in conventional level set method has not been done in

a conservative way. In the conservative level set method a conservative version of equation 1.5 can

be rewritten as
∂ψ

∂t
+∇ · (ψu) = 0 (1.19)
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Furthermore, an intermediate step should be added to this equation to preserve the shape and the

thickness of the interface zone. In order to do so, an artificial compression term is added in the

form of a hyperbolic differential equation

∂ψ

∂τ
+∇f(ψ) = 0 (1.20)

Where f represents the compressive function. This function should be applied in the region where

0<ψ<1 and in the direction of normal vector n. Hence, the function for the compressive term f

can be defined in terms of the mathematical expression

f = ψ(1− ψ)n (1.21)

A small viscosity is added in order to avert discontinuities at surface. Therefore

∂ψ

∂τ
+∇f(ψ) = ε∆ψ (1.22)

where ε regulates the amount of diffusive term and hence the thickness of the interface transitional

zone. Eventually, the conservative level set method consists of a conservative advection and a

corresponding reinitialization procedure

∂ψ

∂τ
+∇ · (ψ(1− ψ)n) = ε∆ψ (1.23)

to recover the shape.

However, the viscosity introduced in equation 1.22 applies to the interface in every direction.

Whereas, the compression term only acts in the normal direction to the surface, which renders the

final result unbalanced. In other words, the compression term balances the normal diffusion. But

the tangential diffusion remains unbalanced and therefore it might move or distort the interface.

In order to overcome this difficulty, Ollson et. al. further developed their proposed method [20].

They introduced a refinement on the diffusive term to apply it just in the normal direction with

respect to the interface Γ. The resulting equation is

∂ψ

∂τ
+∇ · (ψ(1− ψ)n) = ∇ · (ε(∇ψ · n)n) (1.24)
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which offers a diffusive flux only normal to the surface.

In comparison with the conventional level set method, using a hyperbolic tangent initial

condition has some flaws, one of which is the complications with finding normal. Traditionally, unit

normal vector n is computed using the equation 1.6. In the conservative formulation a hyperbolic

tangent ψ(x) of the signed distance function φ(x) is being advected. Hence, the signed distance

function φ(x) is no longer directly accessible. Olsson [19][20] used the ψ(x) to calculate the normal

by using

n =
∇(ψ)
|∇(ψ)|

(1.25)

This equation gives accurate results in the interfacial region. However, in the far field that ψ

is either 0 or 1, the gradient of ψ becomes very small and results in drastical change of direction of

unit normal vector n in far field. This makes the method less favorable to get employed to compute

the normal. In an effort to fix this issue, one may use an inverse hyperbolic tangent to recycle the

φ from ψ, namely using

φ(x) = εln(
ψ(x)

1− ψ(x)
) (1.26)

The problem with this formulation is that although it gives good results near the 0.5 iso-surface,

the results far from the interface might not be dependable.

Desjardins et. al. [8] proposed a new method to reconstruct a smoothed signed distance

function field φ(x) from hyperbolic tangent function ψ(x) by combining the conservative level set

method with a redistancing algorithm performed using Fast Marching Method, FMM.

Shukla et. al. [30] suggested to avoid calculating unit normal vector n directly from ψ by

employing an auxiliary function γ which is essentially a smoother version of ψ and helps with a

better estimation of the gradients. Figure 1.2 shows how the auxiliary function γ smooths the

hyperbolic function ψ.

Zhao et. al. [40] recommended to use the inverse hyperbolic tangent in equation 1.26 to

recycle the signed distance function φ in the regions close to the interface Γ and advect the con-

ventional level set equation coupled with the conservative level set method to find the unit normal
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(a) (b)

Figure 1.2: A comparison between the isolevels of (a) hyperbolic tangent function ψ and (b)
auxiliary function γ [8].

vector directly by plugging in φ into equation 1.6 in the far field.

Conservative level set method is robust and general and does not require special treatments

and can automatically be applied. Moreover, higher resolution is only needed in the vicinity of

the interfacial region while the flow field can be accurately solved in the far field using a coarser

resolution. These properties make Conservative Level Set a desirable method in context of the

adaptive mesh refinement, AMR, methods. A wavelet-based AMR-type solver has been used in

this study to carry out the numerical simulations.

1.3 Wavelets

Joseph Fourier introduced the idea of expansion or approximation of a periodic function f(x)

in terms of trigonometric series. These series, formally known as Fourier series, take advantage of

the orthogonality relationship of the sine and cosine functions. First intended for the solution of

the heat equation in a metal plate, Fourier series of f(x) on interval (−l, l) are defined as

f(x) =
+∞∑

n=−∞
cne

inπx
l (1.27)

where

cn =
1
2l

∫ +l

−l
f(t)e−

inπx
l dt (1.28)
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Assuming l→∞ we have

f(x) =
1

2π

∫ +∞

−∞
eiωxdω

∫ +∞

−∞
e−iωtf(t)dt (1.29)

Fourier series solution of PDE’s was considered a remarkable success in it’s own time. How-

ever, it has two major drawbacks. Firstly, it is not intended to represent local information in time,

meaning that they capture global behavior of a function. This is because the constitutive functions

of Fourier series are not all localized in time. Secondly, although it provides the opportunity to

investigate the problem either in spatial domain or frequency domain, it doesn’t provide a chance to

study both together [7]. To overcome these difficulties wavelets were introduced in 1980’s. Hence,

wavelets are referred to as a departure from Fourier analysis [14].

Wavelets, (although many believe that the idea roots back to the 30’s [14]), introduced in 1984

by Grossmann and Marlet, have significantly affected the science and technology [13]. Mathematical

modeling, signal processing, and speech recognition are among the earliest areas to be impacted

by wavelets. The first utilization of the wavelets in fluid mechanics dates back to early 90’s [11].

The unique properties of wavelets have introduced them as a suitable choice to solve the Partial

Differential Equations (PDE’s) on adaptive grids [24].

Wavelets are a class of basis functions that are localized in both physical space and wave-

number space. Because of these properties, wavelets, unlike the Fourier transform which provides

frequency information only, provide both spatial and frequency information. Wavelet-based algo-

rithms show a number of properties due to their controllable localization in both time and space

[3].

Other wavelet properties include efficient multiscale decompositions, existence of recursive

O(N) fast wavelet transform, and preconditioning and compression of operators and matrices. These

properties have resulted in utilization of wavelets in developing of partial differential equation, PDE,

solvers. Most kinds of linear PDEs have been solved using wavelet based methods. There also exist

many adaptive wavelet methods developed to solve different nonlinear PDEs.

The wavelet based methods are generally classified into two categories of wavelet-Galerkin
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Figure 1.3: Sample wavelets on varying levels of resolution.

and wavelet-collocation. The former solves the problem in the coefficient space, while the latter

solves it in the physical space. In the wavelet collocation method every wavelet coefficient is paired

with a grid point in the computational domain to represent the flow variables. This property makes

it simple to calculate the nonlinear terms.

Currently, two classes of wavelets have been introduced. The first class of wavelets ψji are

defined as

ψji (x) = 20.5jψ(2jx− k) (1.30)

This family of functions is technically the translation and dilation of a mother wavelet, ψ, and they

were primarily constructed using the Fourier transform [37]. These functions are defined recursively

and are generated via an iterative algorithm [3].

A second class of wavelets was introduced by Sweldens in 1996. Wavelets of the second

generation, which are a generalization of bi-orthogonal wavelets, are constructed in the physical

space without the requirement of translation and dilation invariance. They are generally created

using lifting scheme or interpolating wavelet transform [37].

Wavelet collocation method compresses functions with localized structures or regions with

sharp transition very well using wavelet decomposition. Equation 1.31 expresses an arbitrary flow
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variable, u(x), in terms of wavelet basis functions:

u(x) =
∑
i∈I0

φ

ū0
iφ

0
i (x) +

+∞∑
j=0

2d−1∑
µ=1

∑
i∈Iµ,jψ

ũµ,ji ψµ,ji (x) (1.31)

where ū0
i and ũji represent scaling and wavelet coefficients and φ0

i (x) and ψji (x) express scaling

functions on the coarsest level of resolution and wavelet basis functions of different levels of res-

olution j, respectively. Superscripts µ denote different families of wavelets and d stands for the

dimension. The wavelet coefficients ũji have small values except for the regions close to the large

gradients.[22]

A thresholding criterion, ε, can be defined to divide the wavelet coefficients into two groups,

which results in breakdown of u(x) into two functions

u>(x) =
∑
i∈I0

φ

ū0
iφ

0
i (x) +

+∞∑
j=0

2d−1∑
µ=1

∑
i∈Iµ,jψ

|ũµ,ji |>ε‖u‖

ũµ,ji ψµ,ji (x) (1.32)

and

u<(x) =
+∞∑
j=0

2d−1∑
µ=1

∑
i∈Iµ,jψ

|ũµ,ji |<ε‖u‖

ũµ,ji ψµ,ji (x) (1.33)

such that

u(x) = u>(x) + u<(x) (1.34)

As a result of this split, compression can be achieved by keeping only the wavelets with the

coefficients greater than ε. In other words, high resolution computation is only performed where

it is necessary and a significant reduction in number of required points can be achieved; while the

accuracy is kept at the desired level. This results in an optimized use of computational resources

by approximation of the solution with an error of O(ε).
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Figure 1.4: Wavelet decomposition of a sample function. The red points are the points necessary
to accurately represent the function.
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1.4 Adaptive Wavelet-collocation Method

The numerical examples in this research may involve localized structures or sharp transitions.

These problems necessitate high resolution computation in the transition area, as the transition

may fall between the grids. Hence, using a uniform grid would be impractical.

In this study, a general numerical technique for solving linear and nonlinear partial differential

equations named Adoptive Wavelet Collocation Method AWCM has been engaged with a Stabilized

Conservative Level Set, SCLS, to develop a methodology for tracking the front of a bounded

interface. In the rest of this section the methodology used in AWCM would be reviewed. Interested

reader is refered to reference [24] for detailed discussion on AWCM and it’s parallel implementation.

Adaptive solution of nonlinear partial differential equations is performed by adaptive wavelet

collocation method based on bi-orthogonal lifted interpolating wavelets to construct a computa-

tional grid adapted to the solution. The wavelet decomposition naturally provides a set of nested

multi-scale grids adapted to the solution, and we take advantage of this property in the solver.

The method presented here uses the multi-scale wavelet decomposition as the basis for an adaptive

multilevel method for nonlinear elliptic equations.

A wavelet decomposition is used in AWCM to dynamically adopt on steep gradients in the

solution during evolution of the flow by spliting the flow field u(x) into two groups with coeffi-

cients larger or smaller than the product of a non-dimensional thresholding parameter, ε, and the

dimensional scale ‖u‖.

AWCM uses wavelet properties to determine, on the fly, significant points needed for an

accurate solution [24]. To include the points which can potentially become significant in the next

time step, the adjacent points to the significant wavelet coefficients are also included in the com-

putational grid. This way, the grid would be able to automatically follow the evolution of the

solution.

Then, reconstruction points are added to compute the wavelet transforms. Finally, ghost

points are introduced to compute spatial derivatives. It is noteworthy that the spatial derivatives
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are calculated using the finite difference methods. Addition of the ghost points helps to maintain

the desired order of the method. [18]

Despite their short existence, many wavelet techniques have been developed for numerical

simulations of compressible and incompressible Euler and Navier-Stokes equations for both inert and

reactive flows. The ability to precisely identify, isolate, and track localized, dynamically dominant

flow structures such as shocks and flame fronts on adaptive computational meshes has distinguished

wavelet techniques from conventional methods [24].

Wavelet techniques in CFD are a relatively new and advancing area, which involve many challenging

issues to be investigated.



Chapter 2

Stabilized Conservative Level Set Method with Adaptive Wavelet-based Mesh

Refinement

This chapter includes a submitted paper, which contains the numerical results and compu-

tational examples.

2.1 Introduction

Interfacial phenomena are quite common in fluid mechanics, e.g. bubbles and drops, waves,

and liquid films [28, 2, 12, 15]. Surface or interface tracking methods can be roughly divided

into two classes: 1) interface tracking methods where the interfaces are represented explicitly, [?,

e.g.,]]univerdi-tryggvason:1992,rider-kothe:1998 and 2) level set methods, where the interfaces are

represented implicitly by an isosurface or level set of a function [?, e.g.,]]sethian1999level,osher-

fedkiw:2003. The main advantage of level set methods compared to the interface tracking ap-

proaches is that the former handle topological changes such as merging and breaking more easily.

Level set approach was originally developed by Sethian [25]. Given a continuous level set

function f(x, t), the interface Γ(t) is defined as

Γ(t) = {x ∈ Rd : f(x, t) = 0}, (2.1)

which bounds a region Ω(t) of the domain Rd. The signed distance level set function φ(x, t) is

defined as

φ(x, t) = I (x, t) min
y∈Γ(t)

‖x− y‖2 , (2.2)
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where I (x, t) is a sign function that indicates, whether x is inside or outside of the region Ω

I (x, t) =

 1, if x ∈ Ω(t)

−1, if x /∈ Ω(t)
, (2.3)

while the zero level set defines the interface Γ(t) itself.

The evolution equation of the level set function φ(x, t) is given by

∂φ

∂t
+ u · ∇φ = 0, (2.4)

where u is the velocity field. The unit normal vector can be computed as

n =
∇φ
|∇φ|

, (2.5)

where for the level set function φ(x, t) the distance function condition

|∇φ(x, t)| = 1 (2.6)

should be satisfied. Note that the evolution of φ(x, t) according to (2.4) does not automatically

guarantee the satisfaction of condition (2.6). As a result, the level set function can be distorted

and no longer represent true distance function, thus, necessitating introduction of a reinitialization

procedure to reinforce condition (2.6). For reinitialization procedure Sussman et al. [33] proposed

to solve the following Hamilton-Jacobi equation to steady state

∂φ̃

∂τ
+ sgn(φ)(|∇φ̃| − 1) = 0, (2.7)

φ̃(x, 0) = φ(x, t), (2.8)

where τ is the pseudo time, sgn(x) = 2H(x)− 1 is the signum function, and H(x) is the Heaviside

function. In practice the Eq. (2.7) needs to be solved for τ = O(ε) to guarantee condition (2.6) in

the band of width ε around interface Γ(t). In fact, depending on the computational approach, the

level set function may be defined only in the narrow band, if the information far from the interface

is not used by the algorithm.

One of the main difficulties of the level set approach, especially in the context of incom-

pressible flows, is the volume conservation, since traditional level set methods, even rewritten in
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divergence form for the divergence-free velocity field, do not guarantee the volume preservation. In

order to overcome this difficulty, different methods have been proposed to improve the results of

reinitialization procedure and enhance the volume conservation, the most influential of which are

proposed by Sussman and Fatemi [32], Russo and Smereka [23], and Enright et.al. [10]. Sussman

and Fatemi suggested to add an additional constraint after solving the reinitialization Hamilton-

Jacobi equation [32]. Russo and Smereka offered a modification to the discretization of the gradient

of the signed distance function within one cell from the front using the information that φ is zero

on the interface [23]. Enright et.al. [10] have proposed a particle tracing method to overcome the

difficulty associated with the accuracy of the level set method, where marker particles are used to

reconstruct the level set function.

In an attempt to construct a level set approach with built-in volume preserving properties

Olsson and Kreiss [19] proposed a conservative level set method utilizing a regularized level set

function

ψ(x, t) =
1

1 + e−
φ(x,t)
ε

=
1
2

(
tanh

(
φ(x)
2ε

)
+ 1
)
, (2.9)

which changes between 0 and 1 in the narrow region with thickness O(ε). The interface Γ is

represented by

Γ(t) = {x ∈ Rd : ψ(x, t) = 0.5}. (2.10)

Being formulated for incompressible flows, the evolution of ψ(x, t) is governed by the advection

equation written in conservative form

∂ψ

∂t
+∇ · (ψu) = 0. (2.11)

In the limit of interface thickness ε going to zero the integral
∫

Ω(t) ψ(x, t)dx approaches the volume

of the region Ω(t), defined by
∫

Ω(t) dx∫
Ω(t)

ψ(x, t)dx =
∫

Ω(t)
dx +O(ε). (2.12)

Furthermore, it was shown in Ref. [20] that for smooth interface boundaries∫
Ω(t)

dx =
∫

Ω(0)
dx +O(SΓκΓε

2), (2.13)
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where SΓ and κΓ are respectively interface surface area (length) and maximum curvature. Thus, in

contrast to the conventional level set approaches, the conservative level set method maintains rigor-

ous control of the volume conservation error through a priori chosen interface thickness parameter

ε.

Similarly to the conventional level set approaches, one needs to add a reinitialization pro-

cedure to guarantee that the structure and thickness of the interface zone given by Eq. (2.9) is

preserved. For the renormalization procedure Olsson and Kreiss [19] proposed to solve the follow-

ing reinitialization equation

∂ψ

∂τ
+∇ · (ψ(1− ψ)n) = ∇ · (ε∇ψ), (2.14)

where term ψ(1 − ψ)n is the compressive flux term, forcing the level set function ψ(x, τ) towards

the interface Γ(t) in the normal direction, and the term on the right hand side of Eq. (2.14) the

diffusion term, which controls the thickness of the interface region. The unit normal vector n is

computed from (2.5) using relation (2.9) resulting in

n =
∇(ψ)
|∇(ψ)|

. (2.15)

Realizing that the homogeneous diffusion term in reinitialization procedure (2.14) results in

unbalanced tangential diffusion, which could move the interface, Ollson et al. [20] proposed further

improvement of the conservative level set method by limiting the diffusion term to only normal

direction with respect to the interface. The resulting equation becomes

∂ψ

∂τ
= −∇ · (ψ(1− ψ)n) +∇ · (ε(∇ψ · n)n). (2.16)

In comparison with the conventional level set approaches, the conservative level set method

has one major difficulty, namely, ill-conditioned behavior of the normal vector, defined by Eq. (2.15).

In traditional level set approaches, the normal vector n is computed using the equation (2.5), with

|∇φ| being unity or close to unity. In the conservative level set formulation, a hyperbolic tangent

of the signed distance function is being advected. Hence, the signed distance function is no longer
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directly accessible. Olsson et al. [19, 20] used the ψ(x, t) to calculate the normal. However, this

way the normal is highly sensitive to the changes in ψ(x) far from interface, resulting in noisy

normal vector field in the regions where |ψ| approaches constant value. This makes the method

less favorable to get employed to compute the normal. A number of approaches to stabilize the

calculation of normal vector has been proposed. One way is to utilize an inverse hyperbolic tangent

to recycle the φ from ψ

φ(x) = εln(
ψ(x)

1− ψ(x)
). (2.17)

Zhao et al. [40] state that although this method somewhat improves the ill-conditioning behavior

of Eq. (2.15), it still results in a noisy normal vector far from interface boundary, mainly because

the numerical error is still dominant there. They proposed to use the inverse hyperbolic tangent

in equation (2.17) to recycle φ in the regions close to the interface and in addition, to advect the

conventional level set equation so that the definition (2.5) can be used to find the normal in the

regions far from Γ. Shukla et al. [30] suggested to use an auxiliary function γ(ψ) to calculate the

normal, where the function is defined as

γ =
ψα

ψα + (1− ψ)α
, (2.18)

for the parameter α < 1 , which measures the ratio of interface thickness of ψ and γ. Desjardins

et al. [8] proposed a method to recycle φ. They implemented Fast Marching Method (FMM) to

reconstruct the signed distance function, φ, from the hyperbolic tangent function, ψ. Although

this approach was better conditioned than the above mentioned methods, it lacks generality and

required additional computational efforts.

In this paper we propose novel stabilized conservative level set approach that addresses the

main shortcoming of the conservative level set method. An alternative reinitialization procedure

is proposed, which no longer requires the normal vector far from the interface boundary. The

proposed approach is robust and general. Due to completely analytical formulation, the proposed

methodology is ideal for use in combination with adaptive mesh refinement (AMR) methods (see

e.g., Aftosmis, Berger and Melton, Chapter 22 in Ref. [35]). The use of AMR allows adequate
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resolution of the moving and deformable interface regions without over-resolving solution fields

away from the interface. All of the results reported in this paper are obtained using the Adaptive

Wavelet Collocation Method (AWCM) [37, 38, 36, 18], which utilizes a wavelet decomposition to

dynamically adapt on localized structures of the solution while retaining a predetermined order of

accuracy.

2.2 Stabilized Conservative Level Set method

The ill-conditioned behavior of the normal vector n away from the interface not only affects

the accuracy of the evolution of the level set defined by Eq. (2.16), but also could lead to the

numerical instabilities. In this paper, an alternative formulation, which no longer relies on the unit

normal vector n, is presented. The proposed Stabilized Conservative Level Set makes use of an

alternative normal vector with diminishing magnitude away from the interface defined as:

m =
ε∇ψ(

ε2 |∇ψ|2 + α2exp
(
−βε2 |∇ψ|2

))1/2
, (2.19)

where ε is the interface thickness parameter, while α and β are constants defining the region

where vector m is approximately a unit vector. In practical applications, the interface thickness

parameter, ε, is defined in terms of local mesh resolution, ∆x:

ε = δ∆x. (2.20)

In the vicinity of the interface, the term ε|∇ψ| is approaching unity, which for appropriately chosen

parameters α and β results in a negligible second term in the denominator, ultimately resulting

in m approaching n. However, in the regions far from the interface, the magnitude of the vector

m goes to zero. This property of the non-normalized vector m makes it possible to introduce an

alternative reinitialization equation by realizing that in the Eq. (2.16) the diffusion in the interface

normal direction is only important in the immediate vicinity of the interface, while in the regions

away from the interface the homogeneous diffusion as in Eq. (2.14) is more appealing. Replacing the

unit normal vector n by the new vector m and adding an additional diffusion term that ensures the
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right asymptotic behavior close to and away from the interface, results in the following alternative

reinitialization equation:

∂ψ

∂τ
= −∇ · (ψ(1− ψ)m) +∇ · (ε(∇ψ ·m)m) +∇ · ((1− |m2|)ε∇ψ). (2.21)

Note that if a unit normal vector n is used instead of m, the Eq. (2.21) automatically reduces to

Eq. (2.16). In practical implementation, while the reinitialization procedure may consist of several

pseudo iterations, the m vector needs to be updated only once at the beginning of the pseudo

iterations.

2.3 Numerical Implementation

When modeling evolution of the level set using Eq. (2.21) it is essential that the interface

thickness is substantially smaller than the curvature of the interface, which, in turn, necessitates

high resolution in the areas close to the interface. On the other hand, in the regions far from

the interface the resolution requirements may be substantially lower. Adaptive mesh refinement

methods are ideally suited for use with Stabilized Conservative Level Set (SCLS) approach. In

this study, a general AMR-type numerical method for solving partial differential equations based

on bi-orthogonal lifted interpolating wavelets [34] has been used to demonstrate the ability of the

SCLS methodology to accurately track the interface. For the reader’s convenience the Adaptive

Wavelet Collocation Method (AWCM) is briefly reviewed next. For the detailed description of the

method and its parallel implementation the reader is referred to Refs. [38, 36, 18].

Wavelets are a class of oscillatory basis functions of finite duration. Unlike sines and cosines

that have global support, wavelets are localized in both physical and wave-number space. The need

to have both position and frequency information was one of the main motivations that led to the

development of wavelets as an alternative to the Fourier transform [31]. A multi-resolution wavelet

representation of a field u(x) can be formally written as

u(x) =
∑
k∈I0

φ

ū0
kφ

0
k(x) +

+∞∑
j=0

2d−1∑
µ=1

∑
k∈Iµ,jψ

ũµ,jk ψµ,jk (x), (2.22)
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where ū0
k and ũµ,jk represent scaling and wavelet coefficients, while φ0

k(x) and ψµ,jk (x) express

scaling functions at the coarsest level of resolution and wavelet basis functions of different levels

of resolution, j, respectively. Superscript µ denotes the different families of wavelets and d stands

for the dimension. Multi-resolution decomposition (2.22) provides a natural platform to construct

adaptive numerical methods based on the analysis of the wavelet coefficients, ũµ,jk , which, in general,

have small values except for the regions close to the large gradients [22]. Formally, the field u(x)

can be decomposed into two sub-fields

u(x) = u>(x) + u<(x) (2.23)

defined by

u>(x) =
∑
k∈I0

φ

ū0
kφ

0
k(x) +

+∞∑
j=0

2d−1∑
µ=1

∑
k∈Iµ,jψ

|ũµ,jk |>ε‖u‖

ũµ,jk ψµ,jk (x) (2.24)

and

u<(x) =
+∞∑
j=0

2d−1∑
µ=1

∑
k∈Iµ,jψ

|ũµ,jk |<ε‖u‖

ũµ,jk ψµ,jk (x), (2.25)

where ε > 0 is the non-dimensional (relative) thresholding parameter defining the decomposition

and ‖u‖ is the (absolute) dimensional scale. As a result of this split, the compression can be achieved

by keeping only the wavelets with coefficients greater than ε‖u‖. In other words, high resolution

computation is only performed where it is necessary and a significant reduction in the number

of required wavelets can be achieved. The AWCM takes advantage of the wavelet compression

properties (2.24) and one-to-one correspondence between wavelets and the corresponding grid points

on a multi-level computational mesh. As a result the AWCM has the ability to identify, isolate, and

track localized, dynamically dominant flow structures, such as interfaces, on adaptive computational

mesh while a priori controlling the accuracy of the solution at the desired level O(ε). This property

has distinguished wavelet techniques from conventional methods [24].
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2.4 Numerical Results and Discussion

Three numerical benchmark tests have been performed to investigate the performance of the

proposed Stabilized Conservative Level Set method. The interface in each example is defined as the

ψ(x) = 0.5 level set of a hyperbolic tangent function defined by Eq. (2.9). Krylov time integration

method [9] with 6-th order wavelet approximation is used to solve the evolution equation (2.11) in

all benchmark tests. The reinitialization equation (2.21) is integrated for each convective time step.

For all test problems in this section an explicit Euler integration with CFLτ = 0.01 and 5 pseudo

iterations per convective time step has been used to perform the reinitialization procedure. All

numerical results are obtained with α = 10−4 and β = 10 corresponding to the interface thickness

of order O(6ε), which was found to be optimal: sufficiently large interface zone with m approaching

unit normal vector and small enough to minimize the computational cost, which increases with the

growth of the interface thickness. For all numerical simulations the effective grid resolution in all

directions was kept the same.



26

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.0694

0.0696

0.0698

0.07

0.0702

0.0704

0.0706

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.0694

0.0696

0.0698

0.07

0.0702

0.0704

0.0706

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.0694

0.0696

0.0698

0.07

0.0702

0.0704

0.0706

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.0694

0.0696

0.0698

0.07

0.0702

0.0704

0.0706

(a) (b)

(c) (d)

R Ω
(t

)

R Ω
(t

)

t t

t t

Figure 2.1: Volume
∫

Ω(t) versus time period plots for a rotating circle problem for (a) δ = 1.8, (b)
δ = 1.5, (c) δ = 1.2, and (d) δ = 0.9 with ε = 3.6 × 10−2 ( ), ε = 1.8 × 10−2 ( ), and
ε = 0.9× 10−2 ( ).
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2.4.1 Benchmark I: Rotating Circle

In the first test, a circle of radius 0.15 being rotated around the center of a 1×1 domain with

an offset equal to 0.25 from domain center has been studied. The evolution equation (2.11) is used

with an advective velocity field, u(x), defined as

u(x) = (−2πy, 2πx), (2.26)

where Cartesian coordinates x and y are used for simplicity of discussion.

To illustrate the sensitivity of the approach to mesh spacing compared to local grid resolution

defined by Eq. (2.20), a set of tests on the rotating circle with different values of δ and ε have been

performed. The results of the simulations are illustrated in Fig. 2.1, where the time history of the

volume
∫

Ω(t) dx defined by the level set is shown for different parameters. These parameters and

the corresponding volume conservation errors are listed in Table 2.1. As can be seen from the table,

the volume conservation error is mostly dominated by local mesh resolution ∆x, i.e., for the same

interface thickness parameter ε the error is decreasing with the increase of δ. The iso-contours

corresponding to ψ=0.05, 0.5, and 0.95 are shown for all cases in Fig. 2.2, which confirms a good

performance of the method even for relatively large interface thickness. In the rest of this paper

the simulations with δ = 0.9 are performed.
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Table 2.1: Sensitivity of volume conservation on model parameters for a circle rotation problem
after one revolution.

Figure δ ε ∆x Maximum deviation %
a 1.8 3.6× 10−2 2.0× 10−2 0.0191
b 1.8 1.8× 10−2 1.0× 10−2 0.0078
c 1.8 0.9× 10−2 0.5× 10−2 0.0025
d 1.5 3.6× 10−2 2.4× 10−2 0.0202
e 1.5 1.8× 10−2 1.2× 10−2 0.0123
f 1.5 0.9× 10−2 0.6× 10−2 0.0033
g 1.2 3.6× 10−2 3.0× 10−2 0.0383
h 1.2 1.8× 10−2 1.5× 10−2 0.0252
i 1.2 0.9× 10−2 0.75× 10−2 0.0038
j 0.9 3.6× 10−2 4.0× 10−2 0.1386
k 0.9 1.8× 10−2 2.0× 10−2 0.0530
l 0.9 0.9× 10−2 1.0× 10−2 0.0176
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Figure 2.2: Iso-contours corresponding to ψ=0.05 ( ), 0.5 ( ), and 0.95 ( ) after one
revolution of a circle for different values of δ and ε (see Table 2.1 for corresponding values).
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Figure 2.3: Schematic representation of disk.

(a) (b) (c)

Figure 2.4: Contour plots for ψ = 0.5 for initial condition and after one revolution of the disk for
different resolutions: (a) ∆x = 1× 10−2, (b) ∆x = 5× 10−3, and (c) ∆x = 2.5× 10−3 (δ = 0.9).
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(a) (b)

Figure 2.5: (a) Contour plots for ψ = 0.5 for initial condition and after third revolution of the disk
and (b) an example of an adaptive mesh with the superimposed contour plot for ψ = 0.5 after one
revolution with ∆x = 2.5× 10−3 and δ = 0.9.

2.4.2 Benchmark II: Zalesak’s Disk

The Zalesak’s disk problem tests the ability of the proposed level-set method to accurately

advect corners, sharp angles, and thin geometries. The Zalesak’s disk problem consists of solid

body rotation of a notched disk of radius 0.15 around center of a 1× 1 domain in counterclockwise

direction. Initially, the center of the disk is positioned in the middle of the horizontal axis with

an offset of 0.25 units from domain center and the notch facing toward the rotation center. Figure

2.3 represents a schematic of the Zalesak’s disk. The advective velocity field in this test is defined

similar to the benchmark problem I, using equations (2.26). The results of the simulations for

various grid sizes are shown in Fig. 2.4. The shape of the Zalesak’s disk is captured well for all

reported resolutions with increased accuracy for smaller mesh spacing. A comparison between

the initial condition and the disk after three revolutions is shown in figure 2.5(a). Finally, the

advantages of using adaptive mesh refinement in combination with stabilized conservative level set

method is demonstrated in 2.5(b), where an adaptive mesh with the superimposed contour plot for

ψ = 0.5 is shown.
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2.4.3 Benchmark III: Vortex Drop

The vortex drop problems test the ability of the SCLS method to accurately resolve thin

filaments which can occur in stretching and tearing flows. The first problem consists of an initially

circular drop placed into a vortex with the oscillatory velocity field, u(x, t), defined as

u(x, t) = ust(x) cos
(
πt

T

)
, (2.27)

where T is the time period and the stationary velocity field, ust(x), is given by

ust(x) =
(

cos2 (πx) sin (2πy) ,− cos2 (πy) sin (2πx)
)
. (2.28)

At t = 0.5T , the velocity is reversed and counterclockwise rotation is applied on the stretched drop

until it brings back the drop to its initial place at t = T .

Figure 2.6 shows the evolution of the drop at different times for different resolutions. Results

show that the initial shape of the drop is preserved at t = T for all the resolutions, with some

noticeable oscillations at coarser resolution. In the second test, a vortex test without reversing the

velocity field has been performed. To eliminate the time reversing effect, the stationary velocity

field u = ust(x) in Eq. (2.28) is used. As illustrated in figure 2.7, results show a continuous,

uninterrupted strip after more than three rotation of the front of the drop around the domain

center.
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Figure 2.6: Evolution of contour plots for ψ = 0.5 for vortex drop problem at (a, e, i) t = 0, (b, f,
j) t = 0.25T , (c, g, k) t = 0.5T , and (d, h, l) t = T for T = 3.4 using SCLS method with different
mesh sizes and δ = 0.9.

t = 1.0 t = 1.9 t = 2.7 t = 3.5

(a) (b) (c) (d)

Figure 2.7: Evolution of the vortex without velocity reversing for ∆x = 1.9× 10−3 and δ = 0.9 at
different times.



Chapter 3

Conclusion and Future Work

The novel Stabilized Conservative Level Set method is presented in this work. The new

formulation preserves the volume conservation properties. This approach, similar to the standard

conservative level set method, utilizes compressive flux and diffusive terms only in normal direction

with respect to the interface in the interfacial zone, while away from the interface the directional

diffusion mechanism automatically switches to the isotropic diffusion. This is achieved by reformu-

lating the reinitialization procedure based on a non-unit normal vector, whose magnitude diminishes

in the regions far from the interface.

The resulting procedure is general, robust and stable, easy to implement, and does not require

special topology treatments. The advantages of using the Stabilized Conservative Level Set method

in combination with the adaptive wavelet-based mesh refinement methodology is also demonstrated.

It was shown that the level set information are mostly important in the interface zone and in the

far field its data are out of interest. Therefore, a finer resolution within the interface in combination

with coarser resolution in the regions far from the interface would be just adequet to carry out the

numerical tests. Hence, the integration of the two methodologies improves computational efficiency

by adapting the mesh to adequately resolve interface regions without over-resolving solution fields

away from the interface.

A number of benchmark numerical tests were performed to show the performance of the

new level set method. In the first test, a circle disk was advected in a square domain with a

rotational velocity field. The area versus time diagram was plotted for three different interface
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thickness parameter. The results show that even for the coarsest resolution the volume of the disk

was conserved at the end of the time period. Results also show that with decreasing the interface

thickness parameter, the volume of the disk approaches the exact solution. It is noteworthy that

the resolution was increased with decrease of the interface thickness parameter to ensure that the

interface is resolved.

In the second benchmark test, a notched disk, known as Zalesaks disk was advected with a

rotational velocity field to revolve counterclockwise around the center of a square domain. This

test demonstrated the ability of the new method to accurately advect corners and sharp angles.

Lastly, the vortex drop test case was performed. In this test, first the circle was advected

in a vortex velocity field until half period to show the performance of the method with resolving

thin filements. Then, the velocity field was reversed to bring the vortex back into the drop shape.

Results showed that the shape and volume of the circle was preserved very well at the end of the

time period.

In conclusion, the numerical results demonstrate the ability of the new level set method

to accurately advect corners, sharp angles, and resolve thin filaments, while preserving excellent

conservation properties of the conservative level set method.

Future works include investigating immiscible compressible viscous fluid flows using stabilized

conservative level set method to track the fluid interface. Immiscible fluid flows are essentially

consist of fluids which do not form a homogeneous phase when mixed together. The immiscible

flows are governed by the continuity, momentum, and energy equations. A front tracking method

needs to accompany the flow equations to ensure a distinction between the volume occupied by

each fluid.
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