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Bernabé Miguel, Laura (Digital Signal Processing)

FMRI decoding using sparse neuronal networks

Thesis directed by Associate Prof. François G. Meyer

In this thesis we propose the use of Sparse Principal Component Analysis to recover neuronal

areas in Brain Imaging. We work with functional magnetic resonance imaging data focusing our

attention on the dimensionality reduction stage to represent the neuronal activation within the

components that contain the maximum temporal variance, tightly related with the hemodynamic

response of the neurons. The motivation for the sparse representation follows the idea of the massive

modularity definition of the mind where “different neural circuits are specialized for solving adaptive

problems”.

The results show that the new sparse low dimensional basis (Eigenbrains) generated through

novel unsupervised algorithms, such as Augmented Sparse Principal Component Analysis, perform

competitively in terms of neuronal activity prediction. We push the limits of the brain understand-

ing by describing a neuronal network through each Eigenbrain component and defining a prediction

neuronal model using a linear combination of them.
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Chapter 1

Introduction

1.1 Definition of the problem

Magnetic resonance imaging (MRI) is a powerful medical sensor technique that constructs a

structural image of a scanned area of the body. An MRI machine uses powerful magnetic field to

align the magnetization of atomic nuclei in the body, and radio frequency fields to systematically

alter the alignment of the magnetization. This causes the nuclei to produce a rotating magnetic

moment detectable by the scanner. Functional magnetic resonance imaging (fMRI) is a special

type of MRI that is used to detect areas of increased brain activity. When a region of the brain

becomes active, blood vessels dilate, allowing freshly oxygenated blood to flow quickly to the region.

Oxygen-rich blood disturbs the magnetic field of the scanner less than oxygen-depleted blood. This

small change is detectable by the scanner and is used to produce the high-dimensional input data

set for a mining process stage.

Functional Magnetic Resonance Imaging is a powerful non-invasive medical technique that

generates 3D images and quantifies activation of the brain through the blood-oxygen-level-dependency

(BOLD). Intensity variations in the fMRI signal related to the neural activity are very small. Also,

they are often overlapped with noise from physiological processes, motion effects or hardware scan-

ner distortions.

Each fMRI sample is represented with some hundred thousands of volume units (voxels) which

implies over 120 millions for the whole experiment. Hence, typical brain activity interpretation

problems deal with noisy, high-dimensional input datasets.
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Figure 1.1: 3D High-dimensional fMRI data.

At the beginning of 20th century, the analysis of fMRI data has been reduced to model the

relationship between a simple isolated cognitive stimulus and the 3D image. The main purpose was

to identify activated brain regions for a simple and independent task, so the brain was stimulated

with a well-known input to isolate the neurological processes. The previous experiments combined

with some other brain analysis sensors, such as EEG, ECoG, MEG and PET, helped neuroscience

to define masks based on lobar anatomy, cortical and subcortical anatomy, and Brodmann areas.

It is widely known in neuroscience that the cytoarchitectural organization of the human

cortex is split into several areas, defined by the German anatomist Korbinian Brodmann. Many

of the areas Brodmann defined, based solely on their neuronal organization, have been correlated

closely to diverse cortical functions. For example, Brodmann areas 1, 2 and 3 are the primary

somatosensory cortex; area 4 is the primary motor cortex; area 17 is the primary visual cortex; and

areas 41 and 42 correspond closely to primary auditory cortex. However, functional imaging can

only identify the approximate localization of brain activations in terms of Brodmann areas since

their actual boundaries in any individual brain requires its histological examination.

Within the last half decade, a new fMRI data analysis challenge has been proposed. The

goal is to decode complex neurological functions from natural external stimuli, inferring the relevant

voxels for any perceptual, behavioral or emotional input applied to the subject under experimen-

tation. The input mimics a natural environment through software video games, movies, etc. Our

research wants to explore to what extent the combination of predictive and interpretable modeling

of the neuronal activity can provide new insights into functional brain imaging.
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Figure 1.2: Brodmann areas.

Figure 1.3: fMRI experiment scheme.

Based on the small-world property of clustered local connectivity of the brain networks [3],

our strategy assumes that the low-dimensional basis are well-defined by sparse vectors that are

correlated with brain functional modules.

1.2 Pittsburgh Brain Activity Interpretation Competition

The fMRI input data for this study is obtained from the Pittsburgh Brain Activity Interpre-

tation Competition 2006 (PBAIC) as a combination of audio and visual stimulus from recorded

videos. The data include the rated set of 30 subjective and objective features that parametrize the

brain behavior [4].

The PBAIC was an open competition that involved the analysis of fMRI data of individuals

watching three approximately 20-minute segments of movies. It included extensive behavioral

ratings of experience coding categories (i.e. human faces, tools, arousal, etc.) and multiple finer
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levels (i.e. individual actors, happy or sad emotion, etc.). Conceptually, the challenge was to

interpret brain activity sufficiently to be able to predict what an observer was experiencing by

looking at fMRI data of their brain. The observer’s experience was quantified in 13 feature ratings,

3 actor presence ratings and 3 location ratings. Accordingly, high quality 3T EPI fMRI data from

three subjects viewing three movie clips were provided. For the first two movie clips, 20 minutes

of continuous fMRI data and behavioral feature ratings was provided. For the third clip, only

functional data was provided. The original goal was to predict the behavioral rating data of each

subject. Accuracy of predictions was determined by correlating predicted behavioral ratings with

the empirical ratings for each volume acquisition of the fMRI data (1.75s intervals).

Figure 1.4: Overview of the PBAIC data.

1.2.1 Functional Brain Image Data

Brain image data was collected from three subjects, all of them being native American English

speakers.

• Subject 1: male, age 23, right-handed

• Subject 2: female, age 21, right-handed
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• Subject 3: male, age 35, right-handed

The fMRI data for the 3 subjects and the 3 movies were captured with the following acqui-

sition parameters:

Table 1.1: Acquisition parameters

Scanner Siemmens 3T Allegra

TR/TE 1.75s/25ms

Flip angle 76 degress

Field of view 210 mm

Slice thickness 3.5 mm

Slice gap 0

Number of slices 34

xy voxel size 3.28125 mm

xy image dimension 64 × 64

orientation axial

Number of volumes (movie 1) 858 volumes

Number of volumes (movie 2) 868 volumes

Number of volumes (movie 3) 900 volumes

Discarded acquisitions 4 seconds

From the contest, we are given the structural MRI and the functional data. The structural

data show the different brain tissue areas and their organization; while the functional data contain

the measurement of the blood-oxygen-level-dependency (BOLD) within the activated and non-

activated areas.

1.2.1.1 Pre-processed data

The “preprocessed” data set contains the functional and structural data that has been prepro-

cessed with the BrainVoyager analysis software [5]. The data pre-processing attempts to remove

some standard artifacts that occur in fMRI experiments which may hinder data analysis. The

following pre-processing steps were applied to the functional data:

• Motion Correction: This pre-processing option adjusts for small head motion. The first

volume of the first movie run was specified as the reference volume to which all others were

aligned in space by rigid body transformations. The detected head motion of a volume
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with respect to the reference volume results in 3 translation and 3 rotation parameters.

These detected values are used to translate and rotate the respective volume accordingly

to “undo” the detected head motion.

• Slice Time Correction: The slices comprising one functional volume are scanned at differ-

ent moments in time. For functional analysis, a whole functional volume is treated as one

data point, as if all slices were measured at the same time. To make this treatment of the

data valid (i.e. for interpreting time the same way across a functional volume), the sequen-

tially scanned slices have to be interpolated in time. This pre-processing step temporally

interpolates the slices so that all slices can be treated as if they were acquired at the same

time.

• Linear Trend Removal: fMRI data measurements are subject to slow, low frequency “drifts”

over time, that differ from voxel to voxel. Linear trend removal is accomplished through

fitting a line to the time course of each voxel using the least-squares regression method. The

obtained oblique line is used to remove the linear trend. Note that the mean is restored,

so that the detrended dataset is at the same intensity value as the original data.

1.2.1.2 Spatially Normalized data

The spatially normalized data has been pre-processed as per the details in subsection 1.2.1.1,

and subsequently spatially normalized. Spatial normalization is a process used to warp the shape

of each subjects brain image into a “standard” brain image space. The purpose is to remove

morphological differences between subjects, so that data from different subjects can be directly

compared, and so that subject data can be compared to standard brain atlases. Once data has

been spatially normalized, the corresponding voxels from subjects’ brain image data matrices will

roughly correspond to anatomical brain regions.
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1.2.2 Rated features

Rated features are divided into three categories: Base features, Actors, and Locations. See

Fig. 1.5 and Fig. 1.6

• Base features: Amusement, Attention, Arousal, Body Parts, Environmental Sounds,

Faces, Food, Language, Laughter, Motion, Music, Sadness, and Tools

• Actor features: Other People, Mark, Randy, Brad, Tim, Jill, Al, and Wilson

• Location features: Other Settings, Backyard, Garage, Kitchen, LivingRoom/DiningRoom,

and ToolTime

• Other quantitative features (sound amplitude, video brightness, and blank periods) are

provided.

1.3 State of the art of fMRI decoding

Some of the standard techniques in the fMRI literature has included in the same process the

feature prediction and coordinates selections stages [6, 7, 8, 9] and stochastic statistical techniques

are applied to the noisy high-dimensional fMRI data. Other approaches, like our approach, proceed

in two stages; implementing the dimensionality reduction techniques within the modeling stage

[10, 11, 12]. These are called non-embedded approaches. In the dimensionality reduction stage, we

could enforce interpretation of the data. See Fig. 1.7

In the literature, there exists linear and non-linear dimensionality reduction techniques: PCA,

kernel PCA, Isomap, locally linear embedding (LLE), Laplacian eigenmaps, etc. All of the low-

dimensional subsapces form the previous algorithms are difficult to interpret. It is almost impossible

to infer useful knowledge from them because they have lost spatial properties (voxels in our case)

and they are represented by too many coordinates.

The use of Sparse PCA low-dimension representations allows us to reduce the number of

coordinates, imposing sparsity in the Eigenbrains that represent the principal components. Some
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Figure 1.5: Rated features from PBAIC data.

functional regions related to Brodmann areas are discovered by the sparse estimators.

1.4 Decoding using sparse representation of brain activity

In this thesis we propose a new method to analyze fMRI data. It is organized in two major

steps:(a) the implementation of a cognitive decoding model, which interprets cognitive processes;(b)

the development of a brain behavioral predictive model, which evaluates the performance through

the rated features.
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Figure 1.6: Rated features from PBAIC data.

Figure 1.7: Block diagram for fMRI brain decoding

The backbone for the decoding brain activation stage is the detection of significant brain

activity through the maximum temporal variation within the voxels in the brain. The previous

context fits in the classical principal component analysis (PCA) dimensionality reduction method;

nevertheless, it is a poor subspace estimator for our experiments because we focus on high dimen-

sional observations.
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We introduce some notations. Let n be the number of time samples or the number of scans;

and p the number of voxels in each scan. Let x(t) ∈ Rp be a 3D scan collected at a time t, that is

reshaped as a row vector.

x(t) =

[
x1(t) · · ·xp(t)

]
.

Overall, the entire fMRI dataset can be described as a matrix;

X =


x1(1) · · · xp(1)

...
...

...

x1(n) · · · xp(n)

 .

The number of time samples (n ≈ 850) is significantly smaller than the number of voxels

(p = 64 × 64 × 34), so the spatial covariance matrix of the input data is not a good estimator of

the time variances trends.

In addition, we know that X contains spatially localized significant variables, which means

that the principal modes of variation should be localized as well. Also motivated by the concept

of Massive Brain Modularity(MMH) - which says that the cognitive brain is conformed by sparse

neuronal modules which interact adaptively in order to develop a specific task [13] - we use novel

Sparse Principal Component Analysis(SPCA) techniques to decode the brain into meaningful sparse

neuronal modules, that we called Eigenbrains (ej).

According to the MMH, the mind consists of a multitude of domain-specific modules or mental

organs, each of them with a specialized design that makes it an expert in one area of interaction with

the world. Being domain specific, each module is activated by, and only by, mental representations

of the problem(s) in its area of expertise [14].

The most significant Sparse Principal Components (the first m with higher variance) are

carefully interpreted as active neuronal modules. They sketch some interesting Brodmann areas

whose functions are related to the interaction with a movie: primary and auditory association

cortex; primary, secondary and associative visual cortex (V1,V2,V3 ); prefrontal cortex and frontal

eye fields, etc.
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We organize the sparse principal components in the columns of the Ebrain rotation matrix ∈

Rp×m, creating the low-dimensional quasi orthogonal basis. The high-dimensional data is projected

onto Ebrain to create Xnb;

Xnb = X · E (1.1)

.

And Xnb, the low-dimensional data, is defined as follows;

Xnb =


xnb1 (1) · · · xnbm (1)

...
...

...

xnb1 (n) · · · xnbm (n)


.

Such functional networks described by the neurological subspace (Ebrain) are allowed to be

different for each feature, hence, different sets of relevant voxels are selected. The structural design

for each network is controlled by the scattering (λ1 and λ2) and the sparsity (λ3)parameters.

Therefore, an optimal sparse neuronal set of Eigenbrains exist for each feature (f). We

linearly combine them in order to implement the supervised ridge regression prediction model;

f(t) = xnb1 (t)β1 + . . .+ xnbm (t)βm (1.2)

for t = 1, . . . , n. The previous expression shows how much activity is represented through

each Eigenbrain;and how the domain-specific modules of knowledge and psychological structures

are correlated with the output rated features.
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Sparse Principal Component Analysis

In many contemporary datasets, such as in the case of our fMRI study, if we organize the

p-dimensional observations to be the rows of an n× p data matrix X; the number of variables p is

often comparable to, or even much larger larger than the sample size n. For example,

• Image recognition: The face recognition problem typically has p = 1.6 × 106 observations

and the database may contain only a few hundred pictures.

• Shape Analysis: There is a class of methods for analyzing the shape of an object based on

repeated measurements that involves annotating the objects for landmarks. The landmarks

act as dimensions of the objects.

• Chemometrics: In many chemometric studies the data consists of several thousand spectra

measured at several hundred wavelength positions.

• Climate studies: Measurements on atmospheric indicators are taken at a number of moni-

toring locations over a large temporal extend.

• Functional data Analysis: A speech dataset example consists of 162 observations, each of

which is a periodogram of a phoneme spoken by a person. Our fMRI experiment focuses

on over 850 samples (for each video and subject), and each one of them has p ≈ 105

dimensions.
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• Microarray analysis: Gene microarrays present data in the form of expression profiles of

several thousand genes for each subject under study.

One of the crucial issues in the analysis of large p datasets is the dimensionality reduction of

the feature space[15].

2.1 Review of PCA

Principal component analysis is a variable reduction procedure. This technique is useful

when you have obtained data on a number of variables (possibly a large number of variables),

and believe that there is some redundancy in those variables. In this case, redundancy means

that some of the variables are correlated with one another, possibly because they are measuring

the same construct. If there is redundancy, it should be possible to reduce the observed variables

into a smaller number of principal components (artificial variables), which account for most of the

variance in the observed variables. Technically, a principal component can be defined as a linear

combination of optimally-weighted observed variables.

Hence, the central idea of PCA is to reduce the dimensionality of a data set in which there

are a large number of interrelated variables, while retaining as much of the variation present in the

data set as is possible. This reduction is achieved by transforming into a new set of variables, the

principal components, which are uncorrelated, and which are ordered so that the first few retain

most of the variation present in the original set of variables.

This unsupervised method starts with n p-dimensional observation vectors, which can be

summarized by projecting down onto a m-dimensional subspace. The summary is the projection

of the original vectors onto the m directions of the principal components subspace.

Ebrain =


e1(1) · · · em(1)

...
...

...

e1(p) · · · em(p)


There are several equivalent ways of deriving the principal components mathematically. The
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Figure 2.1: Example of PCA projections from [1].

simplest one is by finding the projections which maximize the variance. The first principal compo-

nent is the direction in feature space along which projections have the largest variance. The second

principal component is the direction which maximizes variance among all directions orthogonal to

the first. The kth component is the variance-maximizing direction orthogonal to the previous k− 1

components. There are a total of p principal components.

The goal is to project the p-dimensional feature vectors on to a line through the origin

(e ∈ Rp), so the residual projected error is minimized:

min ‖xi − 〈xi, e〉 e‖2 = min ‖xi‖2 − 2 〈xi, e〉2 + 1 (2.1)

As the first term does not depend on e, it is equivalent to the following expression for all i:

max ‖xi‖2 − 2 〈xi, e〉2 = max V ar 〈xi, e〉 (2.2)

If we stack all the samples in a matrix X, then the previous optimization problem can be

expressed through its covariance matrix Σij for all i and j.

Σij = cov(xi, xj) = E
[
(xi − µi) · (xi − µi)T

]
(2.3)

max (eT X
TX
n e) = max (eTΣe) (2.4)
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Finally, by using the Langrage Multipliers variables and its derivatives, we infer that the

principal components correspond with the eigenvectors of the covariance matrix of the input data.

Therefore, computation of the principal components reduces to the solution to an eigenvalue-

eigenvector problem for a positive-semidefinite symmetric matrix.

Σe = λe (2.5)

2.1.1 Properties of PCA

This is a good place to remark that if the data really fall in m-dimensional subspace, created

by the first m principal components, then Σ will have only m positive eigenvalues; because, after

subtracting off those components, there will be no residuals. The other p − m eigenvectors will

all have eigenvalue 0. If the data cluster around a m-dimensional subspace, then p − m of the

eigenvalues will be very small.

R2 =

m∑
i=1

li

p∑
j=1

lj
(2.6)

where li and lj are eigenvalues, and R2 is the fraction of the original variance of the dependent

variable retained by the fitted values. Projections onto the first two or three principal components

can be visualized; however, they may not be enough to really give a good summary of the data.

Usually, to get an R2 of 1, you need to use all p principal components.How many principal com-

ponents you should use depends on the data. In some fields, you can get better than 80% of the

variance described with just two or three components.

We have not assumed that the data are drawn at random from some distribution, nor have we

assumed that the different rows of the data frame are statistically independent. This is because no

such assumption is required for principal components. We simply say these data can be summarized

using projections along these directions but nothing about the larger population or stochastic

process the data came from.
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However, we could add a statistical assumption and see how PCA behaves under those

conditions. The simplest one is to suppose that the data are i.i.d draws from a distribution with

covariance matrix Σ. Then the sample covariance matrix will converge on Σ0 as n → ∞. Since

the principal components are smooth functions of Σ (eigenvectors), they will tend to converge as

n grows. So, along with that additional assumption about the data-generating process, PCA does

make a prediction: in the future, the principal components will look like they do now.

The regular principal components are difficult to interpret because they are a linear combi-

nation of most of the components in the high-dimensional space. The goal is to represent the fMRI

data into some other basis that is more compact and abstract and, indeed, easier to interpret and

generate more accurate future predictive models. It is really difficult to infer neurological processes

within the 105 voxels.

Indeed, as n << p the covariance matrix is a very poor estimator for the temporal trends so

we need to seek a sub-covariance matrix within the original Σ ∈ Rn×p. In order to do that, we can

use the natural structure of the fMRI that contains spatially localized significant voxels, and try to

separate them from the rest of the voxels.

2.2 Sparsity in PCA

In the approach used in Neuronal Decoding for fMRI images we focus on measuring brain

activation that is related with the temporal variation of all the voxels across time. See Fig. 2.2

We define the Σspatial covariance matrix across the voxels as the original input for the SVD decom-

position.

Σij = cov(xi, xj) = E
[
(xi − µi) · (xi − µi)T

]
(2.7)

where i, j = 1, . . . , p are all the voxels in our brain.

Therefore, given the covariance matrix in the space domain Σspatial, Sparse PCA can be cast

as a cardinality-constrained quadratic program, maximizing the variance with a sparse vector ej
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Figure 2.2: fMRI time series for each voxel from [2].

having no more than k non-zero elements.

max (eTΣspatiale)

subject eT e = 1

‖ej‖0 ≤ k

(2.8)

This optimization problem is non-convex, NP-hard and therefore intractable [16]. Therefore,

it has entailed the development of novel mathematic algorithms in the unsupervised dimensionality

reduction literature within the half decade such as: Iterative thresholding sparse PCA (ITSPCA)

by Ma (2011) [17], Augmented sparse PCA (ASPCA) by Paul and Johnstone (2007) [15], Cor-

relation augmented sparse PCA (CORSPCA) by Nadler (2009)[18], Sparse PCA via regularized

SVD (sPCA-rSVD) by Shen and Huang(2008)[19], Generalized Power Method for Sparse Principal

Component Analysis by Jorne,Nesterov,Richtrik and Sepulchre (2010) [20] , etc.

Different thresholding techniques are used to reduce the number of dimensions from the reg-

ular principal components; but they do not ensure complete orthogonality among the components

within the low-dimensional subspace, although we will see in the following sections that they are

pretty close to be uncorrelated.

Augmented Sparse PCA (ASPCA) is considered the best tool for our experiments because we
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can make a biological interpretation throughout all the stages of the algorithm. We can understand

the low dimension Eigenbrains subspace in terms of neurological processes.

Most developments in sparse PCA methodologies typically start with a certain optimization

formulation of PCA and then induce a sparse solution by introducing appropriate penalties or

constraints. Moreover, when Σ has sparse leading eigenvectors it becomes possible to estimate

them consistently under high-dimensional settings.

It is also necessary to estimate the background noise variance for the experiments for all the

approaches in order to normalize the data. Assuming normality distributions of the observations

we calculate its value as σ̂2 = median(V ar(xj)).

Some of the novel algorithms to estimate the sparse PCA components are reviewed in the

following section.

2.2.1 Iterative Thresholding Sparse PCA (ITSPCA)

The ITSPCA paper [17] by Ma focus on finding principal subspaces of S( variable used to

defined the covariance matrix in the previous paper) spanned by sparse leading eigenvectors, as

opposed to finding each sparse vector individually. One of the reasons for this is that individual

eigenvectors are not identifiable when some of the leading eigenvalues are identical or close to each

other. Also, if we view PCA as a dimension reduction technique, it is the low-dimensional subspace

onto which we project data that is of the greatest interest. A new iterative thresholding algorithm

is proposed to estimate principal subspaces, which is motivated by the orthogonal iteration method

in the matrix computation literature. In addition to the usual steps of orthogonal iteration, an

additional thresholding step is added to seek a sparse basis for the subspace.

When the covariance matrix follows the spiked covariance model [21], the algorithm is shown

to yield a uniformly consistent subspace estimator.
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Figure 2.3: ITSPCA algorithm.

2.2.2 Augmented Sparse PCA (ASPCA)

For the more general multiple component case, Paul and Johnstone [15] proposed an aug-

mented sparse PCA method to estimate each of the leading eigenvectors. They showed that their

procedure attains near optimal rate of convergence under a range of high-dimensional sparse settings

when the leading eigenvalues are comparable and well separated.

The motivation for this approach considers the SPCA estimation scheme studied by Johnstone

and Lu (2004)[22]. Suppose you have calculated the sample variances of all the coordinates;i.e,

diagonal terms of Σ (being the covariance matrix) are denoted by σ2
1, . . . , σ

2
p. The general pipeline

of the method is as follows:

• Define I to be the set of indices k ∈ {1, . . . , p} such that σ2
k > λ

• Let ΣI,I be the submatrix of Σ corresponding to the coordinates I. Perform an eigen

analysis of ΣI,I . Denote the eigenvectors by e1, . . . , en (n = number of observations).
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• For v = 1, . . . ,m (m = number of the principal components in the subspace), estimate µv

by augmenting zeros to all the coordinates that are in {1, . . . , p}.

Figure 2.4: Correlation matrix with higher variance voxels selected.

Johnstone and Lu showed that if one chooses an appropriate threshold λ then the estimator

is consistent under the sparsity constraint.

Figure 2.5: Scheme of ASPCA.

The ASPCA aims to address the problem of estimating eigenvectors from a minimax risk

analysis viewpoint. Henceforth, the observations are assumed to have a Gaussian distribution. With

this condition, the Augmented Sparse Principal Component Analysis (ASPCA) has an optimal rate

of convergence over suitable regularity conditions. Moreover, it is also assumed that the leading

eigenvalues of the population covariance matrix are distinct, so the eigenvectors are identifiable.
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We will go into more details about the ASPCA algorithm and how we adapt it to the Neu-

rological Decoding approach in Chapter 3.

2.2.3 Correlation augmented Sparse PCA (CORSPCA)

The CORSCPA analysis in [18] predicted that there would be some gap between the per-

formance of the sparse PCA from Johnstone and Lu (2004) and the possible optimal one. Nadler

discussions refers to the work of Bicke and Levina (2008) [23], which assumes that the covariance

matrix is sparse, but not necessarily that the eigenvectors are sparse. The key observation is that

the assumption of Johnstone and Lu - that individual signals are simultaneously sparse in some

unknown basis - implies more than just having relatively few features with large variance. It also

implies that these features should be highly correlated among themselves.

Under the assumption of uncorrelated Gaussian noise, this observation suggests an alternate

feature selection approach. Rather than working only with the covariance matrix, the structure of

the correlation matrix is also analyzed to look for highly correlated variables.

The suggested procedure is as follows:

• Given a data matrix X, compute the covariance (Σ) and correlation matrices(C).

• Estimate the noise variance σ2.

• Find the sure signal features:

Is =
{
i, Σ(i,i)

σ2 > 1 +
√

2
n t(α, p)

}
where

t(α, p) =
√

2 ln p− ln(4π ln p)

2
√

2 ln p
− lnα√

2 ln p

and α is the confidence level chosen by the user.

• For each i = 1, . . . , p and i /∈ Is compute

Ei = 1
|Is|

∑
j∈Is

C(i, j)2
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• Denote by Ic the set of variables highly correlated to those in Is:

Ic =
{
j, j /∈ Is, Ej > 1

n−1(1 +
√

2t(α, p))
}



Chapter 3

Identificaction of sparse neuronal networks

The pipeline for our approach is described by three major steps:(i) Pre-processing, (ii) Neu-

ronal Decoding and (iii) Prediction of brain activity.

3.1 Pre-processing

In general, fMRI data is really rich and may be grouped into signals of interest and signals not

of interest. The signals of interest are task-related and function-related. The task-related signals

are the easiest to model. They are the responses of the brain to a given task. It is conceivable that

there are several different types of transiently task-related signals coming from different regions of

the brain. The function-related signals manifest as similarities between voxels within a particular

functional domain. The signals not of interest include physiology-related, motion related, and

scanner-related signals. Physiology-related signals such as breathing and heart rate tend to come

from the brain ventricles (fluid-filled regions of the brain) and areas with large blood vessels present,

respectively. Motion-related signals can also be present, and tend to show up as changes across

large regions of the image (particularly at the edges of images) [24].

Additionally, changes in the fMRI signal that occur during brain activation are small(1−5%)

and are often contaminated by noise (created by the imaging system hardware or physiological

processes), so the cleaner the more sensitive will be the brain activity detection.

In all of our experiments, the input matrix X is created with the pre-processed and spatially

normalized fMRI data from the PBAIC contest(See subsections 1.2.1.1 and 1.2.1.2). We do an
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additional pre-processing step prior to this approach to clean the data. See Fig. 3.1

Figure 3.1: Pipeline for the additional pre-prcessing.

Finally, the data is fitted into the assumed input models for the sparse PCA estimators:

independence between samples and spiked population model.

3.1.1 Additional pre-processing

The n fMRI data samples for our experiments are stacked in X ∈ Rn×p where each row is

filled with the p voxels from a 3D brain image. X is down-sampled and the white-gray matter from

all the samples is separated from the outer head area, skull and intra-cranial CSF to build Xgw.

In this way, high intensity signals from physiological effects are removed from neuronal signals. In

order to do that we use standard histogram thresholding techniques with the fMRI signal intensity.

See Fig 3.2 and Fig 3.3 .

Finally, we subtract the first and the second principal component of the time covariance

matrix Σtime ∈ Rn×n from Xgw in order to remove global trend effects - i.e., related to motion

artifacts from the head of subject.

Σtime
ij = cov(xi, xj) = E

[
(xi − µi) · (xj − µj)T

]

Xgw = Xgw − 〈Xgw, pcatime〉 pcatime

(3.1)
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3.1.2 Fitting the input model

In order to fit the observations into the input data model, they need to be independent and

the background noise needs to be white. Each observation is created by the addition of the signal

of interest and the signal not of interest;

x(t) = ute+ σzt, (3.2)

where e ∈ Rp is the component to be estimated, ut ∼ N(0, 1) are i.i.d. Gaussian random

effects, σ is the p-vector representation of the background noise level, and zt ∼ Np(0, I) are inde-

pendent p-dimensional noise vectors [22].

It is broadly known that fMRI images are related through the hemodynamic response pattern,

so, they are not independent.

It has been revealed in some studies that the temporal variation of the BOLD activation is

essentially Gaussian [25], so it suffices to uncorrelate each observation to make them independent.

Wavelets have been widely used in various signal and image processing contexts since their

mathematical development in the late 1980s, including many prior applications to image com-

pression, non-parametric regression, and problems in brain mapping. However, the single most

important property of the discrete wavelet transform is that the correlation between the wavelet

coefficients of a signal will generally be small even if the signal itself is highly autocorrelated in

time. This is sometimes called the whitening or decorrelating property of the wavelet transform

[26]. Hence, by applying 1D wavelet transform to each voxel time sequence values xj for j = 1, . . . , p

we decorrelate the n observations of the input sets (see Fig 3.5). We recall the definition of the

correlation matrix as: coor(x, y) =
E[(x−µx)(y−µy)]

σxσy
.

Note that the time scale is no longer in seconds.

The spatial covariance matrix Σspatial must fit in the spiked population model to be an

optimal input set for ASPCA. This implies that the higher m eigenvalues li for i = 1, . . . ,m are

above the background noise(σ2). See Fig 3.6. We apply 3D wavelet transform to potentiate the
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intrinsic sparsity of the fMRI images in the new basis. Hence, the entries in x(t) are wavelet

coefficients from now on.

As σ2 is unknown for the fMRI input dataset and assuming normal distributions for the

observations, we estimated its value as σ̂2 = median(V ar(xj(t)))

3.2 Neuronal Decoding

The most significant Sparse Principal Components obtained through ASPCA are interpreted

as active neuronal modules. They sketch some interesting Brodmann areas, whose functions are

related to the audio and visual frames of a movie: primary and auditory association cortex, primary

and secondary visual cortex V1 and dV2, associative visual cortex V3, prefrontal cortex and frontal

eye fields, etc.

We use the first m = 14 Eigenbrains as the new basis for the low dimensional subspace.

As mentioned earlier, the core of the sparse PCA idea focuses on how to choose the appropriate

coordinates and all the observations are normalized with the level of background noise σ2.

Motivated by ASPCA by Paul and Johnstone [15] we apply the algorithm as follows:

(1) Threshold 1: Extract the voxels whith time variance exceeding λ1 to build(W(λ1)). These

are the voxels that correspond with neuronal activity. Compute the normalized factor

within the coordinates in the previous set. See Fig 3.8

(2) Threshold 2: Compute the normalized correlation between the voxels from W(λ1) and

W(λ1)C ; and select the higher coordinates (exceeding λ2) to build(W(λ2)).See Fig 3.8. It

defines the extension of the neuronal network.

(3) Take the union of W(λ1)∪ W(λ2). The cardinality of the previous set tunes the cluster

properties of the brain modules.

(4) Compute PCA on (xk|k ∈W(λ1)∪W(λ2)) and pad them with zeros to extend the coordi-

nates creating ei ∈ Rp.
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(5) Threshold 3: Hard theshold the coordinates in ei according to the convergence decay factor

(λ3)for regular PCA, in order to filter out the noise .

λi3 =
√

lg(b)(1+li)

n·li2

where i = 1, . . . ,m and b = card(W(λ1) ∪W(λ2))

(3.3)

(6) Normalize ei to obtain the eigenbrains.

Finally, we project the high-dimensional input data into Ebrain creating Xnb ∈ Rn×m where

each row corresponds to an observation in the low-dimensional space (xnb(t) ∈ Rm).

3.2.1 Scattering and extension of the neuronal network (λ1 and λ2)

The threshold 1 and threshold 2, defining the cut-off parameters λ1 and λ2, are related to

the extension of the original neuronal network that compose the Eigenbrain. λ1 selects the voxels

with higher variance related to the brain activation, and λ2 selects the voxels with smaller variance

which are strongly related to the previous activated voxels. The values of the first two thresholds

are related because they both scatter the voxels of the network.

To be able to analyze the most significant and interesting combinations of these two thresh-

olds we create a simplified system through labels that represent significant and meaningful values

according to the tendency, shown in Fig. 3.7. For threshold 1 and threshold 2 we create 10 labels for

20 different values of λ1 and λ2 (corresponding to γ1,n and γ2,n in the original ASPCA algorithm).

They have been chosen according with our own simulated experimental results in MATLAB. The

higher the values for threshold 1 - threshold 2, the more voxels are selected for the sets W(λ1) and

W(λ2) respectively.

3.2.2 Further Sparsity (λ3)

The third threshold is used to filter out the noise and shrink the smallest entries for the

regular PCA applied over the union of W(λ1)∪ W(λ2). The parameter λ3 tunes the uncorrelation
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Table 3.1: Design parameters for maximum prediction score

Threshold 1 - Threshold 2 λ1 λ2 card(W(λ1)) card(W(λ2))

1 326.2 47.6 300 90

2 268.7 38.2 400 120

3 233.0 32.4 500 150

4 202.9 25.8 600 180

5 174.3 21.6 700 210

6 150.7 19.0 800 240

7 133.0 16.8 900 270

8 118.2 15.1 1000 300

9 105.9 13.6 1100 330

10 96.4 12.2 1200 360

and the further sparsity of Eigenbrains in the new basis. This parameter hard thresholds the entries

i = 1, . . . , p for the different Eigenbrains (ej(i)). See Equation 3.4

ei(j) =


ei(j), |ei(j)| > λi3,

0, |ei(j)| ≤ λi3,

where i = 1, . . . ,m and j = 1, . . . , p.

(3.4)

The hard thresholding step in threshold 3 has been organized into 11 labels that are closely

related to the final sparsity and correlation of the principal components. The parameter λ3 which

shrinks the smallest values in each Eigenbrain(ej for j = 1, . . . ,m) is more agressive the bigger

the j index is, so it is not a constant threshold for each label (see Table 3.2 and Fig 3.9 ). The

increase of the (λj3) is related to the convergence decay factor for the regular PCA (see equation

3.3). It corresponds to γ3,n in the original ASPCA algorithm.

If λ3 is small, the Eigenbrains are more orthogonal; so, this parameter determines the corre-

lation of the components within the low-dimensional subspace. Fig 3.10
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Table 3.2: λ3 values that correspond with Threshold 3

Threshold 3 (λ13) (λ23) (λ33) (λ43) (λ53) (λ63)
1 0 0 0 0 0 0
2 0.0088 0.0130 0.0155 0.0159 0.0179 0.0190
3 0.0124 0.0184 0.0219 0.0226 0.0254 0.0269
4 0.0152 0.0225 0.0268 0.0276 0.0311 0.0330
5 0.0176 0.0260 0.0310 0.0319 0.0359 0.0381
6 0.0196 0.0290 0.0346 0.0357 0.0401 0.0426
7 0.0215 0.0318 0.0379 0.0391 0.0440 0.0504
8 0.0232 0.0344 0.0410 0.0422 0.0475 0.0344
9 0.0249 0.0367 0.0438 0.0451 0.0508 0.0467
10 0.0264 0.0390 0.0465 0.0478 0.0538 0.0539
11 0.0278 0.0411 0.0490 0.0504 0.0567 0.0571

3.3 Prediction of brain activity

Possibly the most elementary algorithm that can be kernelized is ridge regression. Ridge

Regression is used to find a linear function that models the dependencies between covariates {xi}

and response variables {fi} , both continuous. The classical way to do this is to minimize the

quadratic cost;

min
1

2

∑
i

(fi − βTxi)2. (3.5)

To avoid overfit, it is necessary to regularize which can be done by simply penalizing the

norm of β. This is sometimes called weight-decay and it is chosen according to a cross validation

process.

min
1

2

∑
i

(fi − βTxi)2 +
1

2
ε ‖β‖2 . (3.6)

By introducing Lagrange multipliers into the problem the derivation becomes similar to that

of the support vector machine problem.

3.3.1 Our predition model

The prediction of a feature f̂ at an unknown time tx is implemented as a supervised learning

classifier. We formulate the prediction model using Kernel Ridge Regression;



30

f̂(tx) =

n∑
i=1

α̂i · κ(xnb(t), xnb(tx)), (3.7)

where t = 1, . . . , n represent the training set, α̂ is weighted by the previous set, and κ is a

Gaussian kernel.
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(a)

(b)

(c)

Figure 3.2: (a)(b)(c) Intensity fMRI histograms for Subject 1 for Movie 1, Movie 2 and Movie 3
respectively.
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Figure 3.3: White-Gray matter for subject1 Slice 16,17,18,19,20 and 21

Figure 3.4: Blood Oxygenation Level Dependent contrast fMRI.
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(a) (b)

Figure 3.5: (a) Correlation matrix before 1D wavelet across time (b) Correlation matrix after 1D
wavelet across time.

Figure 3.6: Sorted eigenvalues of the covariance matrix. Label in first 14 (m = 14)
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(a) (b)

Figure 3.7: (a) Selection voxels forW(λ1) andW(λ2) in Σspatial. (b) Selection voxels forW(λ1) and
W(λ2) in functional magnetic brain image for th1 and th2 = 3 (500 and 150 voxels respectively).

Figure 3.8: (a) Tendency of the Variance for the Threshold 1. In red the range of values evaluated
for (λ1). (b) Tendency of the Variance for the Threshold 2. In red the range of values evaluated
for (λ2).
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Figure 3.9: Kernel Ridge Regression Prediction score for m = 14

(a) (b)

Figure 3.10: (a) Correlation matrix for threshold3 = 0 (b) Correlation matrix for threshold3 = 3



Chapter 4

Experiments and discussion

In order to evaluate the performance of the method presented in this paper we measure the

normalized correlation between the predicted feature f̂ and the expected feature f as follows;

score =

〈
f̂ , f

〉
∥∥∥f̂∥∥∥ · ‖f‖ . (4.1)

The Sparsity of the neural network components is measured by adding the L0 norm of all

the Eigenbrains within the Ebrain subspace.

Sparsity =
m∑
j=1

‖ej‖0 (4.2)

The Relative Sparsity is computed to get a sense of how sparse the low-dimensions subspace

is in comparison with the total number of voxels p for the whole 3D image (p = 64× 64× 34), so,

we define:

Relative Sparsity =
Sparsity

m× p
. (4.3)

The 10-fold cross validation is used to weight and evaluate all the prediction scores. It

separates the data into ten subsets with n/10 observations in each of them. A single subset is

retained for testing of the model, and the remaining nine subsets are used as training data.
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(a) (b)

Figure 4.1: Sparsity as a function of threshold1, threshold2 and threshold3. (a)threshold3 =
1, . . . 11. (b)threshold3 = 2, . . . 11.

4.1 Design parameters: score vs. sparsity

Several parameters should be weighted in order to get accurate sparse Eigenbrains com-

ponents at the of the Sparse Augmented Algorithm (ASPCA). The Decoding Neuronal Network

approach also needs to be tuned by assigning values to the thresholds λ1, λ2 and λ3.

For the studied values within the range for threshold1, threshold2 and threshold3 we achieve

the sparsity shown in Fig 4.1 in the Ebrain subspace composed with 14 Eigenbrains. In the graph

(b) the y-axes is expanded for (threshold3 = 2, . . . 11).

In order to fine tune the semi-supervised neuronal decoding approach, we track the feature

predictions using 10-fold cross validation of the features with better performance (Body parts - 5,

Faces - 7, Language - 9 and Motion - 11) in the prediction model from section 3.3. The optimal

design parameters consider a trade-off between the sparsity of ej and the prediction score.

In Table 4.1 we summarize the values with the maximum prediction score, nonetheless, in

Table 4.3 we relax the final score by achieving more sparse and uncorrelated networks.
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(a) (b)

(c) (d)

Figure 4.2: Prediction score as a function of threshold 1(λ1), threshols 2(λ2), and threshold 3(λ3).

Table 4.1: Design parameters for maximum prediction score

Feature Prediction score Sparsity th1-th2 th3

Body Parts 0.8339 3321 4 10

Faces 0.7483 1181 3 2

Language 0.9138 565 5 1

Motion 0.9201 2328 1 1

4.2 Eigenbrains

Some of the sparse neuronal networks from the optimal values for the feature Language are

collected in Fig 4.3. These are considered the more interpretable networks, having more aggressive
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Table 4.2: Sparsity details for maximum prediction score

Feature ‖e1‖0 ‖e2‖0 ‖e3‖0 ‖e4‖0 ‖e5‖0 Rel.Sparsity th1-th2 th3

Body Parts 1184 620 477 418 316 0.72% 4 10

Faces 485 257 213 138 43 0.26% 3 2

Language 338 125 76 26 0 0.12% 5 1

Motion 388 388 388 388 388 0.51% 1 1

Table 4.3: Design parameters for optimal neuronal networks architecture

Feature Prediction score Sparsity th1-th2 th3

Body Parts 0.8068 2525 5 9

Faces 0.7184 1166 6 4

Language 0.8639 976 9 6

Motion 0.8973 1157 8 6

Table 4.4: Sparsity details for optimal neuronal networks architecture

Feature ‖e1‖0 ‖e2‖0 ‖e3‖0 ‖e4‖0 ‖e5‖0 Rel.Sparsity th1-th2 th3

Body Parts 1037 480 353 273 188 0.55% 5 9

Faces 625 234 138 91 41 0.25% 6 4

Language 601 170 68 72 43 0.21% 9 6

Motion 669 205 107 86 55 0.25% 8 6

thresholds, as the prediction score is relaxed.

According to the Brodmann map, the auditory cortex (areas 41 and 42) which processes

sound and contributes to our ability to hear, is selected in the Eigenbrain 2. The Eigenbrain 5

activates the areas 17,18,19 in the back of the brain that are associated with the visual cortex

(V1,V2 and V3). The frontal eye fields(area 8) and the prefrontal cortex (area 9), involved with

eye movements, are shown in Eigenbrain 4. See Fig 4.3.

In Fig 4.4, e2 = yellow,e3 = pink, e4 = green and e5 = red, from the feature Language and

threshold1 and threshold2 = 9 and threshold3 = 6, are plotted over the same functional magnetic

images. It can be inferred that the principal components are largely uncorrelated because they

barely overlap. Indeed, they seem to define different functional modules.

In Fig 4.5 and Fig 4.6, the first six optimal architectural neuronal networks, for the feature

Faces are pictured. The label in this case are: threshold1 and threshold2 = 3 and threshold3 = 2.
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(a) (b) (c)

Figure 4.3: Optimal EigenBrains network architecture for Language threshold1 and threshold2 = 9
and threshold3 = 6. (a) EigenBrain 2 - slices 13/14/15 (b) EigenBrain 4 - slices 8/9/10 (c)
EigenBrain 5 - slices 7/8/9. Slices are numbered from the top to the bottom

4.3 Prediction performance

Fig 4.7 shows the prediction scores for several values of sparsity for the features Body Parts,

Faces, Language, and Body Parts; for m = 14.

We show in Fig 4.5 that the first Eigenbrain selects almost all the voxels in the brain so it

can be considered total brain activation. To study how Eigenbrain 1 (e1) affects to prediction (see

Fig. 4.8 and see Fig. 4.9) we project X into the regular subspace Ebrain and onto E1
brain. In some

cases it performs better without projecting onto e1.

E1
brain =


e2(1) · · · em(1)

...
...

...

e2(p) · · · em(p)


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Figure 4.4: Overlap of e2 (yellow), e3 (pink), e4 (green) and e5 (red) for subspace m = 14
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(a) (b)

(c) (d)

Figure 4.5: Optimal EigenBrains network architecture for Faces threshold1 and threshold2 = 3
and threshold3 = 2. (a) EigenBrain 1 (b) EigenBrain 2 (c) EigenBrain 3 (d) EigenBrain 4
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(a) (b)

Figure 4.6: Optimal EigenBrains network architecture for Faces threshold1 and threshold2 = 3
and threshold3 = 2.(e) EigenBrain 5 (f) EigenBrain 6

Figure 4.7: Kernel Ridge Regression Prediction score for m = 14
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(a)

(b)

Figure 4.8: Prediction scores vs Sparsity for subspaces Ebrain and E1
brain . (a) Body Parts (b) Faces
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(a)

(b)

Figure 4.9: Prediction scores vs Sparsity for subspaces Ebrain and E1
brain . (c) Language (d) Motion



Chapter 5

Discussion and conclusion

In this thesis, we propose a new method for the analysis of fMRI data. Our approach discovers

clustered brain areas by using sparse PCA representations without any spatial constraint in the

optimization problem. We do not apply any spatial smoothing function in addition to the sparse

coordinate selection, however, the principal components appear to be concentrated around specific

areas in the cerebral cortex, which are really helpful in the interpretation stage.

We have proposed a technique to identify a low dimensional neuronal network subspace Ebrain

, where all the principal components are p-dimensional vectors (∈ Rp), also called Eigenbrains. Only

some few entries from each of them are different than 0, and the sparsity is controlled by λ1, λ2

and λ3. We allow the Ebrain to be different for each task developed in the brain. Within an specific

subspace, the sparsity increases according to the index of the Eigenbrain(‖e1‖0 > ‖e2‖0).

The adaptive combination of Eigenbrains defines the brain activation for a specific feature.

The combination of Eigenbrains can be interpreted according to the massive modularity hypothesis.

Each Eigenbrain can be understood as a small number of well defined functional areas (some of

them coincide with Brodmann areas).

It is worth noticing the efficiency of this semi-supervised method. With a small number

(m = 14) of extremely sparse Eigenbrains and relative sparsity values in the range from 0.72% to

0.12% we achieve final prediction scores ranging from 0.7 to 0.92 for the studied features. This

implies a really small computation time cost. The approach performs competitively in terms of

prediction score compared with other submissions to the PBAIC contest. As a general rule, the
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more components we include in the new low-dimensional subspace, the more variance is captured

and the better the performance is in terms of prediction, nevertheless, there exists the special

behavior of the first Eigenbrain.

The model obtained with this approach is interpretable because the input fMRI data is very

rich in external stimulus. On the other hand, the features corresponding with expected diffuse

brain activation, such as self-awareness, might not be well predicted.
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