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Deterioration and capacity fade, i.e. ageing, of Lithium Ferro Phosphate(LFP) cells, a ther-

mally stable Lithium chemistry with promise for Energy Storage System (ESS) applications, is

typically protracted through laboratory measurements such as Electrochemical Impedance Spec-

troscopy or full charge and discharge cycles with accompanying Coulomb counting. When installed

in remote microgrid stations such as intermediary sites of a communications system, these mea-

surements are often not possible, which makes the identification and quantification of deterioration

challenging for LFP batteries deployed in real world settings. Herein lies the impetus to identify and

extract other metrics indicating ageing from the operational profiles of remote LFP installations.

The University of Colorado testbed is a Wifi Long Distance network funded by the IEEE

Smart Villages group and located on the front range of Colorado. Each station is outfitted with

an isolated microgrid consisting of LFP batteries and Solar PV panels, as well as a microcontroller

system taking current, voltage, and temperature measurements at a five second resolution. After

a collection period spanning 7 months (April - October, 2017), this data is analyzed and Schedule

Points representing 100 % State of Charge are identified. The Coulombic and Battery Energy

e�ciency, that is, the ratio of charge delivered verse charge recovered and the ratio of energy

delivered verse energy recovered, respectively, of each cycle is then derived and further analysis

is performed to identify any ageing trends. While a quantiable amount of ageing and further

statements about the State of Health are not possible without further analysis, a clear decline in

e�ciencies representing ageing is indentified, establishing a basis for further work to quantify these

metrics.
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Chapter 1

Introduction

In the last decade, renewable energy sources such as Wind and Solar have realized a price per

unit energy drop to levels below the marginal cost of conventional fossil fuels[14, 12, 7, 10]. Within

the United States there are many states pursuing Renewable Portfolio Standards (RPSs) that

mandate a certain level of renewable generation; consider two of the largest states by population,

California and New York, pursuing 50% Renewable Energy (RE) penetrations by 2030[24, 7].

Worldwide, the entirety of countries have agreed to the standards set with the Paris Climate

Accord in which each country submits National Determined Contributions (NDCs) pledging to a

certain level of domestic Renewable generation[24]. The benefits of RESs extends beyond the low

cost and carbon emission reductions to decreased susceptibility to fuel price volatility as well as

reducing energy imports (an energy security concern)[33]. Thus, there are many reasons for the

increased penetration of RESs on the grid; but, the integration of said RESs is more challenging

than simply bringing more Solar Photovoltaics and Wind Turbines online.

The rapid increase in RESs on the grid is creating a more abrasive application for conventional

generators that mitigate the intrinsic variability in the demand profile[51]. The rapid ramping

possible with Solar Photovoltaic (PV) generation (See Figure 1.1) on a cloudy day forces backup

conventional generation through many rapid ramping cycles, which increases costs and carbon

emissions through the ine�cient use of the fossil fuel asset. With higher and higher levels of

RESs on the grid, the conventional generator is evidently not the solution for RE variable output

mitigation due to these ine�ciencies. A potential panacea to the variable output of RES is the
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Battery Energy Storage System(BESS).

From the standpoint of an ESS, electrochemical systems have the benefit of rapid response

(quick ramping), scalability, and modularity[33, 46, 7, 11]. They’ve received ample technological

funding; e.g. from 2009 - 2012, the US Department of Energy (DOE) invested over $10 billion in

BESS technology[60], subsidization which is commonplace for most emerging energy technologies.

The plummeting costs of Lithium batteries in even the past few years (80% reduction from 2011 -

2017[34, 8, 4]), has encouraged the installation of grid scale BESSs. Rapid growth rates are evident

from the numbers; 221 MW of installed capacity at the end of 2015 and a projected 4 GW of

installed capacity worldwide by 2020, a 1700% increase.

The Lithium Ferro Phosphate (LFP) battery is of the Lithium Ion family, but of a superior

thermal stability than its Lithium relatives[31]. With an energy density of 110 Wh/kg, three times

that of Lead Acid chemistries, the LFP cell is finding wide application in many scenarios such as

Electric Vehicles[42], utility scale BESSs[6, 52], and microgrids both isolated and grid connected[1].

Due to the rapid emergence of Lithium batteries, and the expected lifetimes far exceeding 2,000

cycles to an 80% DOD, statistical data on Lithium battery decay for standard applications is not yet

widely available. As a result, the majority of data on Lithium battery degradation/capacity fade,

has origin in the laboratory, where highly regulated charge/discharge cycles occur in a controlled

climate[16, 23, 40, 50]. While e↵ective modelling techniques to derive degradation rates from state

estimation have been borne out of these laboratory tests, they’re often computationally intensive

and less applicable to low capital installations[40]. As a result, there is valid concern for the

expected life of Lithium batteries with application in non laboratory settings.

1.1 Why Laboratory Battery Testing Doesn’t Map to Physical Systems

As previously mentioned, the bulk of testing of Lithium batteries in a laboratory setting

is highly regulated and generally periodic throughout the experiment[13, 62]. Certainly, within a

laboratory the isolation of variables is of upmost concern in order to derive results applicable to

single causes; however, as a result, the practical application of BESSs is typically done with little
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relation between degradation in the lab and anticipated degradation in the field. See Table 1.1

for a comparison of a variety of Lithium battery applications and associated levels of control as a

representation of the mapping between real world application and laboratory results.

Table 1.1: The variety of Lithium battery applications and defining characteristics.

Application Climate Control Charge Control Discharge Control

Electric Vehicles Moderate Complete Moderate
Utility Scale Complete Complete Complete
Utility Scale (Solar Coupled) Complete Moderate Complete
Microgrid (Grid Coupled) Moderate Complete Complete
Microgrid (Isolated) Minimal Minimal Minimal

In the case of Electric Vehicles, the rate of charge is highly regulated due to the conformity of

Electric Vehicle Service Equipment (EVSE) to charging standards[18]. Additionally, because of the

mobility application and the zero tolerance for inoperation, the Lithium packs are climate controlled

to maintain operable temperatures within extremes[42]. Utilty scale applications, particularly those

that are not exclusively coupled to Solar PV charging, are operable with total control of climate,

charge, and discharge characteristics[3]. In this way, the degradation of utility scale BESSs will

likely be the closest fit to laboratory results. For the case of microgrids, particularly those that are

isolated from a steady power source (i.e. the grid), control is minimal[1]. The BESS will charge

when a Solar and/or wind resource is available, discharge when required, and generally because of

the isolated installation, climate control isn’t a concern due to a lack of available energy (the BESS

itself would be required to power any climate control).

1.2 Challenges with Microgrid Installations

An additional aspect that serves to further separate the laboratory setting with actual imple-

mentation of BESSs in isolated microgrids, particularly Renewable Energy Source (RES) powered,

is the variability in the RES output. Consider the variability of the Solar resource at one of the
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CU Boulder testbed stations in June of 2017, depicted in 1.1. For the case of an isolated microgrid,

where this RES is the only energy source available to charge the BESS, the rapid ramping due to

the high variability causes a highly inconsistent rate of charge. The Lithium battery charging liter-

ature is lacking with respect to the analysis of these rapid fluctuations with regards to degradation

rates.

Figure 1.1: Shown is the Solar Photovoltaic power output of the 100W panel located at the Wilder-
ness Place station throughout the day of June 17. The total output was 321.7 Wh, which wasn’t
su�cient to reach a 100% SOC on this day (see Appendix Fig. A.1). Of note is the rapid ramping
in output due to meteorological events in the form of cloud cover and afternoon thundershowers.
In the case of a single ESS, this rapid ramping in PV output causes the inverse in ramping on the
ESS, which serves to further displace actual operation of an ESS as compared to laboratory testing.

Additionally, as shown in Fig. 1.2 as compared to the output of the same station shown in

Fig. 1.2, there are days when the RES production is very low. As a result, the BESS will experience

a deeper discharge as it is forced to supply the energy called upon by the load. This results in

varying Depth of Discharges (DODs) (see Fig. 5.19 for a show of variability at the Wilderness

Place station), which is variability not often accounted for in laboratory settings. As a result of

these inconsistencies with respect to the microgrid BESS, it is di�cult to project degradation study

results to life expectancies of Lithium batteries in said applications. It is therefore of interest to the
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battery community as a whole to retain data of Lithium battery operation in a microgrid setting in

order to tease out degradation and how it relates to the operational inconsistencies that the BESS

will experience throughout its application. This is the focus of this work.

Figure 1.2: The output from the same system as from the data in Fig. 1.1 on August 7, a day
of low insolation. While the variabiilty, as measured in magnitude of ramping, is evidently much
less than on June 17, the overall output is significantly reduced at a total of 106 Wh. This low
insolation day required the ESS to supply the balance of energy necessary to power the Load, as
opposed to maintaining a higher SOC. This results in a much larger Depth of Discharge.
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1.3 Statement of Thesis

A project at the University of Colorado Boulder under funding from the IEEE Smart Villages

groupd required the installation of a variety of Lithium BESSs, along with Solar PV RESs as the

singular source of energy for the BESSs, to act as an uninterruptible power supply for a communca-

tions tested. The power systems are, by definition, isolated microgrids. These installations will

have monitoring systems capable of tracking the current and voltage states of the BESS, as well as

tracking the temperature of the system. With the inconsistencies in BESS operation in microgrid

applications, the thesis can now be stated:

With uninterrupted data sets of the voltage, current, and temperature states of a Lithium Ferro

Phosphate battery operating as the BESS of a microgrid, will the identification of complete cycles

and subsequent derivation of the ‘Coulombic E�ciency’ and ‘Battery Energy E�ciency’ per cycle

yield an identifiable degradation or capacity fade in the BESS? Additionally, if

degradation/capacity fade is indentified through these metrics, can a quantitative statement be

made about the current SOH?



Chapter 2

Lithium Ferro Phosphate Battery Technology

Compared to the Lead Acid battery, the primary (single use) cell introduced by Volta in

1800[60] and the secondary (rechargeable) invented by Gaston Plante in 1859[46], Lithium battery

technology is a nascent electrochemical storage solution following an early 90’s commercial intro-

duction of the phosphate/oxide family by Sony in its Nexelion camcorder[9]. While the Lead and

Sulfuric acid contained in the Lead Acid battery are environmentally noxious, the Lithium battery

family yields a much safer alternative with no leaking acids or otherwise harmful emissions over its

useful lifetime[46], a lifetime up to five times greater than leading Lead Acid technologies[5, 59].

Nickel-Cadmium, Zinc-Bromine, and Sodium-Sulfur chemistries are commercially available, but the

Lithium family is eclipsing those as the leading storage technology[29]. Lithium, element number

3 in the periodic table, is extracted as a constituent of either Ore, Brine, or Clay, with Australia,

Chile and Argentina the current primary source countries[53]. Its small atomic number and result-

ing small ionic radius make it particularly well suited for di↵usion through the solid electrolyte[9].

In 2016, the primary consumer of Lithium Ion Batteries (LIBs) was the cellphone/laptop industry

at approximately 75%[53] of marketshare.

The Lithium battery takes the same form as it’s predecessors, with an anode (negative termi-

nal) and cathode (positive terminal) separated by an electrolyte. The anode is typically a carbon

material such as graphite, or perhaps in the near future, graphene[29]. The cathode is composed of

either a Lithium metal oxide, or Lithium metal phosphate. More common cathode compounds are

Lithium Cobalt Oxide (LCO), Lithium Manganese Oxide (LiMnO), and Lithium Ferro Phosphate
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Figure 2.1: A representation of the cation (positively charged ion), anion (negatively charged ion),
and electron movement through a Lithium cell. ‘A’ represents either the load, or the charging
apparatus. In the case of charging, current flows from the cathode to the anode through the
electrolyte. While discharging, the opposite. [9]. Image from [9].

(LiFePO)[5]. With phosphates, as opposed to oxides, the oxygen bonds are much stronger which

prevents the oxygen from being released through cycling, thus preventing the combustion issues

most prevalent with the LCO chemistry[59]; consider the recent recall of the Samsung Galaxy. For

this reason, in addition to the superior thermal stability[39], Lithium Ferro Phosphate has become

a popular chemistry for large energy storage systems.

2.1 Half Cell Reactions

In the case of the Lithium Ferro Phosphate cells, we can use the image of Fig. 2.1 to

understand the reduction/oxidation reactions which occur during charge and discharge. During

discharge, when a load is placed in series across the terminals of the cell, the following half cell
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reactions take place at the cathode and anode, where reduction occurs at the cathode, and reduction

occurs at the anode:

FePO4 + Li+ + e� ��! LiFePO4 (2.1)

LiC6 ��! C6 + Li+ + e� (2.2)

The full redox reaction during discharge of the LFP cell is then:

FePO4 + LiC6 ��! LiFePO4 +C6 (2.3)

In the case of charging, because these are secondary, and therefore rechargeable, batteries,

the reverse occurs when an overpotential is applied across the terminals. Oxidation at the cathode,

reduction at the anode, and the following half cell reactions, cathode first:

LiFePO4 ��! FePO4 + Li+ + e� (2.4)

C6 + Li+ + e� ��! LiC6 (2.5)

LiFePO4 +C6 ��! FePO4 + LiC6 (2.6)

where the full redox reaction during charging is the final line of Equation 2.4.

2.2 Mechanisms of Degradation and Ageing in Lithium Batteries

The mechanisms causing degradation in Lithium Ferro Phosphate cells are numerous and

varying across the anode, electrolyte, and cathode[57]. Due to the many contributing factors,

the overall degradation of the cell is non-linear, and highly susceptible to variations in use, i.e.

temperature adjusts and charge/discharge rate have been shown to have orders of magnitude e↵ects

on capacity fade[43]. While the scope of this work will focus primarily on tracking coulombic

e�ciency drift and battery energy e�ciency decreases as a lump sum of internal degradation, a

brief overview of the primary contributing factors is nonetheless o↵ered.

(1) Solid Electrode Interface (SEI) Growth: Located between the Carbon based anode

and the electrolyte, the SEI prevents these two battery components from reacting while
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allowing the passage of Li-ions. Because the anode operates outside the range of electro-

chemical stability, particularly when the cell is charged and the anode is at a low potential,

reduction of Li-ions and electrolyte occurs on the anode surface and the SEI grows in

thickness[57]. With cycling, this layer continues to expand, resulting in increases of overall

cell resistance, which results in heat losses during cycling; P
loss

= i2R
cell

[50, 28]. This

growth and subsequent increase in cell resistance is a clear indicator of cell ageing, and will

be searched for in the data as an increase in overall increases in charging energy.

(2) Loss of Lithium: The number of Lithium atoms available for redox reactions is reduced

by multiple e↵ects. The first condition occurs as reduction at the SEI, as Li-ions and the

electrolyte form. Additionally, corrosion of C6Li, causes a decrease in the quantitiy of

Li atoms available for cycling. This reduction in Lithium atoms directly reduces the the

number of possible reactions, resulting in a capacity decrease because the cations avaiable

for transfer through the electrolyte to balance the transfer of electrons through the external

circuit is reduced. [29, 60].

(3) Mechanical Stress: As cations and anions repeatedly intercalate within their respective

lattice structure through redox reactions, expansion of the lattice structure occurs. This

results in R
cell

increases due to a reduction in conductive area[50, 9]. This will compound

with the SEI growth as an overall R
cell

increase which ought be evident within the data.

2.3 Calendar Ageing

In addition to degradation due to cycling, Lithium batteries are also susceptible to capacity

fade when in storage. This phenomenon is the result side reactions occuring at the anode in which

cyclable Lithium is reduced at the SEI[26, 61]. A portion of this reduction is typically reversible,

which means the capacity loss is only a factor for the subsequent cycle after storage and is then

recovered after a full charge[25]. Nonetheless, a certain loss of capacity due to the loss of cyclable

Lithium to SEI growth occurs throughout the unused life of Lithium battery[16]. Experiments
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dedicated to identifying and quantifying this calendrical ageing have found minimal decary for

storage at 30 degrees C, to as much as 30% loss of capacity for storage at 60 degrees C in 450

days[16, 26, 25]. Calendar ageing is a factor that will have a far greater influence on Electric

Vehicle Lithium battery pack degradation analysis because the large majority of time will be spent

idle i.e. most vehicles are parked 95% of the time[18]. Calendar ageing occurs in tandem with cycle

a↵ected ageing, with the latter being the more dominant cause of degradation[25].

2.4 Lithium Battery Charging

The optimal charging protocol for Lithium batteries is the Constant Current Constant Voltage

(CCCV) scheme, which optimizes the charging time and reduces the power loss througout the

cycle[23, 50, 19]. The standard CCCV charging implementation consists of two steps, aptly named

the Constant Current phase, followed by the Constant Voltage phase. During the CC portion of

the charge, a 1C charge rate is forced across the pack while the voltage rise to N x 3.6V, where N

is the number of cells in series[61]. In the case of a nominal 12.8V pack, the CC phase continues

until a voltage of 14.4V is reached. Subsequently, the CV phase is implemented in which the cell(s)

are held at a voltage of N x 3.6V until the charging current tapers to a rate of 0.02C. At this point,

the cell(s) are considered be at a 100% State of Charge (SOC).

As is readily apparent, the CCCV charging protocol requires a continous power supply to

manage the consistent 1C rate during the CC phase of the charge. In fact, the magnitude of

energy transfer increases as the battery obtains a higher SOC due to the increased voltage verse the

constant current transfer. As a result, it can be expected that optimal charging of Lithium batteries

isn’t possible with a Solar resource, because the embedded intermittencies and single daily peak

power don’t permit a CC phase of charging at all times. The bulk of literature focused on capacity

fade implements the CCCV protocol during the charging portion of testing[1, 43, 26, 25, 61]. Due to

the optimality of CCCV, it can therefore be expected that LFP batteries subject to the variability

in Solar PV charging may exhibit shorter useful lifetimes than those subject exclusively to CCCV.

This constitutes yet another aspect in which field testing results are expected to deviate from
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laboratory testing.

2.5 State of Charge Assessment

Of primary interest during the operation of a battery pack is the State of Charge (SOC),

which is a representation of the residual capacity of the pack[19]. This isn’t to be confused with the

State of Energy (SOE), which is represents the available energy of the pack and is more challenging

to assess due to the non-linear relation between the SOC and voltage profile of the Lithium cell(See

Fig. 2.2). A variety of methods can be implemented to perform SOC analysis, with varying degrees

of accuracy based on multiple factors. A brief review of these methods is now presented.

Figure 2.2: The following shows the voltage across the Bioenno Power 12.8V, 200 Ah battery pack
during a constant current discharge at 0.06C until cuto↵ at approximately 9.5V. This is not the
open circuit voltage of the pack due to measurement occuring under load. The open circuit voltage
will be higher at a given SOC, but still less than the voltage during charging. This battery is
deployed at the SPSC station and is one of two subjects being analyzed for this work.
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2.5.1 Open Circuit Voltage

The Open Circuit Voltage (OCV) is a function of the SOC, and as such the reverse mapping

can result in a SOC estimation by simple voltage measurement[31]. Earlier chemistries, such as

Lead Acid, portray a more linear relationship between the OCV and SOC[9], unlike the profile of

Lithium technologies which exhibit a plateau as evident in Fig. 2.2. The result is a less than ideal

accuracy with OCV/SOC estimation for Lithium battery technologies. Additionally, for the case of

a remote microgrid powering a communications system, the data of which is only accessible when

the system is functioning, the measurement of OCV becomes complicated requiring a secondary,

and remotely switachable ESS. Finally, although a voltage vs. SOC curve is clearly still measurable

while the pack is under load, the shape and voltage values is highly dependent on the rate of current

flow[23]. A method such as Kalman filtering allows for the mapping of these varying voltage levels

as a function of discharge rate to the OCV; however, the ageing of the cell will cause the e�cacy

of the mapping to diminish.

2.5.2 Electrochemical Impedance Spectroscopy(EIS)

Perhaps the most e↵ective method at determing the SOC and State of Health(SOH) is Elec-

trochemical Impedance Spectroscopy (EIS). The process of EIS is to apply a small varying frequency

AC to the battery at a DC voltage matched to the battery voltage such that no net current flow

occurs. Although batteries are highly non-linear, the small scale of the applied voltage corresponds

to small portion of the I-V curve and a linear response matching an equivalent circuit can be ex-

pected. The response of the battery is captured by a frequency analyzer, after which the real and

imaginary impedances are plotted against each other on a Nyquist plot. The resultant plots contain

the footprints of a variety of R, and RC equivalent circuits. Various phenomena related to di↵erent

SOCs such as the mass transfer resistance, double layer impedance, and di↵usion resistance among

others can then be derived from plots[35]. Additionally, due to the increase of di↵usion resistance at

lower SOCs and a mapping between the two, an accurate measurement of SOC can be derived from
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EIS. This method is particularly well suited for tracking the development of internal phenomena

related to the overall lifetime of a battery[1, 41] because of the sensitivity of the method.

Although EIS is an e↵ective method for determining the SOC and SOH, it is challenging to

implement in a remote station for a few reasons. First, the battery must be disconnected from any

loads before EIS can be applied, which means a secondary ESS would need to be colocated at the

station with a reliable switching mechanism, the design and implementation of which was not a part

of the budget for the testbed upon which this work was performed. Second, a Frequency Response

Analyzers (FRAs) is required, in addition to the Voltage Controlled Oscillator (VCO) and DC

source, to perform the requisite analysis of induced currents. While the presence of a secondary

ESS is not unfeasible with respect to this project, as there are ample subjects regarding the fail-

safeing of an entire ESS through partitioning, the sensitive electronics are beyond the budget of the

project upon which this research was performed. Additionally, while the supplanting of the FRA

with the Arduino measurement system is a sound suggestion, we’ll find in Section 3.4.2 that the 60

mA resolution of the current monitor is far too great for EIS, which requires micro-amp resolutions

to capture milli Ohm impedances with a millivolt signal[63].

2.5.3 Coulomb Counting

Relatively inexpensive to implement, Coulomb counting is the process in which the current

flow out of, or into, the battery is tracked and then integrated with respect to time to arrive at

an ampere-hour value of delivered, or recovered, charge, respectively. This is then compared to

the known capacity of the battery pack, the quotient of which provides the SOC, or the case of

discharge:

SOC(t) =
Q

full

�Q
delivered

(t)

Q
full

⇥ 100% (2.7)

where Q
full

is the capacity of the battery and Q
delivered

is the integration of discharge current

with respect to time. Equation 2.7 doesn’t include corrective factors necessary for SOC calculation

during charging.

Due to the electrochemical nature of the battery in which a predetermined number of reactions
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can result, a determination of the number of coulombs delivered since the start of a cycle allows

an accurate determination of the SOC[59, 19]. Typically, the quantity of Coulombs counted during

discharge factors directly to the total capacity and yields a one to one mapping of the SOC. In

the case of charging, an ine�ciency of Coulomb counting arises due to side reactions within the

cells, and thus a greater number of Coulombs, as compared to the number discharged, are required

to fully charge a cell[50, 35]. The ratio between the number of delivered, to recovered, Coulombs

is known as the ‘Coulombic E�ciency’. The process of Coulomb counting is the primary method

used in this work for deriving the SOC and identifying ageing.

2.5.4 Kalman Filtering

With well developed parameters for the model of a battery cell, a method called Kalman

Filtering can be employed for improving SOC estimation when suitable computational power is

available. The process involves the comprehensive measurement of voltage verse SOC curves are

varying rates of discharge and charge, which are then used to correct Coulomb counting derivations

of the SOC[35]. Additional complexity and a corresponding reduction in protracted error is achieved

by a second level of filtering to account for hysteresis e↵ects[35]. Hysteresis causings over and

under voltages across the cell after charge and discharge cycles, respectively, which remain until

after a thorough relaxation period[48]. Kalman filtering provides a method to reduce uncertainty

in the Coulomb counting method of SOC determination by correcting the SOC result with a set of

predetermined votage vs. SOC parameters. As such, it requires a robust development of a battery

state profile before deployment that can be used for this corrective approach[19]. However, these

internal parameters vary as the cells age, and thus the Kalman filtering process requires consistent

updating to maintain its accuracy throughout the life of a battery pack. Within this work, a

separate data analysis method is used to identify 100% SOC points, the remaining SOC accuracy

considered secondary to this identification. Thus, because the accuracy of the Kalman filtering

process hinges on the accuracy of the internal parameters, the lifetime variance of which is the

topic of this work, it was not attempted in this project.
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2.6 Identifying Ageing in a Remote Battery Station

The two primary methods for identifying ageing in a Lithium cell are to perform periodic

full charge/discharge cycles of the cell to redefine the actual capacity of the cell, or to use EIS

and identify variance in the equivalent circuit which can be related to internal phenonmenon. The

focus of this is work is identify Lithium Ferro Phosphate ageing with neither of those methods,

when the battery is seldom accessible, and removing the battery from the system results in a total

system shutdown and is thus considered unacceptable. Certainly, this will greatly e↵ect the ability

to accurately identify ageing, but the situation is more reflective of an actual LFP installation.

Investigation into the ageing mechanisms has yielded an understanding of what conditions may be

indentified in a continous data set of state variables and how they contribute to overall battery

degradation.

2.6.1 Coulombic E�ciency

Capacity fade, or the reduction in charge availability for redox reductions, is most e↵ectively

identfied through periodic full discharge/charge actions on the cell. Clearly, this isn’t possible in a

remote setting in which the battery must continuously provide energy for operation. Furthermore,

over the lifetime of a battery, it isn’t an economical action to periodically cycle a battery when the

length of lifetime is a concern, as this simply serves to reduce the lifetime. What is measurable

with respect to capacity at a remote station is the total charge delivered, and the total charge re-

covered, between 100% State of Charge points throughout the operation of the battery. ‘Coulombic

E�ciency’ is defined as the quotient of the total charge delivered, and the total charge recoverd, as

shown in Equation 2.8.

⌘
CE

=
Q

delivered

Q
recovered

(2.8)

where ⌘
CE

represents this e�ciency, Q
delivered

is the total charge delivered, and Q
recovered

is the total charge recovered. ⌘ is typically quite high, and values exceeding 99% are expected

for Lithium technologies. The discrepancy in charge delivered vs. charge recovered is due to
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the occurrence of side reactions within the cell, such as the reduction of Lithium resulting in

SEI growth, during the charging process[41]. Because current measurements occur outside of the

battery pack, side reactions that occur during discharge are not captured withinQ
delivered

. However,

the acceptance of Q
delivered

as the datum to which Q
recovered

ought to approach, the Coulombic

e�ciency provides a valuable insight into operational e�ciency of the battery.

Figure 2.3: Shown are the impacts of total charge and total discharge fluctuations. The x-axis is
interpreted as the value of the variable with respect to the other, which is being held constant. The
y-axis is the resultant e�ciency. Because the total discharge is in the numerator, the impact on
Coulombic e�ciency is linear with respect to fluctuations due to error. The total discharge, residing
in the denominator, has a non linear e↵ect on the Coulombic e�ciency, but is approximately linear
for slight variations.

By tracking the current flow through a battery pack and integrating this with respect to time,

the total charge delivered, and charge recovered, can be e↵ectively measured. In an uninterupted

data set, the challenge comes in determining the start and stop points of this charge tracking.

In this work, ‘Schedule Points (SP)’, i.e. operational points at which a 100% SOC is reasonably

identified, are identified and used to mark cycle start/stop points. This identification process is

discussed in Section 4.1. Of potential concern upon identifying these SPs is the influence of error
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on ⌘
CE

.

Figure 2.3 shows the influence of fluctuating either the total charge, or total discharge, during

a cycle while holding the other constant. Because the total discharge is in the numerator, there is

a linear relationship between fluctuations and resulting e�ciency. Total charge fluctuations have

non-linear e↵ects on the e�ciency due to the inverse relationship. While this complicates the

calculation of ⌘
CE

in a system with non-trivial error, we’ll soon find in the analysis that the total

charge time throughout a cycle is a fraction of the total discharge time, which serves to reduce the

total charge error and bring the error within a linear regime, i.e for values near parity, the inverse

relation of total charge can be approximated as having a linear relation.

2.6.2 Battery Energy E�ciency

A second, Coulombic related type of e�ciency comes in the form of the Battery Energy

E�ciency (BEE). As the Coulombic e�ciency is derived by intergrating the current over time during

the charge/discharge portions of a cycle, the BEE is expounding by integrating the current/voltage

product over the same time duration. In this way, the Coulombic e�ciency is embedded in the

BEE and as a result, the BEE is maximally bound by the Coulombic e�ciency. The BEE is lower

for other reasons such as the over potential necessary during charging, which necessitates a larger

voltage across the cell during charge, as opposed to discharge voltages which are necessarily lower.

The BEE is defined in a similar manner to the Coulombic e�ciency, as shown in Equation 2.9

�
E

=
E

D

E
R

(2.9)

Where E
D

is the total energy delivered, and E
R

is the total energy recovered. In addition

to the over potential necessary to catalyze the redox reactions necessary for charging, there are

additional factors causing voltage drops within the battery such internal resistances due to charge

transfer and electrode conduction ine�ciencies. Consider the rudimentary equivalent circuit for

a Lithium cell shown in Fig. 2.4. While a more accurate equivalent circuit for a battery will

contain more components in the form of RC pairs and additional parallel branches, the entirety
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of this work from an analysis perspective takes place in the Direct Current (DC) domain and all

frequency dependent components, the majority of which are modelled as capacitors that are open

circuits at DC, can be e↵ectively combined into a single internal resistance. As a result, the internal

operations causing lower e�ciencies can be e↵ectively modelled as a single resistor in series with a

voltage source. Note; all measurements occur at the V
cell

terminals.

Figure 2.4: The Cell Equivalent Circuit model used in this work to represent internal resistance
and the growth therein representing cell degradation. While internal capacitances are present, the
only measureable quantities in this work are DC, at which frequency all capacitances are open
circuits and the sum of all internal resistances can be represented by a single resistor. R

int

is the
representing resistance in this case.

The energy delivered during discharge from t0 to t
tran

, where tran represents a change from

discharge to charge, is calculated as follows:

E
D

=

Z
ttran

t0

i
D

(t) · v
cell,D

(t)dt (2.10)

For the case of charging, the energy recovered can be expressed as:

E
R

=

Z
t

ttran

(i
C

(t) · v
oc,C

(t) + (i
C

(t))2R
int

)dt (2.11)

Although the internal parameters are not directly measurable, e.g. V
DC

, the presence of the

i2R losses indicate that an increase in R
int

will result in an increase in the amount of recovered

energy necessary for a full charge. As the internal resistance increases due to SEI growth, a decrease

in accessible anode/cathode surface area available for intercalation, and corrosion of the copper

current collector[26, 57, 47], a decrease in energy e�ciency is expected because a larger voltage
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drop will exist across the internal resistance, resulting in greater energy loss. This quantity should

be readily apparent in continued monitoring of a battery system because full cycles are evident

in the data and the calculation of power flow is the simple product of voltage and current, with

energy flow the resultant summation over the discretized cycle. The identification of a decrease in

�
E

over cycling can therefore be accepted as a direct result of internal degradation.

2.6.3 Voltage Verse Depth of Discharge

Although the voltage verse depth of discharge profile displays substantial platueau between

approximately 10% and 90%, it is expected throughout the lifetime of an LFP cell for the voltage

values to drift with respect to a fresh cell and set depth of discharge levels[35, 57]. Fig. 2.5 shows

the resultant voltage verse DOD curves for a new, and aged LFP cell, the results and chart of

which are taken from source[35]. These curves are generated by Coulomb counting through very

steady, and slow, rates of charge and discharge while tracking the voltage. While the exact relation

of deviation to lifetime isn’t know, a trend in the deviation over the lifetime of the batteries in this

work will be sought.

Figure 2.5: A plot of the open circuit voltages and charge/discharge voltages of a fresh, and aged,
LFP cell. Of interest is the spread in voltage measured with age. The image is from [35]
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Although the charging rates of the LFP batteries in this work will vary, the rate of discharge

and depth of discharge, particularly over the night, will be both consistent, and apprieciable. As

such, by generating the voltage verse DOD curves of the battery for substantial cycles, deviations

in this voltage can be mapped.

2.7 Battery Management Systems

One challenge with Lithium cells is their susceptibility to damage with even slight deviations

from the operating voltage or temperature[31]; as a result, robust Battery Management Systems

(BMSs) are required for Lithium battery packs. Each Lithium cell (or set of paralleled cells)

requires a cell module mounted in parallel to monitor voltage, bypass charging current, and track

the temperature of its assigned cell. When constructed as a pack, in which many cells are placed

in series, a Battery Control Unit (BCU), will monitor the operation of each cell module such that

it can isolate the pack in the event of an issue such as over temperature, over charge, or over

discharge[29]. Although LIBs require a nontrivial amount of power elecronics for safe operation,

the additional costs are outweighed by the benefits.

The nature of this work involves monitoring the current flow into, and out of, assembled

LFP battery packs which internally house the BMS components. Therefore, consideration of the

consumption of this management equipment is necessary to understand its e↵ect on the Coulombic

and Battery Energy e�ciencies. The two cases, of charging and discharging, can be modeled

as shown in Figures 2.6 and 2.7. Throughout the lifetime of the battery, no deviation in power

consumption by the BMS is expected, per the manufacturer.

During discharge, the LFP pack will source an unmeasureable quantity of current, to the

BMS, which can be expressed as:

i
cm

= i
lfp

� i
bms

(2.12)

For the case of charging, as shown in Fig. 2.7, we have the following relation:

i
cm

= i
lfp

+ i
bms

(2.13)
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Figure 2.6: The case of current flow within the a LFP battery with internal BMS circuitry during
discharge.

Figure 2.7: The case of current flow within a LFP battery with internal BMS circuitry during
charge.

As evident from Equations 2.12 and 2.13, the presence of the internal BMS circuitry serves

to cause an underestimate in the amount of current delivered by the LFP cells during discharging,

and an over-estimate of the current consumed during charging. Even though the discrepancy is

related to the time of each phase, charge or discharge, the only possible result is a decrease in

Coulombic e�ciency. However, the battery supply company was consulted for estimating the BMS

consumption and a steady current consumption of 50µA was quoted, meaning an entire day of

operation will only result in 1.2mAh of LFP consumption error. As will later be discussed, the

current monitor error is found to be ± 30 mA for the battery measurements, which means the BMS

consumption can be neglected as an influence based on the accuracy obtainable in this work.



Chapter 3

The System

In the Fall of 2016, the Institute of Electrical and Electronics Engineers (IEEE) Smart Village

division providing funding to the University of Colorado at Boulder (CU Boulder) to commission a

Wifi Long Distance (WiLD) testbed for the purpose of qualifying and troubleshooting a variety of

wireless solutions applicable to non-connected regions of the world. Throughout the Spring of 2017,

the testbed infrastructure was assembled and deployed by a team consisting of multiple iterations

of undergraduate students lead by the author, and guided by Professor Alan Mickelson. Multiple

papers have been written on the development, deployment, and results of the testbed experiment,

including the following [27, 38, 37].

The testbed, as it exists today, consists of a base station located in the CU Boulder Engineer-

ing Center tower, three local stations found on the following CU Boulder properties (Wilderness

Place, Space Sciences, South Complex), and a long distance site on Niwot ridge in the mountains

to the west. As a result of the intentions of the testbed, i.e. to assess communications equipment

over time, each station is equipped with a complete microgrid capable of managing all power needs

with multiple days of battery backup in the event of a poor solar resource. The singular source of

energy at each microgrid comes from a single Solar Photovoltaic (PV) panel, or in the case of the

Niwot Ridge installation, an array of Solar PV panels.

The installation of the testbed to its current level of operation was a long and arduous process,

involving a high level of commitment to many facets from site permissions, engineering designs,

budget work, fabrication, and much more. Following the initial green light on the project, the
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Figure 3.1: The layout of the entire local WiLD network, with a 5km radius circle superimposed
on the map of Boulder, CO to provide a sense of distance from the Engineering Center Tower. The
two stations housing the batteries under scrutiny for this work are ’Wilderness Place’ and ’East
Campus (a.k.a SPSC). Not shown is the Niwot Ride station, approximately 24 km to the west near
the continental divide. This station’s Energy Storage System isn’t studied in this work.

Fall 2016 Semester was spent identifying suitable locations for the local and long range stations,

preparing in-depth plans and schematics for approval from the Univeristy of Colorado Real Estate,

Facilities Management, O�ce of Information Technology and the Dean’s O�ce, and procuring

approval for installation at each site. Following acquisition of the project funding late in 2016, the

first half of the Spring 2017 Semester was spent sourcing the requisite equipment and fabricating

the station electronics. With full approval for implementation, the local stations were installed late

in the the Spring 2017 Semester. Because the main purpose of the power systems is to operate

the radio equipment, the monitoring system wasn’t fully operational at the same time as the radio

systems which were considered priority. As a result, the monitoring systems and usable data

acquisition came online in early June 2017, for both the Wilderness Place and SPSC stations, with

partial data sets from Wilderness Place starting in April of 2017. See Fig. 3.1 for the layout of the

local stations, where Wilderness Place and SPSC are found to the northweast of the Engineering

Center Tower.
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3.1 Station Components

The stations themselves are essentially embedded systems with a modest variety of power

equipment, monitoring equipment, network devices, and a computational system. Power equipment

consists of a Solar PV Max Power Point Tracking (MPPT) charge/load controller, a 12V voltage

regulator, and a 5V buck converter. The distribution system is a simple fused bus, with a common

ground rail. Three Direct Current (DC) Power over Ethernet (PoE) injectors provide power and

and connectivity to the variety of radios that will eventually populate the system. At the time of

this analysis, only one PoE injector was in use for a piece of LigoWave WiLD equipment. A network

switch acts as a Local Area Network (LAN) bus between the WiLD radios and the Raspberry Pi 3.

The Raspberry Pi 3 manages data storage and acts as a remotely accessible device at each station.

Through the radio connection, the Pi at any testbed station can be accessed through SSH protocol.

An Arduino microcontroller captures data every five seconds through a variety of voltage dividers,

current monitors, and a temperature sensor, all of which is stored locally on the Pi and transmitted

daily to the Server located in the Engineering Center Tower.

Figure 3.2: The layout of all the system components, mounted to a sheet of garolite with an
assortment of stand-o↵s, bolts, and lock nuts. From upper left, clockwise: 20A MPPT Charge
Controller, Negative Bus, Postive Fused Bus, 3 Power over Ethernet (PoE) Injectors, Raspberry
Pi 3, Five Port Network Switch, 5V Buck Converter, 12V Voltage Regulator, Arduino, Voltage
Dividers, Current Monitors. All items to the right of the Arduino and Charge Controller are
lumped into the block ‘Aggregate Load’ in Fig. 3.3.
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Because the system consists almost entirely of constant consumption devices, the Load con-

sumption of the entire system is steady, nonwithstanding any equipment swaps. The WiLD radios

do varying in power consumption at higher transmit powers, but these variations are slight with

respect to the system consumption as a whole. Incidentally, this consistent consumption allows for

a steady decrease in the State of Charge (SOC) following a day of good solar resource in which the

ESS will achieve a 100% SOC and then decrease consistently through the night. This is a somewhat

periodic occurence in the data and allows for the comparison of varying voltage verse SOC curves

to tease out variance due to capacity fade.

Figure 3.3: Shown is a high level schematic of the Wilderness Place power system, with all con-
suming devices lumped into an aggregate load. The three current branches managed by the charge
controller are individually monitored with ACS714 Hall E↵ect monitors. The voltages are also
monitored, with the load and battery sharing a negative connection relative to the Arduino; hence,
the negative voltage branch from the PV connection being the only negative reading necessary.
See Figs. 3.8 and 3.9 for a break out of the voltage dividers.The primary di↵erences between the
Wilderness Place and SPSC stations are a 140W Solar PV panel and 200Ah battery at SPSC.

3.2 Bioenno Power

Bioenno Power, a subsidiary of Bioenno Tech, LLC, is a southern California company focused

on the distribution of Lithium Ferro Phosphate (LFP) batteries and associated components. The
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batteries under scrutiny for this work were sourced through Bioenno Power for the purpose of

filling out the power systems for two of the testbed local client stations stations. Chosen were the

LFP 12.8V, 150 Ah packs. Additionally, LFP compatible charge controllers were procured through

Bioenno Power. Although the batteries were received as a turn-key installation with minimal

knowledge of the internal setup, the company has been quite helpful by providing information

regarding the internal components, such as the Battery Management System (BMS) and balancing

cell modules, as well as data on charge/discharge characteristics corroborating the voltage vs. SOC

profile of Fig. 2.2. Although two 12.8V, 150 Ah packs were ordered for the Wilderness Place

and SPSC stations, for reasons unknown to the author, Bioenno Power supplied a 150 Ah and an

upgraded 200 Ah battery, citing the upgrade as a ‘thank you’ for continued business. This doesn’t

a↵ect the experiement, except to reduce the relative Depth of Discharge of the 200 Ah pack as

compared to the 150 Ah pack.

3.2.1 Batteries

The Lithium Ferro Phosphate batteries supplied by Bioenno Power come as a complete

device with all requisite onboard circuitry for safe operation installed and calibrated. The pack

arrives in a waterproof container, with only negative and positive terminals exposed (See Fig. 3.4).

Although the lack of immediate transparency in the battery system may be seen as an ostensible

hindrance to the experiment, this was instead interpreted as another aspect of the system relating

this experiment to actual implementation of ESS as opposed to laboratory testing. The 12.8V pack

is intended for operation as the only ESS device in a system because multiple packs would have to

communicate system state information, which isn’t possible with the turnkey status of the Bioenno

device. Regardless, the stations operate at a nominal 12 volts, and only required a single battery

pack at the 150 Ah, 200 Ah capacities.

To better understand the internal circuitry of the battery packs, Bioenno Power was queried

and subsequently provided key information. The cell around which the battery pack is designed is

a cylindrical LFP 3.2V, 3300 mAh, of the 26650 variety. Thisnumerical style tag breaks as follows:
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Figure 3.4: The 12.8V, 150 Ah battery pack supplied by Bioenno Power, which was eventually
located at the Wilderness Place testbed station.

the first two digits represent the diameter, in mm; the remaining three digits are the length, also in

mm. Therefore, these cyclindrical cells have a 26mm diameter, and are 650 mm length. In the case

of the 150 Ah pack, the cell layout is 4S46P, i.e. 46 in parallel, and each 46P connected in series

with three other sets of 46 in parallel. The 200 Ah pack is in a 4S61P configuration. As discussed

in Section 2, Lithium batteries require Battery Management Systems (BMS) and balancing cell

modules. The Bioenno packs contain these components, integrated and calibrated, for immediate

deployment. As determined in section 2.7, the consumption of the BMS can be neglected with

minimal impact beyond the resolution of the monitoring system.

3.2.2 Charge Controllers

The charge controllers located at the Wilderness Place and SPSC stations are both produced

by Bioenno Power and are specfically designed for LFP chemistries. They are 20A Max Power

Point Tracking (MPPT), with internal Load and Battery disconnect mechanisms. MPPT is a

high e�ciency method in which the controller tracks the variations in the power curve of the

Solar module due to irradiance fluctuations and places the panel voltage at the MPP such that
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the corresponding current output yields the maximum power output. In addition to managing

the charging of the LFP battery through the MPPT of the solar module output, the controller

also manages the Load/Battery connection such that the LFP isn’t over discharged. As both the

charge controller and the onboard BMS of the battery both provide overcharge and overdischarge

protection, there is protection redundancy.

The controllers are flagged as being LFP specific; however, this is due to the protection mech-

anisms alone as the variations in solar output make the charge controller incapable of performing

the optimal CCCV charging protocol for LFP chemistries. Regardless, the controller still performs

a three stage charging protocol when possible, which consists of the following steps:

• Bulk: The maximum current flow possible is harnessed from the solar resource during

charging when the SOC is betweeen 20 - 80%. This is comparable to the Constant Current

(CC) phase through current magnitude comparisons; however, a constant current output

isn’t always possible due to irradiance.

• Absorption: For the remaining 80 - 100% of the charge cycle, the voltage is held constant

while the current tapers o↵ due to increasing cell voltages. This is akin to the Constant

Voltage (CV) phase, and is quite comparable as the voltage is easily maintained through a

variety of solar irradiances, even though the current may fluctuate widely.

• Float: Upon full charge, the charge controller matches the peak voltage of the battery

pack and allows a trickle charge to flow to the pack after slight decreases in capacity due

to load consumption balancing. This phase is beyond the CCCV charging protocol and is

a factor of solar charging which increase utilization of the resource as available.

To better understand the operation of the Charge Controller when no solar resource is

present,(i.e. the controller is only managing the exchange of power between the battery and load),

this operation was simulated in the laboratory with a DC power source. Measurements of current

flow into, and out of, the charge controller were taken with Fluke multimeters, as well as the voltage

on the battery terminals and the load terminals. The voltage of the DC power source was adjusted
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between the operating regime minimum and maximum while the load was maintained as a static

resistance a↵ecting an expected field consumption.

Table 3.1: The results of a laboratory test of the Bioenno Charge Controller used at the stations.
This emulates the transfer of energy between the battery and load while no solar resource is present.

V
Battery

(V) V
Difference

(V) I
Difference

(A) P
Controller

(W)

11.50 -0.02 0.005 0.03
12.15 0.02 0.005 0.09
12.85 0.03 0.005 0.11
14.10 0.02 0.005 0.11
14.90 0.03 0.005 0.13
15.70 0.03 0.005 0.15

As is evident from the results, higher voltages cause an increase in consumption through a

non-linear relation by the charge controller, which serves to lower the e�ciency. However, what is

of interest for the purposes of this experiment is the steady di↵erence in current. This result will

allow a more rigorous Coulomb counting analysis in preceding sections.

3.2.3 Solar Photovoltaic Panels

The Renewable Energy Sources (RESs) are simple polycrystalline solar cell panels rated at

140W for the SPSC station, and 100W for the Wilderness station. The discrepancy in output

power is due to a higher load demand at the SPSC station in the form of a second Raspberry Pi

and WiLD radio to simulate additional clients on the load. V
oc

= 22.3V under Nominal Operating

Cell Temperature (NOCT) conditions, which placed a lower bound on the negative voltage divider

shown in Fig. 3.9 at apporximately -12V. An I
sc

of 8.48A keeps the panel output well below 50%

of the charge controller capabilities, a factor that likely reduces the e�ciency the charge controller

itself. The panels are ballast mounted to the roof at each station. While this method is ideal from

an implementation standpoint (no roof penetrations), it reduces e�ciency because the maximum

angle possible is only 20� from horizontal, while the ideal fixed tilt angle on the front range is 33.5�.
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3.3 The Stations

The following provides a brief overview of the two stations of the CU Boulder WiLD testbed

which house the two batteries under scrutiny for this work.

3.3.1 Wilderness Place

The Wilderness Place station was actually commissioned ahead of the rest of the testbed

with a separate set of funding. At the end of the Summer of 2016 the station was installed and

powered with an LFP battery pack that was assembled by the author. This pack isn’t part of this

analysis for multiple reasons, the least of which is an inconsistent data set due to an undersized

pack for the load leading to repeated load disconnects and partial data sets. The 150 Ah LFP

pack was initially installed in a separate location with a larger solar panel in early April of 2017.

Following upgrades to the system, the 150 Ah LFP pack was then deployed to the Wilderness Place

station in early June of 2017. Interestingly, the larger panel caused di↵erent behavior between the

charge controller and the battery protection system, leading to a di↵erent type of cycling. This

is discussed in detail in Section 4.2. Since June of 2017, the Wilderness Place station has been

operational with full current, voltage, and temperature monitoring. The station is shown in Fig.

3.5.

The metal structure to the right of the black container is an asethetic structure implemented

on the entire Wilderness Place building to block the rooftop equipment. Incidentally, this also

qualifies as an equipment ground and was utilized as such for the system. Additionally, this

structure blocks the majority of the illumination of the Sun on the power system throughout the

day which helps to reduce the midday temperature at this station.

3.3.2 Space Sciences (SPSC)

The Space Sciences installation, colloquially known as the SPSC, was commissioned at the

end of May, 2017. Being the third station installed of the testbed, the power system bugs had
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Figure 3.5: The Wilderness Place Station on the roof of the CU Boulder Wilderness Place building.
The 100W panel is shown with the power feeds and grounding wire leading to the power system
housed in the black container. The ballast system for the Solar panel is evident, as is the low angle
which will significantly reduce output in the Winter, well beyond the reduction expected for a panel
at an optimal angle. The WiLD radio can be seen on the top of the mast above the black system
container.

all been eradicated and the system operated as intended from the first initialization. Thus, the

data set for the SPSC station begins at the start of June. A second Raspberry Pi 3 and WiLD

radio are colocated at the SPSC station to add a greater load on the communications system. The

result of this colocation is an increased draw on the power system, which a↵ects a greater Depth

of Discharge (DOD).

As shown in Fig. 3.6, the grounding point for the SPSC station is the 45� angle brace attached

to the concrete wall to the left of the black system container. The photo is of late afternoon when

the system container is in the shade due to the wall located due west. Throughout the morning and

mid-afternoon, the entire system is exposed to the Sun and very high temperatures are experienced

within the container.
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Figure 3.6: The Space Sciences (SPSC) system, located on the roof of the SPSC building on the
CU Boulder campus. In the foreground is the 140W panel with the ballast mount system resulting
in an approximate 15� angle from horizontal. The black container with the power system is visible
beyond the panel, and the WiLD devices shown on the mast above the black container.

3.4 Data Capture

The microcontroller selected to measure and log the voltage, current, and temperature states

of the two systems was the Arudino ATmega 2560. This device has 16 analog pins with a voltage

swing of 0-5V and 1024 (210) bit resolution. A sketch (code) is uploaded to the device, after which

the Arduino broadcasts the results of all measurements at a set periodicity of five seconds. These

measurements are captured by a Raspberry Pi through a USB A/B cable, which logs the data by

concatenating the reading with a .txt file created for the current day. The data set is truncated in

real time at midnight, and a new file is created for the following day.

Issues with data capture have persisted throughout the duration of this experiment in that

occasionally the microcontroller will seize operation. This is mitigated though an I/O connection
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with the Pi which re-uploads the sketch to re-initiate data capture. Regardless, there exist periods

of inconsistent data capture in the data set. Because the majority of the anaysis requires a complete

set between Schedule Points, the truncation of the set with the close of each day allows for ease in

identification of incomplete daily sets and the subsequent removal of these sets prior to analysis. A

summary of the complete data sets is found in Section 4.

The nature of the analog measurements requires the microcontroller to assign a value rep-

resenting an e↵ectively continuous (the resolution of current theoretically goes to the charge of an

electron, which is e↵ectively continuous when compared to a 1024 bit controller) variable to either

of the adjacent analog values. See Fig. 3.7 for a graphical respresentation. While the error of this

system is based on the voltage dividers/current monitors and the associated 1024 bit resolution

over the 0-5V analog pin range (see Sections 3.4.1 & 3.4.2 for the associated errors), variability

in the measurements is reduced by sampling the analog output 1000 times over the five second

interval, and then printing the average value over this interval; see Equation 3.1.

Figure 3.7: A depiction of discrete measurements of a continuous variable. In this diagram � rep-
resents the measurement resolution, which varies for di↵erent voltage and current measurements
and is described in Sections 3.4.1 & 3.4.2. The line represents the continuous current or voltage
variables, while the flanking tickmarks are two adjacent analog measurement points. The microcon-
troller is restricted to assigning either of the flanking measurement points to a continuous variable
that resides between them.

A(n) =

P
N

n=1 a(n)

N
(3.1)
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where A(n) represents the value printed by the Arduino, a(n) represents one of the samples taken

during the five second interval, and N is the number of samples. This method doesn’t improve

the accuracy, which is an aspect of calibration and is covered subsequently, but it does improve

precision in that a minor fluctuation at the sample time that could trip an analog value which

doesn’t corroborate with the average value of the state variable through the five second interval

isn’t printed, but instead the average is taken.

3.4.1 Voltage Resolution

We can see from Fig. 3.7 that the error associated with any analog measurement is:

e(n) = ±�

2
(3.2)

where e(n) is the sampling error, and � is the resolution of the analog device and the associated

measurement device. This mathematical relation exists because a value beyond �/2 of the analog

point will trip an adjacent analog value. The base resolution of the Arduino microcontroller voltage

capabilities, in which a voltage between 0 and 5V is monitored, is simply:

� =
5V � 0V

1023
= 4.9mV (3.3)

where n is the sample point between 0 and 1023 representing 0 - 5 volts.

Figure 3.8: The following voltage divider scheme is used to measure the postive voltages of the Solar
PV panel, the LFP battery, and the Load. Although necessary to measure the higher votlages, this
also causes an increase in the associated analog error of the measurement.

The system under continuous monitoring exhibits voltages from -8V to 15V. The voltages

across the Load and LFP battery are confined to values between 9 - 15V, share a common ground,
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and are positively tied. Monitoring of these voltages with an Arduino requires a voltage divider

to restrict the analog sampling to a value between 0 and 5V. See Fig. 3.8. The scaling factor

of this voltage divider yields a measurable voltage with respect to the Arduino, but the resultant

resolution is:

�
PositiveV oltage

= (4.9mV )
220k + 100k

100k
= 15.7mV (3.4)

A challenge arises in measuring the voltage across the Solar PV panel, which performs Max

Power Point Tracking by adjusting the negative terminal at the charge controller farther negative

with respect to the ground of the Load. To perform accurate measurements of this negative voltage

relative to the ground of the load, summed voltage dividers were required with the Arduino 5V

rail voltage as a constant voltage source. The schematic is shown in Fig. 3.9 and the associated

resolution is �
NegativeV oltage

= 19.1mV .

Figure 3.9: Shown is the negative voltage divider implemented to monitor the negative voltage
terminal of the Solar PV panel, which becomes negative with respect to the Load ground during
MPPT operation.

3.4.2 Current Resolution

The current monitors used in the system are of the Allegro ACS714 variety, which is a low

power, low resistance current measurement solution that operates o↵ of the Arduino rail voltage

supply. The ACS714 makes use of the Hall e↵ect, in which charge carriers exposed to a magentic

field experience a trasverse deflection, thereby causing a voltage di↵erence normal to the conductor,

to measure current. This voltage is measured and scaled internally to fit the Arduino analog voltage
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constraints, namely 0 to 5V. The device consists of a small PCB with Vcc, Vout, and Gnd connec-

tions which interface with the rail voltage, analog pin, and ground, of the Arduino, respectively.

The device has a nominal 1.5% error at a standard temperature of 25�C. This error fluctuates over

the operation regime, but over the anticipated temperatures at the system installation site (-15� -

50�C), the fluctuations are minimal and the error is taken as 1.5%.

Three separate current monitors are used for the three current carrying connections shown

in Fig. 3.3. The PV current is tracked with a monitor capable of measuring 0A to 30A of positive

current flow. The battery connection is monitored with a -30A to 30A capable device, and the

Load is tracked with a -5A to 5A device. Each current monitor was selected to have the minimal

measuring capacity overshoot to reduce the resolution and provide a more accurate measurement.

The resolution of each device is simply:

� =
|Max

measurement

�Min
measurement

|
1023

(3.5)

The resultant resolution of the Battery current monitor is then:

�
Battery

=
30A� (�30A)

1023
= 58.6mA (3.6)

A summary of the various measurement schemes and associated resolutions, for both the

voltage dividers and the current monitors, is presented in Table 3.2.

Table 3.2: A summary of the various devices, measurement capabilities, and associated analog
resolution constraints.

Device Position Measurement Capabilities Resolution

Positive Voltage Battery/Load/PV 0 to 16V 16 mV
Negative Voltage PV -13V to 6V 19 mV
Current Monitor PV 0A to 30A 29 mA
Current Monitor Battery -30A to 30A 59 mA
Current Monitor Load -5A to 5A 10 mA
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3.4.3 Initial Calibration

Due to the linear nature of the devices, the calibration was construed a simple task in which

a variety of voltages, or currents, depending on the device being tested, were placed across the

device while the Arduino tracked the resultant analog value. The analog outputs, as well as the

applied voltage or current, were tracked and a mapping between the two was created. From this

mapping, a linear relation was derived such that the analog values recorded by the Arduino would

map to the physical quantity being measured. Although this initial calibration seemed su�cient,

it was later found during analysis that the results were a bit unusual, leading to the conclusion

and enactment of on-site calibrations at the Wilderness and SPSC stations, which is the topic of

Section 3.4.4.

3.4.4 Calibration Refinement

Due to preliminary analysis yielding slightly nebulous results, an in-place calibration of the

three current monitors at each station was deemed necessary to rectify the existing data and ensure

the capture of more accurate measurements in the future. The calibration involved the setup of

a power supply at the installation sites of the two Bioenno battery packs to create a controlled,

variable current flow through the monitors, along with the testing equipment necessary to capture

the current. The data capture portion of the calibration involved incrementally changing the current

flow through the test circuit and noting the multimeter test value. Upon equilibrium in the Arduino

measurement, which isn’t immediate due to the five seconds between printing of the five second

running average, this value was paired with the multimeter value.

To rectify existing data, a mapping between the existing values representing current flow

and the actual values was created as follows. First, the di↵erence between these two samples was

defined as follows:

D(n) := M(n)�A(n) (3.7)

whereM(n) represents the multimeter value at incremental current n, and A(n) represents the same
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Figure 3.10: The setup for the onsite calibration of the station current monitors. Note the power
supply and power resistor providing a variable current flow for measurement purposes.

for the Arduino value. Upon calculation of D(n) with the data sets of M(n) and A(n), a scatter

plot of D(n) vs. A(n) was generated and linear regression used to determine the characteristics

of the relationship. Linear regression is used due to the linear nature of the current monitors, as

discussed in Section ??. The results provide values for m and b for Equation 3.8.

D(n) = m[A(n)] + b (3.8)

The corrected values are those of M(n), so the goal is to map the A(n) values to M(n). The

result is the following:

M(n) = A(n) +D(n)

= A(n) +m[A(n)] + b

= A(n)[1 +m] + b

(3.9)

With the derived values through linear regression of m and b for each of the three current

monitors at the two stations, Wilderness Place and SPSC, the historic data can now be mapped to

the the correct value using only the existing values. See Fig. A.2 in the Appendix for a graphical

display of the applied correction.
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Figure 3.11: The results of post data capture analysis of the battery current monitor at the SPSC
installation. The linear regression fit will be used with Equation 3.9 to rectify existing data by
mapping the previously recorded values to the correct values.

Table 3.3: A summary of the linear regression results following the onsite calibration of the Wilder-
ness Place and SPSC installations.

Station Monitor m b R2

Wilderness Place Battery -0.0184 -0.1584 0.949
Wilderness Place Load -0.0261 0.1648 0.975
Wilderness Place Solar PV -0.0291 0.0151 0.968
SPSC Battery -0.0209 0.0641 0.980
SPSC Load -0.0258 0.0685 0.988
SPSC Solar PV 0.0066 0.0096 0.834



Chapter 4

Data

The data collected from the stations comes in the form of a .txt file which contains all lines

of output from the Arduino with a five second temporal resolution for each day. The system is set

up such that the data capture to each .txt is terminated at the end of each day and another file is

created for the following day. In this way, the data from each day of operation is well categorized.

The system is calibrated such that in the event of any restarts, upon a full start up data capture

commences once again. An unavoidable consequence of system down time is an incomplete data

set for a complete battery cycle, i.e. there will be missing data points while the battery is still

undergoing state changes due to recovery charging from the charge controller, or continued load

consumption during microcontroller hiccups. As a result, these system shutdown events result in

the termination of a ‘data string’, which is defined here as a complete set of data with data points

every five seconds. As a first step to data analysis, these data strings are identified and compiled

before Schedule Points are identified.

As a brief example of the type of data collected throughout the experiment, Fig. 4.1 shows

the compilation of all of the data collected througout the month of August at the Wilderness Place

station.

4.1 Identifying Schedule Points

The foundation of this analysis relies on the ability to identify complete cycles of the battery

pack through analysis of voltage and current behavior. Because of the charge controller and onboard
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Figure 4.1: The resultant data capture of all 8 monitoring devices located at the Wilderness Place
station. The upper four graphs are all voltage capture, the next three current capture, and the
final temperature. Each line represents the discrete time series of captured data for a single day

battery circuitry, combined with the oversized output of the solar resource as compared to an

average night of load consumption, a 100% SOC state is anticipated to be achieved nearly everyday

when the Solar resource is appreciable. In fact, it is found in the early data of the Wilderness Place

set and the SPSC set that many small complete cycles occur throughout a day with good solar

resource. These points of 100% SOC are known as ‘Schedule Points’ (SP), and with the data set, it

is possible to identify all of these points through simultaneous analysis of the voltage and current

flow at the battery interface. Upon identifying these points, the calculation of the SOC throughout

each cycle is a simple summation.

The data is combed with moving windows to identifying the following criteria, which are

accepted as necessary and su�cient for determining a SP:
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• Cuto↵ Voltage: Voltage state variable must be a local maximum and correspond, within

a set error, with a predetermined cuto↵ voltage imposed either by the LFP charge controller

or the Battery BMS itself. This voltage must also represent an over voltage point, as a

local maximum alone isn’t su�cient for identifying an SP as local maximums always exist

in the a data set, even on days with a low solar resource.

• Current Cuto↵: The current flow must exhibit rapid ramping to an expected current flow

corresponding with anticipated behavior at C
full

. In the case of the Wilderness station,

the Battery BMS terminates current flow and the Solar PV output is diverted to the load

exclusively. With the SPSC station, the Solar PV is curtailed upon realization of a Schedule

Point, and the battery begins supplying all power necessary to operate the load.

After preliminary analysis of the data, in which any incomplete portions are removed from

the set and ‘Strings’ are determined by consistent data acquisition, the code shown in Algorithm 1

is implemented to identify the Schedule Points.

1: procedure Schedule Point Identification(String)
2: input:
3: dataset(n,(v,i)) full string of uninterupted data, with voltage and current
4: stringlen length of string
5: overvoltage accepted cuto↵ voltage - 0.1V
6: current tolerance accepted zero current
7: o↵ local bounds
8: output:
9: sp(n,i,v) schedule point(position, current, voltage)

10: initialize:
11: SP = []
12: count = n+ off
13: if i > �stringlen then return false

14: localmax = 0
15: search = 1
16: for: n = start + o↵ : stringlen - o↵
17: if dataset(n,i) < current tolerance & search == 1 then
18: local max = max(dataset(n� off : n+ off, v))
19: if local max > overvoltage then
20: SP = [SP ; countdataset(n, (i, v))]
21: search = 0
22: count = count+ 1
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The results of Algorithm 1 return the locations of Schedule Points within full strings of

data. While the for loop implementation is of computational order N, and would otherwise take

an enormous amount of time given the sets of data containing well over 1 million lines, the actual

implementation incorporates logical arrays with MATLAB to rapidly identify the SPs. These SPs

are then used as markers of a 100% SOC of the battery, with which complete charge/discharge (not

necessarily a full discharge) are identified and statistics can be developed.

4.2 Wilderness Place Data

Shown in Fig. 4.2 is the data set for the string of April 4 - 11, during which time the battery

was located at a separate station, not yet the Wilderness Place station. The overlaid red circles

on both the upper (voltage) and lower (current) represent the SPs determined by the Algorithm

discussed in Section 4.1. Obvious from the current chart is a rapid decrease in current flow into

the battery, here represented as negative current flow. These instances, when corroborated with a

peak voltage event, are the two separate voltage/current scenarios that together identify a SP.

As previously noted, the Wilderness Place battery was located at another site during the first

two months of operation, during which time it was colocated with a 140W Solar PV panel. Upon

relocation to the Wilderness Place station, a 100W Solar PV panel become the RES, which is the

only change in equipment that occurred. This slight change seems to have a↵ected the way the

charge controller and BMS operate in cahoots to manage the over charge protection. Consider Fig.

4.2. Upon achieving a 100% SOC, the current flow from the battery immediately becomes positive

and equal to the load consumption, which indicates the battery has become the power source for

the load while the solar resource has been disconnected by the charge controller. The voltage of the

battery is then observed to fall rapidly, until the charge controller brings the solar resource back

online. This results in many cycles throughout the day.

Now consider the visualization of the string of data for July 8 through the 11th. During

this time, the Wilderness Place battery was located at its intended station at the Wilderness Place

station, with the smaller Solar PV panel at a rated output of 100W. Now, it can be seen that upon
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Figure 4.2: The operation of the Wilderness Place battery system during April 4 - 11, 2017. Note
the overlaid 100% SOC, represented as red circles.

reaching a 100% SOC, the current flow from the battery drops to zero, which indicates that the

battery BMS has disconnected the battery pack while the solar resource at the charge controller

supplies power to the load. The fluctuations in current flow from zero are evidence of the battery

pack supplying the balance in necessary power as the solar resource fluctuates. The result is far

fewer cycles of the battery througout the day. We’ll see throughout the analysis of the data that

beyond the simple reduction in the quantity of cycles, this also causes some fluctuations in the

Wilderness Place e�ciency.

Table 4.1 provides a summary of each complete data set derived from the Wilderness Place

raw data, as well as the number of Schedule Points identified with the SP Algorithm. Note the far

greater number of Schedule Points during the month of April and May, as opposed to the number

in the preceding months. This is due to the re-location of the battery pack to another site where

the new Solar PV panel was 40W less in power output. As highlighted in Figures 4.2 and 4.2, the
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Figure 4.3: The voltage and current profiles of the Wilderness Place battery from July 8 - 11.
Overlaid are the determined Schedule Points representing 100% SOC, as determined by the Schedule
Point algorithm.

Table 4.1: A summary of the data set from the Wilderness Place station, including the parsed out
complete strings and the quantity of identified Schedule Points within each String.

Month Days Length(Days) Total Schedule Points

April 4 - 11 8 27
April 18 - 29 12 37
May 1 - 16 16 51
June 6 - 30 25 29
July 1 - 5 5 6
July 8 - 11 4 7
July 15 - 31 17 17
August 3 - 31 29 35
September 1 - 5 5 5
September 14 - 30 17 4
October 1 - 10 10 0
October 14 - 31 18 0
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master control of the BMS/charge controller hiearchy was swapped with this relocation.

4.3 SPSC Data

The Space Sciences data exhibits the sort of cycles experienced by the Wilderness Place

battery before being relocated with a smaller Solar PV panel. Fig. 4.4 shows the operational

curves of the battery located at the SPSC station from July 1 to July 5. It is clear from these

curves that the battery recovers charge until the voltage reaches a cuto↵ threshold around 14.7V,

at which time the charge controller curtails all available Solar PV resource and sources the energy

necessary to operate the load from the battery alone.

Figure 4.4: The battery voltage and current profiles at the Space Sciences station from July 1st
to the 5th, with overlaid 100% SOC points. Note the similar operation to the Wilderness Place
operation before relocation.

It should be noted that between the two operational procedures seen at the two stations, i.e.

battery cuto↵ vs. solar cuto↵, there is an obvious ine�ciency in the operation which curtails the

Solar entirely. Not only does this neglect the usage of the available Solar resource, which reduces

the overall output of the Solar PV and increases the amount of charge required from the battery
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itself, it also increases the number of cycles that the battery will undergo. The operation of these

systems from a charge controller standpoint is beyond the control of the author as the devices

were sourced from a proprietary manufacturer, and combined based on the recommendation of said

manufacturer company. While the lifetime of this experiment will likely not result in the realization

of these disadvantages, over the useful life of the components themselves, the SPSC battery will

likely su↵er an earlier failure.

Table 4.2: A summary of the data set from the SPSC station, including the parsed out complete
strings and the quantity of identified Schedule Points found within each String.

Month Days Length(Days) Total

June 7 - 30 24 101
July 1 - 5 5 23
July 15 - 31 17 52
August 3 - 31 29 83
September 1 - 7 7 25
September 14 - 30 17 6
October 1 - 5 5 0
October 7 - 15 9 0
October 17 - 23 7 0

4.4 Fall 2017 Weather Impacts on Data

The Fall of 2017 on the Colorado front range was ostensibly normal from a meteorological

standpoint; however, the data sets from the Wilderness Place and SPSC stations display a sharp

decrease in Solar irradiance in September not simply due to the lowering position of the Sun in the

southern skies. The data from both stations display a chaotic Solar charging current throughout

the month of September, with near zero charging on September 23, 24, and 27, the first two days

constituting an early Fall snowstorm, and the last a complete cloud coverage day. As a result of

this poor solar resource Fall, the quantity of Schedule Points sharply reduced in September, and

became zero for the entire month of October at both stations. As the majority of this data analysis
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occurs between Schedule Points, which are taken as clear indicators of 100% SOC, the bulk of the

data sets from September and October has yielded a lack of useful data for the purposes of this

work.

4.5 Operation of a Battery through the Day

Although a macro analysis of the entire data set to identify trends in the ‘Battery Energy

E�ciency’ and ‘Coulombic E�ciency’ is the goal of this work, it will be well appreciated by the

reader to receive an upclose analysis of the operation of the battery throughtout the daily opera-

tions. For this purpose, the voltage and current profile from the entire day of operation on June

6, 2017 at the Wilderness Place station is presented, along with a breakout of what the profiles

indicate as far as battery operation. Fig. 4.5 provides the current and voltage profiles.

Figure 4.5: The voltage and current profiles througout the day on June 6, 2017 at the Wilderness
Place station are presented for a brief analysis on the actual implications of the variety of outputs.

• 0:00 - 6:00: Nightime; the continuous transfer of energy from the battery to load is evident

in the positive current flow from the battery terminals. Notice the slight ramp in current
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flow, coinciding with a slight decrease in voltage. This indicates movement on the SOC vs.

OCV profile, and the counter action (current increase with voltage decrease) is necessary

to maintain a steady power output to match the load consumption.

• 6:00 - 9:00: As the sun emerges, the Solar PV panel begins to capture the resource and

displaces the current flow necessary from the battery to power the load. The battery begins

to charge (represented by negative current flow) as the solar resource grows. Variability in

the resource is evident just before 9:00, likely due to passing cloud cover.

• 9:00 - 12:00: The battery continues to charge at an increasing rate until a 100% SOC

is achieved just before 12:00. Both state variables represent this point; the voltage rise

exponentially in the final 30 minutes to approximately 14.4V at which point the BMS

discontinues charging and the current drops to zero.

• 12:00 - 15:00: Because the BMS has disabled charging through battery disconnection,

as opposed to the charge controller disconnecting the solar resource, the current remains

nearly steady at zero amps while the charge controller uses the solar resource to run the

load. Mild chatter is evident as the battery is discharged to fill in mild shortfalls in the solar

resource. Finally, around 1:30, the solar output is reduced to less than the load demand

(likely cloud cover), and the battery begins to supply a non-trivial amount of energy. The

result is a voltage drop and the start of a new battery cycle. Following the later onset of

solar resource, the battery charges once more and reaches a 100% SOC at 15:00.

• 15:00 - 18:00: The solar resource remains steady and the battery isn’t discharged in an

appreciable manner. As a result the voltage remains steady at 14.4V, and the current

remains steady at zero amps.

• 18:00 - 24:00: As night falls, the solar resource diminishes to zero and the battery begins

to supply all energy required by the load. Initially, the voltage drops rapidly, until reaching

a plateau value of approximately 13.4V for the evening.
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4.6 Station Temperature

Figure 4.6 shows the temperature profiles for each day of August at the SPSC and Wilder-

ness Place stations. Due to the location of these stations on the roof, they are susceptible to high

temperatures throughout the day as the Sun’s irradiation has an un-occluded path to the system

containers. As the stations derive all energy necessary to operate from Solar PV, the bulk of charg-

ing occurs at higher temperatures because of the Solar irradiance patterns. There are subtleties

within the temperature profiles that are discussed in Fig. 4.6, in addition to cross station corrob-

oration. For instance, the two low temperature days (green and blue curves in both charts), show

similar temperature profiles indicating appropriate calibration, as well as a low Solar resource day,

because of the similarity in measurement at two locations separated by a few miles. Of note is the

larger time span of higher temperatures recorded at the Wilderness Place station. Because of the

location of the SPSC station near a large concrete wall directly to the west (see Fig. 3.6), direct

heating from solar irradiation falls o↵ rapidly in the early afternoon. As a result, the temperature

at Wilderness Place remains much higher until later in the day.

Due to the temporal co-location of high station temperatures and LFP battery charging due to

the availability of the solar resource, the shorter cycles experienced at either station are typically at

much higher temperatures. For the case of the Wilderness Place station, which has a much di↵erent

charging pattern as described in 4.2, this yields on average one high temperature cycle between the

early morning SP and late afternoon SP, and then a low temperature cycle which extends from the

late afternoon until the following morning. The resulting distribution of average cycle temperature

versus cycle length, as shown in Fig. 4.7, is a near equity in the number of intraday cycles (less

than 5 hours), to the number of interday cycles (greater than 20 hours). The di↵erent operational

procedures at the SPSC station, that of a greater quantitiy of cycles during the midday hours

because of the Solar curtailment default, yields far more cycles occuring at higher temperatures.

In fact, while the Wilderness Place station achieves similar high temperatures throughout the day,

the rapid cycling at the SPSC results in complete cycles occuring at higher temperatures because



52

Figure 4.6: The temperature profiles recorded at the stations of Wilderness Place and SPSC,
Wilderness Place represented by the chart on the right. Of note, and expected, is the rapid
temperature rise just as the Sun’s irradiation strikes the rooftops circa 7:00 AM. Note the overall
steeper temperature ascent of SPSC, due to a large HVAC system occluding the morning Sun,
but only briefly. Additionally, although there is no southern protection which results in higher
temperatures at the SPSC, there is a wall to the West of the system container which results in a
more rapid temperature decline in the afternoon. In the case of the Wilderness Place, the early
morning rays strike the system container directly, and result in the sharp knuckle at about 7:00
AM. A southern structure provides midday protection, and results in lower temperatures. The lack
of a large western wall, as at SPSC, results in a longer stretch of higher temperatures. Note Figures
3.6 and 3.5 for station orientation.

of the short cycle duration. The distribution of average cycle temperature verse cycle length at

SPSC is also shown in Fig. 4.7.
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Figure 4.7: An analysis of the average temperature during a cycle versus the length of the cycle.
For those cycles under six hours, the solar resource decreased to the point of discharging the battery
appreciably such that a full charge was again achieved before the end of that day’s period of solar
resource gain, much like the scenario described in section 4.5. As a result, these cycles are at a
much higher average temperature.



Chapter 5

Analysis

Now that the data has been cleaned and combed such that all Strings and Schedule Points

are well defined, an analysis can begin to draw conclusions about the Coulombic E�ciency and

Battery Energy E�ciency. Upon determining these factors, we can then draw conclusions about

any drift in these values with respect to increased cycles of the LFP that may be indicative of

capacity fade due to operation. It goes without any further comment that all power flow in this

system is strictly DC, and as a result no consideration for reactive power flow is necessary. Before

we go any farther, however, a brief discussion on the error propagation is necessary.

5.1 Error Considerations

As derived and summarized in Section 3, there are errors associated with the variety of

microcontroller measurements, which are attached to each sample. Throughout the analysis, the

measurements are typically summed over specified intervals, and it is therefore important to under-

stand how this error propogates and grows through these intervals. Additionally, special regard is

necessary for the power flow calculations, which is the product of two state variables each possesing

their own error. First, we consider the error associated with the summation across an interval.

The process for determining the ampere-hour (Ah) discharge, or charge, is a simple sum-

mation of all of the discharge/charge currents measured, multiplied by an interval correction. It

follows the simple form shown in Equation5.1, which is subscripted for discharge, where N equals
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the number of discharge intervals.

Q
D

= �
i

NX

n=1

i
D

(n) (5.1)

Here, the value of �
i

is the temporal component representing the length of each interval, and

i
D

(n) is the current discharge measurement. The removal of �
i

from the summation is possible

because it is a constant throughout the entire interval. The actual value of �
i

is a constant

throughout the entire experiment, and is represented as follows:

�
i

= 5sec · 1hr

3600sec
(5.2)

Because there is no error associated with this number, it can be factored out of the error

calculations due to the condition now highlighted. According to [54], if z = Bx, where B is known

exactly, then the error in q, �z, is:

�z = |B|�x (5.3)

In our case, B represents �
i

, which is known exactly, and can be removed from error considerations.

Let �q = the total error in the total charge/discharge Q
C/D

, of the battery in an entire cycle.

Let �x = the resolution error per sample of i
C/D

(n), and N
C/D

= the total number of charge, or

discharge, intervals per cycle. According to [54], the total error in charge/discharge counting is

then the Euclidean norm of all of the sample errors:
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Where all �x values are identical and represented by the resolution error of the current

monitor. The calculation of total charge/discharge, including error, is then:
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The calculation of the Coulombic e�ciency requires taking the quotient of the charge delivered

and the charge recovered. Let �d = �
i

�x
p
N

D

, �c = �
i

�x
p
N

C

, and CE = Q
D

/Q
C

. According to

[54], the error in this calculation, represented as �CE, is equal to:
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To calculate the energy delivered/recovered of the batteries, the summation of the product

of the current and voltage measurements with the time interval must be calculated. Namely, for

the case of energy delivered

E
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(n) (5.7)

Where i
D

(n) is as identified previously, and v
D

(n) is the voltage across the battery during

the discharge interval. The error associated with this measurement, according to [54], is:
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where �x is the associated current measurement error, and �y is the associated voltage mea-

surement error. Unfortunately, the step by step product of these measurements doesn’t allow any

gross simplifications as in the determination of the Coulombic e�ciency because the values are

changing throughout the summation interval.
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5.2 System E�ciency

The power electronics that manages the power flow between the Solar PV, the LFP batter-

ies, and the Load has associated ine�ciencies on account of power consumption during operation.

A small laboratory experiment highlighted in Section 3.2.2 was performed to understand the con-

sumption of the charge controller when only managing the LFP/Load interaction. A minimal power

consumption in this configuration was found; however, this operation isn’t expected to yield sub-

stantial ine�ciences, unlike the MPPT and subsequent power derivation from the Solar resource.

Consider the system power flow diagram in Fig.5.1.

Figure 5.1: The following shows the adopted power flow convention and associated e�ciencies
between the Solar Photovoltaic panel (Renewable Energy Source (RES)), the Lithium Ferro Phos-
phate battery (Energy Storage System (ESS)), and the Load. These three devices are managed by
the MPPT Charge Contoller, which consumes a certain amount of power for management between
any of the three devices. Shown are the symbols representing e�ciencies and power flow from each
respective device.

To derive the e�ciency factors from the data, we must first state the relations. For the case

of su�cient solar irradiance such that the Solar PV powers the load and charges the battery, we

have the following:

PV
P

=
Load

P

�
+

Batt
P

↵
(5.9)
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which can be approximated as:

↵�PV
P

= Load
P

+Batt
P

(5.10)

because it was found in the laboratory that the e�ciency in sourcing power from the LFP

battery to the load was near 100%.

In the event that the Solar PV is supplying power, but only a portion of the amount needed

to drive the load and none to charge the battery, the following relation exists:

Load
P

= �PV
P

+ �Batt
P

(5.11)

The relation from Equation 5.11 only occurs at the Wilderness Place station, where the

charge controller discontinues the charging of the battery upon reaching a Schedule Point, and

then operates the load with the Solar PV resource supplemented by the LFP. This relation does

not occur at the SPSC station, where the Solar PV resource is completely curtailed upon the LFP

reaching a 100% SOC.

If there is no irradiance, i.e. it’s nighttime, or for the case of SPSC, the LFP battery reaches

a 100% SOC and then begins powering the load exclusively, we have:

Load
P

= �Batt
P

(5.12)

which is the equivalent of the laboratory derived e�ciency in which the controller is managing

the power flow from the battery to the load, found to be near 100% at room temperature under

comparable load consumption.

5.2.1 Overall System E�ciency

Before deriving the relationships between individual components of the system, we can cal-

culate an overall system e�ciency quite readily by taking the ratio of energy delivered to the load

divided by the energy derived from the Solar resource, as shown in Equation 5.13. Using the Sched-

ule Points identified within the data sets, an overall cycle e�ciency has been calculated for each
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cycle between the SPs.

⌘
system

=
E

load

(c)

E
solar

(c)
(5.13)

where c is the cycle number under investigation, as determined between two schedule points. Figure

5.2 shows the overall e�ciency results at the Wilderness Place station as a function of cycle number.

Note, an accurate measurement of the Solar PV production was not possible until after upgrades

to the system were performed, and the results is that an overall e�ciency calculation isn’t possible

for the first 120 cycles. Subsequently, the station was relocated from its prior location to the

Wilderness Place location where the Solar PV panel was supplanted by a 100W panel, as opposed

to the 140W initial panel. The entirety of the data plotted in Fig. 5.2 is with the 100W panel.

Figure 5.2: The overall system e�ciency at Wilderness Place verse cycle number. As defined in
Equation 5.13, this metric contains the battery performance, but it is embedded amongst other
system factors. A slight drift towards lower e�ciencies with a greater number of cycles is present,
but not well defined.

The distribution and spread of the data in Fig. 5.2 doesn’t lend itself to any easy conclusions.

In fact, the data seems to represent two di↵erent sets partitioned into cycles 1 - 50, and 50 - 100.

The only change at this station through this portion of the experiment, which did occur around

cycle 50, was a slight reduction in load when a radio was removed from the station. A slight

load consumption reduction of about 10% ensued; however, this should only impact the C-rate of
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discharge as the e�ciency is normalized, meaning the decrease in energy consumption should be

matched by a decrease in energy harnessed. Due to the large capacity of the Wilderness Place LFP

battery, the reduction in load equates to a change from 0.0066C to 0.006C. Regardless, the overall

system e�ciency shows a wide range from nearly 95% all the way down to 60%.

To further define any deviations in conditions around the overall system e�ciency, Fig. 5.3

shows the e�ciency with respect to cycle length(on the left), and temperature(on the right). For

the case of cycle length, there is a clear disparity between the e�ciency regime of the intraday

cycles (60% - 80%), and the interday cycles (70% - 95%), where there is no overlap between the

lower, and upper, 10% of each regime, respectively. As previously discussed in Section 4.6, there

is a clear relation between the shorter cycles and higher temperatures due to the charging/cycling

tendencies of the systems during the day, while temperatures and sun exposure are greater. The

second chart of Fig. 5.3 shows the distribution of system e�ciency with respect to temperature.

Although still too broad of a distribution to make any conclusions, there is a more distinct decrease

in e�ciency with higher temperatures as opposed to verse cycle length.

Figure 5.3: Plots of the overall system e�ciency at the Wilderness Place station. On the left
is overall e�ciency versus cycle length, showing a large distribution for all intervals (sub day,
overnight, multiple days), but a general reduction in e�ciency during shorter intervals. On the
right is the overall e�ciency verse temperature. While still quite scattered as in Fig. 5.2, a general
trend toward declining e�ciency with temperature is present.

Figure 5.4 shows the overall system e�ciency at the Space Sciences station. The cause
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for three times as many cycles is due to the many, short cycles that occur during the day while

the solar resource is available; because the SPSC system curtails Solar upon reaching a 100%

SOC, the battery experiences many more cycles in a single day than the Wilderness Place system.

Particularly surprising with the SPSC overall e�ciency dataset is the much tighter distribution at

higher e�ciencies as compared to the Wilderness Place system. Not only is the bulk of the data

contained within 85% - 98%, there is a slight decrease in the overall system e�ciency, which may

be indicative of the LFP battery showing a decrease in Coulombic/energy e�ciency. Although the

overall system e�ciency doesn’t account for the e�ciency of the battery explicitly, decreases in

battery e�ciency will manifest itself in overall system e�ciency decreases as a greater amount of

energy is required to charge the battery for a set amount of load consumption.

Figure 5.4: The system e�ciency at the SPSC vs. Cycle Length, as defined in Equation 5.13.
Unlike the results of the same analysis for the Wilderness Place in Figure 5.2, the system e�ciency
at SPSC shows a tight gathering around 95%.

The plots of overall system e�ciency verse cycle length and temperature are shown in Fig. 5.5.

The intraday cycles show a wide range of e�ciency values encompassing the majority of the spread

prevalent in fig. 5.4, whereas the interday and multi-day cycles show a very close bunching around

96% - 98%. Interestingly, the greater than parity e�ciencies occured at mid-average temperatures,

as shown in the chart on the right of Fig. 5.5. Immediately after this temperature, the range
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of e�ciencies expands enormously, indicating a high temperature, or short cycle influence on the

overall system e�ciency.

With respect to temperature e↵ects, the system is expected to be less e�cient at higher

temperatures due to power electronics sub-optimal operating regimes, and the battery e�ciency

itself decreasing due to a greater number of side reactions. Additionally, the current monitors are

susceptible to greater error and non-linearity influences at higher temperatures. Regarding the

short cycles, the rapid charge/no-charge shifts prevalent throughout the day at the SPSC station

could have impacts on the data capture due to the average nature of the Arduino, and the Schedule

Point identification algorithm. While this isn’t expected to cause a lower e�eciency itself, it may

explain part of the wide range in derived e�ciencies during the shorter cycle lengths.

Figure 5.5: Plots of the overall system e�ciency at the SPSC station. On the left is overall e�ciency
verse cycle length, showing a large distribution for the intraday cycles, but a tight bunching of
e�ciencies during interday and multiday cycles. This large distribution during the cycles of similar
length indicates that the short cycle itself is not responsible for the large fluctuations. On the right
is the overall e�ciency verse temperature. This chart shows a break from the tight distribution at
low temperatures, to a large distribution at high temperatures marked by the greater than parity
outliers around 35 degress C.
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5.2.2 Charge Controller E�ciency

To derive the charge controller e�ciency in supplying Solar PV power to the Load and

Battery as required, namely ↵� from Equation 5.10, the data was parsed to identify the total

power consumption of the system only when the Solar PV was supplying power. The datasets

derived from the Wilderness Place and SPSC datasets are both depicted in Fig. 5.6, verse cycle

length.

Figure 5.6: The charge controller e�ciencies in managing the power flow from the Solar resource
to the Load and LFP battery. On the left is the Wilderness Place distribution, while the SPSC
distribution is on the right. These are derived by the dataset by neglecting all data points when
the Solar resource is not present. The distributions are similar to the overall system e�ciency,
which was expected due to the the near parity e�ciency between the battery and load while no
solar resource is available.

The resultant e�ciencies are as expected, i.e. they are near the overall system e�ciencies

because the other predominant operational condition is the controller simply managing power

flow between the battery and load, which was found to be near 100% in the laboratory prior to

deployment. As a result, the charts closely resemble those of Figures 5.2 and 5.4.

5.2.3 Battery/Load Power Flow E�ciency

As a final attempt to equate the high e�ciency in power flow from the battery to the load

through the charge controller as measured in the laboratory, all data points during which no Solar
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resource was present for the previous 30 minutes were extracted and an e�ciency derived. The

purpose of waiting for a clear presence in no Solar resource was to ensure that the lack of Solar

wasn’t due to rapid irradiance fluctuations. The results yield a power flow e�ciency resembled in

Equation 5.12 as �.

Figure 5.7: The results of charge controller e�ciency analysis while no Solar resource is present.
Although both distributions are near 100% as expected, the rising trend of the Wilderness Place
data set with respect to temperature is the opposite of expectations, while the SPSC declining
trend was anticipated.

Figure 5.7 shows the results of the � derivation plotted against the average temperature

throughout the interval of interest. As expected, both of these show a near 100% e�ciency as

found in the short laboratory test. Of surprise is the presence of opposing trends between the

data from Wilderness Place and SPSC stations. The decrease in e�ciency with higher temperature

as evident in the SPSC set is expected due to the increased power consumption of the charge

controller at higher temperatures. The larger spread in e�ciencies may be on account of the

higher temperatures influencing the data capture. What isn’t readily explainable is the increase in

e�ciency of the Wilderness Place. There is no clear reasoning or indication for this trend. However,

there is the likelihood that the higher temperatures occurred over shorter intervals, which could

indicate a potential data issue.
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5.3 State of Charge and Coulombic E�ciency

The State of Charge (SOC) of a battery is defined as the quotient of the capacity remaining

and the total capacity at full charge, i.e. the SOC at a time t after discharge begins is:

SOC(t) =
Q

full

�Q
delivered

(t)

Q
full

⇥ 100% (5.14)

where Q
full

represents the capacity, in ampere-hours, at full charge, and Q
delivered

represents the

delivered charge, in ampere-hours, since the initial deviation from Q
full

.The process of tracking the

charge delivered by the battery pack is known as ‘Coulomb Counting’. While sounding obscure at

first, simple consideration of the units of ampere, namely [C]/[s], reveals that by tracking current

flow with respect to time, the resulting quantity is of units, Coulombs. The following is the

mathematical equivalent:

Q
delivered/received

(t) =

Z
t

t0

⌘
C/D

· i
battery

(t)dt (5.15)

where t0 represents the point in time of the initial deviation from Q
full

, and ⌘(t) represents the

‘Coulombic E�ciency’ that was introduced in Equation 2.8. During discharge, ⌘
D

is taken as one

to serve as the benchmark to which the e�ciency is defined; however, during charge, ⌘
C

is less

than one and it is the goal of this work to identify the Coulombic e�ciency and a drift therein

throughout the life of the batteries through the data set. The point at which Q
full

is determined

and t0 is identified is known as a ‘Schedule Point’, which were described in Section 4.1 and have

been used thus far in the calculations of e�ciency. In tracking the SOC during a charge cycle,

knowledge of the Coulombic e�ciency is evidently required.

5.3.1 Wilderness Place Coulombic E�ciency

With the Schedule Points well defined through the identification algorithm and a clear un-

derstanding of what the Coulombic e�ciency represents, the derived Coulombic e�ciency for the

Wilderness Place station is now presented with associated error, derived via the methodology out-

lined in section 5.1, in Fig. 5.8. Of immediate note is the obvious data set shift at approximately
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120 cycles, which is the point of data collection at which the station was relocated from the South

Complex where a 140W Solar PV panel was in use, to the Wilderness Place station where a 100W

panel was in used. Due to this shift, as highlighted in section 4.2, the operation of the system

switched from many intraday cycles to one of, on average, one intraday cycle per day. Simply

noting this change, it can be guessed that the majority of the low e�ciency points are from the

intraday cycles.

Figure 5.8: The Coulombic e�ciency as derived from the Wilderness Place dataset inbetween
Schedule Points.

The error bars present incorporate the resolution error of the battery current monitor, as

well as the 1.5% error as noted in the specifications of the device. Although a value near one is

expected, it isn’t necessary to consider data with error well beyond this value of one as deviant

or useless due to the many other factors that may contribute to variance. Beyond the temporal

aspects, which may cause issues in Schedule Point identification or microcontroller error, there is

the high average temperature characteristic of shorter intervals. High temperature is expected to

cause deviations in the Coulomb e�ciency and is addressed in a later section.

To provide more insight into the circumstances surrounding the large discrepancies in Coulom-
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Figure 5.9: The Coulombic E�ciency as determined for each complete cycle between Schedule
Points, first with all cycles shorter than 2 hours removed on the left, and then for only cycles
exceding 6 hours. The resultant distribution on the right contains only interday and multiday
cycles. A linear regression best fit line is included to show the negative trend in Coulombic e�ciency,
although the decay with respect to cycle number isn’t expected to be linear due to the variability
in system operation and environmental factors.

bic e�ciency, Fig. 5.9 presents the same data set three times, filtering out first all cycles less than

2 hours long, and then all cycles less than 6 hours long. In the case of removing all cycles shorter

than 2 hours, all of the rapid intraday cycles, present before station relocation are absent, but the

longer intraday cycles post relocation are still present, as evident in the second chart. Upon the

removal of all cycles shorter than 6 hours, the data set is a much tighter distribution just below one.

At this point, the data set only consists of interday cycles, during which the length of discharge

is on average more than five times greater than the length of charge. Due to the discussion about

the e↵ect of error on Coulombic e�ciency in section 2.6, we see that the non-linear e↵ects due

to denominator(total charge) error have far less influence than the linear e↵ects of the numerator

(total discharge) error.

For the scatter plot containing only cycles greater than 6 hours in Fig. 5.9, an ordinary

least squares linear regression fit was taken and the decay constant presented in the title of the

plot. With these long cycles, a much tighter distributiion around one is present, indicating that

the variance in both the numerator and denominator are small. As such, a linear regression is

appropriate given the linear relation with small deviations as shown in section 2.6. The fit isn’t
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precise, which is acceptable because it is only there to serve as an indication of a negative trend in

the Coulombic e�ciency over many cycles. The derived factor is a decrease of 0.00016 in Coulombic

e�ciency per cycle, which is reasonable considering the expected life of the LFP batteries. Factors

influencing the lack of a precise fit include varying temperatures over all cycles, depths of discharge,

and charge rates due to the solar resource.

5.3.2 Space Sciences

The results of the SPSC Coulombic e�ciency analysis are shown in Figures 5.10 5.12. An

analysis identical to the approach for extracting the same information from the Wilderness Place

station was used. Of surprise is the bias error througout the duration of all 284 cycles captured

that results in an e�ciency greater than 100%. This is a violation of the conservation of energy

which indicates that there must be other factors unaccounted for, or unknown sources of energy

within the system. The most likely case is simple measurement error, which is addressed first.

Figure 5.10: The SPSC Coulombic E�ciency with projected error based on the error calculation
approach described in Section 5.1.

Figure 5.11 shows the bias error per cycle necessary to raise the Coulombic e�ciency above
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one, normalized to the number of samples in that cycle. Namely:

�
Bias

=
�

Bias

N
samples

=
|Q

Discharge

�Q
Charge

|
N

samples

(5.16)

Figure 5.11: The minimum bias error per current measurement sampe required to rectify the greater
than 100% Coulombic e�ciency at the SPSC, as defined in Equation 5.16. The average per cycle
is 0.058 A, which is twice the resolution error of the current monitor.

The average of the bias errors across all cycles was taken and found to be 0.058 mA, which

is shown in Fig. 5.11. This bias is error is twice resolution error calculated for the battery current

monitor at 0.029 mA. As such, following the robust calibration methods employed, it is unclear

where this large and persistence error would have arisen. Regardless, although the values themselves

are in error, it is reasonable to ask if a negative trend is still identifiable. Let Q
Discharge

and Q
charge

represent the actual values of total charge delivered and recoverd, respectively. It follows that the

results captured are represented by the addition to these two values of N
D

�
X,Bias

and N
C

�
X,Bias

,

where N
D

and N
C

are the quantity of discharge and charge samples in a cycle, respectively, and

we have assumed the bias error to be constant at all times. The Coulombic e�ciency is then:

⌘
CE

=
Q

Discharge

+N
D

�
Bias

Q
Charge

+N
C

�
Bias

(5.17)
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The low discharge rate as compared to the larger average charge rate results in N
D

being on average

ten times greater than N
C

, and therefore it is expected that the Coulombic e�ciency results would

be larger than actual with a bias error. However, identifying drift in the Coulombic e�ciency is

based on a growing quantity of charge required to reach a 100% SOC with respect to the quantity

of discharge. Thus, although the bias error results in a greater than parity e↵ficiency due to the

values greater than one, a negative trend is nonetheless expected. Figure 5.12 shows the results of

the trend present in cycles exceeding six hours.

Figure 5.12: The Coulombic e�ciency at the SPSC station for longer cycles; all greater than two
hours on the left, and all greater than six hours on the right. As previously discussed, there is
significant bias error resulting in an e�ciency greater than one. Regardless, it has been determined
that a negative trend in the data is still expected, and the plot on the right exhibits slight decrease
with cycle number.

Another possible source of the error comes in the form of a net discharge from the LFP

battery. That is, if the battery is degrading such that a portion of each cycle represents the

operation of a primary battery in that no recharge capacility exitsts, than the Schedule Points will

still be triggered by over voltages, but the full charge as compared to previous capacity will not be

recovered. Figure 5.13 shows the results of the summation of the net discharge error as a function

of cycle number, with a capacity mark at 200 Ah, representing the nameplate capacity of the

SPSC LFP battery pack. It is immediately obvious that the net discharge resulting in Coulombic

e�ciencies greater than one has not exceeded even half of the capacity of the LFP pack. Thus, it



71

cannot be immediately stated that the battery is not defective and sourcing energy as a primary

pack.

Figure 5.13: The Net Discharge of the SPSC battery. This is still well below the capacity of the
battery itself, with a capacity of 200 Ah, and as such this theory cannot be ruled out by data
analysis alone.

To pass judgement on this theory, the SPSC battery was retrieved from the station at the

beginning of November, 2017, and a full capacity measurement was made in which the pack was

fully cycled with a discharge at 0.06C, and then charged with CCCV. The resultant capacity of the

SPSC LFP was 191Ah ± 2Ah, where the manufacturer specified capacity is 193Ah for the 200Ah

pack, a value corroborated in initial capacity measurements. Therefore, it can be ruled out that

the pack may be operating as a primary battery pack.
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5.4 Temperature E↵ects

The literature discusses a strong relation between high ambient operational and storage

temparatures to greater rates of degradation[61, 48, 57]. As discussed in Section 2, at higher

temperatures a greater quantitiy of side reactions are expected to occur during the charge and

discharge process due to the Arrhenius relation, shown in Equation 5.18.

k = Ae�Ea/(kBT ) (5.18)

where k is the rate constant, A is a pre-exponential factor, E
a

is the activation energy, and k
B

is the Boltzmann constant. It is apparent that higher temperatures cause an increase in the rate

constant, which manifests itself as a greater number of side reactions and a decrease in Coulombic

e�ciency is expected. Fig. 5.14 shows the results of Coulombic e�cieny plotted against the average

temperature per cycle for the Wilderness Place.

Figure 5.14: The Coulombic E�ciency verse the average temperature during the cycle. While this
shows a tight distribution near one with only a slight decrease with temperature until 35 degrees
C, the distribution decays completely at temperatures greater than 35 degrees C.

The slight decrease in e�ciency present from 20 to 35 degrees C is expected and well defined.
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The abrupt increase in variety of Coulombic e�ciencies after 35 degrees C is suprising. Multiple

factors beyond the LFP battery itself may be to blame. For instance, these high temperature

cycles have already been shown to occur intraday, with shorter cycle lengths. Additionally, the

monitoring electronics may be susceptible to large inaccuracies at higher temperatures. It should

be noted that while the Wilderness Place station was relocated, this entire data set is only from

post relocation data capture because an operational temperature sensor was not implemented until

after the movement.

Figure 5.15: The Coulombic e�ciency verse temperature at the SPSC station. Although this
e�ciency is greater than one and thus a large bias error is present, it has been previously noted
that a trend is still reliably extractable and thus, a brief analysis is warranted.

Figure 5.15 shows the Coulombic e�ciencies per cycle plotted against temperature for the

SPSC station. Although the large bias error forcing the resultant Coulombic e�ciencies to values

exceeding one is still obvious. Of note is the tendency towards well defined e�ciencies at low

temperatures, and a large spread resulting at high temperatures. Similar to the results of the

Wilderness Place data set, the break up of the well defined data set occurs around 35 degrees

C. Contrary to the Wilderness Place set, the SPSC data only shows an approximate 15% spread,
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whereas the Wilderness Place set shows a spread in excess of 50%.

Figure 5.16: The Coulombic e�ciency plotted against measured temperature at the SPSC station.
The multiple intraday cycles are partitioned to reflect any internal system container temperature
trends.

The operation at the SPSC station results in many intraday cycles. As a result, many

cycles occur at high temperatures, but due to the location of the battery in the center of the

station container below the control board, it is possible that there is a di↵erential between the

measured, and actual battery temperatures. To identify this di↵erential, the intraday cycles have

been identified temporally, and plotted vs. temperature in Fig. 5.16. The overnight cycles involved

the greatest amount of charge recovery, but also occur at lower average temperatures not only

because of the temporal location at the beginning of the day, but the long cycle length serves to

nullify the higher temperature influence of the morning on the average cycle temperature. The first

intraday cycle displays a tendency to lower Coulombic e�ciencies (with respect to the other cycle

results), regardless of the average cycle temperature. The latter day intraday cycles show a tighter

distribution to the steady Coulombic e�ciency of the overnight cycles. There is an expected heat

generation due to i2R losses, which will be largest at the high charging rates; but, the greatest
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charging currents experienced are about 8 amps, at which rate heat loss of only tens of watts could

be expected due to the LFP still charging at a rapid rate (indicated by the rapid ascension to 100%

SOC) and the wattage the panel being only 140W. It is then not expected that internal heating is

a factor contributing to the high system temperatures.
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5.5 Battery Energy E�ciency

The Battery Energy E�ciency (BEE) was introduced in Equation 2.9. It has already been

explained why the energy e�ciency ought to be less than the Coulombic e�ciency for chemistry

reasons, namely the overpotential necessary for charging, and the underpotential resultant from

the voltage drop across the internal resistance during discharge. It has also been explained in

Section 2 why the BEE is expected to decrease with age due to the increasing internal resistance.

In calculating the BEE per cycle, the sum of the product of the voltage and current flow through

the LFP pack is taken during the charge and discharge portions of the cycle. The result is similar

to the Coulombic e�ciency due to the integration of the current flow, but it deviates due to the

additional voltage factor. The error is necessarily larger due to the resolution error in the voltage

measurements.

Figure 5.17: The energy e�ciency vs. cycle number at the Wilderness Place station. A similar
approach from the Coulombic e�ciency is adopted in which the data is filtered in favor of longer
cycles. A small net decrease per cycle is found for cycles exceeding 6 hours.

Figure 5.17 shows the resultant BEE calculated for the SPSC LFP battery through all cycles.
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The result is very similar to the Coulombic e�ciency due to the embedded Coulomb counting in

the energy derivation. A greater decrease in the energy e�ciency, as compared to the Coulombic

e�ciency, is expected due to the growth of the internal cell resistance, which will consume more

energy without increasing the requisite current flow. With the linear fit on the final plot of only

cycles greater 6 hours, we see that the decay rate is only half that of the same derivation for the

Coulombic e�ciency. This is the opposite of what is expected; however, the fit is poor due to many

factors a↵ecting a non-linear decay. Additionally, there is extra error due to voltage resolution

constraints. Regardless, the trend is negative, as expected due to increased internal cell resistance.

Figure 5.18: The Battery Energy E�ciency for the SPSC LFP battery verse cycle number. Due to
the embedded Coulomb counting necessary to derive the energy consumption, a BEE greater than
one is found as in the SPSC Coulombic e�ciency.

The resultant BEE of the SPSC station is shown in Fig. 5.18. As expected because of the bias

error in Coulombic e�ciency, this quantity is greater than one. However, there is a net decrease in

BEE with more cycles, a trend which is expected, and not entirely disqualified by the bias error.
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5.6 Depth of Discharge

As a final metric to identify potential ageing in the LFP battery packs, the Depth of Discharge

(DOD) is calculated as unity minus the SOC, and plotted against temperature. While the voltage

of an LFP pack during discharge is highly susceptible to the rate of discharge, the LFP packs at

the Wilderness Place and SPSC stations experience a very steady discharge rate due to the near

constant power consumption of the load. Due to this characteristic, the longer cycles which extend

through the night have a very steady and relibably constant discharge. Figure 5.19 shows the

distribution of DODs, as well as the voltage vs. DOD curves of the Wilderness Place LFP battery

pack.

Figure 5.19: The DOD vs. Cycle Number for the ESS at the Wilderness Place Station is shown
on the left. Note: The clear change in DOD around cycle 115, and then again at cycle 170, is the
result of the station PV panel being switched from 140W to 100W, and then due to a reduction in
load power consumption, respectively. On the right is the voltage vs. DOD for all cycles greater
than 5% DOD. A modest variety is present. It must be noted that there is error both dimensions
due to the voltage error, and also the current error leading to uncertainty in the actual DOD.

Although the chart of voltage vs. DOD of the Wilderness Place station shows a clear variety

in the data, it makes no distinction in the the cycle number. To identify any trends, the voltage

at which point the DOD is 5% is taken for each cycle, and then plotted verse cycle number in

Fig. 5.20. Of immediate notice is the split in the data set around 110 cycles. This is exactly

when the LFP battery was relocated and the Solar PV switched from a 140W to a 100W panel.
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As previously discussed, this changed the operation of the system from many intraday cycles and

Solar curtailment, to one of balanced Solar/Load power provision and a resultant fewer daily cycles

of the LFP resource. When the data is split and the latter half plotted, the right had chart of Fig.

5.20, a slight decrease in voltage is apparent, but non conclusion can be drawn. Note the analog

resolution causing the distinct lines of data.

Figure 5.20: The distribution of voltage verse 5% DOD at the Wilderness Place station as a function
of cycle number. Two data sets are distinct in the first plot due to the relocation and downsizing
of the Solar resource. The chart on the right shows the second half of the data set with respect to
cycle length.

A similar analysis is performed on the Space Sciences station, the results of which are shown

in Fig. 5.21. The SPSC shows a far more consistent distributino of DOD, as well as a tighter

distribution to a steady voltage vs. DOD curve. The large bias error present in the SPSC data

set certainly sheds uncertainty on these plots, but due to its prevalence in the set, the relation of

each cycle to each other can be taken as a relative value. The cross section of all voltages at a 5%

DOD verse cycle number is shown in Fig. 5.22. There is a decline present with a greater number

of cycles, a spread of which is anticipated with age.
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Figure 5.21: The DOD distribution and voltage vs. DOD plots of the SPSC station. Although
significant error is present in the SPSC data set, it seems to be bias error and thus prevalent in
the entire set. As a result, the actual DOD is likely incorrect, but relative to all of the other SPSC
battery cycles.

Figure 5.22: The distribution of the voltage vs. 95% SOC of the SPSC battery pack.



Chapter 6

Conclusion

While providing uninterrupted power to a Wifi Long Distance communications network es-

tablished on the front range of Colorado, the operation of two LFP Battery Energy Storage Systems

was analyzed in an attempt to identify battery deterioriation in isolated microgrids. Using only

voltage, current, and temperature monitors at the two stations, large data sets were accrued through

the Summer and Fall of 2017 and subsequently analyzed for deterioration indicators. Although the

laboratory standard for identifying ageing is to perform a complete charge/discharge cycle of a bat-

tery, this is not possible at these remote microgrid stations, and therefore these other metrics are

adopted. The primary indicators sought are ‘Coulombic E�ciency’, the ratio of charge delivered to

charge recovered between 100% SOC points, and ‘Battery Energy E�ciency’, the ratio of energy

delivered to energy recovered. As a final metric for ageing, the voltage verse Depth of Discharge

curves were analyzed to identify any spread that may indicate ageing.

6.1 Discussion

The data sets were first analyzed to ensure that a continuous set existed with no interruptions

which would lead to greater error in subsequent calculations. Schedule Points, locations in the data

set at which a 100 % SOC is identified with accuracy by corroborating state changes in the system

between the voltage and current measurements, have been found in all continuous Strings of the

data. Upon combing the data for all continuous Strings and identifying Schedule Points with an

internal algorithm, all sets between Schedule Point are dubbed cycles and all calculations are then
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based on a per cycle basis.

Through analysis, it was found that the overall system e�ciencies were of acceptable values,

but widely varying either due to temperature causing decreases in e�ciency, temperature causing

measurement error, or a combination of the two. In both the SPSC and Wilderness Place stations, a

clear kink in the data is present at 35 degrees C, at which point the precision of the overall e�ciencies

decays enormously. Regardless, the majority of operation occurs at lower temperatures (sub 35

degrees C), when the system e�ciencies were found to be near parity and far more predictable.

6.1.1 Wilderness Place

As the first of two primary metrics for identifiying capacity fade, the Coulombic e�ciency

is calculated as the summation of all current delivered, and recovered, with respect to time over

the charge and discharge intervals within each cycle. For the case of Wilderness Place, a Coulom-

bic e�ciency near one (as expected), was identified throughout the lifetime of the battery pack,

particularly during the longer cycles. The shorter cycles occur at higher temperatures, which is

expected to reduce the Coulombic e�ciency due to a greater number of side reactions on account of

the Arrhenius relation. When considering only the longer cycles, in which the Coulombic e�ciency

calculations display more precision, a clear decrease is located with an increasing number of cycles.

While this decrease is apparent and expected, there are too many factors involved in altering the

individual conditions to make a statement about how this decrease has influeced the State of Health

of the Wilderness Place LFP battery.

The Battery Energy E�ciency over the lifetime of the Wilderness Place system also shows

a decrease with an increased number of cycles. This was expected on account of the internal

resistances of the LFP battery growing with age due to increased di↵usion resistance and electrode

delamination. Interestingly, although the BEE is expected to be less than the Coulombic e�ciency,

a slower rate of decay was found. Finally, the voltage verse DOD plots show two partitioned data

sets of varying structure, on account of the relocation and downsizing of the Solar PV panel. A

slight decline in the discharge voltage at 5% DOD is present in the second half of the data set, but
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there is no significance to this aspect.

6.1.2 SPSC

The SPSC system contains more cycles than the Wilderness Place station even though the

total operational time is two months less. This is on account of the di↵erent operation of the

system in which Solar PV is curtailed after a 100% SOC point is reached. The resultant Coulombic

e�ciencies are found to be greater than one, which is evidence of a gross error as other likely error

possibilities, such as the LFP battery decaying as a primary battery source, were ruled out. Regard-

less, it is shown that even in the presence of a large bias error, a decay in the Coulombic e�ciency

is still expected. Subsequently one is identifed, albeit at a much lower rate than the Wilderness

Place LFP battery. Although the decline in e�ciency was identified, again, no conclusion can be

made about the impact on SOH, especially considering the error.

As follows from the Coulombic e�ciency, the BEE was also found to contain the large bias

error, but also display the decline in e�ciency of the duration of the experiment. The voltage verse

DOD were generated for cycle greater than 5%, and the profile at 5% show a decline in voltage

with age. However, the error in Coulomb counting directly e↵ects the DOD estimate which adds

substantial error to the voltage measurement due to the non-linearity of the voltage vs. DOD curve,

particularly between 0 and 10%. Regardless, it can be said that deterioration is present, but at

what quantity, it is not ascertained.

6.2 Closing Remarks

Following the successful deployment of the microgrid systems and connection of the WiLD

network, the daily data sets of voltage, current, and temperature measurements were obtainable

from each station remotely. With these data sets, operational points of significance (Schedule

Points, at 100% SOC) were identified and the cycles bookleafed by these Schedule Points analyzed

to derive operational e�ciences regarding the operation of the charge controller, and various LFP

battery related metrics. Although the presence of too many external influences diminish the abil-
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ity to identify a quantity of degradation, deterioration was nonetheless found through decreases

in Coulombic, and Battery Energy e�ciencies at both the SPSC and Wilderness Place stations.

Unfortunately, significant bias error in the SPSC data set resulted in greater than parity e�ciences,

but a decline still expected even in light of this bias error was located.

The results of this work show promise in developing low tech methods for identifying capacity

fade in remote battery stations that prove challenging for traditional capacity fade metrics, those

of full charge/discharge cycles and EIS. Although the quantity of degradation was not identifiable,

futher work with this dataset, a dataset that will continue to grow over the next years due to the

continued operation of the CU Boulder Testbed, may yield trends from which these contributing

factors, such as temperature influence, can be isolated and quantified. As a result, this work has

created a viable platform upon which more analysis can be protracted from the growing data set

to identify ageing and SOH in remote LFP applications.
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Supporting Documents/Images

Supporting documents and images for the project.

Figure A.1: The voltage and current flow at the Wilderness Place station, June 6 - 30, 2017
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Figure A.2: As an example, the following shows the battery current data from June 6 both before
and after the calibration has been applied. While the o↵set is most prevalent during periods of
consistent current flow, the scaling factor influence becomes obvious at points of high current flow
(see 40,000 seconds).


