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The effects of lithospheric thickness variations on the dynamics of the Earth’s upper mantle.

Thesis directed by Prof. Peter Molnar

The first-order cause of lithospheric motion at the Earth’s surface is convection within

the mantle. I examine how lithospheric thickness variations affect the dynamics of the

upper mantle and the impact they can have on the surface in a series of analytical and

numerical experiments. Perturbations to the thickness of mantle lithosphere from horizontal

shortening are considered as Rayleigh-Taylor instabilities. This deformation is considered in

the context of the Sierra Nevada range in California, where lithosphere may be downwelling

and the lower crust may be weak. Lithospheric instabilities are also considered in relation to

intracontinental magmatism, several hundred kilometers away from active plate boundaries

or rift zones. In cratonic regions, where lithosphere can be several times thicker than the

global average, the motion of continental keels cause pressure gradients within the upper

mantle. Constraints on upper mantle viscosity can be obtained by considering the dynamic

gravity effects from these induced pressure gradients. At subduction zones the motion of

subducted lithosphere within the mantle is examined along with its effects on the pressure

field and dip angle evolution. Overall, lithosphere of varying thickness can have significant

regional impacts on Earth’s near surface dynamics, which occur against the background

first-order dynamics.
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2.2 Viscosity structure (left) and Linear Stability boundary conditions (right).
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downward. z = 0 represents the bottom of the mantle lithosphere, and z = h

represents the shear-stress free top surface, which could be either at the Moho

or within the lower crust. We include the unused fixed-top condition to better

show the difference to previous work. Viscosity is an exponential function with

depth, and B is the viscosity coefficient. Subscripts of 1 are for quantities in

the layer while subscripts of 2 are quantities of the lower half-space. . . . . . 11

2.3 Finite element calculation boundary conditions for a viscous half-space. Again,

z′ = 0 is the bottom of the unstable layer (i.e. the mantle lithosphere) and

z′ = 1 represents the shear free top surface (i.e. at the Moho or within the

lower crust). We also include the unused fixed-top condition to better show

the difference to previous work. In calculations with an inviscid half-space,

the mesh extends from 0 to 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 13
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2.5 Growth rate vs. wavenumber for various values of h/L. Dashed lines are re-
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4.1 A) Cartoon illustrating the mass-balance argument in the analytical treatment

in Section 4.3. Arrows represent the amount of mass transported in each

region. Since the lithosphere moves with constant motion, the flow in the

underlying mantle must balance the excess mass transported in regions of

thick lithosphere (i.e., the keel region). B) Dimensionless pressure gradients

from the two-layer analytical solution (eq. 4.6), for various keel thicknesses

and γ, the ratio of upper mantle to lower-mantle viscosities. C) Numerical

experiment schematic. The left shows viscosity variation with depth. Solid

line is the preferred model, dashed line shows keel viscosity. Grey shades

show variations of viscosity considered. The right shows assumed layering.

Maximum keel depth is 300 km. Upper mantle-transition zone boundary is

varied to set channel thickness between the keel and transition zone. . . . . . 60

4.2 A.) Plot of keel depth from the tomography model CUB2.0 (Shapiro and

Ritzwoller , 2002). We map the +2% shear-wave speed perturbation from

initial model ak135 using VSV and set a maximum lithosphere depth of 300 km

depth. B.) Colored EGM96 geoid height without the degree l = 2 zonal

spherical harmonic coefficient. C.) Plot of the sum of squares
∑N+5

α=1 g2
α of the

first N + 5 eigenfunctions localized within a 30◦ circular region centered in

western Australia for the bandwidth L = 0–8. The colored field shows the

sensitivity of our filter to the region of interest. Overlain is the 90% contour

of this sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
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4.3 Example of Slepian filtering technique for a low maximum bandwidth of L = 8.

The top row of panels (A–C) displays spectrally truncated versions of the

EGM96 geoid height. The bottom row of panels (D–F) shows the filtering

process. (A) The complete EGM96 geoid undulation with degree l = 2 re-

moved. (B) The geoid with all coefficients from l = 2 through l = 8 set to

zero. (C) The geoid between l = 3–8. In this example, our functions are

designed to fit the localized power of these low degrees. (D) The fit of the

first N + 5 Slepian eigenfunctions to the low-degree EGM96 geoid (panel C),

concentrated within a 30◦ circular region (outlined in white) centered over

western Australia. (E) The residual after subtracting the Slepian fit from the

low-degree EGM96 geoid. Overlain in white is the 90% contour of sensitivity

from Figure 4.2C. (F) The results of subtracting the low-degree Slepian fit

from the full EGM96 geoid (panel A). Panels B, E, and F are shown with the

same color scale, as are panels C and D. . . . . . . . . . . . . . . . . . . . . 71
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4.4 Examples of model output. (A) Example dynamic topography at the sur-

face for a calculation with ηLM = 3 × 1022 Pa s, ηTZ = 3 × 1021 Pa s, and

ηUM = 3 × 1020 Pa s. The colored topography anomalies are scaled to a sur-

face velocity of 1 cm/yr. The surface velocity vector is aligned with the plate

motion vector at azimuth 1.81◦ from North. In solid white we show the 90%

contour of filter sensitivity from Figure 4.2C. In dashed white we show the

outline of the Australian keel (where thickness >100 km) determined from the

CUB2.0 model. (B) Example dynamic geoid anomalies at the surface from

the same calculation, also scaled to 1 cm/yr of surface motion. (C–E) Con-

toured magnitudes of unfiltered model geoid anomalies in m, scaled to the

Australian surface motion of 8.267 cm/yr. Magnitude simply represents the

difference between peak minimum and maximum anomaly (i.e., no pattern

information, about 3.6 m in B). Hollow squares show model individual runs.

(C) Magnitudes in a two-layered mantle with division at 670 km depth. (D)

Magnitudes in a three-layered mantle with divisions at 670 km and 400 km

depth. Here the viscosity of the lower mantle is fixed at 3 × 1022 Pa s. Di-

agonal dashed line is where the upper mantle and transition zone have equal

viscosity, equivalent to a two-layered mantle divided at 670 km depth. Ver-

tical dashed line is where the transition zone and lower mantle have equal

viscosity, equivalent to a two-layered mantle divided at 400 km depth. (E)

Contoured magnitudes of unfiltered model geoid anomalies in m for different

channel thicknesses. Lower-mantle and transition-zone viscosities are fixed at

3 × 1022 Pa s and 3 × 1021 Pa s, respectively. Horizontal dashed line shows

where the upper mantle and transition zone are isoviscous. . . . . . . . . . . 74
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4.5 (A–B) Mantle velocity at 200 km depth for two model cases. Vectors show

horizontal velocity. Colors show vertical velocity, with positive values out of

the page. The 10 cm/yr scale vector for horizontal motion is valid for panels

A–C. Coastlines are outlined in white. In both cases, ηLM = 3×1022 Pa s and

ηTZ = 3 × 1021 Pa s. The depths shown are at 200 km, and the black shape

outlines the Australian continental lithosphere at this depth. (A) A case with

asthenospheric viscosity η = 3 × 1021 Pa s. (B) A case with asthenosphere

viscosity η = 9 × 1018 Pa s. (C) Similar velocity slice at 300 km depth from

a global mantle flow model of Zhang et al. (2010). Note the different scale

for vertical velocity; magnitudes less than −5 cm/yr are black. (D) Vertical

profile of velocity with depth for point in C indicated by red dot (135◦ E,

25◦ S). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6 Example model fits. Example cases are denoted by red squares in Figure 4.7.

Model cases A and B are for a two-layered mantle, while case C is from a

three-layered mantle. Model cases are subtracted from the observed geoid

field within the dashed white box, yielding the plots of residuals. The dashed

white box also marks the area used for calculating misfit. All geoid fields are

plotted using the same ±10 m scale. (A) Filtered observed geoid field. (B)

Filtered model geoid from case A, for a two-layered mantle. (C) Residual for

case A. (D) Filtered model geoid from case B, for a two-layered mantle. (E)

Residual for case B. (F) Filtered model geoid from case C, for a three-layered

mantle. This example is similar to case A, and a residual is not shown. . . . 80
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4.7 Color-shaded images of misfit between filtered model cases and observed geoid.

Hollow squares identify model runs. The background observed geoid field has

a mean power of about 3.1 m. Therefore the misfit between the observed

field and a model with no (zero) geoid anomaly would be about 3.1 m. This

occurs when upper-mantle viscosity is very low (<1019 Pa s). Other instances

of misfit about 3.1 m occur when model signal is roughly twice the power (i.e.

the model signal overshoots the observed signal, resulting in a residual with

power equivalent to the original observed field). A.) Model misfits for a two-

layered mantle with division at 670 km depth. Red squares A and B denote

cases shown in Figure 4.6. B.) Model misfits for a three-layer mantle with

lower-mantle viscosity held fixed at 2×1022 Pa s. C.) Model misfits for a three-

layer mantle with lower mantle viscosity fixed at 3 × 1022 Pa s. Red square

denotes case C shown in Figure 4.6. D.) Model misfits for a three-layered

mantle for varying channel thicknesses. Channel thickness is determined by

varying the depth to the upper mantle-transition zone viscosity discontinuity.

Lower-mantle and transition-zone viscosities are fixed at 3 × 1022 Pa s and

3× 1021 Pa s, respectively. Dashed line indicates where the upper mantle and

transition zone are isoviscous. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 Model results (black lines) and analytical solutions (red lines) for (A) pressure,

(B) pressure derivatives in the x direction, and (C) pressure derivatives in the

z direction of a benchmark case with prescribed velocity boundary conditions.

Additional unlabeled contour lines appear on the right boundaries where the
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Chapter 1

Introduction

1.1 Motivations

The Earth’s lithosphere forms the rigid mobile lid of convection within the mantle.

While the oceanic lithosphere is created and later recycled into the mantle with regular

frequency, the chemically distinct continental lithosphere persists on the surface for much

longer time periods. As these plates collide and separate the thickness of lithosphere can

vary by several hundred kilometers. Understanding how these variations in thickness interact

with dynamics in the upper mantle is a key to understanding the topography, motion, and

geology we see at the surface.

Since variations in lithospheric thickness are largest in continental lithosphere, these

regions provide the best opportunity to study these regional dynamics. In this thesis I

focus on two aspects of deformation: first, deformation within the lithosphere, and second

deformation within the upper mantle. This approach elucidates information on two distinct

areas of the Earth’s interior, both of which can significantly affect the surface, and on two

distinct timescales. The objective is to relate changes at the Earth’s surface to processes at

depth, which can then be considered in other regions.

Dynamic processes within the Earth are mainly studied with a combination of analyti-

cal and numerical models. For analytical models approximations are made both to processes

and to the conservation equations in order to find simple relations between, for instance,

lower lithosphere thickness and deformation length scales. Numerically, the governing equa-
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tions are solved (approximately) with the finite element method, which allows examination

of processes with fewer approximations. Together they allow us to infer how processes at

depth affect changes in observations at the Earth’s surface.

1.2 Outline

Each chapter is written as a scientific paper and can be considered self-contained.

Considered together, however, they address different questions of a common theme and

examine the interaction between lithosphere and upper mantle from different viewpoints.

In Chapter 2, “Rayleigh-Taylor instability under a shear-stress free top boundary con-

dition and its relevance to removal of mantle lithosphere from beneath the Sierra Nevada”

(Harig et al., 2008), I examine the separation of zones of apparent downwelling flow at the

ends of the Sierra Nevada in the context of lithospheric instabilities. By using analytical

solutions and numerical experiments of Rayleigh-Taylor deformation I show that in geologic

situations where the lower crust is weak, instability growth rate factors are enhanced at long

wavelengths. Since the separation between downwellings in the Sierra Nevada is larger than

commonly assumed for instabilities, it implies that perhaps the lower crust is weak enough

that long wavelength instabilities are permissible.

In Chapter 3, “Lithospheric thinning and localization of deformation during Rayleigh–

Taylor instability with non-linear rheology and implications for intracontinental magmatism”

(Harig et al., 2010a), I examine Rayleigh-Taylor instabilities in the lithosphere in the context

of intracontinental magmatism, several hundred kilometers from active subduction or rifting.

When viscous deformation in the lower lithosphere is non-linear and viscosity varies little with

depth, regions of thinning and thickening can be separated by a coherent block undergoing

minimal strain. In this instance, a narrow zone of thinning and upwelling could occur in the

continental interior, which could facilitate decompression related volcanism.

Chapter 4, “Constraints on upper mantle viscosity from the flow-induced pressure

gradient across the Australian continental keel” (Harig et al., 2010b), examines the motion



3

of continental keels through the upper mantle, with a concentration on the Australian keel.

This motion is expected to induce a pressure gradient in the mantle and result in dynamic

topography at the surface. I use three-dimensional finite-element calculations to study this

deformation and the resulting topography. By analyzing the modeled and observed geoid

anomalies over the Australian continental keel, I place constraints on the viscosity of the

upper mantle.



Chapter 2

Rayleigh-Taylor instability under a shear-stress free top boundary condition

and its relevance to removal of mantle lithosphere from beneath the Sierra

Nevada

2.1 Abstract

The separation of zones of apparent downwelling flow at the ends of the Sierra Nevada

suggest a relatively large wavelength (≈500km) of unstable growth, but Rayleigh-Taylor

instability for plausible rheological structures with a fixed top boundary condition require

much shorter wavelengths (<100km) for maximum growth rates. To understand this differ-

ence we analyze analytical solutions and perform numerical 2D plane-strain experiments for

Rayleigh-Taylor instability of a dense layer overlying a less dense substratum, representing

the instability between the mantle lithosphere and the underlying asthenosphere, focusing on

the effects of a shear-stress free boundary condition at the top. The overall effect of this con-

dition is an enhancement of growth rate factors at long wavelengths, which depends greatly

on the exponential viscosity variation with depth of the layer. With large or little variation

across the unstable layer, the solutions approximate those with a fixed top boundary con-

dition, or for constant viscosity, respectively. An intermediate zone showing the enhanced

growth rates includes ratios of layer thickness to viscosity e-folding length, h/L, of ≈ 1 -

8 for Newtonian viscosity, and ≈ 1 - 4 for non-linear viscosity. The free top condition is

likely applicable to geologic situations where the lower crust is weak. Olivine flow laws and

low temperature estimates at 35km depth (255–355◦C) place the Sierra Nevada viscosity
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scaling ratio, h/L, between 5 and 9. Thus longer wavelengths than commonly assumed for

Rayleigh-Taylor instabilities seem permissible when viscosity decreases with depth and the

top surface of the layer is only weakly constrained.

2.2 Introduction

The conductive temperature profile across the mantle lithosphere indicates that the

mantle lithosphere should be more dense than the underlying upper mantle when brought to

the same pressure, assuming no compositional differences. This density contrast is inherently

unstable. Small temperature, and hence density, perturbations to this layering are normally

destroyed by thermal diffusion, but if a perturbation is large or can grow fast enough, ther-

mal diffusion can be neglected due to its long timescale. In this case, the mantle lithosphere

can be treated as a case of Rayleigh-Taylor instability (Canright and Morris, 1993; Chan-

drasekhar , 1961; Conrad and Molnar , 1997). For Newtonian viscosity density perturbations

will initially grow exponentially with time. When perturbations grow to several tens of

percent of the unstable layer thickness, sinking regions will downwell into the upper mantle

super-exponentially (e.g. Canright and Morris, 1993). As it is removed, mantle lithosphere

will be replaced with less dense asthenosphere in the isostatic column. Therefore this re-

moval would cause the surface to rise to maintain pressure balance (e.g. Bird , 1978; England

and Houseman, 1989).

In Tibet, an area of much current study, convective removal of thickened Asian litho-

sphere is one (Houseman et al., 1981) of many tectonic processes proposed to occur beneath

the Tibetan Plateau in response to the Indian-Eurasian collision (e.g. Dewey and Bird ,

1970; Dewey and Burke, 1973; Ni and Barazangi , 1983; Owens and Zandt , 1997; Willett

and Beaumont , 1994; Zhao and Morgan, 1985). The upper mantle of the Tibetan plateau

is characterized by large east-west seismic wave speed gradients and attenuation, and pos-

sible north-south wave speed gradients (e.g. Dricker and Roecker , 2002; McNamara et al.,

1997; Molnar , 1990; Ni and Barazangi , 1983; Woodward and Molnar , 1995). Additionally,
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tomographic imaging has revealed what seems to be a narrow zone of downwelling mantle

lithosphere beneath central Tibet (Tilmann et al., 2003). Together, these observations sug-

gest a dynamic origin for some of the plateau’s deformation such as high mean elevation and

the distribution of normal faulting across the plateau (Houseman and Molnar , 1997). What

remains uncertain, however, is the length scale of mantle lithosphere deformation. Studies

covering both large areas, such as Dricker and Roecker (2002) (≈ 25◦), and small areas, such

as Tilmann et al. (2003) (≈ 5◦), show lateral variations in the upper mantle on these scales.

In the Sierra Nevada in California, the evidence favoring removal of mantle lithosphere

from beneath the range is clearer. Examination of entrained xenoliths between depths of

40 and 100km from before 8 Ma indicate the presence of a 40 - 60 km eclogite-rich layer

beneath the Sierran batholith in the crust (Ducea and Saleeby , 1996, 1998; Lee et al., 2001).

Magmatism at 3.5 Ma and additional xenoliths erupted since imply the absence of this

eclogite layer and presumably its removal by this time, and logically, the deeper mantle

lithosphere as well (Farmer et al., 2002). Indications of this removal event are also seen in

geomorphic observations. For instance, there is evidence of tilting with an increase in height

of the range crest on its western range flank (e.g. Stock et al., 2004; Unruh, 1991), a fairly

uniform westward shift of the edge of normal faulting and horizontal extension around 3.5

Ma, and possible initiation of folding and thrust faulting along the western margin of the

Sierran micro-plate (Jones et al., 2004).

Two high seismic wave speed anomalies, the Isabella and Redding anomalies, extending

to more than 250 km depth beneath the Central Valley near the ends of the range are likely

locations for the removed lower lithosphere (Figure 2.1) (Benz and Zandt , 1993; Jones et al.,

1994; Reeg et al., 2007). Both the Isabella (Jones and Phinney , 1999) and the Redding

anomalies (Hartog and Schwartz , 2000; Özalaybey and Savage, 1995) are seismically isotropic

which can be characteristic of eclogites (Fountain and Christensen, 1989). Furthermore, the

area above the Isabella anomaly is undergoing active subsidence, which would be expected

over such a downwelling (Saleeby and Foster , 2004). Certainly, there is not complete north-
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south symmetry to the Sierra Nevada Pliocene history, as the passing of the southern edge of

the Gorda plate and Mendocino Fracture Zone illustrates (Atwater and Stock , 1998). But,

it seems more likely than not that the two anomalies are the result of the same process, and

very reasonable to postulate so (Jones et al., 2004; Le Pourhiet et al., 2006).

Although Rayleigh-Taylor experiments have been carried out for no-slip top bound-

ary conditions and differing rheological structures, the ≈ 500 km separation of the Sierran

anomalies is significantly longer than the wavelength for the peak growth rates for these

conditions. Simple experiments (constant viscosity, constant density) have shown that the

wavelength corresponding to maximum growth rate factor is about three times the unsta-

ble layer thickness (λmax ≈ 3h) (e.g. Conrad and Molnar , 1997). Other experiments have

shown that a buoyant crustal layer also influences the growth rate of instabilities and sup-

presses growth of longer wavelengths (Neil and Houseman, 1999). We explore what other

factors might influence the Rayleigh-Taylor instability process to favor the growth of longer

wavelength perturbations and downwellings.

Our goal is to determine the effects of a shear-stress free boundary between the crust

and mantle lithosphere on growth rates of Rayleigh-Taylor instability under various rhe-

ological stratification, such as exponentially varying viscosity with depth. This boundary

condition represents one possible end member, with the other being a no-slip top boundary

condition. The state of Sierran lithosphere at the time convective removal began was surely

in between these two idealized states. Arguments can be made, however, that both are

reasonable approximations.

The thermal structure of the lithosphere around 10 Ma can be inferred from sev-

eral measures. The present day surface heat flux in the western Sierra is very low (18 to

60mWm−2), and can bound the temperature at 35 km depth to 255–355◦C simply by assum-

ing a steady state (Lachenbruch and Sass , 1977; Saltus and Lachenbruch, 1991). Separate

temperature estimates from xenolith geothermometry can bound the temperature at greater

depth, 130 km, to only 925◦C (Ducea and Saleeby , 1998). A steady state using this measure-
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ment would indicate a temperature at 35 km depth of similar range to before, 250–350◦C

(Molnar and Jones, 2004). Thus, on the one hand, very low lithosphere temperatures might

be used to assume a no-slip condition at the Moho with an undeforming crust. Alternatively,

as mentioned, the Sierra Nevada is estimated to have had a 40 - 60 km thick eclogite-rich layer

beneath the batholith (Ducea and Saleeby , 1996, 1998; Lee et al., 2001). Field observations

of eclogite and granulite (e.g. Austrheim, 1991) have shown that eclogites can deform with

much lower viscosity than their granulite protoliths. Moreover, the felsic quartz-rich upper

crust that survives today could have been weak even at the low temperatures estimated for

depths of 30-40 km, for quartz flows at relatively low shear stress at such temperatures (e.g.

Brace and Kohlstedt , 1980; Sibson, 1977, 1982).

Jull and Keleman (2001) examined the conditions under which dense mafic lower

crustal material could become convectively unstable. Under their most extreme circum-

stances, such as an assumed background strain rate of 10−14s−1, Moho temperatures as cold

as 550 − 650◦C could produce an instability in 10 Myr for a dense layer 10 km thick imme-

diately below. Given estimates for a Sierran eclogite layer are much thicker, it is possible

the bottom several kilometers were at or above this range of temperatures. An instability

initiated in the Sierra mantle lithosphere could provide the background strain rate necessary,

and eclogite could be swept along with lower material. Thus, if viscosity of the middle crust

were sufficiently low, the top boundary condition appropriate for removal of this eclogite

layer with the underlying mantle lithosphere could be approximated by a shear-stress free

boundary, either at the Moho or within the eclogite layer. Here, we present both analyti-

cal and numerical solutions to idealized problems with this stress-free boundary above our

unstable layer.

2.3 Background Theory and Methods

The Rayleigh-Taylor instability problem in the Earth is one of Stokes flow for vis-

cous fluids, representing a balance between body forces and surface tractions after assuming
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incompressibility and neglecting inertial terms. The governing equation takes the form:

∂σij

∂xj
− ρgδiz = 0 (2.1)

where σij are stress components, xj are spatial coordinates, ρ is density, g is gravity, and

δij is the Kronecker delta. We solve this equation for a material layer overlying a less dense

half-space (or a subspace of finite depth), seen schematically in Figures 2.2 and 2.3. We

allow for a general non-linear constitutive equation between deviatoric stress,τij , and strain

rate,ǫ̇ij ,

τij = BĖ(1/n−1)ǫ̇ij (2.2)

where Ė is the second invariant of the strain-rate tensor, n is the rheological exponent, and

B is the viscosity coefficient. Under familiar Newtonian rheology, n = 1, and we have the

relation η = (1/2)B. For a non-Newtonian fluid, n > 1, viscosity is strain-rate dependent

as ηeff = (1/2)BĖ(1/n−1), where ηeff is an effective viscosity, which changes as strain rates

change with time.

Temperature gradients inherent to the mantle lithosphere will cause viscosity to vary

within the layer. Laboratory experiments have shown that linear temperature gradients

translate approximately to an exponential variation of viscosity with depth (e.g. Fletcher

and Hallet , 1983). We therefore consider cases in which B varies exponentially with depth,

as seen in Figure 2.2. Depth, z, is set to zero at the interface between layers of different

density and decreases downward. Viscosity, η, then takes the form:

η̄ = η0e
(γz) (2.3)

where η0 is the viscosity at the layer interface, and 1/γ = L is the viscosity (e-folding) decay

length. Various values of decay length are used so that over a layer of thickness h we have

hγ = 1, 2, 4, etc.

We also perform calculations with different density structures. The majority of our

work is done with a constant density difference. For a few cases we use density decreasing
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Figure 2.2: Viscosity structure (left) and Linear Stability boundary conditions (right).
Depth, z, is zero at the bottom interface of the unstable layer and decreases downward.
z = 0 represents the bottom of the mantle lithosphere, and z = h represents the shear-stress
free top surface, which could be either at the Moho or within the lower crust. We include
the unused fixed-top condition to better show the difference to previous work. Viscosity is
an exponential function with depth, and B is the viscosity coefficient. Subscripts of 1 are
for quantities in the layer while subscripts of 2 are quantities of the lower half-space.

linearly with depth in the layer, as would be the case for a linear temperature gradient in the

lithosphere and a constant coefficient of thermal expansion. Linear density takes the form

ρ(z) =
2∆ρ

h
z (2.4)

so that over a layer of thickness h, the dimensionless (ρ(z)/∆ρ) density at the top and

bottom surfaces are 2 and 0 respectively, and we have the same total mass anomaly in the

layer in both sets of experiments. The density anomaly in the substrate is zero.

To simplify solutions, we non-dimensionalize growth-rate factors (q) and wavenumbers

(k) by the appropriate length- and time-scales. Symbols used here and elsewhere are listed

in Table 4.1. For exponentially varying Newtonian viscosity with depth we have

q′L = q
2η0

∆ρgL
, k′

L = kL (2.5)
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with subscripts denoting the choice of non-dimensionalization as in Molnar et al. (1998).

The time-scale 2η0

∆ρgL
is determined from the time required to produce unit strain under a

deviatoric stress of magnitude ∆ρgL. We also devote some discussion later to comparisons

between cases with large viscosity variations and those with no viscosity variations, given

the different non-dimensionalizations required.

We perform linear stability analyses for cases with constant density to find analytical

solutions for growth rate factor, q′ as a function of dimensionless wavenumber, k′ = kL.

With linear stability, the assumed form of solution for n = 1 cases is

W (z)f(x, y)eqt (2.6)

where

∇2f(x, y) = −k2f(x, y). (2.7)

W (z) is the function of downward velocity dependent on z and f(x, y) is a harmonic function

with wavenumber k, here assumed to be cos(kx). We consider only first order perturbations

to background stress and strain rates, and follow the approach of Conrad and Molnar (1997).

The boundary conditions for these cases are shown in Figure 2.2.

Linear stability analyses are paired with 2D plane-strain numerical calculations using

the finite element program Basil (http://homepages.see.leeds.ac.uk/~eargah/basil/). For

numerical experiments of a layer over an inviscid half-space, a single layer of triangular mesh

is created from 0 ≤ z ≤ h and a harmonic perturbation of 0.01(1 − z) amplitude is applied

to the mesh. Velocity fields and subsequent deformation are then calculated iteratively

through time. For cases of a viscous substratum, we follow a similar process, but the mesh is

extended from −4h ≤ z ≤ 1h. This depth is chosen to strike a balance between minimizing

the influence of the bottom boundary of the substratum and the calculation requirements

of a finer mesh. Boundary conditions for the calculation are shown in Figure 2.3. For

each experiment the bottom boundary of the unstable layer is perturbed using a specific

wavelength equal to twice the width of the box, and to sample the k′ spectrum we varied



13

the horizontal dimension of the box. For Newtonian viscosity calculations, n = 1, we fit |Z ′|,

the absolute value of the vertical coordinate of the maximum downwelling, vs. dimensionless

time, t′ (= ∆ρgL
2η0

), to a straight line of the form

ln|Z ′| = lnZ0 + q′estt
′ (2.8)

to estimate the growth rate factor, q′est. Line fitting is limited to the section of growth that

follows the decay of initial transient, and before growth to large amplitudes (a few tens

of percent). We plot both growth rate curves from linear stability analyses and numerical

values of q′. In general the numerical results agree within 3% of linear stability analyses.

w' = 0, u' = 0

w' = 0

u' = 0  or  τ'zx = 0

τ'xz = 0

u' = 0

τ'xz = 0

u' = 0

Finite Element Boundary Conditions

z' = 0

z' = 1

z' = -4

Figure 2.3: Finite element calculation boundary conditions for a viscous half-space. Again,
z′ = 0 is the bottom of the unstable layer (i.e. the mantle lithosphere) and z′ = 1 represents
the shear free top surface (i.e. at the Moho or within the lower crust). We also include the
unused fixed-top condition to better show the difference to previous work. In calculations
with an inviscid half-space, the mesh extends from 0 to 1.

For calculations with a non-linear (non-Newtonian) viscosity relation we use a power
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law exponent of n = 3. Following Houseman and Molnar (1997), lines of the form

Z ′(1−n) = (n − 1)

(

C

n

)n

(t′b − t′) (2.9)

with t′ = t(∆ρgL
B

)n are fit to the output position data Z ′. Here, t′b represents the time when

the downward speed of the downwelling approaches infinity, signaling when the blob would

drop off completely from the layer. C is a dimensionless parameter analogous to the growth

rate factor, q′, in Newtonian calculations, which we will use to compare growth rates for

various wavenumbers.

2.4 Exponentially Varying Newtonian Viscosity with Depth

2.4.1 Inviscid Substratum and Constant Density

In the most basic Rayleigh-Taylor experiments there is a fundamental difference be-

tween using a no-slip and a free-slip boundary condition at the top of the unstable layer.

The use of a no-slip boundary condition ensures that as k′ approaches zero, the growth rate

factor q′ also approaches zero (e.g. Conrad and Molnar , 1997; Molnar et al., 1998; White-

head and Luther , 1975). When the free-slip condition is used, however, q′ can be finite in the

limit of small k′, as in the linear stability analysis in Figure 2.4. We plot four simple cases

with constant viscosity and density to illustrate this difference, and show how the addition

of a viscous substratum can retard growth. Here, the case with a free top and an inviscid

subspace maintains a finite value near k′ = 0, but the other cases trend to 0 when k′ → 0.

We further examine this difference with more complex, depth-varying physical properties.

If there is significant viscosity contrast between the mantle lithosphere and astheno-

sphere, any motion will be dominated by the viscosity of the lithosphere. In this instance,

the asthenosphere can be approximated by an inviscid substratum of infinite depth by set-

ting the ratio ηastheno/ηman.lith → 0. Considering this assumption in the context of stagnant

lid convection, we can imagine how the mantle lithosphere could deform irrespective of as-

thenosphere influence (Moresi and Solomatov , 1995). We begin by examining cases that use
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(1998), though with a fixed-top condition. These cases have density and viscosity constant
with depth, but vary in their top boundary condition and subspace viscosity.

this approximation for the subspace and depth varying viscosity in the unstable layer above

it. We examined a range of h/L values with results shown in Figure 2.5. These calculations

exhibit two styles of growth. For large viscosity variations across the layer (h/L > 8), growth

rate curves approach those for the case with exponential viscosity in two infinite halfspaces,

from Conrad and Molnar (1997). The viscosity in the top part of the layer becomes so great

that its free boundary is essentially removed from the problem. When the ratio of h/L drops

below ≈ 8, however, the growth rates transition to a style characteristic of a free top, with

finite q′ at k′ = 0. Here, the entire layer is involved in the foundering, and the stress-free
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boundary condition at the surface becomes important.
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Figure 2.5: Growth rate vs. wavenumber for various values of h/L. Dashed lines are results
of Linear Stability analysis. Points are results of numerical calculations. This experiment
is a layer over an inviscid halfspace. The layer has exponentially varying viscosity and a
stress free top boundary condition. Note that curves for Linear Stability h/L = 8 and 10
are co-incident everywhere except close to k′ = 0.

2.4.2 Viscous Substratum and Constant Density

We also perform experiments using a viscous substratum, by continuing the exponential

viscosity scaling to greater depth. When a viscous substratum is added, in this case to depth

of z = −4h, the form of the growth rate changes slightly (Fig. 2.6A.). For large viscosity

variations (h/L > 8), growth rate curves again approach those of a calculation of exponential

viscosity in two infinite halfspaces, with q′ → 0 as k′ → 0. When the ratio of h/L drops below
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≈ 8, however, the growth rates appear to be a blend of both the stress-free and fixed-top

styles as in Figure 2.5, showing characteristics of both. For all ratios of h/L < 8 examined,

q′max does not occur at a wavenumber smaller than k′ ≈ 0.5. Yet for several cases, in the

limk′→0, q′ remains finite. This contrasts with the behavior for an inviscid substratum in

Figure 2.5, where, for h/L = 1 and 2, q′max occurred at k′ = 0. Additionally, in Figure 2.4

we saw the relation

lim
k′→0

q′ 6= 0 (2.10)

applied only when the viscosity of the substratum is zero. Now we observe a range of

viscosity scalings that meet this condition. Thus, exponential viscosity introduces a relative

enhancement of growth rate at long wavelength (small wavenumber). Alternatively, the

viscous substratum retards the growth rate overall, with increasing effect as |k′
q′max − k′|

increases. It also affects the wavenumber of maximum growth rate, for k′
q′max varies with

h/L, and reaches a minimum for the value h/L ≈ 2, not as h/L → 0.

For both numerical and analytical results, we extend our substratum to a depth of

−4h. To show the effect of a finite depth on the dependence of q′ on k′ we plot, in Figure

2.6B, the linear stability curves for both a case with substratum depth limited to −4h (as in

Fig. 2.6A) and the same case with an infinite halfspace substrate to illustrate the differences

resulting from this approximation. The divergence between the growthrates for the two

structures is limited to small wavenumbers (k′ < 0.25) and h/L ratios below 4.

As h/L transitions through the intermediate window between the small h/L, stress-free

and large h/L, fixed-top end member styles, a plot of limk′→0 q′ with the log(h/L) for both the

viscous (Figure 2.6) and inviscid substrata (Figure 2.5) displays a smooth transition (Figure

2.7a,b). We show this plot for two non-dimensionalizations; Fig. 2.7a displays dimensionless

results with respect to L, and Fig. 2.7b shows them with respect to h. Overall, the difference

between the inviscid and viscous cases can be thought of as a result of retardation caused

by the viscous substratum. This retarding is concentrated where h/L < 2. Both curves (for
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results shown. B. Growth rate factor vs. Wavenumber as above for case of h/L = 2 to show
the differences resulting from a substratum extending to a depth of −4h depth approximation
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both scalings) are similar for the region h/L >> 1 as the substratum has little effect due

to its relatively low viscosity. In Fig. 2.7a, for values of h/L around 1, we can see that the

viscous substratum narrows the band of intermediate growth rate curves, and shifts the peak

to a slightly higher h/L value. In Fig. 2.7b, we see that the substratum affects approximately

the same h/L range, but with obviously different results. When h/L << 1, the growth rate

factor scaled by h levels to a value of 0.25 as the viscosity variation approximates a constant

value.

For small values of h/L (h/L < 1), a non-dimensionalization using h instead of L

becomes more sensible, because the growth of perturbations is driven by the density contrast

in the layer of thickness h. In such a case (not shown), q′(k′) transforms to the solution for

constant viscosity, and again, limk′→0, q′ is zero as in Figure 2.4.

To understand the long wavelength enhancement of growth rate, we calculate eigen-

functions for the z-component of velocity, w′. Calculating the eigenfunction at infinite wave-

length (k′ = 0) is impossible because the matrix created from applying boundary conditions

to the assumed solution form, equation 2.6, collapses to a determinant of zero regardless of

growthrate factor; therefore we show a series of eigenfunctions for a fixed value of k′ = 0.1

and various values of h/L in Figure 2.8. With this series we examine the depth distribution

of flow at long wavelength. The unstable layer is from 0 < z′ < 1 and the eigenfunction

amplitudes have been normalized so that w′(0) = 1. When h/L = 10, the eigenfunction in

the lower layer is highly oscillatory about zero, indicating that material is being turned over

in several small scale sections. For intermediate h/L values, such as h/L = 1, the wavelength

of the oscillation increases, so that near the layer interface there exists substantial vertical

motion. In fact, the curve for h/L = 10, the only solution outside the free-top fixed-top

transition zone, is the only curve that does not share the same amplitude in the 1 > z′ > −1

region.

Our choice of exponential viscosity in the substrate is one of simplicity. We can compare

these growth rate factors to those of the more probable case with constant viscosity in the
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and various values of viscosity scaling, h/L. Experiments are for a layer of thickness 1 with
bottom boundary at depth 0. The functions are normalized so that the amplitude is 1 at
depth 0. Inset is zoom of area around z = 0.

substrate (z′ < 0) for several values of h/L (see Fig. 2.9). Aside from the general differences

in growth rate factor amplitude, we see only subtle changes in the small k′ regions. A

constant viscosity substrate alters growth at very long wavelengths (k′ < 0.4) so that q′

approaches zero at k′ = 0.

2.4.3 Inviscid Substratum and Linear Varying Density

We also perform experiments with density varying linearly with depth in the layer,

shown in Figure 2.10, for which explicit linear stability solutions cannot be obtained ana-

lytically. For a fixed top, linear density has been previously shown to decrease growth rates
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Figure 2.9: Growth rate factor vs. wavenumber from linear stability cases with infinite depth
for various h/L values. Solid curves are previous data (Fig. 2.6A) from experiments with
exponential viscosity in the substratum. Dashed curves are for constant viscosity in the
substratum. A. h/L = 0.5 B. h/L = 2.0 C. h/L = 4.0 D. h/L = 8.0

by ≈ 25% (but strongly dependent on h/L) and to shift the maximum growth rate factor

to slightly higher wavenumbers (Conrad and Molnar , 1997; Houseman and Molnar , 1997;

Molnar et al., 1998). We examine whether these same effects of linear density apply under

a shear-stress free upper boundary condition.

The most striking difference between the cases of linear density and constant density

is the smaller growth rate factors for linear density. Comparing these graphs, we observe

that q′max for the curve h/L = 1 is ≈ 35% of its constant density value. The other q′max

values are ≈ 67% of that for constant density for h/L = 2 and ≈ 80% for h/L = 4 and 8.

So, the impact of linear density is much greater when viscosity variation in the layer is low
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(h/L < 2).
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Figure 2.10: Growth rate vs. wavenumber for various values of h/L. Numerical results are
shown for experiments with linear varying density, exponential viscosity varying with depth,
and a free top boundary condition. These calculations also assume an inviscid constant-
density substratum.

Comparing the curves for h/L = 4 and 8 in both experiments (Figures 2.5 and 2.10) also

shows that linear density shifts the location of q′max to lower wavenumber (longer wavelength).

The exact shift (defined as ∆k′ = (k′
max linear density − k′

max constant density)/k
′
max constant density)

cannot be found without running calculations at additional k′ values, but we estimate ∆k′ ≈

−25%. This differs from previous work for a rigid top, as linear density was found to push

peak growth rate to higher wavenumber. (Conrad and Molnar , 1997; Molnar et al., 1998)

Finally, we notice that for h/L = 4, growth rate factors at the longest wavelengths are

actually enhanced over their constant density values. Moreover, there is no indication that
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q′max → 0 as k′ → 0.

2.4.4 Viscous Substratum and Linear Varying Density

Figure 2.11 shows our results for linear density calculations with a viscous substratum,

and displays the three main effects described for the inviscid calculations. Compared to

constant density, growth rates are reduced overall, with the greatest effect at small h/L

values. For h/L = 8, q′max is ≈ 85% of the constant density value, and for h/L = 1, q′max

is ≈ 38% of the constant density value. Second, the location of q′max is shifted to smaller

wavenumber by ∆k′ ≈ 25%. Finally, the growth rate curves for h/L = 4 and 2.5 both show

some enhancement at long wavelength. h/L = 4 has larger absolute growth rates, and the

h/L = 2.5 curve shows some flattening at long wavelength.

In these calculations, the viscous substratum exerts the same enhancement of q′ at low

k′ compared with fixed top as for constant density. Although we cannot obtain solutions

for linear stability, the numerical results suggest that in the limk′→0, q′ will be finite, for a

2 < h/L < 4.

2.5 Non-Newtonian Exponentially Varying Viscosity with Depth

We perform additional numerical calculations of a layer over an inviscid halfspace using

a non-linear viscosity exponent, n = 3, in the constitutive equation, Eqn. 3.3. Again, our

interest is examining how non-linear viscosity interacts with a shear stress free top boundary

to affect the growth rate of the downwelling. We again carried out two sets of experiments,

one with constant density in the layer, and another with linearly varying density. As before,

each set is performed for various wavenumbers and viscosity scalings. Unfortunately, the

non-linear viscosity exponent means that for a scaling of h/L = 4 the effective variation of

viscosity in the layer becomes (e4)3. This large variation prevented us from examining larger

values of h/L.
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Figure 2.11: Growth rate vs. wavenumber for various values of h/L. Numerical results are
shown for experiments with linear varying density, exponential viscosity varying with depth,
and a free top boundary condition. These results also have a viscous substratum.

2.5.1 Linearly Varying Density

Our results for linearly varying density with an inviscid substrate are seen in Figure

2.12. Overall, this calculation exhibits some of the same characteristics of similar calculations

with Newtonian viscosity (Fig. 2.10). At large wavenumbers (k′ > 2), growth rates increase

monotonically as viscosity variation in the layer increases. These calculations also have

smaller (≈ 50%) growth rate factors than their constant density counterparts (not shown),

as expected. They also share the finding that q′ is finite as k′ → 0. What is surprising in

these results is that for the for case h/L = 4 in Figure 2.12 a local minimum of growth rate

factor develops at k′ ≈ 0.25. Further work examining this behavior is forthcoming.
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Figure 2.12: Growth Rate vs. wavenumber for cases with non-linear viscosity (n = 3)
with several h/L viscosity scalings. These calculations have linearly varying density and an
inviscid substrate.

2.6 Discussion/Conclusions

The Rayleigh-Taylor calculations show that the overall effect of a shear stress free top

boundary condition is to enhance growth rates at long wavelengths, k′ < 0.5 (λ > 4πL).

The degree of enhancement depends also, however, on exponential viscosity variation, linear

density variation, and/or the presence of a viscous substratum.

Linearly decreasing density reduces growth rates relative to those for constant density

in the layer, as expected. Interestingly, however, linearly decreasing density also enhances

long wavelength growth rates for a narrow band of viscosity depth profiles. Specifically, we

noticed that when h/L = 4, long wavelengths grow faster for linear density than for constant
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density (Fig. 2.11). Considering these rheological scalings together, we have retardation that

leaves wavenumbers near k′ ≈ 0.5 minimally affected, little decrease in q′ at 0.2 < k′ < 0.5,

and the shifting of k′
q′max toward long wavelengths (k′ ≈ 0.5) as in Figure 2.11, compared to

fixed top calculations.

Differences between the free and fixed-top cases vary with h/L and disappear when

h/L > 8. For instance, for h/L ≈ 2.5, q′max occurs at wavenumbers of k′
free ≈ 0.3 (Fig. 2.11)

and k′
fixed ≈ 1.2 (Molnar et al. (1998) Fig. 7) for free and fixed tops, respectively. When

h/L ≈ 4 the difference decreases so that q′max occurs at wavenumbers of k′
free ≈ 0.6 and

k′
fixed ≈ 0.8. With a free top, since several growth rate curves flatten for small k′ values, but

those for the fixed top do not, q′max is less important as it is where q′ decreases rapidly with

decreasing k′, and greater differences between fixed and free tops seem permissible (Molnar

et al., 1998).

The implications for the deformation of the mantle lithosphere can be seen in com-

parison to the Sierra Nevada in California. Two high seismic wave speed anomalies in the

mantle underlie the Sierra Nevada. If the two anomalies formed by similar Rayleigh-Taylor

processes, they would define a natural wavelength for this mechanism. Before we apply the

scaling relations presented above to the Sierra Nevada, let us note that they do not offer

unique explanations for the long distance between the Redding and Isabella anomalies, which

we presume to mark zones of downwelling in the upper mantle. First, we apply relationships

derived for two-dimensional flow to a three-dimensional structure. The locations of the two

anomalies at the northern and southern ends of the Sierra Nevada, which itself shows marked

east-west variations, implies that the third, east-west dimension could be important. Second,

we have assumed that the material is isotropic. Recent work by Lev and Hager (2008) shows

that anisotropy can affect the wavelength of maximum growth. In particular, resistance to

shear on horizontal (or vertical) planes was much less than that on planes dipping at 45◦,

and the maximum growth rate could increase two to perhaps three times.

As noted, the dimensional wavelength from calculations depends on the choice of h/L,
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and we should consider the realistic scaling ratio, h/L, of the Sierra Nevada mantle litho-

sphere. Using a linear geotherm in the lithosphere,

T (z) = T0 − βz, (2.11)

(remembering z = 0 at the base of the lithosphere) the viscosity can be expressed from

olivine laboratory experiments (Kohlstedt et al., 1995) as approximately

η =

[

1

2
A−1/n(ǫxx)

1−n/nexp

(

Ea

nRT0

)]

exp(γz), (2.12)

where A is constant and

γ =
Eaβ

nRT 2
0

=
Ea

nRT 2
0

∆T

h
=

1

L

∴
h

L
=

Ea∆T

nRT 2
0

(2.13)

(Conrad and Molnar , 1997). Parameter descriptions can be found in Table 4.1.

Using reasonable values of activation energy Ea between 400 and 600 kJ/mol K, tem-

perature 1000 < T0 < 1600◦K (727 < T0 < 1327◦C), 370 < ∆T < 1130◦K , and stress-strain

exponent n as 3.5, the ratio h/L for the Sierra Nevada varies from 5 to 9. This places the

Sierra Nevada scaling ratio at the upper limit of the range of h/L values from our experi-

ments (Conrad and Molnar , 1997; Kohlstedt et al., 1995; Lachenbruch and Sass , 1977; Saltus

and Lachenbruch, 1991).

For example, for h/L = 6, and a combined eclogite layer and mantle lithosphere

thickness (h) of 200km, would yield a L ≈ 33km. We remind the reader that although our

experiments are 2D plain strain calculations, the Sierra Nevada deformation is certainly 3D,

and the effective k′ would be a combination of the wavenumbers of disturbances parallel

and perpendicular to the range (i.e. k′
eff =

√

k
′2
‖ + k

′2
⊥) (Kerr and Lister , 1988). Thus we

can consider as a minimum the Sierra Nevada range parallel natural wavelength, which is

approximately 500km. Setting wavelength as 2πL/k′ = 500km implies k′ ≈ 0.4. As noted

above, this rapid growth of instability with such a λ seems more permissible with a free top,
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because the growth rate factors decrease little for k′ < 0.5. Thus when viscosity decreases

with depth and the top surface of the unstable layer is only weakly constrained longer

wavelengths than commonly assumed for Rayleigh-Taylor instabilities should be considered.
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B Viscosity coefficient (where constant in the layer)
B0 Viscosity coefficient at the base of the layer, through which it decreases with depth
β Geothermal temperature gradient

Ė Second invariant of the strain rate tensor
Ea Activation energy
g Gravitational acceleration
h Thickness of layer
k Wavenumber of perturbation to the base of the layer
∆k′ Shift in k′

max seen in experiments with linearly varying density
L Characteristic e-folding depth scale for exponential decrease in viscosity coefficient
p Pressure
q Growth rate of Rayleigh-Taylor instability for Newtonian viscosity
R Gas-law constant
t Time
T Temperature
T0 Temperature at base of layer
∆T Temperature difference across layer
u Horizontal component of velocity
w Vertical component of velocity
x Horizontal coordinate
z Vertical coordinate
∆ρ Density difference between the layer and the underlying half-space or subspace
σij Stress component
τij Deviatoric stress component

Table 2.1: Definition of symbols.



Chapter 3

Lithospheric thinning and localization of deformation during Rayleigh–Taylor

instability with non-linear rheology and implications for intracontinental

magmatism

3.1 Abstract

Thinning of mantle lithosphere due to Rayleigh–Taylor instability can be a mechanism

for triggering continental magmatism near active or recently active plate boundaries. We

consider whether it is also plausible as a mechanism for intracontinental magmatism, several

hundred kilometers from active subduction or rifting. We perform 2D Rayleigh–Taylor ex-

periments and find that a shear-stress free top and non-Newtonian flow permit two types of

instability to develop, largely dependent on how the viscosity coefficient varies with depth.

For small variation with depth, with the e-folding depth scale (the interval across which the

coefficient changes by a factor of e) greater than a third to a half of the thickness of the

unstable layer, deformation concentrates at the ends of the layer in localized thinning and

thickening zones; the middle part moves horizontally towards the region of thickening as a

coherent block undergoing minimal strain. When the viscosity coefficient decreases more

rapidly with depth, thinning of the layer is distributed laterally over a wide zone. Between

the regions of thickening and thinning, shear strain and vertical gradients in horizontal ve-

locity prevent this area from moving as a coherent block. The rheological exponent, n, that

relates strain rate to stress in the constitutive equation controls the degree of localization of

the downwelling and upwelling: the width varies as ≈ n−1/2. In intra-plate settings where
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a shear-stress free top condition could be applicable, high-stress crystalline plasticity could

provide a mechanism for the narrow zones of thinning and upwelling, which would facilitate

decompression related volcanism.

3.2 Introduction

Continental magmatism is a common occurrence in tectonically active regions of sub-

duction or rifting. Subduction zone arc magmatism is produced mainly through chemical

interaction between the subducted crust and mantle material (e.g. Kay , 1980; Morris et al.,

1990). Rifting, on the other hand, thins lithosphere to allow the underlying asthenosphere

to melt through adiabatic decompression as it rises (e.g. McKenzie and Bickle, 1988). How

then do we explain continental magmatism, that occurs several hundred kilometers from

plate boundaries (e.g., northern Tibetan plateau, the North China Craton), in the absence

of these tectonic processes? Barring heat sources from below, produced perhaps by mantle

plumes, or the introduction of a chemical process, we are left to explore another way to thin

lithosphere and generate melt (e.g. Elkins-Tanton, 2005).

Dynamic, ductile removal of lower lithosphere is one possibility that creates the ac-

commodation space required for the rise of material, and hence either decompression melting

or melting from conductive heating of shallower lithosphere. With plausible conditions, the

Rayleigh-Taylor instability of the mantle lithosphere when perturbed enough can thin the

lithosphere to a significant degree (by tens of percent) to overcome stabilization by thermal

diffusion (e.g. Conrad and Molnar , 1997; Gemmer and Houseman, 2007; Hoogenboom and

Houseman, 2006; Molnar et al., 1998; Molnar and Houseman, 2004). Additionally, if part

of the crust has been transformed into eclogite, its density (e.g. Jull and Keleman, 2001;

Kay and Kay , 1993) and low viscosity (Austrheim, 1991) allow it to participate in the down-

welling/removal of mantle lithosphere (e.g. Farmer et al., 2002). The inclusion of eclogite

in a Rayleigh-Taylor process would also contribute to the effective thickness of the unstable

layer, which affects the lateral extent of eventual thinning. For instance, the Sierra Nevada
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shows evidence of removal of a 40− 60 km thick eclogitic layer in addition to the underlying

mantle lithosphere (Ducea and Saleeby , 1996). Jull and Keleman (2001) found a variety of

lower crustal compositions that can develop instabilities in layers only ten kilometers thick

on relevant timescales.

With Rayleigh-Taylor instabilities, removed lower lithosphere is replaced with less

dense asthenosphere, and the effects of this process are seen with a variety of observations.

Geomorphic observations such as regional surface uplift and/or tilting (e.g. Stock et al., 2004;

Unruh, 1991), seismic observations including low seismic wave speeds (e.g. Jones et al., 1994;

Reeg et al., 2007), and geochemically, the appearance of high-potassium magmas can all

result from thinned lithosphere (Farmer et al., 2002; Hoernle et al., 2006; Kay and Kay ,

1993; Turner et al., 1996). Perhaps because of the difficulty of inferring the previous state of

the lithosphere through time, these instabilities commonly have been suggested to apply to

regions of recent tectonic activity (< 10Myr) such as the Sierra Nevada in California (e.g.

Ducea and Saleeby , 1996; Lee et al., 2001; Jones et al., 2004), sections of the Andes (e.g. Kay

and Kay , 1993), New Zealand (e.g. Stern et al., 2000, 2006), and the Southeast Carpathians

in the Vrancea region (e.g. Knapp et al., 2005).

In each of these locations, the inferred downwelling zone must be compensated by an

adjacent zone of lithospheric thinning; for instance the Vrancea downwelling is accompanied

by thinning of the mantle lithosphere beneath the Transylvanian basin (Lorinczi and House-

man, 2009). Often, in the absence of evidence indicating the location of downwelling flow,

removed lithosphere is assumed to have sunk immediately below regions of thin lithosphere.

Another characteristic of these regions of thin lithosphere is that they share a regional length

scale. The lateral extent of such regions often covers at least 100 km, sufficient for resolution

by key observation techniques such as travel time tomography, where densely spaced seismic

networks have been deployed (e.g. Reeg et al., 2007).

In many regions that have been affected by previous, subducted slab-related metaso-

matism, removal of mantle lithosphere has been accompanied by potassic magmatism. Al-
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though it is possible for magma to be generated from the sinking of detached, downwelling

mantle lithosphere (Elkins-Tanton, 2005, 2007), high-potassium instability-generated melts

have been more commonly ascribed to thinning of lithosphere (Elkins-Tanton and Grove,

2003; Farmer et al., 2002; Hoernle et al., 2006; Kay and Kay , 1993; Lee et al., 2001; Manley

et al., 2000; Turner et al., 1996). Not all continental potassic magmatism is related to litho-

sphere instabilities, however (e.g. Farmer et al., 2008), and it is unknown whether potassium

and hydroxyl-rich (water rich) zones in the mantle can contribute to conditions needed for

lithospheric removal. Still, at present the localization of high-potassium magmas seems the

best indicator for lithospheric instabilities that occur on short length scales, or for those that

occurred sufficiently far into the past that other indicators may have been lost. Building on

earlier work, we investigate how this signature magmatism could be related to the localized

thinning of the lithosphere.

Houseman and Molnar (1997) found, using numerical experiments of Rayleigh-Taylor

instability of a layer with stress-dependent viscosity and a rigid upper surface, that for long

perturbation wavelengths, deformation was more localized above upwelling/downwellings

than for shorter wavelengths, or for cases with Newtonian viscosity. In general the wave-

length of maximum growth rate is about three times the unstable layer thickness. Thus

it would seem that lithospheric thinning need not occur immediately adjacent to down-

welling, but could be displaced a distance several times the thickness of the unstable layer.

When wavelength is increased for a shear-stress free upper boundary, the wide separation of

the upwelling zone from the downwelling implies that thinning of lithosphere, and related

magmatism, could occur in narrow groupings hundred of kilometers from the downwelling

perhaps in the absence of upper crustal deformation. In some cases, this could be several

hundred kilometers from previous zones of subduction and might be described as intra-plate

volcanism.

In several continental regions with potassic magmatism hundreds of kilometers from

plate boundaries, the link to a tectonic or dynamic mechanism is not obvious. In Tibet,
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most of the late Cenozoic potassic volcanism centers lie in the northern parts of the plateau,

hundreds of kilometers from the locus of convergence in the Himalaya to the south (Turner

et al., 1996). In the eastern Anatolian region of Turkey, the most potassic volcanism is found

in the north (in the Erzurum-Kars Plateau region) since ≈ 11 Ma, several hundred kilometers

from the site of subduction in the south where Eurasia and Arabia collided (Keskin, 2003;

Keskin et al., 1998; Pearce et al., 1990). In northeast China lower lithosphere is thought to

have been removed beneath the middle of the otherwise undeformed North China Craton,

with volcanism spiking around 120 Ma (Gao et al., 2008).

To evaluate the rheological conditions under which a Rayleigh-Taylor instability de-

velops into this alternate style of downwelling with remote thinning of the unstable layer,

we use 2D plane-strain numerical calculations of the instability of a dense layer overlying a

less dense half-space, subject to an initial harmonic perturbation on its lower boundary. We

use a shear stress-free top boundary condition on the layer and examine spatially variable

rheological properties. Calculations are carried out until the vertical displacement of the

lower surface at least approaches initial layer thickness. If indeed the conditions for this

type of instability occur on the Earth, it could indicate a mechanism for volcanism several

hundred kilometers from active or previously active plate boundaries.

3.3 Basic Theory of Rayleigh–Taylor instability and Small Slope Approxi-

mation

Linearized theory is a common approach used to examine the growth of Rayleigh-Taylor

instabilities (e.g. Conrad and Molnar , 1997; Chandrasekhar , 1961). The approximations used

must, of course, eventually fail as perturbations grow to large amplitudes and non-linear

terms in the governing equations become large, but the methods capture the initial growth

of the instability, provide simplicity to a complex process, and can guide the development

of scaling relationships. Canright and Morris (1993) developed small slope solutions for

the growth of instabilities in a layer with constant rheological properties bounded by shear
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stress-free surfaces on the top and bottom of the unstable layer. Using an approach that

explicitly includes the non-linear interactions, they were able to describe unstable behavior at

amplitudes larger than is possible with the linear approximation. They show the narrowing

of deformation zones, and hence the separation of downwelling and upwelling, with increasing

stress-strain exponent, n, (see appendix in Canright and Morris (1993)). We investigate this

behavior further with numerical experiments, but we first examine the limits of the small

slope theory.

Canright and Morris (1993) examined three types of initial conditions, but the most

appropriate for comparison with our experiments is a constant wavelength sinusoidal pertur-

bation (wavelength λ) to the thickness of the unstable layer. Their solution for the change in

layer thickness (δ) with time (t) for non-Newtonian viscosity obeys the following equation:

Dδ

Dt
= sgn(δ − de(t))δ

[ |δ2 − d2
e(t)|

δ

]n

(3.1)

with

d2
e(t) =

∫ λ

0
δ dx

∫ λ

0
1/δ dx

and
Dδ

Dt
=

∂δ

∂t
+ u

∂δ

∂x
(3.2)

where δ is the thickness of the unstable layer and u is the horizontal component of velocity.

When we consider the maximum and minimum thickness of the layer, u is zero, so at these

positions Dδ/Dt is just the change of thickness with time. Canright and Morris (1993)

non-dimensionalize quantities by the time scale
(

4B
∆ρgh

)n

and length scale by h, the initial

thickness of the unstable layer. Here, ∆ρ is the density difference between the layer and lower

half-space, and g is gravitational acceleration. B, the viscosity coefficient of the layer (when

constant), and n, the rheological exponent are part of the non-linear constitutive relation

between deviatoric stress, τij , and strain rate, ǫ̇ij , defined in our layer:

τij = Boexp(z/L)Ė(1/n−1) ǫ̇ij . (3.3)

This form includes an exponential depth-dependence of viscosity that we use later, with Bo

as the viscosity coefficient at the lower surface, z as the vertical coordinate, set to zero at
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the bottom of the layer and increasing upward, and L as the e-folding depth scale for the

exponential decrease (the depth interval across which the viscosity changes by a factor of e).

Our analysis below depends on the dimensionless viscosity stratification ratio, h/L, which

can be easily calculated for an olivine rheology (Conrad and Molnar , 1997). Estimates of

this ratio for conditions in the Sierra Nevada vary between 5 and 9 (Harig et al., 2008).

Ė =
√

∑

i,j ǫ̇ij ǫ̇ij is the second invariant of the strain-rate tensor. This definition follows the

convention of Houseman and Molnar (1997) and affects the definition of B values.
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Figure 3.1: Boundary deflection profiles calculated as in Canright and Morris (1993) Ap-
pendix B. Here a constant density fluid of thickness 1, with power-law exponent of n = 3
is perturbed sinusoidally with amplitude 0.1. Dimensionless times t = 0, 4, 5, 6 shown.
The solution derived by Canright and Morris (1993) is independent of the perturbation
wavelength.

We present results in an alternative non-dimensionalization, defined by the time scale
(

Bo

∆ρgh

)n

from Figure 3.2 onward to conform to earlier work (e.g. Molnar et al., 1998). Can-

right and Morris (1993) calculated boundary deformation through time (Figure 3.1), ensur-

ing volume is conserved
∫ λ

0

[

δ2 − d2
e(t)

δ

]n

dx = 0. (3.4)

We first validate the approximate theory by using the boundary deformation from our

numerical experiments to calculate, using equation 3.1, Dδ/Dt where the downwelling is
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maximum at different stages of growth. When we compare these rates to the numerically

calculated downward component of dimensionless velocity, w′ (Figure 3.2), we notice that the

rate of downwelling predicted by the analytical approximation is systematically greater than

that produced by the numerical calculation and the difference increases as the instability

grows. Alternatively, we can compare the peak deflection vs. time for the two methods by

numerical integration of Dδ/Dt. Following Houseman and Molnar (1997), we compare the

growth rates by fitting lines of the form

Z ′(1−n) = (n − 1)

(

C

n

)n

(t′b − t′) (3.5)

where the singular time t′b represents the time when the downwelling reaches infinite depth

(Figure 3.3). This form is derived from simple assumptions including an approximation to the

non-linear constitutive relation and that the stresses driving the instability are proportional

to its interface deflection (Houseman and Molnar , 1997). Here we see that the line fitting

Z ′(1−n) vs. t′ will give C from the slope and t′b from the time intercept. The small slope

approximation and numerical calculation appear to show initial agreement, but with different

growth rates C, and correspondingly different estimates of the singular time t′b.

Inherent in Canright and Morris’s derivation is the assumption of small slopes of the

boundaries. While the slopes remain small, the layer has a large horizontal length scale

compared to its vertical thickness. Away from the ends, horizontal components of velocity

dwarf vertical components, and it is assumed these components of velocity are independent

of the vertical coordinate. Their analysis ignores shear stress on horizontal planes, τxz.

These assumptions start to fail as amplitudes of deformation become large (in this example,

on the order of 10% thickness change), and this failure is likely the main reason for the

small divergence between our numerical calculations and their approximate theory. In detail

Canright and Morris’s analysis is imperfect, but it provides a sensible qualitative image of

the process and guides our work below.
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Figure 3.2: log[Dδ/Dt] from Equation 3.1 with δ obtained from finite element solution vs.
log[downward component of velocity] from numerical calculations. A 1:1 line is also shown.
Cases here use λ/h = 4π.

3.4 Depth varying rheological properties

3.4.1 Constant Density

To complement the small amplitude analysis, we perform 2D plane strain numerical

Rayleigh-Taylor instability experiments with depth varying viscosity and categorize the in-

stabilities according to the observed end states. Like Houseman and Molnar (1997), we use

the finite element program Basil and begin with layers of constant density. We vary the

depth-dependence of viscosity and the rheological exponent of the layer. Layer thicknesses

are perturbed with a dimensionless wavelength of λ′ = λ/h = 4π, with amplitude 0.03h

or 0.04h, chosen because there is qualitatively little difference in results once wavelength is

sufficiently long (λ′ > 2π). Our calculations do not include the energy equation, but previous

experiments on convective instability including diffusion of heat (Conrad and Molnar , 1999),
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Figure 3.3: Z ′(1−n) vs. dimensionless time for the example where n = 3. Lines of the form
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numerical case here uses λ/h = 4π.

confirm the scaling laws of Houseman and Molnar (1997).

Holding wavelength constant, instabilities fall within 3 groupings based mainly on

the ratio of layer thickness to viscosity length scale, h/L (Figure 3.4). When h/L ≤ 2,

instabilities develop with zones of downwelling and upwelling separated by a broad region

where vertical components of velocity are negligible. Within this central region horizontal

velocity, Ux, is nearly constant in both x and z directions throughout the run. The entire

central region moves as a coherent block towards the downwelling region. Also, as the

calculation time nears tb, maximum vertical deflection and velocity of the downwelling and

upwelling are of comparable magnitude.

When h/L ≥ 4, the large viscosity contrast between the top and bottom of the layer

enables deformation to concentrate near the bottom part of the layer and the horizontal



40

 -7.68e-6

  0.00

Ux

  -1.05e-2

    0.00

Ux

  0.00

  1.28e-6

ε
xy

-1.33e-5

0.00

Ux

-8.0e-3

    0.00

Ux

  0.00

7.4e-7

ε
xy

-1.51e-3

4.68e-5

Ux

-4.68e-7

0.00

Ux

0.00

1.56e-8

ε
xy

 1

 2

 3

 4

 5

Constant 
 Visc.

0.5 1 2 3 4

n

h/L

Constant Density

Figure 3.4: Phase diagram for experiments with constant density showing the division of
instabilities based on their end state deformation. Instabilities divide into categories de-
pending on viscosity stratification ratio h/L and stress-strain exponent n. In each case,
λ/h = 4π. Closed circles are calculations in which center region develops uniform horizontal
velocity. X’s are calculations that develop significant shear deformation in the lower part of
the layer and more distributed thinning. Open circles are transitional cases. One calculation
from each group has additional detail showing different aspects of deformation. The first
(top) detail shows boundary deformation through time while the second and third details
are colored contours of horizontal velocity at the initial and later states. Negative values of
horizontal velocity show motion to the left, toward the downwelling. Finally, ǫ̇xy is shown,
indicating whether the dominant initial deformation is horizontal shear near the base of the
layer or vertical shear at the ends of the calculation.
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component of velocity near the top is minimized. Thus, significant vertical gradients of

horizontal velocity now exist within the central region, and shear-strain occurs on horizontal

planes in the lower part of the layer. It should be clear that in this case the approximation

of negligible shear-stress on these planes, made by Canright and Morris (1993) for a layer

with constant viscosity, is no longer valid. Furthermore the rates of vertical displacement

differ greatly for thickening (downwelling) and thinning (upwelling); these rates differ at

short times into the calculation and by increasing amounts as the duration of the calculation

approaches the time t′b. As h/L increases we see that the maximum thinning factor achieved

is decreased as extension is distributed over a broader area of the lower lithosphere.

The impact of h/L on vertical gradients of horizontal velocity is easily seen in the

examples shown in Figure 3.4. The end member groupings show significantly different shear

strain-rate fields, which are indicative of their different later deformation patterns. For the

calculation with h/L = 4, denoted with an X, we see the shear strain-rate field contains

vertically stratified positive values, indicating the field is dominated by ∂u/∂z as the lower

part of the layer moves toward the downwelling. Conversely the case with h/L = 0.5 (solid

circle) has two separated areas of positive values at the ends of the calculation. Here, ∂u/∂z

is modest and the shear strain-rate maxima are likely a result of positive values of ∂w/∂x

corresponding to the downwelling at one end and the upwelling at the other. These two

end-member groups merge in a transition region (Figure 3.4, open circle) where one sees

both concentrations of shear strain-rate at the ends of the layer and a vertical gradient of

strain-rate in the center region.

3.4.2 Linearly Varying Density with Depth

We also perform experiments with density varying linearly as a function of depth from

zero at the base of the layer to two at the top. As before, instabilities grow into different end

states depending mainly on the viscosity stratification ratio, h/L (Figure 3.5). The most

noticeable difference for linearly varying density is the shift of the transition region from
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Figure 3.5: Phase diagram for experiments with linearly varying density (λ/h = 4π) showing
the division of instabilities into categories depending on viscosity scaling h/L and stress-
strain exponent n. Symbols are the same as Figure 3.4. Here we also plot contours of the
absolute value of the ratio of upwelling speed to downwelling speed for the time when the
downwelling zone has thickened by 40% (to 140% of original thickness).

2 < h/L < 4 in constant density to 3 < h/L < 6 with linearly decreasing density anomaly.

Of course, this assessment of the width of the transition zone, based on the horizontal speed,

is subjective. As a more objective measure we calculate the absolute value of the ratio of

maximum upwelling speed to maximum downwelling speed at a time when the downwelling

zone has thickened by 40% (or is 140% of original thickness). The contours in Figure 3.5

allow a more precise definition of the transition zone limited by vertical contours at large

h/L and horizontal contours at small h/L. The contours also roughly indicate the maximum

thinning we should expect; ratios near one indicate the layer approaches the upper limit of

thinning to zero thickness.

We note that h/L and n have different effects on the final deformation of the layer,

with the rheological exponent controlling the final large amplitude super-exponential growth.

If two cases have similar velocity ratios, a lower n means the final stages of drip formation
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will be less abrupt and the layer can continue to thin. Alternatively, when a case with large

n reaches tb the downwelling will develop much faster than further thinning.

For example cases with n = 2, and h/L = 6 or 3 we examine the growth of the upwelling

and downwelling (Figure 3.6) to see where they diverge. When the upwelling is localized (Fig.

3.6A), the maximum upwelling and downwelling deflections are well approximated with the

Z ′(1−n) fits even as they approach the singular time t′b. When thinning is distributed over a

wider region (Fig. 3.6B) the downwelling deflection deviates from its best fit and approaches

the time t′b much sooner than estimated from the fit. The upwelling deflection, however,

continues to follow the power-law growth trend established early in the calculation.

3.4.3 Variation with Stress Exponent, n, and Viscosity scaling, h/L

To evaluate the effects of different exponents in the constitutive relationship, n, we

examine cases with constant viscosity coefficient (L → ∞) for which separated upwellings and

downwellings occur. Although initially perturbed with a harmonic variation in the thickness

of the unstable layer, these cases quickly transition to localized thinning and downwellings.

As Canright and Morris (1993) found, once λ′ is large enough, the form of deformation should

vary with wavelength only as a simple scaling (or stretching). The cases examined here were

perturbed with λ′ = 4π, which should be considered for dimensionalization. To quantify the

transition to localized deformation we examine the half-width of the upwelling zone, which

we define as the position of the local maximum of the slope of the base of the layer (Figure

3.7). These positions are calculated for each time step using the first order finite difference

between the lower surface nodes, but are plotted versus vertical displacement at the center

of the upwelling (as opposed to vs. time) since each experiment uses a different timescale.

With increasing n, the width of the upwelling zone decreases, further localizing deformation,

as predicted by Canright and Morris (1993). The steps in the horizontal positions in Figure

3.7 can be attributed, we believe, to times when maximum slope moves from one boundary

node to another.
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England et al. (1985) examined the length scales of continental deformation for different

plate boundary settings. With some simplification, they solved for the velocity field in a

thin viscous sheet perpendicular to a convergent or divergent margin. They found that this

component of velocity decreases with distance from the margin as e−
√

nπy/λ. In this case,

λ was the wavelength of their boundary perturbation. Our 2D calculation, with a center

region that moves uniformly away from the upwelling boundary, is similar in setting to the

convergent/divergent boundary considered by England et al. (1985). The main difference

here is that the velocity parallel to the vertical symmetry plane is not zero.
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Figure 3.7: A comparison of the horizontal position of the local maximum in lower boundary
slope for the upwelling plotted against maximum vertical upwelling position, as each instabil-
ity develops. Vertical position can be considered a proxy of the timescale across experiments
because the vertical position increases monotonically with each calculation step. Each case
has constant viscosity coefficient and constant density in the layer, with λ/h = 4π. The local
maximum in lower boundary slope initially begins at π due to the imposed perturbation and
quickly becomes more localized at the upwelling zone.

We estimate where each upwelling width stabilizes in Figure 3.7, noting the variability
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or uncertainty in our estimate, and plot them versus rheological exponent in Figure 3.8. The

width of the upwelling zone roughly follows the relation

width ≈ 1.25n−1/2, (3.6)

scaled by the perturbation wavelength.
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We also examine the velocity profile, u, along the top shear stress free surface at the

initial time step. We find that, although it is not a simple exponential function, the distance

required for the maximum horizontal velocity to build to (1 − 1/e) of the maximum very

closely follows the relation ≈ 1.5 ∗ n−1/2 (also Figure 3.8). It seems that although our

calculations include greater complexity than those of England et al. (1985), the underlying

dependence on the square root of the rheological exponent, n, still applies when the medium
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adequately approximates a half-space perpendicular to the symmetry plane (in our case when

λ > π).

Variation of the width of the upwelling with viscosity stratification ratio, h/L, is ex-

amined in Figure 3.9. Here the rheological exponent n = 3 for each case. The width of

the upwelling region shows little dependence on h/L except when h/L ≥ 4 (when broad

distributed thinning occurs). Since we might expect h/L values for lower lithosphere to

vary between 5 and 9, this shows that when the high-temperature stress-strain exponent of

n = 3.5 for olivine is used for the entire lithosphere, localized thinning would be unlikely.
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Figure 3.9: We plot, as in Figure 3.7 the upwelling zone width versus upwelling deformation
for cases with n = 3. Each case has constant viscosity coefficient and constant density in the
layer, with λ/h = 4π. Those cases that develop with separated upwellings and downwellings,
h/L < 4, show little variation with length scale of viscosity variation. The case of h/L = 4
does not develop with separated upwellings and downwellings, and upwelling deformation
remains minimal compared to downwelling deformation (54% of layer thickness in this case).
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3.5 Discussion

3.5.1 Large Scale Lower Lithosphere Removal

The zone of plate-like deformation occurs when h/L < 3 and is below the range of

values we might expect in typical lower lithosphere, which can range from roughly 5 to

9 (Harig et al., 2008). The h/L ratio of the power law rheology of olivine is determined

approximately as

h

L
=

Ea∆T

nRT 2
0

(3.7)

where Ea is activation energy which can vary between 430 and 540 kJ/mol (Karato and Wu,

1993), ∆T is the temperature variation across the layer, n is the stress-strain constitutive

exponent often fixed at 3.5 (based on creep measurements of dry olivine), R is the gas

constant (8.314472 J K−1 mol−1), and T0 is the temperature at the base of the layer (Harig

et al., 2008). With this rheology, h/L < 3 requires either unreasonably warm Moho (T ≈

900◦C for a mantle potential temperature of T0 = 1300◦C, ∆T = 400◦C) or a transition to

the low-temperature high-stress creep regime which results in a greater effective value of n

(Evans and Goetze, 1979; Goetze, 1978).

At high stresses the power law constitutive equation for olivine breaks down to an

exponential relation between stress difference and strain rate experimentally given by Goetze

(1978) and Evans and Goetze (1979) as

ǫ̇11 = ǫ̇0exp

[

− Ha

RT

(

1 − σ11 − σ33

σ0

)2
]

. (3.8)

Here ǫ̇11 is the longitudinal strain in a uni-axial strain rate experiment, and σ11 − σ33 is the

difference between longitudinal compressive stress and confining pressure. Molnar and Jones

(2004) rewrite this in the constitutive form of Equation 3.3 as

τij =
ǫ̇ij

Ė
√

3
σ0



1 −
(

RT

Ha
ln

√
3ǫ̇0

2Ė

)1/2


 . (3.9)
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The quantities ǫ̇0, σ0, and Ha are experimentally determined, and given by Goetze (1978)

to be ǫ0 = 5.7 ∗ 1011 s−1, σ0 = 8.5 GPa, and Ha = 536 kJ/mol, and other symbols are as in

Table 1. In this form, Molnar and Jones (2004) compared the high stress effective viscosity

coefficient to that from the power law relation, Equation 3.3. They determined that for

geologically relevant strain rates, 10−13 − 10−15 s−1, this high stress law would apply in the

upper portions of the mantle lithosphere where temperatures are below ≈ 800 − 1000◦C

(Goetze, 1978; Molnar and Jones, 2004; Tsenn and Carter , 1987). This high stress law

may also be well approximated using a power law with n ≥ 10 for which stresses are rather

insensitive to strain rates (e.g. Dayem et al., 2009). Using n = 10 in equation 3.7 means

that h/L becomes about 3, whereas for n = 3.5 it is about 8. If n is effectively 10, as it

would be if dominated by the low-temperature flow law, then upper portions of the mantle

lithosphere have the potential to be dynamically removed by this mechanism, along with the

lower portions of the layer.

The assumption of a zero shear stress condition at the base of the crust represents one

possible end member boundary condition, and can be justified geologically in several ways.

One could argue that the lower crust should be weak compared to the upper mantle when it

is sufficiently warm. Evidence of an eclogitic layer at the base of the crust could also suggest

this boundary condition (e.g. Harig et al., 2008) as eclogite is thought to deform at lower

viscosities than granulite (e.g. Austrheim, 1991). Finally, a quartz-rich crust also has the

potential to flow at relatively low shear stress at typical Moho temperatures (e.g. Brace and

Kohlstedt , 1980; Sibson, 1977, 1982). Even at high pressures these flow stresses for quartz

remain below a few MPa and microstructures suggest the stresses do not even reach this

threshold to transition to dislocation creep (Stöckhert and Renner , 1998).

3.5.2 Intracontinental Magmatism

With a shear stress-free upper boundary, rheological exponent n ≥ 2, and λ′ ≥ 6

downwellings and upwellings are separated by a central region that has relatively low internal
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strain rate and near uniform horizontal velocity, and that moves as almost a coherent block.

This suggests that localized thinning could be offset several hundred kilometers from the

zone of downwelling.

Although potassic magmas can result from various triggers, they may link to litho-

spheric instabilities in several plate boundary regions. In the Sierra Nevada, broad high–

potassium magmatism is one of several observations that indicate removal of lower litho-

sphere (in this case within 100 km of inferred downwelling). These volcanics of varying

type (e.g. Farmer et al., 2002) are inferred to have lithospheric mantle sources that have

been metasomatized in a previous arc magmatism setting, as opposed to a depleted mantle

source (e.g. Turner et al., 1996). The convective removal of lower lithosphere allowed the

lithospheric mantle to melt where thinned, either adiabatically in upward flow (e.g. Elkins-

Tanton and Grove, 2003) or by simple conductive heating of shallow lithosphere exposed to

hot asthenosphere (e.g. Farmer et al., 2002), causing an abrupt pulse of magmatism at ca.

3.5 Ma.

Generally, since the metasomatism of lower lithosphere is preserved for as long as

temperatures in the lithosphere remain below the solidus, these magmas are also possible

away from current or geologically recent subduction zones, in settings that could have had

subduction influences further back in time (Elkins-Tanton, 2005, 2007). For instance, much

of the western United States can be assumed to have been hydrated by low angle subduction

in the early Cenozoic (Farmer et al., 2008). This potassic magmatism may also follow dry

adiabatic melting of asthenosphere if the downwelling lithosphere releases hydrous volatiles

as it sinks to greater pressures (Elkins-Tanton, 2005, 2007; Elkins-Tanton and Hager , 2000).

Melting in the localized upwelling zone should be controlled by the deflection of the

lithosphere-asthenosphere boundary (Figure 3.4), the width of which depends on the rheo-

logical exponent, n (Figure 3.8). This melting ought not occur throughout the entire column

of mantle lithosphere. While material near the top of the column would move upward adia-

batically, its initially low temperature would prevent it from reaching its solidus, and hence
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melting.

The localization of the upwelling zone when h/L is less than about three implies that

when a shear-stress free surface might be applicable, magmatism could play an even more

important role than considered previously. Firstly, thinning, and hence magmatism, need

not occur near plate boundaries, where large stresses and strains can easily create the pertur-

bation necessary to induce gravitational instability. Magmatism instead may appear several

hundred kilometers into the continental plate. There, increased lithospheric thicknesses may

hide surface indicators of thinning or extension such as rapid change of surface elevations

or rifting. Second, magmatism may be more diagnostically important at smaller horizontal

length scales than can be resolved with other techniques such as travel-time tomography or

receiver function analysis. It may be that shorter scale, unresolved lithospheric instabilities

occur, requiring densely spaced seismic networks for detection (Yang and Forsyth, 2006). In

this case, the high–potassium magmatism may be the best evidence with which to begin an

investigation of lithospheric removal induced by convective or Rayleigh-Taylor instability.

3.6 Conclusions

When the dimensionless wavelength of the perturbation, λ′ (ratio of perturbation wave-

length to layer thickness), is greater than approximately six, and shear-stress on the upper

surface is negligible, a power law rheology causes 2D Rayleigh-Taylor instability to separate

into two forms, controlled by viscosity, density, and stress-strain exponent. For low viscosity

stratification ratios, h/L ≤ 2 (for constant density) or h/L ≤ 3 (for depth-dependent den-

sity), deformation concentrates at the ends of the unstable layer as localized upwelling and

downwelling. The middle part of the layer moves horizontally towards the downwelling as

a coherent block. Throughout the growth of the instability, the upwelling and downwelling

grow at comparable rates.

As h/L increases, the similarities between upwelling and downwelling diverge. The

vertical viscosity variation permits vertical gradients in horizontal velocity and prevents the
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middle area from ever moving as a coherent block. Upwelling deformation is distributed

over a broader area of the lower lithosphere and total thinning remains small as downwelling

peaks.

The transition zone for intermediate values of h/L reflects a combination of these two

end states. The initial growth of the instabilities mirrors those with separated upwellings and

downwellings, which grow at similar rates, and a middle zone with subtle vertical gradients

in horizontal velocity. Final stages of growth are similar to cases with large h/L, with

downwelling growing rapidly and upwelling becoming more diffuse. This transition type

appears at slightly higher viscosity stratification ratios with the introduction of depth varying

density.

The estimated width of the maximum upwelling zone is controlled by the rheological

exponent in the constitutive equation, and varies as ≈ n−1/2. The decay in horizontal velocity

away from the side boundaries of our layer also indicates a ≈ n−1/2 relation. Together they

compare well to earlier studies of deformation length scales for a half-space deformed by

boundary stresses (England et al., 1985).

We suggest the low viscosity stratification ratio required for plate-like deformation

(h/L < 3) is plausible when considering the high-stress low-temperature creep regime. Ap-

proximating this regime with a n > 10 power law rheology can reduce the effective h/L to

the h/L < 3 range. Without the high-stress regime, low h/L ratios are less realistic, and

high values of B at low temperatures would prevent upper portions of the mantle lithosphere

being removed when dynamical instability occurs. The Sierra Nevada, however, provides a

counter example; estimates of the lithosphere’s thermal structure prior to 10 Ma indicate

removal of tens of kilometers of material colder than 900◦C (e.g. Molnar and Jones, 2004)

has occurred.
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B Viscosity coefficient (where constant in the layer)
B0 Viscosity coefficient at the base of the layer, through which it decreases with depth
de Equilibrium thickness of the unstable layer defined by Canright and Morris (1993)

as the thickness that has no tendency to grow or shrink

Ė Second invariant of the strain rate tensor
Ea Activation energy
g Gravitational acceleration
Ha Experimentally determined activation energy constant (535 kJ/mol) in the high

stress constitutive equation
h Initial thickness of layer
L Characteristic e-folding depth scale for exponential decrease in viscosity coefficient
n Rheological exponent in the stress-strain constitutive equation
p Pressure
R Gas-law constant
t Time
tb Time when downwelling detaches from upper surface
T Temperature
T0 Temperature at base of layer
∆T Temperature difference across layer
u Horizontal component of velocity
w Vertical component of velocity
x Horizontal coordinate
z Vertical coordinate set to zero at the bottom interface of the layer and positive

upward in our numerical cases
δ Thickness of layer as function of time, from Canright and Morris (1993)
λ Wavelength of perturbation to layer
ρ Density
∆ρ Density difference between the layer and the underlying half-space or subspace
ǫij Strain component
ǫ̇ij Strain rate component
ǫ̇0 Experimentally determined strain rate constant (5.7 ∗ 1011 s−1) in the high stress

constitutive equation
σij Stress component
σ0 Experimentally determined stress constant (8.5 GPa) in the high stress constitutive

equation
τij Deviatoric stress component

Table 3.1: Definition of symbols.



Chapter 4

Constraints on upper mantle viscosity from the flow-induced pressure gradient

across the Australian continental keel

4.1 Abstract

The thickness of continental lithosphere varies considerably from tectonically active to

cratonic regions, where it can be as thick as 250–300 km. Embedded in the upper mantle

like a ship, when driven to move by a velocity imposed at the surface, a continental keel is

expected to induce a pressure gradient in the mantle. We hypothesize that the viscosity of

the asthenosphere or the shear coupling between lower lithosphere and asthenosphere should

control this pressure effect and thus the resulting dynamic topography. We perform three-

dimensional finite-element calculations to examine the effects of forcing a continental keel

by an imposed surface velocity, with the Australian region as a case study. When the upper

mantle is strong, but still weaker than the lower mantle, positive dynamic topography is

created around the leading edge, and negative dynamic topography around the trailing edge

of the keel, which is measurable by positive and negative geoid anomalies, respectively. For

a weak upper mantle the effect is much reduced.

We analyze geoidal and gravity anomalies in the Australian region by spatiospectral

localization using Slepian functions. The method allows us to remove a best-fit estimate

of the geographically localized low spherical-harmonic degree contributions. Regional geoid

anomalies thus filtered are on the order of ±10 m across the Australian continent, with a

spatial pattern similar to that predicted by the models. The comparison of modeled and
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observed geoid anomalies places constraints on mantle viscosity structure. Models with

a two-layer mantle cannot sufficiently constrain the ratio of viscosity between the upper

and lower mantle. The addition of a third, weak, upper-mantle layer — an asthenosphere

— amplifies the effects of keels. Our three-layer models, with lower-mantle viscosity of

3 × 1022 Pa s, suggest that the upper mantle (asthenosphere) is 300 times weaker than the

lower mantle, while the transition zone (400–670 km depths) has a viscosity varying between

1021 and 1022 Pa s.

4.2 Introduction

Our understanding of Earth’s deformation and dynamics fundamentally depends on

the rheology of the mantle. The viscosity structure of the mantle has been inferred mainly

by studying the response to disappearing glacial surface loads over the past 105 years (e.g.

Cathles , 1975; Peltier , 1976; Wu and Peltier , 1983; Yuen and Sabadini , 1985; Nakada and

Lambeck , 1989; Lambeck et al., 1990; Mitrovica, 1996; Simons and Hager , 1997; Mitrovica

et al., 2007) and by examining geophysical signals from models of mantle convection, such

as long-wavelength geoid anomalies and surface plate velocities (e.g. Hager , 1984; Ricard

et al., 1984; Hager and Richards, 1989; King and Masters, 1992; Forte and Peltier , 1994).

Results from these methods have not always been consistent. Analyses of convection-related

observables have routinely suggested that the upper mantle is less viscous than the lower

mantle by a factor of at least 30, and perhaps as much as 300. On the other hand, studies of

glacial-isostatic adjustment sometimes argue for less than a factor of 10 variation (Peltier ,

1998). Jointly inverting several types of data has provided additional detail (e.g. Mitrovica

and Forte, 2004), but the mantle’s viscosity structure remains incompletely resolved. This

is mainly due to the poor vertical resolution of the post-glacial rebound data (Paulson et al.,

2007a,b). Here, we consider whether pressure gradients across continental keels can be used

to place a meaningful constraint on the viscosity of the upper mantle.

The thickness of the continental lithosphere varies considerably from tectonically active
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to stable cratonic regions (Artemieva, 2009). Determining the depths of continental keels

has been an area of much study and debate over the past several decades (King , 2005), with

estimates historically ranging from 175 to 400 km. Observations of surface heat flux, for

example, suggest a thick Archean lithosphere (e.g., Rudnick et al., 1998), though nowhere

exceeding 250 km (e.g., Ballard and Pollack , 1987; Nyblade and Pollack , 1993; Jaupart et al.,

1998). Analyses of mantle xenoliths, if indeed representative of a conductive geotherm,

have led to thickness estimates in the lower end of the range, 150–200 km (Rudnick et al.,

1998). Measurements of electrical conductivity show that differences between oceanic and

Archean cratonic regions are limited to depths shallower than 250 km (Hirth et al., 2000).

Seismically, lithosphere is typically considered to extend to depths where shear-wave speeds

are significantly faster than the global average speed (usually >1.5–2%) (Masters et al., 1996;

Mégnin and Romanowicz , 2000; Simons and van der Hilst , 2002; Ritsema et al., 2004). While

some types of data are known to be influenced by anisotropy in the upper mantle (Ekström

and Dziewonski , 1998; Gung et al., 2003), most recent seismic estimates generally limit

lithospheric thickness to at most 300–350 km (Artemieva, 2009). Overall, across disciplines,

the continental-keel thickness estimates are in the range of 200–300 km. In particular,

Australia, our region of interest, consistently yields some of the highest estimates of any

craton, with fast seismic wave speed anomalies persistent to depths of 250–300 km in models

of VSV , the vertically-polarized shear-wave speed (e.g. Debayle and Kennett , 2000a; Simons

et al., 2002; Ritsema et al., 2004).

The base of the lithosphere has much significance to geodynamics since, as a mechani-

cal lower boundary, it separates the rocks which remain coherent parts of the lithosphere over

geologic time from those below that are part of the convecting mantle (Turcotte and Oxburgh,

1967). It is for this reason that such thick continental keels are expected to translate with

plate motion over long time scales; an observation that is corroborated by the global correla-

tion of continental crustal age with lithospheric thickness at long wavelengths (Simons and

van der Hilst , 2002). Furthermore, continental keels influence the coupling between mantle
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and lithosphere, thus affecting net rotation of lithosphere (Zhong , 2001; Becker , 2006, 2008)

as well as regional lithospheric deformation (Conrad and Lithgow-Bertelloni , 2006).

The motion of continental keels through the upper mantle, which is relatively less

viscous, can be expected to induce pressure perturbations in the mantle moving around

them (Ricard et al., 1988). Such pressure gradients will mainly be controlled by the viscosity

and thickness of the asthenospheric channel below the lithosphere. If the viscosity of this

channel is low relative to the rest of the mantle the pressure gradient should cause return flow

beneath the keel with little effect on dynamic topography at the Earth’s surface. However

at higher asthenospheric viscosities the return flow should be reduced in favor of a signal in

the surface topography and hence gravity anomalies or the geoid. Ricard et al. (1988) used

an approximate mode-coupling method to estimate these geoidal anomalies in the tens of

meters.

In this study we constrain the viscosity of the upper mantle by comparing modeled dy-

namic geoid anomalies to observations. As these signals are proportional to the magnitude

of velocity change across the mantle, we focus on the Australian continent, with its rela-

tively large surface velocities. We analyze the regional geoidal anomalies by spatiospectral

localization using Slepian functions. Our results will also be applicable to understanding the

development of seismic anisotropy beneath continental cratons and the orientation of the

lithospheric stress field surrounding them.

4.3 Analytical Treatment

To illuminate the physics, we first consider a simplified problem in two dimensions

(2D) that can be solved analytically by neglecting flow in the third dimension, normal to

surface motion. We examine the flow at two locations: in the far-field, in which a lithosphere

of uniform thickness moves over a layered viscosity structure, and the flow beneath a keel,

where a much thicker lithosphere moves over the same layers. In both of these locations

we would expect only horizontal flow. Therefore, from conservation of mass, the amount of
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horizontal flow at these locations should balance each other. This takes the form of the flux

balance
∫

K

u(z) dz =

∫

F

u(z) dz, (4.1)

where the material flux across a vertical plane is the integral of the horizontal velocity

function u over depth. Horizontal and vertical coordinates are represented by x and z,

and the subscript K indicates the location under the keel, while F indicates the far-field

(Table 4.1). This is also illustrated in the cartoon Figure 4.1A, where the arrows representing

the amount of mass flow change with depth but sum to the same amount in each region.

Since the motion of the lithosphere is constant, the flow in the underlying mantle must

balance the excess mass transported in regions of thick lithosphere (i.e. keel regions). In

one-dimensional channel flow (Turcotte and Schubert , 2002), the equation of motion can be

written as

∂τ

∂z
=

∂p

∂x
or η

∂2u

∂z2
=

∂p

∂x
, (4.2)

where τ is the shear stress and p the pressure. The viscosity, η, is assumed to be constant

in each layer. By integration we obtain an equation for the velocity, u, as a function of

depth, which is subsequently solved for by applying the boundary conditions. These are:

constant velocity at the surface, and fixed zero velocity at the bottom. In the far-field case of

surface-driven motion, ∂p/∂x can be considered as zero, and we have linear velocity functions

with velocity everywhere in the same direction as the top surface. Underneath the keel, a

horizontal pressure gradient is allowed and can be solved for when balancing the material

flux.

We simplify our solutions by non-dimensionalizing pressure and coordinates by the

relevant length, mass, and time scales. For layers with constant viscosity we use

p′ =
p

(

u0ηLM

h0

) and x′ =
x

h0
, (4.3)

where p′ is dimensionless pressure, x′ is dimensionless horizontal coordinate, u0 is the hori-
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Figure 4.1: A) Cartoon illustrating the mass-balance argument in the analytical treatment
in Section 4.3. Arrows represent the amount of mass transported in each region. Since the
lithosphere moves with constant motion, the flow in the underlying mantle must balance the
excess mass transported in regions of thick lithosphere (i.e., the keel region). B) Dimen-
sionless pressure gradients from the two-layer analytical solution (eq. 4.6), for various keel
thicknesses and γ, the ratio of upper mantle to lower-mantle viscosities. C) Numerical ex-
periment schematic. The left shows viscosity variation with depth. Solid line is the preferred
model, dashed line shows keel viscosity. Grey shades show variations of viscosity considered.
The right shows assumed layering. Maximum keel depth is 300 km. Upper mantle-transition
zone boundary is varied to set channel thickness between the keel and transition zone.
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zontal velocity at the surface, ηLM is the viscosity of the lower mantle, and h0 is the thickness

of the upper mantle in the non-keel region. Values such as the thickness of the upper mantle

channel below the keel, h, and the thickness of the lower mantle, d, nondimensionalize to

h′ = h/h0 and d′ = d/h0. We also use k = h0 − h as the thickness difference between the

keel and the surrounding lithosphere, written dimensionless as k′ = (h0 − h)/h0.

For a uniformly-viscous mantle the keel-induced pressure gradient is a well-known

result, which varies as the cube of the channel thickness, h, written as

∂p

∂x
= 6u0η

k

h3
or

∂p′

∂x′ = 6
k′

h′3 . (4.4)

This is similar to eq. (6–22) by Turcotte and Schubert (2002), except that we allow for a

non-zero far-field flux equal to that of uniformly-thick lithosphere.

When the mantle has multiple viscous layers, the dependence on the thickness of the

weakest layer is more complex. For a two-layered mantle, velocity is solved for in each layer,

and then the dimensionless pressure gradient can be written as

∂p′

∂x′ =

γ

(

h′2 − γd′2

γd′ + h′

)

− γ

(

1 − γd′2

γd′ + 1

)

1

2
(h′2 − γd′)

[

γ(−2d′h′ − d′2) − h′2

γd′ + h′

]

+ A

, (4.5)

A = −1

3
γd′2(2d′ + 3h′) +

h′3

3
. (4.6)

Here, γ = ηUM/ηLM is the ratio of the viscosities of both layers. Setting the thickness of the

lower mantle, d′, to zero reduces eq. 4.6 to eq. 4.4. Assuming that the thicknesses of the upper

and lower mantle are fixed with the boundary at 670 km depth, we plot the pressure gradient

versus γ, the ratio of upper-mantle to lower-mantle viscosities, for several keel thicknesses

(Figure 4.1B). As expected, a thicker continental keel results in larger dimensionless pressure

gradients. More interesting, however, is the variation with γ. As γ is decreased from one

(uniform-viscosity mantle), pressure gradients initially increase even though upper-mantle

viscosity is lower. Pressure gradients eventually peak, and decrease with decreasing γ.
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We also considered a three-layered mantle with a fixed 300 km thick keel and another

division around 400 km depth. While this system is more complex, the cases we checked

showed a weak upper mantle may result in increased pressure gradients and thus increased

dynamic topography, as in the two-layered case.

The analytical model illuminates the problem of flow-generated dynamic topography

in the following ways. First, the addition of a weak layer in the upper mantle can enhance the

effect of continental keels and increase pressure gradients. Second, the magnitude of surface

velocity exerts strong control over dynamic topography since it directly scales the pressure

gradient, as per eq. 4.3: the higher the surface velocity, the more dynamic topography can

be generated in the system.

While idealized, a 2D analytical treatment of the problem easily illustrates our hypoth-

esis: that continental keels induce both horizontal variations in mantle velocity and pressure

that are controlled by the details of the viscosity structure. We continue this analysis with

more realistic three-dimensional (3D) calculations, focusing on the unique gravity signals

resulting from the dynamic topography. The absence or presence of these signals in Earth’s

observed gravity field then allow us to bound the plausible viscosity structure below.

4.4 Numerical Experiment Setup

Our keel models are kept relatively simple, since we intend to examine the first-order

effects of their motion only. We begin by assuming boundary-driven flow, and neglect mantle

and crustal buoyancy forces. This Stokes flow problem is governed by two of the conservation

equations of viscous fluids, those for mass and momentum, represented in dimensionless form

as

∇ · v = 0, (4.7)

−∇p + ∇ · [η(∇v + ∇
Tv)] = 0, (4.8)

where v, p, η are the velocity vector, pressure, and viscosity, respectively.
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These equations are solved with the parallel finite-element code CitcomCU (Moresi

and Gurnis, 1996; Zhong , 2006). We design our model space in regional spherical geometry

to span depths from the surface to the core-mantle boundary (CMB), and to cover a 120◦

by 120◦ area. Typical resolution for each case is 192, 192, and 104 elements in longitude,

latitude, and radial direction respectively, giving 0.625◦ per element of horizontal resolution.

Vertical resolution is enhanced in the upper mantle at the expense of lower-mantle resolution

to properly resolve the expected large vertical gradients in horizontal velocity. The upper

mantle (between 70 and 670 km depth) has 10 km per element of radial resolution, while

the lower mantle and lithosphere above 70 km depth have 57.8 km and 14 km per element

of radial resolution, respectively. We specify the thickness of lithosphere at every column of

elements and center the keel in our model space at 60◦ longitude, 0◦ latitude. The surface

velocity is then fixed to result from an Euler-pole rotation with an axis at 90◦ latitude

with rotation magnitude of 1 cm/yr. We use a fixed boundary condition on the bottom,

which will be discussed further later. On the sides of our box that are parallel to the flow

direction we use reflecting boundary conditions. On the sides perpendicular to flow, we use

periodic boundary conditions which allow free through-flow with identical velocity on either

side. Thus the combined velocity solutions for the side boundaries are mass-preserving.

Perturbations to the pressure field caused by the keel motion result in dynamic topography

at the surface. We analyze the gravity anomalies associated with this dynamic topography

and make comparisons to the observed field.

Since dynamic topography directly scales with the magnitude of surface velocity for the

Newtonian rheology used in our calculations, we focus our study on the Australian continent,

which is the fastest-moving continental plate. When imposing surface velocity we use the

azimuth of plate motion at the center (130◦ E, 25◦ S) of Australia’s lithospheric keel from

the HS3-NUVEL1A model, which is 1.81◦ East of North (Gripp and Gordon, 2002) and,

later, scale the results by the surface-velocity magnitude of 8.267 cm/yr. The prescribed

surface boundary conditions are the driving force in our calculations and may do work on
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the calculation medium (e.g. Han and Gurnis, 1999). If this work induces significant stresses

at the surface it may influence the dynamic topography of our calculations. We performed

calculations with various lithospheric viscosities (including the keel) between 10 and 500

times that of the lower mantle. As long as the lithosphere is sufficiently more viscous than the

upper mantle, there was very little difference in the resulting surface stresses, hence dynamic

topography and geoid, indicating that stresses at the surface are caused by the pressure

perturbations in the upper mantle associated with keel structure. Also, our use of periodic

inflow/outflow boundary conditions likely minimizes this effect. While our calculations use

surface motions over a passive mantle, mantle flow beneath a fixed keel could produce similar

pressure gradients. The important quantity is the net shear between the surface and the

underlying mantle which could be influenced by buoyancy-driven flow, such as subduction.

Accordingly we examined mantle flow beneath Australia from a global mantle-flow model

driven by both plate motion and mantle buoyancy (see Zhang et al. (2010)) to investigate

whether the velocity boundary conditions assumed at the top and bottom are valid. While

this is discussed further in Section 4.6.4, the results are broadly consistent with what we

assume in this regard.

We use the upper-mantle shear-velocity tomography model CUB2.0 (Shapiro and Ritz-

woller , 2002) to create lithospheric keel-thickness distributions for our calculations (Fig-

ure 4.2A). Since the Australian continent is surrounded by relatively young oceanic litho-

sphere (Müller et al., 2008), lithospheric thickness is set to a minimum of 70 km. At each

increasing depth we use a +2% cut-off shear-wave velocity-perturbation contour with respect

to the ak135 reference model (Kennett et al., 1995) to estimate the extent of the continental

keel. As mentioned earlier, estimates for the thickness of continental cratonic lithosphere

from seismic tomography depend on the type of data used. The CUB2.0 model was created

via a Monte-Carlo inversion of global surface-wave dispersion data using both Rayleigh and

Love waves. Shapiro and Ritzwoller (2002) specifically allow for radial anisotropy in their

inversion, down to a depth of 250 km. Where possible, we use the best-fitting VSV estimate,
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Figure 4.2: A.) Plot of keel depth from the tomography model CUB2.0 (Shapiro and Ritz-
woller , 2002). We map the +2% shear-wave speed perturbation from initial model ak135
using VSV and set a maximum lithosphere depth of 300 km depth. B.) Colored EGM96
geoid height without the degree l = 2 zonal spherical harmonic coefficient. C.) Plot of the
sum of squares
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α=1 g2

α of the first N + 5 eigenfunctions localized within a 30◦ circular
region centered in western Australia for the bandwidth L = 0–8. The colored field shows
the sensitivity of our filter to the region of interest. Overlain is the 90% contour of this
sensitivity.
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which is consistently smaller than the VSH estimate. Below this depth their data is unable

to constrain radial anisotropy and the estimated isotropic shear-wave speed, VS, is used. We

limit the thickness of the lithosphere to 300 km since greater thicknesses are not supported

by the majority of tomographic upper-mantle models.

Our models use layered viscosity structures according to the schematic shown in Fig-

ure 4.1C. Mantle viscosities are constant with depth within each layer and are rendered

dimensionless by a reference value of 2× 1021 Pa s. Lithospheric viscosity and keel viscosity,

are set to a constant significantly higher than the mantle (e.g. 1024 Pa s). We begin with

a two-layered mantle with viscosity contrast at 670 km and vary the ratio of viscosities of

the lower and upper mantle. Calculations are then performed with a three-layered mantle

with divisions at 670 km and 400 km depth. Finally, our experiments also vary the thickness

of the asthenospheric channel from 50 to 150 km to examine the trade-off between channel

viscosity and thickness.

4.5 Analysis of Gravity

We seek to compare the dynamic geoid anomalies in our calculations to Earth’s ob-

served geoid in an effort to constrain the viscosity structure of the upper mantle. This task

is neither simple nor straightforward. The Earth’s gravitational potential at a given surface

point receives contributions from the mass distribution at all depths beneath and around it.

In the Australasian region (Figure 4.2B) we would therefore expect the geoid (Lemoine et al.,

1998) to reflect the mass redistribution processes that occur in the surrounding subduction

zones (McAdoo, 1981), and processes in the lower mantle (Hager and Richards, 1989), in

addition to the dynamic signal that we must thus attempt to isolate. Fortunately, we expect

our dynamic signals to be localized both spatially and spectrally. By examining equivalently

localized contributions to Earth’s gravitational-potential field we can distinguish possible

dynamic signals from these other regional contributions.

The usual spherical-harmonic representation of potential fields links spatial and spec-
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tral information through global spherical basis functions which have perfect frequency se-

lectivity but none in space (e.g. Freeden and Michel , 1999). In order to isolate a spatially

localized contribution to the signal, spectral and spatial concentration must be balanced

somehow.

For instance, Simons and Hager (1997) developed a procedure that constrains regional

contributions to global spherical-harmonic spectra to examine the rebound of the Canadian

shield after removal of its ice sheet. They constructed isotropic bandlimited windowing

functions on domains with circular symmetry from zonal spherical harmonics, according to

a sensible but non-optimal (see, e.g., Wieczorek and Simons, 2005) concentration criterion.

After their pioneering work, Simons et al. (2006) showed how to derive a family of optimally

concentrated basis functions on domains with arbitrarily irregular boundaries. As their

construction uses all of the available spherical harmonics Ylm, of integer degree l = 0, . . . , L,

and order m = −l, . . . , l, the “Slepian” basis, gα, α = 1, . . . , (L + 1)2, as it has come to be

known, is a perfect alternative to the spherical harmonics. Indeed, any scalar geophysical

function, s(r̂), that is bandlimited to degree L and lives (without loss of generality) on the

surface of the unit sphere can be represented completely equivalently in either basis,

s(r̂) =

L
∑

l=0

l
∑

m=−l

slm Ylm(r̂) =

(L+1)2
∑

α=1

sα gα(r̂). (4.9)

The Slepian functions, gα, which are bandlimited to some degree L, are always con-

structed with reference to a particular spatial region of interest, R, of area A, on the surface of

the unit sphere, Ω. The criterion for concentration to the region of interest is quadratic: the

Slepian functions are those that maximize their energy locally for the available bandwidth,

following

λ =

∫

R

g2
α(r̂) dΩ

∫

Ω

g2
α(r̂) dΩ

= maximum, (4.10)
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and where 1 > λ > 0. Practically, they are given by the spherical-harmonic expansion

gα(r̂) =

L
∑

l=0

l
∑

m=−l

gα lmYlm(r̂), (4.11)

where the coefficients, gα lm, are obtained by solving the eigenvalue equation

L
∑

l′=0

l′
∑

m′=−l′

Dlm,l′m′gl′m′ = λ glm. (4.12)

The four-dimensional object whose elements Dlm,l′m′ are products of spherical harmonics,

integrated over the region R, is called the localization “kernel” (Simons et al., 2006).

The eigenvalues of this problem, λ1, λ2, . . . , λ(L+1)2 , sum to a space-bandwidth product

termed the “spherical Shannon number”, N . Typically, N is a good estimate of the number

of significant eigenvalues, and thus of the number of well-concentrated functions for the

problem at hand. As a result, an expansion of the signal in terms of its first N Slepian

functions provides a high-quality regional approximation to the signal in the region (Simons

and Dahlen, 2006), at the bandwidth level L. Since

N = (L + 1)2 A

4π
, (4.13)

where A/(4π) is the fractional area of localization, the effective dimension of the Slepian basis

is much reduced compared to the (L + 1)2 terms in the spherical-harmonic expansion. The

Slepian functions are efficient for the study of geographically localized geophysical signals,

which are sparse in this basis (Simons et al., 2009),

s(r̂) ≈
N
∑

α=1

sα gα(r̂) for r̂ ∈ R. (4.14)

The geoid in the region of Australia (Figure 4.2B) is dominated by two striking features:

a broad and large-amplitude positive anomaly to the north near Indonesia and the Western

Pacific, and an equally broad and large-amplitude negative anomaly south of India trending

to the southeast. Both anomalies are rather long-wavelength features, and can be attributed

to the history of subduction and lower-mantle structure in the area (e.g. Hager and Richards,
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1989; Ricard et al., 1993). A simple estimate for the size of a dynamic keel-related (i.e.

model-generated) signal would be roughly the size of the keel itself. Therefore, we shall

determine spatiospectrally localized functions to remove the longer-wavelength contributions

to the regional geoid in and around Australia both in the observations and in our model

domain, thereby hopefully preserving the signal. By removing the long-wavelength geoid

contributions and ascribing what remains to the keel movement we run the risk of incurring

bias from an unexpected contribution to the geoid in our analysis. However, the unique

spatial pattern in our modeled geoid and its agreement with the filtered observed geoid

supports our modelling approach.

We elect to use our functions to remove bandwidths below L = 8. This roughly corre-

sponds to the wavelength of our keel outline and our experience has shown that it acceptably

balances removing broad, regional geoid features with the preservation of sufficient model

signal for analysis. We separate the observations into a low-degree and a high-degree part

in both the spherical-harmonic and the Slepian basis of bandwidth L, as

s(r̂) =
Lmax
∑

l=0

l
∑

m=−l

slm Ylm(r̂), (4.15)

=
L
∑

l=0

l
∑

m=−l

slm Ylm(r̂) +
Lmax
∑

l=L+1

l
∑

m=−l

slm Ylm(r̂), (4.16)

=

(L+1)2
∑

α=1

sα gα(r̂) +

Lmax
∑

l=L+1

l
∑

m=−l

slm Ylm(r̂). (4.17)

=
N
∑

α=1

sα gα(r̂) +

(L+1)2
∑

α=N+1

sα gα(r̂) +
Lmax
∑

l=L+1

l
∑

m=−l

slm Ylm(r̂). (4.18)

Compared to the original expansion (4.15), eq. (4.18) represents the signal with the low-

degree components separated into local (the first term) and nonlocal (the second term)

contributions. The first term in eq. (4.18) can thus be omitted in order to remove the local

contributions to the low-degree signal.

If we sum the squares of all of the Slepian functions the value N/A is reached every-

where on the unit sphere (Simons et al., 2006); by performing the partial sum of the first N
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terms we obtain
N
∑

α=1

g2
α(r̂) ≈ N

A
for r̂ ∈ R. (4.19)

By plotting the sum of the first several squared Slepian eigenfunctions we can determine

where the truncated expansion is most sensitive and thus most successful at subtracting

regional contributions. We will target our attention to the area where the analysis reaches

90% of its maximum sensitivity by this measure. In practice, this means that we shall take

the first N + 5 basis functions to guarantee the efficient removal of low-degree signal from

the region of interest (Figure 4.2C).

When the geoid is bandlimited to increasingly higher spherical-harmonic degrees, f

shorter-wavelength signals begin to dominate the field. Around Australia, the sharp density

contrast between the continental lithosphere and oceanic lithosphere that is over 100 Ma

old results in prominent geoid anomalies along the coastline in the shorter-wavelength geoid

field. We apply a simple, approximate, correction for these anomalies, derived by Haxby

and Turcotte (1978). This correction assumes that topography and bathymetry follow Airy

isostatic compensation, and therefore it expresses the change in the moment of the density

distribution that is expected when the thickness of crust varies. We apply this correction

to the geoid from the EGM96 model (Lemoine et al., 1998) prior to the Slepian filtering

technique.

We illustrate the application of our method in Figure 4.3 using data from EGM96.

The Slepian functions we use will be designed to fit the localized power at the low degrees of

the geoid. They are bandlimited to L = 8 and are concentrated within a region of interest of

colatitudinal radius Θ = 30◦ centered on colatitude θ0 = 115◦ and longitude φ = 130◦ (i.e.,

the center of the Australian keel). The corresponding rounded Shannon number N = 5. The

panels in the top row (Figures 4.3A–C) display various versions of the EGM96 geoid height

that are simply truncated, namely after removal of the degrees l through 2, through 8, and
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Figure 4.3: Example of Slepian filtering technique for a low maximum bandwidth of L = 8.
The top row of panels (A–C) displays spectrally truncated versions of the EGM96 geoid
height. The bottom row of panels (D–F) shows the filtering process. (A) The complete
EGM96 geoid undulation with degree l = 2 removed. (B) The geoid with all coefficients
from l = 2 through l = 8 set to zero. (C) The geoid between l = 3–8. In this example, our
functions are designed to fit the localized power of these low degrees. (D) The fit of the first
N +5 Slepian eigenfunctions to the low-degree EGM96 geoid (panel C), concentrated within
a 30◦ circular region (outlined in white) centered over western Australia. (E) The residual
after subtracting the Slepian fit from the low-degree EGM96 geoid. Overlain in white is the
90% contour of sensitivity from Figure 4.2C. (F) The results of subtracting the low-degree
Slepian fit from the full EGM96 geoid (panel A). Panels B, E, and F are shown with the
same color scale, as are panels C and D.
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between 9–360, respectively, i.e.

s1 =
360
∑

l=3

l
∑

m=−l

slm Ylm, (4.20)

s2 =

360
∑

l=9

l
∑

m=−l

slm Ylm, and (4.21)

s3 =

8
∑

l=3

l
∑

m=−l

slm Ylm. (4.22)

For reference we note that s1, in Figure 4.3A, is a fair approximation to the Earth’s non-

hydrostatic geoid.

In the course of our analysis we found that reconstructing the low-degree geoid with a

Slepian basis of more than N terms was necessary to obtain good fits to the modeled data.

Therefore, Figure 4.2C and the bottom row of panels, Figures 4.3D–F, use N + 5 = 10 basis

functions to remove the local signal. Including these extra functions does not significantly

affect the trade-off between spatial and spectral localization. In the bottom row of panels of

Figure 4.3 we show the filtering process by first showing, in Figure 4.3D, the fit of the first

N +5 Slepian eigenfunctions to the low-degree EGM96 geoid (i.e., s3 shown in Figure 4.3C),

with the circular region of concentration, the 90% contour of sensitivity that is also shown

in Figure 4.2C, outlined in white. Figure 4.3E displays what remains after subtracting the

Slepian fit from the low-degree EGM96 geoid, s3 shown in Figure 4.3C. Finally, Figure 4.3F

shows the results of subtracting the low-degree Slepian fit (i.e., Figure 4.3D) from the full

EGM96 geoid shown in Figure 4.3A. In other words, we are plotting

s4 =

10
∑

α=1

sα gα, (4.23)

s5 =

81
∑

α=11

sα gα = s3 − s4, and (4.24)

s6 =
81
∑

α=11

sα gα +
360
∑

l=9

l
∑

m=−l

slm Ylm = s1 − s4. (4.25)

A comparison of s2 and s6 in Figure 4.3B and 4.3F, which are shown using the same color

scale, shows the changes due to the regional subtraction of low-degree signal. These changes
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include some subtle changes in geoid height such as slightly broader and larger positive

anomalies in northwestern Australia, and broader negative anomalies along the southwest-

ern coast of Australia. This comparison shows the difference between what would be the

“traditional” all-spectral and the optimized “Slepian” spatio-spectral approach to removing

the regional low-degree contributions to the geoid.

In conclusion, spatiospectral filtering allows us to examine the geoid in and around

Australia without being biased by power in the 0 → L degree range that mostly arises

from regions outside of Australia. The resulting geoid anomalies from this analysis in the

Australian region show a distinct feature with negative and positive anomalies of amplitude

of ∼10 m in the southern and northern parts of Australia, respectively (Figure 4.3F). Such

regional geoid anomalies are used in this study to constrain mantle viscosity structure.

4.6 3D Numerical Results

We performed calculations using the keel shown in Figure 4.2A and varied the viscosity

of the asthenosphere. From the vertical normal-stress field we calculate the dynamic topog-

raphy at the surface (Figure 4.4A) and at the core-mantle boundary, which is then used

to calculate surface geoid anomalies (Figure 4.4B). As upper-mantle viscosity is varied, the

spatial patterns of topography and the geoid remain roughly the same while the magnitude

fluctuates. At the leading edge of the keel, vertical normal stresses cause positive dynamic

topography at the surface while near the trailing edge of the keel the reverse is true, with

negative dynamic topography at the surface. The resulting geoid anomaly is also positive at

the leading edge of the keel and negative at the trailing edge. Some asymmetry also results

due to the shape of the lithospheric keel.

While the example model outputs shown in Figure 4.4A–B have yet to be filtered, a

similar pattern is seen to occur in the observed geoid after locally removing long wavelengths

(Figure 4.3F). In both modeled and observed fields, broad positive geoid anomalies occur

along the coast of northwestern Australia, and broad negative anomalies along the south-
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Figure 4.4: Examples of model output. (A) Example dynamic topography at the surface for
a calculation with ηLM = 3× 1022 Pa s, ηTZ = 3× 1021 Pa s, and ηUM = 3× 1020 Pa s. The
colored topography anomalies are scaled to a surface velocity of 1 cm/yr. The surface velocity
vector is aligned with the plate motion vector at azimuth 1.81◦ from North. In solid white
we show the 90% contour of filter sensitivity from Figure 4.2C. In dashed white we show
the outline of the Australian keel (where thickness >100 km) determined from the CUB2.0
model. (B) Example dynamic geoid anomalies at the surface from the same calculation, also
scaled to 1 cm/yr of surface motion. (C–E) Contoured magnitudes of unfiltered model geoid
anomalies in m, scaled to the Australian surface motion of 8.267 cm/yr. Magnitude simply
represents the difference between peak minimum and maximum anomaly (i.e., no pattern
information, about 3.6 m in B). Hollow squares show model individual runs. (C) Magnitudes
in a two-layered mantle with division at 670 km depth. (D) Magnitudes in a three-layered
mantle with divisions at 670 km and 400 km depth. Here the viscosity of the lower mantle
is fixed at 3×1022 Pa s. Diagonal dashed line is where the upper mantle and transition zone
have equal viscosity, equivalent to a two-layered mantle divided at 670 km depth. Vertical
dashed line is where the transition zone and lower mantle have equal viscosity, equivalent
to a two-layered mantle divided at 400 km depth. (E) Contoured magnitudes of unfiltered
model geoid anomalies in m for different channel thicknesses. Lower-mantle and transition-
zone viscosities are fixed at 3× 1022 Pa s and 3× 1021 Pa s, respectively. Horizontal dashed
line shows where the upper mantle and transition zone are isoviscous.
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western coast. We explore this behavior further later, but this initial observation provides

context for some of our model results.

4.6.1 Two-Layered Mantle

The primary descriptor of our model results is the magnitude of the dynamic geoid

anomaly. In a two-layer mantle with a division at 670 km depth (Figure 4.4C), the anomaly

magnitudes vary with the thickness and viscosity of the channel below the keel. When the

viscosity of the entire mantle is uniform (Figure 4.4C, dashed line), the channel below the keel

is effectively very thick, and the magnitude of the dynamic geoid anomaly (Figure 4.4C) is

relatively small (contours indicate the maximum geoid anomalies reached). As upper-mantle

viscosity decreases, this channel effectively gets thinner as deformation concentrates in the

upper mantle, and the geoid anomaly increases. This increase continues until the viscosity

contrast reaches approximately 1:33 (third row of squares below dashed line). Eventually

the low viscosity of the upper mantle is the dominant property, reducing stress and geoid

magnitudes. This is similar to what we observed from the simple analytical models plotted

in Figure 4.1B.

4.6.2 Three-Layered Mantle

In a three-layered mantle, the general results from two-layer models remain valid.

For a constant lower-mantle viscosity (3 × 1022 Pa s in Figure 4.4D), when upper-mantle

(<400 km depth) viscosity is reduced relative to the transition zone (between 400 and 670 km

depth), geoid anomalies initially increase as more flow is concentrated in the upper mantle.

As upper-mantle viscosity is decreased further, the dynamic geoid anomalies are eventually

reduced as the low viscosity reduces stress magnitudes. The effect of the weak channel is

also apparent here more explicitly. In Figure 4.4D, the diagonal dashed line is for an upper

mantle and transition zone that have equal viscosities, which corresponds again to a two-

layer system with division at 670 km depth. Alternatively, the vertical dashed line denotes
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cases where the transition zone and lower mantle are isoviscous. This represents a two-layer

system with division at 400 km depth. Cases near the division at 400 km generally result

in larger anomaly magnitudes, except for two regions: (1) when mantle viscosity is nearly

uniform (Figure 4.4D, top right) the channel is thick enough to dominate subtle changes in

viscosity structure; (2) when the viscosity of the weakest layer is low (Figure 4.4D, bottom),

stress magnitudes are low enough that changing channel thickness results in an insignificant

change to anomaly magnitude.

4.6.3 Channel Flow

Arguably, the controlling parameter of this process is not the absolute depth of the

continental keel, but the thickness of the asthenospheric channel. Different keel thicknesses

can combine with regional variations in the depths of upper-mantle discontinuities to change

the thickness of the asthenospheric channel below it (e.g. Gilbert et al., 2001).

Accordingly, we performed calculations varying the thickness and viscosity of this

channel (Figure 4.4E). Once again, we contour the maximum resulting geoid anomalies.

Channel thickness is varied by adjusting the depth to the asthenosphere-transition zone

viscosity contrast to examine cases with 50 km, 100 km, and 150 km between this boundary

and the keel bottom, while keeping the keel thickness at 300 km. Generally, an increase in

channel thickness results in a smaller geoid anomaly, as expected. This change is smaller

than one might expect, however, from a single-layer model (eq. 4.4), or even a two-layered

mantle (eq. 4.6; Figure 4.1), where pressure gradients are nonlinearly (e.g., cubically in

uniform-viscosity mantle models) related to channel thickness. Instead, in 3D it seems likely

that this nonlinearity is offset by flow that passes relatively unconstrained around the sides

of the keel region.
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Figure 4.5: (A–B) Mantle velocity at 200 km depth for two model cases. Vectors show
horizontal velocity. Colors show vertical velocity, with positive values out of the page. The
10 cm/yr scale vector for horizontal motion is valid for panels A–C. Coastlines are outlined
in white. In both cases, ηLM = 3×1022 Pa s and ηTZ = 3×1021 Pa s. The depths shown are
at 200 km, and the black shape outlines the Australian continental lithosphere at this depth.
(A) A case with asthenospheric viscosity η = 3 × 1021 Pa s. (B) A case with asthenosphere
viscosity η = 9× 1018 Pa s. (C) Similar velocity slice at 300 km depth from a global mantle
flow model of Zhang et al. (2010). Note the different scale for vertical velocity; magnitudes
less than −5 cm/yr are black. (D) Vertical profile of velocity with depth for point in C
indicated by red dot (135◦ E, 25◦ S).
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4.6.4 Flow Field

As a continental keel moves through a less viscous upper mantle we might expect the

mantle to deform horizontally around the sides of the keel (Fouch et al., 2000) or vertically,

beneath the keel. The largest expected control on this deformation is the viscosity of the

asthenosphere, and hence, in Figure 4.5, we show horizontal (vectors) and vertical velocity

(colors) at a depth in the asthenosphere for two of our cases, one with moderate and one

with low asthenosphere viscosity. Surprisingly, both cases are fairly similar.

The case with moderate asthenospheric viscosity (η = 3×1020 Pa s) displays very little

variation of velocity with latitude (Figure 4.5A). This case also shows downgoing velocities

at the leading, and rising velocities at the trailing edge of the keel, indicating that material

predominantly flows beneath the keel rather than horizontally around it.

While the case with lower asthenospheric viscosity (η = 9 × 1018 Pa s) does show

variation in the plane (Figure 4.5B), with velocity vectors deflected around the keel, these

discrepancies do not exceed ten degrees from the azimuth of surface motion. This second

case also has vertical velocities that are similar to those in the first case, but with somewhat

more variability. It is not until asthenospheric viscosity is decreased even further that flow

directions start to significantly deviate from the direction of plate motion.

Since flow in the mantle could affect the net flow across the keel, or perhaps vertically

beneath it, we examine the velocity field beneath Australia from a global mantle convection

model (Zhang et al., 2010, case FS1). The model, shown for the present day in planform

in Figure 4.5C and in profile in Figure 4.5D, is the result of a time-dependent calculation

and includes both prescribed surface plate-motion history and mantle buoyancy forces. The

modeled horizontal motion in the mantle is broadly consistent with our own model assump-

tions: motion in the mantle, particularly in the high-viscosity lower mantle, is low relative

to the motion at the surface and is a good representation of the net shear across the mantle.

North of Australia, the vertical motion in the upper mantle is dominated by the subduction
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zones that have velocity magnitudes near −8 cm/yr. Under Australia there are several small-

scale downwellings below the lithosphere, which are likely due to sub-lithospheric small-scale

convection aided by large plate motion (e.g. van Hunen et al., 2005). Both types of vertical

motion could influence the keel-induced pressure gradient, and should therefore be taken

into account when making interpretations.

4.7 Geoid Comparison with Observations

To constrain the upper-mantle viscosity structure we compare the dynamic geoid from

our model calculations to the Earth’s observed geoid. Since our data are localized spatially

as well as spectrally, and because Earth’s gravitational potential receives many different

contributions across the spatial and spectral domains we apply the Slepian filtering technique

discussed in Section 4.5 to both model and observations before comparing them.

4.7.1 Two-Layered Mantle

We begin by comparing geoids from our two-layer models with the observed geoid. We

calculate the misfit by finding the 2D absolute value of the error per measurement as

Misfit =
1

n

n
∑

i=1

|obsi − modeli| (4.26)

where obsi is an observed geoid measurement at a specific location, modeli is a model geoid

measurement at the same location, and n is the total number of values compared (which

is identical in every case studied). Misfit is calculated within a subregion that includes our

largest-amplitude model geoid anomalies (Figure 4.6A, dashed rectangle), excluding areas

where model anomalies are low. This area covers both continental and oceanic parts of the

Australian region. If we were to examine a null model, eq. 4.26 will produce a misfit that

represents the inherent power of the observed field, approximately 3 m. For our cases, models

with misfit values below this fit the observed field better than a null model.
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Figure 4.6: Example model fits. Example cases are denoted by red squares in Figure 4.7.
Model cases A and B are for a two-layered mantle, while case C is from a three-layered
mantle. Model cases are subtracted from the observed geoid field within the dashed white
box, yielding the plots of residuals. The dashed white box also marks the area used for
calculating misfit. All geoid fields are plotted using the same ±10 m scale. (A) Filtered
observed geoid field. (B) Filtered model geoid from case A, for a two-layered mantle. (C)
Residual for case A. (D) Filtered model geoid from case B, for a two-layered mantle. (E)
Residual for case B. (F) Filtered model geoid from case C, for a three-layered mantle. This
example is similar to case A, and a residual is not shown.

When inspecting misfit for a two-layered mantle (Figure 4.7A), three scenarios emerge.

First, a model that produces minimal dynamic geoid anomalies, such as a uniform mantle of

viscosity 2×1022 Pa s, will produce a misfit around 3 m. Second, a model that reproduces the

observed field results in a minimum misfit. This can be seen in model case A in Figures 4.6B–

C, whose residuals remain fairly uniform from north to south and have small amplitudes.

Finally, a model that produces very large geoid anomalies will overshoot the apparent signal
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in the observed field (model case B in Figures 4.6D–E). While the average magnitude of this

misfit is of the same order as that from a model with null signal, upon inspection it is clear

that the positive-negative north-south signature of the residual has reversed.

The misfit for a two-layered mantle reaches an absolute minimum when the lower-

mantle viscosity ηLM = 5.3 × 1022 Pa s and the upper-mantle viscosity is about 20 times

smaller, ηUM = 2.75 × 1021 Pa s. It is clear from Figure 4.7A, though, that there is a broad

region with misfits near the minimum where models can be considered acceptable. The

trade-off between effective channel thickness and upper-mantle viscosity implies that models

with viscosity increases from the upper to the lower mantle with ratios between 3 and 300

could be considered supported by the data. In a two-layered mantle, the viscosity jump

between the upper and lower mantle cannot therefore be sufficiently constrained.

4.7.2 Three-Layered Mantle

In a three-layered mantle, we fix lower-mantle viscosity and plot how misfit varies for

different viscosities of the upper mantle and transition zone (Figures 4.7B–C). As described

earlier, when a weak upper-mantle layer is introduced, dynamic geoid anomalies can increase.

Here, this means that we should expect more variation in the pattern of misfit depending on

the viscosity structure.

When lower-mantle viscosity is 2×1022 Pa s (Figure 4.7B), the dynamic geoid anomalies

generally have low magnitudes. The minimum misfit suggests a structure that maximizes

the dynamic geoid signal. Thus a structure with an upper-mantle viscosity of 1–2×1020 Pa s

(about 100 times weaker than the lower mantle) and a transition-zone viscosity of 3–10 ×

1021 Pa s is preferred.

At lower-mantle viscosities higher than 2 × 1022 Pa s, overall anomaly magnitudes

increase, e.g. to the values already shown in Figure 4.4D, and the misfit pattern becomes

more intricate (Figure 4.7C). Regions of lowest misfit generally occur when ηUM < 1020 Pa s.

For the cases shown where ηLM = 3 × 1022 Pa s, the absolute minimum misfit occurs when
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Figure 4.7: Color-shaded images of misfit between filtered model cases and observed geoid.
Hollow squares identify model runs. The background observed geoid field has a mean power
of about 3.1 m. Therefore the misfit between the observed field and a model with no (zero)
geoid anomaly would be about 3.1 m. This occurs when upper-mantle viscosity is very low
(<1019 Pa s). Other instances of misfit about 3.1 m occur when model signal is roughly twice
the power (i.e. the model signal overshoots the observed signal, resulting in a residual with
power equivalent to the original observed field). A.) Model misfits for a two-layered mantle
with division at 670 km depth. Red squares A and B denote cases shown in Figure 4.6. B.)
Model misfits for a three-layer mantle with lower-mantle viscosity held fixed at 2×1022 Pa s.
C.) Model misfits for a three-layer mantle with lower mantle viscosity fixed at 3× 1022 Pa s.
Red square denotes case C shown in Figure 4.6. D.) Model misfits for a three-layered mantle
for varying channel thicknesses. Channel thickness is determined by varying the depth to
the upper mantle-transition zone viscosity discontinuity. Lower-mantle and transition-zone
viscosities are fixed at 3 × 1022 Pa s and 3 × 1021 Pa s, respectively. Dashed line indicates
where the upper mantle and transition zone are isoviscous.
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ηTZ = 2.7×1022 Pa s and ηUM = 7.9×1019 Pa s, but the region of misfits near this minimum

is in fact quite broad. If we examine only the cases with misfits <1.8 m (the darkest shades

of blue in Figure 4.7C), we can make some interesting further observations about the best-

fitting viscosity structure. In each of these cases there is a factor of ∼300 between the

viscosities of the lower and upper mantle. Meanwhile, the viscosity of the transition zone

varies over an order of magnitude, indicating that it is less important once the upper mantle

is sufficiently weak. We show such a model case with three layers that has a low misfit

(<1.8 m, see Figure 4.7C) in Figure 4.6F (model case C). While the pattern of the model

signals remains fairly consistent between the two and three-layered cases, the changes in

amplitude cause the best fits to shift to lower upper-mantle viscosities.

Finally, we examine the effects of the thickness of the asthenospheric channel on the

model geoid using a set of calculations in which asthenospheric viscosity and channel thick-

ness are varied while transition-zone and lower-mantle viscosities are fixed at 3 × 1021 Pa s

and 3 × 1022 Pa s, respectively (Figure 4.7D). The misfit in these models is less sensitive

to asthenospheric channel thickness than one might expect from the single-layer analysis

(eq. 4.4). This confirms the finding that lateral flow of mantle material around the sides of

lithospheric keels plays a role in the upper mantle.

4.8 Discussion

4.8.1 Constraints on Mantle Viscosity Structure

Two classic methods to study mantle viscosity make use of observations associated with

post-glacial rebound, and long-wavelength geoid anomalies. Generally, in studies of post-

glacial rebound, the Earth’s response to surface loads is modeled and fit to observations such

as relative sea-level histories (Peltier , 1976; Wu and Peltier , 1982; Mitrovica, 1996; Simons

and Hager , 1997; Peltier , 1998; Mitrovica et al., 2007) or time-varying gravity anomalies from

the Gravity Recovery and Climate Experiment (GRACE) (Paulson et al., 2007a; Tamisiea
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et al., 2007). In some long-wavelength studies, geoid anomalies from the mantle’s internal

density variations, which depend on the viscosity structure, are compared to the observed

geoid (e.g. Hager and Richards, 1989). While studies of long-wavelength geoid anomalies

have suggested a lower mantle that is significantly more viscous than the upper mantle

(e.g. Hager , 1984; Ricard et al., 1984; Hager and Richards, 1989), the results of post-glacial

rebound studies are not always consistent among themselves, with some suggesting a more

uniform mantle viscosity (e.g. Peltier , 1998), and others also arguing for a lower mantle that

is significantly stronger than the upper mantle (e.g. Lambeck et al., 1990; Han and Wahr ,

1995; Simons and Hager , 1997; Mitrovica and Forte, 2004). Using relative sea-level change

and GRACE time-varying gravity data, Paulson et al. (2007a,b) recently showed that the

inconsistency among the post-glacial rebound studies owes to the poor depth resolution of

the observations. In particular, Paulson et al. (2007a) showed that if the mantle is divided

into two layers with division at 670 km depth, viscosity models that have ∼5×1019 Pa s

and ∼5×1022 Pa s for the upper and lower mantle, respectively, produce fits to both data

types that are similar to those of a viscosity model with 5.3 × 1020 Pa s for the upper and

2.3 × 1021 Pa s for the lower mantle.

The main objective of this study has been to seek additional constraints on upper-

mantle viscosity by examining the gravity anomalies caused by the pressure difference as-

sociated with moving Australian continental lithosphere, a thick keel plowing through the

mantle. Our study therefore represents a new method to constrain the viscosity structure

of the mantle. We found that modeled geoid anomalies caused by a moving continental

lithosphere with a keel show remarkable similarities to the observations, with negative and

positive geoid anomalies in southern and northern Australia, respectively. Assuming that

such geoid anomalies are indeed caused by the pressure difference induced by the keel’s mo-

tion, we have shown that geoid anomalies, when properly filtered to account for localized,

long-wavelength effects, can provide useful constraints on mantle viscosity.

If the mantle is divided at 670 km depth into two layers, the geoid in Australia is
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best explained by a mantle viscosity structure with 2.75 × 1021 Pa s and 5.3 × 1022 Pa s for

the upper mantle, and lower mantle, respectively — a factor of 20 increase. However, this

viscosity structure does not appear to be consistent with the relative sea-level and GRACE

data as shown by Paulson et al. (2007a). This difficulty can be resolved by introducing an

additional layer or weak asthenosphere from the base of the lithosphere to 400 km depth. We

found that such a weak asthenosphere tends to amplify the effects of a continental keel. With

our three-layer models, and fixing lower-mantle viscosity to values between 2–3× 1022 Pa s,

we found that upper-mantle viscosity (i.e., above 400 km depth) needs to be ∼1020 Pa s,

or ∼300 times weaker than the lower mantle, in order to reproduce the geoid anomalies in

Australia. Interestingly, this viscosity structure is generally permissible by the relative sea-

level and GRACE data, as shown by Paulson et al. (2007a). However, our result depends

on the magnitude of lower-mantle viscosity. If the lower mantle is too weak (1022 Pa s or

less), the geoid produced by the keel is too small to explain the observations. Therefore,

our study suggests that future geodynamics studies (e.g. on mantle structure, heat transfer,

and mantle mixing) and mantle rheology should consider the possibility of relatively high

lower-mantle viscosity of 2–3 × 1022 Pa s.

Recently, Conrad and Behn (2010) used seismic anisotropy and lithospheric net rota-

tion to constrain model viscosities for the asthenosphere (down to 300 km depth in their

models) and the transition zone (between 300 km and 670 km depths) to be 0.5–1×1020 Pa s

and 0.5–1×1021 Pa s, respectively, while the lower-mantle viscosity is fixed at 5× 1022 Pa s.

Considering the difference between our models in dividing the viscosity layers, the viscosities

for the upper mantle above 670 km depth from our study are quite similar to those of Conrad

and Behn (2010). However, these authors did not explore the dependence of their models

on lower-mantle viscosity.
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4.8.2 Relevance to Other Continental Keels

The first-order controls on upper-mantle pressure gradients in our calculations are the

viscosity structure of the mantle and the magnitude of surface velocity. In addition to these

primary controls, a set of secondary factors can influence the dynamic topography at the

surface to a lesser extent. Our calculations are for a fixed keel size. If the length of the

keel is increased (in the direction of surface motion) then the distance between positive and

negative dynamic topography will increase, and more power of the geoid anomaly will be at

longer wavelengths. If the keel’s width is increased (perpendicular to surface motion) then

dynamic anomalies widen as well. In this instance magnitudes of dynamic topography will

also be larger since a wider keel displaces more mantle as it moves.

One of the unique features of the Australian keel is its asymmetry in the direction

of surface motion (Figure 4.2A). From the thickest part of the lithosphere (at about 130◦

longitude) to the east, the lithosphere quickly thins, coincidently with the decrease in crustal

age (Simons and van der Hilst , 2002). To the west this transition is more gradual and tends

to follow the boundary between continental and oceanic crust (along the western coast).

The effect of this asymmetry is most easily seen in the positive dynamic topography at the

leading edge of the keel (Figure 4.4A). Such a shape in other keels could result in unique

dynamic geoid anomalies. A unique geoidal pattern would help distinguish pressure-induced

anomalies from other processes that could be acting on keel edges such as small-scale or

edge-driven convection (e.g. King and Ritsema, 2000; Conrad et al., 2010).

Several cratonic regions, such as North America, western Africa, and Siberia (Artemieva,

2009), have lithospheric keels as thick as Australia (>250 km). If keel-induced pressure ef-

fects could be observed for these regions this could provide additional constraints on mantle

viscosity. Each of these regions has relatively slow surface motion that could make it difficult,

however, to detect dynamic signals as we did in our analysis. We performed our analysis

for Australia because its large surface motion makes it the most likely to show these effects.
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The keels in western Africa and Siberia have surface speeds below about 2 cm/yr (Gripp and

Gordon, 2002), so to first order the geoidal anomalies would have much reduced magnitude.

While also having low surface speeds of roughly 3 cm/yr, the North American keel could

still have detectable anomalies due to its larger keel size.

4.8.3 Seismic Anisotropy

Viscous deformation in the upper mantle is dominated by the rheology of its most dom-

inant mineral, olivine (Karato and Wu, 1993). This deformation aligns elastically anisotropic

olivine crystals (e.g. Verma, 1960) in a lattice-preferred orientation (McKenzie, 1979; Ribe,

1989) in the upper mantle, an effect that is regularly studied seismologically (e.g. Hess ,

1964; Forsyth, 1975; Long and Silver , 2009). Because of this relationship, observations of

seismic anisotropy can be used to constrain geodynamic models of mantle flow (e.g. Conrad

et al., 2007). In practice, complexities such as the strain history (e.g. Ribe, 1992), “frozen”

lithospheric anisotropy (e.g. Silver , 1996; Savage, 1999; Silver et al., 2001), the presence of

water (Jung and Karato, 2001), grain-boundary effects (e.g. Zhang and Karato, 1995), and

so on, mean that such constraints are fraught with uncertainty (e.g. Savage, 1999; Kaminski

and Ribe, 2001; Becker et al., 2006). However, the first-order approach of inferring from the

direction of seismic anisotropy the direction of mantle flow has been fruitful, elucidating, for

example, patterns of flow around hot spots or underneath oceanic plates (e.g. Becker et al.,

2003; Behn et al., 2004; Walker et al., 2005).

Our own results for Australia can be brought to bear on this relationship, by exam-

ining our instantaneous flow-field velocities in the context of published regional studies of

seismic anisotropy, recently summarized by Fouch and Rondenay (2006). Generally, body-

wave measurements made at seismic stations correlate with the large-scale structure at the

surface, suggesting strong lithospheric anisotropy (Fouch and Rondenay , 2006). Surface-

wave analyses, which provide better constraints on the variation of anisotropy with depth,

have been conducted throughout the Australian continent in the past decade (e.g. Debayle,
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1999; Debayle and Kennett , 2000a,b; Simons et al., 2002, 2003; Debayle et al., 2005). Aus-

tralia and North America have both been found to have significant (about 2%) azimuthal

anisotropy at or below 200 km depth (e.g. Debayle et al., 2005; Marone and Romanowicz ,

2007). This deep anisotropy (below 150 km) mostly correlates with present-day plate motion

(e.g. Simons et al., 2002; Simons and van der Hilst , 2003; Debayle et al., 2005).

As mentioned earlier, we might expect mantle flow to deflect around a continental

keel. Based on the pattern of observed shear-wave splitting measurements, Fouch et al.

(2000) have suggested this is the case in North America. At depths of 150 km, Debayle and

Kennett (2000a) found that anisotropy in western and central Australia aligns with north-

south plate motion while eastern Australia displays azimuthal anisotropy that appears to

follow the craton boundary. However, deformation akin to that suggested by the anisotropy

does not occur in our models unless asthenospheric viscosity is very low (<9×1018 Pa s).

Our results agree with the large majority of anisotropy measurements at these depths that

align in the direction of surface plate motion (e.g. Debayle and Kennett , 2000b; Simons

et al., 2003; Debayle et al., 2005), and suggests that return flow occurring beneath the keel

is important.

4.9 Conclusions

When continental keels are driven by imposed surface motion, pressure perturbations

cause positive dynamic topography at the leading edge, and negative dynamic topography

around the trailing edge of the keel. Depending on the viscosity structure of the mantle, this

dynamic topography can be on the order of ±100 m and the corresponding geoid anomalies

can be on the order of ±10 m.

When filtered to remove localized long-wavelength anomalies using a technique devel-

oped using Slepian functions, the Australian geoid clearly displays the expected pattern,

with positive and negative anomalies of about 10 m amplitude at the leading and trailing

edges of the craton, respectively. Our model results agree with the observations: assuming
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that the signal is indeed caused by the dynamic motion of the keel, we are able to obtain

constraints on the mantle viscosity structure below the continent.

Dynamic topography produced by motion of a continental keel depends strongly on

the effective thickness and viscosity of the asthenosphere, where most of the horizontal

motion occurs. For a two-layered mantle with a division at 670 km, decreasing upper-mantle

viscosity can increase dynamic topography if viscosities are large enough. The minimum

misfit between the modeled and observed geoid occurs when ηLM = 5.3 × 1022 Pa s and

ηUM = 2.75 × 1021 Pa s. However, these viscosities appear too large compared with post-

glacial rebound studies. This suggests that radial mantle viscosity variations are not fully

captured by two-layer models.

In a three-layer mantle, misfit patterns become more complex as lower-mantle viscosity

is increased. For a lower-mantle viscosity ηLM = 3 × 1022 Pa s, the minimum misfit occurs

when the upper-mantle viscosity ηUM = 7–10×1019 Pa s, a factor of about 300 smaller than

that of the lower mantle, while the transition-zone viscosity ηTZ may vary between 1021–

1022 Pa s. Such a viscosity structure is not inconsistent with post-glacial rebound studies.

Since our results are sensititive to lower-mantle viscosity, they also suggest that a relatively

high lower-mantle viscosity should be considered in future geodynamic studies.
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A Area of geographical region of interest
Dlm,l′m′ Spatiospectral localization kernel
d Thickness of the lower mantle
d′ Dimensionless thickness of the lower mantle
F Location far from keel for analytical treatment
gα Slepian basis function on the unit sphere
gα lm Spherical-harmonic coefficients of the Slepian function gα

h0 Thickness of the upper mantle
h Thickness of the low-viscosity channel
h′ Dimensionless thickness of the low-viscosity channel
K Location under keel for analytical treatment
k Thickness difference between keel and surrounding lithosphere, (h0 − h)
k′ Dimensionless thickness difference between keel and surrounding lithosphere
L Degree of bandlimit of geophysical signal
Lmax Maximum degree of expansion of geophysical signal
l Degree of spherical harmonic
m Order of spherical harmonic
N Spherical Shannon number
n Number of observations compared in misfit calculation
p Pressure
p′ Dimensionless pressure
R Spatial region of interest
s Scalar geophysical function on the unit sphere
slm Spherical-harmonic coefficients of the function s
sα Slepian-basis coefficients of the function s
u Horizontal component of velocity
v Velocity vector
x Horizontal coordinate
x′ Dimensionless horizontal coordinate
Ylm Spherical harmonic on the unit sphere
z Vertical coordinate
η Viscosity (Newtonian)
ηUM Viscosity of the upper mantle
ηTZ Viscosity of the transition zone
ηLM Viscosity of the lower mantle
γ Ratio of viscosities between mantle layers
λ Slepian eigenvalues, or the fraction of signal energy concentrated locally
Ω Unit sphere
φ Longitude
τ Shear stress
Θ Colatitudinal radius of the region of interest
θ0 Colatitude

Table 4.1: Definition of symbols used in this study.



Chapter 5

Viscous bending of subducted slabs

5.1 Introduction

At subduction zones oceanic lithosphere sinks into the mantle, recycling the material

created previously at spreading centers. The frequent seismicity and magmatism at subduc-

tion zones have illuminated the shape of most subducting plates (England et al., 2004). In

some regions, such as Peru, central Chile, and Mexico, subducted plates descend into the

Earth at shallow angles of less than 15 degrees. In other subduction zones, such as New

Hebrides and Marianas, plates descend more steeply at dip angles greater than 60 degrees.

It is clear that this dip angle of subduction is closely related to the deformation at the surface

(e.g. Barazangi and Isacks, 1976; Jordan et al., 1983; Allmendinger et al., 1997), as shal-

low angle subduction zones are often used to explain mountain building events and volcanic

patterns, such as currently in the central Andes and during Laramide time in the western

United States. Less clear, however, are the reasons behind shallow or steeply dipping plate

shapes (Lallemand et al., 2005).

A widely used model for understanding subduction has been to assume that plate

geometry is the result of steady state processes. Deformation and stresses within the mantle

can then be inferred as an application of fluid mechanics corner flow (i.e., a kinematic model)

(McKenzie, 1969; Batchelor , 2000). Many authors have used this method to study the dips

of subducting plates (e.g. Tovish et al., 1978; Stevenson and Turner , 1977). In kinematic

models, the subducting plate is considered rigid and the negative pressure in the corner on
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the arc side of the trench (and positive pressure in the corner on the oceanic side of the

trench) resulting from the flow field functions as an applied torque acting to shallow the

slab. These torques can be balanced by the negative buoyancy of the slab to determine

which dips are stable to motion (Tovish et al., 1978; Stevenson and Turner , 1977). This

corner flow model has also been used to study the stresses in the wedge and at the base of

the overriding lithosphere (McKenzie, 1969), seismic anisotropy resulting from flow within

the mantle wedge (McKenzie, 1979; Kneller et al., 2005), and the implied temperature field

as it relates to melting (e.g. Spiegelman and McKenzie, 1987; Davies and Stevenson, 1992).

Significantly, this subduction model is often used as a basis for data interpretation.

Although kinematic models of subduction are very informative of the basic physics, the

assumption of a steady state subduction process is likely inappropriate when many studies

indicate time dependent slab behavior (e.g. Tao and O’Connell , 1993; Becker et al., 1999;

Billen and Hirth, 2007; Billen, 2008) and more complex mantle flow in subduction zones than

the corner flow solution indicates (e.g. Russo and Silver , 1994; Smith et al., 2001; Long and

Silver , 2008; Jadamec and Billen, 2010). Experiments and models that consider subduction

as a dynamic time dependent process account for the internal deformation and buoyancy

of slabs (e.g. Ribe, 2001), and are hence more complete. In dynamic subduction models it

has long been clear that slabs tend to sink downward (e.g. Sleep, 1975) and accounting for

shallow dipping slabs is difficult. Dynamic studies examining very shallow or flat subduction

usually appeal to outside factors, such as subduction of less dense oceanic plateaus, positively

buoyant aseismic ridges, or changes in overriding plate motion, to account for these dip angles

(e.g. Jarrard , 1986; Zhong and Gurnis, 1995; Christensen, 1996; Liu et al., 2010).

In this paper we address the relationship between kinematic and dynamic subduction

models. We examine the inconsistencies between these models concerning the dip of sub-

ducting slabs. Using a torque balance for viscously deforming slabs we examine the stresses

acting on the slab and test an approximation that they deform by bending of a thin viscous

sheet to loads applied to the slab surface. We compare this approximation to numerical
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results, and discuss the implications for maintaining the dip angle of subducted slabs.

5.2 Model Setup

We examine Stokes flow in a 2D incompressible medium. This process is governed by

two of the conservation equations of viscous fluids, those for the mass and momentum,

∇ · v = 0, (5.1)

−∇P + ∇ · [η(∇v + ∇
Tv)] = δρgẑ (5.2)

where v, P, and η are the velocity, pressure, and viscosity, respectively. δρ is the dimension-

less density difference (δρ = ∆ρ/ρ0 where ∆ρ is dimensional density and ρ0 is our reference

value of density), g is gravitational acceleration, and ẑ is the vertical unit vector. The gov-

erning equations are solved with the finite element code Citcom (Moresi et al., 1996). Model

geometry and resolution are case dependent and are described further below. Velocities pre-

sented below are rendered dimensionless as w̃ = w ηm

δρgD2 , where ηm is the viscosity of the

mantle, and D is the depth of the model box that is also used to nondimensionalize spatial

coordinates (D is chosen to be 2000 km later in this paper when the results are presented in

dimensional numbers).

In this paper we analyze calculations from both kinematic models, which use velocity

boundary conditions, and dynamic models, which use different boundary conditions and

negative buoyancy within the slab. We also perform a simpler set of dynamic cases with

Citcom to compare to a viscous bending approximation. The boundary conditions vary

between cases, and are described further in the results section.

The inherent assumption of steady state corner flow in subduction zones is likely inac-

curate. When this assumption is used to infer other quantities such as preferential subduction

dip, it can imply other inaccurate assumptions. For instance, balancing the torques on a

subducted slab while requiring only slab parallel velocity essentially approximates the slab
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as perfectly rigid. A dynamic approach would be to approximate a subducted slab consis-

tent with its viscous rheology, and then make inferences about the flow field which is not

necessarily slab parallel.

For our later comparisons we use an approximation where the slab deforms by viscous

bending from loads applied to its surface. By comparing this bending model with numerical

models from Citcom we can examine the conditions when slab bending is applicable to sub-

duction, and understand an intermediate step between kinematic models and very realistic

dynamic models. In viscous bending the slab, which is fixed at one end with zero velocity

normal to its surface, deforms dynamically balancing the internal buoyancy with stresses on

its surface, such as from the pressure in the arc corner (Houseman and Gubbins, 1997). Our

bending model is a special case of the problem examined by Ribe (2001). The author derived

the coupled bending and stretching deformation of a thin viscous sheet from arbitrary loads.

When the thin sheet has zero curvature, as in our calculations, the governing equations

(equations 4.11a,b and more specifically for buoyancy equations 7.6a,b in Ribe (2001)) are

no longer coupled between bending and stretching modes. They reduce to a much simpler

form, which we rewrite the slab normal component as

ηh3

3

∂4w′

∂x′4 = P− − P+ + σ+
z′z′ − σ−

z′z′ − hgδρ cos α, (5.3)

where η is slab viscosity, h is slab thickness, w′ is slab normal velocity, x′ is distance along

slab, and α is slab dip. This biharmonic equation represents the motion of the slab normal

to its surface, w′(x), as it deforms by shearing on planes normal to its surface, from the loads

on the right hand side. P± is the pressure above (+) and below (−) the slab, σ±
z′z′ is the

viscous deviatoric normal stress on the slab surface, and hgδρ cos α is the buoyancy, all of

which are loads applied to the slab and are functions of x′. We use primes to distinguish the

coordinate system where x′ is parallel to the slab surface and z′ is perpendicular to the slab

surface. The viscous deviatoric stress normal to the slab surface is calculated by multiplying
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the slab normal n = [sin(α), cos(α)] with the stress tensor as

σz′z′ = 2nxnzσxz + nxnxσxx + nznzσzz. (5.4)

We solve equation 5.3 for w′ at regularly spaced intervals along the slab by using a forward

finite difference method. In the bending problem the slab has one fixed end and one free end.

When solving equation 5.3 we use the boundary conditions that velocity and its slope are

zero at the fixed end (w′ = ∂w′/∂x′ = 0 at x = 0) and the moment and shear are zero at the

free end (∂2w′/∂x′2 = ∂3w′/∂x′3 = 0 at x = L, the slab end). For a uniform load problem

(i.e., the right hand side of equation 5.3 is constant), our code reproduces the analytical

solutions by Turcotte and Schubert (2002). Here we wish to point out that our slab bending

problem differs from that considered by Conrad and Hager (1999) in that we are interested

in bending of the entire slab and its control on slab dip, while Conrad and Hager (1999) were

interested in slab bending at shallow depths and its controls on plate motion (also Becker

et al. (1999)).

We perform comparable calculations in Citcom, to compare to the approximation,

using an altered nodal mesh to solve the Stokes problem near the slab more accurately. In

the lower portion of the model domain, below the subducting slab, the mesh is regularly

spaced and element boundaries form right angles. In the upper part of the model domain,

at the depths of subducted slab, we use a slanted nodal mesh similar to Zhong and Gurnis

(1995). The region within and immediately surrounding the slab has a mesh with a constant

angle of slant and regular spacing. Outside of this region the slant of the mesh incrementally

adjusts so that element boundaries are perpendicular at the sides of the model domain. With

this setup, the surfaces of the subducting slab lie on rows of mesh nodes allowing for accurate

determination of slab buoyancy, viscous stresses, and pressure on the slab surfaces. Slabs

are fixed to the top boundary of the model domain, which has a velocity boundary condition

set to zero. The remaining box boundaries are shear stress free conditions (sliding).
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To compare our Citcom results to the bending model, we sample the dynamic pressure

and viscous deviatoric stress loads above and below the slab from our Citcom calculations

and use them in equation 5.3. Negative pressure above the slab and positive pressure below

the slab act as ‘shallowing’ loads while the negative buoyancy within the slab acts to steepen

its dip. This sense is reversed for viscous stresses. These combined loads in equation 5.3 give

a slab normal velocity which can be compared to the normal velocity from our numerical

results. We use straight slabs that are 1000km in length, and vary the thickness, dip, and

viscosity contrast between the slab and ambient mantle.

5.3 Results

5.3.1 Kinematic Conditions vs. Buoyancy Driven Flow

We initially compute a kinematic reference case of cornerflow in a subduction wedge,

using Citcom and compare the results to previous numerical results and analytical solutions

(figure 5.1). Our case design is similar to the benchmark cases of van Keken et al. (2007), and

addresses the ability of Citcom’s iterative solver method to solve kinematically constrained

problems. Several differences, however, preclude a direct comparison of reported pressure

and pressure derivative values.

The model domain consists of the area in figure 5.1a to the right of the slab interface

(line from (0,1) to (1,0)). Within this space we use a mesh with 192 elements by 192 elements.

This results in a non-square nodal mesh with finer resolution at z = 0 than at z = 1, but

allows the slab interface to align along element boundaries. The boundary conditions for

the wedge are as in the cornerflow solution of Batchelor (2000). The top surface at z = 1

has a fixed (equal to zero) velocity boundary condition. The slab interface, which dips at 45

degrees, descends with a slab parallel dimensionless speed of one. The remaining boundaries

of the wedge have velocities prescribed from the Batchelor (2000) solution (i.e, prescribed

velocities along all the boundaries). We then solve the instantaneous Stokes solution within



97

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

−1
5−2

0−3
0−4

0−5
0

PressureA)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

5

10

15
20

304050

10
0

Pressure derivative in x (∂P/∂x)B)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

−5−10
−15

−20

−30
−40

−1
00

Pressure derivative in z (∂P/∂z)C)

Figure 5.1: Model results (black lines) and analytical solutions (red lines) for (A) pressure,
(B) pressure derivatives in the x direction, and (C) pressure derivatives in the z direction
of a benchmark case with prescribed velocity boundary conditions. Additional unlabeled
contour lines appear on the right boundaries where the numerical case does not reproduce
the analytical solution.
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the wedge using Citcom, and directly compare the results to the analytical solutions for

pressure and pressure derivatives (Figure 5.1).

Citcom uses a lower order function to solve for pressure than is used for velocity. In 2D,

the shape function for pressure is constant for each element while the function for velocity is

linear. In this type of formulation pressure is inherently discontinuous across element bound-

aries, and can be prone to oscillations (i.e, checker-board pattern), especially when non-zero

velocity boundary conditions are used (Hughes , 2000). Normally, smoothing techniques are

sufficient to remove pressure oscillations. In Figure 5.1, however, numerical problems can be

easily seen, more so in the derivatives of pressure, on the right side boundary with prescribed

flow-through conditions (figure 5.1b and c). We can calculate the misfit between model and

analytical solutions for the region x <= 0.6 (i.e., near the corner where the pressure and its

variations are most significant) as
∑

|analytical − numerical|/
∑

|analytical|, and find the

error for the pressure field, P , to be 0.73%.

Once we have confirmed that Citcom is appropriate for solving kinematic type prob-

lems, we can compare the kinematically driven case to the buoyancy drive case with flow-

through boundary conditions to be discussed later (figure 5.2). Our kinematic calculation

(figure 5.2a) uses the classic boundary conditions of corner flow: the dipping slab has a

prescribed downdip dimensionless velocity of one, the surface above the arc corner (right

side) has a fixed velocity of zero, and the surface above the oceanic corner (left side) has a

horizontal dimensionless velocity of one towards the trench (i.e, the same as subducting slab

velocity). The remaining three sides of our domain, for both kinematic and buoyancy cases,

are flow-through conditions, where velocity parallel to the boundaries is zero and stress per-

pendicular to the boundaries is zero. Our buoyancy driven dynamic case (figure 5.2b) uses

different conditions at the top surface and within the down-going slab: the top surface is

a free-slip condition where shear stress is zero, while the slab has a set dimensionless den-

sity anomaly (of −1) instead of fixed velocity. Both cases are isoviscous mediums with 64

elements per unit length in each direction. The model domain extends from the surface to
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Figure 5.2: Comparison of flow (arrows) and pressure (colored background) fields for kine-
matically (a) and buoyancy (b) driven problems. Plate areas where velocity or buoyancy
is prescribed are bounded by solid black lines. Kinematic calculation is prescribed with
dimensionless velocities of one within the plate and at the surface on the oceanic side. Den-
sity difference in buoyancy calculation is adjusted so that velocity within the plate is also
approximately one. This calculation also uses a free slip condition on the top surface. Both
calculations have flow in/flow out side and bottom boundaries. Note different scales for
pressure fields.
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a depth of 1000 km and the slab is 100 km thick. We plot both cases with the same color

scale, which saturates the kinematic case, but allows easy comparison of pressure gradients

between the two cases.

0.4
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0.8
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0.5 1.0 1.5 2.0

Buoyancy Driven Flow w/ Weak Zone

−30 −20 −10 0 10 20 30
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Figure 5.3: Comparison of flow (arrows) and pressure (colored background) fields for a
more realistic buoyancy driven case. The background lithosphere and mantle has a layered
viscosity structure, where the lithosphere (0 km ≤ depth ≤ 100 km), upper mantle (100 km
< depth ≤ 410 km), transition zone (410 km < depth ≤ 660 km), and lower mantle (660 km
< depth) have viscosities of 100, 0.1, 1, and 10 respectively. Oceanic plate is outlined in
white. Area shown is part of larger model space from 0 ≤ x ≤ 3, 0 ≤ z ≤ 1.

It is clear that the kinematic and dynamic cases (figure 5.2) have very different flow

and pressure fields, and would therefore imply very different conclusions for quantities such

as surface stresses and dynamic topography. The kinematic case displays similar flow and

pressure fields to the analytical corner flow solution. In both arc and oceanic corners there is

flow parallel to the top surface and plate boundaries. The negative pressure field in the arc

corner (right side) is radially symmetric about the corner point, with the largest magnitudes

concentrated in the corner (as in figure 5.1a). The oceanic corner (left side) has a pressure
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field with much smaller magnitude than that in the arc corner. In contrast, the dynamic case

has differences in the flow and pressure fields concentrated around the slab. Flow is no longer

parallel within and around the slab, and instead varies along the slab’s length. For the lower

portion of the slab, the velocity implies that over time the dip should steepen in contrast to

the kinematic case, where velocity normal to the slab surface is zero. The pressure field is

no longer symmetric about the corner point in the arc side, and the along slab variation is

reduced. Furthermore on the oceanic side, the highest pressures are no longer in the corner,

but further along the slab. If we examine the pressure difference across the slab at bottom

depths (say z = 0.3), the buoyancy driven case has a larger difference between the slab top

and bottom (-3 to +2) than in the kinematic case (-9 to -6). This is notable since both

cases have the same level of pressure on the top of the slab relative to the value at the far

boundary (e.g., -9 to -6 for kinematic vs. -3 to 0 for dynamic). Only gradients in pressure

are meaningful in these calculations; the overall magnitude is not.

While the cases in figure 5.2 are idealized, experiments with more realistic setup exhibit

some of the same behavior. In figure 5.3 we show the flow and pressure fields for a case that

may be closer to natural subduction. We use a model domain that extends from the surface

to a depth of 1500 km. The background lithosphere and mantle has a layered viscosity

structure, where the lithosphere (0 km ≤ depth ≤ 100 km), upper mantle (100 km < depth

≤ 410 km), transition zone (410 km < depth ≤ 660 km), and lower mantle (660 km <

depth) have viscosities of 100, 0.1, 1, and 10 respectively. The subducted plate, outlined in

white, has a dip angle of 45 degrees, extends to a depth of 600 km, and has a dimensionless

density difference of negative one. Viscosity for the surface plates and slab is set to 100.

Within the lithosphere, between the overriding plate and the subducting plate, we use a

weak zone where viscosity is set to the upper mantle value of 0.1. This effectively decouples

the deformation between the plates, and results in the plates having more realistic velocities

(not imposed) with motion directed towards the subduction zone. Boundary conditions are

the same as in the earlier dynamic case in figure 5.2b.
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As before, the flow field shows that the motion of the plate is not strictly slab parallel,

as in the corner flow solution. The addition of the weak zone, allowing realistic surface

motion, does not aid in shallowing the slab near the surface, although some shallowing does

occur at the slab bottom near the boundary of the lower mantle (x = 0.553). The pressure

field also shows similarity to the previous case driven by slab buoyancy. Outside of the high

viscosity slab, which has the largest pressures, the other large magnitudes of pressure are

concentrated below the plate as opposed to above the plate in the arc corner. These cases

are meant to illustrate the point that kinematic and dynamic cases display very different

flow and pressure fields and across slab pressure gradients. With such significant differences

between kinematic and dynamic cases, even when allowing for more realistic surface motion,

it seems necessary to reexamine what forces are controlling slab dip.

5.3.2 Torque Balance

In studies examining the steady state corner flow of subduction zones, it is a popular

idea that the dip of subducted slabs is controlled by the balance of torques acting on the

plate. In this section we examine this idea by determining the contributing torques along

the slab and approximate the slab deformation by viscous bending. By comparing this

model to numerical results we can test how applicable the model is to subduction dip. We

concentrate on velocities normal to the slab surface as these determine how the dip of the

slab will change. The slab normal velocities between the bending approximation and our

numerical results may be expected to disagree when the viscosity of the slab is low relative

to the rest of the mantle. This may be due to stretching deformation within the slab, and

we examine this further below.

As mentioned earlier we sample the dynamic pressure and viscous stress loads above

and below the slab from our Citcom calculations and use them in equation 5.3. Velocities

from Citcom have been sampled along the middle of the slab. The velocities at the top

and bottom surfaces of the slab differ slightly when the viscosity contrast is low, and this
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is discussed further below. The resulting slab normal velocities can be plotted (figure 5.4)

to show the varying contributions from pressures and viscous forces (e.g., equation 5.3) to

the total velocity from the bending model. Negative normal velocities represent motion that

steepens the slab. When we consider a case of a slab dipping at 45 degrees with a large

viscosity contrast between the slab and ambient mantle (1e4, and boundary conditions were

discussed in the model section, figure 5.4a), the slab normal velocity predicted from the

bending model agrees well with that from Citcom. The largest contributor to slab normal

velocity is the negative buoyancy. The pressures above the below the slab both act to shallow

the slab, or reduce its negative normal velocity, with the pressure above the slab in the arc

corner having the larger effect. Contributions from the deviatoric viscous stress are near

zero, which is expected when the viscosity contrast is large since the stresses are scaled by

the ambient viscosity. For a case of lower viscosity contrast (1e3, figure 5.4b) the agreement

between Citcom results and the bending model is not as good. In this case the disagreement

is mainly concentrated at the bottom end of the slab, where the Citcom velocities have lower

magnitude than those from the bending model. This is typical of many cases with significant

misfit; in the majority of cases the velocities from the bending model are more negative than

those from Citcom, implying that the bending model predicts more steepening.

Examining the slab normal velocity profiles for several cases allows a different under-

standing of the misfit between the two models (figure 5.5). Overall, the models agree with

each other at larger viscosity contrasts, when the slab is more rigid. As this viscosity contrast

is reduced, the misfit increases. In some cases, such as figure 5.5b, the misfit can be consid-

ered as a nearly constant percentage of the Citcom normal velocity at any point along the

slab. In other cases, such as in figure 5.5c, the Citcom velocities display significant changes

in moment (curvature) along the slab which are not displayed in the bending results. This

is also apparent for lower viscosity contrasts (e.g., 1e2) and in these cases the misfit varies

along the slab.

The good agreement between the bending model and our numerical results occurs when
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Figure 5.5: Profiles of dimensionless velocity along the slab for Citcom data (red lines) and
viscous bending model (black lines). Top row uses a viscosity contrast of 1e4 and bottom
row uses a viscosity contrast of 1e3. Left column of panels is for varying dip while right
column shows varying thickness. a) Lines are marked with dip. Black and red lines that
overlap are for 45 degree dip. b) Red line for 100km lies near black line for 100km, and vice
versa. c) Two overlapping unlabeled red lines are for 45 and 60 degree dips. d) Overlapping
red lines are for 100km and 200km thicknesses.

the viscosity contrast between the slab and ambient mantle is greater than ≥ 3× 103 (figure

5.6a for average slab normal velocities). As the viscosity contrast between the slab and

mantle is reduced, the disagreement between the two methods quickly increases. When the

viscosity contrast is 103, the misfit in figure 5.6a approaches 100%. Equation 5.3 implies a

monotonic and direct relationship of slab normal velocity and slab viscosity. Therefore when

other factors are held constant, increasing viscosity of the slab by ten times will reduce the

slab normal bending velocity by ten times. However, the velocities from Citcom models are

not as sensitive to slab viscosity when the slab viscosity contrast is smaller than 3000 (figure

5.6a), leading to a large misfit between these two models (figure 5.6a). In figure 5.6b,d it is
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from the viscous bending approximation (squares with dashed line). a) Results for a slab
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apparent that even at very large slab thicknesses (200 km) the bending approximation does

not perform significantly worse than for slabs of moderate thickness (100 km). Instead, the

misfit related to viscosity contrast is more important than the misfit related to slab thickness

(i.e., how well the slab approximates a thin sheet).

In figures 5.6b and c, we additionally compare the velocities for varying dip and plate

thickness, respectively. Using kinematic results as a cue, the pressure field in the arc corner

can be expected to vary significantly with slab dip. As dip varies, the portion of buoyancy

normal to the slab surface also varies, however, and the net result for contrast 1e4 is that

velocities do not vary significantly (figure 5.6b). For a lower viscosity contrast (1e3) the

velocities vary more with dip and have worse agreement which appears dip dependent. While

the slab viscosity is linearly related to the normal velocity for a fixed load, the slab thickness

is related with a power of two in Equation 5.3, and therefore might be expected to be an

important controlling parameter. Indeed, absolute velocities for 1e4 contrast vary more with

thickness than with dip. Interestingly, slabs 100 km or thicker show better agreement between

bending and Citcom models than slabs thinner than 100 km, for 1e4 and 1e3 viscosity

contrasts even though the thin sheet approximation should be more valid for thinner slabs.

We also plot the absolute value of average slab normal velocities from Citcom models

(from the slab mid-plane) against those from the bending model in figure 5.7, so that cases

with the best matches lie near the diagonal line with a slope of one. When viewing all of the

data together (figure 5.7a) clear differences can be seen between cases with high viscosity

contrast (≥ 1e4) and those with lower but perhaps more realistic contrast (≤ 1e3). Cases

with high viscosity contrast and more rigid slabs can be better approximated by viscous

bending than the lower contrast cases. When the viscosity contrast is low, the viscous

bending model significantly over predicts slab normal velocities by an order of magnitude

compared with those from Citcom. It should also be clear that slabs thinner than 100 km

exhibit much worse agreement for the bending approximation as many of the 75 km thick

cases (squares, figure 5.7) lie the furthest away from the diagonal line. In figures 5.7b,c,



108

0.0001

0.001

0.01
|D

im
en

si
on

le
ss

 C
itc

om
 V

el
oc

ity
|

0.0001 0.001 0.01 0.1
|Dimensionless Bending Velocity|

a)

0.0005

0.001

0.002

|D
im

en
si

on
le

ss
 C

itc
om

 V
el

oc
ity

|

0.0005 0.001 0.002
|Dimensionless Bending Velocity|

b)
Viscosity
contrast = 1e4

0.001

0.002

0.005

0.01

|D
im

en
si

on
le

ss
 C

itc
om

 V
el

oc
ity

|

0.001 0.002 0.005 0.01
|Dimensionless Bending Velocity|

c)
Viscosity
contrast = 1e3

Figure 5.7: Plots of the absolute value of average dimensionless Citcom velocity vs. bending
velocity for various thicknesses and dips. In all figures varying thickness is indicated by
shape. Cases of 200km thick slabs are diamonds, 150km thick slabs are triangles, 100km
thick slabs are circles, 75km thick slabs are squares, and 50km thick slabs are stars. a) Cases
with viscosity contrast of 1e2 are blue, cases with contrast of 1e3 are red, cases with contrast
of 1e4 are black, and cases with viscosity contrast of 1e5 are orange points. b) Cases with
viscosity contrast = 1e4. Colors represent slab dip angle. Cases with 30 degree dip are red,
35 degree dips are orange, 40 degree dips are yellow, 45 degree dips are green, 50 degree dips
are blue, 55 degree dips are cyan, and 60 degree dips are purple. Shapes represent thickness
as in a). c) Cases with viscosity contrast = 1e3. Colors and shapes are as in b). One to one
line shown dashed in all figures.
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which each focus on a single viscosity contrast, we highlight the variation of velocity with

slab dip and thickness. Overall, steeper dips (e.g., purple or cyan) display better agreement.

While cases with thickness greater than 100 km have about the same agreement, cases with

plates thinner than 100 km show poor agreement (e.g., squares = 75 km), as they plot

further from the diagonal line. For the cases of lower viscosity contrast (1e3, figure 5.7c),

steeper dips again show better agreement. However, the overall accuracy is not as good as

cases for 1e4 contrast, and the bending model over predicts the slab normal velocities (more

steepening) compared with the Citcom model.

In the solution from Ribe (2001) the bending and stretching of thin viscous sheets

was derived with asymptotic expansions that exploit how the sheet is thin relative to its

length. This allows deformation of the sheet to be expressed along its mid surface. Under

these conditions the characteristic timescales of bending and stretching are related to one

another simply depending on the ratio of thickness to length. These assumptions work well

when the sheet is very viscous relative to the ambient medium. When the viscosity of the

sheet is not as high relative to the ambient medium, however, internal deformation within

the sheet may be significant. In figure 5.8 we plot the ratio between average slab parallel

velocity and average slab normal velocity from the slab mid-plane, expressed as a percentage.

When the slab is very rigid and has a high viscosity contrast with the mantle (e.g., 1e4) the

magnitude of slab parallel velocity is very small compared with slab normal velocity. This

agrees well with the model problems of Ribe (2001), where stretching deformation occurred

on a much slower timescale than bending. As the viscosity contrast is reduced, slab parallel

velocity becomes more significant, and for cases with viscosity contrast 1e2 it can exceed

50% of the slab normal velocity when the dip is steep. Of course for a vertical slab the

normal component of velocity might vanish and this ratio will be very large, but comparing

the steeply dipping slabs (60 degrees) for 1e2 contrast with higher viscosity contrasts show

this is not a large concern for these dips. When slab parallel and slab normal velocities are

examined in more detail (figure 5.8b, a case with 1e2 viscosity contrast and dip=60 degrees)
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differences can be seen between the slab normal velocity at the top and bottom surfaces of

the slab. These differences are concentrated near the fixed end of the slab. This internal

deformation within the slab is a likely cause of the disagreement between the bending model

and our numerical results.

Overall, our results here suggest that the bending model works well in predicting slab

normal velocity and hence slab dip for more rigid slabs ( > more than 3 orders of magnitude

more viscous than the ambient mantle and > 100 km thick), but the bending model fails to

predict slab normal velocities or slab dips for slabs with more realistic viscosity contrasts (

< 3 orders of magnitude).

5.4 Discussion and Conclusions

When kinematic corner flow models are used to examine the dip angle of subducting

slabs, there is no deformation within the slab, and the slabs simply rotate in response

to torques applied on their surfaces. We examine a viscous bending model that balances

torques on the slab by allowing shear on planes perpendicular to the slab surface. Both

models give insight, but both also appear inadequate because slabs display significant internal

deformation when their viscosity is closer to commonly assumed values.

When subducted slabs have a viscosity within a few orders of magnitude of the ambient

mantle, balancing the viscous bending torques on the slab is not a good approximation for

the slab’s normal velocity due to extension of the slab parallel to the the slab surface. For

this approximation to be valid, and for the theory of Ribe (2001) to be accurate, the slab

needs to have a viscosity contrast at least 3e3 times larger than the mantle. An estimate of

average upper mantle viscosity of 1020 Pa s suggests that the average slab viscosity would

need to be greater than 3 × 1023 Pa s for this good agreement (e.g. Harig et al., 2010b),

which is higher than the estimated slab strength from other dynamic studies (e.g. Moresi

and Gurnis, 1996). This indicates that balancing the torques on subducted slabs is not a

good way to infer slab dip angle, and could lead to incorrect conclusions on the processes
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behind shallow angle subduction.

Our main conclusions can be summarized as follows:

1) Considering subduction with kinematic experiments and some models with plausible

dynamics leads to very different conclusions about the preferred dip of subducting slabs.

Bringing these models into agreement is not a straightforward task and it is not entirely

clear this is possible.

2) When subducted slabs have a high viscosity relative to the ambient mantle (≥

1e4) their deformation can be approximated by the viscous bending of a thin beam. An

exception to this good agreement is that thin slabs of < 75 km show quite poor agreement

to the approximation even though the thin sheet approximation should be more valid for

these thin plates. Generally, the agreement is better for steeper dips than for shallow dips.

3) When subducted slabs have a lower, but perhaps still large viscosity relative to the

ambient mantle (≤ 1e3) balancing the viscous bending torques on the slab is not a good

approximation for the slab’s deformation due to internal deformation within the slab. This

suggests that perhaps this method is not a good way to make inferences about slab dip angle.
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Appendix A

Linear (First-Order) Stability Analysis

In our examination of Rayleigh–Taylor instabilities we perform a linear stability anal-

ysis in cases of constant density to find analytical solutions for growth rate q′ as a function

of wavenumber, k′ (Conrad and Molnar , 1997; Molnar et al., 1998; Chandrasekhar , 1961).

This derivation is mainly an expansion of Conrad and Molnar (1997) and corrects some

typographic errors.

The governing equations for 2-D incompressible flow with small Reynolds number

include the Stokes equations (x and z components respectively)

0 =
∂σxx

∂x
+

∂σxz

∂z

0 =
∂σxz

∂x
+

∂σzz

∂z
− ρg

(A.1)

and the continuity equation for incompressibility

∇ · u =
∂u

∂x
+

∂w

∂z
= 0. (A.2)

Here u and w are the velocities in the x and z directions, respectively, σxx is the stress acting

in the x direction on a plane perpendicular to x (i.e. a normal stress), σxz is the stress acting

in the x direction on a plane perpendicular to z (i.e. a shear stress), ρ is density, and g is

gravity, which acts in the negative z direction. For the first order analysis we consider first

order perturbations to the stress and strain rate, defined as
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σ̃xx =
2η̄

n
ǫ̃xx − p̃, σ̃zz =

2η̄

n
ǫ̃zz − p̃, σ̃xz = 2η̄ǫ̃xz. (A.3)

where tildes indicate perturbations to the background field, η̄ is viscosity, and p̃ is pressure,

from Conrad and Molnar (1997). Using these, and assuming viscosity is an exponential

function of depth (z), Equation A.1 becomes

0 =
2η̄

n
ũxx − p̃x + η̄(ũzz + w̃xz) + γη̄(ũz + w̃x)

0 = η̄(ũxz + w̃xx) +
2η̄

n
w̃zz +

2γη̄

n
w̃z − p̃z − ρ̃g

(A.4)

with ρ̃, the density perturbation, resulting from the expansion of pressure, p̃. Here we

begin using the convention that subscripts indicate partial derivatives. From Chandrasekhar

(1961), we seek solutions that have a sinusoidal dependence in x, as:

eikx (A.5)

where k is wavenumber. So we expand A.4 to

ikp̃ = −2η̄k2

n
ũ + η̄(D2ũ + ikDw̃) + γη̄(Dũ + ikw̃)

Dp̃ = η̄(ikDũ − k2w̃) +
2η̄

n
D2w̃ +

2γη̄

n
Dw̃ − ρ̃g

(A.6)

where D is the derivative ∂/∂z. Now using the continuity equation

∇ · u = ikũ + Dw̃ = 0 (A.7)

we have

ikũ = −Dw̃. (A.8)

Then
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ikp̃ = −η̄k2

(

2

n
− 1

)

ũ + η̄D2ũ + γη̄ (Dũ + ikw̃)

Dp̃ = −η̄
(

D2 + k2
)

w̃ +
2η̄

n
D2w̃ +

2γη̄

n
Dw̃ − ρ̃g

(A.9)

and taking ∂/∂x through both sides, remembering (A.8), we have

k2p̃ = η̄k2

(

2

n
− 1

)

Dw̃ + η̄D3w̃ + γη̄
(

D2 + k2
)

w̃

Dp̃ = −η̄
(

D2 + k2
)

w̃ +
2η̄

n
D2w̃ +

2γη̄

n
Dw̃ − ρ̃g.

(A.10)

Now to eliminate pressure, p̃, between these equations, we multiply the z component by k2

and get

k2Dp̃ = −k2η̄(D2 + k2)w̃ +
2η̄k2

n
D2w̃ +

2γη̄k2

n
Dw̃ − ρ̃gk2 (A.11)

and take ∂/∂z of the x component via four chain rules to get

k2Dp̃ = η̄D4w̃ + 2γη̄D3w̃ +

[

−η̄k2

(

2

n
− 1

)

(γ + 1) + γ2η̄

]

D2w̃

+ γη̄k2Dw̃ + γ2η̄k2w̃.

(A.12)

Setting these two equations equal yields

D4w̃ + 2γD3w̃ +

[

γ2 − 2k2

(

2

n
− 1

)]

D2w̃ − 2k2γ

(

2

n
− 1

)

Dw̃

+ (γ2 + k2)k2w̃ = − ρ̃gk2

η̄
.

(A.13)

With conservation of mass we require

∂ρ̃

∂t
+ u

∂ρ̄

∂x
+ w

∂ρ̄

∂z
= 0. (A.14)

Then, assuming exponential growth, w̃ ≈ eqt, from density perturbations only in the z

direction, we have
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qρ̃ = −w̃
∂ρ̄

∂z
(A.15)

which we can substitute into (A.13), the result of which is a homogeneous differential equa-

tion:

D4w̃ + 2γD3w̃ +

[

γ2 − 2k2(
2

n
− 1)

]

D2w̃ − 2k2γ(
2

n
− 1)Dw̃

+ (γ2 + k2 − gk2

η̄q
Dρ̄)w̃ = 0

(A.16)

A solution to this from Bassi and Bonnin (1988) is

W = Acos(βkz)eα′kz + B
sin(βkz)

βk
eα′kz

+ Ccos(βkz)eα′′kz + D
sin(βkz)

βk
eα′′kz (A.17)

where W represents the downward velocity and

β =
r

a
, α′ = a − m

2
, α′′ = −a − m

2
,

r =

(

m2

4
+

n − 1

n2

)1/2

,

a =

{

m2

8
+

1

n
− 1

2
+

1

2

[

m4

16
+

m2

2

(

2

n
+ 1

)

+ 1

]1/2
}1/2

,

m =
γ

k
=

1

kL
.

(A.18)

We solve Equation A.17 in each material for the undetermined coefficients. In the

case of a layer over an infinite halfspace, Figure 2.2, we use the boundary conditions shown.

For the lower halfspace, C = D = 0 to prevent divergence at large negative z. So, we

require six boundary conditions to find a full solution. These boundary conditions are: no

vertical velocity at the top boundary, z = h, w̃1(h) = 0, no horizontal velocity at the top
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boundary ũ1(h) = 0 or no shear stress at the top boundary σ̃1,xz(h) = 0, continuity of

vertical and horizontal velocity at the interface w̃1(0) = w̃2(0) and ũ1(0) = ũ2(0), continuity

of shear stress on the interface σ̃1,xz = σ̃2,xz, and continuity of normal stress at the interface

σ̃1,zz(0)− σ̃2,zz(0)+ w̃2(0)η̄1(0)/(q′L) = 0. The second boundary condition has an important

distinction. Much of the previous Rayleigh-Taylor work has been focused on a fixed top

condition, where horizontal velocity is zero. Conrad and Molnar (1997) Molnar et al. (1998)

Houseman and Molnar (1997) However, a free top condition, where supported shear stress on

the upper boundary is zero, functions as the other end member of possible crust and mantle

lithosphere coupling. This coupling is a controlling factor in how the growth rate varies

with wavenumber. Generally, reduced coupling tends to enhance the growth rate at longer

wavelengths. Here we focus on experiments with a free top condition to further quantify this

effect on longer wavelengths.

The boundary conditions involving vertical velocity, w̃, are directly solved from equa-

tion A.17. Those with horizontal velocity can be derived from equation A.7 so that

ũ(z) = − 1

ik

∂w̃

∂z
(z). (A.19)

Shear stress continuity is developed from equations A.3 and A.7 as

σ̃xz = − η̄

ik
(D2 + k2)w̃. (A.20)

Normal stress continuity on the sloped boundary is written as

σ̃1,zz − σ̃2,zz = −(ρ1 − ρ2)gϕ (A.21)

where ϕ is the z-coordinate of the perturbed boundary away from the original depth of z = 0.

The right hand side of this equation represents pressure change due to the perturbation of

the layer interface.
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The six equations satisfying the boundary conditions (or more for complex problems)

are assembled in matrix form as

MC = 0 (A.22)

where C is the vector of undetermined coefficients. This vector can be nonzero only when

det(M) = 0, and so we solve this to find an equation of growth rate. Conrad and Molnar

(1997)

In the process, we define the nondimensionalization of q′ and k′ to include the expo-

nential scaling of viscosity as

q =
(ρ1 − ρ2)gL

η0

q′ and k′ = kL (A.23)

and incorporate them into the solution. The growth rate will now be a function of two

parameters: k′ which is non-dimensional wavenumber, and h/L which is the layer thickness

divided by the e-folding length of the exponential viscosity. Molnar et al. (1998)


