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Carpenter, M. Y. (M.S., Applied Mathematics)

Statistical Properties of Avalanches on Complex Networks

Thesis directed by Prof. Juan G. Restrepo

We characterize the distribution of sizes and durations of avalanches propagating in complex net-

works. We find that the statistics of avalanches can be characterized in terms of the Perron-Frobenius

eigenvalue and eigenvectors of an appropriate adjacency matrix which encodes the structure of the network.

By using mean-field analyses, previous studies of avalanches in networks have not considered the effect of

network structure on the distribution of size and duration of avalanches in all cases. Our results are specific

to individual networks and allow us to find expressions for the distribution of size and duration of avalanches

starting at particular nodes. These findings apply more broadly to branching processes in networks such as

cascading power grid failures and critical brain dynamics. In particular, our results show that some experi-

mental signatures of critical brain dynamics (i.e., power-law distributions of neuronal avalanches sizes and

durations), are robust to complex underlying network topologies.

We model avalanches in complex networks by considering a collection of connected nodes where

the connection strength between two nodes determines the probability that an excitation is passed from one

node to the next. Networks of size N can be identified with a N × N adjacency matrix where the ijth

entry represents the connection strength from node i to node j. Networks are separated into three classes:

subcritical, critical, and supercritical based on the largest eigenvalue of the adjacency matrix. We are able

to determine the distribution for avalanche size and duration for each type of network.
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Chapter 1

Introduction

Networks are composed of individual components which can be linked together in a variety of ways.

These can be humans interacting in a social network, computers passing data across the world wide web,

animals predating on other animals in the food web, power plants supplying energy to bustling cities, or

neurons transmitting electric signals giving you the cognitive ability to read this thesis. Rather than study

each individual component,l human, computer, or neuron, we study the whole: this thesis is dedicated not

to the study of individual components, but to the study of networks, and the interactions and connections

within.

The study of avalanches of activity in complex networks is relevant to a diversity of fields, including

epidemiology, geneology, and neuroscience. The simplest case of an avalanche corresponds to a branching

process, which was studied first by Galton and Watson [1] and whose generalizations have been studied

for many decades [2, 3]. These branching processes can be considered as avalanches propagating in a tree

network, and generalizations where avalanches propagate in a more general network have been considered:

self-organized criticality in the “sandpile” model [4], and the related topic of critical percolation exponents

[5] have been studied on complex networks. Others have investigated avalanches on networks, charac-

terizing the expected size of cascades in clustered random networks under a variety of dynamics [6], as

well as characterizing distributions of unordered binary avalanches via “exhaustive percolation” on random

networks [7], on networks with arbitrary degree distribution [8], and in random and all-to-all networks of

spiking neurons [9].

Although the work in this thesis can be applied to many situations, we first consider an excitable
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neural network. When a neuron fires, it stimulates other neurons which may subsequently fire, and when

this linked activity occurs in a cascade, it is called a neuronal avalanche. Recent experiments have studied

neuronal avalanches of activity in the brains of awake monkeys [10] and slices of rat cortex [11], and

found that when the tissue is allowed to grow and operate undisturbed in homeostasis [12], both the size and

temporal duration of neuronal avalanches is distributed according to a power-law. In contrast, the application

of drugs that selectively decrease the activity of inhibitory or excitatory neurons results in avalanches with

different statistics [11]. It has therefore been argued theoretically and demonstrated experimentally, that

many neuronal networks operate in a critical regime that leads to power-law avalanche distributions [11],

maximized dynamic range [11, 13, 14, 15], and maximized information capacity [16, 17, 18]. Therefore,

it is of great interest to characterize the critical state and to understand how the experimental signatures of

criticality may change upon modifications to the underlying network (e.g., those induced by the drugs used

in the experiment).

1.1 Formulation

Formally, we define a network as a system with N nodes and M links between the nodes, where each

link is an ordered pair of nodes (n,m) indicating a link from node n to node m. If the links do not have a

specific direction the network is said to be undirected (e.g., adding a friend on facebook requires that they

add you back). We can view undirected links as an unordered pair, but we will instead view undirected

networks as a subset of directed networks where there is a directed link going both ways between nodes.

A network is said to be simple if there are no self-connections (a link from node m to node m) and no

multiple-connections (more than one link from node p to node q). A network is said to be complex if there

are non-trivial topological features (e.g., a ring or a lattice would not be complex). When we assume a

network is complex, so we are assuming there is no underlying order and the connections are sufficiently

random to mimic a social or biological network. We are interested in simple (in the sense defined above),

complex networks for their biological, social, and engineering applications.
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1.1.1 Adjacency Matrix

It is convenient to represent these networks as a N ×N matrix adjacency matrix. We will define the

adjacency matrix to be the N ×N matrix where each element is given by

Amn =

 1 if there is a link from node n to node m

0 otherwise
(1.1)

This network is said to be unweighted or binary because the strength of all connections is the same. Notice

that undirected networks are represented by symmetric adjacency matrices, A = AT where AT denotes the

transposed matrix.

Figure 1.1: An adjacency matrix is constructed from the given network. Note that the network is directed
and so the adjacency matrix is not symmetric. Also note that the newtork is not strongly-connected because
there is no path from 3→ 1. From [19]

We are often also interested in weighted networks where the strength of the connections can vary. The

adjacency matrix of a weighted network will have elements

Amn =

 6= 0 if there is a link from node n to node m,

0 otherwise,
(1.2)

where the value of elementAmn is the strength of the connection from node n to nodem, and no connection
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implies the strength is 0. A weighted network may have varying link weights. An unweighted network has

all links from strength 1. Although Eq. (1.1) is the formal definition of adjacency matrix, for the remainder

of this paper we will use Eq. (1.2) to define adjacency matrix and the matrix defined in Eq. (1.1) will be

called the unweighted adjacency matrix.

The weights in an adjacency matrix can be positive or negative, but for the analysis in this thesis

they will always be non-negative. For the purpose of this thesis we will only consider strongly-connected

networks, and the adjacency matrices derived from these. A network is strongly-connected if, for any given

pair of nodes a and b, there is a path a→ b and a path b→ a. Any nodes that are not strongly-connected to

the others should be removed until we only consider one strongly-connected component. We are interested

in the spectral properties of a strongly-connected nonnegative network which leads us to a statement of the

Perron-Frobenius Theorem. There are variations for positive and non-negative matrices. A statement of the

theorem will be given without proof. A proof can be found in [20].

Perron-Frobenius Theorem: Let A be an irreducible non-negative N ×N matrix with spectral radius

λ. The following statements are true:

(1) There is a positive, real eigenvalue of A, denoted as λ, the Perron-Frobenius eigenvalue of A.

(2) The Perron-Frobenius eigenvalue λ is simple.

(3) Both the left and right eigenvectors associated with λ, denoted uT and v respectively, have all

positive entries.

(4) λ has the largest magnitude among all eigenvalues of A.

Note that if a graph is strongly-connected then its adjacency matrix is irreducible.

1.1.2 Degree Distributions

The adjacency matrix contains a complete and global description of the network, but we are often

interested in the environment of individual nodes. One characterization of this local environment is the
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number of incoming and outgoing links at each node. This leads us to define the degrees of the nodes

kinn =

N∑
m=1

Anm and koutn =

N∑
m=1

Amn. (1.3)

The in-degree (out-degree) is the sum of all connections coming into (out of) a node. Note that this definition

works equally well with weighted and binary networks. Lastly, we define the mean degree,

〈k〉 =
1

N

N∑
n=1

kinn =
1

N

N∑
n=1

koutn =
1

N

N∑
n=1

N∑
m=1

Amn, (1.4)

where 〈·〉 denots the average over nodes.

We are most interested in degree distributions that are observed for real-world networks. One obser-

vation that has helped develop modern network theory is that real-world degree distributions are often highly

heterogeneous. A heterogeneous degree distribution means there is not a typical degree, but a potentially

large range of degrees of the nodes. It has been found that degree distributions often follow a power-law,

P (k) = Ck−γ[21], and these will be the degree distributions studied in this paper. In particular, many

real-world network degree distributions can be approximated by a power-law with an exponent between 2.1

and 3.5. Networks with a power-law degree distribution are often called scale-free networks because the

ratio P (ak)/P (k) = a−γ does not depend on k, therefore the network cannot be characterized by any scale.

One implication is that there will be hubs, highly connected nodes that play a crucial role in the dynamics

of the network such as in epidemic spreading, neural excitations, and power grid performance.

Power-law degree distributions are often hard to study because it is not trivial to determine whether

or not a given set of data really follows a power-law distribution [22]. The power-law scaling often does

not hold for small k and the data will sometimes only span a few decades and have cut-off effects making

it invalid for large values of k. Another property of power-law networks is that only a finite number of

moments E[km] do not diverge. In general, we can approximate the moments of a power-law with exponent

γ as an integral where

E[km] ≈
∫ ∞
kmin

kmP (k)dk =
γ − 1

γ − 1−m
kmmin, (1.5)
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for γ > m + 1 and diverges for γ ≤ m + 1. Where we assume that the number of nodes tends to infinity,

and the approximation becomes better as kmin grows. In a finite network the moments are finite, but will be

very large if the corresponding moment for an infinite network would diverge.

Note that the in- and out-degrees do not have to be related. For example, If we view links as following

someone on Twitter, a celebrity may have millions of followers (high in-degree), but only follow a handful

of people (low out-degree). We wish to be able to estimate the probability that a randomly chosen node has

a certain in-degree and out-degree. This leads us to define

P (kout, kin) = probability that a randomly chosen node has out-degree kout and in-degree kin. (1.6)

We can then define the marginal distributions for the in-degrees and out-degrees,

Pout(k
out) =

∑
kin

P (kout, kin) = probability that a randomly chosen node has out-degree kout, (1.7)

Pin(kin) =
∑
kout

P (kout, kin) = probability that a randomly chosen node has in-degree kin, (1.8)

If the in-degree and out-degree are independent variables, then

P (kout, kin) = Pin(kin)Pout(k
out). (1.9)

1.1.3 Degree Correlations

In practice, in- and out-degree often depend on each other so it is helpful to quantify this interdepen-

dence. This leads us to define two types of degree correlations. The first, node degree correlations describe

correlations between the in- and out-degree at the same node. Node degree correlations imply we can gain

statistical information about a node’s in-degree given its out-degree and vice versa. Rather than working

with the more cumbersome distribution in Eq. (1.6), we are just looking to quantify the correlation between
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in-degree and out-degree. Following Refs. [23, 24], we define the node correlation coefficient

η =
〈kinkout〉
〈kin〉〈kout〉

=
〈kinkout〉
〈k〉2

, (1.10)

where 〈·〉 denotes an average over nodes. A value η > 1 means the in- and out-degrees are positively cor-

related, η < 1 means they are negatively correlated, and η = 1 means they are independent. An alternative

way to measure correlation is through the Pearson correlation coefficient [23]

rnode =
〈(kin − 〈k〉)(kout − 〈k〉)〉√

(〈(kin − 〈k〉)2〉)(〈(kout − 〈k〉)2〉)
, (1.11)

where r < 0 means negative correlations, r = 0 means no correlation, and r > 0 means positive correla-

tions. Note that the Pearson correlation coefficient is simply a shift of the node correlation coefficient which

centers the coefficient on 0, and normalizes it so that −1 ≤ r ≤ 1.

The second class of degree correlations, edge degree correlations are those which correlate the de-

grees of nodes at the end of a randomly chosen link. In particular, for a link connecting node n and node

m, we will examine the correlations between kinn , koutn , kinm , and koutm . For a link from node n to node m we

will focus on correlations between kinn and koutm since they will have the most influence on the dynamical

processes. We define the correlation coefficient for edge degree correlations as [24]

ρ =
〈kinn koutm 〉e
〈kin〉e〈kout〉e

, (1.12)

where 〈·〉e denotes the average over all edges in the network. A value ρ < 1 corresponds to negative cor-

relations (Figure 1.2a), ρ = 1 corresponds to independence, and ρ > 1 corresponds to positive correlations

(Figure 1.2b).

1.2 Model Used in This Thesis

We develop a theory of avalanche size and duration on complex networks that explicitly includes the

network topology. This approach allows for an analysis of avalanches starting from arbitrary nodes in the
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Figure 1.2: (a) the in-degrees and out-degrees are negatively correlated, (b) the in-degrees and out-degrees
are positively correlated, (c) the degrees are positively correlated across the edge, (d) the degrees are nega-
tively correlated across the edge. Figure from [19]
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network and the effect of nontrivial network structure on the distribution of avalanches. In this paper we

study the statistics of avalanches propagating in complex networks. While our formalism is very general,

our analysis was motivated by recent experiments on avalanches of neuronal bursting in the mammalian

cortex.

To model the propagation of avalanches on a network, we consider a network of N nodes labeled

m = 1, 2, ..., N , each of which can be in one of two states, x̃m = 0 or 1. We refer to the state x̃m = 0 as

the resting state and to x̃m = 1 as the excited state. At discrete times t = 0, 1, ..., the states of the nodes x̃tm

are simultaneously updated as follows: (i) If node m is in the resting state, x̃tm = 0, it can be excited by an

excited node n, x̃tn = 1, with probability 0 ≤ Amn < 1, so that x̃t+1
m = 1. (ii) The nodes that are excited,

x̃tn = 1, will deterministically return to the ready state in the next time step, x̃t+1
n = 0. We therefore describe

a network of N nodes with a N × N weighted network adjacency matrix A = {Amn}, where Amn 6= 0

may be thought of as the strength of connection from node n to node m, and Amn = 0 implies that node n

does not connect to node m. We will assume that the network encoded by the weighted adjacency matrix A

is strongly-connected (and therefore the adjacency matrix is irreducible).

Starting from a single excited node k (x̃0j = 1 if j = k and x̃0j = 0 if j 6= k), we let the system evolve

according to the dynamics above, and observe the cascade of activity until there are no more excited nodes.

This motivates the following definitions, which are illustrated in Fig. 1.3 : (1) an avalanche is the sequence

of excitations produced by a single excited node; (2) the duration d of an avalanche is defined as the total

number of time steps spanned by the avalanche: if the avalanche starts with x̃0k = 1, then

dn = min
t≥0
{x̃tk = 0 for all k}. (1.13)

An avalanche that continues indefinitely is said to have infinite duration; (3) the size x of an avalanche

starting at x̃0n = 1 is defined as the total number of nodes excited during an avalanche, allowing for nodes

to be excited multiple times:

xn =

d−1∑
t=0

N∑
k=1

x̃tk. (1.14)

Note that it is possible for an avalanche to have size larger than the total size of the network. The main goal
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of this thesis is to determine the probability distributions of these variables in terms of the matrix A.

Networks were constructed in two steps. First, binary networks (with adjacency matrix entries Âmn ∈

{0, 1}) were constructed via an implementation of the configuration model [25], usingN = 105 nodes, with

nodal degrees drawn from a power-law distribution with exponent 3.5, i.e. the probability that a node has

degree k is proportional to k−3.5. Second, each nonzero entry Âmn was given a weight, drawn from a

uniform distribution U [0, 1]. We then calculated the Perron-Frobenius eigenvalue of this weighted matrix

Â, λÂ, and multiplied the matrix Â by λ/λÂ, resulting in a matrix A with the desired eigenvalue λ. We

simulated avalanches for networks with λ between 0.5 and 1.5, sampling more finely for values close to 1.

Each simulated avalanche was created by first exciting a single network node, chosen uniformly at

random, and then observing the size and duration of the resulting avalanche as defined in Eqs. (1.13) and

(1.14). If the resulting avalanche lasted for more than 106 time steps, we considered it as having infinite

duration and infinite size. In all cases, the initial excitation was included so that the minimum size was

x = 1 and the minimum duration was d = 1. For each subcritical (λ < 1) and supercritical (λ > 1) cases,

106 avalanches were simulated, and for λ = 1, we simulated 2 · 106 avalanches to better sample the very

broad distribution of avalanche sizes at criticality.

As will be discussed in detail in the following chapters, we find that the statistical properties of

avalanches are determined by spectral properties of the matrix whose entries Amn are the probabilities that

the avalanche propagates from node n to node m. In particular, the Perron-Frobenius eigenvalue λ and its

associated eigenvectors play a prominent role in determining the functional form and the parameters for the

statistical distribution of avalanche sizes and durations. While many of our findings have analogous results

in classical Galton-Watson branching processes [2, 3], we emphasize that our analysis allows us to identify

how changes in network structure affect the parameters of the statistical distributions of avalanche sizes

and durations. Moreover, our theory allows us to find the statistical distributions of avalanches starting at

particular network nodes.

This thesis is broken down into several chapters. Chapter 2 will derive and discuss the statistics

for avalanche duration on excitable networks, classifying networks above, below, and at criticality, then

numerically verifying our predictions with simulated experiments. Chapter 3 uses results from chapter 2
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Figure 1.3: An example avalanche is shown, where circles represent nodes, arrows represent links, and
numbers inside nodes correspond to the time step at which each node is activated. Starting from a single
excited node, labeled 1, the avalanche spreads to two other nodes, labeled 2, and so on. Note that the
presence of a link does not guarantee the transmission of excitation. The example avalanche above lasts for
five time steps and excited a total of six nodes in addition to the initial node, so d = 5 and x = 7.
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but the arguments are modified to find the distribution of sizes, also numerically verified with simulated

experiments, and validated with data from slices of rat cortex and awake monkeys. Chapter 4 contains a

discussion of results and implications of our research.



Chapter 2

Distribution of Avalanche Duration

The purpose of this chapter is to determine how the duration of an avalanche depends on the properties

of the network. In particular, it is determined that networks can be separated into three distinct categories de-

pending on the largest eigenvalue (λ, the Perron-Frohbenius eigenvalue) of the adjacency matrix. Networks

with λ = 1 will be referred to as critical networks, λ > 1 as supercritical, and λ < 1 as subcritical. The

goal of this chapter is to determine the distribution of avalanche duration for each of these classifications.

In order to analyze the statistics of avalanche durations, we define cn(t) as the probability that an

avalanche starting at node n has duration less than or equal to t,

cn(t) = P(dn ≤ t). (2.1)

The quantity cn(t) is the cumulative distribution function (CDF) of the random variable dn. Here, we will

restrict our attention to the class of locally tree-like networks [26], which can be approximated locally as

simple directed trees. Many networks found in applications are of this type, and it is found that the locally

tree-like approximation works very well in describing various dynamical process while still capturing the

effects of network heterogeneity [13, 14, 27, 26, 28]. For these networks we can approximately treat the

avalanches propagating to different neighbors of node n as independent when the total number of nodes is

large. Exploiting this assumed independence, we can write the recursion relation,

cn(t+ 1) =

N∏
m=1

[
(1−Amn) +Amncm(t)

]
, (2.2)
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together with cn(0) = 0 which follows from the definition (2.1). The right hand side of Eq. (2.2) is the

probability that the nodes excited by node n generate themselves avalanches of duration at most t. The term

(1 − Amn) inside the product is the probability that an excitation does not pass from node n to node m,

whereas Amncm(t) is the probability that an excitation does pass from node n to node m and the result-

ing avalanche has duration at most t. Note that Eq. (2.2) can treat any node n as the starting node for an

avalanche. As discussed above, Eq. (2.2) assumes that the descendent branches of the avalanche are inde-

pendent. In a complex network, where cycles of many lengths exist, it is possible that an avalanche may

branch in such a way that two branches interact at a later time. However, for the networks we studied we

found that, while these effects do occur for large avalanches, they do not significantly affect our predictions.

These effects are minimized in larger networks since the probability of interacting is reduced.

Here we establish that the probability of finite avalanches, under our assumptions, is always 1 when

λ ≤ 1 (critical and subcritical networks), and becomes less than 1 when λ > 1 (supercritical networks). To

do this we define bn = limt→∞ cn(t) as the fixed point of the system described by Eq. (2.2) and therefore

satisfies the equation

bn =
N∏
m=1

[
(1−Amn) +Amnbm

]
. (2.3)

We are interested in the distribution of long avalanche durations, i.e., in the asymptotic form of cn(t)

for t → ∞. By definition, cn(t) is a bounded, increasing function of t and therefore it must converge to a

value limt→∞ cn(t) = bn ≤ 1 which can be interpreted as the probability that an avalanche starting at node

n has finite duration. Our analysis will be based on the value of the fixed point, whether or not this limit is

less than or equal to one, and determining the approach pattern to the fixed point. As shown in the remaining

parts of this chapter, this is determined by the Perron-Frobenius eigenvalue of A, λ. If λ < 1 (subcritical),

then limt→∞ cn(t) = 1 with an exponential approach. In the case λ = 1 (critical), limt→∞ cn(t) = 1 with a

power-law approach. On the opposite side of the bifurcation, if λ > 1 (supercritical), then limt→∞ cn(t) =

bn < 1 with an exponential approach. bn < 1 implies that there is a non-zero probability that an avalanche

has infinite duration. The asymptotic form of cn(t) will be analyzed separately for these three cases below.
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Figure 2.1: When the Perron-Frobenius eigenvalue λ is larger than one, there is a non-zero probability of an
avalanche starting at node n having infinite duration, as predicted by Eq. (2.3). Here we average the finite
fraction of avalanches originating from node n over all nodes, showing excellent agreement between the
fraction predicted by averaging Eq. (2.3) (red line) and fraction measured from simulation (circles).
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2.1 Subcritical Networks (λ < 1)

First, we show that if λ < 1, then the only solution to the equation above is bn = 1. Letting

bn = 1− fn, we have for all n

1− fn =

N∏
m=1

[
1−Amnfm

]
. (2.4)

Applying the Weierstrass product inequality to Eq. (2.4), we obtain

N∑
m=1

Amnfm ≥ fn, (2.5)

with equality only if Amnfm = 0 for all m. If u is the right Perron-Frobenius eigenvector of A, then

left-multiplying Eq. (2.5) by uT results in

uTAT f = λuT f ≥ uT f . (2.6)

If there is a nonzero fn, then uT f > 0 since the Perron-Frobenius eigenvector has positive entries. There-

fore, if λ < 1 we must have fn = 0 for all n.

From the argument above, we find that in the subcritical case, bn = 1 is the only fixed point of the

system Eq. (2.2). To analyze the asymptotic form of cn(t), we assume it is close to the fixed point and define

the small quantity

fn(t) = bn − cn(t) = 1− cn(t). (2.7)

Inserting this into Eq. (2.2) and linearizing we obtain

1− fn(t+ 1) =

N∏
m=1

[1−Amnfm(t)]

fn(t+ 1) =

N∑
m=1

Amnfm(t). (2.8)
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Assuming exponential decay (or growth) of perturbations, fn(t) = λtvn, we obtain

λvn =

N∑
m=1

Amnvm. (2.9)

Thus, λ is an eigenvalue of A and v its left eigenvector. We identify λ as the Perron-Frobenius

eigenvalue since, having the largest magnitude among all the eigenvalues, λtvn will be the dominant term as

t → ∞ when compared with the other modes. We note that for finite t, this approximation is good as long

as there is a large enough separation between λ and the rest of the spectrum of A. This issue is discussed in

[29], where it is found that this separation is typically large in networks without strong community structure.

Henceforth, we will assume that λ is well separated from the rest of the spectrum of A.

Therefore, cn(t) approaches 1 exponentially since

cn(t) ≈ 1− λtvn, (2.10)

where v is the left eigenvector of A corresponding to λ, which has positive entries by the Perron-Frobenius

theorem [20]. We note that from the standpoint of nonlinear dynamics, the fixed point bn = 1 is linearly

stable when λ < 1.

The probability density function (PDF) of avalanche durations is given by pn(t) = P (dn = t) =

cn(t)− cn(t− 1), so

pn(t) = (λ−1 − 1)λtvn, (2.11)

which decays exponentially to zero with decay rate | ln(λ)|.

In summary, we can draw two predictions from the analysis above for subcritical networks: (i) the

PDF of avalanche duration will decay exponentially towards zero as λt, and (ii) the probability that an

avalanche started at node n lasts more than t steps is proportional to the nth entry of the left eigenvector of

A, vn. These predictions are tested in Sec. 2.4.
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2.2 Supercritical networks (λ > 1)

Now, we show that if λ > 1 then limt→∞ cn(t) = bn < 1. To show this, we view Eq. (2.2) as a

dynamical system and note that the analysis of Sec. 2.1, applied to the case λ > 1, shows that the fixed

point bn = 1 is linearly unstable. If we show that cn(t) are nondecreasing with t, then their limit bn must

be less than one. We will prove by induction that cn(t+ 1) ≥ cn(t) for all n. First, we have cn(0) = 0 and

cn(1) =
∏
m(1 − Anm) ≥ 0, so the statement is valid for t = 0. Then, assume cm(t) ≥ cm(t − 1) for all

m and consider cn(t+ 1)/cn(t) (assuming cn(t) > 0):

cn(t+ 1)

cn(t)
=

N∏
m=1

(1−Amn) +Amncm(t)

(1−Amn) +Amncm(t− 1)

=

N∏
m=1

[
1 +

Amn(cm(t)− cm(t− 1))

(1−Amn) +Amncm(t− 1)

]
≥ 1, (2.12)

which proves the desired statement. Although from the definition (2.1), cn(t) are nondecreasing, note that

this proof is necessary since Eq. (2.2) is an approximation to the CDF.

We have shown that there exists another fixed point bn to which cn(t) converges from below: limt→∞ cn(t) =

bn < 1. Thus, there is a non-zero probability that an avalanche will have infinite duration. Our analysis

below characterizes the distributions of finite avalanche durations in supercritical networks. Recall from

Eq. (2.3) that the fixed point bn satisfies

bn =
N∏
m=1

[
(1−Amn) +Amnbm

]
. (2.13)

Again, we introduce the quantity fn(t) = bn − cn(t), and consider the limit when t is large and fn is small.

We substitute this into Eq. (2.2) and rewrite it as

bn − fn(t+ 1) = bn

N∏
m=1

[
1− Amnfm(t)

(1−Amn) +Amnbm

]
. (2.14)
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By defining a new matrix D with entries

Dmn =
Amnbn

(1−Amn) +Amnbm
, (2.15)

and linearizing Eq. (2.14), we find:

fn(t+ 1) ≈
N∑
m=1

Dmnfm(t). (2.16)

As in the subcritical case, we conclude that fn(t) ≈ λtDwn, where w is the left Perron-Frobenius eigenvector

of the matrix D and λD its Perron-Frobenius eigenvalue. Therefore, we have

cn(t) ≈ bn − wnλtD. (2.17)

To ensure that this fixed point is stable, we can show that λD ≤ 1 and equality holds only when

λ = λD = 1. To prove this short lemma we will consider Eq. (2.13) and parametrize it according to a

variable α.

bn(α) =
N∏
m=1

[1− αAmn + αAmnbm], (2.18)

where α is a scaling parameter onAwhich uniformly strengthens or weakens all connections in the network.

We will consider the derivative of the bn’s with respect to α. Through a repeated product rule, the derivative

of the product transforms into a sum.

dbn
dα

= bn(α)

N∑
m=1

−Amn +Amnbm + αAmn
dbm
dα

1− αAmn + αAmnbm
. (2.19)

Next we will evaluate this entire expression at α = 1 to recover the original bn, and we will denote

dbn
dα (α = 1) as zn;
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zn =

N∑
m=1

[ Amnbn
1−Amn +Amnbm

(−1 + bm + zm)
]

(2.20)

=
N∑
m=1

Dmn(−1 + bm + zm). (2.21)

.

We can express this as a vector equation and, rearranging, we find

DT z− z = DT (1− b). (2.22)

Left multiplying by wT the Perron-Frobenius eigenvector of D, Eq. (2.22) simplifies to

(λD − 1)wT z = λDw
T (1− b) (2.23)

From the definition, we can see thatD has all non-negative entries, and therefore a positive Perron-Frobenius

eigenvalue. From the definition of the bn and the stability analysis of the bn = 1, we can see that each

bn < 1 so the vector (1 − b) has all non-negative entries. Additionally every element of wT is positive by

the Perron-Frobenius theorem, and λD > 0 so the right hand side has all positive entries. We know that

every element of z is non-positive because increasing the connectivity of the network can’t possibly decrease

the probability of a finite avalanche. This claim is verified numerically in Fig. 2.3 which plots average bn

vs. λ (if A is a fixed network with largest eigenvalue of 1 then α and λ are identical). From these arguments

we see that λDwT (1− b) > 0, and wT z < 0 is negative, therefore λD < 1.

These results lead to two predictions: (i) the PDF of avalanche duration will decay exponentially

towards zero as λTD in supercritical networks, and (ii) the probability that an avalanche started at node n

lasts more than t steps is proportional to the nth entry of the left eigenvector of D, wn. These predictions

are tested and discussed in Sec. 2.4. We note that these predictions simplify to those drawn from Eq. (2.10) if

the network is subcritical. In this case bn = 1, Eq. (2.15) simplifies to Dmn = Amn, and therefore λD = λ
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and v = w.

2.3 Critical Networks (λ = 1)

If λ = 1, we return to the Weierstrass inequality and its result in Eq. (2.6).

uTAT f = λuT f ≥ uT f . (2.24)

The case λ = 1 implies equality in Eq. (2.5), which implies either (i) Amnfm = 0 for all m, and

thus fn = 0 by (2.5), or (ii) Amnfm = 0 for all m 6= k and Aknfk = 1 for some k, which is impossible

since we assumed that the entries of A are strictly less than one and fk is a probability. Therefore, we must

have fn = 0 if λ = 1, and this argument is valid for any n. Together with the previous argument above, we

conclude that bn = 1 for all n if λ ≤ 1.

The analyses in Sec. 2.1 and 2.2 show that if λ = 1, the fixed point bn = 1 is marginally stable. The

linear stability analysis yields neither stability nor instability and higher order terms need to be considered.

This fixed point must be an attracting fixed point, since cn(t) is nondecreasing and bn = 1 is the only

fixed point of Eq. (2.2). To determine the asymptotic form of cn(t) for large t, we let cn(t) = 1 − fn(t).

We assume that Eq. (2.2) has a solution whose asymptotic functional form in t (to be determined) can be

extended to a differentiabe function of a continuous time variable t. Since the convergence of fn(t) to 0 is

slower than exponential in the critical case, we look for a solution fn(t) which is slowly varying in t when

fn(t) is small, and approximate

fn(t+ 1) ≈ fn(t) + f ′n(t). (2.25)

The slowly varying assumption implies that f ′n(t)� fn(t) as fn → 0, which we note excludes an exponen-

tial solution. Substituting Eq. (2.25) into Eq. (2.2), we get

1− fn(t)− f ′n(t) ≈
N∏
m=1

[1−Amnfm(t)] . (2.26)

Assuming fn(t)� 1 and expanding to second order, we get after simplifying and dropping the time notation
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for clarity,

fn + f ′n ≈
∑
m

Amnfm −
1

2

∑
m

∑
k 6=m

AmnAknfmfk. (2.27)

The leading order terms are fn on the left-hand side and
∑

mAmnfm on the right-hand side, so for these to

balance as f → 0 requires

fn =
∑
m

Amnfm. (2.28)

Therefore, in this limit the vector f(t) = [f1(t), f2(t), . . . , fN (t)]T has to be proportional to the normalized

left eigenvector v of A with eigenvalue λ = 1. Thus, a slowly varying solution only exists for a critical

network. Since v is independent of time, the constant of proportionality must be time dependent, fn(t) =

K(t)vn. Now, for finite f , we expect the solution to deviate by a small error from this limit solution, so we

set

fn(t) = K(t)vn/〈v〉+ εn(t), (2.29)

where we assume εn � fn(t), ε′n � f ′n(t), and the term 〈v〉 =
∑N

n=1 vn/N is included to make K(t)

independent of the normalization of v. Inserting this in Eq. (2.27), neglecting terms of order ε′, ε2, fε, and

using
∑

m

∑
k 6=mAmnAknvmvk ≈ v2n, we obtain

εn +K ′(t)vn/〈v〉 =
N∑
m=1

Amnεm −
1

2
K2(t)v2n/〈v〉2 (2.30)

To eliminate the unknown error term ε, we multiply by un, where u is the right eigenvector of A

satisfying uTAT = uT , and sum over n. The error terms cancel and we obtain an ordinary differential

equation (ODE),

K ′(t) = −1

2

〈uv2〉
〈uv〉〈v〉

K2(t), (2.31)
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where 〈xy〉 ≡ 1
N

∑
n xnyn. Solving this ODE yields

K(t) ≈ 1

β + 1
2
〈uv2〉
〈uv〉〈v〉 t

, (2.32)

where β is an integration constant. In terms of the original variables, we obtain

cn(t) ≈ 1− vn

β + 1
2
〈uv2〉
〈uv〉〈v〉 t

. (2.33)

The PDF, in the continuous time approximation, is given by pn(t) = −c′n(t),

pn(t) ∝ vn(
β + 1

2
〈uv2〉
〈uv〉〈v〉 t

)2 (2.34)

From Eq. (2.34) we make the prediction that as t→∞, 1− cn(t) ∼ t−1. This prediction is tested in

Sec 2.4.

As a brief summary of the predictions for avalanche duration distributions, we predict that the prob-

ability of an avalanche of duration d will decay as λd for subcritical networks (λ < 1), as d−2 for critical

networks (λ = 1), and as λdD for supercritical networks (λ > 1), where λD is the Perron-Frobenius eigen-

value of matrix given in Eq. (3.7).

2.4 Numerical Verification

This section serves to provide numerical verification for the theory developed in this chapter. We

construct networks by using the configuration model as described below, and then rescaling the adjacency

matrix to rescale the spectrum. We simulate avalanches moving over these networks where the weight for

each connection represents the probability an excitation will pass from one node to another as described in

Sec. 1.2. By performing these simulations, we are able to measure all statistics for avalanches and verify

our predictions.

The first task to conquer is to be able construct networks (encoded in an adjacency matrix A) with the
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Figure 2.2: Histograms of avalanche durations shown above for networks of N = 105 nodes with power
law degree distribution, exponent γ = 3.5 with Perron-Frobenius eigenvalues of λ = 0.9 (top left), λ = 1.0
(top right) and λ = 1.1 (bottom). Data are the exact recorded histograms from a single simulation of 106,
2·106, and 106 avalanches respectively from left to right. Dashed lines provide a reference for the theoretical
predictions described in Eqs. (2.10), (2.33), and (2.17). Due to predictions of exponential decay for the sub-
and super-critical cases, the left and right plots are log-linear scale, while the center plot is log-log to show
the power-law decay. Infinite duration avalanches in the supercritical case (bottom) are not represented in
the data set.
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Figure 2.3: A comparison of predicted duration decay rates [Eq. (2.10) and Eq. (2.17)] (red line), and
numerical simulations (circles) plotted against λ, the largest eigenvalue of the network adjacency matrix.
Agreement is excellent for both the subcritical and supercritical numerical simulations.
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desired properties so that we can simulate avalanches. The configuration model [25] was used to construct

the networks in this paper. The goal is that given a target degree sequence k = [k1, k2, ..., kN ], we wish

to uniformly choose a simple network with degree sequence k from the ensemble of all simple networks

with degree sequence k. In practice, there are several hurdles to overcome. Consider the degree sequence

k = [5, 5, 1, 1, 1, 1]. It is impossible to construct a simple network with the given degree sequence. Another

possible problem arises if the total number of links is odd since each link connects two nodes it must be even,

or in the case of directed networks, if
∑
kin 6=

∑
kout. A graphic sequence is a sequence of numbers such

that there exists some simple graph with that particular degree sequence. Conditions for graphic sequences

can be found in Ref. [30].

If the given degree sequence can possibly be constructed, then we construct graphs from the degree

sequence with uniform probability. To do this we set up N nodes and at each node n we place kn ”stubs”

or half-links. We randomly choose pairs of stubs to connect until all stubs form into links. If the resulting

network is simple (i.e., there are no self-connections or double edges) then the network is accepted. If not

then the network is rejected and the process is attempted again until a satisfactory network is created. This

model is called the ”repeated configuration model” [31].

Since it may be necessary to repeat this process many times, we will estimate the probability that this

construction will actually succeed. Define the probability pij that node i is connected to node j. Each of the

ki stubs at node i can connect to any of the other 2m− 1 stubs with equal probability, so the probability that

each stub at node i connects to node j is kj
2m−1 . Therefore the probability that there is at least one connection

from node i to node j can be approximated by

pij ≈
kikj

2m− 1
≈ kikj
N〈k〉

. (2.35)
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Notice we run into a problem if kikj
2m−1 = O(1). Similarly, a more precise argument shows

pij = 1− P (there is no connection)

= 1−
(

2m− 1− kj
2m− 1

)ki
= 1−

(
1− kj

2m− 1

)ki
≈ kikj

2m− 1
≈ kikj
N〈k〉

(2.36)

as long as kikj
2m−1 � 1, which agrees with our previous argument.

Next we find the probability that there are at least two connections between nodes i and j. P(at least

two connections) = P(at least two connections | at least one connection) P(at least one connection).

P (2 connections) ≈ (ki − 1)(kj − 1)

2m

kikj
2m

, (2.37)

which we sum over all pairs of nodes (i, j) and dividing by 2 to avoid double counting (i, j) and (j, i).

E[# nodes with multiple edges] =
1

2

∑
i,j

ki(ki − 1)kj(kj − 1)

N2〈k〉2

=
1

2

(
〈k2〉 − 〈k〉
〈k〉2

)2

. (2.38)

Next we divide by N to find the fraction of nodes with multiple edges,

f =
1

2N

(
〈k2〉 − 〈k〉
〈k〉2

)2

, (2.39)

so if 〈k2〉 is finite, then f ∼ 1
N → 0 as N →∞. From Eq. (1.5) we know that 〈k2〉 diverges for exponents

γ ≤ 3 and converges for γ > 3, so for power-law networks with exponent γ > 3 then the fraction of nodes

with double links goes to 0 as N → ∞. Actually, we can go one step further by evaluating Eq. (1.5) and
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taking the limit we see that 〈k2〉 ∼ N3−γ . Assuming that 〈k〉 is finite then

f ∼ 1

N
(N3−γ)2 = N5−2γ

 → 0 if γ > 2.5

→∞ if γ < 2.5

(2.40)

So for power-law degree distributions with exponent γ > 2.5 then the fraction of nodes with multiple edges

goes to zero as N →∞ and the configuration model is a viable method for constructing the network.

Once we have generated a complex network as described above, a large number (usually 106) of

avalanches are simulated on these networks so that we can construct a histogram for avalanche duration

which will serve as an approximation to the PDF. From the PDF we can approximate the rate at which the

PDF decays towards its fixed point. In Fig. 2.2, the PDF is plotted against our predicted decay rates. The

scales on the plots are designed so that the PDF will decay as a straight line. The plots are logarithmic on

the y-axis for subcritical and supercritical networks and both the x and y-axes are logarithmic for critical

networks.

To numerically test the agreement between theory and experiment for the distribution of avalanche

durations across the whole spectrum of λ, in Fig. 2.3 we compare the multiplicative decay rates (i.e. λ)

predicted in Eqs. (2.10) and (2.17) (solid red line) with decay rates measured from data, calculated through

a least-squares regression on the simulated PDF of avalanche duration to fit the data to an exponential decay

of the form λt. The agreement is excellent over the entire range of λ values simulated.

Beyond aggregate statistics, we also test a more subtle prediction of Eq. (2.10). In Sec. 2.1, we

concluded that fn(t) = 1 − cn(t), where fn(t) represents the probability that an avalanche started at node

n lasts more than t steps. For large t, fn(t) ∝ λtvn, where v is the left Perron-Frobenius eigenvector of

A. Other research in the network adjacency matrix literature has noted that the vector of nodal out-degrees

(in-degrees) is a good approximation for the right (left) dominant eigenvector of A in the absence of degree

correlations [24]. In this light, our prediction above is understandable: when there are not degree correlations

in the network, then the out-degree of a node is a good first-order approximation to the eigenvector entry. A

node with a larger right eigenvector entry (and thus larger out-degree) will tend to produce longer avalanches.
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In order to fully test our prediction, we created networks with assortative (disassortative) mixing by degree

[32], and measured this degree correlation using the coefficient defined in Eq. (1.12) [24],

ρ =
〈kinn koutm 〉e
〈kinn 〉e〈koutm 〉e

, (2.41)

where 〈·〉e denotes an average over all edges and k are weighted nodal degrees defined as kinn =
∑

mAmn

and koutn =
∑

mAnm.

We created Erdős-Rényi random networks (as described in Ref. [33]) with N = 104 nodes, and

rewired the network via a link-swapping process (as described in Ref. [24]) until we had very assortative and

disassortative networks (ρ = 1.2 and ρ = 0.8, respectively). In these networks the out-degree is not a good

approximation to the corresponding eigenvector entry. Eq. (2.10) implies that in such networks, the tails

of the CDF of avalanches originating at node n will be proportional to the corresponding entry of the right

eigenvector, but not necessarily to the nodal out-degree. In Fig. 2.4, we plot fn(30) and its corresponding

entry in the right dominant eigenvector vn for each node for a subcritical network with eigenvalue λ = 0.95

and with assortativity ρ = 0.8, showing that proportionality is excellent. In the inset of the same figure

we plot fn(30) and against corresponding out-degree koutn for each node n, showing that proportionality to

out-degree is poor for disassortative networks. Highly assortative networks produce the same effect, but are

not shown here.
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Figure 2.4: Testing the node-specific prediction of Eq. (2.10), avalanches were simulated on a subcritical
(λ = 0.95) and disassortative (ρ = 0.8) Erdős Rényi random network with N = 104 nodes. In the large
plot, the fraction of avalanches originating at node n that last longer than 30 time steps, fn(30) is plotted
against the corresponding entry in the right Perron-Frobenius eigenvector, vn. In the inset, the same values
fn(30) are plotted against the corresponding out-degree koutn . The eigenvector entry vn does a significantly
better job than out-degree koutn of predicting the duration of avalanches originating at node n in disassortative
networks (shown) and for assortative networks (not shown).



Chapter 3

Distribution of Avalanche Sizes

Similar to avalanche duration, we are interested in determining the statistics for the size of avalanches.

In the experiments that motivated this work [11, 16, 18, 10], the size represents the aggregate neural activity

during a single cascade and may be more easily measured via electrode implants. In these studies, avalanche

sizes are measured based on the number of electrodes that are stimulated or on the total voltage received by

all electrodes, both of which are directly analagous to avalanche size.

In order to analyze the distribution of avalanche sizes, we define the random variable xn as the size

of an avalanche starting at node n. Let zmn be a random variable which is 1 if node n excites node m and 0

otherwise, so that zmn = 1 with probability Amn and 0 with probability 1−Amn. Thus

xn = 1 +
∑
m

zmnxm. (3.1)

From Sec. 2.2, we know that there is a non-zero probability that an avalanche has infinite duration,

and therefore infinite size, when λ > 1. Therefore, we restrict our attention only to the distribution of

avalanches that are finite. To study this distribution, we define the moment generating function

φn(s) ≡ E[e−sxn |xn <∞]. (3.2)

We now use Eq. (3.1) to derive a relation between the moment generating functions of different

nodes. First, we rewrite the condition xn <∞ for node n in terms of events applicable to its neighbors. An

avalanche starting at node n is finite if and only if for every node m, either (i) the excitation does not pass
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from node n to node m, or (ii) the excitation passes from node n to node m but the subsequent avalanche

starting from node m is finite. Therefore, we rewrite the condition xn < ∞ as the requirement that for any

m, (zmn, xm) ∈ Zmn ∪Wmn, where we have defined the disjoint sets of events Zmn = {zmn = 0} and

Wmn = {xm < ∞ and zmn = 1}. Assuming the independence of the random variables xm (consistent

with the locally tree-like assumption used in the previous section), we can rewrite Eq. (3.2) as

φn(s) = e−s
∏
m

E
[
e−szmnxm |Zmn ∪Wmn

]
, (3.3)

where the expectation E[·] is taken over realizations of the random pairs (zmn, xm). Denoting by P (W ) the

probability of an event set W , we relate the expected value in the product in Eq. (3.3) to the probabilities of

the events Wmn and Zmn:

E[e−szmnxm |Zmn ∪Wmn]P (Zmn ∪Wmn)

= E[e−szmnxm |Zmn]P (Zmn) + E[e−szmnxm |Wmn]P (Wmn). (3.4)

Using the following relations that follow from the definitions above,

P (Zmn) = 1−Amn,

P (Wmn) = Amnbm,

P (Zmn ∪Wmn) = (1−Amn) +Amnbm,

E[e−szmnxm |Wmn] = φm(s),

E[e−szmnxm |Zmn] = 1,

Eq. (3.4) gives

E[e−szmnxm |Zmn ∪Wmn] =
(1−Amn) + bmAmnφm(s)

(1−Amn) + bmAmn
. (3.5)
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Inserting this into Eq. (3.3) we obtain one of our main results:

φn(s) = e−s
∏
m

(1−Amn) + bmAmnφm(s)

(1−Amn) + bmAmn
. (3.6)

Defining gn(s) = φn(s)− 1, and the matrix H with entries

Hmn =
bmAmn

(1−Amn) + bmAmn
, (3.7)

we can rewrite this equation as

1 + gn(s) = e−s
∏
m

[1 +Hmngm(s)]. (3.8)

Defining the N × N matrix, B = diag(b1, b2, ..., bN ), we have from Eqs. (2.15) and (3.7), that HB−1 =

B−1D. Thus the matrix H is related to the matrix D by a similarity transformation and thus has the same

spectrum. Therefore, we will denote the Perron-Frobenius eigenvalue of H by λD. Note that λD = λ when

λ ≤ 1, since in that case bn = 1 and H = D = A.

Next we present two methods for finding information about the distribution of sizes xn from the mo-

ment generating function. The methods are consistent with each other, but both are presented in order to

provide another method to numerically verify our results. The first is the “brute force” method of numeri-

cally taking successive derivatives of the moment generating function and evaluating at s = 0 to find each

moment. A second method involves approximating time as a continuous variable and taking the inverse

Laplace transform. It is demonstrated specifically for critical networks using Post’s inversion formula, then

again through an asymptotic argument.

3.1 “Brute Force” Method

We start by taking the natural log of Eq. (3.8), and expanding the product as a sum to obtain

ln [1 + gn(s)] = −s+
∑
m

ln [1 +Hmngm(s)]. (3.9)
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Expanding the natural logs in series and solving for s, we find

s =

N∑
m=1

Hmngm − gn +
1

2

[
g2n −

N∑
m=1

H2
mng

2
m

]
+O(g3n). (3.10)

By matching leading order terms as s → 0 we can describe the behavior of gn. We thoroughly

examine three possibilities below: (a) gn/s→ 0, (b) s/gn → 0, and (c) gn ∼ s.

(a) s/gn → 0 implies that for (3.10) to balance as s→ 0,

0 =

N∑
m=1

Hmngm − gn (3.11)

and so HTg = g. This implies that g is the left Perron-Frobenius eigenvector of A corresponding to

eigenvalue λD = 1, and since λD = 1 only when λ = 1 (proved below), s/gn → 0 is only possible if the

network is critical. Balancing the second order terms implies g2n ∼ s and therefore gn ∼ s1/2.

(b) gn/s → 0 is impossible because it leaves the left- and right-hand sides of (3.10) asymptotically

unbalanced as s→ 0.

(c) g ∼ s implies that for (3.10) to balance as s→ 0,

s =
N∑
m=1

Hmngm − gn (3.12)

For the sake of contradiction, assume that λ = 1, rewriting Eq. (3.12) as

(HT − I)g = s1, (3.13)

Then left multiplying Eq. (3.13) by the eigenvector corresponding to λ = 1 we find

(1− 1)uTg = suT1

0 = s

N∑
m=1

um (3.14)
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which clearly leads to a contradiction, since u is the Perron-Frobenius eigenvector of A, and therefore all of

its entries are positive so
∑
um > 0. Therefore, if gn ∼ s then the network cannot be critical.

Together, the analysis of (a), (b), and (c) above imply that if a network is critical, gn ∼ s1/2 and if a

network is subcritical or supercritical, gn ∼ s. We invoke Post’s inversion formula,

f(t) = lim
k→∞

(−1)k

k!

(k
t

)k+1
F (k)

(k
t

)
(3.15)

We can use Post’s inversion forumla to take the inverse transformation of F (t) = 1− sα with α < 1, where

we are particularly interested in α = 1/2. Since α is not an integer the kth derivative is given by

F (k)(s) = −(α)(α− 1) . . . (α− k + 1)sα−k (3.16)

= (−1)k(α)
[
(1− α)(2− α)...(k − α− 1)

]
sα−k (3.17)

= (−1)kα
Γ(k − α)

Γ(1− α)
sα−k (3.18)

Inserting F (k) into (3.15) we get

f(t) = lim
k→∞

(−1)k

k!

(k
t

)k+1(k
t

)α−k
(−1)kα

Γ(k − α)

Γ(1− α)
(3.19)

= lim
k→∞

α

k!

(k
t

)α+1Γ(k − α)

Γ(α− 1)
(3.20)

Then using k! = kΓ(k) and Stirling’s formula for k!, k! ≈
√

2πnn+1/2e−n we find

f(t) =
α

Γ(1− α)
t−1−α lim

k→∞
kα

k

k − α+ 1

Γ(k − α)

Γ(k + 1)
(3.21)

=
α

Γ(1− α)
t−1−α lim

k→∞
eα
(k − α

k

)k−α+1/2
(3.22)

=
α

Γ(1− α)
t−1−α (3.23)

So for the critical case when F (s) ∼ 1 − sα then f(t) ∼ t−1−α. We showed in 3.1 that α = 1/2. So we
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can conclude that

P (x) ≈ k

2Γ(1/2)
x−3/2 (3.24)

which is the probability that an avalanche will have size x in a critical network.

Eq. (3.24) constitutes our main prediction of avalanche size distribution, applicable only to critical

networks. For subcritical and supercritical networks, one is tempted to guess that, just as in the analysis

for duration, the distributions for non-critical size will be exponential. Furthermore if we suppose that the

probability density function for avalanche size is an exponential with rate α, its moment generating function

is φ(s) = α/(α + s), which expanded to leading order is φ(s) ≈ 1 − s
α , making the argument even more

tempting. However, if the Laplace transform of an exponential, φ(s) = α/(α + s) is used as an ansatz to

solve Eq. (3.3), one notices immediately that the right-hand side cannot equal the left-hand side due to an

imbalance in the order of the poles at s = −α. Therefore we conclude that the distribution of sizes does

not follow an exponential distribution. An investigation of what type of distribution occurs in the subcritical

and supercritical cases will be deferred until the next section

Recall that expanding the moment generating function yields

φn(s) = E[e−sXn |Xn is finite] = 1− sE[Xn|Xn is finite] + s2E[X2
n|Xn is finite]/2− ... (3.25)

which allows us to numerically calculate the moments φ(0) = 1, φ′(0) = −E[Xn|Xn is finite]... etc. pro-

vided that the moments are finite. If we let φ′(0) = [φ′1(0), φ′2(0), ..., φ′N (0)]T . From Eq. (3.1) we

differentiate and evaluate at s = 0 and solve,

φ′n(0) = −1 +
N∑
m=1

Amnφ
′
m(0) (3.26)

φ′(0) = −(I −AT )−1
−→
1 . (3.27)
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Similarly, by differentiating twice and evaluating at 0 we find

(I −AT )φ′′(0) = −φ′(0) + φ′(0)Aφ′(0)−A(2)φ′(0) (3.28)

where A(2) is a matrix whose entries are the entries of A squared elementwise. Using these two formulas

we may numerically find the mean and variance of the distribution of avalanche size.

3.2 Inverting The Laplace Transform

The asymptotic form for the distribution of the sizes of avalanches starting at node n, pn(x), can be

obtained from the asymptotic form of gn(s) as s → 0. Therefore, we study Eq. (3.8) by assuming gn(s)

is small. In order to obtain an analytic expression for the distribution of sizes we assume, in addition, that

the network is close to critical, (λD − 1)� 1. Taking logarithms in Eq. (3.8) and using the approximation

ln(1 + g) ≈ g − g2/2 we obtain

gn(s)− 1

2
gn(s)2 = −s+

∑
m

Hmngm(s)− 1

2

∑
m

H2
mng

2
m(s). (3.29)

As s→ 0 and gn → 0, the leading order terms are gn(s) = −s+
∑

mHmngm(s), or (HT−I)g = s1,

where g = [g1, g2, . . . , gN ]T and 1 = [1, 1, . . . , 1]T . When |λD − 1| � 1, and λD is well separated

from the rest of the spectrum of H as is the case in networks without strong community structure [29],

g = s(HT − I)−11 ∼ v, where v is the left Perron-Frobenius eigenvalue of H . Since v is independent

of s, the solution up to first order is approximately gn(s) = g(s)vn/〈v〉, where the term 〈v〉 = 1
N

∑N
n=1 vn

is included to make g(s) independent of the normalization of v. For small s, and including the nonlinear

terms, we expect the solution of Eq. (3.29) to be close to the first-order solution, so we set

gn(s) = g(s)〈v〉−1vn + εn(s) (3.30)

where εn is a small unkown error term. Substituting Eq. (3.30) into Eq. (3.29), using HTv = λDv, and
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Figure 3.1: Histograms of avalanche sizes shown above for networks of N = 105 nodes with power law
degree distribution, exponent γ = 3.5 with Perron-Frobenius eigenvalues of λ = 0.9 (top left), λ = 1.0 (top
right) and λ = 1.1 (bottom) on a log-log scale. Data are the exact recorded histograms from a single simu-
lation of 106, 2 ·106, and 106 avalanches respectively from left to right. Dashed lines provide a reference for
the theoretical prediction x−3/2 exp(−x/x∗) described in Eqs. (3.37) and (3.38). Infinite size avalanches in
the supercritical case (bottom) are not represented in the data set. Agreement between theoretical prediction
and measurement is excellent despite finite sample size noise.
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neglecting terms of order εg we get

g(s)〈v〉−1vn + εn(s)− 1

2
g(s)2〈v〉−2v2n

= −s+ λg(s)〈v〉−1vn +
∑
m

Hmnεm(s)− g(s)2〈v〉−2 1

2

∑
m

H2
mnv

2
m. (3.31)

To eliminate the unknown error term εn, we multiply by the right eigenvector entry un of H and sum over

n. We use Hu = λDu and neglect (λ− 1)εn to get

g(s)〈v〉−1〈uv〉 − 1

2
g(s)2〈v〉−2〈uv2〉

= −s〈u〉+ λDg(s)〈v〉−1〈uv − g(s)2〈v〉−2 1

2N

∑
n

∑
m

unH
2
mnv

2
m, (3.32)

where 〈xy〉 ≡ 1
N

∑
n xnyn. Eq. (3.32) is a quadratic equation for g(s), ag2 + bg + c = 0, with

a =

∑
n

∑
m un(1−H2

mn)v2m
2N〈uv〉〈v〉

, (3.33)

b = (λD − 1), (3.34)

c = −s〈u〉〈v〉
〈uv〉

. (3.35)

Solving for g(s) and substituting back into gn(s) = φn(s) − 1 we find, choosing the root that guarantees

gn < 0,

φn(s) = 1 +
−(λD − 1)−

√
(λD − 1)2 + 4sa 〈u〉〈v〉〈uv〉

2a

vn
〈v〉

(3.36)

The moment generating function in Eq. (3.2) can be interpreted as the Laplace transform of the

distribution of sizes, if the sizes are approximated by a continuous variable. Taking the inverse Laplace

transform of φn(s) in Eq. (3.36) we obtain that for large x, the distribution of sizes pn(x) is approximately

given by

pn(x) ∝ x−3/2 exp(−x/x∗)vn, (3.37)
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where the characteristic size x∗ is given by

x∗ = 4a
〈v〉〈u〉
〈vu〉

(λD − 1)−2. (3.38)

The distribution of sizes is asymptotically an exponential times a power-law with exponent −3/2. In

the critical case, when λ = λD = 1, x∗ diverges and we recover a power law distribution with exponent

−3/2, which is the well known exponent for critical branching processes [4]. It is interesting to note that this

exponent, in our model, does not depend on the structure of the network, as opposed to related percolation

models where all nodes with the same degree are considered statistically equivalent [5]. Also note that the

quantity a in Eq. (3.38) depends implicitly on λD.

3.3 Numerical Verification

In Fig. 3.1 we compare histograms of avalanche sizes obtained from direct numerical simulations

(colored symbols) for λ = 0.9, 1.0, and 1.1 with our theoretical predictions described in the previous para-

graph (dashed lines). Note that, since our predictions allow for an unspecified proportionality constant, the

vertical position of the dashed lines was chosen arbitrarily. In general, we find excellent agreement between

the theoretical predictions of avalanche duration and size distributions with the histograms observed in ex-

periment. While the dashed lines in Fig. 3.1 are appealing to the eye, quantitative measures of agreement

between theory and experiment are shown in Fig. 3.3.

As a partial test of our theory for the distribution of avalanche sizes, the distribution is assumed

to be of the form x−3/2 exp(−x/x∗), and x∗ is estimated from the data, which is then compared with

our theoretical prediction in Eq. (3.38). Note that a stronger test, which we did not pursue, would be to

validate the model x−γ exp(−x/x∗) using statistical tests. Noting that since x∗ will diverge as λ→ 1, 1/x∗

was estimated via a nonlinear least-squares using Brent’s minimization on the cumulative histogram of the

avalanche size data. Since our theory describes only the asymptotic form of the distribution, this estimate

was performed only on the largest 10% of measured data [similar results were obtained using the largest

5%, 1% and 0.1% of data (not shown), but when using more than the largest 10% the minimizing x∗ value
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diverged, suggesting that we fit the power-law portion of data at the expense of the exponential tail]. Fig. 3.3

shows our theoretical prediction (solid red line) and the result of the numerical fit to the data (circles; the

lines are to aid the eye). As shown, agreement is quite good close to λD = 1 (see the inset of Fig. 3.3),

but less accurate for very subcritical or supercritical networks, which is consistent with the assumption that

|λD − 1| is a small quantity which was used in the derivation of Eq. (3.38).

Although Figs. 2.3 and 3.3 demonstrate agreement between theory and measurement for supercritical

networks, that analysis was restricted to finite avalanches. To complement this result, we compare the

predicted fraction of infinite avalanches with the measured fraction, for various values of λD. The quantity

bn in Eq. (2.3) is the fraction of avalanches originating at node n which will have finite duration and size. In

Fig. 2.1, we show the fraction of avalanches that decay in finite time, averaged over nodes, comparing theory

(solid line) with experiment (circles). The theoretical fraction of avalanches is calculated by numerically

solving equation Eq. (2.3) to find bn, n = 1 . . . , N , and then plotting
∑N

n=1 bn/N as a function of λ. The

numerical fraction of finite avalanches was calculated by simulating 106 avalanches, each one starting at a

random node (out of N = 105 total nodes). If an avalanche lasted more than 106 steps, we counted it as an

infinite avalanche. Then, an estimate of bn, b̂n, was calculated as the fraction of finite avalanches starting

at node n. The symbols in Fig. 2.1 show
∑N

n=1 b̂n/N as a function of λ. We note that, although there are

relatively few avalanches per node, the large number of nodes averages out the errors incurred in estimating

individual bn from such a small sample. Agreement is excellent over the entire range of λ values tested.
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Figure 3.2: Testing the prediction that avalanche size x is distributed as x−3/2 exp (−x/x∗), we compare the
theoretical prediction of x∗ (red solid line) with x∗ estimated via regression on the largest 10% of avalanches
from numerical simulations (black points, dashed line). Inset, identical data on a magnified domain around
λ = 1. Agreement is excellent for λ near 1, and decreasingly accurate for much larger or smaller λ.



43

Figure 3.3: From [11], Data is taken on size of cortical avalanches from the brain of a rat. The left graph
shows the PDF of avalanche sizes while the right one shows the CDF. The black line is for a typical rat
cortex, the blue line is measured from cells who have been treated with AP5/DNQX which is a drug that
enhances inhibition, and the red line is treated with PTX which is a drug that enhances excitation. These are
biologically analagous to critical (black), subcritical (blue), and supercritical (red) networks and their size
distributions.



Chapter 4

Discussion

We have presented an analysis of the asymptotic distributions of the duration and sizes of avalanches

in complex networks. This work is of interest in various applications, most notably neuroscience [11, 16, 18,

10] and the analysis of power-grid failure cascades [34]. While some of our results, such as the functional

forms for the distributions, are analogous to those found in classical Galton-Watson branching processes

[2] or in mean-field models [5], we emphasize the distinguishing aspects of our results: (i) We generalize

the criterion for criticality to λ = 1, which depends on the topology of the network in ways that previous

mean-field results do not capture; (ii) The parameters of the asymptotic distributions in the various regimes

are affected by the network topology, and our results allow us to predict how various factors (e.g., network

degree distributions, degree-degree correlations) affect these parameters [e.g., the parameter x∗ in Eq. (3.38)

or λD in Eq. (2.17)]. (iii) In contrast to previous studies, our results allow us to predict the statistics of

avalanches generated at a particular node. This might be of critical importance in certain applications where

the adjacency matrix is known or can be inferred (such as the power grid or the Autonomous System network

of the internet) since one can then allocate resources to prevent avalanches, if so desired, that start at the

nodes which tend to generate the largest avalanches. As shown in Fig. 2.4, the naive prediction that the

nodes with the largest out-degree generate the largest avalanches is not necessarily true when the networks

have nontrivial structure, such as degree-degree correlations.

In developing our theory, we made some assumptions which we now discuss. First, we assumed that

the network was locally tree-like. This allowed us to treat avalanches propagating to the neighbors of a

given node as independent of each other. While this is a good approximation for the networks we used, it is
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certainly not true in general. In particular, avalanches propagating separately from a given node might excite

the same node as they grow. The result is that the number of nodes that the avalanches excite in simulation

may be less than what the theory would predict. In running our simulations, we addressed this issue in two

ways: first, we kept track of the number of times two branches of the same avalanche simultaneously excited

the same node n, finding it to be an increasing function of avalanche size and Perron-Frobenius eigenvalue,

yet still negligible when compared to the total number of excitations. In addition, each time such an event

occurred, we separately generated an avalanche starting from the doubly excited node n and corrected both

the size and duration of the original avalanche by incorporating these additional avalanches. We found that

doing this had no appreciable effect on the measured distributions. All figures shown in this manuscript are

produced from simulation data without the additional compensating avalanches included. This, and the fact

that the numerical simulations are described well by the theory, suggest that the interaction of avalanches

propagating to different neighbor nodes can be safely neglected in the networks studied. The performance

of our theory in networks that are not locally tree-like, such as networks with a high degree of clustering, is

left for future research. Another approximation we used is that the Perron-Frobenius eigenvalue λ is well

separated from the rest of the spectrum. This is a good approximation in networks without well defined

communities, but can break down in networks with strong community structure [29].

Finally, we note that our results show that the experimental signatures of criticality in neural systems

(characterized by a power-law distribution of avalanche sizes and durations with exponents −3/2 and −2,

respectively [18, 11, 10, 16]) are robust to complex underlying network topologies.
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[30] Paul Erdős and Tibor Gallai. Graphs with prescribed degrees of vertices. Matematikai Lapok, 11:166–
177, 1960.

[31] Tom Britton, Maria Deijfen, and Anders Martin-Löf. Generating simple random graphs with prescribed
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