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A Hamiltonian formulation of surface water wave dynamics offers several useful fea-

tures for numerical simulations of coastal waves, including reduction of the fully three-

dimensional fluid problem to free surface variables and conservation of an approximated

total energy. The spectral linear version of the Hamiltonian dynamical equations captures

wavelength dispersion using a pseudodifferential operator, while higher-order approxima-

tions of the total energy lead to dynamical equations that incorporate nonlinear effects

in terms of this operator. These models, derived for constant depth, are extended for

use with varying-depth bathymetries by replacing the pseudodifferential operator with

a symmetrized combination of several such operators evaluated at selected depths from

the bathymetry at hand. This new operator is constructed so as to minimize its error

from the true local-depth operator over the entire bathymetry, with priority given to

wavelengths for which the most accurate modeling is desired. The resulting equations

are implemented using a Fourier pseudospectral method, with damping regions used to

manage the inherent periodic boundary conditions, source terms used to generate waves

within the computational domain, and additional damping terms used to roughly simulate

reflective interfaces. The implementation is validated by comparison to data from several

benchmark experiments: a focusing wave group over uniform depth, irregular waves over

a sloping bathymetry, and monochromatic waves over a challenging shoal bathymetry.

The results demonstrate the promising ability of this approach to accurately simulate

dispersive and bathymetric effects, and to achieve improved accuracy through the use

of nonlinear terms. These improvements in accuracy, however, appear to be limited by

the increasing degree of filtration of high-wavenumber modes required to control alias-

ing in models of increasing order. Finally, the implementation is demonstrated through

simulations of realistic wave scenarios over actual coastal bathymetries.

iii



“Lautan maha dalam

mukul dentur selama

nguji tenaga pematang kita”

– Chairil Anwar

for my Mom and Dad



Acknowledgements

My involvement in this project began with an inquiry to Prof. E. ”Brenny” van

Groesen and Dr. Andonowati about the research being conducted at their organization,

LabMath-Indonesia. Our continued correspondence led to my year-long research assis-

tantship at LMI, supported by a 2011-2012 Boren Fellowship from the US Department of

Defense, during which the current research was undertaken. I am deeply grateful to Pak

Brenny for taking me on as a student. As a mentor, he has given me an ideal balance of

guidance and independence. Thanks also go to Bu Aan for her warm encouragement and

for the inspiring environment she has created at Lawangwangi, home of LMI. For their

professional and personal support, I thank my friends at LMI/Lawangwangi, including

Didit Adytia, Dian Astuti, Ruddy Kurnia, Lie She Liam, Mira Melania, Meirita Ramd-

hani, Amanda Rudiawan, Andreas Parama Wijaya, and Mourice Woran. My colleagues

at Institut Teknologi Bandung, especially Sri Redjeki Pudjaprasetya and her students,

helped to broaden my perspective towards the research. For financial and logistical sup-

port of my project, I thank the National Security Education Program and the Institute

of International Education. At the University of Colorado at Boulder, I would like to

thank Bengt Fornberg, Natasha Flyer, and the Radial Basis Functions group. Harvey

Segur provided some much-appreciated insight during the final stages of my thesis prepa-

ration. I am indebted to John Pellegrino for giving me invaluable research experience

and perspective. Discussions with fellow students Yessa Hargono and Sarah Hart helped

make my challenging times at CU much more navigable. Without the encouragement of

Wichita State University professors Elizabeth Behrman, Tom DeLillo, Jason Ferguson,

James C. Ho, and Thalia Jeffres, I may never have found my way into this line of work.

Finally, for everything, my deepest gratitude and love goes to my family, Kendra Midkiff,

Kerry VanBurkleo, and my parents Ron and Kathy Schauf.

v



Contents

I INTRODUCTION 1

Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Arrangement of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

II DYNAMICAL EQUATIONS 5

Hamiltonian structure of surface water wave equations . . . . . . . . . . . . . 5

Derivation of dynamical equations for constant depth . . . . . . . . . . . . . . 7

Computation of the Hamiltonian . . . . . . . . . . . . . . . . . . . . . . 7

Linear Hamiltonian model . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Higher-order models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Extension to varying-depth bathymetries . . . . . . . . . . . . . . . . . . . . . 15

Construction of variable-depth combination operator . . . . . . . . . . . 15

Selection of representative-depth operator coefficients . . . . . . . . . . . 16

Symmetrization of the variable-depth operator . . . . . . . . . . . . . . . 18

III PSEUDOSPECTRAL IMPLEMENTATION 21

Advantages and challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Damping regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Embedded reflective interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Wave generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Dealiasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

IV VALIDATION 28

Investigations of Hamiltonian conservation . . . . . . . . . . . . . . . . . . . . 28

vi



Initial value problem over uniform depth . . . . . . . . . . . . . . . . . . 28

Initial value problem over varying-depth bathymetry . . . . . . . . . . . 30

Benchmark simulations in 1HD . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1HD simulation of waves over constant depth . . . . . . . . . . . . . . . 32

1HD simulation of waves over sloping bottom . . . . . . . . . . . . . . . 38

Benchmark simulation in 2HD: Monochromatic waves over a shoal . . . . . . . 45

V SIMULATIONS OF WAVES OVER COASTAL BATHYMETRIES 53

Tsunami off southwest Java, Indonesia . . . . . . . . . . . . . . . . . . . . . . 53

Wind waves at Pelabuhan Ratu, West Java, Indonesia . . . . . . . . . . . . . 55

VI CONCLUSIONS 62

Bibliography 65

vii



List of Tables

IV.1 Correlations of simulation results with measurements for focusing wave

group experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

IV.2 Correlations of simulation results with measurements for sloping bathymetry

experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

viii



List of Figures

IV.1 Initial free surface condition for investigations of Hamiltonian conservation 28

IV.2 Comparison of Order 1 and Order 2 results over uniform depth at t = 40 s 29

IV.3 Evolution of Hamiltonian for the initial value problem over uniform depth 29

IV.4 Damping region characteristic function χD(x) for simulation of initial

value problem over uniform depth with damping . . . . . . . . . . . . . 30

IV.5 Bathymetry for initial value problem over varying depth . . . . . . . . . 31

IV.6 Evolution of Hamiltonian for the initial value problem over varying depth 31

IV.7 Comparison of Order 1 and Order 2 simulation results over varying depth

at t = 40 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

IV.8 Measurement positions and characteristic functions for focusing wave sim-

ulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

IV.9 Measured signal at position W1 from focusing wave experiment . . . . . 34

IV.10 Frequency spectrum of measured signal at position W1 from focusing

wave experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

IV.11 Free surface elevations at t = 108 s and max./min. wave heights for Order

1 focusing wave group simulation . . . . . . . . . . . . . . . . . . . . . . 35

IV.12 Comparison of measured and simulated signals at position W4 from fo-

cusing wave simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

IV.13 Comparison of measured and simulated spectra at position W4 from fo-

cusing wave simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

IV.14 Evolution of Order 1 Hamiltonian for Order 1 simulation of focusing wave 38

IV.15 Bathymetry and measurement positions for sloping bathymetry experi-

ment and simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

ix



IV.16 Frequency spectrum of measured signal at position W1 from sloping bathymetry

experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

IV.17 Damping region characteristic function χD(x) for sloping bathymetry sim-

ulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

IV.18 Representative-depth operators for sloping bathymetry simulation . . . . 40

IV.19 Weight function w(h, k) for sloping bathymetry simulation . . . . . . . . 41

IV.20 Representative-depth operator coefficients for sloping bathymetry simu-

lation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

IV.21 Error D̂≈(h, k) − D̂(h, k) (m−1) of variable-depth operator for sloping

bathymetry simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

IV.22 Comparison of measured and simulated wave signals at W9 from sloping

bathymetry simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

IV.23 Comparison of measured and simulated wave signals at W13 from sloping

bathymetry simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

IV.24 Comparison of measured and simulated wave signals at W15 from sloping

bathymetry simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

IV.25 Comparison of measured and simulated wave signals at W17 from sloping

bathymetry simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

IV.26 Depths (m) of the experimental bathymetry for 2HD shoal simulation . 45

IV.27 Depths (m) of the extended computational bathymetry for 2HD shoal

simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

IV.28 Magnitude of χD(x, y) for 2HD simulation and line source position (in

white) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

IV.29 Representative-depth operators for 2HD shoal simulation . . . . . . . . 47

IV.30 (a) Weight function and (b) errors (m−1) on D̂≈(h, k) for 2HD shoal

simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

IV.31 Representative-depth operators coefficients for 2HD shoal simulation . . 48

IV.32 Free surface elevations (m) at t = 45 s with superimposed “lines of equal

phase” by Berkhoff et al. [4] (solid lines) and shoal outline (dotted line) 49

x



IV.33 Maximum normalized wave heights A
A0

from 2HD shoal simulation with

superimposed cross sections . . . . . . . . . . . . . . . . . . . . . . . . . 49

IV.34 Comparison of maximum normalized wave heights (red) from Order 1

simulation with measurements (blue) from 2HD shoal experiment . . . . 50

IV.35 Comparison of maximum normalized wave heights (red) from Order 2

simulation with measurements (blue) from 2HD shoal experiment . . . . 51

IV.36 Comparison of maximum normalized wave heights (red) from Variational

Boussinesq Model simulation with measurements (blue) from 2HD shoal

experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

V.1 Depths (m) of bathymetry for southwest Java tsunami simulation . . . . 54

V.2 (a) Weight function and (b) errors (m−1) on D̂≈(h, k) for southwest Java

tsunami simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

V.3 Free surface heights (m) from Order 1 simulation of southwest Java tsunami

simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

V.4 Maximum free surface heights (m) from Order 1 simulation of southwest

Java tsunami over t = 0 to 25 minutes . . . . . . . . . . . . . . . . . . . 57

V.5 Maximum free surface heights (m) from simulation of southwest Java

tsunami from Adytia [2] over t = 0 to 60 minutes . . . . . . . . . . . . . 57

V.6 Depths (m) of bathymetry for Pelabuhan Ratu simulation . . . . . . . . 58

V.7 (a) Weight function and (b) errors (m−1) on D̂≈(h, k) for Pelabuhan Ratu

simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

V.8 Free surface elevations (m) at t = 170 s from Order 1 simulation of

Pelabuhan Ratu wind waves . . . . . . . . . . . . . . . . . . . . . . . . 59

V.9 Free surface elevations (m) at t = 340 s from Order 1 simulation of

Pelabuhan Ratu wind waves . . . . . . . . . . . . . . . . . . . . . . . . 60

V.10 Maximum free surface elevations from t = 0 to 350 s from Order 1 Hamil-

tonian simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

V.11 Significant wave heights (m) computed in SWAN simulation over Pelabuhan

Ratu bathymetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xi



CHAPTER I

INTRODUCTION

Motivation

For many applications that benefit from an understanding of water waves, numerical

simulations can provide a powerful tool. Simulations of typical ocean waves occuring in

a certain area can provide valuable information to help guide routine maritime shipping

and fishing activities or coastal and offshore engineering projects. Simulations of extreme

wave scenarios such as tsunamis can help scientists anticipate the potential effects to be

expected should a similar event occur; risks can be assessed and especially vulnerable

areas can be identified in advance so that the negative impacts of such disasters may be

minimized.

While this sort of general, prior understanding of local wave behaviors is useful, in-

creasingly sophisticated applications demand fast, accurate wave forecasts based on data

supplied in real time. In many sensitive maritime operations such as the installation

of offshore wind turbines, technicians must attempt to time certain maneuvers to coin-

cide with relatively calm wave conditions. Numerical predictions of wave conditions in

the immediate future, based on real-time buoy or radar measurements of surface waves,

could greatly aid in these efforts. Similarly, if forecasters are to provide reliable, localized

extreme wave warnings based on remotely-sensed wave height data, they need robust

computational techniques that can adequately simulate the wave behaviors of interest in

faster-than-physical time.

Numerical schemes that approach the problem in its most general forms—solving

the full Euler or Navier-Stokes equations throughout the entire three-dimensional fluid
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interior—can require computation times running many orders of magnitude greater than

physical simulation times, rendering them impractical for these kinds of applications. On

the other hand, many of the commonly-used simplifications of these models are inade-

quately robust for realistic coastal wave simulations, failing to correctly capture one or

more important phenomena such as dispersion, nonlinearity, or bathymetric effects. Many

applications, such as those described above, benefit from the development of approaches

falling between these two extremes.

Objective

This thesis investigates the potential of Hamiltonian dynamical equations, imple-

mented for coastal wave simulation using a pseudospectral method, to address the need

for methods that provide a balance of computational efficiency and accurate modeling of

important phenomena such as dispersion, nonlinearity, and bathymetric effects. Surface

wave models that approximately encode internal fluid motions in terms of variables at

the free surface (known as Boussinesq models) can provide alternatives to more compu-

tationally expensive, fully three-dimensional schemes. When expressed in terms of the

appropriate variables at the free surface, the Euler equations for inviscid, irrotational,

incompressible fluids exhibit a Hamiltonian structure. In addition to an elegant theoret-

ical formalism, this Hamiltonian structure offers practical advantages: it can be used to

accomplish a reduction of the problem’s dimensionality—and thus of the magnitude of

the computational task—in a way that guarantees that an approximated total energy is

conserved. This conservative property is advantageous both in light of both physical and

numerical considerations.

By adjusting the order of this energy approximation, the corresponding Hamiltonian

dynamical equations can be derived to a chosen order, providing a useful versatility; the

order of nonlinearity providing the most appropriate balance of accuracy and computa-

tional speed can be chosen to suit the simulation at hand. The linear Hamiltonian model

derived for uniform-depth bathymetries captures wavelength dispersion using a pseudod-
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ifferential operator. Higher-order expansions of the energy expression yield nonlinear

terms that can be computed in terms of this operator. While direct, analytical incorpo-

ration of general bathymetric variations into this formulation is not straightforward, more

numerically-based approaches can be used to model effects of varying-depth bathymetries

while still retaining some of the useful simplicity of the uniform-depth model. Despite the

decidedly “numerical” character of such an approach, its details can perhaps nonetheless

be tuned so as to respect physics as well as possible in some sense. If so, a pseudospectral

implementation of the Hamiltonian formulation of surface wave dynamics could repre-

sent an efficient, robust scheme for accurate simulations of dispersion, nonlinearity, and

bathymetric effects in coastal waves.

In light of these promising characteristics, this thesis aims to validate a pseudospectral

implementation of Hamiltonian surface wave equations. By simulating several benchmark

cases, the implementation’s ability to simulate the wave phenomena of interest is tested.

Finally, this thesis aims to demonstrate the applicability of the approach through simu-

lations of realistic coastal wave scenarios.

Arrangement of the Thesis

Chapter I introduces the motivations, objective, and arrangement of the thesis.

Chapter II discusses the Hamiltonian formulation of surface water wave dynamics and

describes the derivation of linear and higher-order dynamical equations for waves over

uniform-depth in terms of a pseudodifferential operator. The result is then extended

to handle bathymetries of varying depth through the construction of a symmetrized

variable-depth operator as a linear combination of multiple constant-depth operators,

each evaluated at a representative depth from the bathymetry at hand.

Chapter III addresses the implementation of these dynamical equations using a pseu-

dospectral method. Advantages and challenges of this method for coastal wave simulation

are discussed. Details regarding the treatment of boundary conditions, damping regions,

reflective interfaces, wave generation, and dealiasing within the implementation are dis-
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cussed.

Chapter IV presents results from several benchmark simulations to validate a code that

implements the ideas discussed in Chapters II and III. The ability of the implementation

to conserve the approximate total energy is investigated briefly. Next, results of several

benchmark case simulations are compared to experimental data. Simulations in one

horizontal dimension (1HD) of a focusing wave group over a uniform-depth tank and

irregular waves over a sloping bathymetry test the method’s ability to accurately capture

wavelength dispersion and bathymetric effects. Simulation of waves propagating over a

shoal in two horizontal dimensions (2HD) tests its performance in simulating refraction

and diffraction over the types of challenging bathymetries encountered in coastal waters.

In Chapter V, the approach is used to simulate realistic coastal wave scenarios using

bathymetry data from actual coastal locations. First, a tsunami occurring off the coast

of southwest Java, Indonesia is simulated as an initial value problem. The code is then

used to simulate wind-type waves approaching the coast of Pelabuhan Ratu in West Java,

Indonesia.

In Chapter VI, some final conclusions are offered.
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CHAPTER II

DYNAMICAL EQUATIONS

Hamiltonian structure of surface water wave equations

The dynamics of inviscid fluid flow are described in their most general form by the

Euler equations. In the case of an irrotational fluid—a typical assumption in the study of

surface waves, and assumed to be a reasonable approximation for most of the applications

to be addressed here—admits description of the fluids velocity field as the gradient of a

potential

u = ∇3Φ. (II.1)

The further assumption of incompressibility, that is, zero divergence of the velocity field,

implies that the velocity potential satisfies the Laplace equation

div u = ∇3 · (∇3Φ) = ∇2
3Φ. (II.2)

So, for an inviscid, incompressible, irrotational fluid the Euler equations reduce to the

Laplace equation in the interior,

∇2
3Φ = 0 for − h(x) < z < η(x), (II.3)

along with two time-dependent conditions on the free surface:

ηt +∇Φ · ∇η = Φz at z = η(x, t), (II.4)

Φt +
1

2
|∇3Φ|2 + gη = 0 at z = η(x, t). (II.5)

The kinematic boundary condition (II.4) is an expression of zero fluid flow across the

free surface, and the dynamic boundary condition (II.5) describes the balance of normal
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stresses across the free surface when surface tension is negligibly small. The imperme-

ability of the bottom boundary is given by

Φz +∇Φ · ∇h(x) = 0. (II.6)

In the Hamiltonian formulation of mechanics, a quantity H, typically defined as the

sum of potential energy P and kinetic energy K of a system, is expressed in terms of

canonical variables known as generalized coordinates q and generalized momenta p:

H(q,p) = P (q,p) +K(q,p). (II.7)

A dynamical system is Hamiltonian if the dynamical equations for these canonical vari-

ables satisfy 
dq
dt

= ∂H
∂p

dp
dt

= −∂H
∂q

. (II.8)

This structure guarantees that the Hamiltonian function H is conserved in time, since

dH

dt
=
∂H

∂q

dq

dt
+
∂H

∂p

dp

dt
= −dp

dt

dq

dt
+

dq

dt

dp

dt
= 0. (II.9)

The expression of a physical system in terms of a Hamiltonian can provide deep insight

into its underlying mathematical structure, while also guaranteeing useful stability prop-

erties and the applicability of certain numerical schemes in simulations of the system.

The Hamiltonian structure underlying the surface water wave problem (II.2)–(II.6)

was initially investigated by Zakharov [15], Luke [12], Broer [5], and others. If free surface

height η(x, t) and free surface velocity potential

φ(x, t) ≡ Φ(x, z = η(x, t), t) (II.10)

are identified as canonical variables, then for the Hamiltonian function H, defined as

usual as the sum of potential and kinetic energies

H(φ, η) = P (φ, η) +K(φ, η), (II.11)

it can be shown that the dynamic boundary conditions(II.4) and (II.5) are equivalent to

the Hamilton’s equations 
∂tη = δφH

∂tφ = −δηH
, (II.12)
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generalized here from (II.8) for continuum canonical variables φ(x) and η(x) through

the use of variational derivatives. In this way, the underlying Hamiltonian structure of

the surface water wave problem (II.2)–(II.6) is revealed. While, historically, this new

perspective represented an important theoretical development in the mathematical study

of water waves, it also suggests a practical means for deriving useful wave models: given

an expression H(φ, η) approximating the total energy to some desired order of accuracy,

Hamilton’s equations (II.12) can be used to derive corresponding dynamical equations

for φ and η that are guaranteed to conserve H in time.

Derivation of dynamical equations for constant depth

Computation of the Hamiltonian

In expressing the Hamiltonian in terms of the free surface variables, computation of

potential energy term is straightforward (integrals in horizontal dimensions are assumed

to extend from −∞ to +∞):

P =

∫
dP =

∫ (∫ η(x)

−h(x)

gzdz

)
dx =

∫ (
1

2
gη(x)2 − 1

2
gh(x)2

)
dx. (II.13)

For cases with uniform depth h, the constant lower boundary term can be discarded

without affecting derivatives of the Hamiltonian, and so we have potential energy term

P =
1

2

∫
gη(x)2dx (II.14)

expressed exactly in terms of η.

Obtaining a simple, explicit expression of kinetic energy

K =

∫
dK =

1

2

∫ (∫ η(x)

−h(x)

|u(x, z)|2dz

)
dx (II.15)

in terms of η and φ, however, is not so straightforward, requiring some approximation.

Using vector identities and the Laplace equation (II.2), the integrand can be expressed

7



as a divergence:

K =
1

2

∫ (∫
|u(x, z)|2 dz

)
dx

=
1

2

∫ (∫
[∇3Φ · ∇3Φ] dz

)
dx

=
1

2

∫ (∫
[∇3 · (Φ∇3Φ)−∇2

3Φ] dz

)
dx

=
1

2

∫ (∫
∇3 · (Φ∇3Φ) dz

)
dx. (II.16)

By applying the divergence theorem, then, the kinetic energy throughout the fluid interior

can be expressed as an integral over the free surface S:

K =
1

2

∫ (∫
∇3 · (Φ∇3Φ) dz

)
dx

=
1

2

∫
S

[(Φ∇3Φ) · n̂]z=η(x)dS

=
1

2

∫
φ(x)[∇3Φ · (ẑ−∇η(x))]z=ηdx. (II.17)

The task of expressing the Hamiltonian H(φ, η) now amounts to approximating the free

surface normal velocity

[∇3Φ · (ẑ−∇η(x))]z=η (II.18)

in terms of free surface variables η and φ. The order of this approximation will determine

the order of accuracy of the resulting dynamical equations.

Linear Hamiltonian model

First, we discuss the derivation a linear model which leads naturally to a spectral

formulation which, in the next section, will be expanded to higher-orders. The derivation

that follows closely resembles that of Craig and Sulem [7]. Spectral formulations of related

fluid dynamics problems have been explored in other work such as that of Ablowitz and

Haut [1].

For a fluid with uniform bottom depth h, if deviations of the free surface η from its

undisturbed elevation z = 0 are considered to be negligibly small, the role of free surface

velocity potential φ given in (II.10) is assumed by

φ0(x) ≡ Φ(x, z = 0) (II.19)
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and the bottom boundary condition (II.6) reduces to

Φz(x, z = −h) = 0. (II.20)

The interior velocity potential Φ is thus that of a uniform-depth fluid layer.

Separation of variables on (II.2) with boundary conditions (II.19) and (II.20) yields a

general solution of the form

Φ(x, z) =
∑
k

φ0,k
cosh(k(z + h))

cosh(kh)
(II.21)

where

k = |k| = |kxx̂ + kyŷ| (II.22)

are the magnitudes of wavenumbers for plane waves modes propagating in the unbounded

horizontal plane. Given this explicit expression for Φ, free surface normal velocity (II.18)

is approximated as

[∇3Φ · (ẑ−∇η(x))]z=η ≈ [Φz]z=0

=
∑
k

k sinh(k(0 + h))

cosh(kh)
φ0,ke

(k·x−ωt)

=
∑
k

k tanh(kh)φ0,ke
(k·x−ωt). (II.23)

where φ0,k are the amplitudes of plane waves components of φ0(x) with wavenumber k.

Using the equivalence of x- and k-space inner products, the corresponding kinetic energy

approximation is

K2(φ) =
1

2

∫
φ(x)

[∑
k

k tanh(kh)φ0,ke
(k·x−ωt)

]
dx

=
∑
k

(
1

2

∫
φ̂(k)[k tanh(kh)φ̂(k)]dk

)
(II.24)

where φ̂(k) is the spatial Fourier transform of φ(x) and the subscript on K2 indicates the

order of the integrand in η and φ. Introducing a pseudodifferential operator D, defined

in terms of its symbol such that

D̂φ(x) ≡ D̂(k)φ̂(k) = k tanh(kh)φ̂(k), (II.25)

9



kinetic energy can be expressed in physical space as

K2(φ) =
1

2

∫
φ(x) (Dφ(x)) dx. (II.26)

The resulting approximate Hamiltonian,

H2(φ, η) = P (η) +K2(φ) =
1

2

∫ [
gη2 + φ(Dφ)

]
dx, (II.27)

can be used to determine the corresponding dynamical equations by computing variational

derivatives δφH2 and δηH2 according to (II.12).

These variational derivatives are computed by finding the first-order changes in the

Hamiltonian associated with small perturbations to the variable in question:

〈δφH2, u〉 = lim
ε→0

H2 (φ+ εu, η)−H2 (φ, η)

ε

= lim
ε→0

1

ε

[
1

2

∫
(φ+ εu)D (φ+ εu) dx− 1

2

∫
φDφdx

]
=

1

2

∫
(φDu+ uDφ) dx =

1

2
[〈φ,Du〉+ 〈u,Dφ〉]

=
1

2
[2〈Dφ, u〉] = 〈Dφ, u〉, (II.28)

so that

δφH2 = Dφ. (II.29)

Similarly,

〈δηH2, u〉 = lim
ε→0

H2 (φ, η + εu)−H2 (φ, η)

ε

= lim
ε→0

1

ε

[
1

2

∫
g (η + εu)2 dx− 1

2

∫
gη2dx

]
=

1

2

∫
(2gη)udx = 〈gη, u〉, (II.30)

yielding

δηH2 = gη. (II.31)

Thus, by Hamilton’s equations, (II.12), the Hamilton’s equations corresponding to the

Hamiltonian approximation (II.27) are
∂tη = Dφ

∂tφ = −gη
, (II.32)
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and are linear in η and φ.

As is apparent from the second-order differential equations equivalent to the system

(II.32), for example (
∂2
t + gD

)
η = 0, (II.33)

the system is satisfied by plane wave modes

η(x, t) = η0,ke
i
(
k·x−
√
gD̂(k,h)t

)
, (II.34)

revealing the familiar dispersion relation for linear surface waves,

Ω(k) =

√
gD̂(k, h) =

√
gk tanh(kh). (II.35)

Thus the operator D is related to the linear dispersion relation Ω(k) by

D̂(k) =
1

g
Ω2(k). (II.36)

Higher-order models

To derive higher-order dynamical equations consistent with the Hamiltonian structure,

the Hamiltonian (II.11) is expanded to higher order using improved approximations of free

surface normal velocity (II.18). Relaxing the assumption of negligibly small deviations

of η from z = 0, free surface normal velocity is given by

[∇3Φ · (ẑ−∇η(x))]η(x) = Φz (x, η(x))− ηxΦx (x, η(x))− ηyΦy (x, η(x)) . (II.37)

Since

φx(x) =

[
Φx

dx

dx
+ Φy

dy

dx
+ Φz

dz

dx

]
z=η(x)

= Φx (x, η(x)) + ηxΦz (x, η(x)) , (II.38)

and thus

Φx (x, η(x)) = φx(x)− ηxΦ (x, η(x)) (II.39)

and, similarly,

Φy (x, η(x)) = φy(x)− ηyΦ (x, η(x)) , (II.40)
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free surface normal velocity is given by

[∇3Φ · (ẑ−∇η(x))]z=η = Φz − ηx (φx − ηxΦz)− ηy (φy − ηyΦz)

=
(
1 + η2

x + η2
y

)
Φz (x, η(x))− ηxφx − ηxφy (II.41)

with everything except the free surface vertical velocity Φz (x, η(x)) expressed in terms

of η and φ.

To express Φz (x, η(x)) in terms of free surface variables, we expand about its values

at z = 0. The operator D defined in (II.25) is used, as previously in the linear model,

to compute the vertical derivative Φz(x, 0), while Laplace’s equation (II.2) allows the

higher-order vertical derivatives appearing in the expansion to be expressed in terms of

horizontal derivatives of the velocity potential φ0 (II.19):

Φzz(x, 0) = − [Φxx(x, 0) + Φyy(x, 0)]

= − [∂xx + ∂yy]φ0(x) = −∇2φ0(x). (II.42)

So, expanding about z = 0,

Φz (η) = Φz (0) + η [Φzz(0)] + 1
2!η

2 [Φzzz(0)] + 1
3!η

3 [Φzzzz(0)] + . . .

= Dφ0 − η∇2φ0 − 1
2η

2∇2Dφ0 + 1
6η

3
(
∇2
)2
φ0 + . . .

=
[

D − η∇2 − 1
2η

2∇2D + 1
6η

2
(
∇2
)2

+ . . .
]
φ0.

(II.43)

To relate the factor φ0 to the true free surface variable φ, we similarly expand in η around

z = 0:

φ = Φ(η) = Φ(0) + η [Φz(0)] + 1
2!η

2 [Φzz(0)] + 1
3!η

3 [Φzzz(0)] + · · ·

= φ0 + ηDφ0 − 1
2η

2∇2φ0 − 1
3!η

3∇2Dφ0 + · · ·

=
(

1 + ηD − 1
2η

2∇2 − 1
6η

3∇2D + · · ·
)
φ0.

(II.44)

Using the relation

(1 + A)−1 = 1− A+ A2 − A3 + . . . , (II.45)
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the expansion (II.44) can be inverted to express φ0 in terms of η and φ:

φ0 =

(
1 +

[
ηD − 1

2
η2∇2 − 1

6
η3∇2D + . . .

])−1

φ

=

(
1−

[
ηD − 1

2
η2∇2 − 1

6
η2∇2D + . . .

]
+

[
ηD − 1

2
η2∇2 + . . .

]2

− [ηD + . . .]3 + . . .

)
φ

=

(
1− ηD +

1

2
η2∇2 + ηDηD +

1

6
η3∇2D − 1

2
η2∇2ηD − 1

2
ηDη2∇2 − ηDηDηD + . . .

)
φ.

(II.46)

Finally, inserting the expression (II.46) for φ0 into the expansion (II.43), Φz can be

expressed explicitly in terms of φ and η as

Φz = W0 +W1 +W2 +W3 + . . . (II.47)

where, having grouped terms by the number of factors of η appearing within,

W0 = Dφ, (II.48)

W1 =
[
−η∇2 −DηD

]
φ, (II.49)

W2 =

[
DηDηD + η∇2ηD +

1

2
Dη2∇2 − 1

2
η2∇2D

]
φ, (II.50)

and

W3 =

[
1

6
η3
(
∇2
)2

+
1

2
η2∇2DηD − 1

2
η∇2η2∇2 − η∇2ηDηD

−1

2
Dη2∇2ηD − 1

2
DηDη2∇2 +

1

6
Dη3∇2D −DηDηDηD

]
φ. (II.51)

Substituting the expansion for Φz (II.47) into the expression of normal velocity (II.41)

and then into kinetic energy integral (II.17) gives kinetic energy

K =
1

2

∫
φ
[(

1 + η2
x + η2

y

)
(W0 +W1 +W2 +W3 + ...)− ηxφx − ηyφy

]
dx. (II.52)

Again grouping terms of common order in η and φ, we write

K = K2 +K3 +K4 +K5 + · (II.53)

where

K2 =
1

2

∫
φW0dx, (II.54)
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K3 =
1

2

∫
φ [W1 − ηxφx − ηyφy] dx, (II.55)

K4 =
1

2

∫
φ
[
W2 +

(
η2
x + η2

y

)
W0

]
dx, (II.56)

and

K5 =
1

2

∫
φ
[
W3 +

(
η2
x + η2

y

)
W1

]
dx. (II.57)

Variational derivatives of the Hamiltonian

H = P +K = P + (K2 +K3 +K4 +K5 + · · · ) , (II.58)

computed according to (II.12) as were (II.28) and (II.30), then give the dynamical equa-

tions 
∂tη = Dφ+Nη,2 +Nη,3 +Nη,4 + . . .

∂tφ = −gη −Nφ,2 −Nφ,3 −Nφ,4 − . . .
(II.59)

with second-order nonlinear terms

Nη,2 = [W1 − ηxφx − ηyφy] , (II.60)

Nφ,2 =

[
1

2

(
φ2
x + φ2

y − (Dφ)2)] , (II.61)

third-order nonlinear terms

Nη,3 =
[
W2 +

(
η2
x + η2

y

)
W0

]
, (II.62)

Nφ,3 = [−W0W1] , (II.63)

and fourth-order nonlinear terms

Nη,4 =
[
W3 +

(
η2
x + η2

y

)
W1

]
, (II.64)

Nφ,4 =

[
−1

2

(
2W0W2 +W1W1 +

(
η2
x + η2

y

)
W1

)]
. (II.65)

Truncation of the Hamiltonian (II.58) leads to truncation of the dynamical equations

(II.59) at a corresponding order, with truncated dynamical equations conserving the

corresponding truncated Hamiltonian.
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Extension to varying-depth bathymetries

Construction of variable-depth combination operator

In previous sections, assumption of a uniform bottom depth h for the fluid layer led

to spectral dynamical equations involving a pseudodifferential operator (II.25) modeling

linear wavelength dispersion over a fixed depth, with higher-order terms then computed in

terms of this operator. In order to handle more general bathymetries while still retaining

this simple spectral formulation, a quasi-homogeneous assumption is invoked. That is,

wave dynamics around at some position x are assumed to be well-modeled by the uniform-

depth equations with local depth h(x). This seems especially reasonable when variations

in depth occur at large spatial scales relative to the waves of interest.

In the context of numerical schemes such as finite differences, which approximate

differential operators using local data values in physical space, quasi-homogenization

of the relevant operators might amount to simply substituting the local value of the

spatially-varying parameter into the operator stencil at each position. However, given

the inherently non-local, wavenumber-dependent nature of the operators used here, the

computational task becomes potentially unwieldy; although we may be interested in the

effects of an operator defined for parameter h(x) only in the immediate neighborhood of

x itself, computations involving the pseudodifferential operator inherently require com-

putation over the entire domain in wavenumber space. For a computational grid of N

nodes, calculation of the solution associated with each unique h(x) demands as many as

N times as many computations per time step than for the flat-bottom case, with resulting

increases in computational time of several orders of magnitude for typical grid sizes.

Alternatively, the operator can be computed for a limited number M < N of rep-

resentative depths hj and its action at intermediate depths approximated as a linear

combination of these results. That is, for a pseudodifferential operator L, a new variable-

depth combination operator is defined by

L≈(h)φ ≡
M∑
j=1

ρj(h)L(hj)φ. (II.66)
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The coefficients ρj(h) here could simply be partition of unity functions that geometri-

cally localize the influence of each uniform-depth operator. More restrictively, the h-

dependence of coefficients ρj(h) can be chosen such that some physically-meaningful

constraint is respected for the combination operator (II.66).

Selection of representative-depth operator coefficients

In their work with unidirectional waves van Groesen and van der Kroon [13] adapted

a constant-depth pseudodifferential operator L for use with varying bathymetries by

constructing such a combination operator using two representative depths: the minumum

depth hmin and maximum depth hmax of the bathymetry at hand:

L̂(h, k) ≡ ρ1(h)L̂(hmin, k) + ρ2(h)L̂(hmax, k). (II.67)

Coefficients for these two operators were computed by solving a system of two constraints

for each depth: first, they required that the composite operator should exactly satisfy

the dispersion relation at all depths for waves of some chosen single frequency ν,

L̂(h,K(ν, h)) ≡ ρ1(h)L̂(hmin, K(ν, h)) + ρ2(h)L̂(hmax, K(ν, h)), (II.68)

where K(ω, h) is the inverse of the dispersion relation ω = Ω(k, h), and second, that

intermediate-depth coefficients should be a partition of unity,

ρ1(h) + ρ2(h) = 1. (II.69)

This approach could perhaps be generalized to a basis of more than two representative-

depth operators by enforcing additional constraints, for example those involving related

quantities such as group velocity. However, the use of several simultaneous, exact restric-

tions at single values may lead to highly unphysical results for other frequencies.

And so, instead of strictly imposing multiple physical conditions at a single frequency,

we generalize upon the approach of van Groesen and van der Kroon [13] by choosing

coefficients to minimize an expression of overall error on the operator at each depth. For

each depth h, we approximate the true pseudodifferential operator L by a combination of

operators L̂j(k) = L̂(hj, k) as in (II.66). The sum of squared errors on the symbol of this
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composite operator, as evaluated at discrete wavenumbers k of interest and supplied with

some function w(h, k) assigning greater weight to wavenumbers of greater importance in

the simulation at hand, is then given by

E(h) =
kmax∑
k=kmin

w(h, k)
(
L̂≈(h, k)− L̂(h, k)

)2

=
1

2
ρ(h)TQρ(h)+fTρ(h)+

kmax∑
k=kmin

w(h, k)[L̂(h, k)]2,

(II.70)

where

ρ(h) =


ρ1(h)

...

ρM(h)

 , (II.71)

Q(h) = 2
kmax∑
k=kmin

w(h, k)


L̂1(k)2 · · · L̂1(k)L̂M(k)

...
. . .

...

L̂M(k)L̂1(k) · · · L̂M(k)2

 , (II.72)

and

f(h) = −2
kmax∑
k=kmin

w(h, k)L̂(h, k)


L̂1(k)

...

L̂M(k)

 . (II.73)

For each depth h, then, this expression of error is minimized for the optimizer ρ∗(h) of

the quadratic programming problem with objective function

J(h) =
1

2
ρTQρ + fTρ, (II.74)

expressing the error (II.70), but omitting terms not dependent on coefficients ρ.

The most appropriate choice of weight function w(h, k) will depend on the wavenum-

ber magnitudes k for which more accurate modeling is desired in a given case. For sig-

naling problems, where waves are generated according to some signal s(t) at some point

or line within the domain, a natural choice is to assign priority proportionally based on

the presence of corresponding modes in the spectrum of the influxed wave signal:

w(h, k) ∝ š(ω = Ω(k, h)), (II.75)

where š(ω) indicates the temporal Fourier transform. This can be seen as a generalization

of the strict requirement that the approximation holds exactly true at a single frequency
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ν as in (II.68), here represented by the special case

w(h, k) = δ(k −K(ν, h)) (II.76)

corresponding to a monochromatic signal s(t) with frequency ν. In some cases, initial

value problems may be approached somewhat similarly. For initial conditions where the

free surface height η(x, t = 0) is nearly zero everywhere except in the neighborhood of

some disturbance localized near some x0, the spatial Fourier transform can be converted

roughly to a frequency spectrum via the dispersion relation evaluated at local depth

h(x0). This spectrum can then used to define the weight function as was the frequency

spectrum š(ω) in (II.75).

Symmetrization of the variable-depth operator

The eigenvalues of an operator L are pure imaginary if and only if it is skew-symmetric,

satisfying

L∗ = −L. (II.77)

For first-order partial differential equations, this property is associated with unidirectional

propagation of wave modes without growth or decay. Omnidirectional wave equations

involve compositions of two such skew-symmetric unidirectional wave operators and are

thus symmetric, satisfying

(L∗)2 = L2. (II.78)

In this way, the symmetric property of the operator D (II.25) is associated with stable

propagation of wave modes without growth or decay. If, in the process of constructing

the variable-depth combination operator (II.66) from multiple symmetric operators, some

asymmetric part has been introduced, this can be discarded—and the desired symmetry

recovered—by extracting just its symmetric part

D≈,sym =
1

2
[D≈ +D∗≈] , (II.79)

for use in computations. The adjoint operator D∗≈ used here is the operator for which

〈D≈φ, ψ〉 = 〈φ,D∗≈ψ〉. (II.80)
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Starting with the left-hand side of (II.80),

〈D≈φ, ψ〉 =

∫
[D≈φ(x)]φ(x)dx =

∫ [∫
D̂≈φ̂(k)eikxdk

]
ψ(k)dx

=

∫ [∫ ( M∑
j=1

ρj(h(x))D̂j

)
φ̂(k)eikxdk

]
ψ(x)dx (II.81)

=
M∑
j=1

∫ [
ρj(h(x))

∫
D̂jφ̂e

ikxdk

]
ψ(x)dx

=
M∑
j=1

∫ (∫
D̂jφ(k)dk

)
ρj(h(x))ψ(x)dx

=
M∑
j=1

〈Djφ, ρj(h(x))ψ〉 =
M∑
j=1

〈φ,Djρj(h(x))ψ〉

= 〈φ,

[
M∑
j=1

Djρj(h(x))

]
ψ〉 (II.82)

where in the penultimate line we have used the symmetry of the individual constant-depth

operators Dj. From the right-hand side of (II.80), the adjoint operator is identified as

the operator for which

D∗≈φ =

[
M∑
j=1

Djρj(h(x))

]
φ =

[
M∑
j=1

Dj (ρj(h(x))φ(x))

]
. (II.83)

The symmetric part (II.79) of the variable-depth combination operator is then given by

D≈,sym =
1

2

M∑
j=1

[ρj(h(x))Dj +Djρj(h(x))] . (II.84)

This operator replaces the constant-depth operator D in the dynamical equations (II.59)

for computations involving varying-depth bathymetries.

Alternatively, in the construction of a variable-depth operator by (II.66), one may

choose to deal directly with the operator L, the symbol of which is given by

L̂φ̂ = Ω(k, h)φ̂, (II.85)

and compute coefficients in the combination operator L≈ to minimize error on the dis-

persion relation itself. In this case, skew-symmetry could be recovered by computing the

skew-symmetric part L≈,skew and then the operator D computed as

D≈,symφ =
1

g
L≈,skew(L≈,skewφ). (II.86)
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Although dealing directly with the dispersion relation in this way may be in some ways

preferable to dealing with D, any potential advantages of computing the operator by

this method come at a computational cost, since composition of the operator with itself

doubles the number of Discrete Fourier Transforms per time step compared with an

operator that need only be applied once. Thus, in the simulations of Chapters IV and V,

the operator (II.84) is used.
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CHAPTER III

PSEUDOSPECTRAL

IMPLEMENTATION

Advantages and challenges

Given the emergence of the non-polynomial pseudodifferential operator D in the

derivations of the Order 1 Hamiltonian model, a Discrete Fourier Transform of data

into wavenumber space is the natural way of making numerical computations involving

D. Given the further usefulness of this operator in computing higher-order perturbations

to the dynamical equations, time evolution of nonlinear terms in wavenumber space also

seems natural. However, given the spatial pointwise multiplications of functions involved

in these nonlinear terms, as well as in the implementation of additional features to be

discussed in this chapter, a hybrid spatial-spectral or pseudospectral numerical method

is required.

Viewed as the limit case of finite difference (FD) stencils extended to the entire com-

putational domain, a pseudospectral method provides spectral accuracy not offered by

finite difference schemes, often requiring a lower resolution to achieve the same accuracy

as FD methods [9]. In the case of the operator D, related to the dispersion relation by

(II.36), use of a Fourier pseudospectral methods implies accurate handling of the linear

wavelength dispersion described by Ω(k, h); in numerical schemes such as finite differ-

ences, which approximates derivatives using weighted combinations of local data values

in physical space, more elaborate approaches are required to construct stencils designed

to respect dispersion relations. Conveniently, in a pseudospectral method, computation
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of spatial derivatives such as those appearing in the nonlinear dynamical equations (II.59)

becomes a simple algebraic operation in wavenumber space.

A pseudospectral approach also introduces several challenges for simulations. Imple-

mentation of certain types of boundary conditions, or any spatially localized features

within the computational domain, may not be as straightforward as in other methods.

In particular, for simulations of coastal waves, flexible computational grid geometries are

often desirable; computational nodes can be positioned to accomodate curved coastline

interfaces, and node densities locally refined in areas where higher resolution is required

or coarsened to increase efficiency where lower resolution is adequate. Whereas alterna-

tives such as finite elements, radial basis function (RBF), or RBF-based finite difference

(RBF-FD) methods are equipped to take on irregular node arrangments, Fourier pseu-

dospectral methods are basically restricted to uniformly-spaced rectilinear grids due to

the nature of Discrete Fourier Transform algorithms. For many applications, however,

the efficiency and accuracy offered by a pseudospectral method outweigh these challenges.

For this simulations of Chapters IV and V, the computational domain is discretized in

space using a Fourier pseudospectral method, yielding an ordinary differential equation

corresponding to each wavenumber component. Solutions can then be advanced in time

in Fourier transform space using a method of lines with any suitable numerical ordinary

differential equation solver; here, time evolution is performed by an adaptive time step

4th/5th-order Runge-Kutta solver (MATLAB’s “ode45”).

Damping regions

The periodic basis functions of the Fourier spectral method lead to inherently periodic

boundary conditions which are generally not desirable in realistic simulations. To prevent

outgoing waves from propagating across periodic boundaries and reentering the domain,

damping terms are added to the dynamical equations and localized by multiplication with

a spatially-varying characteristic function. We consider the time evolution associated with
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a linear damping term added to the free surface elevation dynamical equation,

∂tη = . . .− αχD(x)η (III.1)

where χD(x) is some characteristic function which equals 0 within the simulation domain,

1 in fully-damped regions at the boundaries of the computational domain, and smoothly

varies between 0 and 1 over a transition region, the length scale of which is on the order

of several times the impinging wavelengths so as to minimize unphysical reflections of

outgoing waves back into the domain.

To choose an appropriately-scaled coefficient α for the damping term, one can consider

the behavior of the differential equation

∂tη = −αη, (III.2)

the solutions of which decay in time as

η(t) = η0e
−αt. (III.3)

Over a duration t, wave components propagating over depth h with phase velocity

c(k, h) = Ω(k,h)
k

through regions for which χD(x) = 1 are expected to decay to a fraction

ε = η(t)
η0

= e−αt of their initial amplitudes while covering a distance d = |c(k, h)|t. For a

fully-damped region spanning a length d in the direction of wave travel, then, a choice of

α = −|c(k, h)|
d

log(ε) (III.4)

guarantees that waves amplitudes will decay to within some desired small fraction ε of

their original amplitude before exiting the damped region. Choice of such a conservative

wavelength-dependent value for α can reduce unwanted reflections from the damping

transition region and help to speed computations. So, to prevent waves from propagating

through the periodic domain boundaries inherent to the Fourier pseudospectral method,

damping terms are added to each of the dynamical equations:
∂tη = Dφ+ . . .+

[
|c(k,h)|

d
log ε

]
χD(x)η

∂tφ = −gη + . . .+
[
|c(k,h)|

d
log ε

]
χD(x)φ

. (III.5)
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Embedded reflective interfaces

For wave damping by the method of the previous section, a smooth characteristic

function χD(x) introduces damping gradually over a spatial scale on the order of the im-

pinging wavelengths to minimize reflection of waves back into the computational domain.

For modeling of reflective interfaces within the domain, however, this effect may be de-

sirable. In regions where velocity potential φ is damped to approach a constant value of

zero, the corresponding values of velocity u approach zero. If the characteristic function

χ(x) changes over a very small spatial scale, this transition to zero velocity will occur

abruptly, producing reflected waves. Thus, to roughly simulate reflections from objects

within the domain, such a term is added to the velocity potential dynamical equation:
∂tη = Dφ+ . . .

∂tφ = −gη + . . .+ βχR(x)φ

(III.6)

where χR(x) transitions sharply from 0 to 1 where reflections are desired and β is some

scalar chosen here in an ad hoc way. Empirical investigations suggest that reflectivity

of interfaces depends in a predictable way on the slope of the factor βχR(x), and that

partially-reflective interfaces could be modeled by an appropriate choice of a character-

istic function to yield the desired reflective effects. Investigating the physicality of the

reflections produced is beyond the scope of this thesis, however; here, the above terms are

added merely as a crude means of simulating reflections. Addition of forcing terms, such

as those described in the following section, may prove to be a superior method of introduc-

ing reflected waves into the domain and modeling a truly physical, zero-normal-velocity

reflective condition.

Wave generation

In some cases, the wave scenario to be simulated can be approached as an initial

value problem. Perhaps more often, however, simulations of realistic waves requires

consideration of a signaling problem, especially where wave fields are to be predicted
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based on some locally-measured wave signal.

To generate a wave field within the computational domain in accord with a signal

specifying free surface heights at a specific spatial location with respect to time, a forcing

term G(x, t) can be added to the linear dynamical equations following the work of Wei

et al. [14], Kim et al. [10], and Liam [11]:
∂tη = Dφ+G(x, t)

∂tφ = −gη
. (III.7)

Decomposition of the second-order system equivalent to (III.7) into backward- and forward-

propagating wave equation factors,

(∂2
t + gD)η = (∂t − A)(∂t + A)η = ∂tG, (III.8)

where

Âη = iΩ(k, h)η̂, (III.9)

suggests that the first-order forced unidirectional equation

(∂t + A)η = S(x, t) (III.10)

can alternatively be considered. Multiplication of this by the backward-propagating wave

equation operator leads to

(∂t − A)(∂t + A) = (∂t − A)S (III.11)

so that this forcing is related to the forcing term G in (III.7) by

∂tG = (∂t − A)S. (III.12)

Fourier transforms in both space and time (indicated for a function S(x, t) by the notation

S̄(k, ω)) of the forced one dimensional equation (III.10) leads to

[(−iω) + (iΩ(k, h))] η̄(k, ω) = S̄(k, ω) (III.13)

which, solved for η̄ and transformed back into the (x, t)-domain, yields

η(x, t) =

∫ ∫
S̄(k, ω)

i(Ω(k, h)− ω)
ei(kx−ωt)dkdω. (III.14)
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Enforcing the condition that the free surface heights at a fixed location x = 0 are specified

by some signal s(t) gives the condition

s(t) =

∫ ∫
S̄(k, ω)

i(Ω(k, h)− ω)
e−iωtdkdω. (III.15)

Evaluation of this integral allows the condition to be solved to explicitly express the

forcing term S associated with given signal s(t).

For the case of a 1HD delta-function-type source, the approach yields forcing term

Ǧ(x, ω) = δ(x)š(ω)
dΩ

dk
(K(ω)) (III.16)

where the notation š(ω) indicates the temporal Fourier transform of s(t). Assuming a

delta-function-type line source along the y-axis in 2HD, for influxing of monochromatic

waves of amplitude a propagating under a small angle θ0 from the +x-direction, the

approach gives the forcing term

G(x, y, t) = δ(x)aei(k
0
yy−ω0t)

dΩ

dk
(K(ω0)) cos θ0 (III.17)

Since this condition is derived for linear equations, in some nonlinear simulations the

linear equations are retained near the influx source, with nonlinear terms introduced

smoothly as waves propagate outward from the source through multiplication by a char-

acteristic function χNL(x) equal to 0 around the source and transitioning to 1 away from

the source.

Dealiasing

In numerical solutions of nonlinear partial differential equations by a Fourier pseu-

dospectral method, higher-order wave modes are introduced through the multiplications

of wave components, and the limited resolution of the spatial discretization leads these

to be misidentified as, or aliased to, other wave modes within the discretization. Ac-

cumulation of these resulting aliasing errors can lead to inaccuracy and computational

instability. Various strategies are commonly used to prevent this aliasing, including the

addition of artificial hyperviscosity terms to the dynamical equations, which tend to
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smooth out high-wavenumber oscillations, or low-pass filtering of solutions by setting to

0 all components of the Discrete Fourier Transform corresponding wavenumbers k with

|k| > kcut. In the nonlinear simulations of Chapters IV and V, dealiasing is performed

by applying the latter method of filtration at each time step of the computation. Cutoff

wavenumbers are chosen in accord with “Orszag’s two-thirds rule” and its generalization

to higher-order nonlinearities, by which kcut is chosen as the maximum cutoff wavenumber

for which no wave modes from the unfiltered range are aliased back into the unfiltered

range under the order n nonlinearity [8]:

kcut =
2

n+ 1
. (III.18)

This expression for kcut suggests that in simulations, a tradeoff can be expected: the higher

accuracy expected from models of increasing order may be countered by the decreases in

effective computational resolution imposed to control aliasing.
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CHAPTER IV

VALIDATION

Investigations of Hamiltonian conservation

Initial value problem over uniform depth

The Hamiltonian dynamical equations discussed in Chapter II were implemented in a

MATLAB code using the pseudospectral method and features discussed in Chapter III. As

a first means of validation, the Hamiltonian-conserving property of the implementation

is investigated through some simple initial value problem examples. These numerical

experiments are conducted using the Order 1 and Order 2 Hamiltonian models in 1HD

with a computational grid spacing of 0.10 m, initially with undamped periodic boundary

conditions.

First, a Gaussian-shaped free surface disturbance (Figure IV.1) initially at rest evolves

over a uniform depth of 0.10 m.

Figure IV.1: Initial free surface condition for investigations of Hamiltonian conservation
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This combination of shallow depth and relatively large wave height highlights the

differences of the Order 1 and Order 2 models: as Figure IV.2 shows, the initial con-

dition propagates dispersively under the linear model, while under the Order 2 model,

nonlinear effects counter this dispersive tendency as the initial condition separates into

several apparently soliton-like features. The values of the Hamiltonian functions plotted

Figure IV.2: Comparison of Order 1 and Order 2 results over uniform depth at t = 40 s

in Figure IV.3, computed at each time step of the simulation by numerical approximation

of the corresponding Hamiltonian integrals over the domain, confirm that both models

manage to approximately conserve their respective Hamiltonians in time. Except for

Figure IV.3: Evolution of Hamiltonian for the initial value problem over uniform depth

some fluctuations that occur when wave features collide and interfere, the values hold

nearly constant. The Order 2 model drops slightly from its initial value as the initial
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condition spreads outward, but quickly assumes an approximately constant value. Re-

peating the simulations with damping regions applied at the domain boundaries using

the characteristic function shown in Figure IV.4 demonstrates that the Hamiltonian wave

dynamics in the undamped domain are locally unaffected by the use of damping terms.

Waves continue to evolve such that the Hamiltonian is conserved just as in the undamped

Figure IV.4: Damping region characteristic function χD(x) for simulation of initial value
problem over uniform depth with damping

case (Figure IV.3) until entering the damping regions. The non-zero Hamiltonian value

that persists after this damping is perhaps due to long wave components reflected from

the damping region.

Initial value problem over varying-depth bathymetry

The Gaussian initial condition of Figure IV.1 now evolves from rest over the non-

uniform bathymetry of Figure IV.5, beginning above a depth of 0.10 m as before, but

then traveling over slopes into areas of depth 0.30 m. Again, undamped periodic bound-

aries are retained. Using a variable-depth operator constructed using 2 representative

depths h1 = 0.10 m and h2 = 0.30 m to simulate the bathymetric variations, the Order 1

and Order 2 models again appear to approximately conserve their respective Hamilto-

nians (Figure IV.6). The Order 1 Hamiltonian indeed holds fairly constant around its

initial value even as the waves transition into deeper waters. Just as before, the Order

2 Hamiltonian initially drops, but upon entering deeper water the waves assume a more

30



Figure IV.5: Bathymetry for initial value problem over varying depth

Figure IV.6: Evolution of Hamiltonian for the initial value problem over varying depth
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dispersive behavior resembling that of the linear model (Figure IV.7), and the Hamilto-

nian increases towards its initial value again, where it remains as waves propagate over

the deeper region.

Figure IV.7: Comparison of Order 1 and Order 2 simulation results over varying depth
at t = 40 s

Thus, the method of handling varying-depth bathymetries described in Chapter II

appears capable of approximately retaining the desired Hamiltonian-conserving property

of the uniform-depth models. Additional considerations may be useful to more deeply

understand under which circumstances this holds true, as well as to understand the im-

plications of the observed shifts in the nonlinear Hamiltonian’s value as waves progressed

above bathymetric variations.

Benchmark simulations in 1HD

1HD simulation of waves over constant depth

To investigate the capabilities of this approach to model and simulate wave phenom-

ena of interest, the code is used to simulate scenarios for which experimental data is

available for comparison. The first of these benchmarking experiments were conducted in

the wave laboratories at Maritime Research Institute Netherlands (MARIN) [6]. These

experiments involve wave basins with piston-type wave generators installed along one

edge. Long-crested waves propagate along the length of the tank, with wave heights
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measured by probes at several locations. At the other end of the basin, waves encounter

a ”beach” designed to minimize wave reflection. For these cases, this setup results in

the propagation of long-crested waves, relatively uniform across the width of the tank,

over bathymetries that are uniform across the width of the tank, and so the scenarios are

simulated in 1HD.

The first case (“Wave groups propagating over a flat bottom: Run number 203001”)

involves a focusing wave group propagating over a uniform 1.00-m depth [6]. Waves are

generated at x = 0 m and free surface elevations are recorded at 6 locations spanning

the length of the basin as shown in Figure IV.8. For the simulation, the free surface

elevations measured at position W1 are used as an influx signal for a delta-function-

type source located there. To generate this focusing wave, initial oscillations of shorter

Figure IV.8: Measurement positions and characteristic functions for focusing wave sim-
ulation

wavelength transition gradually transition into longer waves so that the higher-speed,

longer-wavelength wave features catch up with lower-speed, shorter-wavelength features

to constructively interfere around W6. This progression is visible in the data measured

at W1 (Figure IV.9), the spectrum of which is shown in Figure IV.10.

Damping regions are positioned beyond the outermost measurement locations W1

and W6 using a characteristic function χD(x) as shown in Figure IV.8. For nonlinear

simulations, the characteristic function χNL(x) (Figure IV.8) introduces nonlinear terms

gradually for waves propagating outward from the influx source at W1. Using the com-
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Figure IV.9: Measured signal at position W1 from focusing wave experiment

Figure IV.10: Frequency spectrum of measured signal at position W1 from focusing wave
experiment
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putational domain and characteristic functions shown in Figure IV.8 with a spacing of

0.10 m between computational nodes, the measured signal from position W1 is input as

an influx signal to simulate the experiment.

Inspection of maximum and minimum wave height plots from the simulation reveals

that the models correctly simulate dispersion to yield the constructive wave peak at the

correct time and location. Comparison of the measured and simulated signals at W4 in

Figure IV.11: Free surface elevations at t = 108 s and max./min. wave heights for Order
1 focusing wave group simulation

Figure IV.12, as well as their spectra in Figure IV.13 demonstrates the superior prediction

of wave heights and shapes by the nonlinear models.

As expected, the spectrum of the Order 1 model signal at W4 appears to be preserved

from the influx at W1. The nonlinear models bring the W4 spectrum into better agree-

ment with the measured spectrum. However, both the signals and spectra do not appear

to improve much above Order 2, perhaps even becoming less accurate.

Signal correlations

C(x) =
〈η(x, t)sim, η(x, t)data〉
〈η(x, t)data, η(x, t)data〉

(IV.1)

for measured wave signals ηdata with the simulated signals ηsim predicted by the Hamil-

tonian models are compared at each of the measurement locations in Table IV.1. These

correlations reveal a significant improvement in accuracy from the Order 1 model to the

Order 2 model, especially for larger distances from the influx source as the relatively

high-amplitude focusing wave is produced. However, for higher-order models, correla-
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(a) Order 1 model (b) Order 2 model

(c) Order 3 model (d) Order 4 model

Figure IV.12: Comparison of measured and simulated signals at position W4 from focus-
ing wave simulation

tions do not show significant improvement, with correlations actually tending to decline

beyond Order 2. Although the correlation provides a somewhat limited glimpse into the

relative performances of these models, this behavior seems to confirm the trend visible

in Figures IV.12 and IV.13: it appears that, at least for this case and this choice of com-

putational grid, the accuracy of higher-order models here is limited by the increasingly

invasive dealiasing measures required. Perhaps in this truncation of higher-order wave

modes, important wave information is indeed being discarded.

While the details of the simulation at hand will determine the usefulness of higher-
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(a) Order 1 model (b) Order 2 model

(c) Order 3 model (d) Order 4 model

Figure IV.13: Comparison of measured and simulated spectra at position W4 from fo-
cusing wave simulation

order nonlinear models, the above results seem to indicate that models higher than Order

2 may not offer many advantages in some cases, especially considering the steep increases

in computational time involved. In running this simulation, for example, the Order 2, 3,

and 4 model codes required computational times of roughly 1.5, 2.5, and 5.5 times longer

than the Order 1 model, respectively.

Finally, the evolution of the Hamiltonian function over the course of the simulation

(Figure IV.14) appears to confirm the expected conservation of the Hamiltonian. During

the period from around 103 s to 111 s, when no major waves are being influxed or damped,
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Model W2 W3 W4 W5 W6
Order 1 .971 .973 .753 .760 .700
Order 2 .973 .968 .920 .922 .863
Order 3 .973 .972 .919 .916 .832
Order 4 .974 .974 .900 .890 .838

Table IV.1: Correlations of simulation results with measurements for focusing wave group
experiment

Figure IV.14: Evolution of Order 1 Hamiltonian for Order 1 simulation of focusing wave

the value holds approximately constant, even as the focusing wave peaks around 108 s.

Higher-order expressions of the Hamiltonian, computed for higher-order simulations, show

similar behavior.

1HD simulation of waves over sloping bottom

To validate the modeling of bathymetric effects by the code, a similar MARIN bench-

mark case is simulated, but this time over a varying-depth tank consisting of two uniform-

depth areas with depths of 0.60 m and 0.30 m joined by a 1:20 sloping region as shown

in Figure IV.15 (“Irregular waves propagating over a slope: Run number 102003”) [6].

Waves generated at x = 0 m propagate along the length of the tank and free surface

elevations are measured at 8 locations as also shown in Figure IV.15. For the simulation,

measurements from location W1 are used as an influx signal for a delta-function-type

source located there. This signal consists of irregular waves, the frequency spectrum of

which is shown in Figure IV.16. As seen in Figure IV.17, damping regions are located
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Figure IV.15: Bathymetry and measurement positions for sloping bathymetry experiment
and simulation

Figure IV.16: Frequency spectrum of measured signal at position W1 from sloping
bathymetry experiment
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beyond the outermost measurement points W1 and W25.

Figure IV.17: Damping region characteristic function χD(x) for sloping bathymetry sim-
ulation

For this bathymetry, a variable-depth operator is constructed as in (II.66) using three

representative-depth operators with h1 = 0.3 m, h2 = 0.42 m, and h3 = 0.6 m (Fig-

ure IV.18). Using weight function w(h, k) (Figure IV.19) derived from the spectrum

Figure IV.18: Representative-depth operators for sloping bathymetry simulation

of the W1 influx signal, the coefficients resulting from the optimization of (II.74) (Fig-

ure IV.20) produce a variable-depth operator with errors shown in Figure IV.21.

Inspection of signals at the measurement points demonstrate that the shifts in am-

plitude and wavelength for waves propagating over the slope are well-simulated (Fig-
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Figure IV.19: Weight function w(h, k) for sloping bathymetry simulation

Figure IV.20: Representative-depth operator coefficients for sloping bathymetry simula-
tion
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Figure IV.21: Error D̂≈(h, k) − D̂(h, k) (m−1) of variable-depth operator for sloping
bathymetry simulation

Model W2 W9 W12 W13 W15 W17 W25
Order 1 .702 .605 .662 .606 .614 .649 .489
Order 2 .787 .741 .381 .733 .725 .616 .554

Table IV.2: Correlations of simulation results with measurements for sloping bathymetry
experiment

ures IV.22–IV.25). As is visible in the plots, the Order 2 model often more successfully

predicts wave shapes, especially, it seems, for large-amplitude wave features. This trend

again tends to be supported by signal correlation values (Table IV.2). The results demon-

strate that the methods described in Chapter II can be an accurate means of simulating

bathymetric effects in varying-depth waters such as those encountered in coastal wave

simulations.
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Figure IV.22: Comparison of measured and simulated wave signals at W9 from sloping
bathymetry simulation

Figure IV.23: Comparison of measured and simulated wave signals at W13 from sloping
bathymetry simulation
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Figure IV.24: Comparison of measured and simulated wave signals at W15 from sloping
bathymetry simulation

Figure IV.25: Comparison of measured and simulated wave signals at W17 from sloping
bathymetry simulation
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Benchmark simulation in 2HD: Monochromatic waves

over a shoal

The experimental measurements of monochromatic waves over a shoal conducted by

Berkhoff et al. [4] provide a challenging benchmark case for modeling and simulation

of wave refraction and diffraction by complicated bathymetries. Monochromatic waves

of period 1.0 s and amplitude A0 = 0.0232 m are generated over a region of uniform

depth 0.45 m to propagate towards an angled incline, upon which is positioned an ellip-

soidal hump (Figure IV.26). Normalized maximum wave amplitudes observed during the

Figure IV.26: Depths (m) of the experimental bathymetry for 2HD shoal simulation

experiment were then recorded along cross-sectional segments.

The experiment is simulated here on the computational domain shown in Figure IV.27

with a 0.2-meter square grid. To reduce the influence of boundaries on wave heights near

the shoal, and to provide an approximately uniform long-crested wave influx over the

extent of the measurement area from a delta-function-type line source, the computa-

tional domain has extended slightly beyond the experimental domain, and undamped

periodic conditions are retained in the upper and lower boundaries. At the left and

right boundaries, waves encounter damping regions with characteristic function shown
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Figure IV.27: Depths (m) of the extended computational bathymetry for 2HD shoal
simulation

in Figure IV.28.

For this bathymetry, a variable-depth composite operator is constructed using 3 repre-

sentative depths operators with h1 = 0.05 m, h2 = 0.2 m, and h3 = 0.45 m (Figure IV.29).

Minimization of error with the weight function shown in Figure IV.30(a) yields coefficients

(Figure IV.31) defining a combination operator with errors shown in Figure IV.30(b).

Images of free-surface elevations from the Order 1 Hamiltonian simulation demon-

strate the expected refraction of waves propagating over the angled incline and diffrac-

tion over the shoal, apparently in reasonable accord with theoretical predictions made

by Berkhoff et al. [4] (Figure IV.32). Normalized maximum wave heights observed over

the course of the 45-s simulations are interpolated along 8 cross-sectional segments (Fig-

ure IV.33) and compared with the experimental measurements of Berkhoff et al. [4] for

Order 1 (Figure IV.34) and Order 2 (Figure IV.35) simulations. While both models

successfully capture many of the qualitative features of the data, the Order 2 simulation

shows several noticeable improvements over the Order 1 simulation. Although both mod-

els overestimate the peak heights along sections 3 and 4, the Order 2 simulation predicts

the measurements much more accurately, as is especially visible along cross sections 3, 4,

5, and 6.
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Figure IV.28: Magnitude of χD(x, y) for 2HD simulation and line source position (in
white)

Figure IV.29: Representative-depth operators for 2HD shoal simulation
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(a) w(h, k) (b) D̂≈(h, k)− D̂(h, k) (m−1)

Figure IV.30: (a) Weight function and (b) errors (m−1) on D̂≈(h, k) for 2HD shoal
simulation

Figure IV.31: Representative-depth operators coefficients for 2HD shoal simulation
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Figure IV.32: Free surface elevations (m) at t = 45 s with superimposed “lines of equal
phase” by Berkhoff et al. [4] (solid lines) and shoal outline (dotted line)

Figure IV.33: Maximum normalized wave heights A
A0

from 2HD shoal simulation with
superimposed cross sections
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Figure IV.34: Comparison of maximum normalized wave heights (red) from Order 1
simulation with measurements (blue) from 2HD shoal experiment
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Figure IV.35: Comparison of maximum normalized wave heights (red) from Order 2
simulation with measurements (blue) from 2HD shoal experiment
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Comparison with simulation results produced using a different model and numeri-

cal scheme demonstrate the pseudospectral Hamiltonian approach to be a competitive

alternative. The results of the Order 1 pseudospectral Hamiltonian simulation are ob-

served to resemble those from a nonlinear Variational Boussinesq Model simulation of

Adytia [3] (Figure IV.36), implemented using a finite element method on a triangular

grid with average grid spacing of about 0.10 m. The pseudospectral linear Hamiltonian

simulation, performed here on a coarser square grid of 0.20-m spacing, was computed on

a typical desktop computer on the order of the physical time. These results demonstrate

Figure IV.36: Comparison of maximum normalized wave heights (red) from Variational
Boussinesq Model simulation with measurements (blue) from 2HD shoal experiment

the ability of the approach to model the effects of bathymetric variations in 2HD above

complicated bathymetries such as those encountered in coastal waters, with higher-order

models offering significantly improved accuracy.
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CHAPTER V

SIMULATIONS OF WAVES OVER

COASTAL BATHYMETRIES

Tsunami off southwest Java, Indonesia

To demonstrate the applicability to real coastal bathymetries of the methods discussed

and validated in the previous chapters, simulations of two very different wave scenarios

are conducted. First, propagation of a tsunami towards a coastline is simulated. Tsunami

waves, generated by sudden seismic shifts in seafloor depth along faultlines which rapidly

displace the surrounding water, are often simulated using initial value problems. Here,

the pseudospectral Hamiltonian code is used to follow the example of Adytia [2], who

used a Variational Boussinesq Model and Finite Element Method to simulate the tsunami

which struck the southwest coast of Java, Indonesia on July 17, 2006.

For this simulation, the bathymetry in Figure V.1, obtained from the General Bathy-

metric Chart of the Oceans database (http://www.gebco.net/), is extended beyond the

area shown and tapered off to a uniform depth at the computational domain bound-

aries to accomodate the use of damping regions around the simulated domain. This

extended computational domain spans an area of 314 m by 330 km with a grid spac-

ing of 2 km. A characteristic function χR(x, y), with values of 1 on land (pictured in

white in Figure V.1) and 0 in water is used to roughly simulate wave reflections from

coastlines. The variable-depth combination operator is constructed using representative

depths h1 = 20 m, h2 = 350 m, h3 = 1500 m, and h4 = 4000 m. The weight function

w(h, k) used to compute coefficients for the representative-depth operators comes from
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Figure V.1: Depths (m) of bathymetry for southwest Java tsunami simulation

the spatial Discrete Fourier Transform of the initial condition η0(x, y) considered as a

function of frequencies ω associated with the wavenumbers k by the dispersion relation

evaluated for h(x0, y0) = 2424 m, the local depth at the center (x0, y0) of the inital free

surface disturbance feature. The envelope of a plot of these amplitudes versus frequen-

cies is used to roughly characterize the shape of a “spectrum” which is then used in the

same way as was the spectrum s(t) in (II.75) to construct w(h, k). This weight func-

tion w(h, k) (Figure V.2(a)) produces a variable-depth operator with the errors shown in

Figure V.2(b).

An initial condition resembling that used by Adytia [2] attempts to approximate the

free surface disturbance caused by subduction of plates occuring at the fault, beginning

from zero velocity at its maximum displacement (Figure V.3(a)). Progression of this

initial condition towards the coast, as simulated with the Order 1 Hamiltonian model, is

illustrated in Figure V.3(b)–(d). The maximum wave heights recorded over the course

of the 25-minute simulation (Figure V.4) indeed resemble those from the simulations of

Adytia [2] (Figure V.5), although the initial condition, treatment of wave reflection by

coastlines, and simulation lengths differ.
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(a) w(h, k) (b) D̂≈(h, k)− D̂(h, k) (m−1)

Figure V.2: (a) Weight function and (b) errors (m−1) on D̂≈(h, k) for southwest Java
tsunami simulation

Wind waves at Pelabuhan Ratu, West Java, Indonesia

Pelabuhan Ratu is a fishing harbor located on the southern coast of West Java, In-

donesia. Extreme waves in the harbor in recent years have caused damage to coastal

structures and prompted evacuations and temporary suspensions of fishing activities.

We simulate wind-generated waves in the region with bathymetry shown in Figure V.6,

extended significantly beyond the boundaries shown to accomodate damping regions and

a line source to influx waves under an angle so that waves reach the entirety of simulated

domain. The extended computational domain spans an area of 1950 m by 2317.5 m with

a grid spacing of 7.5 m. A reflective coastline is implemented as in the previous section.

Studies of the surrounding areas using SWAN (http://www.swan.tudelft.nl/), a soft-

ware package for coastal wave simulations, suggest that typical waves entering the west-

ern boundary of the domain have a peak period of around 7 s and an amplitude of

approximately 1.5 m, oriented at an angle of about 15o North of East. In order to

clearly illustrate the effects of the bathymetry on long-crested waves, monochromatic
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(a) t = 0 min (b) t = 6 min

(c) t = 12 min (d) t = 18 min

Figure V.3: Free surface heights (m) from Order 1 simulation of southwest Java tsunami
simulation
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Figure V.4: Maximum free surface heights (m) from Order 1 simulation of southwest
Java tsunami over t = 0 to 25 minutes

Figure V.5: Maximum free surface heights (m) from simulation of southwest Java tsunami
from Adytia [2] over t = 0 to 60 minutes
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Figure V.6: Depths (m) of bathymetry for Pelabuhan Ratu simulation

waves with period 7 s are influxed here rather than a more realistic, broader wind wave

spectrum. The variable-depth combination operator is constructed using representative

depths h1 = 3 m, h2 = 10 m, h3 = 27.4 m, and h4 = 179.6 m and the weight function

shown in Figure V.7(a), with resulting errors shown in Figure V.7(b).

Waves influxed from a vertical line-segment source located to the west of the simula-

tion domain enter the initially undisturbed free surface and are refracted and diffracted

by the bathymetry and reflected by the coastline as seen over the entire computational

domain in Figure V.8. The wave field after the initial waves have reached the shore

(Figure V.9), as well as the maximum wave heights recorded over the course of the 350 s

simulation (Figure V.10), demonstrates that for uniform incoming waves, bathymetric ef-

fects lead to a large variety of wave heights at within the harbor and along the coastline.

Computations of significant wave heights based on SWAN simulations for the same

bathymetry (Figure V.11) appear to show a qualitative correspondence with the Order 1

Hamiltonian predictions of maximum wave height. Areas showing the highest significant

wave height in the SWAN prediction very nearly coincide with those areas at which the

highest waves were predicted by the Hamiltonian simulation, with common regions of

relative calm also predicted by both approaches.
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(a) w(h, k) (b) D̂≈(h, k)− D̂(h, k) (m−1)

Figure V.7: (a) Weight function and (b) errors (m−1) on D̂≈(h, k) for Pelabuhan Ratu
simulation

Figure V.8: Free surface elevations (m) at t = 170 s from Order 1 simulation of Pelabuhan
Ratu wind waves
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Figure V.9: Free surface elevations (m) at t = 340 s from Order 1 simulation of Pelabuhan
Ratu wind waves

Figure V.10: Maximum free surface elevations from t = 0 to 350 s from Order 1 Hamil-
tonian simulation
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Figure V.11: Significant wave heights (m) computed in SWAN simulation over Pelabuhan
Ratu bathymetry
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CHAPTER VI

CONCLUSIONS

The pseudospectral implementation of Hamiltonian dynamical equations described in

this thesis performed well in a variety of challenging benchmark simulations. First, its

ability to conserve the approximated total energy expressed by the Hamiltonian function

for simulations over uniform-depth regions was confirmed. Over varying-depth bathyme-

tries, this property appears to still hold approximately true, but slight shifts in the value

of the Hamiltonian were observed for wave features propagating over bathymetric varia-

tions under the nonlinear Hamiltonian equations. Further study of this phenomenon may

be necessary to understand its implications for the accuracy and stability of the method.

The accurate modeling of linear wavelength dispersion by the model was demonstrated

through simulation of a focusing wave group experiment. Its modeling of bathymetric

effects by extension of the pseudodifferential operator from the constant-depth equations

to a variable-depth combination operator was validated through simulation of irregu-

lar waves propagating over a slope. The method’s ability to simulate refraction and

diffraction of waves over elaborate 2HD bathymetries was also validated in simulation

of the experiment of Berkhoff et al. [4], with performance resembling that of more com-

putationally expensive schemes. While the method’s accurate handling of bathymetric

effects was validated, some details of the approach used could be studied more deeply.

Generalizing the method of “quasi-homogenization” of constant-depth pseudodifferen-

tial operators used by van Groesen and van der Kroon [13], we introduced a flexible

method for constructing the combination operator so as to minimize its error from the

true constant-depth operator in a way which is fine-tuned to the needs of individual sim-

ulations. However, the improvements in accuracy which this approach may offer have
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not been rigorously quantified, nor have we clarified to what extent the use of additional

representative depths in the construction of this operator may improve results.

In all of the test cases investigated here, the Order 2 model almost always succeeded

to offer visible improvements in accuracy over the Order 1 model, especially for relatively

large-amplitude wave features, demonstrating the potential of higher-order versions of the

dynamical equations to accurately capture important nonlinear effects. This improvement

does not necessarily carry through to arbitrarily high order, however, as computational

times increase steeply for higher-order models, and the measures required to prevent

aliasing due for nonlinearities of higher order increasingly filter out important information

in some cases. For the particular benchmark case and computational resolution for which

the Order 3 and Order 4 models were tested here, results were actually less accurate than

for the Order 2 simulation. Still, in its Order 1 and Order 2 versions, the pseudospectral

Hamiltonian approach has been shown to be consistently competitive, and in some cases

superior to, other schemes.

Simulations of tsunami and wind-type wave groups over actual coastal bathymetries

demonstrated the feasibility of the pseudospectral Hamiltonian approach to simulate a

variety of realistic coastal wave scenarios at different scales. While the method used

can indeed provide useful information about wave run-up towards coastlines, wave dy-

namics in near-shore environments are significantly influenced by several factors which

are not yet addressed in the implementation presented here. Consideration of factors

such as wave breaking and bottom friction could make for more realistic simulations,

although incorporation of these features may not be trivially straightforward in the con-

text of the pseudospectral method used here. Also, although in the simulations presented

here roughly simulated wave reflections from coastlines using reflective damping terms, a

more physically-realistic method of modeling of this reflection could perhaps be achieved

through the use of source terms to influx wave reflections into the domain at reflective

interfaces. Similarly, a use of source terms to simulating waves generated by moving

objects embedded in the domain could be useful for many applications.

While prediction of the heights of waves approaching coastlines is certainly useful, the
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details of coastal inundation by incoming waves is of interest in some applications. Once

again, incorporation of this effect into the pseudospectral Hamiltonian scheme may be

challenging. And, while free surface heights themselves are often the primary quantity

of interest, many applications involving wave-structure interactions also benefit from

information about quantities in the fluid interior. Incorporation of methods for recovering

estimates of interior pressures from the surface variables could be a useful addition to the

code.

These and many other issues have yet to be addressed, and may require attention

before this pseudospectral implementation of Hamiltonian surface water wave equations

could be presented as a stable, versatile tool to compete with more ubiquitous schemes

and software packages that are typically used in coastal wave research and industry.

However, based on the promising results of the simulations presented in this thesis, it

seems clear that further research along these lines could indeed be worthwhile.

64



Bibliography

[1] M.J. Ablowitz and T.S. Haut. Spectral formulation of the two fluid Euler equations

with a free interface and long wave reductions. Analysis and Applications, 6(04):

323–348, 2008.

[2] Didit Adytia. Tsunami simulation in Indonesia’s areas based on shallow water equa-

tions and Variational Boussinesq Model using finite element method. Master’s thesis,

Institut Teknologi Bandung, 2008.

[3] Didit Adytia. Coastal zone simulations with Variational Boussinesq Modelling. PhD

thesis, University of Twente, 2012.

[4] J.C.W. Berkhoff, N. Booy, and A.C. Radder. Verification of numerical wave propaga-

tion models for simple harmonic linear water waves. Coastal Engineering, 6:255–279,

1982.

[5] L.J.F. Broer. On the Hamiltonian theory of surface waves. Applied Scientific Re-

search, (30):430–446, 1974 1974.

[6] T.H.J. Bunnik. Benchmark workshop on numerical wave modelling - description of

test cases. Technical Report 70022-1-RD, Maritime Research Institute Netherlands,

August 2010.

[7] W. Craig and C. Sulem. Numerical simulation of gravity waves. Journal of Compu-

tational Physics, 108:73–83, 1993.

[8] Stanislav Derevyanko. The (n + 1)/2 rule for dealiasing in the split-step Fourier

methods for n-wave interactions. Photonics Technology Letters, IEEE, 20(23).

65



[9] Bengt Fornberg. A practical guide to pseudospectral methods. Cambridge university

press, 1998.

[10] Gunwoo Kim, Changhoon Lee, and Kyung-Duck Suh. Internal generation of waves:

Delta function method and source term addition method. Ocean Engineering, 34:

2251–2264, 2007.

[11] Lie She Liam. Mathematical modelling of generation and forward propagation of

dispersive waves. PhD thesis, University of Twente, 2013.

[12] J.C. Luke. A variational principle for a fluid with a free surface. Journal of Fluid

Mechanics, 27, part 2:395–397, 1967.

[13] E. van Groesen and I. van der Kroon. Fully dispersive dynamic models for surface

water waves above varying bottom, part 2: Hybrid spatial-spectral implementations.

Wave Motion, 49:198–211, 2012.

[14] Ge Wei, James T. Kirby, and Amar Sinha. Generation of waves in Boussinesq models

using a source function method. Coastal Engineering, 36:271–299, 1999.

[15] V.E. Zakharov. Stability of periodic waves of finite amplitude on the surface of a

deep fluid. Journal of Applied Mechanics and Technical Physics, 9, issue 2:190–194,

March–April 1968.

66


