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ABSTRACT 

 Soil is essential for much of life on earth. Microbes are ubiquitous in this environment – 

billions of microbial cells can occupy one gram of soil. Soil microbes participate in carbon 

sequestration, nutrient cycling, and soil formation - all critical ecosystem processes, yet are poorly 

understood. A key factor in this knowledge gap is the low proportion of cultivated soil microbes – 

by one estimate 1/3 of soil dwelling bacteria and archaea do not have a cultured representative 

of their phylum. In my thesis research, I have studied the bacteria and archaea that live in soil 

using culture-independent techniques; specifically studying the unique ecological strategies they 

employ to excel in what can be a challenging habitat. First, I described how microbial 

communities change with soil depth; I found that as soil depth increases soil microbes become 

even more mysterious - candidate phyla and uncultured groups flourish in the low nutrient 

environment of deep soils. Here, I assembled two genomes from the candidate phylum AD3 and 

describe the strategies it employs to survive in deep soils. Second, I examined one particular soil 

bacterium - Ca. Udaeobacter copiosus. I show that Ca. U. copiosus is incredibly abundant and 

widespread in soils across the globe, all while relying on a reduced genome with many putative 

auxotrophies. This observation stands in contrast to prevailing theories that to succeed in soil, 

bacteria and archaea must possess vast metabolic versatility to take advantage of the diverse, yet 

limited nutrient sources characteristic of soil. Lastly, I describe a rearrangement of the rRNA 

operon where the 16S and 23S rRNA genes are “unlinked” and transcribed separately. I show 

that this rearrangement is common in many environmental bacteria and archaeal groups, and is 

especially widespread in soil - in one sample 41% of rRNA genes were unlinked. Together, these 

studies shed a measure of light on the uncultivated majority dwelling in soil, showing that 

uncultured environmental taxa adopt unique strategies to succeed in this environment, and in 

some cases harbor biology that stands apart from what we have learned from model organisms 

like Bacillus subtilis and Escherichia coli.  
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CHAPTER I 

INTRODUCTION AND OVERVIEW 

Introduction 

 Until recently, microbiology research was largely restricted to the fraction of microbial 

cells capable of being cultured in laboratories. The proportion of cells in an environment that can 

be cultured is often quite variable - in some environments, like the human body, most of the 

population can be recapitulated in culture (45-97% of the bacteria and archaea in the human 

body belong to a genera with a cultured representative (Lloyd et al., 2018). However, the 

proportion of cultivable cells in soil is a more sobering figure - only 18% of bacteria and archaea 

in soil belong to genera with a cultured representative (Lloyd et al., 2018). In fact, on average, 

1/3 of the bacteria and archaea in soil do not even have a cultured representative of their 

phylum (as of 2018; Lloyd et al., 2018).  

 As a result, our understanding of the bacteria and archaea that live in soil is often 

restricted to fast-growing, copiotrophic taxa. Copiotrophic taxa can easily make use of labile 

forms of carbon such as glycine and sucrose (Goldfarb et al., 2011), and as a result are often 

straightforward to culture. Recently, advances in sequencing and bioinformatics have led to 

reconstruction of genomes independent of cultured isolates, allowing us a peek into the genomes 

of the uncultured majority (Hug et al., 2016; Rinke et al., 2013). Making use of these genomes, a 

new tree of life recently demonstrated how far culture collections lag behind true microbial 

diversity - 68 bacterial and archaeal phyla were without a cultured representative (Hug et al., 

2016). These uncultured microbes not only harbor information key to understanding 

geochemical processes in soil (Yuan et al., 2012; Hayatsu et al., 2008), but also practical 

information with direct impacts on human health. For example, recent work has shown that a 

wide variety of genes for the biosynthesis of novel secondary metabolites lurk in the genomes of 

uncultured Acidobacteria, Verrucomicrobia, Gemmatimonadetes, and Rokubacteria (Crits-

Christoph et al., 2018). Indeed, one of the newest antibiotics - teixobactin - was isolated from an 

uncultured soil bacterium (Ling et al., 2015).  

 My dissertation research describes these mysterious bacteria and archaea that make up 

the majority of microbes in soil using culture-independent methods. First, I have shown that soil 

microbial communities vary consistently with depth across large geographic distances - as soil 

depth increases nutrients plummet and novel uncultured soil bacteria and archaea generally 
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become more common. I assembled two genomes from an uncultured candidate phylum 

(Dormibacteraeota, previously AD3) that becomes more abundant with depth and showed that 

members of this group appear to use ecological strategies tailored to their nutrient poor 

environment, including spore formation and scavenging of trace CO2 for sustenance. Secondly, I 

show that a large genome is not a prerequisite to success in the soil environment. Generally, taxa 

with larger genomes have more metabolic versatility, a feature thought to enhance survival and 

niche space in the soil environment, where resources can be diverse, but sparse (Konstantinidis 

and Tiedje, 2004). Using the uncultured Verrucomicrobia Candidatus ‘Udaeobacter copiosus’ as 

an example, I show that bacteria with small genomes can be just as ubiquitous in soil, but may be 

more difficult to culture - likely due to outsourcing of metabolite synthesis to the environment 

(Giovannoni et al., 2014). Lastly, I discuss an unusual arrangement of rRNA genes where the 16S 

and 23S are “unlinked” and no longer located in the same operon. I show that unlinked rRNA 

operons are more widespread in bacteria and archaea than previously assumed, especially among 

uncultured environmental populations. This unusual arrangement appears to be quite common 

in soils (41% of rRNA genes in one soil) and suggests that the biology of uncultivated populations 

does not necessarily conform to the traditional paradigms derived from model organisms like 

Escherichia coli and Bacillus subtilis.  

 

Thesis Overview 

Chapter II: Uncultured oligotrophic microbes dominate subsurface soils. Resource 

availability decreases dramatically as you descend through a soil profile – the concentrations of 

available carbon and nitrogen plummet with depth, as do microbial biomass levels. The bacteria 

and archaea that live in subsurface soils face a much more challenging resource landscape than 

those living at the surface. In this chapter, I describe aspects of microbial communities that 

appear to change consistently with depth regardless of geographic location. I found that the 

proportion of poorly studied bacteria and archaea rises with depth - candidate phyla and 

uncultivated groups abound in deep soils. To explore these understudied groups in more detail, I 

assembled two genomes from members of candidate phylum AD3 from metagenomic sequences 

and discuss the specific strategies members of this phylum may employ to attain high abundance 

in deep soils. 
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 Chapter II is adapted from Brewer et al 2019 (fingers crossed). This project was a huge 

collaborative effort, with samples originating from all 10 Critical Zone Observatories (CZOs) 

across the US. While there are twenty-five co-authors for this paper, their contributions primarily 

involved logistics, sample collection and processing, DNA extraction, and soil characterization. I 

led the amplicon and shotgun metagenomic analyses, along with all bioinformatics and data 

analyses. I assembled and binned all genomes and performed the PMA spore-selection lab work. 

Noah Fierer and I wrote the manuscript, with input from all co-authors.  

  

Chapter III: Genome reduction in an abundant and ubiquitous soil bacterium, 

‘Candidatus Udaeobacter copiosus’. In previous soil studies from the Fierer lab (Ramirez et 

al., 2014; Fierer et al., 2013; Leff et al., 2015; Fierer et al., 2012; Bergmann et al., 2011), one 

group of bacteria was almost always found to be abundant in soil ecosystems, regardless of 

geographic location or soil type - Verrucomicrobia group DA101. This group, while one of the 

most abundant groups of bacteria in soil, had previously only been described through 

environmental amplicon sequencing. In order to understand the key to its success in soils, we 

examined >1000 soils encompassing many soil types from across the globe and found that 

DA101 was within the top ten most abundant groups of bacteria in over 70% of the soils we 

analyzed. We leveraged this abundance to assemble a near complete genome from metagenomic 

data - a difficult feat in soil, where bacterial and archaeal hyper-diversity often confounds 

assemblers (Howe et al., 2014). We named the organism whose genome we assembled Candidatus 

Udaeobacter copiosus and discovered it has a significantly smaller genome than most soil 

organisms (~2.8 Mbp versus the average 4.74Mbp; Raes et al., 2007). Because of the high degree 

of heterogeneity in soils, both in terms of environmental conditions and the quality and quantity 

of available nutrients, it was previously assumed that soil microorganisms must be capable of 

metabolizing a broad array of substrates and quickly adapting to changing environmental 

conditions to succeed in soil, resulting in large average genome sizes (Konstantinidis and Tiedje, 

2004; Barberán et al., 2014). Ca. U. copiosus is interesting because it does not possess the diverse 

metabolic capability of other soil organisms - in fact it appears to be auxotrophic for many amino 

acids. By reducing the components it must directly synthesize, Ca. U. copiosus is able to eliminate 

corresponding biosynthetic machinery, reducing the size of its genome and the baseline level of 

energy needed to sustain its cells. 
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 This chapter is adapted from Brewer et al 2016. I personally performed all analyses 

tracking Ca. U. copiosus abundance through >1000 soils samples, reconstructed near-full length 

Verrucomicrobia 16S rRNA sequences with EMIRGE, constructed the Verrucomicrobia 

phylogeny, and analyzed the metabolic pathways of the Ca. U. copiosus genome. The Ca. U. 

copiosus genome was assembled and binned by Kim M. Handley. Noah Fierer, Paul Carini, and 

I wrote the paper. 

 

Chapter IV: Unlinked rRNA genes are widespread among environmental bacteria 

and archaea. When a molecule is crucial to the function of a cell, its components are usually 

highly resistant to change and evolutionarily constrained. For example, textbooks teach that the 

RNA components of the ribosome (rRNA) are organized into a single operon conserved across 

all prokaryotic life. In reality, there are some prokaryotes that do not share this canonical rRNA 

order; their 16S and 23S rRNA genes are separated and referred to as "unlinked". These 

prokaryotes are under selection to minimize detrimental mutations to their genomes and even 

possess genetic machinery capable of correcting rogue genome rearrangements. Unlinked rRNA 

genes are relatively common in soil - roughly 40% of prokaryotic rRNA in some soils is unlinked, 

a much higher fraction than in other environments (0% in the human gut). Additionally, certain 

ubiquitous and abundant soil bacteria (Candidatus Udaeobacter copiosus of the phylum 

Verrucomicrobia) also possess unlinked rRNA genes. These two facts imply that unlinked rRNA 

genes may be advantageous in soil.  

 In this chapter, I explore which taxa have unlinked rRNA genes using genome databases 

and long-read sequencing technology, along with the phylogenetic distribution and genomic 

attributes associated with this trait. I also discuss potential evolutionarily advantages of this 

arrangement. I performed all analyses associated with this project, leveraging existing sequence 

data from public databases.  
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CHAPTER II 

UNCULTURED OLIGOTROPHIC MICROBES DOMINATE SUBSURFACE SOILS 

 
Adapted from:  
Brewer TE, et al. (2019) Ecological and genomic attributes of novel bacterial taxa that dominate 

subsurface soil horizons. (Submitted) 
 

Abstract 

 While most bacterial and archaeal taxa living in surface soil horizons remain undescribed, 

this problem is exacerbated in deeper soils owing to the unique oligotrophic conditions found in 

the subsurface. Additionally, previous studies of soil microbiomes have focused almost exclusively 

on surface soils, even though the microbes living in deeper soils also play critical roles in a wide 

range of biogeochemical processes. We examined soils collected from 20 distinct profiles across 

the U.S. to characterize the bacterial and archaeal communities that live in subsurface soils and 

to determine whether there are consistent changes in soil microbial communities with depth 

across a wide range of soil and environmental conditions. We found that, irrespective of location, 

bacterial and archaeal diversity decreased with depth, as did similarity of microbial communities 

to those found in surface horizons. We observed five phyla that consistently increased in relative 

abundance with depth across our soil profiles: Chloroflexi, Nitrospirae, Euryarchaeota, and 

candidate phyla GAL15 and AD3. Leveraging the unusually high abundance of AD3 at depth, 

we assembled genomes representative of this candidate phylum and identified traits that are likely 

to be beneficial in low nutrient environments, including the synthesis and storage of 

carbohydrates, the potential to use carbon monoxide (CO) as a supplemental energy source, and 

the ability to form spores. Together these attributes likely allow members of the candidate 

phylum AD3 to flourish in deeper soils and provide insight into the survival and growth strategies 

employed by the microbial taxa that thrive in oligotrophic soil environments. 
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Introduction 

 Subsurface soils often differ from surface horizons with respect to their pH, texture, 

moisture levels, nutrient concentrations, clay mineralogy, pore networks, redox state, and bulk 

densities. Globally, the top 20 cm of soil contains nearly five times more organic carbon (C) than 

soil in the bottom 20 cm of meter-deep profiles (Jobbágy and Jackson, 2000). In addition, 

residence times of organic C pools are typically far longer in deeper soil horizons (Balesdent et 

al., 2018), suggesting that much of the soil organic matter found in the subsurface is not readily 

utilized by microbes. Unsurprisingly, the strong resource gradient observed through most soil 

profiles is generally associated with large declines in microbial biomass (Schütz et al., 2010; Eilers 

et al., 2012; Fierer et al., 2003; Blume et al., 2002; Spohn et al., 2016; Stone et al., 2014); per 

gram soil, microbial biomass is typically one to two orders of magnitude lower in the subsurface 

than surface horizons (Eilers et al., 2012; Blume et al., 2002; Spohn et al., 2016). Although 

microbial abundances in deeper soils are relatively low on a per gram soil basis, the cumulative 

biomass of microbes inhabiting deeper soil horizons can be on par with that living in surface 

soils, owing to the large mass and volume of subsurface horizons (Fierer et al., 2003; Schütz et al., 

2010). Moreover, those microbes living in deeper horizons can play important roles in mediating 

a myriad of biogeochemical processes, including processes associated with soil C and nitrogen (N) 

dynamics (Kramer and Gleixner, 2008; Banning et al., 2015), soil formation (Oh and Richter, 

2005), iron redox reactions (Fimmen et al., 2008; Hall et al., 2016), and pollutant degradation 

(Schwarz et al., 2018). 

 Given that soil properties typically change dramatically with depth, it is not surprising 

that the composition of soil microbial communities also generally changes with depth through a 

given profile (Eilers et al., 2012; Fierer et al., 2003; Will et al., 2010; Blume et al., 2002; Kramer 

et al., 2013; Stone et al., 2014). In some cases, the differences observed in microbial communities 

with depth through a single soil profile can be large enough to be evident even at the phylum 

level of resolution. For example, both Chloroflexi (Will et al., 2010; Tas et al., 2014) and 

Nitrospirae (Will et al., 2010) may increase in relative abundance with depth. However, while 

previous work suggests that particular taxa can be relatively more abundant in deeper soils, it is 

unclear if such patterns are consistent across distinct soil and ecosystem types. We hypothesized 

that there are specific groups of soil bacteria and archaea that are typically rare in surface 

horizons, but more abundant in deeper soils. Taxa that are proportionally more abundant in 
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deeper soil horizons likely have slow-growing, oligotrophic life history strategies due to the lack of 

disturbance at depth and the low resource conditions typical of most deeper soil horizons (Fierer, 

2017). Likewise, we expect deeper soils to harbor higher proportions of novel and undescribed 

microbial lineages given that oligotrophic taxa are typically less amenable to in vitro, cultivation-

based investigations (Vartoukian et al., 2010). 

 We designed a comprehensive study to investigate how soil bacterial and archaeal 

communities change with soil profile depth, to identify taxa that are consistently more abundant 

in deeper horizons, and to determine what life history strategies enable these taxa to thrive in the 

resource-limited conditions typical of most subsurface horizons. We collected soil samples at 10-

cm increments from 20 soil profiles representing a wide range of ecosystem types throughout the 

U.S., with most of the profiles sampled to one meter in depth. We examined the bacterial and 

archaeal communities of these soil profiles by pairing amplicon 16S rRNA gene sequencing with 

shotgun metagenomic sequencing on a subset of samples. We found that deeper soil horizons 

typically harbored more undescribed bacterial and archaeal lineages, and we identified specific 

phyla (including AD3, GAL15, Chloroflexi, Euryarchaeota, and Nitrospirae) that consistently 

increased in relative abundance with depth across multiple profiles. Moreover, we found one 

candidate phylum (AD3) to be particularly abundant in deeper soil horizons with low organic C 

concentrations. From our metagenomic data, we were able to assemble genomes from 

representative members of this candidate phylum and document the life history strategies, 

including low maximum growth rates and spore-forming potential, that are likely advantageous 

under low resource conditions. 

 

Results and Discussion 

Sample descriptions and soil properties linked to soil depth 

 We collected soils from a network of 10 current and former Critical Zone Observatories 

(CZOs) located across the U.S. (Figure 2.1a) that span a broad range of hydrogeological 

provinces, soil orders, and ecosystem types, including tropical forest, temperate forest, grassland, 

and cropland sites. Soils were sampled from two distinct profiles per CZO for a total of 20 

different soil profiles. Soils were collected from the first meter (where possible) of freshly 

excavated profiles, sampling at 10 cm increments and focusing on mineral soil horizons only (O 

horizons, if present, were not sampled). Together, this collection effort yielded 179 individual soil 
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samples collected across sites with a wide range of different climatic conditions (e.g., mean annual 

temperatures ranging between 5 - 23 °C and mean annual precipitation ranging from 26 - 402 

cm y-1). The sampled profiles ranged from poorly developed Entisols and Inceptisols to highly 

developed Oxisols and Ultisols (as per the U.S. Soil Taxonomy system), with the samples 

reflecting an extremely broad range of soil properties. For example, in the 0-10 cm depth 

increment, soil pH ranged from 3.3 to 9.8, organic carbon concentrations spanned 1.3% to 

21.6%, and texture from 0% to 45% silt + clay across the profiles.  

 

 
 
Figure 2.1: A) Site map of sampling locations. We analyzed bacterial and archaeal communities 
from 2 soil pits located at each of 10 different CZOs across the U.S. Each pit was sampled in 10 
cm intervals from surface soils to one meter in depth (when possible). B) Bray-Curtis dissimilarity 
to surface samples increases with depth. As depth increases, soil bacterial and archaeal 
communities become less similar to those communities at the surface. C) Bacterial and archaeal 
diversity decreases with depth. Colors of points match the colors of the CZO sites indicated in 
panel A with two profiles sampled per site (n=20). D) The proportion of 16S rRNA gene 
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sequences from the sampled soils for which representative genome data are available decreases 
with depth. We matched our 16S rRNA gene amplicon sequences to 16S rRNA genes from 
finished bacterial and archaeal genomes in the NCBI database. At deeper soil depths, we found 
that fewer taxa in our dataset had representative genomes, indicating that the bacterial and 
archaeal taxa found in deeper soil horizons are less represented in genomic databases than those 
found in surface soils. 
  

 Some soil properties changed consistently with depth across all 20 profiles. Total N and 

organic C concentrations were both negatively correlated with soil depth, in agreement with 

previous observations (Jobbágy and Jackson, 2000; Marty et al., 2017) (depth vs. %C rho = -0.61, 

p<0.001; depth vs. %N rho = -0.56, p<0.001; Spearman). On average, soil total organic C 

concentrations below 50 cm were 4.4 times lower than in surface soils, while total N 

concentrations were 6.3 times lower. While we measured a suite of additional chemical and soil 

properties, only clay concentrations exhibited consistent changes with depth (with percent clay 

generally increasing with depth; rho = 0.29, p < 0.001; Spearman). Given that our sampling 

effort included a wide range of different soil types and the expectedly high degree of variability in 

inter- and intra-profile edaphic characteristics, our goal was not to determine if distinct soil 

samples harbored distinct microbial communities or to characterize the factors related to shifts in 

overall community composition. Rather, our goal was to determine if there were any consistent 

changes in soil microbial communities with depth across the 20 sampled profiles. 

 

Community characteristics linked to soil depth  

 Unsurprisingly, we found that the location of each soil profile had a strong influence on 

the composition of soil bacterial and archaeal communities as determined by 16S rRNA gene 

amplicon sequencing (r = 0.47, p < 0.001, Permanova). Individual soil profiles generally 

harbored distinct microbial communities (Figure 2.2, Supplemental Figure S2.1). In addition to 

this variation across the profiles, soil depth also had a significant effect on the composition of the 

bacterial and archaeal communities within individual profiles (p < 0.01 for 16 of 20 profiles, rho 

values ranging from 0.24 - 0.45). In general, the variation in community composition with depth 

within a given profile, while significant, was typically less than the differences in soil communities 

observed across different profiles when all profiles and soil depths were examined together 

(Depth: r = 0.02, p < 0.001, Location: r = 0.47, p < 0.001, Permanova). 
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 Several characteristics of the bacterial and archaeal communities changed consistently 

with depth despite the high degree of heterogeneity observed across the different soil profiles. As 

soil depth increased, microbial communities found at depth became increasingly dissimilar to 

those found in surface horizons (Figure 2.1B). When we analyzed the entire sample set together, 

dissimilarity to surface soils (0-10cm depth) was positively correlated with depth (p < 0.001, rho = 

0.73, Spearman). This trend also held for 17 out of 20 individual soil profiles (depth was not 

significant in both Eel sites and IML site 1). We also found that the diversity of microbial 

communities (taxon richness) generally decreased with depth, with several CZOs exhibiting 

especially stronger declines with depth (Calhoun, Luquillo, and Southern Sierra) than others 

(Figure 2.1C). Lastly, when we compared the 16S rRNA gene sequences from this study to those 

16S rRNA gene sequences from finished bacterial and archaeal genomes in the NCBI database, 

we found that the proportion of taxa for which genomic data is available declined with depth 

(from 6.2 - 26.1% in surface soils, to 1.9 - 18.0% in the deepest horizons sampled, Figure 2.1D). 

Although representative genomes are unavailable for the majority of soil bacterial and archaeal 

taxa (Lloyd et al., 2018), genomic information from closely-related taxa is available for a smaller 

proportion of taxa living at depth than those found in surface soil horizons.   
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Figure 2.2: Different soil profiles have distinct microbial communities. Here we show the 
relative abundances of the eight most abundant phyla identified from our 16S rRNA gene 
amplicon sequencing effort. Not all profiles were sampled to one meter due to variable bedrock 
depth. Note that the two profiles sampled from each CZO site were selected to represent distinct 
soil types. 
 
Taxonomic shifts with soil depth  

 Although each soil profile harbored distinct microbial communities (Figure 2.2), we 

identified five phyla that consistently increased in abundance with soil depth as measured by 

Spearman correlations across the entire dataset: Chloroflexi, Euryarchaeota, Nitrospirae, and the 

candidate phyla AD3 and GAL15 (Figure 2.3). For example, GAL15 and AD3 were typically 30 

and 27 times more abundant in soils at 90 cm than in surface horizons, respectively. The 

candidate phylum AD3, Chloroflexi, and Nitrospirae have previously been found to increase in 

abundance with increasing soil depth in individual profiles (Will et al., 2010; Tas et al., 2014), 

while candidate phylum GAL15 has been shown to be abundant in oxic subsurface sediments 

(Lin et al., 2011). Members of these phyla are likely oligotrophic taxa adapted to survive in the 
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resource-limited conditions found in deeper horizons. Indeed, soil Euryarchaeota (Leff et al., 

2015), Chloroflexi, and Nitrospirae (Fierer et al., 2011) have been shown to decrease in 

abundance upon soil fertilization. These five phyla are also underrepresented in public genome 

databases; together, they account for only 2.8% of bacterial and archaeal genomes deposited in 

IMG (as of Dec 2018), reinforcing the observation highlighted in Figure 2.1D that poorly 

described taxa tend to be relatively more abundant in deeper soil horizons. 

 

 
Figure 2.3: Five bacterial and archaeal phyla that consistently increased in relative abundance 
with soil depth. These phyla were identified via Spearman rank correlations against depth (FDR 
corrected p values < 0.02, rho > 0.22).  
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metagenomic sequencing, targeting those profiles that displayed the most dissimilarity among 
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average of 7.84 million quality-filtered reads per sample. We first used these metagenomic data 

to quantify changes in the relative abundances of the bacterial, archaeal, and eukaryotic domains 

with depth. The overwhelming majority of rRNA gene sequences that we detected were from 
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(0.04% - 4.27%). Interestingly, we found that the proportion of eukaryotic sequences in our 

samples decreased with depth (rho = -0.32, p = 0.05). Most of these eukaryotic rRNA gene reads 

were classified as Fungi (58%), then Charophyta (16%), Metazoa (9.3%), and Cercozoa (7.0%). 

These results are in line with previous work showing that the contributions of eukaryotes, most 

notably fungi, to microbial biomass pools typically decrease with soil depth (Turner et al., 2017). 

 We also directly compared the results obtained from our 16S rRNA amplicon and 

shotgun metagenomic sequencing across the same set of samples. We did this to check whether 

our PCR primers introduced significant biases in the estimation of taxon relative abundances. 

We found that the shotgun and amplicon-based estimations of the abundances of each of the 

eight phyla that were the most ubiquitous and abundant across the sampled profiles (Figure 2.2) 

were well correlated (Supplemental Figure S2.2, mean rho values = 0.70). Next, we checked 

whether our primers missed any major groups of bacteria or archaea, as it has been noted that 

many taxa from the Candidate Phyla Radiation (CPR, recently assigned to the superphylum 

Patescibacteria; Parks et al., 2018) are not detectable with the primer set used here (Eloe-Fadrosh 

et al., 2016). While we found that our primer pair did fail to recover sequences from the 

superphylum Patescibacteria, these taxa were rare in our data - the entire superphylum 

accounted for only 0.5% of 16S rRNA gene reads across the whole metagenomic dataset. 

 

Candidate phylum AD3 is negatively correlated with organic carbon 

 We found that members of phylum AD3 were consistently more abundant in deeper soil 

horizons and particularly abundant in subsurface horizons from the Calhoun and Shale Hills 

CZOs (Figure 2.4). In these soils, AD3 dominated the microbial communities – in some samples, 

over 60% of 16S rRNA sequences were classified as belonging to members of the AD3 candidate 

phylum. The high abundances of AD3 were confirmed with shotgun metagenomic analyses 

(Supplemental Figure S2.2), indicating the abundances of this phylum were not inflated by PCR 

primer biases. Candidate phylum AD3 was first observed in a sandy, highly weathered soil from 

Virginia, U.S. (Zhou et al., 2003) and does not yet have a representative cultured isolate. 

Recently, the phylum was renamed Dormibacteraeota after three genomes were assembled from 

Antarctic soils (Ji et al., 2017). Other representative genomes from this phylum have also become 

available with the recent addition of 47 genomes assembled from thawing permafrost (Woodcroft 

et al., 2018). However, we refer to this phylum as ‘AD3’ to maintain consistency with other, 
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previously published studies. The phylum AD3 has been observed in subsurface soil horizons 

previously (Kim et al., 2014; Billings et al., 2018), and its relative abundance has been found to 

be negatively correlated with water content, C, N, and total potential enzyme activities (Tas et 

al., 2014).  

 

 
Figure 2.4: A) The relative abundance of phylum AD3 is variable across different soil profiles, 
but generally increases with depth. The samples used for the AD3 genome assemblies are noted 
with stars. B) The two AD3 genomes we assembled from the soil profile metagenomic data 
cluster phylogenetically with previously published AD3 genomes (Ji et al., 2017). Our deep soil 
AD3 genomes also fall between the known sister phyla Chloroflexi and Armatimonadetes, 
validating their identity as members of candidate phylum AD3. This tree was created using the 
concatenated marker gene phylogeny generated from checkM (Parks et al., 2015), and was 
plotted using ggtree (Yu et al., 2016) Only closely related phyla are included in the tree. 
 
 While the abundance of phylum AD3 was generally positively correlated with depth 

across all samples included in this study (rho = 0.22, p = 0.02, Spearman), this pattern did not 

hold for all profiles (Figure 2.4). Instead, we found organic C concentrations to be the best 

predictor of the abundance of AD3 in these soil communities (Supplemental Figure S2.3); AD3 

was typically eight times more abundant in soils with less than 1% organic C than in soils where 

organic C concentrations were greater than 2%. Because soil depth and organic C 
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concentrations were correlated across the profiles studied here, we used an independent dataset 

of surface soils (0-10 cm) collected from 1006 sites across Australia to determine if the 

abundances of AD3 were also correlated with organic C concentrations when analyses were 

restricted to a broad range of distinct surface soils (Bissett et al., 2016). Indeed, we found that the 

relative abundances of AD3 in the Australian surface soil dataset (which ranged from 0.0 to 7.0% 

of 16S rRNA gene sequences) were also negatively correlated with soil organic carbon 

concentrations (Supplemental Figure S2.3). Together these results indicate that AD3 is typically 

most abundant in surface or subsurface soils where organic C concentrations are relatively low. 

Additionally, given the high abundance of AD3 in many of the Australian surface soils and given 

that subsoil oxygen concentrations can remain relatively high (Hall et al., 2016), it is unlikely that 

soil-dwelling members of this phylum are obligate anaerobes.  

 

AD3 draft genomes recovered from metagenomic data 

 To gain more insight into the potential traits and genomic attributes of soil AD3, we 

conducted deeper shotgun metagenomic sequencing on several soils where AD3 was found to be 

particularly abundant (Figure 2.4) with the goal of assembling draft genomes from members of 

this group. We were able to assemble two AD3 genomes, both from deep soils (Figure 2.4). These 

genomes are considered “substantially” complete according to checkM guidelines (Parks et al., 

2015); bin 3 is estimated to be 72.7% complete at 3.4 Mb, while bin JG-37 is 74.54% complete at 

3.0 Mb (further genome details in Supplemental Table S2.1). These genomes share only 47.4% 

average amino acid identity (AAI) (Konstantinidis and Tiedje, 2005) and cluster phylogenetically 

with the AD3 genomes assembled from Antarctic soil metagenomes (Ji et al., 2017), falling 

between the phyla Armatimonadetes and Chloroflexi (Figure 2.4).  

 Analyses of the AD3 genomes that we recovered indicate that members of this phylum 

are aerobic heterotrophs adapted to nutrient poor conditions. Both AD3 genomes encode high-

affinity terminal oxidases, indicative of an aerobic metabolism (cbb3 binJG37, bd bin3). These 

genomes contain no markers of an autotrophic metabolism, with no RuBisCO or hydrogenase 

genes detected in either of the assembled genomes. Both AD3 genomes contain trehalose 6-

phosphate synthase, a key gene in the pathway for trehalose synthesis, a C storage compound 

that also confers resistance to osmotic stress and heat shock (Fung et al., 2013) and protects cells 

from oxidative damage, freezing, thermal injury, or desiccation stress (Kandror et al., 2002). 
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Additionally, both genomes contain glycogen catalysis (alpha-amylase, glucoamylases) and 

synthesis (glycogen synthase) genes. The ability to synthesize, store, and break down glycogen has 

been shown to promote the survival of bacteria during periods of starvation (Wilson et al., 2010; 

Fung et al., 2013). These attributes likely confer an advantage in resource-limited soils, as the 

ability to store C for later use may be advantageous in environments where organic C is 

infrequently available or of low quality.  

 Based on several lines of evidence, soil-dwelling AD3 appear to be oligotrophic taxa with 

low maximum growth rates. First, as mentioned above, these taxa have the highest relative 

abundances in soils with low organic C concentrations where we would expect oligotrophic 

lifestyles to be advantageous. Second, both AD3 genomes appear to encode a single rRNA 

operon, a feature often linked to low maximum potential growth rates (Roller et al., 2016). Third, 

although we cannot directly measure the maximum growth rate of uncultivated bacterial cells, 

we can estimate maximum growth rate from genomes by measuring codon usage bias with the 

ΔENC’ metric (Novembre, 2002). ΔENC’ is a measure of codon bias in highly expressed genes, 

and has been shown to correlate strongly with growth rate for both bacteria and archaea (Vieira-

Silva and Rocha, 2009). We calculated ΔENC’ for our AD3 genomes, the Antarctic AD3 

genomes (Ji et al., 2017), the thawing permafrost AD3 genomes (Woodcroft et al., 2018), and a 

set of bacterial and archaeal genomes which matched the 16S rRNA gene amplicon sequences 

recovered from the soil profile samples at ≥99% sequence similarity. The ΔENC’ values for all 

the AD3 genomes clustered together towards the lower end of the spectrum for our set of soil 

bacteria and archaea, indicating that members of the phylum AD3 are likely to exhibit low 

potential growth rates (Supplemental Figure S2.4).  

 To our knowledge, all previous AD3 genomes were recovered from either Antarctic 

desert (Ji et al., 2017) or permafrost soils (Woodcroft et al., 2018), while our genomes hail from 

subsurface soils collected from temperate regions. Despite these disparate origins, some central 

characteristics of the phylum AD3 appear to be consistent. Similar to the Antarctic AD3 

genomes, our AD3 genomes also contained carbon-monoxide (CO) dehydrogenase genes. 

However, there are two types of CO dehydrogenases, which differ in their ability to oxidize CO 

and the rate at which they do so (King and Weber, 2007). While the active site of form I is 

specific to CO dehydrogenases, form II active sites also occur in many molybdenum 

hydroxylases that do not accept CO as a substrate (King and Weber, 2007). Using sequence data 



17 

from our assembled AD3 genomes, the Antarctic AD3 genomes, and selected CO 

dehydrogenase large subunit sequences (coxL), we generated a phylogenetic tree based on the 

amino acid sequence of coxL (Supplemental Figure S2.5). With these analyses, we found that 

both of the AD3 genomes recovered here possess form II CO dehydrogenases, as do two of the 

Antarctic AD3 genomes. Although it has been shown that form II CO dehydrogenases can 

permit growth with CO as a sole C and energy source in some cases (Lorite et al., 2000), further 

work is needed to determine whether these genes allow AD3 to actively oxidize CO or if these 

genes code for molybdenum-containing hydroxylases responsible for other metabolic processes 

(Hille, 2005). Interestingly, one Antarctic AD3 genome also encodes a form I coxL, indicating 

that some members of this phylum are capable of CO oxidation (Supplemental Figure S2.5).  

 Analyses of our assembled AD3 genomes also reveal that these soil bacteria may be 

capable of spore formation. Altogether, our AD3 genomes contain 33 spore-related genes 

scattered across a variety of spore generation phases (Supplemental Table S2.2). Nutrient limiting 

conditions are known to trigger spore formation (Fujita and Losick, 2005), and sporulation can 

allow bacterial cells to persist until environmental conditions become more favorable. 

Additionally, members of the Chloroflexi, a sister phylum to AD3, are capable of spore 

formation (Cavaletti et al., 2006). Because there are no AD3 isolates available to test for 

sporulation, we adapted a method previously used in stool samples (Browne et al., 2016) to 

identify spore-forming taxa using a culture-independent approach. We incubated three soil 

samples from our study in 70% ethanol to kill all vegetative cells, and then used propidium 

monoazide (PMA) to block the amplification of DNA from these dead cells (Carini et al., 2016). 

We then sequenced these soils using our standard 16S rRNA gene amplicon method both with 

and without the ethanol and PMA treatment. We found that the abundances of the two 

dominant AD3 phylotypes were significantly higher in the spore-selected treatment than the 

untreated controls (Supplemental Table S2.3). Other known spore formers were enriched in the 

spore selection treatment as well, including taxa from the orders Actinomycetales, Bacillales 

(Browne et al., 2016), Myxococcales (Shimkets, 1999), and Thermogemmatisporales (Yabe et al., 

2011).  
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Conclusions 

 Our results indicate that, as soil depth increases, not only do bacterial and archaeal 

communities become less diverse and change in composition, but novel, understudied taxa 

become proportionally more abundant in deeper soil horizons. We identified five poorly studied 

bacterial and archaeal phyla that become more abundant in deeper soils across a broad range of 

locations, and investigated one of these further (the candidate phylum AD3) to determine what 

characteristics may allow AD3 to survive and dominate in resource-limited soil environments. 

We found that members of AD3 are likely slow-growing aerobic heterotrophs capable of 

persisting in low resource conditions by putatively storing and processing glycogen and trehalose. 

Members of this candidate phylum also contain type I and II carbon monoxide dehydrogenases, 

which can potentially enable the use of trace amounts of CO as a supplemental energy source. 

We also found that soil-dwelling AD3 are likely capable of sporulation, another trait that may 

allow cells to persist during periods of limited resource availability. More generally, analyses of 

these novel members of understudied phyla suggest life history strategies and traits that may be 

employed by oligotrophic microbes to thrive under resource-limited soil conditions. 
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CHAPTER III 

GENOME REDUCTION IN AN ABUNDANT AND UBIQUITOUS SOIL  

 BACTERIUM ‘CANDIDATUS UDAEOBACTER COPIOSUS’ 

 
Adapted from:  
Brewer TE, Handley KM, Carini P, Gilbert JA, Fierer N. (2016). Genome reduction in an 
 abundant and ubiquitous soil bacterium ‘Candidatus Udaeobacter copiosus’. Nature 
 Microbiology 2: 16198. 
 
 
Abstract 

 Although bacteria within the Verrucomicrobia phylum are pervasive in soils around the 

world, they are underrepresented in both isolate collections and genomic databases. Here we 

describe a single verrucomicrobial group within the class Spartobacteria that is not closely related 

to any previously described taxa. We examined >1000 soils and found this spartobacterial 

phylotype to be ubiquitous and consistently one of the most abundant soil bacterial phylotypes, 

particularly in grasslands, where it was typically the most abundant. We reconstructed a nearly 

complete genome of this phylotype from a soil metagenome for which we propose the provisional 

name ‘Candidatus Udaeobacter copiosus’. The Ca. U. copiosus genome is unusually small for a 

cosmopolitan soil bacterium, estimated by one measure to be only 2.81 Mbp, compared to the 

predicted effective mean genome size of 4.74 Mbp for soil bacteria. Metabolic reconstruction 

suggests that Ca. U. copiosus is an aerobic heterotroph with numerous putative amino acid and 

vitamin auxotrophies. The large population size, relatively small genome and multiple putative 

auxotrophies characteristic of Ca. U. copiosus suggest that it may be undergoing streamlining 

selection to minimize cellular architecture, a phenomenon previously thought to be restricted to 

aquatic bacteria. Although many soil bacteria need relatively large, complex genomes to be 

successful in soil, Ca. U. copiosus appears to use an alternate strategy, sacrificing metabolic 

versatility for efficiency to become dominant in the soil environment. 
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Introduction 

 Soils harbor massive amounts of undescribed microbial diversity. For example, more than 

120,000 unique bacterial and archaeal taxa were found in surface soils of Central Park in New 

York City, of which only ~15% had 16S rRNA gene sequences matching those contained in 

reference databases and <1% had representative genome sequence information (Ramirez et al., 

2014). This undescribed soil microbial diversity is not evenly distributed across the tree of life. 

For example, Acidobacteria and Verrucomicrobia, two of the more abundant bacterial phyla 

found in soil (Janssen, 2006; Bergmann et al., 2011) represent only 0.08% and 0.06% of all 

cultured bacterial isolates in the Ribosomal Database Project (RDP) (Wang et al., 2007) and only 

0.08% and 0.14% of publicly-available bacterial genomes found in Integrated Microbial 

Genomes (IMG; Chen et al., 2017), respectively. Although the ecology and genomic attributes of 

abundant soil taxa are beginning to be described (VanInsberghe et al., 2015), we still lack basic 

information on the vast majority of soil microbes. These knowledge gaps highlight that a huge 

fraction of living biomass in terrestrial systems remains enigmatic (Fierer et al., 2009) and that we 

are only beginning to identify the influence of specific microbes on soil biogeochemistry and 

fertility.  

 For this study, we focus our exploration of undescribed microbial diversity on the 

Verrucomicrobia phylum. Although Verrucomicrobia are generally recognized as being among 

the most numerically abundant taxa in soil (Janssen, 2006; Bergmann et al., 2011) we know very 

little about the ecological or genomic attributes that contribute to their success. The phylum 

Verrucomicrobia is highly diverse and its members possess a broad range of metabolic 

capabilities. For example, members of the class Methylacidiphilae are nitrogen-fixing acidophiles 

capable of methane oxidation (Dunfield et al., 2007) while Akkermansia muciniphila of the class 

Verrucomicrobiae is a mucin-degrading resident of the human gut (Everard et al., 2013). 

However, the dominant Verrucomicrobia found in soil typically belong to the class 

Spartobacteria. While Verrucomicrobia accounted for >50% of all bacterial 16S rRNA gene 

sequences in tallgrass prairie soils in the United States, >75% of these sequences were assigned to 

the class Spartobacteria (Fierer et al., 2013). Currently, the class Spartobacteria contains only a 

single described and sequenced isolate, Chthoniobacter flavus, a slow-growing aerobic heterotroph 

capable of using common components of plant biomass for growth (Sangwan et al., 2004; Kant 

et al., 2011). While Spartobacteria are prevalent in soils, they have also been observed in marine 
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systems (Spartobacteria baltica; Herlemann et al., 2013) and as nematode symbionts (genus 

Xiphinematobacter; Vandekerckhove et al., 2000).  

 Here we report the distribution of a dominant Spartobacteria lineage, compiling data 

from both amplicon and shotgun metagenomic 16S rRNA gene surveys to quantify its relative 

abundance across >1000 unique soils. We assembled a near-complete genome of this lineage 

from a single soil where it was exceptionally abundant. These results provide our first glimpse 

into the phylogeny, ecology, and potential physiological traits of a dominant soil 

Verrucomicrobia and suggest that members of this group are efficient at growing and persisting 

in the low resource conditions common in many soil microenvironments. 

 

Results and Discussion 

Distribution of the dominant Verrucomicrobia in soil 

 A single spartobacterial clade dominates bacterial communities found in a wide range of 

soil types across the globe. One phylotype from this group of Spartobacteria represented up to 

31% of total 16S rRNA gene sequences recovered from prairie soils (Fierer et al., 2013). This 

phylotype shares 99% 16S rRNA gene sequence identity with a ribosomal clone named ‘DA101’, 

first described in 1998 as a particularly abundant 16S rRNA sequence recovered from grassland 

soils in the Netherlands (Felske and Akkermans, 1998). To determine if the DA101 phylotype 

(termed ‘DA101’ herein) is abundant in other soils, we re-analyzed amplicon 16S rRNA gene 

sequence data obtained from >1000 soils representing a wide range of soil and site 

characteristics. We found that DA101 was on average ranked within the top two most abundant 

bacterial phylotypes in each study (Figure 3.1). In over 70% of the soils analyzed DA101 was 

within the top ten most abundant phylotypes. Interestingly, other phylotypes belonging to the 

same family as DA101 (Chthoniobacteraceae) were also found within the top 5 most abundant 

phylotypes of several studies (Figure 3.1).  

 As some 16S rRNA gene PCR primer sets can misestimate the relative abundance of 

Verrucomicrobia (Guo et al., 2016; Bergmann et al., 2011), we investigated whether the 

apparent numerical dominance of DA101 in amplicon datasets was a product of PCR primer 

biases. To do so, we quantified the abundance of DA101 16S rRNA genes within previously 

published soil shotgun metagenomes (Leff et al., 2015; Fierer et al., 2012). The relative 

abundance of DA101 in amplicon data was well correlated with the relative abundance of 
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DA101 in shotgun metagenomic data (P < 0.0001, rho = 0.50, n = 102). Confirming the 

amplicon-based results (Figure 3.1), we found that DA101 was also among the most abundant 

phylotypes observed in the soil bacterial communities characterized via shotgun metagenomic 

sequencing (Supplementary Figure S3.1). Therefore, we conclude that the numerical dominance 

of DA101 in soils is not simply a product of primer biases.  

 Despite DA101 being one of the most abundant phylotypes found in soil, its proportional 

abundance can vary significantly across soil types (Figure 3.1 and Supplementary Figure S3.1). 

We used metadata associated with each soil sample to determine which of the measured soil and 

site characteristics best predicted the relative abundance of DA101. We found that DA101 was 

significantly more abundant in grassland soils than in forest soils (P < 0.0001, n = 64, Mann-

Whitney test, Supplementary Figure S3.2); on average, DA101 is six times more abundant in 

grassland soils. These findings indicate that the soils in which DA101 excels do not overlap with 

those forest soils dominated by non-symbiotic Bradyrhizobium taxa, another ubiquitous and 

abundant group of soil bacteria (VanInsberghe et al., 2015). Across the grassland soils included in 

our meta-analysis, the relative abundance of DA101 was positively correlated with both soil 

microbial biomass (P < 0.0001, rho = 0.57, n = 31, Spearman, Supplementary Figure S3.3), and 

aboveground plant biomass (P < 0.0001, rho = 0.47, n = 366, Spearman, Supplementary Figure 

S3.3). Together, these results suggest that DA101 prefers soils receiving elevated amounts of 

labile carbon inputs. We did not identify any consistently significant correlations between the 

abundance of DA101 and other prokaryotic or eukaryotic taxa, suggesting that DA101 is unlikely 

to be a part of an obligate pathogenic or symbiotic relationship.  
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Figure 3.1: DA101 is one of the most abundant bacterial phylotypes found across >1000 soils 
collected from a wide range of ecosystem types throughout the world. The DA101 phylotype is 
indicated in blue while other abundant taxa are indicated in grey. Taxa are listed on the x-axis in 
order of their median rank abundance (taxa on the left are the most abundant). Stars denote data 
sets from previously published studies, from left to right: Fierer et al. 2013, Leff et al. 2015, Fierer 
et al. 2012, Ramirez et al. 2014, and Crowther et al. 2014. 
 

Diversity of soil Verrucomicrobia  

 We determined the phylogenetic placement of DA101 and other soil Verrucomicrobia by 

assembling near full-length 16S rRNA gene sequences from six distinct grassland soils collected 

from multiple continents (Figure 3.2, Supplementary Table S3.1). Although we were able to 

assemble representative 16S rRNA gene sequences from all verrucomicrobial classes except 

Methylacidiphilae, 93% of verrucomicrobial sequences fell within the Spartobacteria class and 

87% of these fell within the DA101 clade. These phylogenetic analyses confirm that DA101 

belongs to the class Spartobacteria (Figure 3.2). However, within the Spartobacteria class, the 
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DA101 clade is clearly distinct from the clade containing Chthoniobacter flavus (Sangwan et al., 

2004; Kant et al., 2011), as DA101 shares only 92% 16S rRNA gene sequence identity with C. 

flavus. These findings indicate that DA101 is likely a representative of a new verrucomicrobial 

genus. We propose the candidate genus name ‘Candidatus Udaeobacter’ for the DA101 clade; the 

proposed name combines Udaeus (‘of the earth’, Greek) with bacter (‘rod’ or ‘staff’, Greek), and 

like Chthoniobacter refers to one of the Spartoi of the Cadmus myth. We recommend the 

provisional name ‘Candidatus Udaeobacter copiosus’ for the DA101 phylotype, which refers to its 

numerical dominance in soil.  

 
Figure 3.2: Phylogenetic analyses of soil Verrucomicrobia. Stars denote 16S rRNA gene 
sequences of named isolates while circles represent environmental 16S rRNA gene sequences 
assembled from 6 soils using EMIRGE (Miller et al., 2013) (Supplementary Table S3.1). The 
uncultivated verrucomicrobial phylotype DA101 falls within a cluster distinct from cultivated 
Spartobacteria. Notable verrucomicrobial isolates and genera are labeled. Colors indicate 
verrucomicrobial classes. 
 

Draft genome of ‘Ca. Udaeobacter copiosus’ recovered from metagenomic data 

 Despite their ubiquity and abundance in soil, there is no genomic data currently available 

for any representative of the ‘Candidatus Udaeobacter’ clade. Typically, soil hyper-diversity 

confounds the assembly of genomes from metagenomes (Howe et al., 2014), requiring single-cell 

analysis or laboratory isolation to produce an assembled genome. However, we leveraged the 
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sheer abundance of Ca. U. copiosus in an individual soil to obtain a nearly complete genome 

from metagenomic data. We deeply sequenced a soil where Ca. U. copiosus accounted for >30% 

of 16S rRNA gene sequences and assembled a draft genome from the resulting metagenome. We 

used GC content, coverage, tetranucleotide frequencies, and the phylogenetic affiliation of 

predicted proteins to bin assembled contigs, resulting in a draft Ca. U. copiosus genome with 238 

contigs. The draft genome is 2.65 Mbp in size, has a GC content of 54%, and encodes for 3,042 

predicted proteins, 67% of which could be assigned to Pfam protein families (Finn et al., 2016) by 

the IMG annotation pipeline (Chen et al., 2017).  

 The Ca. U. copiosus genome shares only 69.3% average nucleotide identity (Varghese et 

al., 2015) with the genome of its closest sequenced relative C. flavus, further supporting its 

proposed placement in the distinct genus ‘Candidatus Udaeobacter’. While no 16S rRNA gene 

was assembled within the Ca. U. copiosus genome, we used Metaxa2 (Bengtsson-Palme et al., 

2015) to extract fragments of a single DA101-like 16S rRNA gene from the raw metagenomic 

sequences we used for assembly. This 16S rRNA gene has 100% identity to the DA101 amplicon 

sequence and has the same average coverage (23-29x) as the Ca. U. copiosus genome (27x), 

suggesting this genome belongs to a representative of the DA101 clade. As a second measure to 

verify this genome is a representative of the DA101 clade, we compared the abundance of three 

housekeeping genes assembled within the Ca. U. copiosus genome (dnaK, rpoB, and secY) to the 

abundance of the DA101 16S rRNA gene in >100 metagenomic samples from two separate 

studies (Leff et al., 2015; Fierer et al., 2012). All three genes show a very strong significant 

correlation with the DA101 16S rRNA gene (P < 0.0001, rho > 0.87, n = 102, Pearson 

correlation, Supplementary Figure S3.4), further evidence that this genome represents the 

DA101 clade and that this lineage is as abundant in soil as our analyses based on the 16S rRNA 

gene suggest.  

 We estimate that the full Ca. U. copiosus genome will be approximately 2.81 Mbp in 

length based on the recovery of 94% of domain-specific single copy housekeeping genes 

commonly used to estimate genome completion (Ciccarelli et al., 2006). Based on this estimate, 

Ca. U. copiosus appears to have a particularly small genome size compared to C. flavus and other 

sequenced heterotrophic soil Verrucomicrobia (Supplementary Table S3.2). Indeed, the genome 

size of Ca. U. copiosus is much more similar to Verrucomicrobia of the class Methylacidiphilae 

(Hou et al., 2008) - thermophiles for whom genome size and growth temperature are negatively 
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correlated (Sabath et al., 2013). To determine how the genome size of Ca. U. copiosus compares 

to other soil bacteria, we compiled data from 378 finished and permanent draft genomes in IMG 

whose 16S rRNA gene sequences matched the 16S rRNA gene amplicon sequences obtained by 

Leff et al. (2015) with at least 99% identity. Nearly all of these 378 bacterial genomes were from 

cultivated taxa (99%). We estimated the genome completeness for each of the 378 taxa using the 

same domain specific marker genes as for Ca. U. copiosus and found the mean estimated genome 

size of these taxa to be 5.28 ± 2.15 Mbp (mean ± SD), which is similar to metagenomic based 

estimates of mean genome size for soil microbes (4.74 ± 0.69) (Raes et al., 2007). Strikingly, the 

estimated 2.81 Mbp genome of Ca. U. copiosus is ~50% smaller than the mean genome size of 

these 378 taxa; only 48 (13%) of these genomes are smaller than Ca. U. copiosus. Furthermore, 

the majority (65%) of soil taxa with genomes smaller than Ca. U. copiosus originate from 

organisms with obligate intracellular or host-associated lifestyles (Figure 3.3).  

 Although soil bacteria with larger genomes tend to be more common in soil, Ca. U. 

copiosus seems to be a notable exception to this pattern. We linked the genome size of each of 

the matched IMG bacterial genomes with the average abundance of their corresponding 

amplicon sequence from Leff et al. 2015 and found that genome size is positively correlated with 

average relative abundance (P < 0.001, rho = 0.37, n = 378, Spearman, Figure 3.3). That is, 

sequenced bacteria with large genomes tend to comprise a significantly larger proportion of soil 

bacterial communities. On average, the genomes of soil prokaryotes are larger than those 

inhabiting aquatic ecosystems (Giovannoni et al., 2014) or the human gut (Nayfach and Pollard, 

2015). These relatively large genomes are thought to provide soil-dwelling bacteria with a more 

diverse genetic inventory to enhance survival in conditions where resources are diverse, but 

sparse (Konstantinidis and Tiedje, 2004; Barberán et al., 2014). However, the Ca. U. copiosus 

genome has a conspicuously reduced genome given its abundance (Figure 3.3). This suggests that 

Ca. U. copiosus occupies a niche space that does not require expansive functional diversity and 

points to an alternative route to success for soil bacteria. These results also suggest that abundant, 

uncultivated soil bacteria likely have smaller genomes than the cultivated taxa that represent the 

majority of available genomic data. A similar pattern has been observed in aquatic systems, 

where uncultivated taxa often have smaller genomes than cultivated taxa (Button and Robertson, 

2001). Because most genomic information is derived from cultivated bacterial taxa, the lack of 



27 

genomic information from bacteria with compact genomes may stem from challenges associated 

with culturing taxa with reduced genomes (Giovannoni et al., 2014). 

 
Figure 3.3: ‘Ca. Udaeobacter copiosus’ has a reduced genome size compared to other abundant 
grassland soil bacteria. A) Points represent the estimated genome size and relative abundances of 
378 bacterial genomes obtained by matching 16S rRNA gene sequences from Leff et al. 2015 to 
16S rRNA gene sequences extracted from IMG genomes at 99% sequence identity. This dataset 
focused on surface soils collected from grasslands across the globe; the average abundances 
shown here may not apply to other soil or ecosystem types. Only genomes classified as 
‘permanent draft’ or ‘finished’ status were used. Bacteria with larger genomes tend to be more 
abundant (p < 0.0001, rho = 0.368, n = 378, Spearman correlation), with Ca. U. copiosus 
(indicated in blue) being a notable exception to this pattern, as it has a high relative abundance 
(2.26% of 16S rRNA sequences) but a relatively small genome. The shaded region represents the 
95% confidence interval of the trend line. B) Host-associated bacteria make up a majority of 
sequenced small genomes in soil. In the genome size range for Ca. U. copiosus (2.75 Mbp -
 3.00 Mbp), 56% of soil taxa have a host-associated lifestyle.  
 

 Metabolic reconstruction of the Ca. U. copiosus genome points to an aerobic 

heterotrophic lifestyle with the capacity to use a limited range of carbon substrates for growth 

including glucose, pyruvate, and chitobiose. Glycogen/starch synthesis and utilization genes were 

identified (glgABCP and amyA), suggesting that Ca. U. copiosus has the capacity to store surplus 

carbon as glycogen or starch. Glycogen metabolism has been demonstrated in other 

Verrucomicrobia (Khadem et al., 2012). Genes encoding for the complete biosynthesis of 

vitamins B2, B3, B5 (from valine) and B6 were recovered, as well as full biosynthetic pathways for 
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de novo synthesis of alanine, aspartate, asparginine, glutamate, glutamine, lysine, serine, and 

proline. Nearly complete pathways were recovered for glycine, threonine and methionine 

biosynthesis (Supplementary Figure S3.5). Genes encoding for the conversion of methionine to 

cysteine were present as the only apparent route to cysteine biosynthesis. Genes indicative of 

autotrophic metabolism (for example, RuBisCO, ATP citrate lyase) were not identified. 

Additionally, genes indicative of methanotrophy (pmo), methylotrophy (mxaF or xoxF), 

ammonia (amo) or nitrite oxidation (nxr) were not found. 

 Genes encoding for the biosynthesis of all branched-chain (isoleucine, leucine and valine) 

and aromatic (tryptophan, tyrosine and phenylalanine) amino acids were conspicuously 

underrepresented in the Ca. U. copiosus genome. The biosynthetic pathways for arginine and 

histidine were also incomplete (Supplementary Figure S3.5), along with the entire vitamin B12 

synthesis pathway, despite the presence of three genes encoding vitamin B12-dependent proteins 

(methionine synthase, ribonucleotide reductase, and methylmalonyl-CoA mutase). It is 

conceivable that genomic information encoding for these putative auxotrophies is present on 

genome fragments that were not recovered in our metagenome assembly, or is encoded on 

extrachromosomal elements that are commonly missed in metagenomic assemblies (for example, 

a plasmid; Jørgensen et al., 2015). Relative to C. flavus, 34 amino acid biosynthetic genes are 

needed for Ca. U. copiosus to be fully prototrophic. In C. flavus, these genes are not organized on 

operons (Kant et al., 2011), meaning they are likely randomly distributed throughout the Ca. U. 

copiosus genome as well. Moreover, the absence of branched-chain amino acid and histidine 

synthesis pathways in the Ca. U. copiosus genome is consistent with previous observations that 

branched chain and histidine biosynthesis genes are underrepresented in native prairie 

populations of soil Verrucomicrobia (Fierer et al., 2013). Additionally, plasmids are uncommon 

within isolates of the Verrucomicrobia phylum, with only one species known to maintain a 

plasmid - Opitutaceae Bacterium Strain TAV5 (Kotak et al., 2015), a distant relative to Ca. U. 

copiosus.  

 Auxotrophy in free-living bacteria is not expected to be a rare phenomenon; one study 

estimated that 85% of free-living bacteria have at least one vitamin or amino acid auxotrophy 

(D'Souza et al., 2014) and multiple studies have shown that auxotrophic mutants have a 

pronounced growth advantage over their wildtype counterparts when supplied with the 

compounds they can not synthesize (D'Souza et al., 2014; Kim and Levy, 2008). Vitamin B12 
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auxotrophies are relatively common in soil (Lochhead, 1958), suggesting this metabolically 

expensive vitamin is generally available to many soil bacteria. Similarly, the eight amino acids 

that we did not identify complete pathways for in the Ca. U. copiosus genome are among the 

most energetically expensive to make (Akashi and Gojobori, 2002) (Supplementary Figure S3.5). 

This suggests that if Ca. U. copiosus is auxotrophic for some of these metabolites, acquiring them 

from the environment would provide Ca. U. copiosus an energetic savings relative to taxa that 

synthesize them de novo. 

 Although Ca. U. copiosus appears to lack genes for several amino acid synthesis pathways, 

numerous genes encoding for peptide transport, degradation and recycling were identified. 

Indeed, when scaled for genome size, Ca. U. copiosus encodes four times as many putative 

peptide and amino acid transporters as C. flavus (1.5% of genome to 0.37%) and twice as many 

predicted proteases (6.5% of genome versus 3.2%). Ca. U. copiosus also encodes for all 

components of the bacterial proteasome. Proteasomal degradation is critical for amino acid 

recycling under starvation conditions in mycobacteria (Elharar et al., 2014). The enrichment of 

peptide transport and degradation systems in the Ca. U. copiosus genome suggest that at least 

some of the amino acids Ca. U. copiosus appears incapable of synthesizing are available directly 

from the soil environment or by associations with other soil biota.  

 Ca. U. copiosus clearly has a reduced genome size compared to other soil bacteria (Figure 

3.3) and other Verrucomicrobia with similar lifestyles (Supplementary Table S3.2). Bacterial 

genome reduction is thought to occur through two main mechanisms, genetic drift and 

streamlining selection, both mediated by extremes in effective population sizes (Ne; reviewed in 

Batut et al., 2014). The effect of genetic drift on microbes with a small Ne and low recombination 

rates, such as endosymbiotic bacteria, leads to the accumulation of deleterious mutations and 

subsequent loss of genetic material, which is typically identifiable in genomes by the presence of 

numerous pseudogenes and large noncoding intergenic regions (Batut et al., 2014). In contrast, 

free-living organisms with a large Ne are thought to undergo ‘streamlining’ selection to minimize 

genome size (Batut et al., 2014; Giovannoni et al., 2014). The genome-streamlining hypothesis 

proposes that, in large bacterial populations, reduced genome complexity is a trait under natural 

selection, especially in environments where nutrients can be sparse and periodically limit growth 

(Giovannoni et al., 2014).  
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 The abundance, putative auxotrophies, and cosmopolitan distribution of Ca. U. copiosus 

(Figure 3.1), together with its small genome size relative to other soil microbes (Figure 3.3) and 

Verrucomicrobia with similar lifestyles (Supplementary Table S3.2), suggests that its small 

genome is a product of streamlining selection. Although it is difficult to accurately measure Ne in 

wild populations of bacteria, evidence of drift-mediated genome reduction was not present in the 

Ca. U. copiosus genome (such as large numbers of pseudogenes or unusually large intergenic 

spaces). Although all contemporary free-living organisms with streamlined genomes inhabit 

aquatic environments (Giovannoni et al., 2014; Kantor et al., 2013), compared to these aquatic 

environments, soil is more heterogeneous (Vos et al., 2013), has greater overall microbial 

diversity (Fierer and Lennon, 2011), and slower carbon turnover (Giovannoni and Vergin, 2012). 

Therefore, the functional complexity required by soil microbes to succeed within a given niche is 

likely large relative to that required by aquatic microbes. This means that the effects of genome 

streamlining are likely to be most evident (i.e., result in smaller genomes) in aquatic 

environments. This expectation is reflected in the fact that, on average, the genomes of aquatic 

microbes are smaller than their terrestrial counterparts (Button and Robertson, 2001). However, 

the small genome and numerous putative pathways missing from Ca. U. copiosus suggest that 

genome streamlining may not be unique to aquatic organisms and that genome streamlining may 

also confer a selective growth advantage in the soil environment. 

 The probable effects of genome streamlining in Ca. U. copiosus seem to have resulted in 

reduced catabolic and biosynthetic capacity, and thus an apparent loss of metabolic versatility. 

The underrepresentation of multiple costly amino acid and vitamin biosynthetic pathways in the 

Ca. U. copiosus genome implies that these compounds can be acquired from the soil 

environment. Several studies have shown that free amino acids and oligopeptides are present in 

soil (Friedel and Scheller, 2002; Farrell et al., 2013). The enrichment of proteases and amino acid 

and peptide importers in the Ca. U. copiosus genome suggests that it is well equipped to 

assimilate this fraction of soil organic matter. Dispensing the capacity to synthesize costly amino 

acids and vitamins would likely provide Ca. U. copiosus a growth advantage in resource limiting 

conditions when competition for labile carbon is high. Furthermore, many of the amino acids 

and vitamins Ca. U. copiosus appears unable to synthesize are involved in synergistic growth 

(Mee et al., 2014) and may be supplied by other microbes as common community goods (Morris 

et al., 2012). Based on the few spartobacterial isolates that have been cultivated (Sangwan et al., 
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2004), culture-independent studies (Fierer et al., 2013; Portillo et al., 2013), and the genomic data 

presented here, we speculate that Ca. U. copiosus is a small, oligotrophic soil bacterium that 

reduces its requirement for soil organic carbon by acquiring costly amino acids and vitamins 

from the environment. 

 

Conclusions 

 Whereas successful soil microbes are predicted to have large genomes (Konstantinidis and 

Tiedje, 2004; Barberán et al., 2014) (Figure 3.3), Ca. U. copiosus has a small genome, indicating 

that, similar to some aquatic microbes, minimization of cellular architecture can also represent a 

successful strategy for soil microbes. We do not know if other uncultivated abundant soil taxa also 

contain reduced genomes because pre-existing genome databases are preferentially biased 

towards cultivated isolates. For example, only 4.5% of bacterial genomes in IMG are from 

uncultivated taxa (accessed April 2016). Bacteria encoding for greater metabolic versatility likely 

have larger genomes and therefore may be easier to cultivate in the laboratory (Button and 

Robertson, 2001). On the other hand, specific and combinatorial nutrient requirements such as 

those described for Ca. U. copiosus present a complex problem for researchers attempting to 

cultivate microbes with reduced genomes (Carini et al., 2013). Although Ca. U. copiosus has not 

yet been grown in the laboratory, cultivation is clearly a crucial next step to describing this 

organism, using the information described here to ‘tailor’ a growth medium specifically for Ca. U. 

copiosus and related microbes. Such an approach could improve our ability to describe and 

study the majority of soil microbes, even dominant soil microbes like Ca. U. copiosus, which 

remain difficult to cultivate under laboratory conditions. 
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CHAPTER IV 

UNLINKED RRNA GENES ARE WIDESPREAD AMONG ENVIRONMENTAL 

BACTERIA AND ARCHAEA 

 

Abstract  

 Ribosomes are essential to cellular life. When a complex is essential to the function of a 

cell, it is usually highly resistant to change and evolutionarily stable. For example, the RNA 

components of bacterial and archaeal ribosomes are typically organized into a single operon. 

This arrangement allows each rRNA component to be regulated, transcribed, and processed 

together - a feature thought to be important for fast and efficient growth. In reality, there are 

some prokaryotes that do not share this canonical rRNA order - their 16S and 23S rRNA genes 

are not co-located, but are instead separated and referred to as "unlinked". Such unlinked rRNA 

genes have previously been treated as rare exceptions or byproducts of genome degradation in 

intracellular bacteria. However, using a dataset of over 10,000 complete genomes, we show that 

unlinked rRNA genes are present in many free-living, environmental prokaryotes - most 

significantly within the phyla Deinococcus-Thermus, Chloroflexi, Planctomycetes, and 

Euryarchaeota. Using shotgun metagenomic data generated using long-read sequencing 

technologies, we also show that unlinked rRNA genes are common among uncultured, 

environmental prokaryotic populations, with up to 41% of taxa, even dominant taxa, found in 

soil having unlinked rRNA genes. Those environments, like soil, that presumably have slower-

growing taxa tend to have far higher percentages of taxa with unlinked rRNA genes compared to 

environments like the human gut, where faster growing taxa are expected to predominate and 

unlinked rRNA genes were rarely detected. Together these results suggest that bacteria and 

archaea with unlinked rRNA genes are widespread and not merely atypical anecdotes. Rather, 

unlinked rRNA genes may confer selective advantages in some environments, but the specific 

nature of these advantages remains undetermined and worthy of further investigation. 
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Introduction 

 Ribosomes are the archetypal “essential proteins”, so much so that they are a key criteria 

in the division between cellular and viral life (Raoult and Forterre, 2008). In bacteria and 

archaea, the rRNA genes encoding the RNA components of the ribosome are traditionally 

arranged in a single operon in the order 16S - 23S - 5S. The rRNA operon is transcribed into a 

single RNA precursor called the pre-rRNA 30S, which is separated and processed by a number 

of RNases (Srivastava and Schlessinger, 1990). This arrangement of rRNA genes within a single 

operon is thought to be important in allowing rapid responses to changing growth conditions - 

the production of rRNA under a single promoter allows consistent regulation and conservation of 

stoichiometry between all three, essential components (Condon et al., 1995). Indeed, the 

production of rRNA is the rate-limiting step of ribosome synthesis (Gourse et al., 1996), and fast-

growing prokaryotes can accelerate ribosome synthesis by encoding multiple rRNA operons 

(Klappenbach et al., 2000).  

 Although perhaps counter-intuitive, some prokaryotes have “unlinked” rRNA genes, with 

the 16S and 23S separated by large swaths of genomic space. This unlinked rRNA gene 

arrangement was first discovered in the thermophilic bacterium Thermus thermophilus 

(Hartmann et al., 1987). Reports of unlinked rRNA genes soon followed in additional bacteria, 

including the planctomycete Pirellula marina (Liesack and Stackebrandt, 1989), the aphid 

endosymbiont Buchnera aphidicola (Munson et al., 1993), and the intracellular pathogen 

Rickettsia prowazekii (Andersson et al., 1995). Though unlinked rRNA genes were first 

discovered in a free-living environmental bacterium, their ubiquity among the order Rickettsiales 

has led to an association between unlinked rRNA genes and the genome degradation typical of 

obligate intracellular lifestyles (Rurangirwa et al., 2002; Merhej et al., 2009; Andersson and 

Andersson, 1999).  

 With this study we sought to determine how common unlinked rRNA genes are across 

bacteria and archaea - is this unique genomic feature largely confined to those prokaryotes with 

an obligate intracellular lifestyle, or is it also commonly observed among environmental, free-

living prokaryotes? We examined the rRNA operons of over 10,000 publicly available complete 

bacterial and archaeal genomes to identify which taxa have unlinked rRNA genes and to 

determine if there are any genomic characteristics shared across genomes with unlinked rRNA 

genes. As complete genomes are not typically available for the broader diversity of prokaryotes 
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found in environmental samples (Zhi et al., 2012), we also characterized rRNA gene 

arrangements using long-read metagenomic datasets (Nanopore and Illumina Synthetic Long-

Read Sequencing i.e. Moleculo) obtained from a range of environmental samples, which together 

encompassed over 17 million sequences. With these long-read metagenomic datasets, we were 

able to determine whether unlinked rRNA genes are common in environmental populations and 

how the distributions of unlinked rRNA genes differ across prokaryotic lineages and across 

distinct microbial habitats.  

 

Results 

Complete genome dataset 

 We searched all complete bacterial and archaeal genomes available on NCBI to 

determine how frequently “unlinked” 16S and 23S rRNA genes occur. From our set of 12240 

“complete” bacterial and archaeal genomes available on NCBI as of Jan 2019, we calculated the 

distance between the end of the 16S rRNA gene and the beginning of the 23S rRNA gene for 

each rRNA gene pair. For this classification scheme, we called rRNA genes “unlinked” if this 

distance was greater than or equal to 1500 bp. We chose 1500 bp as our cutoff because the 

distance between genes in an operon is usually quite low (peaking between -20 and 30 bp in most 

genomes; Moreno-Hagelsieb and Collado-Vides, 2002). While we found it was common for 

other genes to be located between the 16S and 23S rRNA, these were most often tRNA genes, 

which are usually quite small, ranging from 75 to 90 bp in length (Shepherd and Ibba, 2015). 

When we created a histogram of the distance between each 16S and 23S rRNA gene pair from 

our complete genomes, we found that the vast majority of 16S and 23S rRNA pairs were < 

1500bp apart (57833 out of 59496 rRNA gene pairs, Figure 4.2A).  

 After classifying each rRNA gene pair as linked or unlinked based on the distance 

between the 16S and 23S rRNA genes, we found that 4.86% of the genomes in our dataset had 

exclusively unlinked rRNA genes, 1.04% had mixed operons (i.e. genomes with multiple rRNA 

copies that had at least one unlinked rRNA gene and at least one linked operon), and 94.1% had 

exclusively linked operons (while 57833 out of 59496 rRNA gene pairs are linked, each genome 

has a variable rRNA copy number, meaning these numbers are not exactly comparable). 

Unlinked rRNA genes were not distributed randomly across these genomes; genomes with 

unlinked rRNA genes were typically from closely related lineages. We found unlinked genomes 
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to be common (present in ≥50% of members) in taxa characterized as having an obligate 

intracellular lifestyle within the phyla Spirochaetes (order Spirochaetales), Epsilonproteobacteria 

(family Helicobacteraceae), Alphaproteobacteria (order Rickettsiales), and Tenericutes (species 

Mycoplasma gallisepticum). However, we also found high proportions of unlinked rRNA genes 

in phyla that are generally considered to be free-living, such as Deinococcus-Thermus (families 

Thermaceae and Deinococcaceae), Chloroflexi (family Dehalococcoidaceae), Planctomycetes 

(families Phycisphaeraceae and Planctomycetaceae), and Euryarchaeota (class Thermoplasmata). 

Phyla with at least 5% of genomes featuring exclusively unlinked rRNA genes are shown in 

Figure 4.1A.  

 

 
Figure 4.1: Unlinked rRNA genes occur regularly in over 30 phyla. A) Within a set of complete 
genomes from NCBI, 12 phyla had genome containing at least one unlinked rRNA operon in 
>5% of members. Linked refers to genomes with exclusively linked rRNA genes, unlinked refers 
to genomes with exclusively unlinked rRNA genes, and mixed refers to genomes with at least one 
of each linked and unlinked rRNA genes. B) Within a set of long-read sequences, we confirmed 7 
of the phyla in complete genomes, and added an additional 26 phyla in which >5% of sequences 
were unlinked.  

 

Long-read shotgun metagenomic dataset 

 While the results from our complete genome dataset demonstrated that unlinked rRNA 

genes are common in some free-living phyla, databases featuring complete genomes do not 
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capture the full breadth of microbial diversity and are heavily biased towards organisms relevant 

to human health (Zhi et al., 2012). Just three phyla (Proteobacteria, Firmicutes, Actinobacteria) 

account for >85% of the genomes in our dataset - even though current estimates of bacterial 

diversity total 99 unique phyla (Parks et al., 2018). To investigate the ubiquity of unlinked rRNA 

genes among those taxa underrepresented in ‘complete’ genome databases, we analyzed long-

read shotgun metagenomic data from a range of distinct sample types. Focusing on exclusively 

long read sequences allowed us to cover the 1500 bp distance required for classification of rRNA 

genes as linked or unlinked without the need for assembly. The repetitive structure of rRNA 

genes make them difficult to accurately assemble from the short reads typical of most current 

metagenomic sequencing efforts (Yuan et al., 2015).  

 

 
 

Figure 4.2: The majority of rRNA genes are linked and most have an internally transcribed 
spacer (ITS) < 1500bp. A) Distribution of ITS in complete genomes from NCBI. 97.2% of 
rRNA operons have an ITS < 1500bp (57833/59496). 16S and 23S separated by more than 
7500 bp are not shown (1516/59496 = 2.5%). B) Distribution of ITS in long-read sequence 
dataset. 90.5% of rRNA operons have an ITS < 1500bp (12618/13932). Once again, sequences 
which included both a 16S and 23S rRNA but had an ITS < 7500bp are not shown 
(1223/13932 = 8.8%). 
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 Out of our initial long-read dataset (~890 thousand Illumina synthetic long reads and 

~16 million Nanopore sequences, with median read lengths of 7485 and 5075, respectively), only 

13,932 sequences contained rRNA genes and met the criteria we established for the classification 

of rRNA genes as linked or unlinked (see methods). Of these sequences, we classified 1314 as 

unlinked, or 9.4% of the dataset. Many of the sequences classified as unlinked belonged to the 

same phyla where unlinked rRNA genes were prevalent in the complete genome dataset (Figure 

4.1). The long-read metagenomic dataset confirmed that members of the phyla Deinococcus-

Thermus, Planctomycetes, Chloroflexi, Spirochaetes, and Euryarchaeota frequently have 

unlinked rRNA genes (Figure 4.1B). The long-read dataset allowed us to provide additional 

evidence for unlinked rRNA genes in poorly studied phyla that were represented by only a 

handful of genomes in our complete genomes dataset, such as Acetothermia (1 genome and 4 

long-read sequences) and Saccharibacteria (2 genomes and 13 long-read sequences).  

 The metagenomic analyses also allowed us to identify 26 additional phyla where unlinked 

rRNA genes are prevalent, including several candidate phyla (WCHB1-60, SHA-109, JL-ETNP-

Z39, SR1, TA06, TG3, and WS6) and members of the CPR (Microgenomates and 

Parcubacteria, Figure 4.1). We found several clades with exclusively unlinked rRNA genes that 

had no representation in our complete genomes, including all Parcubacteria (68/68) and 

Microgenomates (65/65), Verrucomicrobia DA101 soil group (79/79), Bacteroidetes family 

GZKB124 (14/14), Acidobacteria Subgroup 2 (26/26), Planctomycetes order MSBL9 (23/23) 

and WD2101 soil group (9/9), and Chloroflexi class GIF9 (9/9). Interestingly, our long-read 

metagenomic analyses show that unlinked rRNA genes do not seem to be equally distributed 

across all environments. Some environments had higher proportions of unlinked rRNA genes - 

listed in descending order: soil (13-41%), sediment (7.7-29%), anaerobic digesters (8.1-8.8%) and 

human gut (0%), (Figure 4.3). A large portion of the unlinked rRNA genes in our soil samples 

belonged to the Verrucomicrobia DA101 soil group, which is one of the more abundant and 

widespread groups of bacteria found in soil (Brewer et al., 2016). 
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Figure 4.3: Some environments have high proportions of unlinked rRNA genes. We found soils 
(13-41% unlinked) and sediments (7.7-29%) to have more unlinked rRNA genes on average than 
anaerobic digesters (8.1-8.8%) and the human gut (0%). Moleculo sequences are indicated with 
an (m); nanopore sequences with an (n). 

 

Genomic attributes associated with unlinked rRNA genes 

 Given that there are numerous bacterial and archaeal lineages where unlinked rRNA 

genes are commonly observed, we next sought to determine what other genomic features may be 

associated with this non-standard rRNA gene arrangement. On average, genomes with 

exclusively unlinked rRNA genes had fewer rRNA copies (Supplemental Figure S4.1A, χ2 

p<0.001, means of groups: 4.2 linked, 5.5 mixed, 2.6 unlinked). While genomes with unlinked 

rRNA genes also had smaller genomes on average, this difference was not significant 

(Supplemental Figure S4.1B, χ2 p = 0.87, means of groups: 4.1Mbp linked, 4.0 Mbp mixed, 2.8 

Mbp unlinked). We also calculated ΔENC’ for each complete genome - a measure of codon 

usage bias that is negatively correlated with minimum generation time in bacteria and archaea 

(Vieira-Silva and Rocha, 2009). Interestingly, genomes with exclusively unlinked rRNA genes 

were predicted to have a longer generation times and slower potential growth (Supplemental 

Figure S4.1C, χ2 p<0.001, means of groups: 0.23 linked, 0.23 mixed, 0.19 unlinked).  
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 We also checked to see if genomes with unlinked rRNA genes were more likely to have 

rRNA genes that are divergent in sequence. This question is complicated by the fact that 

intragenomic rRNA sequence divergence becomes more common as rRNA copy number 

increases (Větrovský and Baldrian, 2013). We confirmed this in our dataset - the proportion of 

non-identical rRNA sequences within each genome was strongly correlated with rRNA copy 

number in both the 16S (p < 0.001, rho = 0.87, Pearson) and 23S (p < 0.001, rho = 0.90, 

Pearson). Additionally, in our dataset, genomes with exclusively unlinked rRNA genes tended to 

have lower overall rRNA copy numbers (84% had ≤3 rRNA copies). Therefore, we compared 

the sequence identity of 16S and 23S rRNA within every genome with 2 or 3 rRNA copies. We 

found that in all cases, rRNA within unlinked genomes were more dissimilar than rRNA within 

linked genomes (χ2 p < 0.05 for all cases). However, the magnitude of these differences was not 

huge - in the most drastic case, in genomes with 2 rRNA copies unlinked 16S rRNA genes had 

an average of 5.1 mismatches versus an average of 0.71 mismatches in linked 16S rRNA genes 

(Supplemental Figure S4.3). 

 Finally, we checked if there was any connection between unlinked rRNA genes and the 

presence of RNaseIII genes. RNaseIII is responsible for the initial separation of the 16S and 23S 

rRNA transcripts once they have been transcribed into the 30S pre-rRNA (Srivastava and 

Schlessinger, 1990). RNaseIII is not an essential protein in most prokaryotes and several phyla in 

which unlinked rRNA genes are common do not encode RNaseIII (e.g. Deinococcus-Thermus & 

Euryarchaeota; Durand et al., 2012). Interestingly, we found that taxa with unlinked rRNA genes 

were significantly less likely to encode the bacterial form of RNaseIII genes (Supplemental Figure 

S4.3, PF00636: χ2 p < 0.001, means of groups: 1.0 linked, 0.84 mixed, 0.74 unlinked; PF14622: 

χ2 p < 0.001, means of groups: 0.86 linked, 0.63 mixed, 0.65 unlinked). We also checked this 

relationship for archaeal RNaseIII, but found no significant association (Supplemental Figure 

S4.3, PF11469: χ2 p = 0.153).  

 

Discussion 

 While unlinked rRNA genes have been documented previously, we have demonstrated 

that they are more widespread among prokaryotes than previously reported. We found that 

unlinked rRNA genes, whereby the 16S and 23S rRNA genes are not in close proximity within 

the canonical operon arrangement, consistently occur in 12 phyla using a dataset of complete 
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genomes (Figure 4.1A), and 26 additional phyla using a dataset of metagenomic long-read 

sequences from five disparate environments (Figure 4.1B). Some phyla were classified as 

exclusively linked in our complete genome dataset, yet had many members with unlinked rRNA 

genes in our long-read dataset. For example, there were no complete genomes in the phylum 

Verrucomicrobia with unlinked rRNA genes (0/32), but in our long-read data 38% of 

Verrucomicrobial rRNA sequences were unlinked (82/217, most closely related to the bacterium 

Ca. Udaeobacter copiosus from the DA101 soil group; Brewer et al., 2016).  

 We found that taxa with unlinked rRNA genes are not randomly distributed across 

prokaryotic lineages - rather, we observed a strong phylogenetic signal in rRNA operon 

structure. To drive this point home, we assembled a phylogenetic tree from full-length 16S rRNA 

gene sequences from both the complete genome dataset and the long-read metagenomic dataset, 

where we found clusters of related taxa with exclusively unlinked rRNA genes (Figure 4.4). These 

lineages include: Euryarchaeota class Thermoplasmata, miscellaneous Crenarchaeota group, the 

vast majority of Deinococcus-Thermus, CPR divisions Parcubacteria and Microgenomates, 

Verrucomicrobia DA101 group, Acidobacteria subgroup 2, Chloroflexi class Dehalococcoidia, 

and Alphaproteobacteria class Rickettsiales. While members of the Rickettsiales are 

predominately obligate intracellular pathogens (Andersson and Andersson, 1999) and the CPR 

phyla Parcubacteria and Microgenomates contain signatures of a symbiotic lifestyle (Nelson and 

Stegen, 2015; Burstein et al., 2016), the rest of these clades are thought to be predominately free-

living taxa. 

 We used our metagenomic long-read dataset to not only bypass the cultivation bias of our 

complete genomic dataset, but to also get an idea of the abundance of unlinked rRNA genes in 

environmental populations. Our analyses of long-read shotgun metagenomic datasets show that 

taxa with unlinked rRNA genes are far more abundant in some environments than others. Most 

notably, unlinked rRNA genes were much more common in soil (at the high end, 41% of rRNA 

genes were unlinked) than the human gut (no unlinked rRNA genes were detected). The 

environments with higher proportions of unlinked rRNA genes (soil & sediment) are generally 

thought to be populated by slow growing taxa (Brown et al., 2016; Vieira-Silva and Rocha, 

2009). Likewise, we found that genomes with exclusively unlinked rRNA genes have significantly 

rRNA copies than genomes with mixed or exclusively linked rRNA genes, a trait which is 

inversely correlated with potential growth rate (Vieira-Silva and Rocha, 2009). We also found 
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that genomes with exclusively unlinked rRNA genes are predicted to have significantly longer 

generation times (via the growth rate proxy ENC’) compared to genomes with linked or mixed 

rRNA genes. These lines of evidence suggest that unlinked rRNA genes are more likely to be 

maintained in the genomes of taxa with slower growth rates, an observation that would need to 

be directly tested.  

 One obvious ramification of the prevalence of unlinked rRNA genes in environmental 

samples relates to bacterial genotyping using the full or near-full rRNA operon. While including 

the ITS region of the rRNA operon can increase taxonomic resolution and allow strain level 

identification (Zeng et al., 2012), our work shows that amplicon studies dependent on 16S and 

23S rRNA genes located in close proximity may miss a large portion of bacterial and archaeal 

diversity. The median distance between unlinked 16S and 23S rRNA genes in our complete 

genome dataset was ~30kb, an impractical distance to amplify in a high-throughput manner. 

While strategies which use reads spanning the 16S and 23S rRNA genes to improve taxonomic 

resolution (e.g. Zeng et al., 2012; Cuscó et al., 2018) are less likely to be biased in some 

environments (e.g. human gut), they will likely miss many phylogenetic groups in other 

environments like soil and sediment, with a potential loss of up to 41% of rRNA genes. 

 Upon first consideration, unlinking the 16S and 23S rRNA genes would seem to be 

disadvantageous given that both rRNA are needed in equal proportions in the final ribosome. 

While we do not know how unlinked rRNA genes might affect cell fitness, it seems unlikely this 

non-canonical rRNA gene arrangement has a substantial negative effect in the environmental, 

free-living taxa in which it occurs. Free-living organisms are generally under greater selective 

pressure than obligate intracellular organisms and are less prone to the fixation of deleterious 

mutations; species with large effective population sizes (Ne) face strong selection and weak genetic 

drift (Batut et al., 2014). Therefore, it seems that if this gene rearrangement, which affects 

arguably the most important complex for cellular life, had a substantial negative effect it would 

not persist across so many free-living groups, or in specific lineages that can be incredibly 

abundant in some environments (e.g. the Verrucomicrobia Ca. U. copiosus; Brewer et al., 2016). 

Additionally, taxa with unlinked rRNA genes are likely under less pressure to maintain optimal 

efficiency in the production of rRNA, as we have shown they seem to have slower growth rates 

than taxa with traditional rRNA operons. Moreover, studies in E.coli have shown that 

unbalanced rRNA gene dosage does not lead to severe consequences- balanced synthesis of 
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ribosomal proteins still occurs and excess rRNA is rapidly degraded (Siehnel and Morgan, 1985). 

While the doubling time of E. coli with unbalanced rRNA stoichiometry did increase in this 

study (by 40 minutes on average), few environmental bacteria ever achieve the growth sprints E. 

coli is capable of - turnover times of saprotrophic soil bacterial communities can be on the order 

of weeks (Rousk and Bååth, 2011). 

 

 
 

Figure 4.4: Unlinked rRNA genes are phylogenetically conserved. A phylogenetic tree created 
from full-length 16S rRNA sequences by combining both the NCBI complete genome and long-
read datasets. We included only one 16S rRNA gene from each unique species within the 
complete genomes dataset. To represent our long-read metagenomic dataset, we matched each 
partial 16S rRNA extracted by metaxa2 to full-length sequences in the SILVA 132 SSU 
database. We added full-length SILVA 16S rRNA sequences as representatives of long-read 
sequences if they matched to at least 95% identity. The inner ring indicates which dataset each 
sequence originated from, while the outer ring indicates the status of rRNA genes as either 
linked, mixed, or unlinked. Sequence representatives of the long-read dataset cannot be mixed, 
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as there was no way for us to distinguish multi-copy rRNA genes. Phyla with significant 
proportions of unlinked members are indicated with text while clades with exclusively unlinked 
members are colored red: A) Euryarchaeota class Thermoplasmata, B) Miscellaneous 
Crenarchaeotic Group, C) Spirochaetae class Spirochaetes, D) Deinococcus-Thermi, E) 
Chlorflexi class Dehalococcoidia, F) Planctomycetes families Phycisphaeraceae and 
Planctomycetaceae, G) Verrucomicrobia DA101 soil group and H) Alphaproteobacteria order 
Rickettsiales. 

 

 While we do not know if unlinked rRNA genes have an effect on the fitness of their 

owners, we can speculate on hypothetical benefits this rearrangement might confer. By 

transcribing the 16S and 23S rRNA genes separately, taxa with unlinked rRNA genes may 

eliminate or reduce the need for RNaseIII, the ribonuclease that separates these segments after 

they are transcribed into the classical 30S pre-rRNA. Indeed, we found less evidence of bacterial 

RNaseIII in taxa with unlinked rRNA genes (Supplemental Figure S4.3), including a complete 

absence of the protein in the phyla Deinococcus-Thermi and Gemmatimonadetes. Interestingly, 

some bacteriophages leverage host RNase III to process their own mRNA (Gone et al., 2016); in 

some species, the presence of RNase III can stimulate the translation of infecting phage mRNA 

by several orders of magnitude (Wilcon et al., 2002), although other phage appear indifferent to 

the presence of RNase III (Hagen and Young, 1978). Regardless, it seems that the loss of 

RNaseIII is not without negative consequences in organisms with unlinked rRNA genes - recent 

work has shown that knocking out RNaseIII in Borrelia burgdorferi (a spirochete with unlinked 

rRNA) did not affect the processing of the 16S or 5S rRNA, but did affect the maturation of the 

23S and resulted in a decreased growth rate and increased cell length (Anacker et al., 2018).  

 Interestingly, we found that in genomes with 2-3 rRNA copies, genomes with unlinked 

rRNA genes had greater intragenomic rRNA divergence than genomes with exclusively linked 

rRNA genes. In other words, genomes with unlinked rRNA genes had greater sequence 

divergence between their rRNA gene copies. While differential expression of divergent rRNA has 

been observed in Streptomycetes coelicolor (Kim et al., 2007) and E. coli (Condon et al., 1992), it was 

previously unclear whether this phenomenon had any effect on the translational activity of the 

ribosome (Byrgazov et al., 2013). However, recent work has shown that divergent rRNAs can 

regulate gene expression in Vibrio vulnificus, with ribosomes composed of the most divergent 

rRNAs preferentially translating a set of mRNAs related to temperature and nutrient shifts (Song 

et al., 2019). In this study, the ribosomes with altered activity contained only 3 divergent 

nucleotides in the 16S and 16 in the 23S rRNA. Splitting the rRNA operon could allow 
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differential expression between 16S and 23S rRNA genes that were previously co-transcribed, 

leading to further customization of heterogeneous ribosomes with potentially altered activity.  

 

Conclusions 

 While we do not know why unlinked rRNA genes are so prevalent (particularly in these 

bacteria and archaea found in environmental samples for which complete genomes are not yet 

available), we have shown that this rearrangement appears to occur more frequently in taxa with 

slower predicted growth rates and may be related to the presence of RNase III or divergent 

rRNA. Regardless, we have shown that up to 41% of rRNA genes in some environments are 

unlinked - meaning unlinked rRNA genes are far from atypical anecdotes. We have developed a 

number of hypotheses about potential advantages of unlinked rRNA operons that could be tested 

experimentally - especially as a number of taxa with unlinked rRNA operons are relatively easy 

to manipulate in culture (Holland et al., 2006; Devos, 2013). 
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CHAPTER V 

CONCLUSIONS  

 

 My thesis research has shed a measure of light on the uncultivated majority dwelling in 

soil - a poorly understood population responsible for key ecosystem processes in soil that harbors 

a rich and untapped genetic diversity. In Chapter II I showed that as depth increases in a soil 

profile, the proportion of uncultivated, novel bacteria and archaea increases. In nutrient poor 

deep soils, I showed that candidate phyla increase in abundance and assembled two genomes 

from metagenomic data from one such phylum - candidate phylum AD3.  

In Chapter III I described one bacterium in particular, Candidatus Udaeobacter copiosus, which 

dominates soil communities around the globe. I analyzed a representative genome of this species, 

and found that this bacterium has a significantly smaller genome than the typical soil dweller, 

and that this small genome is rife with putative auxotrophies. Although Ca. U. copiosus must 

depend on its environment for various amino acids and vitamins, it is highly successful in terms of 

ubiquity and relative abundance, demonstrating that taxa with reduced genomes can be 

successful in soil. In Chapter IV I describe a peculiar rRNA gene rearrangement that was 

previously linked to obligate intracellular bacteria and thought to be a consequence of genome 

degradation. I show that this rearrangement occurs in a number of environmental, free-living 

taxa and is widespread in many environmental samples - I found that up to 41% of rRNA genes 

in one soil were unlinked. This rearrangement also occurs in evolutionarily “successful” bacteria - 

notably Ca. U. copiosus. This research has shown that while most of our understanding of 

bacterial cells is derived from model organisms like Bacillus subtilis and Escherichia coli., these 

species are not representative of the majority of bacterial life on this planet, and that peering into 

the uncultured majority in environmental samples can reveal interesting life history strategies and 

unique biology.  
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CHAPTER II APPENDIX 

UNCULTURED OLIGOTROPHIC MICROBES THRIVE IN SUBSURFACE SOILS 

 

Materials and Methods 

Sample collection and processing 

 Samples were collected from the network of 10 Critical Zone Observatories (CZOs, 

http://criticalzone.org) across the US: Southern Sierra (CA), Boulder Creek (CO), Reynolds 

(ID), Shale Hills (PA), Calhoun (SC), Luquillo (PR), Intensively Managed Landscapes 

(IL/IA/MN), Catalina/Jemez (AZ/NM), Eel River (CA), and Christina River (DE/PA). 

Volunteers from each CZO excavated two separate soil profiles (“sites”) selected to represent 

distinct soil types and landscape positions. Soils were collected at peak greenness as estimated 

from the Normalized Difference Vegetation Index and Enhanced Vegetation Index measured by 

NASA's MODIS (MODerate-resolution Imaging Spectroradiometer) instrument. These 

collections were conducted between April 2016 and November 2016, with the exception of the 

Eel River CZO samples, which were collected in May 2017. Volunteers were asked to sample in 

10-cm increments to a depth of at least 100 cm, or to refusal. It was not possible to reach 100 cm 

at all sites. Because few sites were sampled past 90-100 cm, samples from deeper than 100 cm 

were not used in this study. For all but two sites, soils from the pit or core were collected 

aseptically using either a soil knife or a coring auger inserted into the pit wall horizontally, 

integrating soil from each 10-cm increment. 

 All soil samples were sent to the University of California, Riverside for processing. A 

portion of each field sample was sieved (< 2 mm, ASTM No. 10), homogenized, and divided into 

subsamples for further analyses, with subsamples stored at either 4°C, −20°C, or −80°C. For 

some soils (particularly some wet, finely textured depth intervals), sieving was not practical under 

field-moist conditions. These samples were homogenized by mixing, but during the subsampling 

process, larger root and rock fragments were removed by hand. In addition, as samples from 

Shale Hills site 2 (70—100 cm depth) consisted almost entirely of medium-sized rocks, soil was 

collected by manually crushing rocks with a ceramic mortar and pestle; this material was then 

passed through a 2-mm sieve. 

 DNA was extracted from subsamples frozen at −20°C using the DNeasy PowerLyzer 
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PowerSoil kit (Qiagen, Germantown, MD, USA), according to the manufacturer’s instructions 

with minor modifications to increase yield and final DNA concentration based on the assumption 

that some sites and depths would have a relatively low microbial biomass. Specifically, 0.25 g of 

soil was weighed in triplicate (i.e., three 0.25 g aliquots = 0.75 g total soil per sample) from one 

frozen aliquot of sieved soil (from the subsample reserved specifically for DNA extractions). 

Extractions on each 0.25 replicate aliquot proceeded in parallel, until the stage when DNA was 

eluted onto the spin filter; replicates were pooled at this point onto a single filter, and extractions 

proceeded from this point as a single sample. In addition, the final step of elution of the DNA 

from the filter was conducted with 50 µL of elution buffer, instead of 100 µL; the initial flow-

through was reapplied to the filter and passed through a second time to further increase yield. 

 

Soil characteristics 

 Frozen subsamples (stored at −20°C) were shipped to the University of Illinois at Urbana-

Champaign for characterization of soil physicochemical properties. Soil C and N concentrations 

were measured on freeze-dried, sieved, and ground subsamples using a Vario Micro Cube 

elemental analyzer (Elementar, Hanau, Germany). Approximately 1 g of each subsample was 

also extracted in 30 mL of 0.5 N HCl for determination of Fe(III) and Fe(II) concentrations using 

a modified ferrozine assay (Liptzin and Silver, 2009). Soil texture was measured on oven-dried 

and sieved soil following Gee and Bauder (1986). 

 Soil pH and gravimetric water content were measured using modified Long Term 

Ecological Research (LTER) protocols, as per Robertson et al. (1999). Soil pH was determined 

using 15 g of field-wet soil and 15 mL of Milli-Q water (Millipore Sigma, Burlington, 

Massachusetts), and was measured on a Hannah Instruments (Woonsocket, RI) HI 3220 pH 

meter with a HI 1053B pH electrode, designed for use with semi-solids. For determining 

gravimetric water content, we oven-dried 7 g of soil at 105 º C, for a minimum of 24 hours.  

 

Amplicon-based 16S rRNA gene analyses 

 To characterize the bacterial and archaeal communities in each sample, we used the 

barcoded primer pair 515f/806r for sequencing the V4-V5 region of the 16S rRNA gene 

following methods described previously (Leff et al., 2015). We amplified this gene region in 

triplicate reactions per sample, combined these products, and normalized the concentration of 
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each sample to 25 ng using SequalPrep Normalization Plate Kits (Thermo Fisher Scientific, 

Waltham, MA). All samples were then pooled and sequenced on the Illumina MiSeq (2x150 

paired end chemistry) at the University of Colorado Next-Generation Sequencing Facility. The 

sample pool included several kit controls and no template controls to check for possible 

contamination.  

 Sequences were processed using a combination of QIIME and USEARCH commands to 

demultiplex, quality-filter, remove singletons, and merge paired end reads. Sequences were 

classified into exact sequence variants (ESVs) using UNOISE2 (Edgar, 2016) with default settings 

and taxonomy was assigned against the Greengenes 13_8 database (DeSantis et al., 2006) using 

the RDP classifier (Cole et al., 2013). ESVs with greater than 1% average abundance across all 

sequenced controls were classified as contaminants and removed from further analyses, along 

with ESVs identified as mitochondria and chloroplast. The entire dataset was then rarefied to 

3400 sequences per sample.  

 

Shotgun metagenomic analyses 

 One soil profile from each CZO was selected for shotgun sequencing - we chose the sites 

that exhibited the most dissimilarity in microbial community composition through the soil 

profile, as we were interested in changes most associated with soil depth. Using the same DNA as 

used for the amplicon sequencing effort, we generated metagenomic libraries using the TruSeq 

DNA LT library preparation kit (Illumina, San Diego, CA). All samples were pooled and 

sequenced on an Illumina NextSeq run using 2x150bp paired end chemistry at the University of 

Colorado Next-Generation Sequencing Facility. Prior to downstream analysis, we merged and 

quality filtered the paired-end metagenomic reads with USEARCH. After quality filtering we 

had an average of 8.8 million quality-filtered reads per sample (range = 1.9 -15.4 million reads, 

we only included samples with at last 1 million reads). These sequences were uploaded to MG-

RAST (Meyer et al., 2008) for annotation. We used Metaxa2 (Bengtsson-Palme et al., 2015) with 

default settings to analyze all microbial communities (bacterial, archaeal, and eukaryotic) in each 

sample. All statistical analyses were done in R studio and all figures were created with ggplot2 

(Wickham, 2009).  
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Assembly, annotation, and characterization of AD3 genomes 

 We assembled two genomes belonging to the candidate phylum AD3 (Ji et al., 2017) from 

individual metagenomes obtained from Calhoun site 1 (60-70cm) and Shale Hills site 1 (90-100 

cm). These two soil samples were selected for deeper sequencing based on the high abundance of 

the phylum AD3 (~60% of amplicon 16S rRNA gene reads at Calhoun, ~23% at Shale Hills). 

This sequencing effort yielded 57.7 million paired-end reads for Calhoun 60-70cm and 65.6 

million paired end reads for Shale Hills 90-100cm. 

 Genomes were assembled using unpaired reads that had been filtered using sickle (-q 20 -l 

50). We used Megahit (Li et al., 2015) with the bulk preset to build the assembly, and binned the 

assembly with MaxBin 2.2.1 (Wu et al., 2016) . We used a script that cycled through MaxBin 

conditions (-min_contig_length 1100 -1500 and -prob_threshold 0.95 - 0.99) and used checkM 

(Parks et al., 2015) to pick the best bins. Bins were then manually curated using a combination of 

scaffold abundance, tetranucleotide frequency, and GC content. After selecting the highest 

quality bins from each sample, we ran Metaxa2 on the bins themselves to detect SSU or LSU 

rRNA genes that could be used to determine taxonomic affiliations. To double check that each 

bin was affiliated with the AD3 candidate phylum, we used the concatenated marker gene 

phylogeny generated from checkM to compare the placement of our genomes to three previously 

published AD3 genomes (Ji et al., 2017). Our AD3 genomes clustered with the genomes from Ji 

et al. (Ji et al., 2017) and fell near the Chloroflexi and Armatimonadetes on the tree. Both 

genomes were submitted to IMG for annotation under the taxon IDs 2756170100 and 

2767802471. Based on checkM estimates, both genomes are substantially complete with medium 

to high contamination (bin JG37: 74.54% complete, 12.66% contamination; bin3: 72.65% 

complete, 10.68% contamination) See Supplemental Table S2.1 for additional genome details.  

 

Phylogenetic tree of CoxL genes  

 The evolutionary history of the AD3 coxL genes was inferred by using the Maximum 

Likelihood method based on the JTT matrix-based model (Jones et al., 1992). The tree with the 

highest log likelihood (-24038.8804) is shown. The percentage of trees in which the associated 

taxa clustered together is shown below the branches. Initial tree(s) for the heuristic search were 

obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise 

distances estimated using a JTT model, and then selecting the topology with superior log 
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likelihood value. A discrete gamma distribution was used to model evolutionary rate differences 

among sites (5 categories (+G, parameter = 1.10)). The rate variation model allowed for some 

sites to be evolutionarily invariable ([+I], 6.75% sites). The resulting tree was drawn to scale, with 

branch lengths measured in the number of substitutions per site. The analysis involved 67 amino 

acid sequences. All positions containing gaps and missing data were eliminated. There were a 

total of 526 positions in the final dataset. Evolutionary analyses were conducted in MEGA7 

(Kumar et al., 2016) and the tree was plotted in ggtree (Yu et al., 2016). 

 

Calculation of maximum growth rate proxy ΔENC’ 

 Because there are no cultivated members of phylum AD3, we calculated ΔENC’ to 

estimate potential growth rates as described previously (Novembre, 2002; Vieira-Silva and 

Rocha, 2009). We also calculated ΔENC’ on complete genomes in NCBI that matched amplicon 

sequences in our dataset with >=99% sequence similarity. We used this set of genomes to 

represent the bacteria, or at least closely related lineages of bacteria, found in the same soil 

profiles studied here to establish a range for microbial growth rates in soil. We ran ENCprime 

(Novembre, 2002) with default options on both concatenated ribosomal protein sequences and 

concatenated genome sequences, and calculated ΔENC’ as described in Vieira-Silva (2009).  

 

Spore selection treatment 

 When we examined our AD3 genomes, we found numerous genes linked to spore 

formation. Therefore, we adapted a method previously used in human stool samples (Browne et 

al., 2016) to select for spores in a culture independent manner in three soil samples from our 

study (Calhoun site 1, soils 50-60cm, 60-70cm, and Calhoun site 2, soil 50-60cm). To select for 

spores, we incubated 0.04g of each soil in 70% ethanol for 4 hours under constant agitation with 

the goal of killing vegetative cells. In our control samples, we performed the same incubation 

with phosphate-buffered saline (PBS). After the incubations, we washed both sets of samples with 

PBS three times, then applied propidium monoazide (PMA) to the ethanol-treated samples as 

described previously (Carini et al., 2016). We used PMA to block the amplification of DNA from 

cells with compromised membranes, ensuring that only those cells capable of surviving the harsh 

ethanol treatment would be amplified in subsequent PCRs. We PCR amplified, sequenced, and 

processed these samples as previously described. We restricted our analysis to the top 1000 most 
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abundant phylotypes to remove rare taxa and used the Wilcoxon test to identify enriched taxa, 

scoring taxa as “possible spore formers” if they had False Discovery Rate (FDR) corrected p-

values greater than 0.05. These taxa are presented in Supplemental Table S2.3. 

 

Data availability 

 Both AD3 genomes are publicly available on IMG under taxon IDs 2756170100 and 

2767802471. The merged, quality filtered, and unassembled shotgun sequences are available 

under MG-RAST project ID mgp80869. The raw, unmerged 16S amplicon sequences are 

available on figshare at 10.6084/m9.figshare.4702711. 
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Supplemental Figure S2.1: Ordination plot showing differences in overall microbial 
community composition across the 20 sampled profiles (two per Critical Zone Observatory). The 
principal coordinates analysis is based on Bray-Curtis dissimilarities calculated from the 16S 
rRNA gene sequencing effort (amplicon data). This ordination plot shows that the differences in 
communities between profiles are typically larger than the differences in communities across 
different depths within individual profile, a conclusion supported by the associated 
PerMANOVA analyses. 
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Supplemental Figure S2.2: Relative abundances of the eight most abundant bacterial phyla in 
our dataset are well correlated between 16S rRNA gene amplicon and shotgun metagenomic 
methods. We used Metaxa2 (Bengtsson-Palme et al., 2015) to search for SSU rRNA gene 
fragments in our metagenomic data. P-values and rho values indicate Spearman correlations. 
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Supplemental Figure S2.3: The relative abundance of phylum AD3 is negatively correlated 
with soil carbon concentrations across two independent soil datasets. The top panel features data 
from this study (20 soil profiles across the U.S., 177 soils in total) while the bottom panel draws 
from a dataset encompassing 1006 surface soils (0-10 cm depth) collected from across Australia as 
part the BASE project (Biomes of Australian Soil Environments; Bissett et al., 2016). P-values 
and correlation coefficients (cor) are from Pearson correlations. 
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Supplemental Figure S2.4: Members of the phylum AD3 are predicted to have low maximum 
potential growth rates based on the growth rate proxy ΔENC’ (a metric of codon usage bias). 
ΔENC’ ranges from our AD3 genomes, the Antarctic AD3 genomes (Ji et al., 2017), the thawing 
permafrost AD3 genomes (Woodcroft et al., 2018), and a set of genomes matched to our 16S 
rRNA gene amplicon sequences are shown, arranged by taxonomic affiliation. ΔENC’ is 
positively correlated with growth rate in bacterial and archaeal genomes(Vieira-Silva and Rocha, 
2009). Select genomes are labeled for additional context and indicated with a central white dot. 
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Supplemental Figure S2.5: AD3 genomes assembled from cross-CZO soil metagenomes 
contain form II CO dehydrogenases (coxL). Form II coxL genes may not be associated with the 
ability to oxidize carbon monoxide (King and Weber, 2007). However the Antarctic bin13 AD3 
genome (Ji et al., 2017) contains a form I coxL sequence - indicating that at least some members 
of this phylum are likely capable of CO oxidation.  
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Supplemental Table S2.1: Genome Statistics 

AD3 Genomes from this study 

IMG_ID Name % Complete % Contam. Contigs Assembled length  GC% 

2756170100 bin JG37 74.54 12.66 661 2990252 bp 67% 

2767802471 bin 3 72.65 10.68 1779 3428017 bp 61% 

       AD3 Genomes from Ji et al, 2017 

2698536734 bin 12 95.32 2.31 302 2961190 bp 69% 

2698536735 bin 13 96.3 0 71 2960892 bp 67% 

2698536736 bin 14 92.44 4.63 358 5287456 bp 68% 
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Supplemental Table S2.2: Spore forming genes from AD3 
genomes and closest spore-forming relative K. racemifer 

Stage Gene 
Bin JG-
37 

Bin 
3 K. racemifer 

stage 0 spo0A 0 0 0 
stage 0 sigH (spo0H) 0 0 0 
stage 0 spo0J 2 2 2 
stage 0 obgE 1 0 1 
stage 0 spo0F 0 0 1 
stage II spoIIAA 0 0 2 
stage II spoIIAB 0 0 0 
stage II sigF 0 0 0 
stage II spoIID 2 0 0 
stage II spoIIE (spoIIH) 0 0 0 
stage II spoIIGA 0 0 0 
stage II sigE 0 0 0 
stage II spoIIM 1 0 0 
stage II spoIIP 0 0 0 
stage II spoIIR 0 0 0 
stage III-IV cwlD 0 0 0 
stage III-IV dacB 0 0 0 
stage III-IV spoIIIE 2 1 4 
stage III-IV spoIIIJ 2 1 3 
stage III-IV spoIIIAA 0 1 1 
stage III-IV spoVS 1 1 0 
stage III-IV spoVD 1 1 0 
stage III-IV spoVK 0 0 2 
stage III-IV spoVC 0 1 1 
stage III-IV spoVR 0 0 1 
stage III-IV spoIVFB 4 1 3 
stage III-IV spoIVCA 0 0 6 
spore coat spoIVA 0 0 0 
spore coat alr (yncD) 1 1 1 
spore coat CotA 0 1 1 
spore coat CotJC  0 0 3 
germination gpr 0 0 0 
germination lgt (gerf) 0 0 0 
germination YaaH 1 1 2 
germination CgeB 1 0 0 
germination YhbH 1 1 2 
Total  - 20 13 36 
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Supplemental Table S2.3: Taxa enriched through spore-selection 

Taxonomy of ESVs significantly enriched in spore selection treatment 
confirmed spore 
former? 

Pseudomonas veronii plant-associated 
Pseudomonas fragi no 
f_Myxococcaceae;g_Anaeromyxobacter yes 
o_Myxococcales;f_Myxococcaceae yes 
c_Deltaproteobacteria;o_Myxococcales yes 
o_Rhodospirillales;f_Rhodospirillaceae no 
o_Rhizobiales;f_Methylocystaceae no 
f_Hyphomicrobiaceae;g_Rhodoplanes no 
f_Bradyrhizobiaceae;g_Bradyrhizobium plant-associated 
c_Alphaproteobacteria;o_Rhizobiales no 
o_Gemmatales;f_Gemmataceae no 
o_Nitrospirales;f_0319-6A21 uncultivated 
p_Gemmatimonadetes;c_Gemm-1 uncultivated 
p_GAL15;c_ uncultivated 
p_Firmicutes;c_Bacilli yes 
o_Bacillales;f_Paenibacillaceae yes 
p_Chloroflexi;c_TK10;o_B07_WMSP1;f_FFCH4570 yes 
p_Chloroflexi;c_TK10;o_B07_WMSP1 yes 
o_Thermogemmatisporales;f_Thermogemmatisporaceae yes 
Sphingobacterium faecium no 
f_Flavobacteriaceae;g_Flavobacterium no 
p_AD3;c_JG37-AG-4 uncultivated 
p_AD3;c_ABS-6 uncultivated 
f_Nocardiaceae;g_Rhodococcus;s_ yes 
o_Actinomycetales;f_Micromonosporaceae yes 
Arthrobacter psychrolactophilus yes 
o_Actinomycetales;f_Micrococcaceae yes 
o_Actinomycetales;f_Actinosynnemataceae yes 
c_Actinobacteria;o_Actinomycetales yes 
p_Acidobacteria;c_TM1 uncultivated 
c_DA052;o_Ellin6513 uncultivated 
f_Koribacteraceae;g_Candidatus Koribacter;s_ no 
o_Acidobacteriales;f_Koribacteraceae no 
c_Acidobacteria-6;o_iii1-15 uncultivated 
p_Acidobacteria;c_Chloracidobacteria uncultivated 
p_Acidobacteria;c_Chloracidobacteria uncultivated 
o_E2;f_Methanomassiliicoccaceae no 
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CHAPTER III APPENDIX 

GENOME REDUCTION IN AN ABUNDANT AND UBIQUITOUS SOIL  

BACTERIUM ‘CANDIDATUS UDAEOBACTER COPIOSUS’ 

 

Materials and Methods 

Estimating the abundances and distributions of Verrucomicrobia in soil 

 While five abundant Verrucomicrobia phylotypes were described in Fierer et al. 2013, a 

single phylotype with 99% identity to the clone DA101 (Felske and Akkermans, 1998) was clearly 

dominant. We searched previously published soil datasets for representative sequences with 

100% identity to this DA101 phylotype, including 31 soils from United States native tallgrass 

prairies (Fierer et al., 2013), 64 soils from matched forest and grassland sites across North 

America (Crowther et al., 2014), 595 soils collected from Central Park in New York City 

(Ramirez et al., 2014), 367 grassland soils collected from North America, Europe, Australia, and 

Africa (Leff et al., 2015), and a cross-biome collection of 15 desert and non-desert soils from 

across the globe (Fierer et al., 2012).  We also included a dataset from a grassland terrace near 

Boulder, Colorado (105.23W, 40.12N, Table Mountain) where 29 soils were collected from a 

depth of 25 cm within a 100m2 area on January 28th, 2015. Collectively these datasets represent 

1101 unique soil samples collected from a wide range of ecosystem and soil types.  

 For all samples, DNA was extracted with the MoBio PowerSoil kit and the V4 region of the 

16S rRNA gene was amplified in triplicate with the 515f/806r primer pair. After normalization 

to equimolar concentrations, amplicons were sequenced on an Illumina MiSeq (151 bp paired 

end) at the University of Colorado BioFrontiers Institute Next-Gen Sequencing Facility. 

Sequences were processed as described previously (Leff et al., 2015). In brief, we used a 

combination of QIIME (Caporaso et al., 2010b) and UPARSE (Edgar, 2013) to quality-filter, 

remove singletons, and merge paired reads. Sequences were assembled into phylotypes at the 

97% identity level using UCLUST (Edgar, 2010a). Taxonomy was assigned using the 

Greengenes 13_8 database (DeSantis et al., 2006) and the Ribosomal Database Project classifier 

(Wang et al., 2007) and each dataset was rarefied independently. 

 As PCR primer biases can misestimate the relative abundances of Verrucomicrobia 

(Bergmann et al., 2011; Guo et al., 2016), we also estimated the abundances of the DA101 
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phylotype directly from shotgun metagenomic data. We used Metaxa2 with default settings 

(Bengtsson-Palme et al., 2015) to extract bacterial 16S rRNA gene sequences from shotgun 

metagenomic data compiled from previous analyses of 75 different soils after rarefaction (Leff et 

al., 2015; Fierer et al., 2012). Extracted 16S rRNA gene fragments were matched to Greengenes 

full-length sequences at 99% ID using the usearch7 command usearch_global. The matched 

Greengenes sequences were then clustered and assigned taxonomy as described above. All 

statistical tests were carried out in R and ggplot2 was used for all plots unless specifically 

mentioned. Variances between groups tested were within one order of magnitude. 

 

Describing the phylogenetic diversity of soil Verrucomicrobia 

 We reconstructed near-full length 16S rRNA gene sequences to build a phylogeny of soil 

Verrucomicrobia from six soil samples (see Supplemental Table S3.1) that were selected to 

represent geographically distinct grasslands with a range of verrucomicrobial abundances. We 

extracted DNA from each of these soils as described previously (Leff et al., 2015) and used the 

27f/1392r primer pair to amplify near full-length 16S rRNA genes as described in (Miller et al., 

2013). The amplicons were sheared using the Covaris M220 (Covaris, Woburn, MA) and 16S 

rRNA gene libraries were prepared using TruSeq DNA LT library preparation kits (Illumina, 

San Diego, CA). Samples were pooled and sequenced on an Illumina MiSeq (2x300bp) at the 

University of Colorado Next Generation Sequencing Facility. 

 After quality filtering of sequences, near full length SSU sequences were reconstructed 

using EMIRGE (Miller et al., 2013). After 40 iterations, sequences were merged into phylotypes 

with ≥97% similarity. Reconstructed sequences were trimmed to 1200 bp and all sequences were 

further clustered at 95% identity due to gaps in some assemblies. Full-length 16S rRNA 

sequences from named verrucomicrobial isolates were aligned along with the reconstructed 

sequences using PyNAST (Caporaso et al., 2010a). A UPGMA tree was constructed using the R 

packages seqnir, phangorn, and ape and visualized with GraPhlAn (Asnicar et al., 2015) (R 3.2.2, 

version 0.9.7).  

 

Assembly and annotation of the dominant soil Verrucomicrobia genome 

 We assembled the genome of ‘Candidatus Udaeobacter copiosus’ from a metagenome of a 

U.S. prairie soil sample (NTP21, Hayden, IA) estimated to have particularly high abundances of 
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bacteria within the DA101 clade (Fierer et al., 2013). Fragmented DNA extracted from this soil 

was prepared for sequencing using WaferGen’s PrepX ILM DNA library Kit (WaferGen 

Biosystems Inc, Fremont, CA) and the Apollo 324 Automated Library Prep System for library 

generation. The library was sequenced on one Illumina HiSeq2000 lane (2×101 bp), yielding 17 

Gb of sequence with an average paired-end insert size of 345 bp. Low quality reads were 

trimmed using Sickle v. 1.29 with a quality score threshold of Q=3, or removed if trimmed to 

<80 bp long (https://github.com/najoshi/sickle). The sequences were assembled using 

IDBA_ud v. 1.1.0 (Peng et al., 2012) with a kmer range of 40 to 70 and step size of 15. To 

improve recovery of the most abundant Verrucomicrobia, the genome was selectively re-

assembled using Velvet with a kmer size of 59, and expected kmer coverage of 11.5 (range 7.5 to 

15.5). To bin contigs ≥2 kb long, genes and protein sequences were predicted using Prodigal v. 

2.60 in metagenomics mode (Hyatt et al., 2010). For each contig, we determined the GC content, 

coverage, and the phylogenetic affiliation based on the best hit for each predicted protein in the 

Uniref90 database (Suzek et al., 2007) (Sept-2013) following ublast searches. We also constructed 

emergent self-organizing maps (ESOM; Dick et al., 2009) using tetranucleotide frequencies of 5 

kb DNA fragments. A combination of these approaches was used to identify the genome. The 

draft genome was uploaded to IMG for annotation under the taxon ID 2651869889.  

 We estimate that the Ca. U. copiosus genome is approximately 94% complete, based on 

domain-specific single copy housekeeping genes commonly used to estimate genome completion 

(Finn et al., 2016). This list of single copy genes has been used to estimate genome completeness 

in several recent studies(Herlemann et al., 2013; Anantharaman et al., 2016). When we analyzed 

the genome using another metric of genome completeness (checkM; Parks et al., 2015), the 

results suggested that the genome was 80% complete with 4% contamination, a level categorized 

as a ‘substantially complete draft with low contamination’. This level of completeness is similar to 

several other recent genomes assembled from metagenomes (Baker et al., 2016; Garcia et al., 

2015). However, because checkM relies on lineage-specific marker genes, the completeness of 

genomes without lineage representation can often be underestimated (Parks et al., 2015). As there 

is only one complete genome for the entire class Spartobacteria (C. flavus), the checkM genome 

completeness estimate for Ca. U. copiosus may likewise be underestimated. Simply put, there are 

limitations and caveats associated with any genome completeness measure and the true 

completeness of the Ca. U. copiosus genome likely lies somewhere between these estimates. 
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 No rRNA genes were annotated by IMG, so we used Metaxa2 with default settings on the 

unassembled sequences to extract any 16S rRNA genes. Metaxa2 recovered two ~500¬ bp 16S 

rRNA gene fragments at 23-29× coverage which aligned to separate regions of the full-length 

16S rRNA gene from the closest related verrucomicrobial genome (C. flavus). Because these two 

rRNA gene fragments have the same coverage as the genome (27x) and align to separate regions 

of one 16S rRNA gene, it is likely that Ca. U. copiousus encodes a single rRNA operon, similar to 

its closest relative C. flavus (Sangwan et al., 2004; Kant et al., 2011) and all other sequenced 

heterotrophic soil Verrucomicrobia (Supplemental Table 4). 

 

Data Availability: The draft genome of ‘Candidatus Udaeobacter copiosus’ is publicly available 

in the Integrated Microbial Genomes (IMG) database under the IMG genome ID 2651869889. 

Raw sequences from which the Ca. U. copiosus genome was assembled are available at the 

Sequence Read Archive (SRA) under the bioproject ID PRJNA342239. Amplicon sequences and 

associated metadata generated exclusively for this study are available at figshare at 

dx.doi.org/10.6084/m9.figshare.3363505.v3. Accession numbers for all other amplicon datasets 

have been previously published. The raw sequences used for EMIRGE near full-length 16S 

amplicon reconstruction are also available at figshare at 

dx.doi.org/10.6084/m9.figshare.3799422.v1. All other datasets supporting these findings are 

available from the corresponding author upon request.  
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Supplemental Figure S3.1: DA101 rank is similar in amplicon and metagenomic data. The 
top 5 phylotypes from two matched amplicon and metagenomic datasets (Global Grasslands = 
Leff et al. 2015, Cross-Biome Soils = Fierer et al. 2012) are shown in order of decreasing median 
rank. Each point represents one sample within the corresponding dataset (Not all samples in the 
global grasslands dataset had metagenomic sequencing). DA101’s position is highlighted with 
blue while all other phylotypes are grey.  
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Supplemental Figure S3.2: Phylotype DA101 is more abundant in grasslands than forests. 
(p<0.0001, n=64, Mann-Whitney test) Data is from Crowther et al. 2014.  
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Supplemental Figure S3.3: The abundance of the DA101 amplicon correlates with measures 
of microbe and plant biomass. (Primary plant productivity p<0.0001 rho=0.47 n=366, and 
substrate induced respiration p<0.001 rho=0.57 n=31, Spearman correlations). The shaded 
region represents the 95% confidence interval of the trend line. Global Grasslands = Leff et al. 
2015 and US Native Prairies = Fierer et al. 2013. 
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Supplemental Figure S3.4: The abundances of housekeeping gene sequences from the Ca. U. 
copiosus genome and DA101 16S rRNA gene sequences are well correlated across soil 
metagenomes (P < 0.0001, ρ > 0.87, n=102, Pearson correlation). We extracted matches to three 
Ca. U. copiosus housekeeping genes using blastN and compared the length normalized 
abundance of these fragments to the length-normalized abundance of DA101 16S rRNA gene 
sequences extracted using Metaxa2. We counted genes as a match to Ca. U. copiosus if the 
percent identity was greater than 85% and Ca. U. copiosus was the best hit. Our blastN database 
included the corresponding housekeeping genes from all named verrucomicrobial genomes in 
IMG. We chose 85% identity as our cutoff for several reasons: i) Protein coding genes are 
inherently more variable than rRNA genes; ii) the intraspecies percent identity variation for these 
genes has been reported to be as low as 87.7%; iii) there are no other representatives of this genus 
with a sequenced genome to permit direct comparisons. 
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Supplemental Figure S3.5: Pathways to synthesize several expensive amino acids are 
underrepresented in the Ca. U. copiosus genome. 34 unique genes are currently missing from the 
Ca. U. copiosus genome that would enable synthesis of all 20 amino acids. The cost of each of 
amino acid was estimated in E. coli by number of high-energy phosphate bonds hydrolyzed 
(Akashi and Gojobori, 2002). The number of genes missing in each pathway was calculated from 
KEGG metabolic pathways.  

 

 

 

 

 

 

 

 

 

Genes Missing from Biosynthetic Pathways in Ca. U. copiosus

50 - 75%
75 - 100%

Percent of 
Pathway Missing

M
et

ab
ol

ic
 C

os
t

25 - 50%



84 

Supplemental Table S3.1: EMIRGE Samples 
Sample Name Dataset Location Description 

NTP21 Fierer et al. 2013 Hayden, IA Native prairie 

NTP28 Fierer et al. 2013 Glynn Prairie, MN Native prairie 

NN1182 Leff et al. 2015 Val Mustair, Switzerland Alpine grassland 

NN772 Leff et al. 2015 Msunduzi Municipality, South Africa Mesic grassland 

TM25 New data set Table Mountain, CO Alluvial terrace 

GG14 New data set Gordon Gulch, CO Meadow 

 

 

Supplemental Table S3.2: Genome characteristics  
of heterotrophic soil Verrucomicrobia 
Genome name Lifestyle Est. genome size (Mbp) rRNA Copy # 

Ca. Udaeobacter copiosus Heterotroph 2.81 Likely 1 

Chthoniobacter flavus Ellin428 Heterotroph 8.07 1 

Opitutus terrae PB90-1 Heterotroph 5.96 1 

Pedosphaera parvula Ellin514 Heterotroph 7.85 1 
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CHAPTER IV APPENDIX 

UNLINKED RRNA GENES ARE WIDESPREAD  

AMONG ENVIRONMENTAL BACTERIA AND ARCHAEA 

 

Materials and Methods  

Analyses of complete genomes 

 All bacterial and archaeal genomes in the RefSeq genome database (O'Leary et al., 2016) 

classified with the assembly level “Complete Genome” were downloaded from NCBI in January 

2019. We used gene ranges associated with each open reading frame (ORF) to pair the 16S and 

23S rRNA genes that were closest to each other in each genome. We removed genomes that had 

an unequal number of 16S and 23S rRNA genes and those that had 16S or 23S on separate 

chromosomes or genome contigs (some genomes had up to 5 contigs). We also separated 

genomes that had a 16S rRNA gene within 1500bp of the end of the genome or a 23S rRNA 

genome within 1500bp of the beginning of the genome and classified these genomes 

independently. We classified the remaining rRNA pairs as either linked or unlinked if there was 

more than 1500bp between the end of the 16S and beginning of the 23S rRNA genes. Genomes 

were classified as 'unlinked', 'linked', or 'mixed' depending on the status of their rRNA operons 

with 'mixed' genomes having multiple rRNA copies with a combination of both linked and 

unlinked rRNA genes. All analyses were done in R version 3.5.1 (R Team, 2018). 

 

Long-read shotgun metagenomic analyses 

 To investigate the prevalence of unlinked rRNA operon among those bacteria and archaea 

found in environmental samples (including many taxa for which genomes are not yet available), 

we analyzed long-read shotgun metagenomic datasets generated from soil, sediment, activated 

sludge, anaerobic digesters, and human gut samples. These metagenomic datasets were 

generated using either the Oxford Nanopore MinION (6 samples) or Illumina synthetic long-

read sequencing technology (also known as Moleculo, first described here (Kuleshov et al., 2014), 

9 samples). The Moleculo sequences originated from four separate studies: human gut (Kuleshov 

et al., 2016), prairie soil (White et al., 2016), sediment samples (Sharon et al., 2015), and 

grassland soils (MG-RAST project mgp14596, (Flynn et al., 2017). The MinION sequences 
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originated from three separate unpublished studies featuring anaerobic digesters, activated 

sludge, and lawn soil. (Mads Albertsen & Arwyn Edwards). Drawing from these datasets, 

altogether we compiled 16,346,111 nanopore sequences and 890,542 moleculo (also known as 

Illumina synthetic long read) sequences. Altogether these 15 samples spanned multiple 

environments, from soil to sediment to anaerobic digesters to the human gut.  

 The first 250bp of each Nanopore sequence was removed because low quality. We 

performed no other quality filtering, as some samples did not include information on sequence 

quality (fasta format). We relied on our downstream filtering steps to remove sequences of poor 

quality. Metaxa2 was run on all sequences with default settings to search for SSU (16S rRNA) 

and LSU (23S rRNA) gene fragments. Taxonomy was assigned to the partial rRNA sequences 

using the RDP classifier (Wang et al., 2007) and the SILVA 123 SSU and LSU databases (Quast 

et al., 2012). Details on the number of reads per sample, read lengths, and the samples analyzed 

are available in Supplemental Table S4.1.  

 We next used a number of criteria to filter the reads included in downstream analyses and 

to identify taxa with unlinked rRNA genes. We only included those reads in our final dataset 

that: 1) included at least 2 domains of the 16S or 23S rRNA genes, 2) included either the last 

domain of the 16S rRNA gene or the first domain of the 23S rRNA gene, 3) the length of the 

16S rRNA gene was ≤1591bp or the 23S rRNA gene was ≤ 3179bp (these limits correspond to 

the 99.5% quantile lengths of 16S and 23S rRNA gene sequences in our complete genomes), and 

4) could be classified taxonomically to at least the phylum level. Of the subset of reads that met 

these criteria (39-347 per moleculo sample, 171-5071 per nanopore sample, see Supplemental 

Table S4.1 for details), we classified reads as containing an unlinked rRNA operon if there was 

≥1500bp between the 16S and 23S, OR if there was no 23S domain found 1500bp after the end 

of the 16S rRNA. For our final analyses, we removed reads that could not be classified as linked 

or unlinked rRNA genes (for instance a sequence with only 300bp after the 3’ end of the 16S 

rRNA gene) and included only reads that contained a 16S rRNA gene to avoid potentially 

double counting organisms with unlinked 16S and 23S rRNA genes. All analyses were done in R 

version 3.5.1 (Team, 2018). 

 

Phylogenetic tree of unlinked rRNA genes 

 The phylogenetic tree (Figure 4.4) was created from full-length 16S rRNA sequences by 
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combining both the NCBI complete genomes and the long-read shotgun metagenomic datasets. 

For the NCBI genome sequences, we selected one 16S rRNA gene sequence per unique species. 

For the long-read datasets, we first matched the partial 16S rRNA genes recovered by metaxa2 

(Bengtsson-Palme et al., 2015) to full-length 16S rRNA gene sequences in the SILVA 132 SSU 

database (Quast et al., 2012) using the usearch10 (Edgar, 2010b) command usearch_global. 

Those full-length SILVA 16S rRNA genes sequences that matched to at least 95% percent 

identity were added to the complete genome sequences to represent the long-read metagenomic 

dataset. We used 95% percent identity as our cutoff as we found unlinked rRNA gene status to 

generally be conserved within genera. The NCBI and SILVA sequences were then aligned with 

PyNAST (Caporaso et al., 2010a) with a phylogenetic tree constructed using fasttree (Price et al., 

2009), and plotted with ITOL (Letunic and Bork, 2016). 

 

Genomic attributes associated with unlinked rRNA genes 

 All tests for genomic attributes were done with a subset of our complete genome dataset - 

we reduced the dataset to include only one representative genome per unique species and operon 

status. For example, if a species had 24 genomes with linked rRNA genes and 3 genomes with 

unlinked rRNA genes, we retained two genomes total, one linked and one unlinked. To 

determine if taxa with unlinked rRNA genes have a lower predicted growth rate, we calculated 

the codon usage proxy ΔENC’ (Novembre, 2002), which has been shown to provide an estimate 

of minimum generation times (Vieira-Silva and Rocha, 2009). We calculated ΔENC’ with the 

program ENCprime (Novembre, 2002) with default options, on both the concatenated ORF 

sequences and concatenated ribosomal protein sequences for each genome following Vieira-Silva 

and Rocha, 2009. To check intragenomic rRNA sequence divergence, we used blastn with 

default settings to compare each pair of unique rRNA sequences in each of the genomes in our 

dataset. To determine if RNaseIII was present in each genome, we used hmmer (Eddy, 2011) to 

check for three RNaseIII pfams (bacterial PF00636, PF14622, and archaeal PF11469) in the 

translated protein files of each genome. We used the GA gathering cutoffs profile associated with 

each of these pfams to set all thresholding (--cut_ga). 
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Supplemental Figure S4.1: Genomic attributes of NCBI complete genomes based on their 
rRNA operon status. Linked complete genomes feature exclusively linked rRNA genes, unlinked 
exclusively unlinked rRNA genes, and mixed have at least one linked and one unlinked rRNA 
operon. A) On average, genomes with exclusively unlinked rRNA genes had fewer rRNA copies 
(χ2 p<0.001, means of groups: 4.2 linked, 5.5 mixed, 2.6 unlinked). B) Genomes with unlinked 
rRNA genes have smaller genomes on average, but this is not a significant difference 
(Supplemental Figure S1B, χ2 p=0.87, means of groups: 4.1Mbp linked, 4.0 Mbp mixed, 2.8 
Mbp unlinked). C) Genomes with exclusively unlinked rRNA genes are predicted to have a lower 
average generation time (χ2 p<0.001, means of groups: 0.23 linked, 0.23 mixed, 0.19 unlinked). 
We calculated these statistics using a subset of our complete genomes with only one genome per 
unique species and operon status. 
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Supplemental Figure S4.2: rRNA divergence varies significantly between genomes based on 
their rRNA operon status. Sequence divergence among intragenomic 16S and 23S rRNA was 
significantly greater in genomes with unlinked rRNA (among genomes with 2-3 rRNA copies, χ2 
p<0.05 for 16S and 23S rRNA) 
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Supplemental Figure S4.3: Genomes with unlinked rRNA genes are less likely to encode 
bacterial RNaseIII. We found that there were significantly fewer RNaseIII genes in genomes 
with unlinked rRNA operons (PF00636: χ2 p<0.001, means of groups: 1.0 linked, 0.84 mixed, 
0.74 unlinked; PF14622: χ2 p<0.001, means of groups: 0.86 linked, 0.63 mixed, 0.65 unlinked). 
We also checked this relationship for archaeal RNaseIII, but found no significant association 
(PF11469: χ2 p=0.153). We calculated these statistics using a subset of our complete genomes 
with only one genome per unique species and operon status. 



92 

Supplemental Table S4.1: Sequence statistics 

Sample (sequence type) Sequences 
Median 
length 

Total 
23S 

23S passing 
filter (%) 

Total 
16S 

16S passing 
filter (%) 

Lawn soil (n) 1751625 2706 2767 19.05 2085 28.82 

Anaerobic digester 2 (n) 1462320 6038 6196 22.27 5276 30.34 

Anaerobic digester 1 (n) 3362711 2770 13577 15.50 10910 23.24 

Anaerobic digester 3 (n) 6194277 5393 18389 21.75 15668 32.37 

Activated sludge (n) 1366686 7875 4152 6.17 3412 5.01 

Sediment 4 (n) 2208492 5787 3550 21.63 2869 22.93 

Grassland soil 4 (m) 50850 3305 97 47.42 63 69.84 

Grassland soil 1 (m) 67177 9618 136 63.24 132 76.52 

Grassland soil 2 (m) 115256 7022 256 45.70 223 65.92 

Grassland soil 3 (m) 34170 5861 73 54.79 72 54.17 

Sediment 1 (m) 9282 7863 232 53.02 196 72.96 

Sediment 2 (m) 13190 7317 274 48.91 253 62.06 

Sediment 3 (m) 9282 7859 258 54.65 187 74.87 

Human gut (m) 65354 7808 692 50.14 534 60.49 

Grassland soil 5 (m) 123687 7197 248 61.29 213 74.65 

 

 

 

 


