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Thesis directed by Professor Barbara P. Buttenfield 

 

Abstract: 

This dissertation designed and implemented approaches to assess the suitability of 

commonly used unsupervised and supervised grouping methods on data types commonly used 

in the geographic domain. Four different types of data have been indexed for organization: a 

full-text data set depicting 30 years of cartographic literature, a raster data set consisting of 

physiographic characteristics of the U.S., a suite of GIS software commands used in hydrologic 

analysis, and a catalog of cartographic generalization algorithms. Various clustering and 

classification methods from the field of statistics and machine learning were evaluated for 

organizing these different data types. By systematically applying all types of data organization 

to each type of indexed data, this research addresses the question of whether certain indexing 

strategies influence the effectiveness of the organization methods. Depending on the data set 

and the indexing method applied, some clustering and classification methods performed better 

than others. 

The experiments of this dissertation demonstrate that by the systematic evaluation and 

validation of clustering and classification results recommendations for organizing data can be 

formulated based on the results of cluster and classification indices. Furthermore, through 

systematic evaluation and application of the six clustering and classification methods it is 

possible to match indexing strategy and organization methods for each of the four data sets 

used in this dissertation. 
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CHAPTER I 

The problem of accessing information 

Through the adoption of new technology, data accumulates steadily and information 

gathering continues to be an important task throughout any research project. In order to 

analyze a data set, it often needs to be characterized, as the raw data either lacks metadata or 

cannot be used in the form in which it is stored. The key to efficient data retrieval is the creation 

of indices (Manning et al., 2009). Organization of indices into a relevant schema will facilitate 

data retrieval. Many different advanced statistical methods can be applied to organize data, but 

they vary in effectiveness depending on the data types to which they are applied.  

This dissertation will explore problems associated with building indices to organize 

different data types. The research will explore how to organize data which has been indexed 

using manually and automatically derived keywords. Four different types of data sets will be 

indexed: a full-text document depicting 30 years of cartographic literature, a suite of GIS 

software commands used in hydrologic analysis, a catalog of generalization algorithms, and a 

raster data set consisting of physiographic characteristics of the U.S. Various clustering and 

classification methods from the field of statistics and machine learning will be evaluated for 

organizing these different data types using clustering and classification evaluation indices. By 

systematically applying all types of data organization to each type of indexed data, this research 

addresses the question of whether certain indexing strategies influence the effectiveness of the 

organization methods. Systematic recommendations for indexing different types of data, and 

for subsequent clustering or classification, will be formulated based on formal evaluation as 

well as discussion of the data set’s inherent structure.   

1.1 Current problems in accessing information 

In today’s world, much of the available published knowledge and information is stored in 

digital form. Since the advent of the World Wide Web (WWW) and the application and 
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augmentation of Hypertext (Conklin, 1987), the trend has shifted to online storage, which 

provides wide accessibility of information on the Web (Berners-Lee, 1990). The evolution from 

localized storage to online storage and cloud computing involves a paradigm shift that changes 

many aspects of data organization. Data access and transfer speeds are no longer a primary 

obstacle to data retrieval. This dissertation argues that as more and more data become available, 

strategies to organize and index the increasing volume of data will become the primary 

challenge to information retrieval.  

Information is stored in varying formats and media. Information accessible on the Internet 

is commonly stored as full text records. Many online retrieval frameworks such as Google, 

Yahoo, and Bing gather information and provide a sharing platform. Retrieval frameworks 

include online search engines, library catalogs and multimedia databases. A problem with using 

online retrieval frameworks is how to search for items which are similar to a token, and how to 

search for multiple data formats. Most search engines can only work on one type of data. In 

order to make data fully searchable, it needs to be characterized by a certain index (Akerkar and 

Lingras, 2008).  

Generating indices depends on the type of data which needs to be indexed. For example, 

full-text documents are indexed on different indices than non-textual data such as algorithms or 

satellite image archives. A variety of indexing tools for textual data are currently available. Most 

search engine indexing tools are based on word count, word stemming or word appearance and 

structure (Google Search, 2010). Word count is one of the simplest methods whereas word 

appearance analyzes the words before and after the word of interest and tries to establish 

relationships between words. More advanced techniques for analysis of full text documents 

include the vector space model in which word inclusion or absence is stored in a vector along 

with weights prioritized to distinguish common or generic words (e.g., articles, conjunctions) 

from words which are salient to the topic under investigation (Salton et al., 1976).  



3 

Indices which characterize textual data cannot be applied readily to other data types, for 

example algorithms. Running a word count or text stemming method on algorithms won’t 

provide meaningful distinctions among similar and non-similar algorithms (Segaran, 2007). 

What is needed to generate indices for algorithms is a description of what the algorithm does, 

rather than culling tokens directly from the source code. Manually generated characterizations 

are essentially a form of metadata, but many types of data (algorithms, digital data sets, etc.) are 

not currently stored with metadata.  

Additional data is often required to form manually generated keywords. Software 

commands for example need additional information not stored within the code to generate such 

a characterization. Online help and additional documentation might serve this purpose. Usually 

these keywords can be derived manually. For example, Ye et al. (2001) described a manually 

derived keyword set for use in software repository systems. Wendel et al. (2009) implemented 

manually generated keywords for hydrological GIS commands. Viger (2011) demonstrated that 

manually generated keywords can be used to moderate, improve, and specialize the results of 

the traditional keyword process. However, neither standardization nor guidelines exist at 

present for indexing software commands. 

1.2 A continuum of automatically and manually derived indexing strategies 

The dissertation will explore a range of techniques to derive indices for organizing different 

types of data. Table 1.1 shows a continuum spanning the range from automatically to manually 

derived indices for different types of data. Starting at the top of the continuum, automatically 

derived keywords have been demonstrated to provide an effective indexing strategy for full text 

documents (Blanken et al., 2007). Indexing is usually done by frequency word counts or 

structural analysis of the text document (Segaran, 2007). Furthermore, text can be structured by 

title, chapters and sections, and text stemming methods can be adjusted to the content of each 

section.  
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In contrast with full-text documents, metadata is needed for describing most other data 

types. Metadata usually follows a pre-defined schema where the data type is described in 

textual form. For example, instead of searching for an object directly in a multimedia archive, 

one can search metadata. To take another example, vector or raster spatial data sets usually 

include attributes. An automatically derived indexing scheme can be developed using the 

attributes for keywords. In addition to attribute field names, metadata is sometimes presented 

and may include information such as generation date, description of the generation process and 

persons involved in the process. 

Table 1.1 A continuum of indexability for a variety of data types. The table shows alternative 

options for establishing keywords, and for each keyword option, identifies the extent to which 

keywords may be extracted automatically. 
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For documents containing information in other formats, indexing becomes more 

challenging, indexing strategies become increasingly complex and require a larger amount of 

human intervention.  

Sound files usually have media tags associated with them. Media tags describe properties 

such as artist, genre, length, and date (Blanken et al., 2007). The content of media tags creates an 

analogous indexing method to the metadata descriptors mentioned above. Other approaches 

analyze the sound structure of sound files by frequency or beats per minute so that less 

descriptive metadata is needed for indexing. This technique is not widely used due to its 

computational complexity (Blanken et al., 2007).  

Image files consist of pixels describing the color values as well the color depth (Blanken et 

al., 2007). Auxiliary data (metadata) can support indexing for these kinds of data. Image files 

usually contain metadata tags describing camera type, properties about how the image was 

taken. For analog images, metadata might include shutter speed, focal length or aperture, and 

for digital images it might include platform height, resolution, date of collection, radiometric 

characteristics, and GPS coordinates. This type of auxiliary data is commonly stored in 

Exchangeable Image File format (EXIF) which has become a broadly adopted standard 

(http://www.exif.org , accessed August 2011). More advanced methods for characterization of 

images include pattern recognition techniques which are used for face recognition or content-

based image search (e.g., finding orchards within orthoimagery) (Prathiba et al., 2013; 

www.facebook.com, accessed October 2011; http://picasaweb.google.com, accessed October 

2011).  

Moving further down the continuum, the data type exemplified by a set of software 

commands requires an indexing strategy that requires more human intervention. Principles that 

are applied to sound and image files cannot be used for software or programming code. There 

is no standardized metadata for software. Methods exist for generating metadata such as Java 

Docs, but are not standardized and vary by programming language. Approaches which apply 
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pattern recognition techniques to find structures in programming code have been proposed, but 

these cannot be applied to all domains (Tangsripairoj and Samadzadeh, 2006).  

At the bottom of the continuum, one encounters algorithms, which describe procedures for 

completing a particular task. These in a way provide the most extreme example requiring 

manual human intervention during indexing, as the algorithm may be described in equations, 

in a workflow diagram, in natural language, or in pseudocode, which in and of themselves 

provide three distinct data types. At this point, the continuum forms a conceptual loop, since 

algorithms are commonly described in online help files, journal articles or other full-text 

documents, from which it should be possible to extract a salient set of automatically derived 

keywords. Full-text documents describing algorithms might act as manually derived metadata, 

from which keywords could be generated by stemming, in some cases.  

1.3. Relevance to data organization   

The four data sets in this dissertation were chosen to represent the whole range of data sets 

ranging from full-text documents which can be index automatically to data sets where manual 

indexing is required. No systematic evaluation of indexing and organization strategies across 

multiple data types exists in the literature. This research evaluates the effeteness of clustering 

and classification for a given set of indexing schemes. It is expected that some organization 

methods might perform better than others as all of the four data sets have a different inherent 

underlying ontological structure. For example, a hierarchical organization method might 

perform better on the cartographic generalization algorithms data set due to the underlying 

taxometric nature of the data set and domain it describes. Whereas non-hierarchical 

organization methods might perform better on a data set where no distinct inherent 

axonometric structure is present. The research presented in this dissertation does not want to 

implement new methods but rather evaluate existing methods, given a particular indexing 

scheme and data type. Future multi-data type retrieval systems will rely on a combination of 

classical and modern indexing strategies to accommodate the variety of different data types 
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(Blanken et al., 2007). Therefore it is beneficial to have a better understanding of which methods 

will succeed or fail for a specific data type. Chapter 2 will give a complete review and 

discussion of the most notable systems that have been developed. 

1.4. Information spaces and their relevance to GIScience  

One of the basic foundational concepts in the field of Geography is the idea that space is 

defined through Euclidean space that constructs the physical world we live in (Batty and Miller, 

2006). Distance and direction underlie our understanding of place. Theories have been 

developed based on this fundamental concept and form the core of geographic analysis. A 

fundamental aspect of geographic space is the continuum of scale, ranging from the footprint of 

a small area to the footprint of the whole country (Fabrikant and Buttenfield, 2001).  

One key step in the process of data organization is the creation of information spaces.  

Every time data is organized an information space is formed based on the underlying 

ontological structure of the data set.  An information space can be described as the location 

where the human mind interacts with information, and content is organized by the experience 

of the human (Manning et. al. 2009). Information spaces facilitate the storage and retrieval of 

data and information, processing of data into information, communication of information, 

navigation through structured information and linking different pieces of information. Instead 

of constructing a space by Euclidian geometry commonly used to represent our physical world, 

attributes describing information are used to display relationships within information (Figure 

1.1). Similarity is often associated with distance between objects in such an information space. 

Spatial metaphors can be applied to these information spaces (Fabrikant and Buttenfield, 2001). 

The First Law of Geography “Everything is related to everything else, but near things are more 

related than distant things" (Tobler, 1970), can be applied to information spaces just as it can be 

applied to geographic space.  
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Figure 1.1 Euclidian space versus information space. If two points are placed in the Euclidean 

space model on the left, properties of these points can be measured by x, y and z values. In the 

information space model on the left these data points would be described by the attributes 

which are defining axes of this space. In Euclidean space distance can be measured by the 

Pythagorean Theorem. This principle can be transferred into the information space model 

where the measured distanced corresponds to similarity. 

Information spaces in GIScience have been studied by geographers over the last 20 years, 

especially with the notion of using a spatial metaphor for analysis of non-spatial information 

(Skupin and Buttenfield, 1997; Fabrikant and Buttenfield, 2001; Skupin and Fabrikant 2003). In 

the field of GIScience this process is called “Spatialization” (Skupin, 2001). Each of the four 

different indexing strategies used in the dissertation formalizes its own information space. The 

generated keywords for each data set form the dimensionality of the information space. 

Therefore each information space can be described as having its own geography. Depending on 

the indexing and organization method used, each method will place attributes in differing 

spatial relationships. Chapter 2 will review different concepts of information spaces and 

semantic reference spaces to more detail. 



9 

1.5 Problem statement 

This dissertation implements different indexing strategies to different types of data. It 

discusses the generation of manually generated keywords for data sets where automated 

keyword generation is not feasible. To demonstrate the feasibility of intelligent data 

organization, four different data types commonly used in the geographic domain will be first 

indexed and then organized by supervised and unsupervised methods. The data sets used in 

this dissertation consist of a full-text document, an inventory of software commands, a catalog 

of algorithms and a spatial raster data set. The four data sets span the continuum of indexability 

and ranging from fully automated keyword generation to keyword generation requiring human 

intervention. Various supervised and unsupervised grouping methods from the field of 

statistics and machine learning will be used to organize the four data types. Throughout the 

dissertation, methods drawn from statistics will be referred to as “classical” and methods 

drawn from machine learning will be referred to as “modern”. Grouping results will be 

compared by common evaluation and validation methods. The discussion of the results is 

guided by the data set’s underlying inherent structure as well as the purpose of the 

organization of for each of the four different data sets. 

1.6 Research questions 

During the process of indexing and grouping, two major research questions can be 

addressed:  

1. For a given indexing scheme does a particular organization method link clearly to an 

indexing method and why? 

Automatically generated keywords are derived directly from a document, by word counts 

or text stemming methods, without requiring further information or knowledge. In contrast, 

additional data is required for manually indexed keywords. Given the differences in the 

creation of these two types of indices, certain organizational methods might be better suited 
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than others and some methods might not be suitable at all. The anticipated finding is that 

manually indexed data sets might perform well on supervised learning methods as knowledge 

about this data set has already be gained by prior indexing and therefore link back to the 

indexing method. An automatically indexed data set might perform poorly on supervised 

learning methods as indices are derived without human intervention and therefore no prior 

detailed knowledge about the data set is present. On the other hand, unsupervised clustering 

should demonstrate better performance with automatic indexing, which should be more 

objective and more consistent. 

2. What systematic recommendations can be established for organizing data by unsupervised 

or supervised methods? 

In the application of unsupervised and supervised organization methods, multiple 

parameters have to be set beforehand. Some of these parameters are sensitive to the input data 

set; clustering and classification results are dependent on those parameters. Through 

implementation and evaluation of the six classical and modern methods from clustering and 

classification, recommendations can be established. Recommendations have to be formulated 

differently for clustering and classification. It is anticipated that systematic recommendations 

can be specifically given for optimal cluster selection as well as for selection of the optimal 

clustering methods based on the data set and its underlying ontological structure. For 

supervised classification it is anticipated to establish recommendations for the selection of the 

training data set size, as well as recommendations for setting model parameters based on the 

evaluation of the experiment carried out in this dissertation. 

1.7 Problem significance 

Data retrieval and knowledge exchange is one of the most fundamental challenges in 

today’s research environment. Recommendations are limited on how to formalize manually 

derived keywords for data when automatic keyword methods fail. No rigorous empirical 
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comparison of organization methods for different types of data exists. Results from this research 

will be beneficial to Geographers and to all researchers working on multi-dimensional data sets 

across different domains.   

By evaluating the grouping of different data sets indexed according to different strategies, 

recommendations can be given on the most effective grouping method for a given indexing 

scheme, as well which strategy will fail or succeed depending on the data type used. The choice 

of indexing strategy will dictate the underlying inherent structure of a data set and whether 

certain organization method will be successful or not. Depending on the domain of the data set, 

a manually indexed data set is likely to have a more pronounced hierarchical structure than a 

data set indexed by an automatic indexing strategy. This is due to the human ability of organize 

and structure data in categorical ways to process information (Everitt et al. 2001).  Drawing the 

linkage between data indexing strategy and data organization method is therefore essential to 

all researchers working with multiple data types across domain in order to determine the 

optimal organization methods depending on its inherent structure by indexing and topic 

domain.  

Research in IR shifted from solely developing methods for one single data type such as 

documents into IR system incorporating multiple data types and complete multimedia retrieval 

systems (Blanken et al. 2007). Lessons learned from rigorous evaluation of different 

organizations of the four different data types in this dissertation will help the IR community to 

better understand the requirements for the implementation of multi-format retrieval systems 

where the whole range of data types will be present. Results from this research will also support 

the choice of organization algorithm applied to variously indexed data sets which is an essential 

prerequisite to effective information retrieval. 

The field of Spatialization within the GIScience domain focuses on the transformation of 

high-dimensional data into lower dimensional geometric representations by applying spatial 

metaphors to information spaces (Skupin, 2007). This research will be beneficial to GIScientists 
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as it evaluates indexing strategies for different data types. Each created indexing schema can be 

interpreted as its own reference system. By developing guidelines about which indexing 

strategy to use, GIScientist will be able to more efficiently design Spatialization systems and 

information system visualizations.  The four data sets used in this research represent data sets 

commonly used by GIScientists. Evaluation of indexing and grouping methods on these data 

sets will be beneficial to the GIScience community as they will provide guidelines to efficient 

indexing and organization of these data sets.  

1.8 Dissertation structure 

The following chapters present a literature review split into two chapters. Chapter 2 covers 

the historical roots of organization data indexing and emphasizes current methods and 

limitations in deriving a keyword set. Chapter 3 reviews the methodological foundations about 

organizing data, distinguishing between classical and modern methods for unsupervised and 

supervised grouping. Chapter 4 introduces the methodological framework of this dissertation 

and also describes the indexing process for all four data sets. Chapter 5 covers the data 

clustering and classification, as well as the comparative evaluation of data organization 

methods to each type of indexed data. Chapter 6 discusses implications of the research and 

formulates guidelines on indexing and organization for data types where automatic methods 

cannot be applied. Chapter 6 concludes the dissertation research with a discussion on the 

limitations of the applied methodology. It also gives an outlook for extending this research. 
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CHAPTER II 

Literature Review - Overview of existing knowledge 

This chapter places the dissertation research into the context of current and past research. It 

focuses on different indexing approaches of various data types using methods from Information 

Retrieval (IR), data organization, and machine learning. Three sources for generating indices for 

data types where automatic indexing fails are reviewed, namely metadata or media tags, 

auxiliary data derived through additional processing, and patterns inherent in the data elicited 

by semantic or content-based processing. As each data indexing strategy produces its own 

information space, concept of ontology and current research trends leading to the semantic web 

are discussed in regards to the data sets used in this dissertation. The final section places this 

research into the context of current developments in information science and GIScience. The 

chapter closes with a discussion of gaps in current research and how this dissertation will help 

to fill those gaps. 

2.1 A review of concepts from Information Retrieval  

The field of Information Retrieval (IR) is a multi-disciplinary field with research emphases 

ranging from traditional Library and Information Science (LIS) to advanced multimedia IR 

systems (MIRS) (Blanken et al., 2007). The problem of how to structure and organize 

information has had a long chronology in LIS. The literature differentiates between 

bibliographic cataloging and alphabetical indexing (Chan, 1981; Taylor and Joudrey, 2009).  

In bibliographic cataloging, each description of an item usually appears in only one 

physical place and can be understood as the simplest form of a retrieval tool (Taylor and 

Joudrey, 2009). Each bibliography has a focus described by subject, author, language, publisher, 

or form. Traditional bibliographic classification has been developed in conjunction with 

descriptive cataloging techniques, which assign an index to an item in a catalog in a way that 

this item can be used as a locator or address to find it again at a later time. Catalogs provide 
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access to individual items within a collection of information resources, such as physical entities, 

online resources, or websites (Taylor and Joudrey, 2009). Bibliographic cataloging is not as 

important in a digital environment, as it was developed for the retrieval of physical information 

at a single physical location, such as a book on a library shelf. 

However, the second approach, alphabetic indexing is applicable to digital data, as 

multiple terms can be associated with a data item and reorganization of the catalogs can be 

conducted relatively easily (Taylor and Joudrey, 2009). It is apparent that the size of today’s 

online data libraries are far too large, but also too diverse and dynamic for manually defined 

catalogs or catalogs which are based on hard coded knowledge (Taylor and Joudrey, 2009). 

Figure 2.1 gives an overview of the increased size of multiple cataloging systems over time 

(Akerkar and Lingras, 2008).  

 

Figure 2.1 Milestones in IR systems (redrawn from Akerkar and Lingras, 2008). The solid blue 

line indicates known amounts of information, the dashed blue line displays estimated numbers 
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of items in each collection, and the dashed red line displays online information indexed by 

Google. 

From Figurer 2.1 it is apparent that traditional methods developed in LIS for physical items 

cannot be applied to the retrieval of very large amounts of data (e.g. Internet), and more 

advanced methods are necessary.  

The necessity to store and retrieve information became increasingly important over 

centuries. Major inventions such as paper, the printing press, and digital storage technology 

enabled storage and retrieval of increasingly large amounts of information. With the 

introduction of personal computers in the 1980’s and the emergence of the Internet, data 

volumes increased and more advanced methods for IR became necessary (Taylor and Joudrey, 

2007). With the spread of the Internet alone the amount of catalogued information doubled 

between 1999 and 2002 (Akerkar and Lingras, 2008). In the field of computer science, methods 

for data mining and machine learning were developed and applied to IR problems in the mid-

1990’s (Taylor and Joudrey, 2007; Akerkar and Lingras, 2008; Blanken et al., 2007). The major 

elements of an IR system are described by Akerkar and Lingras (2008) as including document 

representation, query representation, ranking and comparison of documents, and evaluation of 

the quality of retrieval.  

Current IR practice incorporates methods from LIS, computer science, linguistics, statistics, 

and cognitive psychology. Other than LIS, IR research incorporates documents, and also other 

types of items, such as data, pictures, text, etc. The main idea in all IR systems is to formulate a 

user specified request and match it against keywords assigned to or found within the text or a 

collection of data. The idea of a modern IR system was first described by Vannevar Bush’s 

MEMEX (a portmanteau of "memory" and "index") system (Bush, 1945). Bush (1945) envisioned 

the MEMEX as a device in which individuals would compress and store all of their books, 

records, and communications, and be able to instantly retrieve all compressed information. The 
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idea of MEMEX led to the development of early hypertext and is still the foundation of modern 

IR systems (Segaran, 2007). 

Still following the MEMEX concept today, most IR systems are based on the concept that all 

items in the system can be ranked by estimating the usefulness of a user query. For 

accommodating large amounts of data, several key developments for summarizing, searching, 

and indexing include the Vector Space Model (VSM), the probabilistic model, and the inference 

network model (Segaran, 2007).  

Salton’s (1971) VSM was the first usable implementation of an IR system. It was first 

implemented in the System for the Mechanical Analysis and Retrieval of Text (SMART) 

(Manning et al., 2008). The theoretical foundations of this system are still used in today’s 

modern IR systems. The VSM creates a weight based on the frequency of each token (for 

example, a word in a full text document), and represents weighted frequencies as vectors in a 

multidimensional space. The number of generated keywords defines the dimensionality of the 

vector space. Similarity measurements between vectors are created by subtracting weighted 

frequencies for corresponding tokens and the entire space is evaluated using the cosine–

similarity coefficient. Numerous extensions to VSM have been suggested. Salton and Buckley 

(1988) introduced a weighting scheme to increase the performance of the model. Weighting 

schemes are used to offsets the frequency of a word in a text corpus, which helps to control for 

the fact that some words are more common than other and increase the performance of retrieval 

(Raghavan and Wong (1986). The VSM model as applied in GIScience incorporates a metaphor 

in which similarity is measured by distance metrics (Skupin, 1998; Fabrikant, 2000; Viger, 2011). 

Limitations of the VSM include poor representation of long documents, semantic sensitivity, 

and the assumption that all terms are statistically independent (Jannach et al., 2010).  

The probabilistic IR model, also known as a binary independence retrieval model, was 

introduced in 1976 (Croft and Harper, 1979; Sparck-Johnes and Willet, 1997). However, the 

initial concept of probabilistic retrieval systems was published by Maron and Kuhns (1960). The 
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probabilistic IR model assumes that the IR process can be described as a process in which 

information needs to be queried and indexed in a probabilistic way. Probabilistic IR systems 

rank results in decreasing order of probability of their relevance to a user’s query. The 

probabilistic IR model takes into account that there is uncertainty in the representation of the 

information which states that an IR system is supposed to rank the documents based on their 

probability of relevance to the query, given all the evidence available (Belkin and Croft, 1992). 

Other than the VSM which ranks data items by similarity, the probabilistic IR model ranks data 

items on the probability of relevance (Singhal, 2001). The increased complexity of retrieving 

information using a probabilistic IR approach makes the model inadequate for web search and 

“on the fly” indexing, for which no relevant documents are known beforehand and for which 

queries are typically short. However, the model is helpful in instances such as spam filters. 

Spam filters accumulate many examples of relevant and irrelevant (spam) documents over time. 

To decide if an incoming email is spam, the full text of the email can be used instead of just a 

few query terms (Baeza-Yates and Ribeiro-Neto, 1999).  

The Inference Network Model is a newer approach in IR and it is based on a network-based 

retrieval model. The network based retrieval process is modeled as an inference process in an 

inference network (Turtle and Croft, 1991). The model encodes probabilistic dependency 

relationships between variables in the data set. The presentation of probability distributions as 

directed graphs makes it possible to analyze complex conditional independence assumptions by 

following a graph theoretic approach (Turtle and Croft, 1991). A benefit of this model is that 

most models used in IR can be applied within the concept of this model (Singhal, 2001). 

Inference network models have been widely used in IR systems to implement browsing, 

document clustering, image retrieval, and video and sound retrieval (Graves and Lalmas, 2002). 

Inference Network provides better results and performance than VSM and the probabilistic IR 

model because multiple approaches can be combined into one model (Metzler and Croft, 2004).  
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This section summarized different fundamental concepts in IR, as well as how information 

storage and retrieval evolved over time. The research experiment presented in this dissertation 

makes use of multiple concepts presented in this section. Depending on the data set and on the 

indexing method used some of the concepts presented here can be applied and others will fail. 

This dissertation research does not develop new IR models, but rather uses existing models, and 

shows limitations of the models by using the four data sets. Therefore it is necessary to present 

and discuss the concepts here.  

2.2 Indexing strategies 

Indexing is an important step in characterizing data and making it retrievable. In its 

simplest form, an index can be described as a common method for keeping track of data so that 

it can be retrieved again (Baeza-Yates and Ribeiro-Neto, 1999). Similar to an index in a book, it 

is a list in which each entry contains the name of the item and its location (Taylor and Joudrey, 

2009). However, computer-based idiocies may point to a physical location on a disk or to a 

logical location that point elsewhere to the actual location.  

An indexing strategy can be described as a method on how to best characterize data. 

Indexing strategies vary by data type and depend on the data type, as different methods can be 

applied. Taylor and Joudrey (2009) refer to three types of indexing. Back-of-the-book indexing 

provides an alphabetical organization; database indexing partitions the resource into categories; 

and web indexing collects data systematically and continuously. Only database indexing and 

web indexing are discussed in this chapter, as these are the most relevant indexing strategies for 

the data sets used in this dissertation research.  

The following subsections focus on different approaches for indexing different types of 

data. The section reviews current and past approaches ranging from automatic document 

indexing, and indexing data types with metadata, to indexing of data types requiring auxiliary 

information for creation of an index. This subsection starts with document indexing where 
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approaches from natural language processing are reviewed. It then gives an overview of current 

indexing strategies used in online search frameworks. The section ends with a review of 

indexing strategies of complex data types such as video, sound and software where metadata 

and auxiliary sources are used for index creation. This dissertation will apply organization 

methods on four differently indexed data types. Therefore it is necessary to cover previous 

literature in indexing strategies for different types of data. 

2.2.1 Natural language indexing  

Document indexing is one of the earliest methods used in IR systems. It has its origin in 

library science and early implementations of indexing and cataloging documents date back to 

ancient libraries, such as the Library of Alexandria around 280 B.C (Taylor and Joudrey, 2007). 

As only digital data sets are used in this dissertation, the focus in this subsection is on modern 

approaches used in document indexing.  

Automatic indexing is used in many different systems ranging from online search engines 

to natural language processing. Although natural language processing and document indexing 

in IR are considered separate fields in computer science, both fields rely on the same methods, 

such as text stemming or text segmentation analysis. Current research and applications conflate 

the gap between these two fields (Manning et al., 2008). Text stemming in IR also forms the 

basis for statistical analysis, text clustering, and text classification (Manning et al., 2008). 

In order to apply automatic methods for indexing on documents, the text must be broken 

up into distinct meaningful units, also referred to as tokens. Tokens are formed on simple 

heuristics, such as identifying white spaces which separate words from each other, or a 

contiguous string of alphabet characters which form one token (Kaplan and Bresnan, 1982). 

After a text is broken up into tokens, ‘stop word’ removal is applied. Stop words are articles, 

generic pronouns, and conjunctions with little meaning such as “the”, “and”, or “it” and are 

usually defined in a collection of frequency. However, over the last decade the trend in IR has 
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been to not use stop words at all or only use a limited number of stop words for optimization. 

Such implementations can be found in Apple’s Siri, Wolfram Alfa, and Google Search 

(http://www.apple.com/iphone/features/siri.html, accessed July 2012; 

http://www.wolframalpha.com/, accessed August 2012; www.google.com, accessed August 

2012).  

After tokenization and stop word removal, word stemming can be applied. Word 

stemming refers to the process of word conflation into linguistic stems. For example, word 

stemming conflates words such as “computer,” “compute” and “computation” to the root stem 

“compute” (Akerkar and Lingras, 2008). The first automated word stemming routines were 

written by Julie Beth Lovins in 1968 (Lovins, 1968). The literature names the Porter, WordNet 

database, and Lancaster as the most frequently used stemming algorithms (Hull, 1996; Frakes 

and Fox, 2003; Bird et al., 2009). The Porter algorithm is the oldest and most frequently used 

stemmer (Bird et al., 2009). The Porter stemmer is based on context-sensitive suffix removal 

(Porter, 1980). The algorithm takes a conservative approach of reducing words to stems. As the 

oldest stemming method, the algorithm performs more slowly than newer stemmers.  

A different approach to stemming is implemented in WordNet, a lexical database of 

English nouns, verbs, and adjectives grouped into synonyms, each expressing a distinct concept 

and meaning of the word. The WordNet stemmer resembles a thesaurus and is used for 

grouping words by their meaning (Fellbaum, 2005). The WordNet lexical database also builds 

the foundation for many newly developed stemmers. A drawback of the WordNet stemmer is 

that it is based on lexical knowledge for the natural English language and it might not detect 

computer-specific or algorithm specific words. 

The Lancaster algorithm, also referred to as Paice/Husk stemmer, takes a more aggressive 

approach than the Porter stemmer (Paice, 1990). The algorithm is a conflation based iterative 

stemmer. It is based on a single set of rules, each specifying the removal or replacement of a 

word ending in its stem. This method of replacement is used to avoid the problem of spelling 
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exceptions by replacing word endings, rather than simply removing them (Paice, 1990). The 

Lancaster is also the fastest algorithm and suitable for large to very large data sets (Bird et al., 

2009). The Lancaster stemmer is applied to the full text data set used in this dissertation, as it 

identifies more alternative word forms than other stemming algorithms, (Bird et al., 2009). 

A term-document matrix is constructed after stemming is applied. A term-document 

matrix is a numerical matrix that describes the frequency of how often a term is present in a 

document. A term-document matrix without any further processing is usually very sparse. 

Without setting a cutoff value, every word would appear in the term-document matrix and 

would create unnecessary noise in the data set. However, setting an appropriate cutoff value 

depends on the purpose of the term-document matrix. If the purpose is information retrieval or 

document queering, a low cutoff value should be considered as fine distinctions between 

documents as necessary. If the purpose is document clustering or classification, a higher cutoff 

value is beneficial as otherwise too many keywords (dimensions) are kept and complexity 

increases (Manning et al., 2008). Previous studies suggest setting a cutoff value between 5% and 

25% of the number of documents in the term-document matrix (Manning et al., 2008; Bird et al., 

2009). However, this number has to be set by empirically accessing the cutoff value based on the 

purpose of the indexing exercise. Natural language indexing is used for the full-text data set as 

well for the algorithm data set in a modified form.  

2.2.1 Current online indexing strategies  

Many different online search services are available. Google, Bing, and Yahoo! are the most 

commonly used search engines (http://gs.statcounter.com/#search_engine-ww-monthly-201010-

201012, accessed November 2011). In addition to general-purpose search engines, other more 

specific catalogs, for example, online library catalogs, image repositories, such as Getty Images 

(http://www.gettyimages.com/, accessed November 2011) or spatial data distribution services, 

such as USGS Explorer (http://www.earthexplorer.usgs.gov/, accessed November 2011) exist. 

Indexing strategies can be broadly grouped by the type of data which they organize. Each 
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strategy has advantages and also limitations. The following gives an overview of current online 

search engines grouped by their media. 

Web search engines 

Modern Internet search engines, such as Google Search, Bing, or Yahoo! are based on a 

large scale indexing service. Before a search engine can point to a file or document, the 

document must first be found by an indexing service. This process of making documents visible 

in online searches is called web crawling (Kobayashi and Takeda, 2000). The user can only find 

websites or documents that have been indexed. Indexing is completely done as a back-end 

process which user interaction such as querying is implemented as a front-end process. Figure 

2.2 overviews how online search engines function. The indexing process of modern search 

engines can be grouped into front-end and back-end processes.  

 

Figure 2.2 Typical architecture of a search engine (redrawn from Zhou and Davis, 2006). The 

red box highlights the focus of this dissertation  
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Front-end processes include all elements and steps necessary to interact with a user. That 

includes the search engine interface, the query parse which translates user requests to be 

processed by the indexing server. Search results are returned via a ranking service which ranks 

the retrieved documents according to the user request.  

The back-end processes include web crawling and indexing services. A web crawler is a 

computer program that crawls the web in an orderly manner. A web crawler, also referred to as 

a spider, acquires a copy of the website while visiting the website. It can be described as an 

information harvesting system. While the spider is browsing websites and documents, the 

indexing service keeps track of words within the page and where they can be found on the 

website or document. An index is built with a ranking system based on word context and 

frequency (Zhou and Davis, 2006). This process varies by search engine provider. Weights can 

also be put on certain words depending on their importance. The purpose of the index is to 

provide searchable results, but more importantly to speed searching for users. Depending on 

which search provider is used, advertising and paid services offered by the search engine 

provider can give websites or documents a higher priority in the search result and can also add 

additional keywords for indexing (Google Search, 2011). The indexing service can be 

understood as a metadata creation system. 

Indexing can be formally defined as the process of describing an information resource in 

such a way that a user becomes aware of the item’s basic characteristics (Taylor and Joudrey, 

2009).  The examples below highlight five different indexing strategies including library 

catalogs, multimedia content catalogs, music indexing catalogs, and geospatial data catalogs. 

Library catalogs (Library of Congress) 

The Library of Congress, with more than 147 million items, is the largest and most 

comprehensive library in the world in terms of shelf space and number of resources (Cole, 

2004). This section will only cover digital searching capabilities and not the physical library 

catalogs. The Library of Congress offers multiple methods for indexing on relevance, and as 



24 

with most other library catalogs, works on descriptive metadata. The Dublin Core elements 

were developed to standardize the way bibliographic information is stored 

(http://dublincore.org/, accessed July 2011). Dublin core elements consist of a set of vocabulary 

terms which act as metadata to describe resources in a library collection. Most library systems 

index their catalog on this basis. This standard consists of 15 core elements such as contributor, 

data, format, publisher, or language. 

Multimedia content catalogs (Netflix, YouTube) 

Multimedia catalogs are a collection of multiple data types specifically targeted to 

multimedia data such as animation, video, and inveracity content. Netflix is the world’s largest 

online video streaming service (http://www.netflix.com, last accessed August 2011). The Netflix 

catalog contains a very large collection of TV shows and movies characterized by many 

different attributes and by a rating system. The rating system consists of a machine learning 

algorithm (Koren, 2009), which permits a user to rate movies which they have seen and which 

assumes that users rate older movies differently than movies seen recently (Koren, 2009). The 

indexing algorithm is considered one of the most advanced and most powerful in multimedia 

retrieval (Koren, 2009). A limitation of the current indexing system is that it only works on 

video and is designed solely to establish preference. That is, it is not adapted for analytic 

searching; for example, one cannot search portions of a movie, nor retrieve all movies which 

contain storylines about Indonesian culture. Exciting data organization methods have emerged 

and been promoted by the Netflix Prize (Bennett and Lanning, 2006). Offering a $1 million USD 

award, Netflix distributed a data set with over 100 million movie ratings, soliciting novel 

organization methods to improve the current performance of Netflix’s organization and 

retrieval algorithm by at least 10%. The winning research group introduced new matrix 

factorization techniques for organization and retrieval of the data (Koren and Bell, 2009). 

YouTube, the world largest video sharing platform (http://www.youtube.com, accessed 

September 2011) is another example of an online multimedia search engine. In contrast to 
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Netflix, YouTube has a much simpler indexing structure based upon predefined metadata 

where users have to tag their videos schematically. The indexer relies on metadata search, and 

does not incorporate advanced video analyzing techniques.  

Music indexing catalogs (Pandora) 

 Numerous online music streaming and search engines are available. Pandora is one 

commonly used online music streaming service (http://www.pandora.com, accessed September 

2011). On Pandora, the user can search for music, but addition to giving the user the exact song, 

similar music is also offered. Pandora is based on the Music Genome Project (Joyce, 2006). 

Pandora does not index by means of a traditional metadata concept of genre, user connections, 

or ratings as do other online streaming services. Manual indexing by experts and users is 

characterized using over 400 musical attributes covering the qualities of melody, harmony, 

rhythm, and lyrics. Music with similar traits and structures is linked together through this very 

high dimensional metadata database. Pandora is one of the only large streaming providers in 

which manually derived keywords are used to index the archive.  

Geospatial data catalogs (USGS Earth Explorer) 

The USGS Earth Explorer is a comprehensive catalog which allows searching for spatial 

data sources worldwide. The user is able to search for different types of spatial data sets 

including aerial photography, raster data sets (e.g. land cover), vector data sets (e.g. National 

Hydrographic Data set (NHD) stream), or digital imagery (e.g., Shuttle Radar Topography 

Mission (SRTM) data). The indexing strategy is based upon metadata tags providing a 

geographic location, a date, or a requested data type.  

The major limitation of all the presented exemplars of indexing frameworks, with the 

exception of Pandora, is that they work on automatically derived indexing schema, either 

through automatically derived keywords or by requiring that auxiliary data is present in the 

form of metadata or media tags. 



26 

2.2.2 Indexing on manually derived keywords  

The two prior sections on natural language processing and online strategies for indexing 

with the exception of Pandora rely mainly on automatically derived keywords. However, many 

types of data, such as algorithms, data sets, and imagery, do not contain discriminatory 

keywords explicitly; as a consequence, a manually derived descriptor set must be established. 

Indices describe the content of documents. Indices can be created manually or automatically by 

means of predefined terms, and an algorithm designed to find relationships in the data and 

translate these relationships into meaningful keywords.  

The literature describes three ways of indexing using manually derived keywords: 1) by 

means of metadata or media tags, 2) by auxiliary data which requires processing beyond simple 

item frequency counts, or 3) by adopting content-based indexing methods drawn largely from 

the fields of computer vision, image processing, or signal processing.  

Metadata or media tags are customarily separated from the data, imagery, or sound files 

and include file descriptors, rather than explicit file content. Nonetheless, information for 

keyword generation may be extracted automatically from metadata or media tags. For auxiliary 

data that is not metadata, information is processed from the original data, but requires inference 

or classification to create a keyword set. In contrast to content-based searching which is based 

on semantic matching and pattern recognition, keywords derived from this type of indexing are 

purely data-driven.  

When all three indexing methods fail, as in the case of indexing software, a manually 

derived keyword set must be generated. This dissertation will incorporate examples of data 

types which require automatic and manual keyword generation.  

2.2.3 Metadata as a source for keywords 

Blanken et al. (2007) describes indexing as the process of deriving metadata from 

documents, and the storage of the metadata as an index. Metadata also called media tags for 
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some types of documents. Depending on the data type and on the agency or individual creating 

those metadata, metadata tags can differ in content and structure. For example, metadata for 

spatial data usually incorporates keywords for date, spatial footprint, creator, steward, and, on 

occasion, a short description of the area or object. Media tags for music or video files usually 

contain information about the date, genre, media format, and artist.  

Such a system has been successfully implemented for video on websites such as 

http://www.youtube.com (accessed October, 2011). The user enters a description of the video 

based on the provided media tag schema. Media tags may include information about camera 

type, exposure, focal length, date, or even GPS coordinates added by the capturing device (e. g. 

camera). Poor metadata updating or inconsistent generation of metadata can lead to an 

indexing scheme which is initially stable, but which becomes unmanageable over time. 

Metadata exist for various data types. But for some data types, such as software or 

algorithms, no metadata is available, and an implicit keyword set needs to be developed 

manually and utilized as a surrogate for metadata. Both approaches for metadata indexing will 

be utilized in this dissertation. 

2.2.4 Auxiliary data as a source for deriving keywords 

When no metadata is present, keywords cannot be automatically captured as with full text 

documents; however, additional processing methods can capture auxiliary data and use these to 

develop keywords. For example, automatic generation of metadata for music has been 

proposed by Klapuri (1999) where pitch detection, frequency, duration, or periodicity of the 

audio signal is used to characterize the type of sound. Advanced methods from speech indexing 

have been proposed by Blanken et al. (2007) where speech recognition is used to generate 

keywords directly. Using image processing methods, feature recognition can proceed 

geometrically, for example using size, shape, color, or texture (Jensen, 2005). Another example 

of auxiliary indexing is given for indexing spatial data in a database environment. Data 
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architecture, such as R-trees, are used in which objects represented as shapes, lines, and points 

are grouped using methods, such as overlapping convex hulls or common minimum bounding 

rectangles (Rigaux et al., 2002). 

Content based image retrieval, also referred to as semantic image retrieval, uses the content 

of the image, rather than metadata, as a basis for indexing. Automated methods from computer 

vision are used to retrieve content, such as objects or elements in an image file, which is then 

used for characterization into content. Emphasis in content-based indexing lies on image 

analysis, where objects or scenes are extracted out of the image (Gonzales et al., 2004). An 

example of an automatic detection method in a geographic context is shown in Figure 2.3. 

 

Figure 2.3 An example of an automatic detection method of road network extraction from areal 

imagery. Extracted roads are displayed in red (http://gis.incogna.com/?p=technology#Road, 

accessed June 2013) 

These methods detect the presence of objects or features based on semantic patterns. 

Automated detection methods are then used to characterize this information for keyword 

generation (Robert et al., 1973; van der Heijden, 1994). State of the art methods include pattern 

recognition using correlations (Blanken et al., 2007), face recognition using Eigen objects (Steger, 

1998), and recognition of objects using active shape models (Turk and Petland, 1991). 

When moving on to data types such as video files, the generation of keywords become even 

more complex. A problem of video file indexing, when no media tags are provided, is the 
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added time component. Instead of a static single image, 25 or 30 images per second have to be 

analyzed. Advanced content-based methods for indexing of video have been implemented by 

Jain et al. (2000) using statistical pattern recognition. Other methods include implementation of 

support vector machines (SVM) for semantic video classification (Burges, 1998; Vapnik, 2000).  

2.2.5 Manual methods for keyword generation 

For certain data types, metadata and media tags may be absent. Auxiliary processing may 

be insufficient or computationally complex to retrieve relevant content. Automated content-

based methods may provide keyword sets which are insufficient for distinguishing among 

items, or which cannot capture salient, semantically meaningful descriptors. The two specific 

examples of data types which are characterized by these indexing challenges are software code 

and algorithm descriptions. This dissertation will explore example datasets of both types, 

studying manual generation of keywords, and the impact on indexing and data organization. 

Automatically derived keywords from software tools can be generated by analyzing the 

header information, specifically author, chronology of modification, or input and output 

requirements. But these cannot be generated automatically as no standardized descriptor exists 

(Viger, 2011). Moreover, the author, chronology, and input/output (I/O) constraints may not be 

sufficient to identify what task the code actually accomplishes.  Automatic documentation of 

software exists, but also varies depending on which programming language is used (Zanoni, 

2011; Wang et al., 2010). An automated index for software might fail because most software, 

scripting and program command languages are artificial rather than natural. For example, a 

structural analysis or word count might return the number of ‘for’ loops, or a list of variable 

names used, but will not return the meaning of the code. There are automatic processes that can 

be applied to characterize textual media, but characterization of software or software-code has 

still to be done manually, as no standardized metadata attribution for algorithm or software 

code exists (Tangsripairoj and Samadzadeh, 2006). Viger (2011) characterizes software modules 

in ways that correspond more directly to the abstract concepts chosen by users and to the 
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environmental models that they seek to use. His work demonstrates that the set of keywords 

has an effect on the subsequent organization of the data set, whether those keywords are 

automatically or manually derived. Essentially, the keyword set provides one of many views or 

perspectives into the data being indexed. 

In contrast to software code, algorithms are usually formulated in natural language and 

their descriptions are customarily embedded in full-text documents, for example in technical 

papers or scientific journal articles. Algorithms provide a special case in which full-text 

documents can serve as metadata, and therefore, methods can be modified from document 

indexing using automatic keyword generation. In the GIScience context, researchers have 

created taxonomies to characterize algorithms, for example in characterizing cartographic 

generalization algorithms (McMaster and Shea, 1989; Buttenfield and Mark, 1991; McMaster, 

1991; Regnauld and McMaster, 2007). In this dissertation, keyword sets drawn from various 

taxonomies will be used to index an archive of cartographic generalization algorithms. 

2.3 Concepts of Ontology and Semantic Web 

The two earlier sections in this chapter reviewed strategies of indexing for data 

organization. In creating indices, each of these strategies presented earlier construct their own 

information space as well as creates their own corresponding underlying ontological structure. 

Furthermore, the four data sets used in this dissertation are organized by multiple organization 

methods, each generating their own information space. It is therefore important to review 

concepts and current development of Ontology which are presented in this section. This section 

will first discuss the definition and concepts of Ontology and then reviews current 

developments such as the Semantic Web. 

Ontology has its origin in the field of Philosophy and describes the study of the nature of 

being, becoming and existence, as well as the basic categories of being and their relations in the 

whole context (Oberle et al., 2009). In the literature, the term “Ontology” is often referred to as 
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Metaphysics which is used in a broader sense to describe the study of what might exist and how 

existence can be defined (Geisler, 1999). However, from a Computer Science perspective 

Ontology is focused on establishing fixed, controlled vocabularies where objects can be grouped 

into (Gruber, 2008). Ultimately, Ontology can be described as a data model that represents a 

domain. For example most indexing frameworks are Ontology based, such as the Dublin Core 

or the WordNet database which structure documents by predefined categories (Navigli and 

Velardi, 2004). A commonality about the definition of Ontology that is shared by the 

philosophers and computer scientists is how entities can be grouped and related within a 

hierarchy according to similarities and dissimilarities (Ingarden 1964, Chrisholm, 1996).  

Ontology research in the Computer Science field has its roots in the subfield of artificial 

intelligence (AI). Early research in the mid-1970 focused on the creation of new Ontologies as 

computational models that could be used for automatic reasoning (Smith and Welty, 2001). 

Furthermore, researchers argued to use to term ontology to refer to the theory of a modeled 

word as well as all components that constitute such a system. In the 1980s researchers started 

drawing concepts and inspirations from philosophical otology research to define ontology 

research in the field of computer science as computational applied ontology (Gruber, 2008). In 

1993, Gruber defined the still valid technical definition of ontology as a mean to specify a 

conceptualization. Gruber defines Ontology as “… a description (like a formal specification of a 

program) of the concepts and relationships that can formally exist for an agent or a community 

of agents. This definition is consistent with the usage of ontology as set of concept definitions, 

but more general. And it is a different sense of the word than its use in philosophy …" (Gruber, 

1993:5). 

Current Ontology research can be broadly divided into domain Ontology research and 

upper Ontology research. Domain Ontology research focuses on a specific domain and methods 

for generating such systems are specific tailored to model that domain. While being accurate in 

modeling a specific domain they are often incompatible across domains. Current research 
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focuses in overcoming the problem of incompatibility by developing generalized techniques for 

merging multiple domain Ontologies (Zablith, 2008). In contrast to domain specific Ontologies, 

upper Ontologies are models of common objects that can be applied across a wide range of 

domains. Multiple standardized upper Ontologies have been developed such as the Dublin 

Core elements or the WordNet database (Zablith, 2008). In order to generate modern Ontologies 

multiple Ontology languages have been developed. An Ontology language is a formal language 

to encode the ontology system. The most common Ontology language is UML (Unified 

Modeling Language) (http://www.uml.org/ , accessed August 2013). UML offers standard 

procedures to visualize data schemas and system architectures for systems such as database 

schemas, software components or business processes.  

One of the largest implementation of ontological concepts is the Semantic Web. The 

Semantic Web, also referred to as Web 3.0 is aiming at converting the current web which 

consists of unstructured and semi-structured documents into a "web of data” by inclusion of 

semantic content in web pages (Berners-Lee, 2001). The inclusion of semantics enables 

searching, sharing and information harvesting and makes it more feasible compared to the non-

semantic Web (Chebotko and Lu, 2009). The current structure of webpages is tailored as well as 

restricted to HTML (Hypertext Markup Language) which allows only to link documents with 

documents but is not able to semantically linking those pages with content. For example HTML 

is only able to describe a string of text inside of a HTML tag, but it is not able to describe it as a 

discrete object which is interlinked on a semantic level with other objects (Chebotko and Lu, 

2009). The goal of the Semantic web is to link data to data not only by linking them but also by 

taking metadata information of each object into account and describing them by semantic 

understanding (Heery and Wagner, 2002). To support semantic linkage of data objects, many 

different programming languages have been proposed. Most notable languages are Resource 

Description Framework (RDF) which is a general method for describing information, Web 

Ontology Language (OWL) which is a family of knowledge representation languages, and Rule 
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Interchange Format (RIF) a framework of web rule language dialects supporting rule 

interchange on the Web.  

The adoption of Semantic Web technology has been very slow compared to other technical 

advances in Computer Science (Butler, 2002). There are many critiques regarding the Semantic 

Web. Critiques include practical feasibility, privacy concerns and the doubling of output 

formats. Practical feasibility is limited by personal behavior in generating Metadata for the 

Semantic Web. Metadata is often misleading or falsified. Gärdenfors (2004) and Honkela et al. 

(2008) point out that logic-based semantic web technologies cover only a fraction of the relevant 

phenomena related to semantics.  Privacy concerns of the Semantic Web have been raised as 

methods for generating semantic information by using machine learning and text analysis 

methods which make it much easier to identity patterns (http://www.policyawareweb.org , 

accessed August 2013). Generating content for the semantic web is doubling of output formats 

and the associated time creating that content. However, through the implementation of RDF 

that allows existing content to be converted for semantic searches this critique has been partially 

addressed.  

Information gained for best usage of indexing and grouping methods for the four different 

data sets used in this dissertation will contribute to current Ontology and Semantic Web 

research. The information gained through this experiment will be especially valuable to domain 

and cross-domain Ontology research as recommendation for best methods usage for data and 

multi data type systems can be given which will be relevant in developing future Ontology 

systems. 

2.4 IR in the field of GIScience 

Over the last decade researchers in the field of GIScience started to apply and adopt 

methods from IR. IR research in GIScience is mainly focused on the application of geographic 

principals in knowledge discovery with the use of spatial metaphors. The application of IR 
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principles in GIScience is also referred to as Spatialization. Spatialization is the transformation 

of higher-dimension data into lower-dimension representations on the basis of computation 

methods and spatial metaphors (Skupin, 2007).  

The usage of spatial metaphors and the concept of an information space where the distance 

between items reflects similarity are not unique to GIScience. Major contributions to research 

can be found within the computer science domain, where researchers for example used 

information spaces for library collection access (Mayer, 2011) or for accessing music library by 

genre (Moerchen et al., 2006).  

The contribution of GIScience to this field lies mostly in information space handling and in 

the visualization of information (Kuhn and Blumenthal, 1996; Couclelis, 1998; Dodge and 

Kitchin, 2000; Fabrikant and Skupin, 2005). Spatialization research can be broadly grouped into 

computational approaches for visualizing information spaces, and research that concentrates on 

human-computer interaction, such as cognitive processes of users interpreting the results of an 

information space. Besides computer science and GIScience research, cartographers apply 

geographic principles and cartographic practices to the visualization of non-spatial information 

(Skupin and Fabrikant 2003).  

As mentioned above, GIScientists are especially interested in the graphical representation 

of information spaces. Most graphical displays are limited to two or three spatial dimensions. 

Graphical variables, such as size, shape, texture, or orientation, can also be used to increase the 

dimensionality of the system (Fabrikant and Buttenfield, 2001). In order to use an information 

space, the dimensionality of that space has to be reduced to conform to the limitation of the 

graphical space. This reduction can be described as a transformation of the information space, 

in a similar manner to a cartographic projection (Skupin, 2007).  

Visualizing information spaces enables users to better understand the complexity of 

relationships within the data where tabular presentations or statistical summaries might 

overwhelm the average user (Gahegan, 1999). By applying spatial metaphors to information 
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spaces, the user is able to explore information spaces in a similar way as a physical landscape. 

Cartographers have been applying cartographic visualization methods to enable clearer 

communication about the visualized patterns. A newer research track in Spatialization focuses 

on the evaluation of cognitive theory and human responses (Tversky and Lee, 1998; Hartley, 

1977; Goldstone, 1994; Fabrikant at al., 2006; Fabrikant and Montello, 2008; Fabrikant et al., 

2008).  

Many researchers in GIScience have developed Spatialization displays and systems. The 

GeoVISTA Studio from Pennsylvania State University, which includes multiple data 

visualizations for exploratory data analysis, is perhaps one of the most extensive and interactive 

implementations. It incorporates multiple displays and analysis methods and links non-spatial 

and spatial data for analysis. Other spatialization visualization includes the visualization of 

very high dimensional data sets such as a visualization of the LastFM music library (Skupin, 

2012) or the spatialization of AAG conference abstracts (Skupin, 2010). Some IR related research 

in GIScience also focuses on extending algorithms for spatialization such as the GEO-SOM, 

which is a geographic extension of the SOM algorithm (Bação et al., 2005).  

2.5 Future research trends 

The amount of data the average person is dealing with on an everyday basis increases 

steadily. Developing and adopting methods for accessing information stored in multiple data 

formats will be essential. New research trends, relevant to this dissertation, can be spotted in 

natural language processing, multimedia retrieval, and crowdsourced information access. 

Besides being one of the oldest research fields in IR, natural language processing methods 

became increasingly important and new developments emerged, since the introduction of the 

Internet. Newer research in natural language processing is focusing on optimizing web search 

engines, junk e-mail filters, and more efficient text indexing methods (Singhal, 2001; Segaran, 

2007; Manning et al., 2008). Research is focusing on user centric systems where the user may 
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enter any natural language, such as words, phrases, or sentences to the system (Blanken et al., 

2007). Newer research also focuses on advancing existing methods with term weighting, 

relevance computing, and probability of usefulness of the results to the user.  

Multimedia retrieval research is a relatively new research field. Due to digital recording 

devices this field became increasingly popular during the last decade. Current research is 

focusing on combining different data types into one single system. Multiple indexing schemas 

have to be created to incorporate multiple types of data. Newer research in this area focuses on 

data types such as digital videos or speech indexing, where automatic indexing becomes 

complex. Methods from Machine Learning are being applied for generating indices. Newer 

approaches also incorporate multimodal content-based indexing based on Bayesian networks 

(Blanken et al., 2007). 

Manually created keywords are very expensive to create. Crowdsourced indexing 

strategies are a newer trend for developing manually created keywords. In a crowdsourced 

indexing strategy the user is annotating metadata and only a structure of how the metadata has 

to look like is provided. Many commercial systems have been implemented where otherwise 

automatic methods would fail for which the general user is tagging and creates an index of the 

data. Vimeo (http://www.vimeo.com, accessed May 2013) and Picasa (http://picasa.google.com/, 

accessed August 2012) are the most prominent ones. In both systems, the user is presented with 

pre-defined media tags, where certain items have to be filled out by the user, such as theme, 

video type or geographic location. This is in contrast to Pandora in which only expired indexed 

music by a predefined metadata structure. The national Finnish library introduced a game 

where users are fixing indexing errors or extending indices of items found in their library 

system. 93,000 volunteers already indexed documents through their indexing game 

(http://www.digitalkoot.fi/en/splash, accessed August 2012). An example of modern crowd-

sourced geographic data indexing can be found at OpenStreetMaps 
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(http://www.openstreetmaps.org, accessed August 2012), where users are not only uploading 

and digitizing geographic objects, but also indexing objects via attribution.  

2.6 Summary 

The research presented here in this chapter reviews keyword generation, indexing, 

concepts from the field of Information Science, concepts of Ontology and the Semantic Web, as 

well as applications in GIScience. The multiple frameworks which have been presented in this 

chapter are partially applied in this dissertation.  

This dissertation research will not implement a complete IR system, but rather evaluate 

methods for optimal organization of multiple indexed data types. The impact of manually 

derived keywords on the indexability of data types has not been completely addressed in the 

literature. Most research focuses on documents and multimedia file types (e.g. video, sound, 

images). As mentioned by Joyce (2006), creating manually derived indices is time consuming 

and expensive; thus it is important to establish first that the time and effort is worth the 

subsequent improvements for indexing these data types. 

The focus of this dissertation lies in the evaluation of organization methods on differently 

indexed data sets. Each data set in this dissertation is indexed by one indexing strategy that is, 

when possible by automatic indexing. This dissertation does not aim to develop new indexing 

strategies, but rather use an efficient automatic indexing strategy when possible. Data indexing 

is the first step in data organization by creating an ontological framework for each of the 

indexing and organization methods used in this dissertation.  

The second context for this research is clustering and classification, which is utilized in 

many disciplines, for example taxonomy, statistical analysis, data reduction, and machine 

learning. It focuses on organizing data as well as on methods to assess the quality of 

classification strategies. This material will be discussed in the next chapter, with regards to the 

data sets and methods used in this dissertation.  
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CHAPTER III 

Methodological Review 

This chapter focuses on the methodological foundation of this dissertation. The chapter 

starts with an introduction to concepts for organizing data, and discusses past and current 

developments. Organization utilizes the keywords developed during indexing to group data 

items in various ways. The major part of this chapter reviews core concepts of organizing data 

using classical and modern methods from unsupervised clustering to supervised classification. 

This chapter further discusses optimal cluster selection as well as reviews concepts for cluster 

evaluation. It would be beyond the scope of this dissertation to discuss all methods. The 

methods used in this dissertation will be described in the following order:  

 Classical unsupervised methods (PCA, Hierarchical and k-Means clustering); 

 Classical supervised methods (k-Nearest Neighbor and Classification Trees);  

 Modern unsupervised methods (Self-Organizing Maps); and  

 Modern supervised methods (Support Vector Machines).  

The methods are chosen based on their common usage throughout several disciplines (Estivill-

Castro, 2002; Everitt et al., 2001).  

3.1 Concepts for organization of data 

Organizing objects into groups is a fundamental ability of humans. It goes back to the 

beginning of human history, when humans tried to distinguish among edible and poisonous 

foods (Akerkar and Lingras, 2008). Grouping also forms the basis for development of language, 

which consists of words that help humans to detect and discuss events, objects, and people 

(Everitt et al., 2001). It is only through grouping that data meanings or relationships which 

would otherwise be hidden can be derived from large data collections and archives. Indexing 

and keyword generation forms an essential prerequisite to data organization since it is the 

keywords, rather than the data or documents themselves, which are organized. 
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The two types of data organization explored in this dissertation can be referred to as 

classification and clustering, which are also referred to respectively as supervised and 

unsupervised organization or learning. Classification, in a scientific sense, has its origins in 

biology, where it is also known as numerical taxonomy (Sokal and Sneath, 1968). In the field of 

machine learning, supervised methods are referred to as learning algorithms (Hastie et al., 

2001).  

Supervised learning is a method in which examples of an expected outcome are provided 

to improve the system. This whole process is analogous to learning with a teacher. Many 

pattern recognition algorithms are based on supervised learning, such as the automatic 

extraction of forested areas from a satellite image by means of presenting typical radiometric 

characteristics for forested areas. The algorithm is trained with different samples before 

detecting areas similar to these samples automatically (Bramer, 2007). Classical and modern 

methods in supervised learning include Bayesian Classification, Nearest Neighbor Algorithms, 

Decision Trees, and Support Vector Machines. Three of these methods will be utilized in the 

dissertation. 

Unsupervised learning can be seen as the converse of supervised learning. Instead of 

training an algorithm with sample data, the algorithm sorts input data on the basis of 

similarities and differences in one or more variables. Taking the forest example from above, an 

unsupervised learning algorithm cannot distinguish directly between forests and non-forests; 

rather it can create groups or partitions on the basis of radiometric differences in each spectral 

band, leaving the interpretation of categories (“forest”, “not forest”) to the analyst. The best 

known examples of unsupervised classical methods include cluster analysis and dimensional 

reduction, often accomplished by some form of factor analysis (Handl et al., 2005). Popular 

methods in unsupervised learning include hierarchical clustering, k-Means clustering, Principal 

Component Analysis (PCA), and Self-Organizing Maps (SOMs), all of which will be explored in 

this dissertation.  
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3.2 Measures of similarity and difference used in data organization 

The most important step in organizing data is to distinguish among differences to find 

similar objects in a data set, which can form meaningful groups. All methods of clustering and 

classification organize data on the basis of some kind of similarity measurement. Sokal and 

Sneath (1963, page 3) define the measurement of similarity as “(…) the ordering of organisms 

into groups on the basis of their relationship, that is, of their association by contiguities, 

similarity or both”. Many different methods for measuring similarity exist, and are tailored to 

work with categorical data, continuous data, and hybrid data containing both categorical and 

continuous data. All three data types are represented in the four data sets used in this 

dissertation.  

3.2.1 Categorical data 

Many different methods have been proposed to measure similarity for this kind of data. 

One common form of categorical data is in binary form (Everitt, 2001), although data is often 

partitioned into more than two categories for geographic analysis. For example more than two 

classes are used when working with land use data (e.g., residential, commercial, industrial, 

vacant) or with ethnicity (e.g., Hispanic, Asian, Black, White).  

The simplest dissimilarity measure for categorical data is the Simple Matching Coefficient. 

This is used when data is in symmetrical format, which means the presence or absence of a 

characteristic is equally informative. The metric computes pairwise similarities on a binary 

basis. Either the characteristic is present for both members (positive), absent in both (negative), 

or present in one, but not the other. The coefficient can be calculated for any number of 

characteristics by modifying the formula:

 

where p represents the number of positive matches, r represents the number of negative 

matches, and t represents the number of categories being tested (Everitt, 2001).  
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A more complex measurement of categorical data is the Jaccard (1908) coefficient, which 

measures the asymmetric information of binary variables. The Jaccard coefficient is based in set 

theory, and can be described as the size of the intersection of a number of sets (number of 

categories which match) divided by the size of the union (the number of categories found in at 

least one set). It can be applied also to more than two categories: 

 

where p is the number of positively matching categories, q is the number of matches that are 

positive for the  object and negative for the  object, and is the number of matches that are 

negative for the  object and positive for the  object.  Other categorical similarity measures 

are summarized in Sokal and Sneath (1963). 

3.2.2 Continuous data 

When dealing with continuous data, one can measure either similarity (the difference in 

variable values among observations) or proximity (which can be expressed either as a difference 

or as a correlation). Two similarity measures applied to continuous data include intra-cluster 

similarity, describing the distance among items in one group; and inter-cluster similarities, 

measuring the distance between groups. 

Proximity measures for continuous data can be constructed on the basis of distance or 

correlation (Everitt, 2001). The distance analogy is stated that if two data points in a given data 

set are quite similar, they will have a small distance between them. If these two are considered 

close together, a third point will have a similar proximity to each of them. Correlations between 

data observations have also been proposed, essentially basing similarity on variance (Bansal, 

2004). 
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3.2.3 Hybrid data 

Hybrid data includes a mix of both categorical and continuous variables. Different methods 

are available for measuring similarity for hybrid data. One method dichotomizes all variables 

and applies binary similarity measurements to each dichotomy (Everitt, 2001). Grower (1971) 

suggests a more sophisticated similarity measure: 

 

where   is the similarity between the  and  individual as measured by the  variable 

and  is typically one or zero depending on which comparison is considered for the type of 

analysis (Grower, 1971). 

Grower and Legendre (1969) have characterized these measures by their usage. The 

established criteria of usage include the nature of the input data, the scale of the data, and the 

measurement of similarity. However, no clear answer is widely accepted for the best measure to 

use (Everitt, 2001).  

3.3 Classical statistical methods for data organization 

This section is divided into classical unsupervised (clustering) and classical supervised 

(classification) organization methods. Classical methods are based solely on statistical 

assumptions. Classical methods are distinguished from modern methods which do not require 

stringent statistical assumptions. Modern methods of organization are drawn from the field of 

Machine Learning (Bramer, 2007). Modern methods will be presented in section 3.4. 

3.3.1 Classical unsupervised (Clustering) methods 

Methods are described in chronological order of their earliest appearance in the literature.  
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3.3.1.1 Principal Component Analysis (PCA)  

PCA is one of the earliest implementations for dimensionality reduction (Pearson, 1901; 

Hotelling, 1933). It is commonly applied to large multivariate data sets, where the dimensions of 

the data are related. Depending on the field of study, PCA is also referred to as the Karhunen-

Loeve transform (KLT), the Hotelling transform, or Proper Orthogonal Decomposition (POD) 

(Kosambi, 1943). In general, PCA shows the variation within a data set by constructing a set of 

new uncorrelated variables, which are derived from a linear combination of the original 

variables. The newly generated variables are calculated in an ordered way, meaning that the 

first principal component explains the most variation in the original data set. The second 

principal component then explains the most remaining variance in the data set, subject to being 

uncorrelated with the first component. The goal in applying PCA is to find out if a reduced 

number of uncorrelated components can explain the variation given by original variables in the 

data set (Everitt and Dunn, 2001), eliminating interactions among variables which may 

confound interpretation of patterns in the data. As with all other methods described throughout 

this chapter, deciding on the optimal number of clusters, or principal components, can be 

difficult. The following recommendations for PCA have been developed by Jolliffe (1986):  

 A number of principal components should be selected, which explain between 70% and 

90% of the total variation of the original variable set. 

 Principal components should be discarded whose eigenvalues are smaller than the 

average eigenvalue, which also describes the variance of the original data set. Therefore 

eigenvalues smaller than 1.0 should be excluded (Kaiser, 1958). 

 The number of components to keep should be determined by plotting eigenvalues 

against the ordered components in a scree plot. The optimal number of components is 

located at the “elbow,” which is identified where the eigenvalues level off (Cattell, 1966; 

Jolliffe, 1986).  
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PCA is used in many fields. PCA analysis forms the basis for many advanced methods of 

machine learning, which will be discussed later in the chapter (Kohonen, 2001; Hastie et al., 

2001). A disadvantage of PCA is that maximizing variance does not always account for 

maximizing information. While PCA analysis performs well in capturing simple relationships 

in the data, it may miss complicated relationships. Variants of PCA have been developed, such 

as Correspondence Analysis (CA) and Multiple Factor Analysis (MFA), which are conceptually 

similar, and are able to handle qualitative variables (in the case of CA) and heterogeneous sets 

of variables (in the case of MFA). Factor Analysis is related to, but not equivalent to PCA. In 

Factor Analysis, the original input variables are defined as a linear combination of all factors; in 

PCA, the components are derived as linear and non-linear combinations of the factors. 

Furthermore, Factor Analysis tries to explain the covariance or correlation among the variables, 

where the goal of PCA is to account for as much of the total variance as possible among 

variables. PCA is used in this dissertation for dimensionality reduction to visualize the 

generated groups by k-Means cluster analysis on the first two principal components.  

3.3.1.2 Cluster analysis 

Classical cluster analysis is described as the process of organizing a set of observations into 

groups in a way that data observations which fall in the same cluster are more similar to each 

other than to data observations in another cluster. The definition of a cluster varies between 

clustering methods. Cormack (1971) and Gordon (1999) define a cluster in terms of internal 

cohesion (homogeneity) and external isolation (separation). The literature describes a variety of 

models for clustering. Connectivity models (as in hierarchical clustering) are based on distance 

measures. Centroid based models, as in k-Means, represent each cluster as a single average 

point, used for calculating distance to other clusters. Distribution models are based on a 

statistical distribution, such as a multivariate normal distribution, to calculate distance. Density 

models define clusters as connected dense regions within a data space. Hierarchical and k-

Means clustering are used in this dissertation.  
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Hierarchical clustering: In hierarchical clustering, a similarity matrix is formed, containing 

distances computed between each pair of observations.  From this, a series of partitions is 

developed iteratively, based on linkage criteria, which measure pairwise similarity among 

observations (Figure 3.1). In a divisive approach, which can be described as “top down”, an 

initial single cluster, which spans the whole data set, is incrementally partitioned into smaller 

individual clusters, which progress to contain only one individual observation. In an 

agglomerative approach (“bottom up”), each individual observation is first placed into its own 

cluster. Clusters are merged together as the algorithm moves up the hierarchy (Everitt, 2001). 

Results of a hierarchical clustering are presented in a dendrogram, which shows the degree of 

clustering at different levels of similarity. Figure 3.1 shows the three most commonly used 

linkage distance measures. Single linkage, also referred to as “Minimum Clustering Measures” 

(MCM) utilizes the shortest distance between groups as the basis for cluster formation. 

Complete linkage measures cluster distance between the most distant data points. Centroid 

linkage, also referred to as Unweighted Group Pair Methods Centroid (UPGMC), merges 

clustered observations with the shortest mean distance. Average linkage, also referred to as 

Unweighted Paired Group Mean Average (UPGMA), calculates the average of the distance 

between all data points in each cluster.  
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Figure 3.1 The three most commonly used linkage distance measures in hierarchical clustering 

(Redrawn from Everitt, 2001). 

A more advanced hierarchical method uses Ward’s (1963) criterion, which is unique 

because it uses analysis of variance for evaluating the distance between the clusters. This 

method minimizes the sum of squared distance between any two clusters that are formed at 

each step, and is therefore, considered very efficient as it tends to form small clusters (Everitt et 

al., 2001; Ward, 1963). Table 3.1 summarizes the various linkage computations.  
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Table 3.1 Overview of different linkage criteria in agglomerative hierarchical clustering.  

Name Formula Reference 

Single linkage  Sneath (1957) 

Complete linkage  Sorensen (1948) 

Average linkage 

(UPGMA) 
 Sokal and Michener (1958) 

Centroid linkage 
 

Sokal and Michener (1958) 

Median linkage  Gower (1967) 

Ward’s method 
 

Ward (1963) 

A dendrogram is used in hierarchical cluster analysis to visualize formation of clusters at 

each stage of the clustering process. It uses the similarity matrix as an input. Figure 3.2 shows a 

dendrogram of a simple hypothetical data set.  

The height of a dendrogram, also referred to as distance, describes the similarity between 

the clustered data objects. From Figure 3.2 it can be seen that a distance (height) of 1.0 would 

relate to 5 clusters, a distance of 2.0 would generate 3 clusters, and a distance (height) of 3.0 

constitute 2 clusters. These units of measure are specifically tied to a data set.  
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Figure 3.2 Elements of a dendrogram 

While hierarchical clustering is frequently used in many statistical applications, there are 

also some disadvantages of this method. Interpretation of the results is often complex and 

confusing. All determinations in the clustering process are based on local measurements and 

are made within one single clustering pass (Augen, 2005).  

k-Means Clustering: k-Means remains a popular clustering algorithm, although it was 

developed decades ago (MacQueen, 1967). The clustering algorithm is easy to implement and 

performs well on large data sets (Everitt et al., 2001). k-Means clustering is a centroid based 

clustering method, where each object is assigned only to one cluster (Bramer, 2007). In contrast 

to hierarchical clustering, the number of clusters (called the k-value) has to be set before the 

processing takes place. As with hierarchical clustering, a similarity matrix is initially computed. 

The optimal solution distributes centroids as far apart from each other as possible (Bramer, 

2007). Data observations are associated with the nearest centroid. Cluster centroids are 

recalculated based on mean distance to all observations in the newly generated clusters. Data 

observations are then assigned to the closest centroid. This process is repeated with cluster 
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centroids changing locations after each iteration, until the clusters stabilize and the centroids do 

not move anymore (Figure 3.3). In mathematical terms, K-Means clustering is defined as: 

 

where describes the distance between data point  and the cluster center . 

 

Figure 3.3 The k-Means clustering process for 3 clusters and 3 iterations. (a) Input data; (b) three 

seed points selected as cluster centers and initial assignment of the data points to clusters; (c) 

and (d) iterations and updating of cluster labels and their centers; (e) final clustering obtained 

by k-means algorithm at convergence (redrawn from Jain, 2009).  

A disadvantage of k-Means clustering is that the initial placement of the cluster centroid is 

critical to account for locality and incorrect groupings. Initial placement in the standard k-

Means algorithm is done randomly. Therefore, to archive robust clustering results, multiple 

cluster runs should be performed (Bramer, 2007, Goswami et al., 2007, Everitt et al. 2001). k-

Means clustering is often implemented on large data sets (Augen, 2005). k-Means have been 
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applied in many exploratory data analysis studies, as multiple cluster runs can be accomplished 

in a short amount of time.  

3.3.1.3 Cluster evaluation 

As already stated earlier in this chapter, clustering data is about partitioning data points 

into groups, such that the data points in a cluster are more similar to each other than to points 

outside the cluster (Guha et. al. 1998). Selecting the optimal number of clusters can be subjective 

as well as a function of the user’s knowledge and expectation of the data set (Everitt et al., 2001). 

Openshaw et al. (1980: 421) argues that because cluster analysis is an exploratory data analysis 

technique, “… the results obtained are heavily dependent on the methods used and on a 

number of arbitrary decisions made during the application of any spatial classification 

procedure.”  For this reason, they add “… these decisions must reflect the purpose for which 

the classification is required.” Openshaw (1983: 245) argues that “A classification can only be 

deemed 'good' or 'poor' when it has been evaluated in terms of the specific purpose for which it 

is required; there is no magic universal statistical test that can be applied nor is there any 

possibility of deriving a classification suitable for all purposes.” This statement is still 

considered valid (Jain, 2009). 

To overcome the problem of subjectivity, formal measurements and evaluation methods 

have been suggested. A total of over 30 methods have been developed (Milligan and Cooper, 

1985). The number of clusters chosen depends mainly on the clustering method. Studies on 

cluster evaluation have shown that by applying cluster validation indices it is important not to 

only rely on one evaluation measure but to take multiple measures as well as the purpose of the 

clustering into account (McDavid et al., 2011, Rendón et al. 2011, Pacual et al., 2010, Everitt et 

al., 2001). Beale (1964) developed an exploratory indicator of good clustering that is often used 

in modern methods, where good clustering is described by well separated clusters or classes 

(Hardy and Lallemand, 2004; Beale, 1969).  
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In most clustering processes, the cluster evaluation is a very important step taken at the end 

of the process (Halkidi et al., 2001). Cluster evaluation tries to find the optimal number of 

clusters for a given data set by internal and external cluster measurements. A common method 

is to perform multiple runs with different numbers of classes and then choose the optimal 

solution based on a quality metric. In general, cluster evaluation methods can be categorized 

into two classes, internal cluster evaluation and external cluster evaluation. 

a) Internal Cluster evaluation 

Internal cluster evaluation is conducted using internal information from data objects within 

the dataset. Internal cluster validation measures the fit between the data and the expected 

clusters and the stability of the cluster solution (Pacual et al., 2010). 

Three indices are commonly used to assess the quality of clustering. The Davies-Bouldin 

index calculates the ratio of the sum of within-cluster distances to between-cluster separation: 

 

where  is the number of clusters,  is the average distance of all objects to their cluster center, 

and  represents the distance between cluster centers. Small values are associated to the 

optimal number of clusters (Davies and Bouldin, 1979).  

The Dunn (1974) index measures compactness and separation of clusters: 

 

where  is the distance between clusters measured by intracluster defined by  and 

intercluster defined by . High values account for best clustering. 

The Silhouette index (Rousseeuw, 1987) calculates the silhouette width (average within 

cluster distance) for each data sample, as well as overall silhouette width (minimum average 

distance of any point to other clusters). The Silhouette index is defined as: 
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where  is described as the average dissimilarity of a data point to other data points in the 

cluster, and  is described as the minimum average dissimilarity of a data point to all data 

points in the closest cluster. Higher values account for good clustering. All three cluster 

validation indices are used for validation of the clustering methods in this dissertation.  

b) External cluster evaluation methods 

External cluster evaluation implies that the evaluation is based on a pre-specified structure, 

which is imposed on the data set (Rendón et al. 2011). For example, external data, which is not 

included in the data set is used is used to evaluate the clusters and test the validity of the cluster 

solution. External cluster evaluation can therefore only be applied if other similar data sets are 

present and in many cases cannot not be applied for large unlabeled or unique self-complied 

data sets (McDavid et al. 2011).The literature states the F-Measure, MMI (Normalized Mutual 

Information) measure and purity index as the most commonly used external validation 

methods (McDavid et al., 2011, Rendón et al. 2011). 

The F-measure, in some cases also referred to as F-1 measure, calculates the harmonic mean 

of precision and recall which are also applied in supervised methods and discussed into more 

detail later in this chapter. Precision and Recall is described as:  

 

where   is the number of object of class  that are in cluster ,  describes the number of 

objects in cluster , and , is the number of objects in class . F measure is then calculated by 

 

The results from the F Measure range from 0 to 1 with larger values indicated better clustering. 

The NMI measures overlapping cluster membership information from the original data set 

with the external validation data set. MMI is calculated by:  
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where.  describes the overlapping cluster membership between two random varies X and 

Y. H(X) denotes the entropy of X where X is the original clustering and Y the clustering derived 

from the external data set (McDavid et al., 2011, Meila, 2007).  

The Purity index calculates the accuracy of a clustering as a fraction of the overall cluster 

sizes to which the largest class of data objects from an external data set is assigned to (Rendón et 

al. 2011). The overall purity of a cluster solution is obtained as a weighted sum and can be 

described as: 

 

where  describes the size of cluster j and m refers to the number of cluster. The total number 

of objects in the data set is denoted as n. 

3.3.2 Classical Supervised Methods (Classification) 

In supervised classification, a training subset of the data is necessary to guide data 

organization. As in the previous section, methods are described in chronological order of their 

first appearance in the literature. 

3.3.2.1 k-Nearest Neighbor classification 

The objective of k-Nearest Neighbor (k-NN) is to classify objects based on the closest (most 

similar) training examples in attribute space. The k in k-NN refers to the number of items which 

will be averaged to compute the final results (Segaran, 2007). While the k value in k-Means 

describes the number of clusters, the k value in k-NN dictates the neighborhood size in the 

classification process. The standard k-NN algorithm relies on Euclidian distance as a measure to 

calculate how close each observation is to the ready-to-be-classified data point (Bramer, 2007). 

In k-NN the distance is calculated by: 
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where  is described as the ready-to-be-classified data point and  defines each observation 

surrounding this data point. The observations surrounding the ready-to-be-classified data point 

are referred to as “nearest neighbors” and are ranked by distance . The kth 

nearest neighbor of  is therefore . Figure 3.4 shows the classification process in a 2-

dimensional feature space on a hypothetical data set.  

 

Figure 3.4 k-NN classification of hypothetical data in a 2-dimensional feature space.  

The solid line indicates a k value of 3, the dashed circle line indicates a k value of 6, 

and the fine dotted circle line shows a k value of 8. The ready-to-be-classified observation 

(indicated in green) should be classified either with the blue stars or the red triangles. 

For a k value of 3, 6, and 8 the test observation is assigned to the group of red triangles 

as they are in the majority in every neighborhood. In its simplest form, the k-Nearest 

Neighbor algorithm can be defined as: 

 

where  is the kth order statistic on the Euclidean distance  Before applying a k-Nearest 

Neighbor’s method, it is therefore essential that the elements of  are scaled, so that they are 

comparable across elements. 
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The elementary step in setting up k-NN is to select the optimal choice of k. Overall, larger 

values of k reduce noise (smoother class boundaries) in the data, but also tend to overgeneralize 

the classification results (Bramer, 2007). Heuristic methods, such as k-fold cross-validation, can 

be used to calculate optimal values for k, when the model parameters are unknown (Hastie et 

al., 2007). The general idea of cross validation is to divide the data sample into a number of k 

folds. Folds can be described as randomly drawn, disjointed sub-samples of the whole data set. 

This random process is successively applied to all possible choices of k. At the end of the k folds 

(iterations), measures of the stability of the model and how well the model classifies data points 

are given. The above steps are then repeated for various k and the value achieving the lowest 

error or the highest classification accuracy is then selected as the optimal value for k (Witten et 

al., 2005; Bramer, 2007). 

The k-NN algorithm is well suited for continuous data, when Euclidian distance is used to 

assess similarity. However, there are special cases in which textual data can be used and for 

these cases, Hamming distance is applied (Hastie et al., 2007). Hamming distance measures the 

difference between two strings by calculating a metric on the vector space of the word’s length 

(Hamming, 1950).  

3.3.2.2 Classification trees 

Classification trees classify the value or probable category of a target variable based on 

multiple input variables. Classification trees are one type of decision trees, which predict a 

discrete category. The other type of decision trees are regression trees, which predict a 

numerical value based on probability. In the scope of this dissertation, only classification trees 

are considered.  

Classification trees start at the top most node (the tree root) and test for each observation a 

set of binary characteristics, which contain information about class membership (Figurer 3.5). 

This process is repeated until a leaf is reached, which defines the class to which the observation 
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is assigned. If a classification tree becomes too large for interpretation (which is an indication of 

overfitting), k-fold cross-validation is used to prune the tree (Bramer, 2007). Figure 3.5 shows an 

example of a simple decision tree using hypothetical data. At each node in the tree, binary 

characteristics are tested in order to follow the tree from root to leaves, where a class 

assignment is predicted. This predication aggregates all the training data points which were 

followed to reach this leaf (Ripley, 1996). Classification trees are not limited to binary 

characteristics, and can be applied to continuous, discrete, or categorical data. In this 

dissertation classification trees are used on continuous and categorical data.  

 

Figure 3.5 Example of a simple decision tree using hypothetical data.  

Random Forest classification is a special case of classification trees which will be used in 

this dissertation experiment. A Random Forest consists of an arbitrary number of classification 

trees, which are used to determine a set of rules to establish an optimal classification tree which 

will be used for final classification. Classification is generated on random subsets of the data, 

using a subset of randomly restricted and selected predictors for each split in each classification 

tree (Strobl et al., 2008). Due to the creation of many random classification trees, Random Forest 

classification is able to better assess the classification of each predictor (Strobl et al., 2008). The 

results of Random Forest have been shown to produce better classification than the results of 

one classification tree on its own as an optimal classification is established through the 

generation of many trees (Strobl et al., 2008).  



57 

Three different methods to evaluate classification trees measure misclassification rate, 

average loss, and entropy (Ripley, 1996). Misclassification describes the fraction of cases 

assigned to the wrong class. Average loss describes the phenomena that some errors are more 

costly than others. For example, weights can be assigned to classes so that some errors are more 

strongly weighted than others. Entropy analyzes the conditional probability that 

misclassification occurred. Entropy is defined as: 

 

where  describes the number of occurrences of class  divided by the total number of 

occurrences, and  denotes all possible classification cases.  

3.3.2.3 Evaluation methods in supervised classification 

As with unsupervised clustering, three evaluation methods are also applied to supervised 

classification methods in this dissertation.  

In the first method, true and false positives and negatives are based on a confusion matrix. 

When using true and false positives for validation, two types of classification errors are 

distinguished: Type 1 and Type 2 error. A Type 1 error is generated when the null hypothesis is 

true, but is rejected which can also be described as a “false hit.” A Type 2 error occurs when an 

alternative hypothesis (failure to reject the null hypothesis) is rejected when the alternative 

hypothesis is true. 

In the second method, precision and recall are defined in terms of a set of retrieved 

documents and a set of relevant documents (Baeza-Yates and Ribeiro-Neto, 1999). Precision is a 

measure of the ability of a system to retrieve only relevant items. Precision can be defined as: 
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In classification, a precision score of 1.0 is interpreted as every data item in a defined class 

has been classified to the correct class. Recall is a measure of the ability of a system to retrieve 

all relevant items. Recall can be defined as: 

 

A recall score of 1.0 is interpreted as every data item from a defined class has been correctly 

assigned, but it does not say anything about how many other data items were incorrectly 

labeled.  In most classifications, application of both measurements is combined into one 

measure based on the mean from both scores, called an F-measure (Powers, 2011). 

The third method is cross-validation, which estimates how well a classification model 

performs on an untrained data set. The main purpose of cross-validation is the estimation of 

how a predictive model will perform in practice. There are many different types of cross-

validation, such as k-fold, 2-fold, repeated random sub-sampling, and leave-one-out. K-fold 

cross-validation will be used in this dissertation. 

In k-fold cross-validation, the original data set is randomly partitioned into two 

subsamples. One subsample is set aside for validation of the model and the other subsample is 

used to train the classification model. Summary statistics are calculated to describe the 

performance of the classification. The split sampling process is repeated many times, 

constraining that each observation is used only once as validation data. The cross-validation 

averages the prediction errors associated with each repetition. The advantage of this method is 

that all observations are used for both training and validation, and each observation is used for 

validation exactly once (Geisser, 1993). 

3.4 Modern methods taken from machine learning 

Methods drawn from the field of machine learning have been developed to overcome 

limitations from classical statistical methods, mainly the ability to scale up and work with very 

large multidimensional data sets. Additionally, modern methods do not require strict adherence 
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to the assumptions which classical methods require. As with classical methods, there are 

unsupervised and supervised machine learning algorithms.  

Unsupervised machine learning algorithms cluster a set of input observations on the basis 

of similarities in one or more variables. While a training phase may take place, there is no 

predetermination of correct or incorrect characterization. Similar to classical statistical 

clustering methods, modern methods do not presuppose a specific number of categories or 

groups. Rather, they are used to regionalize an attribute space, and often are utilized as a data 

reduction technique. Two kinds of unsupervised machine learning are reinforcement learning, 

wherein positive or negative feedback on prior decisions guides current decisions, and 

clustering, which operates to discover similarities in the data. The assumption is that given 

sufficient input data, discovered clusters will make intuitive sense (Taylor and Joudrey, 2009).

 With very large or complex data sets, a common problem in unsupervised learning is 

over-fitting the categorization to the training set, rather than learning directly from input data 

characterizations, and generating clusters accordingly (Hinton and Sejnowski, 1999). The 

example of Self-Organizing Maps (Kohonen, 1995) will be applied in this dissertation as an 

example of modern unsupervised learning. 

In the field of Machine Learning, as in classical statistics, supervised learning is referred to 

as classification (Bramer, 2007). Supervised methods place individual data items into groups 

based on measurements or characteristics of a provided training set in which training instances 

are attributed as being correct or incorrect. Linear classifiers group items based upon linear 

combinations of the characteristics (Bramer, 2007). Performance of linear classifiers tends to be 

very fast, especially when the vector of characteristics is sparse, that is, when values for many 

characteristics are zero-valued or absent (Hastie et al., 2001). Parameters for a linear classifier 

can be determined by generative or discriminative models. A generative model specifies a full 

set of joint probabilities on all variables and is commonly used to simulate (generate) values for 

any included variable, assuming a specific underlying probability distribution. A discriminative 
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model works on conditional probabilities to select an unobserved variable, which is conditional 

on one or more observed variables.  Discriminative models offer a good choice when data 

relationships are simple (Hinton and Sejnowski, 1999). Generative models are generally 

considered more flexible, but require knowledge about the underlying probability distribution 

(Segaran, 2007). Support Vector Machines will provide the example of a discriminative model in 

this dissertation research.  

3.4.1 Unsupervised Machine Learning: Self-Organizing Maps (SOM) 

Self-Organizing Maps (SOMs) provide a special case of Neural Networks, which are also 

referred to as Artificial Neural Networks (ANNs). ANNs are based on the idea of biological 

neural networks (McCulloch and Pitts, 1943) and consist of a mesh or lattice of individual and 

grouped neurons, in one or multiple dimensions. Data organization proceeds by assigning data 

points to neurons, which acquire characteristics similar to assigned data points. Neurons, which 

contain similar characteristics, are linked together. As assignment continues, neuron 

characteristics change to reflect all of their assigned data points as closely as possible. As neuron 

characteristics change, changing similarities introduce modifications to the mesh. Organization 

or clustering is complete when the set of linkages stabilize.  

Training of an ANN is considered an elementary step in unsupervised machine learning. 

Many different variants exist for training, although as stated above, the training step offers no 

correct or incorrect examples, but rather is undertaken to explore the input data characteristics 

fully, to initialize a regionalization of the feature space (Hinton and Sejnowski, 1999; Hastie et 

al., 2001).  

SOMs are a type of ANN that use of a neighborhood function to preserve the topology of 

the input space. SOMs are beneficial for data searching and exploration because they organize 

data items to clarify relationships and because they can be used for dimension reduction 

(Agarwal and Skupin, 2007). SOMs differ from other types of ANNs, in that they organize data 
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by competing for assignment of observations. In the SOM, neurons are called cells or units. Data 

points are assigned to the Best Matching Unit (BMU) whose characteristics are most similar to 

the data point characteristics. Similarity is based on Euclidian distance. As a data point is 

assigned, every BMU has its weight vector (its set of characteristics) adjusted according to the 

following equation: 

 

where t represents the iteration step, W(t) represents the weight vector, and L represents a 

fraction of the difference between the old weight vector and the newly assigned data point’s 

weight vector (V). The variable L is called the Learning Rate and controls the amount of 

adjustment in any unit as each new data point is introduced. L can be user-specified at the 

outset of classification, and decreases over iterations: 

 

where  represents the rate at which t decreases at each iteration.  

Not only do cell characteristics adjust when data points are assigned to them, but cells in 

the neighborhood of an assigned cell also adjust characteristics to approach the characteristics of 

the assigned cell (Kohonen, 2001). The size of the neighborhood, within which cell 

characteristics are adjusted, decreases across iterations:  

 

where represents the width at each iteration of the SOM mesh at the outset of classification, 

and  represents the neighborhood size at iteration t. 

Another difference between a SOM and other types of ANNs is that the cells are initially 

ordered in a rectangular or hexagonal mesh. Links between cells are preserved topologically, 

which constrains their movements. As the mesh organizes, it becomes distorted in a process 

called unfolding (Figure 3.6). 
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Figure 3.6 The SOM attribute space at initial (left), intermediate (middle), and final (right) 

iterations in the unfolding process. Black dots represent input data points and green dots 

represent SOM cells. Taken from http://blog.peltarion.com/2007/04/10/the-self-organized-gene-

part-1/. 

For visualization purposes, the mesh of cells is mapped back into its regularized pattern 

(Figure 3.7). The regularized mesh is called a component plane or mapplet.  

 

Figure 3.7 Example of how the units are mapped onto a SOM rectangular mesh.  

The feature-space that the SOM above occupies has two dimensions: X and Y. A mapplet 

can be created showing the values from the x and y axis for each dimension individually. 

Mapplets for these two variables are shown in Figure 3.8, color coding their respective values.  
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In Figure 3.8, cells 1, 2, and 3 have high Y values (blue) and low X values (white). Likewise, cells 

4 and 5 have roughly equivalent X and Y values, and therefore display the similar shades in 

corresponding cells. 

 

Figure 3.8 This figure shows a SOM mapplet representing each dimension (X, Y). Legends along 

the bottom of the two mapplets show the color ramp for low-to-high values. The example is 

modified from http://blog.peltarion.com/2007/04/10/the-self-organized-gene-part-1/. 

The typical SOM output also includes a Unified Distance Matrix or U-Matrix, which 

indicates the distance in unfolded space between adjacent SOM cells (Ultsch and Siemon, 1990). 

The U-Matrix holds twice the number of cells as the SOM, and each cell contains similarity 

measurements between each node and its neighboring nodes (Figure 3.9). The U-matrix in effect 

illustrates actual distances between SOM cells in feature space, with higher values indicating 

more dissimilarity. 
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Figure 3.9 Example of a U-Matrix for a SOM containing 16x16 cells. Darker values indicate 

greater distances (more dissimilarity) between characteristics of neighboring cells. Lighter 

values indicate neighboring cells whose characteristics are similar. 

The quality of the SOM can be evaluated by two measures. The Quantization Error  

indicates how well the SOM units match the assigned data points on average, and is defined as:  

 

where n indicates the number of observations, indicates the weight vector (the set of all 

characteristics) for each input data point, and  indicates the final weight vector for that 

point’s BMU (Kohonen, 1995; Honkela, 1999). Low values for the Quantization Error are best, 

although values very close to 0.0 indicate model over-fitting (Kohonen, 2001). 

The Topographic Error  measures the proportion of the data points whose second-best 

BMU is adjacent to the BMU to which they are assigned. It is a measure of the coherence of the 

SOM output, and is defined as: 

 

where  equals 1.0 when all best- and second- best matching units are non-adjacent and 0.0 

when they are adjacent (Kiviluoto, 1998); as with Quantization Error, the goal is to establish 

values close to 0 (Kohonen, 2001).  
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SOMs have become widely used for multivariate data analysis where collapsing of a high 

dimensional input space to a lower dimensional output space is required. Kaski et al. (1998) 

provide a bibliography of over three thousand SOM papers published between 1981 and 1997. 

They state that SOMs have been applied across many fields, and many extensions to the 

standard SOM algorithm have been developed. In the last decade, SOMs have gained 

popularity among GIScience researchers who apply spatial metaphors to the SOM output 

(Skupin, 2002; Douglas, 2004). Bação et al. (2005) developed the Geo-SOM algorithm extension, 

where geographic location is weighted within the learning process. 

3.4.2 Supervised Machine Learning: Support Vector Machines 

Support Vector Machines (SVMs) were originally developed by Vapnik and Lerner (1963), 

and the method has been subsequently refined (Cortes and Vapnik, 1995). SVMs have been 

applied to many different fields ranging from text recognition to geoscience and climate 

applications (Bennett and Campbell, 2000; Bo et al., 2009; Mountrakis et al., 2010). Standard 

SVMs accept a set of input data and predict, for each given input, which of two possible classes 

to assign membership. For this reason, SVMs are referred to as non-probabilistic binary linear 

classifiers. SVMs start with a set of training data which characterizes a sample of data points as 

belonging to one or the other class. SVMs construct a representation of the training data points 

in attribute space, positioning them in a way that the two classes are as distant as possible. Once 

training is complete, a set of data points (not used for training) are examined and assigned to 

one of the two classes. SVMs are based on the concept of decision planes, which separate objects 

belonging to different classes, such that the distance between the decision plane and any 

training data point in any class is as large as possible. This distance is called Functional Margin; 

maximizing the Functional Margin reduces the possibility of classifier error. Figure 3.10 shows 

that when separating a data set into two classes using two variables, multiple solutions exist. 

SVMs can operate in higher dimensional spaces as well, in which case the decision planes are 

referred to as hyperplanes.  
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Figure 3.10 Linear plane separation shown in a 2-dimensional feature space  

SVMs find the optimal separation by maximizing the margin around the separating 

(hyper)plane using support vectors (Figure 3.11). The decision function for finding support 

vectors is fully specified by the training sample (Hastie et al., 2001). 

 

Figure 3.11 Delineation of support vectors and margin for SVM using linear separation between 

two classes of data points.  

Support vectors can be defined as the elements of the training set that would change the 

position of the dividing hyperplane when removed. A hyperplane can be defined as: 
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where  describes the dot product,  represents the normal vector to a (hyper)plane, and  

represents a set of points in the data set (Bramer, 2007). Geometrically, the dot product is 

essentially a buffer surrounding the functional margin in as many dimensions as is needed for 

characterizing the data set. Support vectors are critical products of the training set. Finding the 

optimal (hyper) plane dividing two classes in multiple dimensions can be solved by using 

optimization techniques, such as Lagrange multipliers (Hastie et al., 2001). The algorithm 

generates the weights in such a way that only the support vectors determine the weights and 

also define the boundary.  

The goal in SVM is to get a classifier with the largest possible Functional Margin. In order 

to maximize the Margin it is necessary to minimize ||w|| with the assumption that there are no 

data points between H1 and H2. SVM uses a quadratic programming paradigm to find the 

optimal solution. Quadratic programming can be described as a variant of linear programming, 

in which the objective function is quadratic rather than linear (Bazaraa et al., 2005). Quadratic 

programming is applied to problems for which linear separation fails and more advanced non-

linear classifications are called for. If the input data is not linearly distinguishable, the attribute 

space can be extended to higher dimensional space by kernel functions using quadratic 

programming. Various kernel functions are used for transformation; the most commonly used 

are polynomial, Gaussian or also referred to as Radial Basis Function (RBF), and hyperbolic 

tangent kernels. Figure 3.12 shows an example of transformed data points.  
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Figure 3.12 Transformation of data points from the original input space to a feature space where 

data is linearly separable. The phi (  ) term in the figure describes the transformation of data 

points into higher dimensional space.  

 shows the input features mapped into a linearly separable feature space, after the 

transformation is applied to the data set. Through kernel function in SVM, an infinite number of 

dimensions can be processed. For better computational efficiency and to avoid overfitting 

multiple kernel function can be combined in SVM classification (Dioş et al., 2007) 

3.6. Summary and current trends in data organization 

This chapter focuses on the methods used in this dissertation specifically for data 

organization, namely unsupervised clustering and supervised classification methods taken 

from classical statistics and modern machine learning. From the previous chapter, one can see 

that indexing clearly plays an important role in supervised and unsupervised data organization, 

since the selection of keywords will guide the groups which result from organization. Almost 

every grouping algorithm depends on the characteristics of the data set and on the input 

parameters used in the clustering process. In order to determine the input parameters that lead 
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to meaningful clusters reliable guidelines are needed for evaluation and cluster algorithm 

selection. As described in this chapter, multiple evaluation indices are therefore needed.  

In the next chapters, following the indexing of the four different data sets, methods from 

unsupervised and supervised learning will be used to organize them. Classical and Machine 

Learning results will be compared to further evaluate automatic and manual derived keywords. 

The goal of this dissertation is not to extend data organization methods, but rather use existing 

methods and evaluate them comparatively based on the data sets underlying structure as well 

as the grouping algorithm used. Most current research comparing different organization 

methods focuses on one type of data, and analyzes either classification or clustering methods 

alone. This dissertation extends comparative studies on organization methods (e.g., Mingoti 

and Lima, 2006; Budayan et al., 2009) by comparing different data sets as well as different 

organization methods. Such analysis will extend current knowledge by having complete 

measurements of a broad range of commonly used data sets, which in turn could help other 

researchers choose optimal methods for the data types they use.  

Table 3.2 summarizes the data organization methods used in this dissertation. All methods 

will be applied to four data sets. Methods are evaluated by common indices for comparison 

among unsupervised and supervised data organization.  

Table 3.2 Overview of methods used in this dissertation 
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CHAPTER IV 

Automatic and manual indexing experiments 

This chapter outlines the conceptual framework for successful characterization of a variety 

of data types using automatic and manual strategies for deriving keywords. This chapter also 

discusses the generation of keywords for indexing data types when automatically generated 

keywords are not available. Throughout this chapter the term “indexing” refers to the 

characterization of a data set as well as to the generation of keywords.  

This research experiment does not intend to establish new indexing strategies, but rather 

implement indexing strategies for each of the four data sets used in this dissertation. The data 

sets were compiled following the continuum of indexability presented in Chapter 1 (Table 1.1). 

The four data sets include a full-text document, a spatial data set incorporating seven attributes, 

a list of GIS software commands, and a catalog of generalization algorithms.  

The original contribution of this dissertation lies in the evaluation of clustering and 

classification methods used on the indexed data sets, which will be covered in Chapter 5. 

Understanding the role served by automatically and manually generated keywords in classical 

and modern methods for clustering and classification can lead to recommendations for indexing 

and organization of data types used commonly in geographic analysis and data dissemination. 

However, indexing is a necessary first step in applying clustering and classification methods to 

the four data sets. 

4.1 Research tasks 

Discussion of this experiment spans this chapter and the next, and addresses the following 

tasks: 

 Implementation of automatic or manual indexing strategies on the four different data 

sets (Chapter 4) 

 Organization of indexed data sets by supervised and unsupervised methods (Chapter 5) 
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 Evaluation and validation of the effectiveness of the grouping results (Chapter 5) 

By completing the tasks stated above, this experiment helps answer the research questions 

asked in this dissertation: 

1. For a given indexing scheme, does a particular organization method link clearly to an indexing 

method and why? 

2. What systematic recommendations can be established for organizing data by unsupervised or 

supervised methods? 

The implementation of different indexing strategies for the four data sets, as well as the 

systematic data organization by supervised and unsupervised methods, will reveal stabilities 

and instabilities in the data groups. For example, if nearly identical groups emerge within a 

particular data type, regardless of the classification method applied, one can conclude that the 

particular indexing strategy is robust with respect to internal structure of that data set. If groups 

form which are dissimilar, one must acknowledge that the indexing scheme is sensitive with 

respect to one or more types of grouping. The systematic comparison of organization methods 

can help in formulating recommendations for indexing strategies for different types of data, 

which are needed in today’s highly diverse information environments. By showing the benefits 

and limitations of these indexing methods, it may be possible to propose revised methods for 

keyword generation and indexing. Formulating guidelines for indexing and organizing 

different kinds of data may also help to build a foundation for discussing metadata formats for 

complex data types. 

4.2 Research task framework  

The dissertation research consists of three major tasks including data characterization 

(indexing), data organization (supervised and unsupervised learning) and method evaluation 

(by various metrics dependent on the organization method) as laid out in Figure 4.1.  
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Figure 4.1 Methodological framework for indexing and grouping the four data sets, and 

evaluating the organization methods. Chapter 4 covers the indexing of the data sets, while 

Chapter 5 discusses the organization of the indexed data sets as well the evaluation of the 

methods. Chapter 6 will make recommendations about indexing and organizing the four types 

of data. 

The first task, involves characterization, to build an indexing schema for each of the four 

data types. An automatic indexing schema is applied if it is both feasible and meaningful. A 

manual indexing schema will be created if necessary. The assumption throughout this 

experiment is that an automatic schema is preferable, since it can be derived consistently and is 

based on actual data content. It is expected that for some data types both indexing types could 

be generated, but (following the assumption) an automatic method will be utilized. For other 

data types, only a manual indexing strategy can be applied reasonably. It is important to keep 

in mind that these experiments will not develop novel indexing strategies, but rather use 

existing strategies. 

The second task, described in Chapter 5, consists of organizing the four data sets. All six 

classical and modern approaches will be applied to each data set. The choice of parameter sets 
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will take into consideration that the results generated by these methods are expected to be 

comparable. The third task, also covered in Chapter 5, consists of evaluation and validation of 

the indexing methods. Unsupervised methods are evaluated using cluster separation and 

cluster compactness measurements, such as the Davies-Bouldin index, the Silhouette index, and 

the Dunn index. Supervised methods are evaluated using misclassification rates and cross 

validation methods tailored to the grouping methods.  

4.3 Data sets used as exemplar data types 

The data sets were chosen based on their relevance and common usage in cartographic 

analysis, and second, as exemplars to span the indexability continuum. Table 4.1 highlights the 

specific data sets used in this experiment. The data sets range in size from roughly 108 to 1900 

data items, with the exception of the spatial data set, which contains seven co-registered grids 

each with roughly 500,000 pixels, and the full-text data set, which consists of roughly 4 million 

words.  

Table 4.1 The data sets used in this experiment span the continuum of indexability that was 

introduced in Chapter 1. 
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As can be observed from Table 4.1, there are alternative ways to establish keywords for 

each data set. Starting at the top of the continuum, indices for full-text documents can be 

established by metadata or directly on the raw text data. An example of metadata for full-text 

documents is metadata tags stored in a bibliographic system, such as keywords describing the 

article, publication date, authors or editors, and publication series. Indices for full text 

documents can be derived by stemming and text processing from the field of Natural Language 

Processing (NLP), which creates keywords directly from the raw text.  

Moving on to the spatial data set, no human intervention is required when the raw spatial 

data set is used. When metadata is used for keyword generation some human intervention is 

required in selecting and pre-processing of relevant information form the metadata.  

Moving further down the continuum, indexing of software requires human intervention, 

depending on the software, as only sparse auxiliary information exists. Automatic indexing or 

stemming methods cannot be applied meaningfully to software tools (Wendel et al., 2009; Viger, 

2011). Indices can be derived from tool help functions, where keywords can be drawn directly 

from the content and no or little human intervention is necessary. When no auxiliary data 

exists, indices can be drawn by structural code analysis or by analysis of input and output 

parameters of the tool (Tangsripairoj and Samadzdeh, 2006).  

Moving to the last row in the table, the algorithm data set, at the end of the continuum, 

closes the loop of indexability presented in Table 4.1. Algorithms are usually described by full 

text documents. Modified stemming and query techniques can be applied that only capture the 

portion of full text documents specifically describing algorithms. Essentially, full-text 

documents form the metadata of algorithms, and so keywords can be drawn directly from the 

contents. When no description of the algorithm exists, auxiliary data is needed for indexing. 

Indices can be derived from additional resources which requires manual indexing or by 

structural pseudo code analysis, where keywords can be drawn directly from the content with a 

medium amount of human intervention  
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4.4 Indexing experiment 

The data sets are presented in the order described above, ranging from fully automatic 

indexing strategies to manual indexing strategies. Each data set is indexed in one unique way, 

and when possible, without human intervention. Alternative indexing strategies are briefly 

discussed where applicable. 

4.4.1 Full-text articles 

The first type of data is exemplified by a full-text document set represented by 30 years of 

cartographic literature found on the ISI Web of Knowledge (www.webofknowledge.com). The 

data set consists of 1,432 full text articles. This data set acts as an exemplar for an automatic 

indexing schema with little human intervention. Approximately 70% of the full-text articles 

found on the ISI Web of Knowledge are provided with an attached abstract; only the abstract 

will be used for keyword generation. However, most journal article entries earlier than 1995 are 

missing an abstract in the ISI database. For this experiment, only the journal articles with an 

attached abstract are used. The reasoning behind using the abstract only is that a library staff 

person would organize a collection of articles by reading only the abstract information, rather 

than by searching within journal articles. The 30 years of full-text articles of cartographic 

literature were downloaded from the ISI Web of Knowledge webpage using the following three 

criteria: 1. A cartographically themed article in the field of Geography, Computer Science, 

Geodesy, or History of Environmental Studies, 2. Published in English language; and 3. A 

research paper, book review, white paper, proceedings paper or an extended conference 

abstract.  

An example of a journal article download form ISI given below (Figure 4.2). 



76 

 

Figure 4.2 Example of a data entry downloaded from the ISI Web of Knowledge in standard 

BibTeX format. The red boxes highlight the information relevant for indexing. Only the author’s 

name, the title of the journal paper, keywords, the full abstract, and the year published are used 

in the analysis. 

One limitation of the ISI Web of Knowledge website is that it downloads abstracts only in 

BibTeX, unformatted TXT, and HTML formats. As can be seen from Figure 4.2, pre-processing 

of the raw data is necessary to remove a large amount of auxiliary data from the indexing 
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analysis. Only six items (author, journal name, title, keywords, abstract, and published year) are 

used for this analysis. Programming in Python and R is used to pre-process the data, to filter 

out unnecessary information, and to convert the abstracts into a useable format (tab-delineated 

TXT file). Principles from text analysis are then used to automatically index this data set and 

generate the keyword set. Figure 4.3 gives a detailed overview of the methods used. Each of the 

methods is described in detail below.  

 

Figure 4.3 Processing steps involved in automatic keyword generation of the full-text 

document data set 

As described in Chapter 2, the first step in text processing is to tokenize the data set. Text 

stemming, text lemmatization, and word frequency counts are used next to generate the 

keyword set. The Lancaster stemmer is used for stemming the full text data set used in this 

dissertation, as it identifies more alternative word forms than other stemming algorithms, such 

as the Porter stemmer. 

Following the preprocessing and text analysis steps outlined above, a term-document 

matrix is constructed next which is used for formalizing keywords in this data set. For 
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implementation of the indexing process, the Natural Language Toolkit (NLTK) in Python is 

used (http://www.nltk.org) (Figure 4.3). NLTK is an open source Python library for natural 

language processing. NLTK offers implementation of multiple classification, tokenization, 

stemming, parsing, and semantic reasoning algorithms. The Python library Textmining 

(http://pypi.python.org/pypi/textmining) is then used for creation of the final term-document 

matrix. 

Drawing from Figure 4.3, the whole process of automatically indexing the cartographic 

journal data set using the Python NLTK and Textmining library can be partitioned into 7 steps: 

1. Tokenizing and stop word removal 

The first step in text analysis of the full-text data set is to tokenize the document and to 

generate a stop word list to remove all words with no substantive meaning, such as 

prepositions or function words. The generated stop word list, using the Python NLTK package, 

consists of 544 stop words taken directly from the NLTK package.  

2. Application of text stemmer to match tokens in the corpus to get rid of inflections 

The Python NLTK package contains a word stemmer algorithm. The NLTK package comes 

with a list of precompiled text stemming methods, including the Porter and Lancaster stemmer 

as well the WordNet lexical database. As described earlier, the Lancaster stemmer is 

implemented and used in this experiment.  

3. Construction of a term-document matrix 

The Python Textmining library (http://pypi.python.org/pypi/textmining) is used to create 

the term-document matrix. The constructed matrix consists of 1,800 abstracts analyzed by word 

frequency and word occurrence in the documents. Every row in the matrix corresponds to an 

abstract of the data set. Due to the sparse nature of this matrix, further processing using the 

Python NLTK is necessary.  
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4. Setting an appropriate cutoff value 

Figure 4.4 shows the number of keywords retained in the term-document matrix by cutoff 

value, as well as how sparse the term-document matrix is by cutoff value. A cutoff value of 1 

returns 16,057 keywords, whereas a cutoff value of 1,423 returns only one keyword (namely 

GIS), meaning that the word “GIS” is present in at least 1,423 documents. As the purpose of this 

indexing experiment is document clustering and document classification, a more aggressive 

approach for selecting the cutoff value is being done. By analyzing the sparse nature of the 

term-document matrix and also considering recommendations from previous studies, as 

described above, a cutoff value of 300 is chosen. A cutoff value of 300 also follows the 

recommendation above as it represents around 20% of the number of documents in the term-

document matrix. 

 

Figure 4.4 Number of keywords per cutoff value showing on a logarithmic scale on the left. The 

percentage of 0 values in the term-document matrix by cutoff value is presented on the right. 

5. Improvement of the term-document matrix (term weighting) 

The Python NLTK package as well as the R package “tm” (http://cran.r-

project.org/web/packages/tm/index.html) is used for weighting and enhancing the term-

document matrix. Term-document weighting schemas are distinguished between local and 
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global term weighting approaches. Local term weighting only applies weighting to individual 

documents within one document. Words which appear multiple times in a document are 

stronger than words that only appear once. In a global term weighting schema, all documents 

within a data sets are weighted. This weighting schema takes all documents into account, e.g. 

words that appear in only a few documents are likely to be more significant than words that are 

distributed across the whole collection of documents within the data set (Manning et al., 2008). 

As the focus of indexing cartographic publications is on the whole data set, a global weighting 

schema is used. The term frequency-inverse document frequency (tf-idf) method is applied, 

using the R “tm” package. Tf-idf weights words by the number of times it appears in 

documents. The method offsets the weight by the word’s frequency in the whole data set. 

6. Finalization of the term-document matrix (conversion) 

Table 4.2 A small section of the full-text index after pre-processing, stemming, and tf-idf term 

weighting.  

 

In order to generate the final term-document matrix, data processing and conversion using 

Python and Python NLTK for import into R, MatLab, and SPSS is conducted. Table 4.2 shows a 
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small section of the generated term-document matrix. Text stemming and stop word removal 

has already been applied. Term weighting has been applied. Each number in the table refers to 

the frequency of the token (stemmed words).  

As depicted in Table 4.2, this matrix provides a format for the data set containing full text 

documents to be further processed and organized using clustering and classification. The next 

sections describe how indexing is applied to the other exemplar data types. 

4.4.2 Spatial data 

The second data type is exemplified by a spatial data set containing raster information 

describing the physiographic characteristics of the lower 48 states of the U.S. This data set is 

provided courtesy of Lawrence V. Stanislawski (personal communication, April 2010), USGS – 

Rolla, Missouri, and is the product of an ongoing USGS generalization project to typify 

landscape types in the continental United States.  

Table 4.3 Factors used to classify landscape types (Stanislawski et al., 2011)  

 

The intention is to use these input variables to identify regions with relatively uniform 

landscape characteristics, where tailored generalization processing sequences can be applied 

(Buttenfield et al., 2010; Stanislawski et al., 2010). Besides using the raw spatial data as an 
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automatic indexing schema for generating landscape regions, additional information provided 

in the data set could be used to create multiple manually derived keyword sets. However, as 

described earlier in this chapter, automatic indexing schemes are preferred whenever possible. 

Figure 4.5 shows seven environmental factors (attributes) mapped to the same scale in 

geographic space. Darker blue values indicate higher attribute values. All seven variables have 

been normalized to a common range of 0-1000 (Larry Stanislawski, personal communication, 

April 2009).  

 

Figure 4.5 Environmental factors (attributes) mapped in geographic space. All attributes are 

normalized to a range of 0 - 1000. All seven attributes are used for indexing.  

Prior analysis of the data set (Stanislawski, 2010) suggests using 7 classes. Figure 4.6 shows 

the output of a maximum likelihood classification based on the seven variables. As can be seen 
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from the error estimates in the right panel, the probability of misclassification is much higher in 

mountainous areas, in swamp / marsh areas, as well as in the arid southwest. A systematic 

analysis of indexing and organization methods may help to resolve the question of how many 

landscape types should be categorized, and whether these seven explanatory variables are 

sufficient to accomplish data organization. 

 

Figure 4.6 Maximum likelihood estimation of seven data sets used to predict landscape types 

across the contiguous United States, and a map estimating probable misclassifications 

(Stanislawski et al., 2010).  

In the following paragraphs, different indexing strategies are briefly discussed for this 

spatial data set: automatic indexing on raw data, indexing by metadata, and indexing by 

manually derived indices. A fully automatic keyword generation is likely feasible, given that 

the data contains pixels with floating point values and each pixel represents a discrete object.  

1. Indexing the raw spatial data 

The first way to index this data set is to utilize the seven variables directly. Following the 

requirement of this experiment, this is the preferred method, as only minor human interaction 

is required; and therefore it will be used to index this data set. Python programming is used to 
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transform the seven single raster data sets into a single characterization file where each raster 

data set is represented as one column in the newly generated file. Figure 4.7 shows a section of 

the indexed spatial data set showing the 7 raster data sets as attributes in the table.  

 

Figure 4.7 Seven-dimensional index created from the spatial data set. The section is located in 

the north eastern part of the U.S. The red box shows the approximate location.  

Each element in this data table is a discrete object and corresponds to one pixel in the data 

set. Pixels outside the study areas and non-landmass features, such as water bodies, are left out 

in the indexing table for increased processing performance. However, Python programming is 

used to merge back the zero pixel values, after the indexing process to the raster data file in 

order to represent the water bodies within the data set. 

2. Alternative indexing strategies 

The USGS Landover data sets come with metadata describing; for example, the data 

capture method or the sampling methods. However, using metadata records will not be helpful 

to accomplish this task as the provided metadata only contains information about the whole 

data set (e.g. capturing method, resolution, stewardship), but not pixel level information which 

is needed for this indexing experiment. A second alternative possibility would involve a pattern 
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recognition analysis of the data, but this type of advanced processing lies beyond the scope of 

the dissertation and will not be undertaken. However, it can be argued that manually derived 

keywords for spatial raster data can be established by aggregation and reclassification. By 

reclassifying the raster files to a coarser resolution a new manually derived data set can be 

established at every reclassification step. By transforming the raster data set to a coarser 

resolution, new semantics are established as information is aggregated. At each resampling set, 

a new indexing schema is created. 

4.4.3 Software 

The third type of data is a software data set compiling a list of 108 commands providing a 

census of all hydrological geoprocessing commands in ArcGIS, Arc Workstation, and Arc 

Toolbox (Wendel et al., 2009). The software commands. Characterization of this data set must be 

manual, since the only available information which can be derived automatically is the 

command names. By definition, these must be unique and specific to each command, thus word 

stemming methods or word frequency counts used for automatic keyword generation will not 

identify any commonalities. Metadata is not available, nor is it possible to access the command 

code, which is proprietary, to perform pattern analysis. Even if pattern analysis were applied, it 

would likely be unproductive, since the patterns in artificial language, such as software code, by 

themselves, would not carry sufficient meaning to distinguish one command from another. For 

this data type, keywords must be generated manually, based on how the commands perform 

their tasks, and on what type of data they operate. 

Table 4.4 indicates an initial set of manually derived keywords, which were derived for the 

GIS command set, with advice from GIScientists and research hydrologists from the University 

of Colorado and USGS (Wendel et al., 2009; Viger, 2011). Source materials, such as online help 

from commercially available GIS products, GIS Manuals, and GIS textbooks, were used to refine 

and extend the list. The keywords describe characteristics relating to the type of data (raster or 

vector) accepted by the command; whether the command stands alone (i.e., atomic) or requires 
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prerequisite commands (i.e., molecular, as in the case of Flow Accumulation); whether the 

command processes terrain or water flow, etc. A small subset of data management commands 

(e.g. copy and paste) were inserted into the command set as controls. 

Table 4.4 The initial keyword set and the final set (in bold) after the degrees of freedom are 

removed (strikeout text). 

 

Degrees of freedom, refers to the redundancy in the data set. That is, the initial set of 16 

keywords includes several pairs and triads which are mutually exclusive; and one needs to 

describe only one of the pair (or two of the triad) to determine the value of the third.  

Commands can operate on raster data only, vector data only, or both.  One needs to record only 

two of the alternatives to capture all information given by the triad as a whole.  . For example, 

knowing the number of commands which modify spatial relationships (keyword 15) and the 

total number of commands in the data set, one can determine by subtraction the number of 

commands which do not do so (keyword 16). Redundancies can be treated essentially as 

degrees of freedom, and thus one member is removed from the final set (strikeouts), leaving ten 

keywords (boldface). A Boolean matrix is created assigning a value of 1 when a GIS command 

applies, and a value of 0, if it does not apply to that characterization. A sample section of the 

final index of the GIS commands is shown in Table 4.5, coded for each of the ten variables. 
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Table 4.5 Sample of the Boolean matrix characterizing the software data set 

 

4.4.4 Algorithms 

The final exemplar data set lies at the furthest extreme of the continuum and consists of 

algorithms from the field of cartographic generalization. This data set also closes the loop of 

indexability presented in Chapter 1. There are multiple possibilities to index this data set 

ranging from semi-automatic to manual strategies. However, as with the other data sets in the 

experiment, an automatic strategy is preferred.  

Three different indexing strategies for the algorithm data set are available: 1. A combined 

approach of manual and automatic indexing, including text stemming and manual compilation 

of cartographic generalization taxonometric keywords, 2. Manual indexing by creating 

keywords, and 3. Evaluation of algorithm pseudocode. The following subsections will provide a 

description of how these strategies can be used for indexing, and will also provide the reason 

why the first method is preferred over the other methods.  

a) Combined approach of indexing by full-text documents with the inclusion of taxonometric keywords 

The first indexing strategy, also implemented in this experiment, is to index by full-text 

documents. Most algorithms are described by full text documents. Automatic generated 
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keywords can be derived from a full text description of the algorithm, using automatic text 

analysis tools in a similar fashion as the cartographic journal article data set presented earlier. 

However, the key to this indexing strategy is to select words from the full-text document which 

specifically refer to the algorithm. This can be accomplished through modified querying and 

weighting procedures, which are specifically tailored to terms describing cartographic 

generalization algorithms by including keywords from existing cartographic generalization 

taxonomies. For example, an article describing an algorithm is different in the way that more 

technical and algorithm specific terms are included in the text. Figure 4.8 presents two abstracts 

from Veregin (2000) (Figure 4.9 a) and Ware et al. (1995) (Figure 4.9 b).The keywords 

highlighted in yellow are algorithm specific keywords. The first abstract example can be 

indexed by one algorithm specific keyword, while the second example abstract includes eight 

different cartographic algorithm specific keywords.  

 

Figure 4.8 (a) Abstract sample from Veregin (2000). Words highlighted show cartographic 

generalization algorithm specific keywords, demonstrating that one or a small number of 
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keywords will suffice in some cases to isolate those parts of the full-text document referring to 

the algorithm. (b) Abstract sample from Ware et al. (1995). Words highlighted show 

cartographic generalization algorithm specific keywords, demonstrating that for this abstract 

multiple keywords are needed for indexing. 

The downloaded data set consists of 2,350 journal articles describing generalization 

algorithms. As before with the full-text data set, most publications before 1995 do not come with 

a stored abstract in the ISI Web of Knowledge database (www.webofknowledge.com, accessed 

May 2013). After filtering out those articles, only 1,632 algorithm specific publications are left in 

the data set. The filtered data set is indexed in a similar fashion to the full-text data set 

presented in Section 4.4.1. However, algorithm specific modifications in the indexing steps are 

made. Figure 4.9 highlights the modification to the full-text indexing strategy from the journal 

data set presented earlier in this chapter. Each modifed step, highlighted in red, will be explaind 

following Figure 4.10. 

 

Figure 4.9 Processing steps involved in automatic keyword generation of the cartographic 

generalization algorithm data set. Text highlighted in red shows the additional steps necessary 

to filter out generalization algorithm specific publications.  
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1. Modifications of the stemming procedure 

Stemming of the algorithm data set requires multiple extra steps. The downloaded 

algorithm data set from the ISI Web of Knowledge consists not only of cartographic 

generalization related articles but also of algorithm related articles from the field of 

Geosciences, Computer Science, Computer Engineering, and Mathematics. In automatically 

filtering out those articles, generalization algorithm specific keywords, such as simplification, 

smoothing, and aggregation from multiple existing taxonomies, have been compiled. The 

taxonomy from McMaster and Shea (1990) is used in combination with the taxonomy 

developed by Regnauld and McMaster (2007) in order to capture modern and classic keywords 

used in cartographic generalization (Table 4.6).  

Table 4.6 Overview of cartographic generalization keywords. 

 

In addition to the keywords compiled from existing taxonomies, GIS related keywords 

such as GIS, Cartography, and maps are included in the stemming process. 

The Python Natural Language Toolkit (NLTK) package is used for tokenizing, stop-word 

removal, and text stemming. Python text mining library is then used for generating the term-

document matrix.  
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2. Filtering of cartographic generalization related publications 

After the initial stemming process, the term-document matrix is taken to filter only 

cartographic generalization specific articles. This is done by only selecting articles which 

contain at least one cartographic generalization taxonometric keyword as well as at least one 

GIScience related keyword (Table 4.7). If an article does not apply to any of the generalization 

related keywords it is removed from the data set. From the original 1,632 publication, only 979 

are retained in the data set. After filtering only cartographic generalization related articles Tf-idf 

weighting is applied to the document matrix. Table 4.7 shows a small selection of the final term-

document matrix. Each number in the table refers to the frequency of the term.  

Table 4.7 A small section of the final generalization data set indexed after preprocessing, 

stemming, and term weighting. A sample of generalization taxonomy keywords and automatic 

derived keywords are shown. 

 

b) Alternative indexing approaches 

Auxiliary information, such as full-text documents, technical reports, and taxonomies, 

could be used to manually generate a binary index, where cartographic generalization 

algorithms are characterized by keywords (Wendel and Buttenfield, 2010). This method will not 

be considered in this experiment, as an automatic indexing strategy is preferred. Another 
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possibility to index this data set is by evaluation of the algorithm pseudocode. Most algorithms 

are described in natural language pseudocode. The analysis of pseudocode would be 

considered semi-automatic, as a pre-compiled pseudocode data set has to be compiled first. 

Pseudocode is usually a high-level description of algorithms and is formulated in a more 

structural way than plain full-text documents (Cormen et al., 2009). Input and output features 

can be analyzed for characterization and building of an index. However, this type of advanced 

processing lies beyond the scope of the dissertation and will not be undertaken. 

4.5 Summary of the indexing experiment  

The indexing experiment was established to build an indexing framework for the data sets 

used in this dissertation. Automatic and manual indexing strategies have been presented for all 

four data sets, and indexing strategies have been tailored to the specific data sets used. Indexing 

is a necessary step for applying clustering and classification methods on these data sets. The 

purpose of this experiment was not to develop and evaluate new indexing strategies, but rather 

to use one method to index these data sets in a format that can be used for further clustering 

and classification.  

The full-text data set, represented by journal articles, is automatically indexed using 

methods from natural language processing. The spatial data set, represented by a data set 

describing the physiographic regions of the U.S., is indexed directly on the unprocessed raw 

data. The third data set, presented by GIS commands, is indexed manually. The fourth data set, 

represented by a data set of cartographic generalization algorithms, is indexed by modified 

stemming of full-text articles describing the algorithms. The second part of this experiment, 

described in the next chapter, will use the indices created in this chapter, and apply clustering 

and classification methods to organize the four exemplar data sets.  
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CHAPTER V 

Clustering and Classification Experiments  

This chapter outlines the data organization experiment using classical and modern 

approaches from classification and clustering. The four datasets indexed in Chapter 4 form the 

inputs for the organization methods. All four datasets are organized using the full set of six 

clustering and classification methods. Recommendations for organizing each type of indexed 

data will be given by validation and evaluation of each method.  

5.1 Methodological overview and structure of experiments  

5.1.1 Clustering and classification methods 

The order of the datasets analyzed in this chapter follows the continuum of indexability. 

Each dataset is organized by classical and modern methods of unsupervised clustering first, 

followed by classical and modern methods of supervised classification (Figure 5.1). 

Unsupervised clustering methods include Hierarchical clustering, k-Means clustering, and Self-

Organizing Maps (SOMs). Supervised classification is demonstrated by k-Nearest Neighbor (k-

NN), Decision Trees, and Support Vector Machines (SVM). 

 

Figure 5.1 Overview and structure of the data organization methods used in this experiment  

Unsupervised clustering methods, with the exception of SOM, require little or no training, 

while supervised classification methods in contrast require a training data set. As unsupervised 
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methods are applied first in this experiment, the training data sets are derived using a sub-

sample of the optimal clustering solution for each data set. Such methodology has been applied 

in hybrid classification studies and is used when generating a training data set is labor intensive 

(Zhang and Xiao, 2012; Witten and Frank, 2005; Griffith et al., 2003). Derivation of the training 

data sets is based on the objectives to generate a valid representation of the data, to represent all 

classes of the data, and to form classes that manifest the highest variability (Bramer, 2007). 

Guidelines for selecting a training set of appropriate size follow Witten and Frank (2005) who 

suggest using a random split sample of 50% or larger for the training data set. .  

5.1.2 Comparison and evaluation 

Dataset organizations that result from the six methods are evaluated by common metrics. 

As described in Chapter 3, the Davies-Bouldin index, the Silhouette index, and the Dunn index 

will evaluate the unsupervised methods. A fourth metric, the Homogeneity and Separation 

metric will be discussed for the first data set for explanatory purposes, but dropped for the 

other data sets as it provides insufficient distinguishing power for any of the data sets. Cluster 

stability will be evaluated to establish a reasonable number of clusters for each dataset.  Cross-

validation measurements will be used to evaluate the supervised classification methods.   

5.1.3 Software environments 

Multiple software and programming languages are used. The R libraries “fastcluster” 

(http://cran.r-project.org/web/packages/fastcluster/), “fpc” (http://cran.r-

project.org/web/packages/fpc/index.html) and “pvclust” 

(http://cran.rproject.org/web/packages/pvclust/index.html) are used for Hierarchical clustering. 

The Matlab Statistics Toolbox (http://www.mathworks.com/products/statistics/) and the Cluster 

Validity Analysis Platform (CVAP) 

(http://www.mathworks.com/matlabcentral/fileexchange/14620) are used for k-Means 

implementation. SOM analysis and evaluation is conducted in Matlab using the SOM toolbox 
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(http://www.cis.hut.fi/somtoolbox/). The software packages SPSS and R are used for evaluation 

of supervised classification algorithms. The R library “class” (http://cran.r-

project.org/web/packages/class/index.html) is used for k-NN analysis and cross validation. 

Classification trees analysis is conducted with the statistics software package Statistica 

(http://www.statsoft.com). The “e1071” (http://cran.r-

project.org/web/packages/e1071/index.html) library in R is used for Support Vector Machines 

analysis. Validation of supervised classification is being conducted using internal validation 

methods within each of the packages described above.  

5.2 Full-text dataset organization 

The first data set to be organized is the automatically indexed full text document. The index 

for this data set was generated by word stemming and term-weighting methods. The purpose 

of this clustering is to group cartographic journal articles so that similar articles are placed in 

the same cluster. Such a grouping might be used by a librarian wanting to create an online 

catalog which can be readily updated as new journal issues are published. The full data set with 

all cluster memberships is shown in Appendix (A). 

5.2.1 Unsupervised methods 

5.2.1.1 Cluster evaluation and selection  

Multiple criteria are used to choose an optimal number of clusters (Milligan and Cooper, 

1985; Everitt et al., 2001), including the local extrema (highest or lowest value of evaluation 

metrics), the cluster stability (the number of clusters at which item membership tends to 

stabilize), and the number of classes where the values of evaluation metrics tend to level off, 

indicating that the addition of more classes will not provide additional distinction of 

information within a data set. In order to select an optimal number of clusters, it is also 

important to take into account the purpose of the clustering, and this forms a fourth criterion. 

Several challenges are associated with using these criteria. Challenges occur in applying criteria 
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however. For example the local extrema do not automatically correspond to good clustering as 

these values usually occur at a very low or a very high number of clusters. Depending on the 

data set, some evaluation metrics do not show well defined local extrema or leveling off 

regions. For this reason, only evaluation metrics which show clearly identifiable extrema are 

used for cluster selection. To further explain how the evaluation criteria will be used, Figure 5.2 

shows the four indices used for Hierarchical and k-Means clustering. 

 

Figure 5.2 Evaluation metrics for unsupervised clustering of the full text data set.  For these and 

subsequent data sets, the blue line shows the progression of values for k-Means clustering (k) 

and the red line reflects Hierarchical clustering (h) results. The area shaded in grey shows the 
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range of clusters chosen as optimal based on local extrema and leveling off region. This region 

will define a range of cluster solutions for cluster stability evaluation.  

It can be observed from Figure 5.2 that the optimal number of clusters determined by each 

evaluation metric can differ; and a single criterion is insufficient to determine a single optimum 

for number of clusters since some metrics do not exhibit a distinct optimal value. For example if 

the choice of the optimal number of clusters would rely only on the extreme values, one to three 

clusters would be automatically selected using any of the evaluation metrics. These choices are 

obviously illogical, as evidenced by the subsequent rise in the index as the formation of 

additional clusters explains variation remaining in the full text dataset. The Davies-Bouldin and 

Dunn index values for both clustering methods level off quickly. The Homogeneity and 

Separation metrics do not show any extrema or distinct leveling off regions and are therefore 

unsuited for selection of regions for further evaluation.  

The Silhouette index is chosen for defining leveling off regions and local extrema as 

indicated by the grey box in Figure 5.2. Based on the index, a range of 5 to 16 clusters has been 

chosen. After 5 clusters the Silhouette index for (k) drops off sharply, hitting its lowest (worst) 

value at 10 clusters; before leveling off till 16 clusters. After 16 clusters another drop can be 

observed. 

a) Cluster stability in Hierarchical clustering 

A representative sample of twelve different papers published by four different authors has 

been drawn from the full text data set to explore cluster stability and formation (Table 5.1). The 

papers by Hurni represent traditional cartographically themed papers; papers published by 

Cartwright highlight artistic aspects cartography; papers published by Burghardt report on 

cartographic generalization; and papers published by Crampton represent critical cartography. 

The title and abstract of the paper can be found by the ID listed in Appendix A. The numbers in 

the table correspond to the cluster membership each data object is assigned to for a given 

number of clusters.  
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Table 5.1 Hierarchical cluster membership stability and formation from 5 to 16 clusters.  

 

As can be seen in Table 5.1 cluster membership stabilizes at 10 clusters. At 9 clusters, 

papers published by the individual authors are assigned to different clusters while papers on 

the four very different topics are assigned the same cluster membership, indicating semantic 

instability. When moving up to 10 clusters, more variation is accounted for, and the papers 

become more meaningfully organized into separate categories. For 11, 12, and larger numbers 

of clusters, the organization of papers into clusters does not change, although the cluster ID 

does vary. In this way, one can say that cluster stability has been reached. 

b) Cluster stability in k-Means clustering 

Table 5.2 shows the cluster memberships after multiple k-Means clustering solutions have 

been applied. For each cluster solution, the k-Means clustering algorithm was run multiple 

times in order to avoid a bias towards random initial seed selection in the k-Means clustering 

process as well as to produce more stable results (Jain, 2009). Recall from Figure 5.2 that while 

the global optimum Silhouette value is reached at 6 clusters for the k-Means, the Davies-
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Bouldin index reaches a local optimum at 12 clusters, calling for further examination.  

Examining cluster stability, it is apparent in the table that at twelve clusters three of the four 

articles published by Hurni fall into the same cluster together with the more “traditional” 

oriented cartographic article by Burghardt. Furthermore, both articles published by Crampton 

fall into a single class. When moving on to 13 clusters, no additional semantic stability is gained 

over the 12 cluster solution. In fact, some stability is lost as papers begin to drift into multiple 

clusters. 

Table 5.2 k-Means cluster membership stability and formation from 5 to 16 clusters. Cluster 

formation is independent from those shown in Table 5.1. 

 

c) Self-Organizing Maps (SOM) 

Unlike the previous classical clustering methods, the standard SOMs implementation can 

be interpreted as a fuzzy clustering method (Sarlin and Eklund, 2011). As can be seen from 

Figure 5.3, there are no discrete boundaries between clusters. SOM can be regarded as a method 

for regionalizing a multi-dimensional attribute space.  
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Figure 5.3 SOM visualization of the full-text data set. The U-matrix illustrates the overall 

compactness for all clusters as a whole and each variable of the dataset is represented in its own 

attribute plane. The red, blue, and green boxes highlight interesting patterns of coincidence, 

clustering, and scattering within the attribute space.  

By comparing the SOM attribute planes, certain patterns emerge in the full-text dataset. 

Coincident dark shading in the attribute planes indicates semantic overlap between attributes. 
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For example, when analyzing the cartography and map attributes (red boxes) it can be seen that 

there is little coincidence in cluster signature. One possible interpretation is that authors usually 

select either cartography or mapping as the sole keyword. Also, darker SOM cells in the 

cartography cluster usually refer to older articles published before 2000, whereas the mapping 

terminology is often used in more recent papers describing web and mobile cartography.  

Conversely, the green boxes indicate attributes which do coincide in the attribute space. 

Some articles use the term GIS instead of Geographic Information Systems. The largest overlap 

occurs between the attributes “geographic” and “GIS”, whereas the attribute “system” is more 

localized and information is spread over the whole attribute plane. One possible reason for this 

is that the words “information” and “system” are also used in other contexts and are not only 

connected to the term “GIS”. The term “geographic” is however mostly connected to the whole 

term of “Geographic Information System”. It is also apparent that other attributes do not have a 

single uniquely located cluster signature and are scattered across the whole attribute space 

(blue boxes). These stemmed keywords are non-specific and are present in nearly all papers.  

In order to meaningfully compare SOM to classical clustering results a linear SOM 

approached has been implemented next where each SOM cell corresponds to a cluster. In a 

linear SOM approach the vertical axis of the SOM shape is always kept at 1 and SOM shapes 

such as 1x8 or 1x10 are generated. This approach was successfully implemented by Wang et al. 

(2013) and has been applied in many different domains. Table 5.3 shows the cluster 

memberships after multiple linear SOM solutions have been applied. Examining cluster 

stability, it is apparent in the table that at eleven clusters three of the four articles published by 

Hurni fall into the same cluster together with the more “traditional” oriented cartographic 

article by Burghardt. Furthermore, both articles published by Crampton fall into a single cluster. 

When moving on to 12 clusters, no additional semantic stability is gained over the 11 cluster 

solution. In fact, some stability is lost as papers begin to drift into multiple clusters. These 

results are very similar to the clustering results from k-Means clustering. By reducing the SOM 
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output space where each cell corresponds to one cluster, multiple characteristics with k-Means 

are shared, such as cluster convexity (Wang et al., 2013). Therefore it is expected that the linear 

SOM method will archive similar results as k-Means clustering.  

Table 5.3 Cluster membership stability and formation from 5 to 16 clusters. Cluster formation is 

independent from those shown in Table 5.1 and Table 5.2. 

 

5.2.1.2 Clustering results 

As indicated by cluster stability analysis in the prior section, Hierarchical clustering 

generated more stable clusters which are an indication that the full text data set shows a 

hierarchy of the full text journal papers in the data set as indicated by Figure 5.4. Hierarchical 

clustering is used as the preferred classical clustering method for this data set. Figure 5.4 shows 

the dendrogram visualization for the full text document. 
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Figure 5.4 Dendrogram of the full-text data set showing class labels in red for the optimal 10 

cluster solution. 

As indicated by Figure 5.4, cluster size varies for the whole data set, with GIS and 

cartographic application themed journal papers forming the largest cluster, and GIS modeling 

publications forming the smallest cluster. From the dendrogram is it also apparent that two 

main groups are formed with cartographic themed papers on the left side and GIS themed 

papers on the right side of the dendrogram. On the cartography side three subgroups are 

formed, with one focused on cartographic communication, another focused on map design, and 
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the third focused on the application of cartographic methods. On the GIS side two larger groups 

are formed with scientific visualization on the left side and GIS modeling and spatial statistics 

on the right side. 

For clustering of the full text data set, Hierarchical clustering tends to generate more stable 

clusters than does k-Means and linear SOM clustering. Cluster stability is established with 

fewer clusters than with k-Means and linear SOM clustering. Hierarchical clustering is already 

able to form stable clusters and correctly group the selected target publications at 10 clusters 

versus 11 with linear SOM clustering and 12 clusters with k-Means clustering. k-Means on the 

other hand generates well separated and compact clusters as indicated by the Silhouette index, 

Homogeneity and Separation indices. However, a 12 cluster solution is necessary to generate to 

establish stable k-Means clusters.  

The traditional SOM approach (Figure 5.3) does not provide crisp clustering by itself. 

However, the SOM algorithm has the advantage that relationships among articles can be 

explored as distances between data objects. The degrees of membership can be established by 

using the BMU hierarchy of the SOM. For meaningful cluster stability comparison only the 

linear SOM approach will be applied for the remaining data sets.  

5.2.2 Supervised methods 

a) k-NN 

Three training data sets are used ranging from 30%, 50% to 80% sample size. The training 

data sets are derived by random split sampling from the optimal clustering data set, specifically 

the 10-cluster solution generated by Hierarchical clustering. Cross-validation on the three 

training sets guides selection of an optimal number of k neighbors. Figure 5.6 shows the 

performance of k-NN algorithm on all three training samples using cross validation over 1,000 

iterations. All variables are normalized to a common range from 0-1, using Euclidean distance. 
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Figure 5.5 k-NN analysis of selecting the optimal number k of nearest neighbors for training of 

the classifier. 

It can be seen from Figure 5.5 that with cross validation accuracy peaks at 7 nearest 

neighbors for the 80%, 5 to 6 for the 50% and 7-11 neighbors for the 30% training sample. 

Overall, the 30% training sample shows the lowest accuracy. The 50% and 30% training data 

sets show similar validation accuracy between 14 and 22 with the 50% training sample staying 

more stable while increasing the number of nearest neighbors. The highest cross validation 

accuracy of 85.2% is archived with the 80% training sample at 7 nearest neighbors. As the 80% 

training data set achieves the overall highest cross validation accuracy levels it is used for 

training of the classifier for the whole data set. 
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b) Classification trees 

Figure 5.6 shows the cross validation for Random Forest classification over the course of 

500 random trees, once again using three training data sets for selection of the optimal classifier. 

As described in Chapter 3, k-fold cross-validation on the training data set is used to determine 

the optimal choice of the Random Forest parameters. As more trees are added to the model, the 

misclassification rate for training data decreases.  

 

Figure 5.6 Summary of Random Forest analysis using three different training sample sizes to 

determine the optimal classifier.  

As can be seen from Figure 5.7, the 80% training sample shows the lowest overall 

misclassification rate of the training data compared to the 50% and 30% sample. By further 

investigating the error rates it can be observed that the lowest error “margin”, which is 

described by the difference between the misclassification rate of the test data and the training 

data, is achieved by the 80% sample and the largest error “margin” is generated by the 30% 

sample. As the 80% sample training data set archives the lowest misclassification rate as well as 

the lowest error “margin” it is applied to train the whole data set.  
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c) Support Vector Machines 

An important step in working with Support Vector Machines (SVM) is the selection of the 

SVM kernel type. For the full test data set a Radial Basis Function (RBF) kernel is used. As 

indicated in the literature, an RBF kernel is preferred as it will work on both non-linear and 

linear separable data (Dioş et al., 2007). Table 5.4 shows the results from the SVM training on 

the three training samples.  

Table 5.4 SVM training parameters using 80%, 50%, and 30% training sample. SVM per class 

indicates how many training vectors are calculated per class. 

 

The 80% training sample produced the best overall cross validation accuracy of 83.5% and a 

class accuracy of 86.2%, followed in order by the 50% and 30% sample data set. When further 

exploring the training results it can be seen that for the 80% and 50% training samples class 1 

shows the most SVM vectors per class meaning that this will be the largest predicted class. The 

likely reason for this is that the training data set is derived from the optimal Hierarchical 

clustering solution in which the “GIS/Application” cluster forms the largest clustering. The 80% 
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sample training data set is used to train the classifier for the whole data set with an overall class 

accuracy of 86.1%.  

d) Comparison of classification results 

The results of all three classification methods compared to the optimal clustering solution 

are shown in Table 5.5. It is assumed that the optimal clustering solution represent the 100% 

correctly classified data set. As before, the same selection of target journal articles is being 

explored for class membership assignment and misclassification.  

Table 5.5 Classification results compared to the optimal Hierarchical clustering results. 

Misclassified journal papers are shown in red. 

 

One target paper was misclassified when k-NN classification was applied. One paper by 

Crampton (279) was placed in a separate class. Moving on to Random Forest it can be seen that 

two target papers got misclassified. Both articles (192 and 790) were moved into class 1. When 

further exploring Random Forest results it can be observed that class 1 is by far the largest class 

with the highest number of observations (Appendix A). When moving on to SVM classification 

three target papers in total were misclassified compared to the solution generated by 

Hierarchical clustering. Again, as before with Random Forest, two of the three misclassified 
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papers fall into class 1 which is also the largest class through all classification results of this data 

set. This might be due to the fact that the training data sample was derived from the optimal 

Hierarchical clustering results as well as the randomized training sample.  

By comparing the results to the whole data set (Appendix A), k-NN classification 

performed best with 182 misclassified papers and an accuracy rate of 87.9%, followed by SVM 

with a total of 201 misclassified papers corresponding to an accuracy rate of 85.2%. Random 

Forest classification performed most poorly with 280 misclassified papers and an accuracy rate 

of 80.2%.  

5.3. Spatial data set 

The spatial data set is the largest dataset of the four and contains seven grid layers each 

with roughly 500,000 pixels. Continuous pixel values represent seven terrain and precipitation 

variables as described in Chapter 4. The original delineation of physiographic regions shows 

seven classes. The purpose of the clustering experiment is to explore if additional meaningful 

regions could be formed using the same set of input variables, especially to better distinguish 

regions in Midwest America, and to correct inconsistencies in the montane regions and the 

Southwest desert. 

5.3.1 Unsupervised methods 

5.3.1.1 Cluster evaluation and selection 

As before, the clustering is first evaluated to select a range of appropriate clusters. Figure 

5.8 shows the indices for Hierarchical and k-Means clustering. Only the Dunn index shows well 

defined extrema. The Dunn index is therefore used for determining a range of optimal clusters. 

Higher values account for better clustering. The grey box, as an indication of good clustering, 

spans from 5 to 12 clusters. Beyond 5clusters the Dunn index for (h) drops sharply. At 12 

clusters the index for (k) shows a local maximum before leveling off. This also corresponds well 

with the DB index where both (k) and (h) indices start to stabilize after 12 clusters. One 
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additional criterion in defining the range of optimal cluster solutions, specific to this data set, is 

that only solutions for more than seven clusters are evaluated as the purpose of this clustering is 

to explore if more than the seven original clusters can be generated. 

 

Figure 5.7 Evaluation metrics for Hierarchical and k-Means clustering. The area shaded in grey 

shows the range of optimal clusters based on local extrema and leveling off region. The orange 

line shows the seven class solution from prior analysis by Stanislawski (Stanislawski et al., 

2010). 

a) Cluster stability in Hierarchical clustering 

Figure 5.8 shows multiple Hierarchical clustering solutions ranging from 7 to 12 clusters.  It 

can be observed that the 7 and 8 cluster solutions form overly uniform clusters. For example 

both the humid and dry central plains fall into a single cluster. The high plains (light orange) 

cluster in the same group as most of Utah and Nevada (red box 1). 
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Figure 5.8 Range of solutions for Hierarchical clustering. The red boxes show areas of interest.  

When moving on to the 9 and 10 cluster solution it can be observed that more variation is 

introduced. The 10 cluster solution shows a distinction between swamp areas and coastal plains 

as well as the drier inland area in Florida (red box 2). However, when increasing to 11 clusters, 

small banded artifacts emerge (red box 3). When further increasing the number of clusters 
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additional banding appears (red box 4). The reason for the appearance of these artifacts is due 

to the hierarchical nature of the clustering algorithm. Ten clusters have been selected as the 

optimal number of clusters for seven input variables as it represents most uniformity without 

the appearance of banding. 

b) Cluster stability in k-Means clustering 

Figure 5.9 shows the results for six different k-Means solutions. In comparison to 

Hierarchical clustering, k-Means clustering returns more uniform clusters without creating any 

banding. The 7 and 8 cluster solutions produce similar results and show overly uniform 

clustering in the western U.S. (red box 1), whose physiographic characteristics are highly 

varied. For example the cluster depicting the interior plains (light green) extends far west into 

most parts of Montana and even into Washington. In the 9 and 10 cluster solution more distinct 

regions are introduced. This introduced variation is most noticeable in the Pacific Northwest 

(red box 2). For example, there is now a clear distinction between high mountain regions (dark 

blue) and the humid coastal mountains (light blue). New clusters are introduced in the Gulf of 

Mexico and Florida regions at 11 and 12 clusters. There is now a distinction between swamp 

areas and coastal plains (red box 3) as well as more diversification in the mountainous west. 

When increasing the number of clusters to 12, a third cluster, describing the transition zones 

between the eastern coastal plains and the swap marsh areas is introduced (red box 4).  
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Figure 5.9 Range of physiographic cluster solutions for k-Means clustering. 

The k-Means 12 cluster solution is chosen as the optimal cluster solution for classical clustering 

methods. It is able to extend the original 7 class solution the furthest without creating artifacts. 
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c) Self-Organizing Maps (SOM) 

In comparison to the full-text data set, three different SOM clustering strategies are used for 

the spatial data set. Creating multiple SOM clustering solutions is possible due to the larger size 

of the data set as well as the purpose of this clustering, to determine additional clusters for the 

seven layer data set. The first approach uses the linear SOM method as seen before where each 

SOM cell corresponds to a cluster and each SOM shape is defined as linear (1x8, 1x9 …).  

The second approach (Figures 5.10 a) and b)) follows a similar principle as the linear SOM 

approach where each SOM cell corresponds to one cluster. However, instead of defining a 

linear SOM shape, a non-symmetrical SOM shape as recommended by Vesanto (2005) is 

defined. This approach is referred to as clustering by BMU (Best Matching Unit) and is 

commonly applied in engineering (Vesanto and Alhoniemi, 2000; Come et al., 2011). Figure 5.10 

shows SOM clustering by BMU for an 8 and 12 cluster solution. By using this method, crisp 

cluster boundaries can be generated. However, when increasing the SOM size to more than the 

number of input variables, degrees of membership become visible as indicated in the 12 cluster 

solution. This is due to the fact that the 7 variables are now spread over 12 SOM cells. In both 

BMU SOMs the U-Matrix is not well defined to form regions. The quantization error is reduced 

by increasing SOM size while the topographic error stays stable across SOM sizes.  
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Figure 5.10 SOM BMU clustering solutions applied to the spatial data set. The reader is 

cautioned that the y-axes in the three panels are not scaled uniformly. 

Figure 5.11 shows a comparison between the linear SOM and SOM BMU clustering. It is 

apparent that SOM BMU depicts better overall clustering. From the 8 cluster solution (red box 

1) it can be seen that in the linear SOM the western part of the US is assigned to the same cluster 

as the costal plans of the eastern part of the US. The SOM BMU solution is able to correctly 

distinguish these groups but overall clusters are too uniform in the mountainous western part 

of the US. Moving on to the 12 cluster solution it can be observed that in both SOM methods 

small band like artifacts emerge (red box 2).Furthermore, the linear SOM is not able to correctly 

assign humid and high mountains regions (blue cluster) which can be observed in the high 

plains region. Overall linear SOM produce less meaningful clusters than SOM BMU clustering. 
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Figure 5.11 Comparison of linear SOM and SOM BMU clustering.  

A third SOM approach first applies the standard SOM method and then clusters the SOM 

output using k-Means clustering to create crisper cluster boundaries. k-Means and SOM plus k-

Means nearly produce similar results in the western part of the country. The increased 

computations required for running a SOM first does not provide any additional distinguishing 

information to the clustering process (Figure 5.12). In fact, when moving to the Gulf of Mexico 

region (red box 1) it can be seen that the k-Means solution depicts one more cluster showing a 

transition area between the swamp region and coastal plains. In the SOM BMU clustering 

solution, it can be seen that similar band-like features, as already seen in Hierarchical clustering 

results, are appearing around major clusters (red boxes 2). By increasing the number of cells 

(BMUs) in the SOM to more than the number of input variables, the SOM tries to assign degrees 

of membership to each cluster by trying to map 7 clusters onto a 12 cell grid.  
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Figure 5.12 Optimal k-Means classical clustering solution and SOM clustering. 

5.3.1.2 Clustering results 

Overall, k-Means clustering generates the most clearly defined 12-cluster solution for this 

dataset. Furthermore it is also the most stable method indicated by the evaluation indices. No 

artifacts are present, even when increasing the number of clusters.  

5.3.2 Supervised methods 

a) k-NN 

For the spatial data set, 30%, 15% and 7% samples are used to train the data. In contrast to 

the full-text document data set, an 80% or even a 50% sample is highly unlikely. Smaller 

training sets provide a more realistic set of training samples as training data sets for spatial data 
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are labor intensive to generate as well as are usually manually generated. Figure 5.13 shows the 

cross validation accuracy for the 30%, 15%, and 7% sample over a range of 1 to 60 k nearest 

neighbors. The upper limit of k nearest neighbors can be defined as  where n is the 

number of data points in a data set (Segaran, 2007). 

 

Figure 5.13 k-NN analysis for selecting the optimal number of k neighbors for three training 

data sets. Due to the increased complexity and computing time the 30% and 15% training 

samples show cross validation accuracy fore every other nearest neighbors while the 7% sample 

shows all 60 nearest neighbors for determining the number of nearest neighbors. 

Even with a 7% training sample data set, a high cross validation accuracy of 94.2% at 5 

nearest neighbors can be achieved. The cross validation accuracy drops steadily after a k value 

of 8 indicating that using this training data set to establish the classifier will not be optimal. The 

30% and 15% training samples perform similarly and both achieve a high cross validation 

accuracy of 97.3% at k=22 for the 15% sample and 97.4% cross validation accuracy at k=22 for 

the 30% sample. The cross validation accuracy stabilizes for k values larger than 14 which is an 
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indication that the classifier can be robustly trained with both training sample sizes. As both 

training samples achieve essentially the same cross validation accuracy the 15% sample training 

data set will be used to train the classifier for the whole data set.  

b) Classification trees 

Figure 5.14 shows the misclassification rate for the 30%, 15%, and 7% training data set.  

 

Figure 5.14 Summary of Random Forest analysis using three different training sample sizes to 

determine the optimal classifier for the spatial data set.  

As with k-NN, the 30% and 15% training sample data perform very similarly. There is only 

a 1% increase in misclassification between the 30% training data set and the 15% training data 

set. The 7% training sample achieves the lowest overall misclassification rate and also shows the 

largest error margin compared to the 30% and 15% training samples. The error margin is 

defined as the discrepancy between training and test sample misclassification rates. As there is 

only a slightly lower misclassification rate of the 30% training sample, the classifier for the 

whole data set will be trained using the 15% training sample. The final Random Forest results 

are shown in section d). 
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c) Support Vector Machines (SVMs) 

As with k-NN and Classification Trees the same three training data sets are used. Table 5.6 

shows the different training parameters used to establish the optimal SVM classifier. The 30% 

training data set performed best with a cross validation accuracy of 98.9% and a class accuracy 

of 99.2%, followed by the 15% and 7% sample data set. However, there is only a 1.2% increase in 

cross validation accuracy and a 0.4% increase in class accuracy when moving from a 15% to a 

30% training sample. As the increased computational complexity does not justify doubling 

training sample size, the 15% training data set is used for establishing the classifier for the 

whole spatial data set. 

Table 5.6 SVM training parameters using 30%, 15%, and 7% training samples.  

 

c) Comparison of classification results  

Figure 5.15 shows the classification results and the misclassification and accuracy rates for 

the three classification methods. Misclassification is calculated based on the comparison to the 

optimal clustering method (12 cluster, k-Means) which was used to generate the training data.  
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Figure 5.15 Comparison of supervised classification results. Red areas are misclassified. 

Regions marked in red on the maps on the right side of the figure show misclassification.  

k-NN classification produces the best classification. Overall, only 7,182 pixels are misclassified 

which corresponds to an accuracy rate of 97.7%. Random Forest classification was unable to 

detect one class completely which is indicated by the larger red area present along the Gulf 

coast, the Florida Atlantic coast, parts of South and North Carolina, Texas and the Salt Flats in 
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Utah. These areas are the wettest spots in the country and that all of these regions are falling in 

the same cluster might be an indication that the inland surface water input variable is not 

providing sufficient information, relative to other variables, or that more input variables are 

needed. Besides the missing class, Random Forest also shows higher misclassification 

throughout the U.S. than k-NN classification. Overall 21,569 pixels are misclassified which 

corresponds to a total accuracy rate of 93%.The SVM classifier is able to classify 95.5% of the 

pixels correctly and detects all classes correctly. Only slight misclassification along the borders 

of each class occurs and this effect reflects the banding effects seen in the unsupervised 

clustering results. Most misclassification can be found along the coastal plain areas along the 

Gulf regions as well as a larger band of misclassification along the transition zone between the 

Great Plains and the High Plains in the middle of the country. Overall, 4,050 pixels are 

misclassified which corresponds to an overall accuracy of 95.5%. 

In conclusion, k-NN neighbor is the best performing supervised classifier for this dataset. 

The optimal number of classes already determined by k-Means clustering produces well 

defined clusters. K-Means clustering and k-NN classification are the optimal methods to use for 

this data set and the results of these methods are an improvement over the original 

classification. 

5.4 GIS Commands 

The GIS commands dataset is the smallest data set in this experiment and it is also the only 

true binary data set in the experiment. The purpose of the clustering is to organize GIS 

commands into homogeneous groups, as for example might be required for a software 

command library, or to organize a command table of contents or online help interface. 
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5.4.1 Unsupervised methods 

5.4.1.1 Cluster evaluation and selection 

Figure 5.16 shows the evaluation indices for Hierarchical and k-Means clustering. Both 

clustering algorithms perform in a similar fashion for two metrics, with Hierarchical clustering 

generating overall lower indices values for the Davies-Bouldin (DB) and Silhouette index. As 

neither the DB nor Silhouette index show major extrema, the Dunn index will be used for 

defining an optimal range of clusters based on local extrema and leveling off regions. 

 

Figure 5.16 Evaluation indices for Hierarchical and k-Means clustering. The area shaded in grey 

shows the range of optimal clusters based on local minima and leveling off region.  

The region for optimal clustering is defined by the highest Dunn index value for 

Hierarchical clustering at 5 clusters and a local extrema at 11 clusters for k-Means clustering 

(indicated by the grey box). The Dunn index drops to 0 at 12 clusters for hierarchical clustering 

and at 19 clusters for k-Means clustering. 

a) Cluster stability in Hierarchical clustering 

Hierarchical clustering shows remarkable consistency throughout the range of optimal 

clusters, in comparison to the previous two data sets. A sample of representative GIS 

commands has been selected to explore cluster stability and formation. The sample includes GIS 

commands relating to data management, spatial statistics, and flow analysis. Cluster solutions 
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ranging from 5 to 11 clusters have been created for Hierarchical clustering (Table 5.7).  The data 

management functions “copy”, “delete” and “rename” form a single cluster early on, at 5 

clusters; and the spatial statistics commands cluster into two groups as well.  The hydrological 

flow commands remain stable through 8 clusters.  For more than 8 clusters, illogical groupings 

and inconsistencies begin to appear. For example, the commands “fill” and “flow 

accumulation” which are both flow analysis commands separate into 2 clusters. In the 12 cluster 

solution, the data management functions separate into two clusters indicating semantic 

instability at this level of clustering. 

Table 5.7 Cluster membership assignment for GIS commands using Hierarchical clustering  

 

b) Cluster stability in k-Means clustering  

Table 5.8 shows the cluster memberships after multiple k-Means clustering solutions have 

been applied. As with Hierarchical clustering, the data management and spatial statistics 

commands stabilize early on into one and two clusters respectively.  The flow analysis 

commands destabilize at 7 clusters and then temporarily form a single group for the 10 cluster 

solution, after which they separate again into two groups. As compared to the Hierarchical 

clustering results, k-Means clusters are less stable throughout the range of optimal classes. 
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Table 5.8 k-Means cluster membership stability and formation from 5 to 11 clusters. Cluster 

formation is independent from those shown in Table 5.6. 

 

c) Cluster stability in Self-Organizing Maps 

The linear SOM clustering of the GIS commands dataset shows similar results as seen with 

k-Means clustering. Table 5.9 shows the cluster memberships after multiple SOM clustering 

solutions have been applied. The data management functions “copy”, “delete” and “rename” 

form a single cluster throughout the whole range of clusters. The spatial statistics commands 

cluster into two groups as well; however the GIS command “spatial statistics clustering” seems 

to jump clusters early on before stabilizing at 8 clusters. The hydrological flow commands 

remain stable through 8 clusters. Identical to the hierarchical clustering results, for more than 8 

clusters, illogical groupings and inconsistencies begin to appear. For example, the commands 

“fill” and “flow accumulation” which are both flow analysis commands separate into 2 clusters. 

Overall the linear SOM clustering of this dataset produces more stable results that k-Means 

clustering.  

 

 



126 

Table 5.9 SOM cluster membership stability and formation from 5 to 11 clusters. Cluster 

formation is independent from those shown in Table 5.7 and 5.8. 

 

5.4.1.2 Clustering results 

Hierarchical clustering generated more stable clusters than k-Means clustering and is used 

as the clustering method for this data set. Linear SOM clustering nearly produced identically 

results. However, due to the increased computational intensity hierarchical clustering is used as 

the optimal clustering method. Figure 5.17 shows the dendrogram visualization for the GIS 

commands. Each cluster has been analyzed and labeled. Cluster labels for the 8 cluster solution 

are displayed in red. The selected GIS commands, presented in Table 5.6 and 5.7, are labeled in 

black. 

Hierarchical clustering returns clusters which are semantically logical. Similar commands 

group together. For example, the data management functions group together as do commands 

for aggregation, interpolation and zonal statistics. The terrain and flow functions group into a 

single cluster. Spatial statistics functions fall into three different clusters, one constituted by 

analysis of geometry and neighborhood functions; a second by distance based functions such as 

Moran’s I, and the third formed by local functions. 
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Figure 5.17 GIS commands dendrogram, clusters are shown in red.  

For clustering the GIS commands data set, Hierarchical clustering tends to generate more 

stable clusters than k-Means clustering, and moreover, cluster stability is established with fewer 

clusters than with k-Means clustering. k-Means on the other hand generates well separated and 

compact clusters as indicated by the Silhouette index. The recommended clustering method to 

use for this data set and purpose of this clustering is Hierarchical clustering using 8 clusters. 

As before, SOM does not provide crisp clustering by itself. However, the SOM algorithm 

has the advantage that relationships between GIS commands can be explored as distances 

between data objects. 
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5.4.2 Supervised methods 

a) k-NN 

Figure 5.18 shows the cross validation accuracy for 30%, 50%, and 80% training samples 

derived from the optimal clustering solution. 

 

Figure 5.18 k-NN analysis of selecting the optimal number of k for multiple training data sets 

The highest accuracy (93.8 %) is achieved at 1 nearest neighbor with the 50% training data 

set. For more than 1 neighbor, the cross validation accuracy for the 50% training sample drops 

steadily. The 80% training sample in contrast shows more stable results over a wider range of k 

values (1 to 7 nearest neighbors). For more neighbors, the cross validation accuracy starts to 

drop. The 30% training sample shows the least accuracy and only delivers a maximum accuracy 

rate of 55% which is due to the small data set size. The 30% training data will not be used in 

resuming classification methods for this data set. These findings are in part due to the very 
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small size of the data set. The 80% training data set is used for classifier training as it achieves 

the most stable cross validation results for the largest range of k values.  

b) Classification trees 

Figure 5.19 shows the Random Forest misclassification rates spanning 100 random trees for 

the three sample training sizes. 

 

Figure 5.19 Summary of Random Forest analysis using two different training sample sizes. 

Due to the small data set size only the 80% training data set is able to produce meaningful 

classification trees. The 80% trainings sample with a lowest misclassification rate of 8% for the 

test data set and a misclassification rate of 12% for the training data is used to train the classifier 

for the whole data set. The 50% sample exhibits a lowest misclassification rate of 34% for the test 

data set and 23% for the training data set. Due to its poor performance, the 30% training set was 

dropped from the analysis. 

 



130 

c) Support Vector Machines 

Table 5.10 shows the different training parameters used to establish the optimal SVM 

classifier.  

Table 5.10 SVM parameters and statistics for the two training data sets. 

 

From the training experiment is can be seen that the 80% training data set performed best 

with a cross validation accuracy of 93.6% and an overall class accuracy of 100%. Again, this is 

probably a consequence of the small size of the GIS commands data. 

d) Comparison of classification results 

Table 5.11 shows the classification results of all three methods compared to the optimal 

clustering solution (Hierarchical clustering, 8 clusters). k-NN and SVM were able to classify 

most all GIS commands correctly. For k-NN, only 3 GIS commands (“intersection”, “spatial 

statistics centroid”, “streamlink”) got misclassified which corresponded to an overall accuracy 

rate of 97.2%. SVM achieved the highest accuracy level as well as lowest misclassification rate 

with only 1 misclassified GIS command (“generalize”) which corresponds to a total accuracy 

rate of 99.6% (Appendix B). The Random Forest classification performed more poorly with 42 

commands misclassified in the whole data set which corresponds to an overall accuracy rate of 

only 63%. In summary, SVM is the best performing supervised classifier for this dataset. 
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Table 5.11 Classification results compared to the optimal clustering results for the selected GIS 

commands summarized for unsupervised grouping. Misclassified commands are shown in red. 

 

5.5 Algorithms  

The cartographic algorithm data set is the last data set in this experiment and forms the 

continuum of indexability described earlier in this dissertation. The purpose of grouping the 

algorithms data set is to separate cartographic generalization articles from the complete article 

data set, and to organize similar generalization papers into homogeneous groups, as for 

example in preparation for distributing an online knowledge base on generalization algorithms, 

or to contribute to a shared information exchange on the topic.  

5.5.1 Unsupervised methods 

5.5.1.1 Cluster evaluation and results  

As before, clustering is first evaluated by local extrema as well as leveling off regions. 

Figure 5.20 shows the validation indices for Hierarchical and k-Means clustering. 
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Figure 5.20 Evaluation indices for the algorithm data set.  

In contrast to the previous data sets, the progression of cluster indices for k-Means and 

Hierarchical clustering is nearly identical for all three evaluation metrics. From the progression 

of the Dunn and Silhouette index it is not possible to define a region of optimal clustering. The 

Davies-Bouldin index is the only index which shows local extrema and as such will be used to 

establish a region for optimal clustering. The region for optimal clustering spans from 3 to 12 

clusters as indicated by the grey box. At 3 clusters, both k-Means and Hierarchical clustering 

reach local minima after a steep drop. At 12 clusters, the DB for Hierarchical clustering rises 

before it starts to fluctuate which can be described as an instability in clustering solutions. 

a) Cluster stability in Hierarchical clustering 

Nine articles have been selected to explore cluster stability.. Articles by Cromley, Ratschek, 

Burghardt, and Buttenfield have been choosen to show a representative sample for 

simplification specific cartographic publications. The paper by Li is selected as a representative 

sample for Web generalization. Two papers by Visvalingam represent line feature modeling, 

and papers by Mason and Xie have been chosen as a representative sample of interpolation. 

As before with the full text data set, the title and abstract of the papers can be found by the 

ID in the Appendix section (Appendix C). Clusters over a range of 3 to 16 clusters, indicated by 

prior analysis, are evaluated for stability (Table 5.10). 
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Table 5.12 Cluster membership assignments for Hierarchical clustering.  

 

As indicated in Table 5.12, nine clusters were selected as the optimal number of clusters. 

Addition of more clusters does not modify the grouping, except for the papers by Visvalingam, 

Mason and by Xie. In the 9 cluster solution, it can be observed that for example, both 

interpolation algorithms fall into one cluster as well as the web generalization article by Li gets 

separated from the simplification algorithms  and forms its own cluster. Throughout the whole 

range of cluster solutions the simplification themed articles are split into 3 different clusters. 

The reason for this is that, different keywords are used to describe the simplification methods. 

The line generalization themed articles by Visvalingam (1413, 1414) stay stable in one cluster till 

14 clusters. Furthermore the article by Ratschek (1137) is placed in cluster 3 together with line 

generalization articles by Visvalingam due to similar keywords describing the simplification 

algorithms.  
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b) Cluster stability in k-Means clustering 

Table 5.13 shows cluster solutions ranging from 3 to 16 clusters.  

Table 5.13 Cluster membership assignments from k-Means clustering.  

 

Ten clusters were selected as the solution for which cluster stability is achieved. By ten 

clusters, the simplification algorithm themed articles start to form two clusters before breaking 

up into individual clusters. The article by Buttenfield is separated from the other simplification 

themed articles due to the use of different vocabulary as this article is describing the special case 

of simplification based on physiographic regions which uses different terminology than the 

other simplification articles. The web generalization article by Li starts to form its own cluster at 

ten clusters. However, at lower cluster numbers this article jumps clusters between the 

simplification and interpolation themed cluster. The line generalization articles by Visvalingam 

start to form clusters with simplification themed algorithms at 10 clusters and stays stable to 13 

clusters, which is where the Davies-Bouldin index starts to fluctuate widely. The interpolation 

algorithm themed articles sit in a single group at 10 clusters but break into two groups for 13 to 

16 clusters. This also corresponds with the fluctuating Davies-Bouldin values for that range. The 

full data set with all cluster memberships is shown in Appendix C.  
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c) Self-Organizing Maps (SOM) 

The linear SOM clustering of the algorithm dataset shows similar fluctuating results as seen 

with k-Means clustering. Table 5.14 shows the cluster memberships after multiple SOM 

clustering solutions have been applied. Throughout the whole range of clusters the four 

simplification articles are split into their own clusters. The web generalization algorithm by Li 

starts forming its own cluster at 10 clusters. As seen before with k-Means clustering at lower 

cluster numbers this article jumps clusters between simplification and interpolation themed 

clusters. The line generalization articles by Visvalingam are separated between 3 to 9 and 13 to 

16 clusters but form one cluster and stabilize between 10 and 13 clusters. The same is true for 

the interpolation algorithms themed papers which are split into different clusters but form one 

cluster between 10 and 11 clusters and between 15 and 16 clusters.  

Table 5.14 SOM cluster membership stability and formation from 3 to 16 clusters.  

 

5.5.1.2 Clustering results 

As indicated by cluster stability analysis in the prior section, Hierarchical clustering 

generates the most stable clusters. K-Means and linear SOM clustering show similar 

fluctuations in cluster stability while k-Means produces slightly more stable cluster results. 

Hierarchical clustering is used for cluster visualization and as an input for deriving training 
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data sets for the classification methods. Figure 5.21 shows the dendrogram visualization for the 

algorithm data set. Cluster size varies for the data set, with simplification algorithms forming 

the largest cluster, separated from line generalization algorithms at the lowest clustering level. 

The dendrogram can be divided into two groups at the highest clustering level, with 

publications focused on algorithms for GIS applications on the left side and cartographically 

themed generalization algorithms on the right side. On the cartographic generalization side, 

seven clusters emerge, dividing generalization algorithms into specific methods 

(“interpolation”, “classification”, and “simplification”) and specific data types (“raster”, 

“network”, “shape”, “points”, and “line”). The simplification cluster shows strongly 

hierarchical patterns. Lower levels in this sub-hierarchy are partition into e.g. “smoothing”, 

“coordinate reduction”, or “collapse”. 
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Figure 5.21 GIS commands dendrogram, clusters and cluster labels are shown in red.  

Hierarchical clustering is able to differentiate well between the target publications. It also 

produces stable clustering results for a range of clusters and is therefore used as the preferred 

clustering method for this data set.  

2.5.2 Supervised methods 

a) k-NN 

Figure 5.22 shows the cross validation accuracy for the three different training samples for 

the algorithms data set. The training data set is derived from the optimal classical clustering 

methods described in the previous section.  
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Figure 5.22 Cross validation accuracy of the three training samples for the algorithms data set. 

It can be seen from Figure 5.26 that between 1 to 8 nearest neighbors the 80% and 50% 

training data sets perform in a similar way, with 80% training sample performing at higher 

accuracy overall. The 80% training data set performs best at k=1 with a cross validation accuracy 

of 90.7%, followed by the 50% training data set with a cross validation accuracy of 90.4% at k =1. 

At 3 nearest neighbors, both the 80% and the 50% training data set achieve the same accuracy 

value of 88.4%. The 30% training data set performed worst with a maximum cross validation 

accuracy of 80.8% at 3 nearest neighbors.  As both the 80% and 50% perform very similarly, the 

50% training data set is used for classifier training of the whole data set as the accuracy gain of 

less than 1% does not justify the increased computational complexity in establishing the 

classifier. 
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b) Classification trees 

Figure 5.23 shows the misclassification rates for a Random Forest classifier across the three 

training sample sizes.  

 

Figure 5.23 Summary of Random Forest analysis using three different training sample sizes. 

From Figure 5.27 it can be seen that the 80% training sample performs best, displaying the 

lowest misclassification rate of 18% for the test and 16% for the training data set. The 50% 

training sample performs with a lowest misclassification rate of 19% for the test data and 23% 

for the training data. The 30% training sample never achieves a better misclassification rate than 

20% for both the training and test data. As the 80% training sample achieves the lowest 

misclassification rate, it is used to train the classifier. 
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c) Support Vector Machines  

Table 5.15 shows the training parameters that establish the optimal SVM classifier.  

Table 5.15 SVM parameters and statistics for the 80% and 50% training data sets. 

 

From the training experiment is can be seen that the 80% training data set performed best 

with a cross validation accuracy of 87.5 % and an overall class accuracy of 88.3%. As there is 

only a 0.8% increase in cross validation accuracy and a 0.2% increase in class accuracy by 

moving from the 50% training data set to the 80% training data set, the 50% training data set 

will be used for training of the SVM classifier as the small increase in accuracy does not justify 

the increased computational complexity. As before, the 30% training data set performed worst 

overall with a cross validation accuracy of 78.2% and an overall class accuracy of 79.9%.  

d) Comparison of classification results 

Table 5.16 shows the classification results of all three methods compared to the optimal 

clustering solution. k-NN only misclassified one target algorithm (827) from Li on web 
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generalization, placing it in the same class as most simplification algorithms. Overall k-NN was 

able to correctly classify 899 journal papers which correspond to an accuracy rate of 91.8% for 

the whole data set. Three target algorithms (181, 827 and 330) were misclassified by Random 

Forest and placed into class 1 and 3. Random Forest was only able to classify 761 journal papers 

correctly for the whole data set achieving an accuracy rate of 77.8%. SVM was able to correctly 

classify 832 journal papers which correspond to an accuracy rate of and a total accuracy rate of 

85.1% for the whole data set. Class memberships for the whole data set can be found in 

Appendix C. Overall k-NN performed best and is the optimal supervised method to choose for 

this data set. 

Table 5.16 Classification results compared to the optimal clustering results. 

 

5.6 Summary of the grouping experiment 

The grouping experiment applied clustering and classification methods to organize the four 

exemplar data sets. Depending on the data set and the indexing method applied, some 

clustering and classification methods performed better than others. Each clustering method has 

been evaluated by the purpose of the clustering, local extrema, leveling off regions and cluster 

stability for each data set. While local extrema and leveling off regions were derived 

mathematically by common cluster evaluation methods, cluster stability was assessed in an 

exploratory fashion meaning that only the selected target data objects for each data set have 
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been manually evaluated for stability. Specifically, cluster stability was assessed thorough 

changes and shifts in cluster membership for the range of all cluster solutions for each data set. 

Techniques for formally addressing cluster stability have been proposed by Albatineh et al. 

(2006) but have not been implemented in this experiment. 

Table 5.17 shows all four data sets and the optimal clustering and classification methods 

applied as well as the choice of number of clusters for each data set. The reader should keep in 

mind that the number of clusters and classes for each data set was given by the criteria set for 

clustering, for purposes of comparison. 

Table 5.17 Overview of all data sets and methods used in this experiment. 

 

Discussion of the results and findings of this experiment in regards to the research 

questions asked will be presented in Chapter 6. Furthermore the next chapter will explore 

limitations and further extensions of the results and methods presented in this experiment. 
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CHAPTER VI 

Discussion of results 

This chapter is divided into four sections. The first section provides a summary of the 

results from the indexing and grouping experiment; and the second discusses the results in 

regard to the research questions asked in this dissertation. The third section develops a critique 

of the experimental design and outlines possible enhancements that could be made in future 

research. The concluding section will summarize the findings of the dissertation. 

6.1 Results from the organization experiment 

The discussion of results focuses on the general overview of the experiment and provides a 

synoptic view of the outcomes of each data set before the results are discussed in regard to the 

research questions posed. 

This dissertation developed a set of experiments to evaluate the suitability of classical and 

modern methods of grouping for differently indexed data types commonly found in geographic 

analysis. Multiple evaluation indices for unsupervised and supervised methods have been 

implemented in this research. Guidelines on optimal cluster selection have been compiled into 

four criteria guided by recommendations found in the literature (Everitt et al., 2001; Jain, 2009; 

McDavid et al., 2011; Rendón et al., 2011) and have been applied to all four data sets. The 

compiled criteria for unsupervised clustering include the purpose of the grouping task, the local 

extrema and leveling off regions for selecting an appropriate number of clusters (and classes), 

and the semantic stability of the groups which form. Supervised classification was guided by 

using differently sized training data sets as well as assessment of misclassification and accuracy 

levels by cross validation. While estimation studies of different clustering and classification 

methods have previously been reported, this experiment was designed to compare the 

effectiveness of grouping methods across data sets and different indexing strategies that have 

not been reported previously in the literature. Information gained for best usage of those 
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methods applied on different data sets is especially valuable to domain and cross-domain 

Ontology research as recommendation for best methods usage for data and multi data type 

systems can be given which will be relevant in developing future Ontology and information 

systems. Before diving into the discussion of the results from this experiment in regard to the 

research questions asked, the following paragraphs give a concise overview of the results of the 

four data sets from the experiment in this dissertation.  

The data sets were chosen to span the spectrum of indexability ranging from fully 

automatic indexing to manual keyword generation. The full text data set was automatically 

indexed by text stemming methods without human intervention. Hierarchical clustering 

performed best as a method for clustering, while k-NN achieved the lowest misclassification 

rate and the highest accuracy level for supervised classification, using a 50% training data 

sample. The spatial data set, the largest data set in this experiment, was indexed on the raw data 

values, also without human intervention. Overall k-Means performed best for clustering and 

k-NN performed best for classification using a 15% training data sample. However, SVM 

classification was able to produce similar results while being more computationally efficient 

than the k-NN method. The GIS commands data set was the only manually indexed and binary 

data set in this experiment. Hierarchical clustering performed best as a method of clustering 

and SVM performed best for classification with an 80% training data sample. The algorithm 

data set was indexed semi-automatically by including manually derived taxonometric 

generalization keywords into the stemming process. For this data set Hierarchical clustering 

performed best as a method of clustering and k-NN delivered the optimal classification solution 

with a 50% training data sample.  

The results of the grouping experiment indicate that some methods perform better than 

others, as indicated by the systematic evaluation of cluster indices and classification 

measurements summarize above. Overall, for clustering methods, Hierarchical clustering 

performed well for smaller data sets and data sets with an inherent underlying taxonometric 
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structure such as the cartographic generalization algorithm data set. Hierarchical clustering 

stands in contrast to k-Means, which performed well for larger non-hierarchical data sets such 

as the spatial data set. K-Means also performed better for data sets that could support larger 

number of clusters across all data sets such as the spatial data set, as indicated by higher and 

more stable values in the validation indices. Furthermore, the k-Means algorithm performed 

better for less noisy data sets such as the spatial data set. It can be concluded that in the domain 

of Geography, k-Means might be best suited for data sets representing natural features such as 

the spatial data set which was derived from features representing physiographic regions with 

gradual changes between classes and only a limited number outliers  present in the data. These 

findings are also concluded by similar comparative studies in the literature on cluster 

evaluation (Budayan et al., 2009; Jain, 2009; Abbas, 2008). 

Not all methods can be natively compared directly. For example, the standard SOM 

algorithm, with the exception of the linear SOM and SOM BMU approaches, does not by itself 

generate clusters in the sense of strict boundaries as present in Hierarchical clustering and k-

Means clustering. Instead of clusters, SOM generates regions in attribute space. Therefore, 

common cluster indices cannot be applied to SOM. In order to delimit crisp boundaries the 

SOM is usually clustered by a second method, which was not implemented in this experiment. 

However, two special cases of SOM where each SOM cell represents one cluster, namely linear 

SOM and SOM BMU clustering, have been implemented. As indicated by the experiment, both 

SOM variants achieve similar results as k-Means clustering. In reducing the SOM size to the 

number of clusters requested, characteristics such as cluster convexity is shared with k-Means 

clustering. SOM is different from traditional clustering methods in effectively separating 

patterns form random fluctuations (Wang et al., 2013). This can be observed with the full-text 

and algorithm data set where SOM clustering performed overall better than k-Means clustering 

which is sensitive to outliers in the data set.  
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Classification methods have been evaluated by misclassification and accuracy rates using 

cross validation. Training data sets were established by the clustering method determined to be 

optimal. All supervised classification methods can be compared using the same metrics. Across 

all data sets k-NN and SVM performed better than Random Forest. As indicated by evaluation 

indices, k-NN established the overall highest accuracy levels. One drawback of the k-NN 

method is its sensitivity to data set size and to the selection of nearest neighbors. SVM on the 

other hand is the most stable method in regard to training data size and even with standard 

parameters performs very well. Furthermore, it is also suitable for large data sets. Random 

Forest classification overall performed worst. Random Forest is also very sensitive to data set 

size. Random Forest classification did not perform well on small data sets as it was not able to 

meaningfully classify the GIS commands data set. 

6.2  Discussion of results and answers to the research questions  

In order to place findings gained in this experiment into broader perspective this section 

discusses the results from this experiment in regard to the research questions asked. As already 

described above, the performance of the methods used in this experiment was highly 

dependent on the data set and purpose of the grouping. 

This experiment was designed to present a representative sample of multiple data sets 

commonly used in the geographic domain. The results gained from this experiment could 

support the development of a generalized framework for organizing different types of data by 

using common methods of indexing and organizing them in a combined fashion as it was 

presented here. Such a framework is an important innovation on how to master complex data 

organization problems as well as systematic investigations of different kinds of data in 

combination. This is particularly important for the deployment of domain and cross-domain 

Ontologies and ontological applications. Such systems require being flexible and being able to 

combine multiple domains into one framework (Zablith, 2008). The information gained in this 

experiment supports studies on optimal usage of organization methods in cross domain 
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application for multiple data types such as presented in Tang et al. (2012) who conducted a 

survey on clustering methods for ontological knowledge and Salem and AbdelRahman (2010) 

who conceptualize work on a multi-domain Ontology builder.  

Furthermore, from the experiment presented here it can be concluded that the spatial data 

set achieved very different results from the rest of the data sets. While still following the 

proposed continuum of indexability the goal of this data set was different, namely delineating 

physiographic regions from the seven input data sets. The other data sets, especially the full-text 

and algorithm data followed a different principle of indexing and grouping which leans more 

towards the domain of information retrieval. By building such a semantic reference system for 

each data set, recommendations by data type can be formulated. Recommendations for best 

usage of grouping methods are extremely beneficial as setting the correct parameters in the 

clustering and classification process is extremely time consuming. This is particularly relevant 

in the geographic domain where multiple data types are commonly used together in one 

analysis. In addition, the findings presented here could be directly applied in formulating 

information systems which could help build and improve present ontological applications such 

as the Semantic Web.  

Furthermore, as the full-text and algorithm data sets nearly share the same methodologies, 

both could be combined into one generalized framework and act as a cross-domain reference 

system by sharing multiple properties as it was suggested by Zablith (2008). Such cross domain 

application in the field of Geography could be a catalog incorporating multiple data types while 

sharing the same keywords for indexing. For example, in the field of cartographic 

generalization such a system could contain both, full text articles and algorithms. As 

demonstrated in this experiment the same keyword sets with slight modifications could be used 

to host both data sets in one catalog while sharing common semantics. 

The following two sections answer the research questions proposed in Chapter 1 of this 

dissertation.  
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1.  For a given indexing scheme does a particular organization method link clearly to an 

indexing method and why? 

As indicated by the grouping results in this experiment, the type of indexing can be linked 

to some extent to the success or failure of a particular organization method. From the grouping 

experiment, it can be argued that modern methods of clustering and classification will perform 

better on automatically indexed data, while classical methods work better on manually derived 

indexing schemes. Furthermore, it can be concluded that data set size and data type dictates the 

indexing methods which again links to an organization method. 

The failure of success of an indexing method is highly dependent on the underlying 

ontological structure of a data set. For example, Hierarchical clustering performed well on the 

cartographic algorithm dataset. This is primarily due to the fact that this data set consists of a 

clear hierarchical structure which is due to the domain it represents and how it was indexed. In 

the case of cartographic generalization algorithms there is a clear taxonometric hierarchy. For 

example the group of simplification algorithms can be split into different groups such as line or 

polygon simplification algorithms and these in turn can break down into different types of line 

simplification (corridor tolerancing, coordinate weeding, etc.). These groups can then be further 

divided into sub-groups. This stands in contrast to the spatial data set which is represented by 

physiographic regions. These natural features show a gradual change in value and when a strict 

taxonometric hierarchy is applied, misclassification (as indicated by Hierarchical clustering, 

linear SOM and SOM BMU results) is present.  

From this experiment it can be concluded that there is a link between indexing method and 

organization method. It can be said that the indexing method dictates the ontological structure 

of a data set which is ultimately responsible for the failure or success of an organizational 

method as mentioned above.  

Furthermore it can be concluded from this experiment that a manually derived indexing 

scheme which was not derived by crowd-sourcing will most likely generate a relatively small 
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data set that consists of categorical values. Selecting keywords manually, as demonstrated with 

the GIS commands data set, resulted in a small binary characterization scheme. Also, manually 

indexed data sets are most likely to be limited in size due to the manual workload. This stands 

in contrast to automatically derived indexing schemes that can be scaled to nearly any data set 

size. Through automatic indexing and term weighting schemes this type of data usually consist 

of continuous values. 

2. What systematic recommendations can be established for organizing data by unsupervised or 

supervised methods? 

The experiment in this dissertation has implemented and provided an evaluation scheme 

for optimal selection of the clustering parameters. Additionally, by applying multiple methods 

for clustering and classification, recommendations for an optimal method can be established 

based on the data type. As already indicated in the answer to the first research question, 

recommendations can be giving by data type and structure of the data it represents. However, 

recommendations have to be formulated differently for unsupervised and supervised methods. 

As indicated by the experiment, Hierarchical clustering performed well on datasets which 

have an underlying taxonometric structure which benefits the nature of the clustering 

algorithm. K-Means performed well on smooth continuous data sets where only a few outliers 

were present. In contrast, SOM was less sensitive to outliers and therefore outperformed k-

Means for the other data sets. Besides the data type, the purpose of grouping is also an 

important factor which dictates the selection of the number of groups and has to be taken into 

account. This is particularly important for establishing a framework which can encompass 

multiple data types. It can be argued that organized data sets with different “levels of detail” 

(number of groups) will be harder to integrate into one common framework.  

Recommendations for supervised methods can be given in regard to training size selection 

and model parameter selection. Three different training sizes ranging from 30% to 80% were 

applied with the exception of the spatial data set, for which training data set size ranges from 



150 

7% to 30%. As indicated by the experiment carried out in this dissertation, the smallest data set 

required an 80% training set to produce acceptable classification accuracy. For the medium 

sized data set a 50% training set was sufficient as indicated by misclassification and accuracy 

assessment. The largest data set could be successfully trained with a 15% training sample. This 

stands in accordance with the central limit theorem which states that in order for a sample to 

accurately represent the population it needs to be of a certain size. Therefore it can be argued 

that the training size can decrease with an increasing size of the data set. 

6.3 Limitation of the experiment 

A number of areas in both the indexing and the grouping experiment could be improved. 

Improvements pertain to validation and organization methods as well as data size selection. 

The three areas are discussed in the following sections. 

a) Evaluation of methods 

For determining the optimal number of clusters only internal evaluation methods have 

been applied. It could be argued that by applying both, internal and external evaluation, more 

confidence in cluster selection as well as more stable results would have been generated. 

However, the highly exclusive topic matter of the data sets did not support the use of an 

external data set for validation. Some of the data sets used, such as the cartographic literature, 

GIS commands, and algorithm data set are self-compiled and unique in nature. It could not be 

determined if similar open access data sets exist. While this would be a very interesting area to 

explore in further research, the time necessary to create similar data sets would be beyond the 

scope of this dissertation research. 

b) Methods of indexing and grouping 

This dissertation implemented one indexing strategy for each of the four data sets. The 

indexing method was chosen based on the assumption that an automatic indexing method is 

preferred. However, throughout the experiment description, other indexing strategies have 
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been suggested. This experiment could be extended to implement multiple indexing strategies 

for each data set. By doing so, multiple indexing schemes by data type could be evaluated by 

the various grouping methods. Additional recommendations could be established to 

comparatively evaluate each grouping method for a range of indexing methods applied to a 

single data type which could lead to more precise recommendation for cross domain systems.  

For example, the algorithm data set was indexed using a modified approach of stemming in 

order to distinguish generalization specific algorithms from other publications in the data set. 

This process was done by manually including keywords from multiple taxonomies in the 

stemming process. By doing this, the automatic stemming process was converted into a semi-

automatic process with limited human intervention. However, as this data set closes the 

continuum of indexability, multiple indexing strategies could have been feasible. For example, 

it would be interesting to explore if this data set would return results similar to those of the GIS 

commands data set, when indexed by manually created keywords into a binary matrix. This 

could show whether a data set would be flexible enough to be included in a cross-domain 

framework were multiple data sets are combined and flexibility is necessary (Zablith, 2008). 

Furthermore, it would be interesting to explore the stability of a single grouping method by 

applying multiple indexing strategies per data set. One might postulate that the manually 

derived keyword set for the GIS commands data set would behave similarly to a larger 

manually indexed data set. Recommendations for best usage of the grouping methods could be 

extended by a direct comparison of methods on one data set as well as across data sets. 

c) Data set size and relevance 

Data set size plays an important role in both indexing and grouping methods. The four data 

sets, while relatively small in the context of information science or big data, are nevertheless 

representative of data sets sizes commonly used in the field of GIScience. The type of indexing 

is determined for each data type and represents all commonly used types including continuous 

data and binary data. Data set size ranges from small, as represented by the manual indexed 
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GIS commands data set, to medium represented by the automatically indexed spatial data set. It 

would also be useful to explore how the findings from this experiment correspond to large data 

sets commonly used in information science research or in Semantic Web research.  

6.4 Future work 

This dissertation research could be extended in multiple directions. The first possible 

extension of the work presented here would be to use the same methodology and apply it to 

different data sets, preferable larger ones. It would be interesting to explore the scalability of the 

results presented here. It would be particularity of interest to evaluate the effectiveness of 

classical and modern methods in regard to increasing data set size. The new data sets could be 

chosen with more relevance to information systems and Semantic Web research.  

A second possible extension of this research project would be to test the flexibility of each 

indexed and organized data set as already suggested earlier. The experiment only regarded 

each data set as one entity without exploring the possibility if the developed indexing and 

organization framework would be flexible enough to be included in a cross –domain 

organization framework for multiple data types. Findings from such an extension of this 

research would have a large impact on all relevant areas of information systems research as well 

as current research on Semantic Web technology. While such a system has been explored 

conceptually before, no complete evaluation of such an implemented system could be found in 

the literature.  

A third possible area in further extending this research could be the inclusion of more 

spatial data sets into the analysis. In the current research, only one spatial data set is included 

which also stands out from the other data sets in its purpose of organization. It would be 

interesting to explore how spatial data types, other than the used raster data, would correspond 

to the framework established here and if the findings could be still conclude the same results.  
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6.5 Conclusion 

This dissertation designed and implemented approaches to assess the suitability of 

commonly used unsupervised and supervised grouping methods on different indexing 

strategies. Four different data sets commonly used in geographic research have been indexed by 

fully automatic and manual keyword generation; and different classical and modern methods 

from clustering and classification have been successfully implemented. Depending on the data 

set and the indexing method applied, some clustering and classification methods performed 

better than others. 

 This dissertation demonstrates that by systematic evaluation of clustering and 

classification indices, recommendations for organizing data can be formulated by data type. 

Furthermore, through systematic evaluation and application of the six clustering and 

classification methods it is possible to link a particular organization method to a specific 

indexing method. These findings are of use for complex data organization problems and in the 

development of information systems which encompasses multiple types of data.  
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Appendix A – Full-text data set 

This appendix contains two tables. The first, Table A-1 lists all 1410 full-text documents in 

the data set. The second table, Table A-2, shows the result of all clustering and classification 

methods. The full-text documents can be identified by ID.  

Table A-1 Complete full text data set  

www.geo-think.net/dissertation/literature_data_complete.htm 

Table A-2 Cluster and class membership for the full-text data set 

http://www.geo-think.net/dissertation/full_text_cluster_membership.htm 

Appendix B – GIS commands data set 

This appendix contains the clustered and classified GIS commands data set.  

Table B-1 Cluster and class membership for the GIS commands data set 

www.geo-think.net/dissertation/GIS_commands_cluster_class_membership.htm 

Appendix C – Algorithm data set 

This appendix contains two tables. The first, Table C-1 lists all 1607 algorithm related 

documents before filtering of the cartographic specific keywords was conducted. The second 

table, Table C-2, shows the result of all clustering and classification methods of the final data set 

which consists of 979 publications. The algorithm publications can be identified by ID.  

Table C-1 Complete algorithm data set 

www.geo-think.net/dissertation/Algorithms_complete_dataset.htm 

Table C-2 Cluster and class membership for the algorithm data set 

http://www.geo-think.net/dissertation/algo_cluster_membership.htm 


