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An estimated 5% of Americans currently have an alcohol use disorder (AUD),
either abuse alcohol or are dependent, causing an incredible health and economic
burden, as well as increased strain on family and friends. AUDs are approximately 50%
heritable, and the purpose of these studies was to investigate aspects of genetic
influence (initial sensitivity to alcohol) as well as environmental influence (exercise) on
alcohol behaviors.

The Inbred Long Sleep (ILS) and Inbred Short Sleep (ISS) mouse strains are a
model of genetic sensitivity to ethanol. We observed many genes differentially
expressed between the two strains, including several in chromosomal regions
previously shown to influence initial sensitivity to ethanol. Furthermore, utilizing
Weighted Gene Co-expression Network Analysis (WGCNA) we identified several
modules of co-expressed genes corresponding to strain differences. Several candidate
genes were identified as well as functional categories and signaling pathways, which
may play a role in the phenotypic differences between the two strains.

It has become apparent that different rewarding stimuli activate common reward
pathways, with the potential to influence each other, i.e. hedonic substitution. We
demonstrate that voluntary access to a running wheel substantially reduces the

consumption and preference of ethanol in mice. Furthermore, we observed differential
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gene expression of several candidate genes involved in regulating the mesolimbic
dopaminergic pathway, which we hypothesized to be the focal point of hedonic
substitution. These data suggest an important role for this pathway, and especially for
Bdnf and Slc18a2 in regulating hedonic substitution.

In order to identify additional candidate genes and pathways underlying hedonic
substitution in the striatum, we quantitatively sequenced the striatal transcriptome of
mice consuming ethanol, exercising, and doing both or neither, and identified
differentially expressed genes and WGCNA co-expression modules. Interestingly,
several genes and functional groups differentially expressed in response to exercise
were previously identified in our study of ILS and ISS mice. This suggests that one way
exercise might influence ethanol behavior is by sensitizing mice to the acute effects,
thereby decreasing consumption.

In conclusion, baseline genetic differences contribute to differential sensitivity to
ethanol. In addition, the environmental influence of exercise induces a transcriptional
response, possibly altering the response to ethanol, and resulting in hedonic

substitution.



ACKNOWLEDGMENTS

The following work could not have been completed without the exceptional
guidance and support of my mentor, Dr. Marissa Ehringer. | feel fortunate to have
gained such a wealth of knowledge on science, on navigating academe, and on
balancing life with work.

| wish to thank Dr. Richard Radcliffe for his guidance when confronted with the
difficult task of learning new technology, and for his generosity with data. My work has
been built on the foundation of what he has taught me.

| would also like to thank the members of the Genetics of Substance Abuse
Laboratory: Drs. Nicole Hoft, Holly Stephens, Amber Flora, Xavi Gallego, and Helen
Kamens for being mentors, friends, and encyclopedic sources of information when | had
guestions; and Jill Miyamoto and Ryan Cox for handling so much of the daily work, and
saving the day many times over. | would like to thank the other graduate students | have
worked with: Will Horton, Whitney Melroy, Dan Howrigan, Riley McCarthy, and others
who have shared my misery at times. Thanks to everyone at the Institute for Behavioral
Genetics, as it really is a collaborative effort.

Most importantly, | would like to thank my family and friends for their support and
encouragement: Mom for her unconditional support, challenging me intellectually and
living as an example of the correct metric of success; Erin for suffering through this
alongside me and always providing an alternate hypothesis as well as good music; Amy
and Kelly for their encouragement and for all eight nieces and nephews; and Ashley,

who | rely on for so much, as a colleague, role model, training partner, and best friend.



Table of Contents

vi

(R ] 8 oo I¥ o1 {0} o IR PR TP PPPPRP 1
1.1 Significance to the general publiC ..., 1
1.2 Evidence for genetic influences on ethanol behavior .............cccciiiiiiiieeins 2
1.3 Sensitivity to ethanol and an animal model of sensitivity ...........cccccceeeiiiiiniiiiieinne, 4
1.4 Exercise as an environmental influence on ethanol consumption, i.e. hedonic
SUBDSTITULION . 5
1.5 Utilizing the neural transcriptome to study the genetic and environmental
influences on ethanol DENAVIOr ... 7

2 Transcriptome analysis of Inbred Long Sleep and Inbred Short Sleep mice ..... 11
2.1 ADSITACT ..o 12
2.2 INEOAUCTION ...ttt e e e e e e e e e e e e e e e eas 13
2.3 Materials and Methods ... 14

2.3.1 Statement 0N aNiMal CAIE ........coooiiiiiiiiiiii e 14
2.3.2 RNA EXIFACTHION ...ceeiiiiieiiieeiiiiieeee ettt ettt ettt e e e e e e e e e e e e eeeeeeneees 15
2.3.3 Library preparation ............ccoovieeeiiiiiii e 15
ARG R N [To | o1 1T oL PR 16
2.3.5 Transcript assembly, quantification, and differential expression testing........ 16
2.3.6 Weighted Gene Co-expression Network Analysis (WGCNA)............cevvvennnn. 18
2.3.7 Identification of relevant co-expression modules.............cccceeevieeeeiiveeeiiinnnnnnn. 19
2.3.8 BioinformatiCs analySeS........coovuuiiiiiiiiii e 20
2.3.9 Identifying gene sequence differencCes...........cceeeeeiieiiiiieeiiiciie e 21
2.3.10 Affymetrix microarray analySiS .........ooeeeiieeiiiiiiiiniee et 21
2.4 RESUIES ...t 22
2.4.1 lllumina GAIl SEQUENCING ....eeiieiiiiiiiiiae e eee ettt e e e e ettt e e e e e eeeseenaa s 22

A [ To T 1 41T o 23



vii

2.4.3 Differential @XPreSSION........oooi i 23
2.4.4 Over-representation analysis of differentially expressed genes.................... 26
2.4.5 Weighted Gene Co-expression Network Analysis (WGCNA)............cevvvennnnn. 30
2.4.6 WGCNA modules enriched with differentially expressed genes.................... 30
2.4.7 Module eigengenes associated with strain/region differences ...................... 31
2.4.8 Cell type over-representation in WGCNA modules ..........cccceeeeveeeiivveiiiinnnnnnn. 38
2.4.9 Gene module hub gene identification..............cccoooiiiiiiiiiiiiiiiii e, 38
2.4.10 Functional group over-representation in WGCNA modules ............cccceennn. 39
2.4.11 Identification of cis-regulated Lore QTL geNES........ccvvvvvvvviiiieeeeereeeeiiiiinnnn 40
2.4.12 Sequence dIffErENCES ........covveeiiiiee e e e 40
2.5 DISCUSSION ... 44

3 Mesolimbic transcriptional response to hedonic substitution of voluntary

exercise and voluntary ethanol consumption ..........ccccooiiiiiiiii 50
3L ADSIIACT ...ttt e e as 51
.2 INFOAUCTION ... 52
3.3 Materials and MethOdS .........ccooiiiiiiiiiiiii e 53

3.3.1 Statement 0N anNiMal CAe ..........oeviiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeee e 53
3.3.2 ANIMAUS ... 53
3.3.3 Behavioral paradigm ..........cooeieiiiiiiii et 55
3.3.4 Saccharin CONLIOl GrOUP ....ccovvveiiiiiiie e e e e e e et e e e e e e e e e as 57
3.3.5 Quantitative real-time polymerase chain reaction .............cccoeevveeiiiiiiiiiinnnnn. 57
3.3.6 1IN Situ NYDMAAIZALION.......eiie e 58
3.3.7 StAliSICAl ANAIYSES ... 59
B4 RESUIES . 59
SiA.L MICE ittt 59

3.4.2 Voluntary running and ethanol conSUMPLion ............cccvvvviiiiiiieeeeeeeeeei, 60



3.4.3 Saccharin CONLIOl GrOUP ....cooiiieiiiiiiee et 60
3.4.4 Quantitative real-time polymerase chain reaction ...........ccccoeeeveevevvveeiiinnnnnnn. 67
3.4.5 1N Situ NYDMAAIZALION ....uunie e 67
3.5 DISCUSSION ...eeiiieeeiie ettt e et e e e e e e e s e e e e e e e e e e eeeeas 72
3.5.1 Evidence for hedoniC SUDSEITULION..........ceviiiiiiiiiiiiiiiiieeeeeieeeeeeeeeeeeeeeee e 72
3.5.2 Transcriptional changes in mesolimbic reward pathway .............ccccccovvvvnnnnn.. 74
3.5.3 CONCIUSIONS. ....coiiiiiiiiiiiiiiii ittt ettt e et e e ee e eeeeeeeees 76

4 Identification of candidate genes and pathways involved in the hedonic
substitution of exercise for ethanol consuMpPtion ..., 78
4.1 ADSIIACT ...t e e e 79
4.2 INTFOAUCTION . 80
4.3 Materials and MethOUS ..........ooviiiiiiiii e 81
4.3.1 Statement 0N anNiMal CANE ...........uuuiiiieiiiiiiiiiiiiee ettt eeeeeeeeeees 81
4.3.2 ANIMAUS ...t e et e e e e e 82
4.3.3 Behavioral paradigm ..o 82
4.3.4 RNA extraction and preparation ................eiiieeeeeeeeeeeiiiiess e e e e eeeeesenne e eeee e 83
4.3.5 RNA-SEQUENCING ....uiiiieiiiiiiiiiiaaa e e e e e ettt a e e e e e e e e e eeteaa s e e e e e e aeeeesbnnaaeeeeees 84
4.3.6 Weighted Gene Co-expression Network Analysis (WGCAN)........cccceeeeeeen.e. 85
4.3.7 Functional group over-repreSentation ............ceeeeeeeiiiiiiiiinee et 87
B4 RESUILS ...ttt a e e e 88
o R 1= F=\Y T | TP P PP PP PPPPPPPPPPPPPPP 88
A e N V=T [ =1 ] [T P 88
A4 3 WG NA Lo et e ettt e et e e et e e raa e anee 93
4.5 DISCUSSION ....etteeieiieeeeiieet ettt e e e e e e e et e e e e e e e e et e e e e e e s e e e e e e e e e e e e e e e e nnnnnnes 98
S CONCIUSTONS ... 104

R O BN C S ..o e e 107



Appendix

ix



List of Tables

Chapter 2
Table 2.1 Alignment statistics for each strain and region ...........cccceeevveiiiiiiiiiineeeeen. 24
Table 2.2 Over-representation analyses for DEGs in whole brain and striatum ....... 28
Table 2.3 WGCNA co-expression module characteristics .........cccooeevviiiiiiiiiiiinnennn, 33
Table 2.4 Polymorphisms in probable cis-regulated Lore QTL DEGS...........cccceec. 42
Chapter 3
Table 3.1 List of genes assayed for expression, and relevant details........................ 54

Table 3.2 2x2 Behavioral paradigm for wheel running exposure and ethanol

(o0] 0 ISTU 10 0] 11 o F PRSP 56

Chapter 4
Table 4.1 RNA-Sequencing and alignment detailS ..........cccccveiiiiiiecerreeeiccie e, 89
Table 4.2 Functional over-representation of differentially expressed genes ............. 92

Table 4.3 Module characteristics and hub genes for significantly associated
MOTUIES ... e et e e e e e e e e er b e e e eees 99



xi

List of Figures

Chapter 1

Figure 1.1 Overview of the components of Chapters 2-4...........oooovvvviiiiiiiiieeeeeeeeeinns 10
Chapter 2

Figure 2.1 Differentially expressed genes in whole brain and striatum...................... 25

Figure 2.2 Differentially expressed genes from striatum replicated in microarrays from

Radcliffe et al (2006).........ceeuuiiiiiiieeee e 27
Figure 2.3 Hierarchical clustering and dynamic tree Cut .............ccoevviiiiiiiinieeeeeieeennns 32
Figure 2.4 Hierarchical clustering of module eigengenes ...........ccccvvvvviciiiiiieeeeevennnns 35
Figure 2.5 WGCNA module eigengene expression levels..........ccvvvvviiiiiiiieeiiceeeinn, 36

Chapter 3

Figure 3.1 Body weight over the time course of the experiment............ccccceeevvvvvennnns 62
Figure 3.2 Average daily food CONSUMPLION........ciiiiiiiiiiiiiiiie e 63
Figure 3.3 Average daily wheel revolUtioNS ............coooiiiiiiiiiiiii e 64
Figure 3.4 Average daily ethanol conSUMPLioN..........cooovviiiiiiiiii e 65
Figure 3.5 Average daily saccharin CONSUMPLION ..........oovviiiiiiieeeeeieeeiiee e e e e eeeeenns 66
Figure 3.6 Relative gene expression as measured by gRT-PCR ........ccccooeveevvvvvennnnes 68
Figure 3.7 Relative gene expression as measured by in situ hybridization................ 70

Figure 3.8 Representative coronal sections showing areas of gene expression for in
S LU )Y/ 0 [ =i [o  £= RPN 73

Chapter 4

Figure 4.1 Differentially expressed genes, main effects of ethanol and running........ 91



xii

Figure 4.2 Hierarchical clustering of expressed genes, dynamic tree cut, and merged
[ pT0T0 (U] 1= PRSPPI 94

Figure 4.3 Gene expression within modules and module eigengenes....................... 96



Chapter 1

Introduction

1.1 Significance to the general public

The consumption of alcohol has been widespread throughout human history.
Consequently, alcohol use disorders (AUDs) have become a leading cause of
preventable disease and death. The World Health Organization estimates that at least
76.3 million people worldwide have an AUD, and alcohol use is implicated in 3.8% of all
deaths worldwide [1, 2]. In addition, alcohol abusers are at increased risk for a number
of diseases, including gastro esophageal cancer, cirrhosis of the liver, and epilepsy [3].
According to the National Institute on Alcohol Abuse and Alcoholism (NIAAA)
approximately 40% of all traffic crash fatalities involve alcohol and in 2004 over $235
billion was used or lost on health care and decreased productivity related to alcohol use
disorders [2, 4]. Although AUDs pose a significant burden on society, there are relatively
few treatment options available. Overall relapse rates remain high (between 60-80%)
and additional approaches are needed [5, 6]. Research on the etiology of AUDs has

resulted in a shift from the perception of the disease as a lack of willpower or morals to



what is now accepted as a true psychological disease with multiple genetic and physical
causes. To more fully understand this complex disease, further research is needed to

identify the genetic and environmental variables conferring risk [6].

1.2 Evidence for genetic influences on ethanol behavior

Alcoholism has long been known as a familial disease [7, 8], and there are
numerous studies citing the likelihood of multiple additional affected family members
given that one member of the family has the disease [9]. Recently, it has been
estimated that the heritability of AUDs is close to 50% [10], meaning the additive genetic
contribution from all genetic loci can explain half of the variance in AUDs. To elucidate
which genes contribute the most to the genetic variance of AUDs, population studies
have been conducted [11, 12]. Several genes have been identified that account for
some of the heritability [13]. These large population studies as well as longitudinal
family studies led by the Collaboration on the Genetics of Alcoholism (COGA) have
identified many genes, including several gamma-aminobutyric acid (GABA) receptor
subunits [14-18], taste receptor subunits [19], neuropeptide-Y [20], and nuclear factor
kappa B (NF-kB) [21]. However, like many psychiatric diseases, the etiology of AUDs is
extremely complex and these genes only explain a small portion of the variance. The
strongest findings come from polymorphisms in the groups of genes involved in the
metabolism of ethanol (alcohol dehydrogenase and aldehyde dehydrogenase), affecting
the ability of individuals to consume ethanol comfortably and mainly occurs in East
Asian populations [11, 22-24].

Further evidence for the genetic influence on ethanol consumption comes from



laboratory animal studies. The use of inbred strains of mice, genetically identical within
strain, allows for the control of environmental influences while studying the effect of
different genetic backgrounds. Studies comparing different mouse inbred strains
demonstrate that different strains exhibit different ethanol behaviors, including
consumption [25-27] and ethanol-induced loss of righting reflex [28, 29]. Furthermore,
several genetic tools exist (i.e. recombinant inbred lines and gene knockout mice) which
enable researchers to implicate genomic regions and candidate genes as important for
a specific phenotype. An example of recombinant inbred lines, crossing C57BL/6 mice
(B6) with DBA/2 mice (D2), creates an F4 generation of genetically identical mice, each
diploid allele consisting of a B6 and a D2 allele. Crossing the F hybrids with each other
results in genetic recombination, and produces an F, generation in which each
offspring’s genome consists on average 50% each of B6 and D2, but with differing
haplotypes. Inbreeding of the F, hybrids results in multiple recombinant inbred strains of
mice, each genetically distinct. These BxD recombinant inbred lines typically display a
spectrum of intermediate phenotypes relative to the parent strains. Combining these
phenotypes with genotypic information, it is possible to identify regions of the genome
that contribute the most to the observed parental phenotype. The regions are called
quantitative trait loci (QTLs). BxD recombinant inbred lines have been used to
determine a number of ethanol-related QTLs including, but not limited to, ethanol
metabolism (chromosome 17) [30] and ethanol preference (chromosomes 2 and 9) [31-
37]. The most comprehensive list of QTLs is maintained by the Portland Alcohol

Research Center (www.ohsu.edu/parc/by phen.shtml). The development of knockout

and transgenic mice allows the study of the individual contribution of a gene on a



particular phenotype. Hundreds of genes have been knocked out or over-expressed,
and their effects on ethanol behaviors studied. A complete review is beyond the scope
of this introduction, but notable genes include Sic18a2 [38], Drd2 [39-41], Pdyn [42],
Slc6a3 [43], and Prkcg [44], discussed in the following chapters.

These results demonstrate that in both humans and in mice, there is a strong

genetic component to ethanol related behaviors.

1.3 Sensitivity to ethanol and an animal model of sensitivity

Using familial history of AUDs as a proxy for genetic risk, Schuckit (1980)
demonstrated that male subjects at risk for AUDs were less sensitive to the subjective
effects of consuming ethanol than their peers with family histories of AUDs [45]. Family
and longitudinal studies confirmed that an initial low response predicted future risk of
developing AUDs [46-49]. In animals, the loss of righting reflex (LORR) due to a single
intraperitoneal injection of ethanol is a measure of the baseline sensitivity to ethanol
[28]. The Long Sleep (LS) and Short Sleep (SS) mouse strains were developed as a
model to the sensitivity to ethanol [50]. Following generations of selection for differences
in LORR, the LS mice lose their righting reflex for approximately 16 times longer than
the SS mice, independent of minor differences in ethanol metabolism. These two
strains, and their inbred descendants, the Inbred Long Sleep (ILS) and Inbred Short
Sleep (ISS), differ in a number of phenotypes besides LORR, including ethanol
consumption. The less sensitive ISS mice consume more ethanol than the ILS mice
[51], in agreement with the observations of Schuckit. Recombinant inbred lines (LSxSS

and LxS) have been used to identify QTLs related to LORR on chromosomes 1, 2, 3, 8,



11, and 15 [52-56], and candidate genes located within those QTLs, including Rassf2
and Myo1d [57], have been identified. These studies provide additional evidence for the
genetic component of risk for AUDs, and suggest a role for initial sensitivity to ethanol in

conferring that risk.

1.4 Exercise as an environmental influence on ethanol consumption, i.e. hedonic
substitution

McMillan (1978) was the first to report the behavioral interaction of exercise and
ethanol. Rats bred to consume high quantities of ethanol (P rats) were allowed to
voluntarily consume ethanol over 10 days, and subsequently given access to a running
wheel. The study was designed to determine baseline levels of activity, which would
then be compared with activity during ethanol withdrawal. However, when introduced to
the running wheel, the rats decreased their ethanol intake by approximately 50% [58,
59]. Werme et al. (2002) showed that male Lewis rats allowed to voluntarily exercise
during ethanol withdrawal consume significantly more ethanol upon re-introduction [60].
The authors concluded that there were convergent neurobiological pathways mediating
both behaviors, and in particular the mechanism behind the ethanol deprivation effect.
Ozburn et al (2008) provided additional evidence for hedonic substitution of exercise for
ethanol. In their protocol using female B6 mice, repeated removal and re-introduction of
both wheel access and 10% ethanol showed that exercise modifies patterns of ethanol
consumption. Specifically, they observed reduced ethanol preference the first time a
wheel was introduced, although this effect of exercise eventually diminished [61].

Hammer et al (2010) showed that male Syrian hamsters reduced ethanol consumption,



but not preference, when given access to a running wheel. Furthermore, the effect was
shown to be reciprocal, since introduction of ethanol to hamsters with previous access
to running wheels decreased the distance voluntarily run [62]. Recent work by Ehringer
et al (2009) supports the hypothesis that reward provided by wheel-running may
substitute or overlap at least in part with reward provided by ethanol, by showing
significantly reduced ethanol preference and consumption in exercising mice compared
to sedentary mice, and more so than in mice housed with a locked wheel. Ehringer et al
(2009) also found no metabolic differences between exercising and sedentary mice [63].
These studies support the hypothesis that hedonic substitution of ethanol by exercise
could be a useful approach for treating ethanol abuse and dependence [64].

In addition to studies using animal models, exercise has been shown to be
effective for reducing ethanol consumption in humans. There are several reported
studies in human populations supporting the idea of hedonic substitution for treatment
of ethanol abuse [65]. Three studies used exercise intervention as a tool to decrease
ethanol intake. Murphy et al (1986) showed that in otherwise healthy but heavy drinking
college students, supervised exercise 3 times per week for 8 weeks significantly
reduced ethanol consumption during the course of the study [66]. Also in heavy drinking
college students, Correia et al (2005) showed a similar decrease in consumption, even
though over the 4 weeks of the intervention the exercise group was unsupervised, and
only instructed to exercise more [67]. In the third study, Werch et al (2010) reported that
high school students decreased the quantity and frequency of ethanol consumption
after participating in a 2 month behavioral intervention, which included encouragement

to exercise more [68]. A seemingly conflicting report by Gutgesell et al (1996) used a



mailed questionnaire to assess the exercise and drinking behaviors of a group of
runners and non-runners. They showed that male runners consumed more ethanol than
controls; importantly though, among the subjects who reported a history of ethanol
abuse, runners reported drinking less than non-runners [69]. Similarly, intense exercise
has been shown to lead to a significant decrease cravings in recovering alcoholics [70].
These results suggest that exercise may be an effective tool for reducing ethanol

consumption in human populations.

1.5 Utilizing the neural transcriptome to study the genetic and environmental
influences on ethanol behavior

Variability in ethanol related behaviors across different strains of mice—each with
their own genetic background—exists at the initial exposure to ethanol, suggesting that
baseline transcriptional differences could account for much of the phenotypic variance.
Recent advances in technology have allowed for increasingly accurate and detailed
glimpses of the transcriptome. In the ILS and ISS strains, studies using hybridization
arrays identified numerous differentially expressed genes in both whole brain [71] and
sub-regions including the cerebellum [72], ventral midbrain, and striatum [73].

Seven studies in mice or rats have examined the changes in brain region-specific
gene expression after exposure to ethanol, via either acute intraperitoneal injections
[74, 75], or after periods of voluntary consumption [76-80]. Ethanol is a “dirty” drug,
meaning it has many molecular targets both in the brain and periphery, so
unsurprisingly few candidate genes are identified across multiple studies. To circumvent

this issue, combining treatment groups [78] or using liberal False Discovery Rates [79]



have been used to identify changes in gene expression, but perhaps more elegant was
the use of network analysis in addition to gene expression, where Mulligan et al (2011)
identified roles for cell-type specific responses (astrocytes) and blood circulation in the
response to ethanol consumption [80].

One study to date has examined the effect of exercise on the rat hippocampal
transcriptome [81], which found many exercise responsive genes, including Banf,
Vegfa, as well as an inward rectifying potassium channel, among others. However, a
number of targeted gene expression studies have implicated genes involved in
regulation of the mesolimbic dopaminergic pathway [82-84].

The following studies examine the genetic and environmental influences on
ethanol behavior. In Chapter 2, we examine the whole brain and striatal transcriptomes
of the ILS and ISS mice using RNA-Sequencing to provide high resolution expression
data [85]. RNA-Sequencing is not hindered by the high background noise or saturation
as are hybridization microarrays, which allows for a much higher dynamic range of
expression values [86, 87]. RNA-Sequencing also provides sequences for abundantly
expressed genes, including polymorphisms. In addition, the accuracy and dynamic
range translate into improved network characteristics compared with microarrays, as the
expression data can be used to construct networks of co-expressed genes [88].
Combining differential expression testing, sequence polymorphism identification, and
co-expression networks allowed us to identify candidate genes and gene networks
which may contribute to differential sensitivity to ethanol. Chapters 3 and 4 examine the
transcriptional response to behavior invoking the hedonic substitution of exercise for

ethanol. Initially we utilize a candidate gene approach in multiple brain regions, then



employ a transcriptome wide analysis in the striatum using RNA-sequencing to identify

additional candidate genes and networks.
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Figure 1.1 Overview of the components of Chapters 2-4.
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Figure 1.1 illustrates the topics covered in Chapters 2-4. Chapter 2 focuses on the
genetic influence on sensitivity to ethanol, which according to the low level of response
hypothesis [46] could influence observed differences in consumption [51]. Chapter 3
introduces the concept of hedonic substitution and examines the transcriptional
response of candidate genes to wheel running and ethanol consumption, while Chapter
4 attempts to identify additional candidate genes using a transcriptome wide approach.
Hedonic substitution is shown here as a transcriptional response that reduces ethanol
consumption.
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Transcriptome analysis of Inbred Long Sleep and Inbred Short Sleep mice

Todd M Darlington, Marissa A Ehringer, Colin Larson,
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Genes, Brain, and Behavior. 2013, 12:263-274.
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2.1 Abstract

Many studies have utilized the Inbred Long Sleep and Inbred Short Sleep mouse
strains to model the genetic influence on initial sensitivity to ethanol. The mechanisms
underlying this divergent phenotype are still not completely understood. In this study, we
attempt to identify genes that are differentially expressed between these two strains and
to identify baseline networks of co-expressed genes, which may provide insight
regarding their phenotypic differences. We examined the whole brain and striatal
transcriptomes of both strains, using next generation RNA sequencing techniques.
Many genes were differentially expressed between strains, including several in
chromosomal regions previously shown to influence initial sensitivity to ethanol. These
results are in concordance with a similar sample of striatal transcriptomes measured
using microarrays. In addition to the higher dynamic range, RNA-Seq is not hindered by
high background noise or polymorphisms in probesets as with microarray technology,
and we are able to analyze exome sequence of abundantly expressed genes.
Furthermore, utilizing Weighted Gene Co-expression Network Analysis (WGCNA) we
identified several modules of co-expressed genes corresponding to strain differences.
Several candidate genes were identified, including protein phosphatase 1 regulatory
unit 1b (Ppp1r1b), prodynorphin (Pdyn), proenkephalin (Penk), ras association
(RalGDS/AF-6) domain family member 2 (Rassf2), myosin 1d (Myo1d), and
transthyretin (Ttr). In addition, we propose a role for potassium channel activity as well
as map kinase signaling in the observed phenotypic differences between the two

strains.
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2.2 Introduction

The heritability of alcohol use disorders, estimated to be approximately 0.5,
suggests that genetics plays an important role in determining an individual’s risk [10].
One possibility for how this risk manifests itself is in first response to alcohol [45], where
it was demonstrated that a low level of response to alcohol is a strong predictor of future
alcohol use disorders [46, 47]. In animals, measures of acute ethanol response from a
single intra-peritoneal injection include: ethanol-stimulated activity, metabolism,
hypothermia, ataxia, and loss of righting reflex (LORR). The Inbred Long Sleep (ILS)
and Inbred Short Sleep (ISS) mouse strains were selected for differences in LORR and
show a large phenotypic divergence [50]. Since this phenotype is present in ethanol-
naive animals, it is likely that genetically mediated differences in baseline gene
expression could account for much of this phenotypic difference.

The ILS and ISS mice have been extensively studied, and are phenotypically
different beyond ethanol-induced LORR [89-91], for example, the strains differ in
ethanol preference with the ISS mice consuming more ethanol than the ILS mice [51].
The underlying genetics of these quantitative traits have been explored successfully
using recombinant panels of mice to identify regions of interest likely involved in LORR
(Lore QTLs) on chromosomes 1, 2, 3, 8, 11, and 15 [52-56, 92]. Genes in these regions
were sequenced to find polymorphisms that may contribute to the observed
phenotypes, and fifteen genes with coding sequence differences were identified [93].
Further, gene expression studies, in both whole brain [71], and cerebellum [72]

identified many differentially expressed genes (DEGs) between the strains. Maclaren
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identified several DEGs within Lore QTL regions with promoter region sequence
differences [57].

The current study utilized Next Generation RNA Sequencing (RNA-Seq)
technology to investigate baseline gene expression differences between these two
strains. RNA-Seq produces millions of short reads which, when mapped back to the
genome, provide a measure of gene expression as well as strain-specific sequence, at
least for abundantly expressed genes. It provides a higher level of resolution of gene
expression than is possible with hybridization microarrays. A high level of background
noise, typical with microarrays, does not limit RNA-Seq [86, 87]. RNA-Seq has been
shown to improve network characteristics compared to microarrays [88]. The purpose of
this study is to identify both DEGs and networks of co-expressed genes for future study
of initial response to alcohol and risk of alcohol use disorders. While priority will be
given to genes previously identified in alcohol or drug studies, we will use multiple
bioinformatics resources to filter candidate genes depending on differential expression,
sequence differences, genome locations, and co-expression with other candidate

genes.

2.3 Materials and Methods
2.3.1 Statement on animal care

This study was conducted with approval from the Institutional Animal Care and
Use Committee at the University of Colorado Health Sciences Center (Denver,
Colorado) following guidelines established by the Office of Laboratory Animal Welfare.

All possible measures were taken to minimize animal discomfort.
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2.3.2 RNA extraction

Mice were bred and housed at the specific pathogen free facility at the Institute
for Behavioral Genetics (University of Colorado, Boulder) under a 12-hour light/dark
cycle with ad libitum access to food and water. On post-natal day 60, twelve ethanol-
naive adult male mice (n=6/strain) were sacrificed by cervical dislocation and whole
brains were removed. Six brains (n=3/strain) were further dissected to isolate the
striatum. Total RNA, from whole brains (WB, n=6, 3/strain) and striatum (ST, n=6,
3/strain) was extracted using RNeasy midi kits (Qiagen, Valencia, California), and
quantity and quality were determined using a NanoDrop™ spectrophotometer (Thermo
Fisher Scientific, Wilmington, Delaware) and Agilent 2100 BioAnalyzer™ (Agilent
Technologies, Santa Clara, California). Ratios of absorbance at 260nm and 280nm
were shown to be excellent (>1.8). RNA Integrity scores were also shown to be

excellent (>8.0).

2.3.3 Library preparation

The preparation of the cDNA library for RNA-Sequencing was conducted
according to lllumina (San Diego, California) protocol for quantitative RNA Sequencing
on the Genome Analyzer Il (GAIl) platform. Starting with 10 ug total RNA for each RNA
sample, the samples were enriched for poly-A RNA using Sera Mag Magnetic Oligo(dT)
Beads™. The poly-A enriched RNA samples were then fragmented with a 3M NaOAc
solution at 94°C for 5 minutes. The samples were reverse transcribed with random

primers, and end repair was performed with T4 and Klenow DNA polymerase. Double
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stranded lllumina adaptors, with a single thymine overhang, were ligated to the ends of
the cDNA fragments by first adding a single adenine to each 3’ end of the cDNA. Next,
200bp fragments were selected by agarose gel electrophoresis and subsequent gel
extraction with Qiagen Gel Purification kits. Libraries were enriched with 15 cycles of
PCR, and purified using QIAquick PCR Purification kits (Qiagen). Each cDNA library

was run on one GAIll lane sequencing to 36bp.

2.3.4 Alignment
Raw 36 nucleotide reads were trimmed to 28nt due to inherent decrease in
quality score toward the 3’ end [94]. Reads were mapped to the mouse reference

genome (mm9, Ensembl) using TopHat (v1.2.0, http://tophat.cbcb.umd.edu) [95].

TopHat first maps reads using Bowtie (v0.12.7, http://bowtie-bio.sourceforge.net/) [96]

alignment software, which utilizes a Burrows-Wheeler index of the mouse genome

(obtained from Bowtie source webpage, http://bowtie-bio.sourceforge.net/) to rapidly

align short reads. TopHat then uses the resulting read pileup to deduce likely
exon/intron boundaries, and identifies reads aligning across boundaries. Reads with up
to 2 mismatches were allowed, and reads were removed if they aligned to more than 10
places in the genome. Visualization of read pileups was done using the Integrated

Genomics Viewer (IGV v2.1, www.broadinstitute.org/igv) [97].

2.3.5 Transcript assembly, quantification, and differential expression testing
To assemble transcripts and estimate abundance, output from TopHat and the

annotated reference genome (mm9, Ensembl) was analyzed using Cufflinks (v2.0.2,
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http://cufflinks.cbcb.umd.edu/) [98] to construct the minimum number of transcripts that

explain the maximum number of reads. Since the sequenced sample had been enriched
for poly-A mRNA transcripts, a mask file was used to discriminate against alignments in
rRNA, tRNA, and small RNA genes. Once transcripts were assembled, their
abundances were estimated by counting the number of aligned reads contained in the
transcript, and normalizing both to the size of transcript and to the total number of
aligned reads in the sample (fragments per kilobase exon per million mapped
fragments, FPKM). Cuffcompare was then used to compile the set of transcripts from
each group, and each transcript was tested for differential expression using Cuffdiff.
Data for the four groups of three samples (ILS/WB, ILS/ST, ISS/WB, and ISS/ST) were
input into Cuffdiff to calculate each pairwise comparison of gene expression. Cuffdiff
outputs estimates of the Jensen-Shannon divergence of each pair to determine
statistical significance. Due to the exploratory nature of this study, we applied a less
stringent correction for multiple testing, using a False Discovery Rate (FDR=0.1). Since
the Cuffdiff minimum threshold of 1000 reads allows inclusion of intronic reads, reads
aligning to close neighbors, and/or genes contained within an intron, we wanted to
ensure that we only included reads which aligned within the exon structure, therefore
we set a minimum expression level FPKM of at least 1 for genes to be included in
subsequent analyses. Minimum thresholds have been employed in previous studies,
and a minimum FPKM of 1 is consistent [99, 100]. In addition, using the Ensembl
annotation information, we identified expressed genes (FPKM>1) with overlapping
features, i.e. un-translated regions on opposite strands. Visual examination of each of

these cases resulted in removal of 139 genes from further analysis.
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2.3.6 Weighted Gene Co-expression Network Analysis (WGCNA)
Weighted gene co-expression networks were generated using the statistical

program R (v2.11.1, www.r-project.org) and the WGCNA package

(http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/) [101-103]. Cufflinks

output from all twelve samples were used for a single WGCNA. Data were merged
based on unique Ensembl Gene Id, and genes were excluded if no group reached an
average FPKM=1. Briefly, WGCNA first attempted to impute missing data using a k-
nearest neighbors algorithm, then removed genes where imputation was impossible,
and removed genes with no variance in expression values. Next, a signed similarity

matrix was constructed with Equation 2.1.

1+ cor(xi,xj)
ij = 2

21) S

This was converted to a weighted adjacency matrix by a power function

(Equation 2.2), determined by a scale-free topology model (3=4).

_cB
(22) aij = Sl]
Therefore, the adjacency matrix contained values from 0 to 1 for each gene, with 0, 0.5,
and 1; signifying negative correlation (0-0.5), no correlation (0.5), and positive
correlation (0.5-1). Adjacency was converted to topological overlap (Equation 2.3).

Yo Aiy Ay j +

2.3 TOM;; =
( ) Y mln(kl,k) +1-— aij

Genes were clustered based on hierarchical clustering of topological overlap matrix-
based dissimilarity, with the dynamic tree cutting algorithm cutreeDynamic, and the

deepSplit option set to 4. Gene clusters with a minimum of 20 genes were identified
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using a dynamic tree-cutting algorithm, which identified 21 gene clusters (modules).
Similar gene modules were merged using the mergeCloseModules command, with a
dissimilarity threshold of 0.1 (Pearson correlation greater than 0.9). Merging similar
modules resulted in 16 remaining modules used in downstream analysis. Hub genes in
each module were determined by ranking each gene by its module membership,
calculated by WGCNA. Module robustness was tested in two ways. First, average
module adjacencies were calculated and compared to the average adjacencies of
randomly sampled “modules” of the same size. One thousand permutations of randomly
sampled modules were generated. Modules were considered robust if average module
adjacencies were significantly higher than the randomly generated modules. Second,
the intramodular and extramodular connectivity of each module was calculated and
scaled according to module size. Modules with higher scaled intramodular connectivity

were considered robust.

2.3.7 ldentification of relevant co-expression modules

To identify biologically relevant co-expression modules, we took the first principle
component of each module, or module eigengene, using the moduleEigengenes
command from the WGCNA R-package. Each module eigengene is representative of
the gene expression levels for each module, if the module were reduced to a single
gene. An analysis of variance of the resulting module eigengene values was used to
identify module eigengenes different due to strain, region, or an interaction. Significant
p-values were less than 0.05/16=0.003125. Each module was tested for enrichment of

differentially expressed genes using a hypergeometric distribution function in R, and p-
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values were corrected using the p.adjust function in R, utilizing the Benjamini-Hochberg
method [104]. The set of differentially expressed genes had been determined using the
Cufflinks package as described above, and genes were included if significant at

FDR=0.1.

2.3.8 Bioinformatics analyses
The set of differentially expressed genes were tested for functional group over-

representation with the Web-based gene set analysis toolkit (WebGestalt,

http://bioinfo.vanderbilt.edu/webgestalt) [105, 106]. Functional groups based on Gene
Ontology (GO) [107], Kyoto Encyclopedia of Genes and Genomes (KEGG) [108, 109],
and WikiPathways [110, 111]. Over-represented Lore QTL regions were identified using
a hypergeometric distribution function in R. Cis-regulation of differentially expressed and
WGCNA module Lore QTL hub genes was determined using publicly available datasets

at www.genenetwork.org. Expression QTLs were identified using two LxS datasets,

hippocampus (Aug07) and prefrontal cortex (Aug06), as well as two BxD datasets,
striatum (Dec10v2) and whole brain (Nov06). Peak LOD score for expression must
occur within 1T0Mb of gene locus to have been considered cis-regulated. Furthermore,
since multiple datasets were used to interrogate regulation of expression, and most
datasets contained multiple probes for each gene, cis- peaks had to occur in the
majority of all the probes and at least once in each dataset to be considered having
evidence of cis-regulation. MicroRNA binding sites were identified from

www.microrna.org, visualizing all miRNAs with good mirSVR scores. In addition, sets of

differentially expressed genes and co-expression modules were tested for over-
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representation of genes previously identified as being significantly differentially
expressed (at least 3-fold higher) by cell type—neuron, astrocyte, or oligodendrocyte

[112].

2.3.9 Identifying gene sequence differences

Cis-regulated differentially expressed genes in Lore QTL regions, as well as Lore
QTL hub genes from WGCNA modules were visualized in IGV to identify sequence
differences between strains. IGV incorporates annotated SNP information from dbSNP
(build 128), which we used to classify SNPs as known or novel. In addition, genes

sequenced previously [93] were visualized for confirmation of previous results.

2.3.10 Affymetrix microarray analysis

A reanalysis of previously published ILS/ISS striatal Affymetrix microarray results
[73] was conducted as a validation study of the current RNA-seq DEG results. Briefly,
striatal tissue was dissected and total RNA was isolated from 15 naive mice from each
strain. RNA was quantitatively pooled from 3 mice for a total of 5 microarray samples for
each strain. RNA preparation, array hybridization (Affymetrix 430 v2.0), and array
scanning was performed using standard procedures; details can be found in Radcliffe et
al (2006).

Two probe masks were created and implemented to eliminate erroneous probes
from calculations of transcript expression, thereby, increasing accuracy of expression
estimates. Probe sequences were obtained directly from Affymetrix and aligned to the

mouse genome (mm39) using BLAT [113]. First, individual probes that aligned to more
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than one location or did not perfectly align were removed. Second, probes that targeted
regions of the genome harboring SNPs were eliminated because an “expression”
difference detected from these probes was more likely to represent differences in
hybridization efficiency rather than true differences in RNA expression levels [114].
SNPs were identified from the current RNA-seq data using Partek Genomics Suite
(v6.6; St. Louis, MO). We were less concerned about keeping probesets as ensuring
that the retained probesets were of the highest quality possible. A liberal statistical
criterion was thus used to test for significance of the SNPs (LOD>5.0) at the risk of
increased type | errors for SNP identification, but at the same time, increased type |l
errors for probe removal, which we felt was acceptable in this case. Finally, probesets
were required to consist of at least five probes. Following a global scaling procedure
(average signal intensity of each array was set to a default target signal of 500), probe
level normalization was performed using the Robust Multi-array Average method

(RMA). Any RMA value that was less than 0.01 was converted to 0.01.

2.4 Results
2.4.1 lllumina GAIl sequencing

Quantitative RNA Sequencing was completed on an lllumina GAll platform.
Twelve samples total were sequenced, 6 each of whole brain (WB) and striatum (ST).
Three samples from each region were from ILS mice, three from ISS mice. Whole brain
data yielded short-read libraries of 12.7 and 13.1 million reads on average in ILS and

ISS strains respectively. Striatum sequencing produced libraries of 26.9 and 26.5 million
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reads on average in ILS and ISS strains (Table 2.1). Differences in library size are due

to updates in lllumina software occurring between sequencing dates.

2.4.2 Alignment

Approximately 0.02% of low-complexity reads were discarded prior to alignment.
Of the remaining reads, when alignment was constrained to 2 mismatches and 1
alignment, between 72 and 75% of reads aligned to the mouse genome. When
constraints were relaxed to allow for up to 10 alignments, ~89% of reads were aligned.
Over 70,000 (WB) and 80,000 (ST) unique exon-exon boundaries were identified (Table

2.1).

2.4.3 Differential expression

Using a minimum expression threshold of FPKM=1 (in at least one sample) and a false
discovery rate (FDR=0.1), 90 genes were differentially expressed between strains in the
whole brain. In striatum, 336 genes were differentially expressed (Figure 2.1). Fifty-
three genes were identified as differentially expressed in both data sets. Of those, 52
were differentially expressed in the same direction, while only one was higher in one
strain compared to the other depending on region. Eight WB DEGs and 31 ST DEGs
reside in previously identified Lore QTL regions. Noteworthy differences include 14

potassium channel subunit ST DEGs, previously identified candidate genes—ras



Table 2.1 Alignment statistics for each strain and region.

Region Strain # mice Total reads® Reads removed"® Unique hits® Parameter hits* # Exon junctions®
S ILS 3 26927097 + 882830 4923 (0.0184%) 72.45% 88.89% 80214

ISS 3 26466323 + 1020682 5122 (0.0195%) 73.97% 89.63% 83274
Whole ILS 3 12786365 + 1355373 3301 (0.0273%) 74.78% 89.17% 72643
Brain 1SS 3 13130036 + 481554 1853 (0.0141%) 74.37% 88.31% 71220

®Total number of short reads generated per group with standard deviation.
°Low complexity reads are filtered prior to any attempt to align.

°Percent of reads aligned to exactly one region of the genome.

Percent of reads aligned when allowing for up to 10 alignments.

°Number of unique exon boundaries identified.

ve
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Figure 2.1 Differentially expressed genes in whole brain and striatum.
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Figure 2.1 displays the distribution of differentially expressed genes between strain in Whole
Brain (A) and Striatum (B) samples. The x-axis represents the natural log of the fold change,
with positive values corresponding to higher expression in ILS mice, and negative values
corresponding to higher expression in ISS mice. The y-axis represents the negative log of the p-
value of the difference in expression, with more significant differences corresponding to higher
numbers. Open circles (82 WB, 305 ST) represent genes significant at a False Discovery Rate
(FDR) of 0.1. X’s (8 WB, 31 ST) represent genes lying in Lore QTL regions.
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association (RalGDS/AF-6) domain family member 2 (Rassf2) and myosin 1d (Myo1d),
and genes previously implicated in ethanol/drug response phenotypes—protein
phosphatase 1 regulatory unit 1b (Ppp1r1b), opioid peptide precursor genes
prodynorphin (Pdyn) and proenkephalin (Penk), and transthyretin (Ttr).

Of the 336 DEG from the striatum, 297 had one or more valid probesets
represented on the Affymetrix array. These Affymetrix probesets were tested for DE
using one-way ANOVA (uncorrected; one-tail test). Over 90% of the Affymetrix
probesets were expressed in the same direction as the RNA-seq DEG (Figure 2.2). Of
these, 65.7% were DE at p<0.05, 10.8% were DE at a p value between 0.05 and 0.1,

and the remainder were DE at p>0.1 (Figure 2.2).

2.4.4 Over-representation analysis of differentially expressed genes

Utilizing the online resource WebGestalt, GO and KEGG functional group, and
chromosomal region over-representation was determined on the set of 90 differentially
expressed genes in WB, and the 336 differentially expressed genes in ST, with the
reference set of genes based on the total number of genes detected at FPKM=1 and
tested for differential expression (12,678 genes in WB, 12,395 in ST). The results are
shown in Table 2.2. Briefly, the most significant functional groups represented in whole
brain include groups related to ribosomes, extracellular regions, and the major
histocompatibility protein complex (corrected group p-values range from 9.19x10° —
0.0285). In striatum, the most significant functional groups include those related to
ribosomes, potassium channel activity, and signal transduction (corrected group p-

values range from 3.45x10° — 0.0482).
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Figure 2.2 Differentially expressed genes from striatum replicated in microarrays
from Radcliffe et al (2006).

B p<0.05

B 0.05<p<0.10
7 p>0.10

I Opposite direction

Figure 2.2 shows the number of differentially expressed genes from the striatum that
are represented in microarray data from Radcliffe et al (2006) in the following
categories: differentially expressed in same direction at p<0.05 (blue, 195 genes), at
p<0.1 (red, 32 genes) and p>0.1 (green, 43 genes). Twenty seven genes had opposite
relative expression values between datasets (purple).



Table 2.2 Over-representation analyses for DEGs in whole brain and striatum.

Brain Region General category Classification term® Resource” # genes® p-value® Corrected p-value®
Synapse/Signaling Potassium channel activity Gene Ontology 14 9.92E-08 1.01E-05
G-protein coupled receptor Gene Ontology 23 3.01E-06 5.00E-04
signaling pathway
Signal transduction Gene Ontology 68 1.00E-03 2.00E-03
Neuron development Gene Ontology 17 7.15E-05 2.00E-03
Non-odorant G-protein Wikipathways 13 2.00E-04 3.40E-03
coupled receptors
Calcium signaling pathway KEGG 12 2.00E-04 5.60E-03
Dopamine receptor activity Gene Ontology 2 9.00E-04 6.10E-03
Beta-adrenergic receptor Gene Ontology 2 9.00E-04 6.10E-03
kinase activity
Neuroactive ligand-receptor  pag 11 4.00E-04 7.50E-03
interaction
Negative regulation of
Striatum transmembrane receptor Gene Ontology 4  5.00E-04 8.80E-03
protein serine/threonine kinase
signaling pathway
Synapse Gene Ontology 15 4.20E-03 3.65E-02
Opioid peptide activity Gene Ontology 2 8.40E-03 4.18E-02
Gap junction KEGG 7 4.30E-03 4.82E-02
Behavior Response to amphetamine Gene Ontology 4 1.00E-04 2.00E-03
Ribosome Cytoplasmic ribosomal Wikipathways 13 1.22E-07 4.15E-06
proteins
Ribosome KEGG 13 2.61E-07 1.46E-05
Ribosome Gene Ontology 13 1.10E-03 1.41E-02
Cell types Neuron Cahoy et al 96 1.00E-16
Oligodendrocyte Cahoy et al 26 2.50E-03
Lore QTL Lore4 Chr11:79000000- Bennett et al 13 4.10E-02

108000000
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Table 2.2 continued. Over-representation analyses for DEGs in whole brain and striatum.

Brain Region  General category  Classification term® Resource” # genes® p-value’ Corrected p-value®
Ribosome gr)gtc’eﬁ:f‘ssmic ribosomal Wikipathways 6  1.04E-05 7.28E-05
Ribonucleoprotein complex Gene Ontology 8 4.20E-03 2.85E-02
Ribosome KEGG 7 9.19E-07 9.19E-06
Whole Brain Cell membrane Extracellular region Gene Ontology 13 7.00E-04 1.86E-02
Metabolic pathway Retinol metabolism Wikipathways 2 1.17E-02 4.10E-02
Immune MHC protein complex Gene Ontology 2 3.80E-03 2.85E-02

Cell types Astrocyte Cahoy et al 10 2.60E-02

Lore QTL #gg%%gg’ioghr&‘IBOOOOOOO— Bennett et al 2 2.70E-02

®Term used to classify related genes.

®Resource used for classification, Gene Ontology, KEGG, NCBI Entrez Gene, Wikipathways, Cahoy et al (2008), or Bennett et al (2006)/personal
communication with Dr. Bennett.

°Number of differentially expressed genes in each category.

YUncorrected hypergeometric p-value testing whether number of DEGs in each term more than expected.

°Benjamini-Hochberg corrected p-values.

6¢
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Additionally, LoreChr3 on chromosome 3 was enriched with WB DEGs (2 genes,
hypergeometric p=0.027). In striatum, Lore4 on chromosome 11 (13 genes,
hypergeometric p=0.041) was enriched (Table 2). The set of ST DEGs was also
enriched for genes previously shown to be at least 3-fold over-expressed in
oligodendrocytes (26 genes, hypergeometric p=0.0025) and neurons (96 genes,
hypergeometric p<1x107'°). The set of WB DEGs was enriched for astrocyte-related

genes (10 genes, hypergeometric p=0.026).

2.4.5 Weighted gene co-expression network analysis (WGCNA)

A single WGCNA of all 12 samples produced 16 distinct clusters (modules) of
similarly expressed genes. The number of genes in each module ranged from 24 to
8,288. Each gene was assigned to a colored module, and no grey module (representing
non co-expressed genes) was created (Figure 2.3). Module robustness was tested
using two methods. First, in each module, permutation testing confirmed that average
module adjacency was always greater than the mean of 1000 randomly sampled
‘modules” of equal size (all modules p<0.001). Second, all modules were shown to
display higher scaled intramodular connectivity compared to scaled extramodular

connectivity.

2.4.6 WGCNA gene modules enriched with differentially expressed genes
To determine whether each module contained more differentially expressed genes than
expected, the number of observed differentially expressed genes in each module was

compared to the hypergeometric distribution of the expected number of differentially
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expressed genes. Six modules were enriched with striatum DEGs (blue, cyan, green,
greenyellow, magenta, and yellow) (Table 2.3). Of the 336 striatal DEGs, 96 out of 3211
in the blue module were differentially expressed (hypergeometric p=0.025), 8 of 76 in
the cyan module (hypergeometric p=3.67x10), 12 of 123 in the green module
(hypergeometric p=1 .48x10'4), 12 of 171 in the greenyellow module (hypergeometric
p=9.1x10), 9 of 87 in the magenta module (hypergeometric p=2.59x10*), and 19 of
299 in the yellow module (hypergeometric p=2.59x10™*). Four modules were enriched
with whole brain DEGs (darkred, green, magenta, and yellow, Table 3). Of the 90 whole
brain DEGs, 1 of 24 in darkred were differentially expressed (hypergeometric p=0.042),
7 of 123 in green (hypergeometric p=7.1x10'6), 10 of 87 in magenta (hypergeometric
p=1.45x10""%), and 12 of 299 in yellow (hypergeometric p=5.27x10"). All p-values have
been adjusted for multiple corrections according to the Benjamini-Hochberg method,

using the p.adjust function in R.

2.4.7 Module eigengenes associated with strain/region differences

We calculated the 1! principle component (PC) of each module using the
moduleEigengenes command from the WGCNA R-package. The 1% PC, or module
eigengene, represents the sample-specific expression levels if each module were
reduced to a single gene (Hierarchical clustering of module eigengenes is shown in
Figure 2.4). An analysis of variance (ANOVA) of the module eigengenes (Figure 2.5)
resulted in strain differences in four modules: green (F1g=274.6, p=1.78x107), grey60
(F15=46.11, p=1.39x10™), magenta (F1§=258.3, p=2.26x10") and yellow (F1=65.08,

p=4.12x10°). Three modules were different by region—black (F g=78.03, p=2.13x107°),



Figure 2.3 Hierarchical clustering and dynamic tree cut.
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Figure 2.3 shows the results of the hierarchical clustering algorithm and the dynamic tree cut. The y-axis represents a dissimilarity
measurement based on topological overlap, with the more similar topological overlaps corresponding to lower heights. Each branch
of the dendrogram represents one gene. Branches of the dendrogram are “pruned” into modules, corresponding to each color in the
bottom rows. The top color row shows the module grouping after the initial dynamic tree cut (21 modules), while the bottom color row
shows the module grouping after merging similar modules (16 remaining modules).
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Table 2.3. WGCNA Co-expression module characteristics.

Module®

#genes

Module eigen%ene

significant

DEG
enrichment®

Cell type
enrichment®

Top genes®

Lore QTL'

DEG®

black

165

Region (2.13E-05)

Matk
Kcnh3

Psd
Tmem191c
Ppp2r2c

yellow

299

Strain (4.12E-04)

ST (2.60E-04)
WB (5.26E-07)

Ptprn
Eif3k
Glt25d1
Tnip1
Tod52

Lore1

brown

1082

Region (1.11E-03)

Oligodendrocyte
(2.31E-07)

Rps6ka4
Gsn
Rbx1
Ephb1
Icamb

cyan

76

ST (3.66E-04)

Robo3
Kalrn
Kcens1
Cacnb3
Svyti2

Lore2b

ST
ST

greenyellow

171

Strain (6.63E-06)
Region (2.37E-04)

ST (9.10E-04)

6030458C11Rik
Selplg
4933439F 18Rik
4632428N05Rik
Gm10116

ST
ST. WB
ST

magenta

87

Strain (2.26E-07)

ST (2.60E-04)
WB (1.45E-10)

Gm10516

Folh1

Prss50

Rnasel
4930452B06Rik

ST. WB
wWB
wWB
ST. WB

grey60

36

Strain (1.39E-04)

2610002J02Rik
Polr1b

Lama2

Chi3l1

Adi1

Lore2a

darkred

24

WB (4.23E-02)

Rnd?2
Uchl1
Add1
Ncan
Tstd2

Lore4

€€



Table 2.3 continued. WGCNA Co-expression module characteristics.

Module eigen%ene DEG Cell type
Module® #genes significant enrichment® enrichment* Top genes® Lore QTL' DEG®
Tmem181a
_ A530054K11Rik ST. WB
green 123 Strain (1.78E-:07) oL ((17"2%';_%‘2) Conb1 ST
' mem -pS
Trmt6 Lore2a
Rasarp1
; . Pop1r9a
blue 3211 Swain(2.20E-03) o1 5 54E o) Pde7b ST
Region (2.01E-06) Nexn LoreChr3 ST
Ras4 ST
Gm672
- Kndc1 ST
turquoise 8288 Region (1.63E-06) ANs’?rl;g/rt]e(?;gEE?g%) g;:dh 11 ST
: xna
Slc20a2

4Gene co-expression module produced by WGCNA. Modules not significant for eigengene difference, DEG or cell-type enrichment are not shown.
°Results of Analysis of Variance of the first principle component, or module eigengene, of expression values for each module. Each module
eigengene was tested across strain and region.

“Module over-representation of DEGs from either ST or WB.

Module over-representation of genes expressed at least 3-fold higher in specific cell types, neurons, astrocytes, or oligodendrocytes (Cahoy et al,
2008).

°The top five most inter-connected genes in each module.

"Lore QTL region containing corresponding top gene.

Region of differential expression of corresponding hub gene.

ve



Figure 2.4 Hierarchical clustering of module eigengenes.
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Figure 2.4 shows the hierarchical cluster of each module eigengene (rows) and each sample (columns). Eigengene
values range from approximately -0.5 to 0.9, representing sample specific expression levels. Higher expression is denoted
with red colors, lower expression by blue colors.
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Figure 2.5 displays the calculated expression level of module eigengenes, the first principle component of each



module expression pattern. Individual mouse samples (bars) are in groups of 3 for each set of whole brain ILS,
striatum ILS, whole brain ISS and striatum ISS. Only module eigengenes significant for strain or region
differences are shown. Module eigengenes reduce the expression value of all genes in the module to one
value per sample. An ANOVA of each module eigengene reveals modules different by region (A-C), both
region and strain (D-E), and strain (F-1). No module eigengenes had significant strain x region interactions

L€
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brown (F4s=24.62, p=1.1 1x10'3), and turquoise (F15=154.6, p=1 .63x10‘6). Two modules
were different for both strain and region: blue (F15=19.61, p=0.0022, strain; F1=146.43,
p=2.01x107°, region) and greenyellow (F1s=106.8, p=6.63x10®, strain; F;=39.49,
p=2.37x107, region), No module eigengenes had significant strain x region interaction

effects. P-values were considered significant when less than 0.05/16=0.003125.

2.4.8 Cell type over-representation in WGCNA modules

Using genes identified as being significantly over-expressed, by at least 3-fold, in
neurons, astrocytes, or oligodendrocytes, we tested whether modules were enriched for
these sets of genes (Table 3 and Figure 2) [112]. Of the 13,802 genes used in the
WGCNA, 1,099 (neuron), 803 (astrocyte), and 556 (oligodendrocyte) had been
identified as being over-expressed by at least 3-fold in each cell type. The turquoise
module was enriched with 721 neuron genes (hypergeometric p=5.45x10™*) and 522
astrocyte genes (hypergeometric p=0.021). The brown module was enriched with 81
oligodendrocyte genes (hypergeometric p=2.31x107). All p-values were adjusted for the

Benjamini-Hochberg false discovery rate.

2.4.9 Gene module hub gene identification

WGCNA identifies networks of interconnected genes, and it is possible to further
identify the most interconnected genes in each module. The top five most
interconnected genes (hub genes) in the eleven modules either enriched for DEGs or

different across strain or region are listed in Table 3. Seventeen DEGs were identified
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as hub genes, 11 ST DEGs, 2 WB DEGs, and 4 DEGs from both ST and WB. Nine
genes located within Lore QTLs were also hub genes. Of the six modules identified as
different across strain, four had DEGs as hub genes. In the blue module,
phosphodiesterase 7b (Pde7b), nexilin, F-actin binding protein (Nexn), and regulator of
G-protein signaling 4 (Rgs4), all ST DEGs, are hub genes. Three ST DEGs in the
greenyellow module were hub genes, 6030458C11Rik, 4933439F 18Rik, and selectin P
ligand (Selplg). Additionally, three genes in the green module, A530054K11Rik,
coatamer protein complex subunit beta 1 (Copb1), and transmembrane protein 181b
pseudogene (Tmem181b-ps), along with four genes in the magenta module, Gm10516,
folate hydrolase (Folh1), protease, serine 50 (Prss50), and ribonuclease A, family 1

(Rnasel), are differentially expressed in either ST, WB, or both.

2.4.10 Functional group over-representation in WGCNA modules

Co-expression modules were analyzed using WebGestalt to test for functional
group over-representation. In the six modules modules differing by strain, several
signaling pathways were over-represented, including mitogen-activated protein kinase
(MAPK) signaling (blue, yellow), peroxisome proliferator activated protein (PPAR)
signaling (blue, greenyellow), transforming growth factor (TGF) beta signaling (blue,
greenyellow), nuclear factor kB (NF-kB) signaling (blue, magenta, yellow), and toll-like
receptor (TLR) signaling (blue, yellow). Genes involved in regulating the actin
cytoskeleton were enriched in blue, green, and yellow. Complement and coagulation

cascades were enriched in the magenta module. All group p-values range from 1.1 x 10°
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% _0.048 and have been corrected for multiple testing and were significant at <5% false

discovery rate.

2.4.11 Identification of cis-regulated Lore QTL genes
Utilizing publicly accessible databases of recombinant inbred gene expression

data from the online WebQTL tool (www.genenetwork.org), we identified differentially

expressed genes from both striatum and whole brain, as well as hub genes, in Lore
QTL regions that have evidence of cis-regulation. Each hub gene and DEG lying in Lore
QTL regions was interrogated. A total of 11 genes showed evidence of cis-regulation.
Three DEGs, alanine-glyoxylate aminotransferase 2-like 1 (Agxt2/1) located in
LoreChr3, ras association (RalGDS/AF-6) domain family member 2 (Rassf2) located in
Lore2a and keratin 12 (Krt12) located in Lore4 were differentially expressed in both WB
and ST, and show strong evidence of cis-regulation. Six genes differentially expressed
in the ST, Lore1 genes regulated endocrine-specific protein 18 (Resp18) and serine
peptidase inhibitor, clade E, member 2 (SerpineZ2), Lore3 gene centromere protein t
(Cenpt), Lore4 genes Rap guanine nucleotide exchange factor GEF-like 1 (Rapgefl1),
myosin light chain 4 (Myl4), and keratin 9 (Krt9), Loreb all show evidence of cis-
regulation. The WB DEG and LoreChr3 gene DNA-damage-inducible transcript 4-like
(Ddit4l), as well as the grey60 module hub gene, polymerase (RNA) | polypeptide B

(Polr1b) also could be cis-regulated.

2.4.12 Sequence differences
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Of the Lore QTL genes with evidence of cis-regulation, only Resp18 and Agxt2/1
did not have any detectable sequence differences (Table 2.4). Of note, an unnamed
missense single nucleotide polymorphism (SNP) in Serpine2, resulting in an isoleucine
to valine substitution (1I313V) in both ILS and ISS mice was observed. Four missense
SNPs in Cenpt, three of which were unnamed were only observed in ISS. More
unnamed SNPs were observed in Myl4, Polr1b, and Ddit4l. Also notable are the

multitude of polymorphisms in 3’ UTR of Rassf2. According to www.microrna.org, these

polymorphisms could potentially disrupt the binding sites of multiple miRNAs.

Fifteen genes previously reported to contain coding sequence differences were
examined, and each polymorphism was confirmed in twelve of the genes [93]. Low
expression levels in Tgfb1 and Pth2r (named Pthr in original paper) made it impossible
to identify polymorphisms. Znf133 has since been classified as a pseudogene, although
it is expressed in our sample, and several single nucleotide polymorphisms are
confirmed; however, frame shift mutations could not be confirmed. Although there are
numerous sequence differences between the two strains, complete identification and

classification of polymorphisms was beyond the scope of the study.



Table 2.4 Polymorphisms in probable cis-regulated Lore QTL DEGs.

Gene® Polymorphism”® Locus® Feature® Type® Strain’'
rs13469719 Chr1:79,790,995 3'UTR G/IT ILS
unnamed Chr1:79,798,079 Exon 6 missense 1313V Both

Serpine2  rs32034294 Chr1:79,807,313 Exon 4 A/G synonymous Both
rs49368455 Chr1:79,813,448 Exon 3 C/T synonymous Both
rs13469718 Chr1:79,855,118 5'UTR A/G Both
rs29426703 Chr11:98,712,635 3'UTR T/IC ISS

Rapgefl1  rs27026239 Chr11:98,713,562 3'UTR T/IC ISS
rs27026233 Chr11:98,714,256 3'UTR A/G ISS
rs27275027 Chr2:131,818,710 3'UTR A/C ILS
rs47809900 Chr2:131,818,753 3'UTR A/G ILS
unnamed Chr2:131,818,755 3'UTR G/A ILS
unnamed Chr2:131,818,837 3'UTR C/A ILS
unnamed Chr2:131,818,839 3'UTR CIT ILS
unnamed Chr2:131,818,897 3'UTR G/IT ILS
unnamed Chr2:131,818,901 3'UTR G/A ILS
unnamed Chr2:131,818,923 3'UTR T/IC ILS
unnamed Chr2:131,819,139 3'UTR CIT ILS
unnamed Chr2:131,819,142 3'UTR A/G ILS
rs27275025 Chr2:131,819,202 3'UTR T/IC ILS
rs27275024 Chr2:131,819,243 3'UTR C/G ILS
unnamed Chr2:131,819,252 3'UTR T/IC ILS
rs27275023 Chr2:131,819,380 3'UTR G/A ILS
unnamed Chr2:131,819,562 3'UTR G/A ILS
rs27275021 Chr2:131,819,638 3'UTR A/G ILS
rs27275020 Chr2:131,819,688 3'UTR T/IC ILS
rs27275019 Chr2:131,819,740 3'UTR G/C ILS
rs27275018 Chr2:131,819,812 3'UTR A/G ILS
rs27275017 Chr2:131,819,924 3'UTR G/A ILS
unnamed Chr2:131,819,969 3'UTR T/IC ILS
rs27275016 Chr2:131,820,136 3'UTR CIT ILS

Rassf2 rs27275015 Chr2:131,820,205 3'UTR G/A ILS
rs27275014 Chr2:131,820,301 3'UTR G/A ILS
unnamed Chr2:131,820,730 3'UTR T/IC ILS
unnamed Chr2:131,820,740 3'UTR T/IC ILS
rs27275012 Chr2:131,820,772 3'UTR A/G ILS
rs27275011 Chr2:131,820,921 3'UTR G/A ILS
rs27275010 Chr2:131,820,989 3'UTR G/A ILS
unnamed Chr2:131,821,093 3'UTR A/G ILS
rs27275008 Chr2:131,821,250 3'UTR A/G ILS
unnamed Chr2:131,821,376 3'UTR G/A ILS
rs27275004 Chr2:131,821,441 3'UTR A/G ILS
rs27275002 Chr2:131,821,504 3'UTR G/A ILS
unnamed Chr2:131,821,555 3'UTR T/IC ILS
rs27275001 Chr2:131,821,600 3'UTR T/IC ILS
unnamed Chr2:131,821,742 3'UTR T/G ILS
unnamed Chr2:131,821,745 3'UTR T/IC ILS
unnamed Chr2:131,821,949 3'UTR A/G ILS
unnamed Chr2:131,822,010 3'UTR A/G ILS
rs27274999 Chr2:131,822,021 3'UTR A/G ILS
unnamed Chr2:131,822,024 3'UTR G/A ILS
unnamed Chr2:131,822,028 3'UTR G/A ILS
rs27274997 Chr2:131,822,058 3'UTR A/C ILS
rs27274996 Chr2:131,822,132 Exon 11 G/A synonymous ILS
rs27274994 Chr2:131,822,183 Exon 11 A/G synonymous ILS

42
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Table 2.4 continued. Polymorphisms in probable cis-regulated Lore QTL DEGs.

Gene Polymorphism Locus Feature Type Strain
rs29426930 Chr11:104,438,799 Exon 1 missense T12A ILS

Myl4 unnamed Chr11:104,445,898 Exon 6 A/C synonymous ILS
unnamed Chr11:104,445,919 Exon 6 T/C synonymous ILS
rs51628282 Chr11:99277014 3'UTR T/IC ISS

Krt12 rs27088547 Chr11:99277037 3'UTR G/A ISS
rs27088526 Chr11:99278249 Exon 7 A/G synonymous ISS
rs27088536 Chr11:99277370 Exon 8 G/A synonymous ISS
rs27088361 Chr11:100052809 Exon 2 G/A synonymous ILS

Krt9 rs27088362 Chr11:100052788 Exon 2 G/A synonymous ILS
rs52613970 Chr11:100049988 Exon 7 missense Y631H ILS
rs45674576 Chr2:128928830 Exon 2 C/T synonymous ISS
unnamed Chr2:128939427 Exon 9 T/G synonymous ISS

Polrib  rs27448743 Chr2:128944898 Exon 12 C/T synonymous ISS
rs27448705 Chr2:128951629 Exon 15 missense M1069V ISS
rs27448701 Chr2:128951933 3'UTR C/IT ISS
unnamed Chr3:137287209 Exon 2 T/G synonymous ILS
rs50093517 Chr3:137290001 3'UTR CcIT ISS
rs48364418 Chr3:137290393 3'UTR G/A Both
unnamed Chr3:137290499 3'UTR CIT ILS
rs51973625 Chr3:137290781 3'UTR CIT ISS

Dditd] rs46955320 Chr3:137290842 3'UTR A/G Both
rs50360881 Chr3:137290953 3'UTR T/IC Both
rs31235381 Chr3:137290990 3'UTR C/G Both
rs30309919 Chr3:137291052 3'UTR AT Both
rs30112060 Chr3:137291124 3'UTR T/IA Both
rs31345253 Chr3:137291128 3'UTR TIC Both
rs31048748 Chr3:137291212 3'UTR T/A Both
unnamed Chr8:108375915 5'UTR G/A ISS
unnamed Chr8:108372676 Exon 7 missense D232E ISS
unnamed Chr8:108370923 Exon 8 missense M292V ISS

Cenpt  unnamed Chr8:108370885 Exon 8 C/G synonymous ISS
unnamed Chr8:108369315 Exon 11 missense E388D ISS
unnamed Chr8:108369303 Exon 11 A/G synonymous ISS
rs48755141 Chr8:108369029 Exon 12 missense S457A ISS

®Gene in Lore QTL region with evidence of cis-regulation.

°dbSNP ID if previously annotated.

‘Chromosome and base position based on mouse genome build 9 (ensembl.org).

Gene feature where the polymorphism is found (intron regions were not included due to low coverage as
a consequence of poly-A enrichment).

*Type of polymorphism/resulting amino acid substitution.

'Strain that is different from the reference genome.
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2.5 Discussion

Loss of righting reflex in response to acute ethanol has been well studied in the
ILS and ISS strains, and respective QTLs have been identified and replicated using
recombinant panels, both LSxSS and LxS [52-56, 72, 92]. The goal of this study was to
identify baseline differences in gene expression and co-expression between these two
selected inbred strains, which will provide insight into the underlying biology that
contributes to their differential sensitivity to ethanol. While previous studies have
identified candidate genes based on expression differences, this study uses multiple
methods, differential expression, Weighted Gene Co-expression Network Analysis,
identification of cis-regulated Lore QTL genes, and identification of sequence
differences in coding and un-translated regions. The use of RNA-Seq technology, as
opposed to previous use of microarray, provides higher dynamic range, lower
background noise, improved network characteristics, and the elimination of hybridization
issues due to polymorphisms and annotation [86-88]. In this study, 90 genes in WB and
336 in ST samples were differentially expressed. We prioritize genes that are located in
previously identified Lore QTL regions for future study. Eight WB and 31 ST DEGs are
located in Lore QTL regions. While the total number of QTL genes is no different than
chance, two Lore QTL regions were enriched for DEGs, LoreChr3 on chromosome 3
was enriched with WB DEGs and Lore4 on chromosome 11 was enriched for ST DEGs.
This could potentially signify regional differences in gene expression, and future
transcriptome examinations may identify regions enriched with other Lore QTL genes.

Two previously identified candidate genes [72], Rassf2 (ras association

(RalGDS/AF-6) domain family member 2), located in Lore2a, and Myo1d (Lore4 gene
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myosin 1d) were identified by our analysis as differentially expressed in both ST and
WB. MacLaren sequenced the promoter region of Rassf2, finding several
polymorphisms [57]. One advantage of RNA-Seq is the acquisition of the genetic
sequence of exons and untranslated regions (UTRs). Examination of the 3’ UTR of
Rassf2 shows distinct genotypes. ISS mice have the C57BI/6J haplotype, while the ILS
3’ UTR shows many SNPs, several unnamed in dbSNP. Since the 3’ UTR is implicated
in post-transcriptional regulation, including microRNA binding sites, the polymorphisms
could account for some of the previously observed differences in expression. The
observed ILS polymorphisms disrupt the consensus sequences for binding sites of 9

miRNAs (www.microrna.org). We were unable to detect expression levels for these

miRNAs, so whether they affect expression levels of Rassf2 remains to be seen. We
present evidence that several genes, including Rassf2, are cis-regulated, meaning that
polymorphisms in gene regions between the two strains could contribute to differences
in gene expression. If these are cis-regulated, it is likely that differences in gene
expression could be explained by genetic polymorphisms in either coding regions or
UTRs. Furthermore, while synonymous polymorphisms in exons may not affect protein
function, they are indicative of distinct haplotypes between strains and of possible
polymorphisms in intergenic or intronic regions that could affect expression. It is not
clear how Rassf2 and Myo1d could influence ethanol-related behavior. Rassf2 has been
characterized as a pro-apoptotic gene, residing in the nucleus and binding K-Ras,
inducing apoptosis [115]. Differences could also arise from the role of Myo1d in the
development of the nervous system [116]. Taken together, it is possible that strain

specific neural development could lead to phenotypic differences.
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Located in LoreZ2a is the DEG prodynorphin, Pdyn. More highly expressed in ST
of ILS mice, Pdyn is differentially expressed in other animal models of ethanol
behaviors. Consistent with our findings, low drinking ANA rats have increased levels of
striatal Pdyn compared to higher drinking AA rats [117]. Another opioid precursor gene,
proenkephalin, Penk, is also more highly expressed in the ST of ILS mice. While the
difference between strains in opioid signaling has not been explored in depth, it has
been shown that SS and LS mice differ in response to morphine injection and
withdrawal [118]. Another QTL gene, in Lore4, Ppp1r1b, which codes for protein
phosphatase 1 regulatory unit 1b, also known as DARPP-32, has been implicated in the
neurobiological response to many drugs of abuse [119]. Ppp1r1b is expressed in striatal
medium spiny neurons (MSNs), and plays a large role in the cellular response to
dopaminergic signaling.

In addition to genes from Lore QTL regions, transthyretin (Ttr) on chromosome
19 was also identified in both samples as being differentially expressed. Gamma-protein
kinase C (PKC-y) null mutant mice and their wild-types have similar ethanol-related
behaviors as the ISS and ILS mice, and these differences were correlated with baseline
Ttr expression, which is higher in mutant mice [44]. Similar to the ISS mice, PKC-y null
mutants are less sensitive to acute ethanol than their wild-type littermates [120], and
voluntarily consume more ethanol [121]. Likewise, baseline expression of Ttrin ISS
mice is higher relative to ILS mice. While it is unknown whether a chronic ethanol diet
would increase expression of Ttrin the ISS mice, as in the PKC-y null mutants, future
confirmation would further implicate Ttr in ethanol behavior. Also of interest are the 14

potassium channel subunits differentially expressed in the striatum; as potassium



47

channels have been implicated in responses to ethanol [122-125] and the cumulative
effect of differential expression of all of these channels could contribute to the difference
in ethanol sensitivity between the strains.

While RNA-Seq is thought to offer several advantages over microarrays, it still
suffers a problem inherent to any massively parallel method: finding the appropriate
statistical balance between type | and type |l errors. Validation by an independent
method is one approach and here we have used microarray data to validate the RNA-
Seq DEGs. The results are similar, perhaps slightly better, to a comprehensive
comparison of RNA-Seq to hybridization microarrays conducted by Bottomly et al.
(2011); i.e., they found that 48.4% of genotype-dependent RNA-Seq DEG were also DE
on the Affymetrix platform and we found that this was true for 65.7% of our RNA-Seq
DEG, although our statistical criteria was somewhat less stringent. In addition to the
possibility of statistical errors, reasons for less than perfect consistency between RNA-
Seq and microarrays probably include the broader dynamic range of RNA-Seq and,
more importantly, the likelihood of genotype effects on transcript isoform abundance
meaning for microarrays, quantification of a given transcript is dependent on probeset
location [126]. Indeed, we have seen hints of evidence for strain-by-isoform interactions
for some of the microarray probesets that were not significant, although this particular
RNA-Seq dataset is not ideal for a comprehensive splice variant analysis.

Using WebGestalt to identify over-represented groups in our sets of DEGs, we
identified several distinct groups of differentially regulated gene systems. In ST, there
were many DEGs involved in signal transduction and synaptic signaling. In addition to

functional groups, we identified cell type specific (neurons, astrocytes, and
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oligodendrocytes) genes over-represented in each set of DEGs. The set of ST DEGs
was enriched for neuron and oligodendrocyte genes. Specifically, the set of 127 DEGs
up-regulated in ILS mice was only enriched for neuronal genes, while the set of 209
DEGs up-regulated in ISS mice was enriched for all three types of cells. This suggests
that while there are differences in neuronal processes between the two strains, there
may be more important differences in glial related processes. This holds up when
looking at WB DEGs, as the set of WB DEGs is enriched only for astrocyte related
genes.

To further characterize strain specific differences in gene expression, we
employed the agnostic network analysis tool WGCNA, which clustered genes based on
topological overlap dissimilarity. The results of the WGCNA display its usefulness at
analyzing large expression datasets. Gene modules were enriched for cell specific
genes, and module eigengenes highlight strain- and region-specific differences.
However, there is a limitation on the interpretations due to the small sample size in our
study, even though each module passed strict robustness testing. No hub genes were
immediately identifiable as strong candidate genes, however it is important to
acknowledge that the WGCNA identifies networks of related genes, and the effect of
any single gene could be minimal. It differs in this way from the differential expression
analysis, where the genes with the largest differences in expression, and possibly
having larger effects, are identified. In this analysis, we were less confident in some of
the smaller modules where some samples appeared to be outliers, but more confident

of modules showing consistent expression levels within groups (either regional or
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strain). These patterns of expression are striking, and show that genes can be
consistently co-expressed at different levels depending on region or strain.

Of the 16 gene co-expression networks (modules), three were enriched for ST
DEGs, one for WB DEGs, and three were enriched for both ST and WB DEGs. This
made it possible to identify not only DEGs, but also gene networks in which those DEGs
reside. Functional group over-representation of DEG-enriched modules revealed many
genes related to neuronal structure and function, as well as transcriptional regulation.
Interestingly, these modules were enriched for several signaling pathways, including
MAP Kinase signaling pathways, previously shown to regulate ethanol behaviors [127].

One module, turquoise, was enriched with neuron genes. Since this module
eigengene differed across region, and not strain, this module is most likely composed of
neuronal genes differentially expressed due to regional differences, and given that this
is the largest module, most of the co-expression differences can likely be due to brain
regional differences. Of the six modules different across strain, five were enriched for
ST DEGs, while three of those were also enriched for WB DEGs.

Utilizing RNA-Seq technology to identify gene expression differences and gene
co-expression networks has provided insight into the differences between ILS and ISS
mice. Genes previously identified as candidates from expression/QTL studies, Rassf2,
Myo1d, and drug response studies, Pdyn, Penk, Ppp1r1b, and Ttr are again implicated.
While these differences exist, this study is not designed to specify causal differences.
Therefore, it is important for future research to focus on manipulation, genetic or
pharmacological, of genes and gene networks to further elucidate the differences

between these strains, in order to understand the cause of ethanol-related behaviors.
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3.1 Abstract

The mesolimbic dopaminergic pathway has been implicated in many rewarding
behaviors, including the consumption of ethanol and voluntary exercise. It has become
apparent that different rewarding stimuli activate this pathway, and therefore it is
possible for these behaviors to influence each other, i.e. hedonic substitution. Using
adult female C57BL/6lbg mice, we demonstrate that voluntary access to a running
wheel substantially reduces the consumption and preference of ethanol. Furthermore,
we examined gene expression of several genes involved in regulating the mesolimbic
dopaminergic pathway, which we hypothesized to be the focal point of hedonic
substitution. In the striatum, we observed a reduction in mMRNA expression of Drd7a due
to exercise. Hippocampal Bdnf mRNA increased in response to exercise and decreased
in response to ethanol. Furthermore, there was an interaction effect of exercise and
ethanol on the expression of Slc718aZ2 in the midbrain. These data suggest an important
role for this pathway, and especially for Bdnf and Slc18aZ2 in regulating hedonic

substitution.
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3.2 Introduction

Abuse of alcohol is a leading cause of preventable disease and death worldwide,
affecting an estimated 76.3 million people [1]. Extensive research is being conducted on
the development of alcohol use disorders, and a number of candidate genes have
shown association with alcohol use [128]. Ethanol interacts with a variety of subcellular
components comprising many of the known neurotransmitter systems including the
mesolimbic dopaminergic pathway [129-131]. It has been proposed that a common
pathway exists for addiction, and cross-tolerance between drugs of abuse, as well as
co-abuse has been observed [131].

McMillan (1978) first reported the behavioral interaction of exercise and ethanol
[59, 132]. Since then, several groups have shown that access to exercise can influence
voluntary ethanol intake [60-62]. Recent work in our laboratory supported the
hypothesis that wheel-running may influence the reinforcing effects of ethanol [63]. This
concept of hedonic substitution has been implemented in exercise intervention
programs for humans consuming high quantities of ethanol [65-68].

While there is strong evidence that voluntary exercise can influence consumption
of ethanol, the mechanisms responsible for this interaction remain unclear. The
mesolimbic dopaminergic (DA) pathway has been implicated in both ethanol
consumption and exercise behaviors [83, 129]. Both exercise and ethanol consumption
acutely induce DA release in the striatum [83, 133-135]. The mesolimbic DA pathway is
composed of DA neurons originating in sub-regions of the midbrain: substantia nigra
(SN) and ventral tegmental area (VTA). These neurons project to the striatum—

caudate-putamen and nucleus accumbens—as well as to regions of the frontal cortex.
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Also important is the hippocampus, which modulates the role of the striatum based on
contextual learning. We examine the gene expression of six genes important in
regulating this pathway, and previously associated with exercise and/or ethanol
consumption. Table 3.1 provides a summary of the expression patterns, functions,
reasons for inclusion in the study, and references for these genes.

This study was designed with two aims. First we wanted to replicate the
phenomenon of hedonic substitution, and second to investigate mesolimbic DA pathway
gene expression plasticity in response to access to ethanol and wheel running that may

account for some of the behavioral differences.

3.3 Materials and Methods
3.3.1 Statement on animal care

This study was conducted with approval from the Institutional Animal Care and
Use Committee at the University of Colorado, Boulder (Boulder, Colorado) following
guidelines established by the Office of Laboratory Animal Welfare. All possible

measures were taken to minimize animal discomfort.

3.3.2 Animals

Animals were bred and housed at the Specific Pathogen Free facility, operated
by the Institute for Behavioral Genetics at the University of Colorado, Boulder (Boulder,
Colorado). Female C57BL/61bg mice aged 60-90 days were used for these
experiments. Animals were individually housed in polycarbonate cages (30.3 x 20.6 x

26 cm) on a 12-hour light/dark cycle with lights on at 7:00 AM. Room temperature was



Table 3.1 List of genes assayed for expression, and relevant details.
Gene name Translated protein  Brain expression® Function® Reason for inclusion® References
Midbrain (ventral A .
Rate-limiting enzyme in
Tyrosine iEgfein el E1EE) production of dopamine Implicated in exercise
Th substantia nigra), . L . [82, 136-144]
hydroxylase hydroxylizes tyrosine into and ethanol behaviors
and Pons (locus
L-DOPA
coerulus)
Midbrain (ventral . . SNPs associated with
. tegmental area, Packaging of cytosolic .
Vesicular o 0 ; ethanol behavior, and
: substantia nigra, dopamine into synaptic : .
Sic18a2 monoamine . . i with locomotor behavior.  [43, 145-148]
raphe nuclei) and vesicles to facilitate . :
transporter 2 Knockout mice (+/-) drink
Pons (locus release
more.
coerulus)
Dopamine active IRl (el Reuptake of dopamine SNPs associated with =8, e
Sleed transporter teganiz] £iee from the synapse ethanol behavior s, dag
P substantia nigra) ynap 152]
G-protein coupled [39-41, 82
Dopamine receptor  Midbrain, striatum, receptor - signaling Implicated in exercise e
Drd2 : 83, 142, 153-
D2 and cortex cascade decreases and ethanol behaviors 155]
adenylyl cyclase
Striatum, cortex, G-protein coupled
Drd1a Dopamine receptor olfactory receptor - signaling Implicated in exercise [82, 142,
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maintained between 23 and 24.5°C. All mice had ad libitum access to standard chow
(Harlan Laboratories, Indianapolis, Indiana) and water. Animals were monitored daily
and body weights were recorded every 4 days. Food was weighed every 4 days, on the

same schedule as body weights.

3.3.3 Behavioral paradigm

Mice were tested using a previously established paradigm that lead to
differences in ethanol consumption when given access to a free running wheel [63]. The
four conditions (n=15/condition) included cages with 1) water only, 2) 1 bottle of water
and 1 bottle of ethanol (two-bottle choice), 3) water and ethanol two-bottle choice with a
running wheel, and 4) water only with a running wheel. The protocol lasted 16 days.
Mice housed with a running wheel (diameter 24.2cm, Harvard Apparatus, Holliston,
Massachusetts) had 24-hour access to the wheel for all 16 days. Wheel revolutions
were counted using a magnet and magnetic switch (Harvard Apparatus) and recorded
daily. Mice housed with ethanol two-bottle choice progressed as follows: water only for
days 1-3, 3% ethanol (v/v) for days 4-5, 7% ethanol for days 6-7, and 10% ethanol for
days 8-16 (Table 3.2). The side of the cage the bottles were on was alternated every
two days. Individual consumption of water and ethanol (if applicable) were recorded
daily. On day 16 during the second hour of the light cycle, mice were sacrificed by
cervical dislocation. Groups of 5 mice were staggered to start the protocol every 2 days
so as to minimize the variation in tissue collection times on day 16. Daily measurements
of wheel revolutions (1 day each for 4 mice), water (1 day for 1 mouse) and ethanol

consumption (1 day each for four mice) are missing due to sporadic equipment failure
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Table 3.2 2x2 Behavioral paradigm for wheel running exposure and ethanol consumption.
\ Days 1-3 \ Days 4-5 \ Days 6-7 \ Days 8-16 \

. Water only | 3% ethanol & water | 7% ethanol & water | 10% ethanol & water
Running

Water only | 3% ethanol & water | 7% ethanol & water | 10% ethanol & water
Sedentary
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(i.e. switches detecting wheel magnets could be bumped out of alignment or fluid tubes
could leak if stopper seal was not secured tight enough). These missing values were

imputed as the average of the preceding and following days.

3.3.4 Saccharin control group

In addition, 10 mice were housed with two-bottle choice water and saccharin in
two cage conditions (n=5/condition), either with or without wheel in cages described
above. After water only for days 1-3, a 0.033% saccharin solution was added for days 4-
16 [164, 165]. This concentration was sufficient to produce approximately 95%
preference in two-bottle choice. The side of the cage the bottles were on was alternated

every two days and individual consumption of water and saccharin were recorded daily.

3.3.5 Quantitative real-time polymerase chain reaction

Whole brains were removed and dissected for midbrain, striatum, hippocampus,
and cortex and stored in RNALater™ (Ambion, Foster City, California) at -20°C. Total
RNA from dissected regions was extracted using EZNA Total RNA Kit || (Omega Bio-
tek, Norcross, Georgia). Quality and quantity of RNA were determined by gel
electrophoresis and NanoDrop™ spectrophotometer (ThermoFisher Scientific,
Waltham, Massachusetts). A260/A280 was determined to be excellent in each case
(>1.8). Total mMRNA was reverse transcribed using the High Capacity cDNA Reverse
Transcription kit (Applied Biosystems, Foster City, California). For real-time quantitative
PCR, we used Tagman™ primers and probes (Applied Biosystems) for the following

genes: Bdnf (Mm04230607_s1), Drd1a (Mm01353211_m1), Drd2 (Mm00438545_m1),
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Th (Mm00447557_m1), Slc6a3 (Mm00438388_m1), and Slc18a2 (Mm00553058_m1).
Endogenous genes Gapdh (4352339E) and Actnb (4352341E) were used for control.
Real-time quantitative PCRs were performed using an ABI 7900HT (Applied
Biosystems) running Sequence Detection Systems software (SDS v2.3, Applied

Biosystems). All target genes were normalized using the 222! method [166, 167].

3.3.6 in situ hybridization

Whole brains were removed and flash frozen in isopentane on dry ice and stored
at -70°C. Brains were sectioned coronally into 14 micron slices using a cryostat (Leica,
Wetzlar, Germany), thaw mounted on poly-L-lysine coated glass slides (ThermoFisher
Scientific) and stored at -70°C. We used previously established method for in situ
hybridization of radiolabeled antisense riboprobes [168]. Briefly, probes were
transcribed in vitro with 3**S-UTP (PerkinElmer, Waltham, Massachusetts) as the sole
source of UTP. Constructs for each gene, cloned into pT3T7 transcription vectors, were
acquired from ThermoFisher Scientific: Drd1a — EMM1032-613237 (600bp), Bdnf —
EMM1032-607279 (800bp), Slc18a2 — EMM1032-591860 (1500bp). All vectors were
linearized with EcoRI (New England Biolabs, Ipswich, Massachusetts) and transcribed
using T3 RNA polymerase (Promega, Fitchburg, Wisconsin). Hybridizations were
performed within 1 day of transcription.

On the day of hybridization, after warming to room temperature, tissue was first
fixed with a 4% paraformaldehyde solution (15min), rinsed with 1x phosphate buffered
saline (3x5min), then rinsed with 0.1M TEA (2min). Next the tissue was acetylated with

0.25% acetic anhydride in 0.1M TEA (15min) and then dehydrated in graded ethanol
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solutions of 50%, 70%, 95%, 100% and 100% (3min each). Radiolabeled riboprobes
were diluted in a hybridization buffer containing 50% formamide, 10% dextran sulfate,
300mM NaCl, 10mM Tris, 1mM EDTA, and 1x Denhardt’s solution, and ~100uL were
pipetted onto a 24mm x 60mm coverslip, then placed upside down covering tissue.
Coverslips were sealed to slides using DPX mountant (Sigma-Aldrich, St. Louis,
Missouri). Tissue sections were hybridized with riboprobe solution for 16 hours at 60°C.
After hybridization, tissue section slides were washed with 4x saline sodium citrate
(SSC) before being treated with RNase A (20pg/mL) for 1 hour at 37°C. Then tissue
sections were desalted by incubation in graded SSC solutions (all with 1mM DTT) to a
final stringency of 0.1xSSC at 65°C. Finally, sections were dehydrated with graded
ethanol solutions, dried, and exposed to PhosphoScreens (Packard, Meriden,
Connecticut) for at least 1 week. Slides for every mouse for each riboprobe were
assayed at the same time to allow for direct comparisons between mice.

In order to relate the intensity of each screen image to a relative measure of
tissue radioactivity, tissue standards containing known amounts of **S were exposed
along with tissue on each film. Tissue standards were prepared by mixing measured
amounts of isotope with a homogenate prepared from whole brain. Actual
concentrations of radioactivity were measured in weighted aliquots. The **S standards
contained from 0 to 25 nCi/mg. Ten standards were used for each isotope, and were
used to construct standard curves relating optical density and a measure of radioactivity
(counts per minute per mg).

Exposed PhosphoScreens were imaged with a Cyclone Phospholmage reader

(Packard), and image .tif files (600 dpi) were imported into the OptiQuant analysis suite
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(Packard). Slides were de-identified and brain regions of interest were circled as well as
background. At least 3, and as many as 20 measurements were taken from each

animal, and the values obtained were averaged for each animal.

3.3.7 Statistical analyses

A one-way repeated measures ANOVA was used to identify group differences in
ethanol consumption (runners vs. non-runners). A one-way repeated measures
ANOVA was used to identify group differences in daily wheel revolutions (drinkers vs.
non-drinkers). A two-way repeated measures ANOVA was used to determine group
differences in body weight (2x2 drinkers vs. non-drinkers and runners vs. non-runners).
For repeated measures ANOVAs, missing daily values were imputed from the average
of the previous and following days’ values. A two-way ANOVA was used to determine
group differences due to cage and fluid for food consumption data and for gene
expression data (2x2, drinkers vs. non-drinkers and runners vs. non-runners). Average
AC; values for each mouse were used for RT-PCR. Average CPM/mg values for each
mouse were used for in situ hybridization data. Repeated measures ANOVAs were

calculated using SPSS v20, two-way ANOVAs were calculated using R v2.15.2 (www.r-

project.org).

3.4 Results
3.4.1 Mice
Body weights increased over the course of 16 days (Figure 3.1, F3168=29.32,

p<0.001) but there were no main effects of ethanol or running. There was a slight
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difference in the amount of food consumed, with significant main effects observed for
both ethanol and a running wheel (Figure 3.2). Mice that had access to ethanol
consumed less food than mice that only had access to water (3.52 + 0.09 g/day vs. 3.85
+ 0.08 g/day, respectively; F15=8.393, p<0.01). Mice with access to a running wheel
consumed more food than mice housed in empty cage (3.83 + 0.09 g/day vs. 3.54 +

0.08 g/day, respectively, F15=6.811, p<0.05).

3.4.2 Voluntary running and ethanol consumption

As expected, mice ran a considerable distance each day, averaging 7144
revolutions per day, equaling 5431 meters per day. There was a slight increase in daily
revolutions over the course of 16 days (Figure 3.3, F15420=2.8, p<0.001) There was no
significant difference in number of revolutions between mice with access to water only
and mice with access to ethanol.

Mice with access to running wheel significantly consumed (g/kg; F12s=11.6,
p<0.01) and preferred (F128=30.7, p<0.001) less ethanol than mice housed in an empty

cage over the course of 16 days (Figure 3.4, a and b).

3.4.4 Saccharin control group
In the ten mice in the saccharin control experiment there was no significant
change in body weight over the 16 days, nor was there any effect of access to a running

wheel (Figure 3.5) . Access to a running wheel did not significantly change saccharin
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Figure 3.1 Body weight over the time course of the experiment.

23— -o- Sedentary Water
-¢ Sedentary Alcohol

S 224 -o- Running Water
= =%~ Running Alcohol
e
o 211
=
>, 20-
©
@]
el [E

18

Weight 1 Weight 2 Weight 3 Weight 4

Figure 3.1 shows the average body weight (g) of each group of mice, the two running
groups are red lines, the two ethanol consuming groups are the X's. Body weight for all
groups increased over the course of the experiment (F3 166=29.32, p<0.001), and there
were no significant differences between groups. Means + SEM are reported.
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Figure 3.2 Average daily food consumption.
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Figure 3.2 shows the average daily food consumption (g) for each group of mice. The
red line indicates the mice were running, the black line indicates the mice were
sedentary. Two-way ANOVA shows that running mice consumed more food
(F156=6.811, p<0.05) and that ethanol consuming mice ate less food (F156=8.393,
p<0.01). Means + SEM are reported.
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Figure 3.3 Average daily wheel revolutions.
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Figure 3.3 shows average daily running wheel revolutions for mice with water only and
mice with two-bottle choice ethanol over 16 days. Average number of revolutions for
water only mice (black line, n=15, 7486 + 590 revolutions/day) and for ethanol-drinking
mice (red line, n=15, 6798 * 584 revolutions/day). Mean + SEM are reported.
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Figure 3.4 Average daily ethanol consumption.
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Figure 3.4 shows average daily ethanol consumption for sedentary mice (black line)
and mice with access to a running wheel (red line) over 16 days. Ethanol consumption
is shown as average amount of ethanol consumed per body weight (A) and as an
ethanol preference ratio (B) defined as volume of ethanol fluid consumed divided by
total fluid consumed. Ethanol concentrations (v/v) for each day are reported on the x-
axis. Mean £+ SEM are reported.



66

Figure 3.5 Average daily saccharin consumption.
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Figure 3.5 shows average daily saccharin consumption for sedentary mice (black line)
and mice with access to a running wheel (red line) over 16 days. Saccharin
consumption is shown as average amount of saccharin consumed per body weight (A)
and as a saccharin preference ratio (B) defined as volume of saccharin fluid consumed
divided by total fluid consumed. A 0.033% (v/v) saccharin solution was used for each
day 4-16. Mean + SEM are reported.
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consumption as measured by milligrams saccharin per kilogram body weight or as a

saccharin preference ratio.

3.4.5 Quantitative real-time polymerase chain reaction

There were no significant differences in gene expression between groups for Th,
Drd2, and Slc6a3 (Figure 3.6, a-e). In addition, there were no differences in gene
expression for Drd1a when measured in the cortex (Figure 3.6h). In the midbrain, there
was a main effect of ethanol availability on expression of Slc18a2 (Figure 3.6f,
F116=18.9, p<0.001), ethanol-consuming mice showing increased expression compared
to the group that only had access to water. In the striatum, there was a main effect of
ethanol availability on the expression of Drd1a (Figure 3.6g, F1,16=6.9, p<0.05), with
ethanol-consuming mice showing decreased expression levels. In the hippocampus,
there were significant main effects of running wheel availability (F1 17=6.3, p<0.05) and
ethanol availability (F1,17=5.5, p<0.05) on Bdnf expression (Figure 3.6i). Running mice
had increased expression of Bdnf, while ethanol-drinking mice had decreased

expression.

3.4.6 in situ hybridization

There were different expression patterns for Slc18a2 and Drd1a when measured
using in situ hybridization. Contrary to expression levels detected through qRT-PCR,
there was an ethanol x running wheel interaction effect on the expression of Sic78a2 in
both midbrain sub-regions: the substantia nigra (F1,1s=5.2, p<0.05) and the ventral

tegmental area (F1,18=5.6, p<0.05, Figures 3.7, a and b). In empty cages, ethanol-



Figure 3.6 Relative gene expression as measured by qRT-PCR.
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Figure 3.6 shows relative mRNA expression levels as measured by quantitative real-time PCR for (A) Th (midbrain), (B)
Slc6a3 (midbrain), (C-E) Drd2 (midbrain, striatum, and cortex), (F) Slc18a2 (midbrain), (G-H) , Drd1a (striatum and
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cortex), and (l) Bdnf (hippocampus). Main effects due to availability of ethanol were observed in midbrain Slc718a2, striatal
Drd1a, and hippocampal Bdnf. Main effects due to availability of a running wheel were observed in hippocampal Bdnf.
There were no significant interaction effects. Expression levels are shown as mean fold change + SEM relative to
sedentary/water only group for each gene.
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Figure 3.7 Relative gene expression as measured by in situ hybridization.
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Figure 3.7 shows results of in situ hybridization showing mRNA expression levels for Slc78a2 in midbrain subregions: (A) <

substantia nigra (SN) and (B) ventral tegmental area (VTA), Drd1a in (C) striatum (ST), and (D) Bdnf in hippocampus



(HC). Significant interaction effects were observed in both midbrain regions for Sic18a2. Significant main effects due to
availability of running wheel were observed in striatal Drd7a and in hippocampal Bdnf. A main effect due to availability of
ethanol was observed in hippocampal Bdnf. Values shown (mean £ SEM) have been converted to counts per mi