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Abstract 

Hyperspectral instruments expand the spectral dimension of remote sensing measurements 

by collecting data in hundreds of contiguous wavelength channels. Spectrally resolved 

measurements can be used to derive science products for a diverse range of fields such as 

atmospheric science, geology, oceanography, ecology, climate monitoring, and agricultural 

science, to name a few. The spectral information collected by hyperspectral instruments enables 

more accurate retrievals of physical properties and detection of temporal changes. These 

advantages have led to an increasing number of active and planned hyperspectral instruments. This 

thesis describes methods for attributing hyperspectral radiation observations to physical sources. 

We developed, validated and characterized improvements to a hyperspectral instrument, 

the Solar Spectral Irradiance Monitor (SSIM), built at the University of Colorado Boulder’s 

Laboratory for Atmospheric and Space Physics. Contributions include the characterization of the 

optics’ angular response, testing of an optics stabilizing platform and the development and testing 

of a spectrometer thermal control system. This instrument was then deployed on an aircraft for a 

field study with the National Ecological Observatory Network (NEON). SSIM measurements of 

upwelling and downwelling irradiance were used in conjunction with NEON’s Imaging 

Spectrometer to enable atmospheric correction of imagery collected below cloud layers. 

We developed a numerical spectral unmixing algorithm, Informed Non-Negative Matrix 

Factorization (INMF), to separate contributions to hyperspectral imagery from distinct physical 
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sources such as surface reflectance, atmospheric absorption, molecular scattering, and aerosol 

scattering. INMF was tailored for hyperspectral applications by introducing algorithmic 

constraints based on the physics of radiative transfer. INMF was tested using imagery collected by 

the Hyperspectral Imager for the Coastal Ocean (HICO). To validate the method INMF results 

were compared to model-based atmospheric correction results. We demonstrate possible 

applications of INMF by presenting the retrieval of two physical properties, aerosol attributed 

radiance and seafloor depth. The retrievals were evaluated by comparing INMF output to 

independent retrievals of aerosol properties from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) and in-situ seafloor depth measurements from the U.S. Coastal Relief 

Model. In these comparisons INMF shows promise for retrieving both physical properties, and 

may be improved with physics-based constraints on the seafloor and aerosol source spectra. 
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Chapter 1  

Introduction 

 

 Remote Sensing Background 

Remote sensing measurements are integral to many geoscience disciplines and can provide 

a comprehensive picture of the globe. Remote sensing is the observation and derivation of the 

properties of an object (whether cloud, atmosphere or land surface) from measurements of 

radiation made by instruments on aircraft or spacecraft. In practice, remote sensing encompasses 

a wide range of measurements and instruments. The measurements are typically classified as active 

or passive. Active instruments emit radiation and then detect the reflected signal. Examples of 

active instruments are lidars and radars. In contrast, passive instruments observe radiation emitted 

by the object being observed or reflected by the object from another source, like the sun. The work 

in this thesis uses passive remote sensing observations made in the 300 to 2500 nm range.  

This wavelength range is often referred to as solar because it covers the range in which the 

sun radiates the majority of its energy. Moreover, in Earth’s atmosphere and at the surface, 

electromagnetic radiation in this range is most likely to have been emitted by the sun. Passive, 

solar wavelength remote sensing has evolved from black-and-white images such as the first 

weather satellite image collected by TIROS-1 (Television and Infra-Red Observation Satellite) in 

1960 (Anderson, 2010), to spectrally resolved multi-band measurements collected by satellites 
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such as the Landsat series that began with the Earth Resources Technology Satellite (ERTS-1) 

1973 (NASA Goddard Space Flight Center, 1971), and instruments such as the Moderate 

Resolution Imaging Spectroradiometer (MODIS) (Ardanuy et al., 1991) (Figure 1.1). 

More recently, improvements in spectrometer and detector technologies have led to the 

development of hyperspectral imaging spectrometers. These instruments, sometimes referred to 

simply as imaging spectrometers, are called hyperspectral to differentiate them from multispectral 

instruments, which collect data in discrete wavelength bands. Hyperspectral instruments collect 

data in hundreds of contiguous wavelength bands over the instrument’s spectral range (Goetz et 

al., 1985). The development of hyperspectral imaging spectrometers was an important advance as 

these instruments produce spatially resolved images where a contiguous radiance spectrum is 

observed for each spatial pixel (Goetz, 2009). 

 

Figure 1.1: A progression of satellite remote sensing imagery. 

Left: the first image returned by a weather satellite (TIROS-1) (Anderson, 2010). Right: a false 

color image collected by the Multispectral Scanner (MSS) instrument on ERTS-1 (later renamed 

Landsat 1). The MSS had four wavelength bands, green (500-600 nm), red (600-700 nm), and two 

near-infrared bands (700-800 nm and 800-1100 nm) (Williams Jr. & Carter, 1976). 
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The ability to measure a contiguous spectrum for each 

pixel in a scene is a powerful observational technique. Figure 1.2 

shows a representation of a hyperspectral image, a hyperspectral 

data-cube or hypercube. This representation has the true-color 

image in front, with depth representing the spectral information 

with the edge pixels. This spectral information can be used to 

derive a diverse and useful array of data products including leaf 

area index (LAI) (Verrelst et al., 2015), leaf chlorophyll content 

(LCC) (Verrelst et al., 2015); surface mineral maps (Crowley et 

al., 1989), real-time atmospheric methane retrievals (Thompson, 

Leifer, et al., 2015), among many others. In early hyperspectral 

measurements the ability to take advantage of the collected 

spectral information was limited by low signal-to-noise ratios 

(SNR) (Vane et al., 1984), the large volumes of data produced by 

hyperspectral instruments, and computational requirements to 

process such large datasets (Goetz, 2009). In the decades since the 

first imaging spectrometers were flown in the 1980s many of these 

limitations have been overcome. Modern imaging spectrometers 

such as the National Ecological Observatory Network’s (NEON) 

imaging spectrometer have SNR of greater than 1000 (Johnson et 

al., 2010), and the costs of storing and processing large volumes 

of data are now manageable. Because of these technical 

 
Figure 1.2: A hyperspectral 

data-cube, or hypercube, 

collected by the 

Hyperspectral Imager for the 

Coastal Ocean (HICO). 

HICO collects data in 128 

wavelength bands. The 

hypercube shows wavelength 

in the depth axis, with 

wavelength increasing from 

shallow to deep. Yellow 

colors are the highest signals, 

purples and blacks are the 

lowest. 
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improvements and the success of earlier instruments, many hyperspectral instruments are currently 

in operation and many more are planned for the future. 

 Motivations for Hyperspectral Sensing  

Hyperspectral 

measurements command strong 

research interest because they 

offer a more complete 

measurement of atmospheric 

and surface properties than 

multispectral observations. 

Collecting contiguous spectra is 

important because the signatures 

of atmospheric species and 

processes are spectrally 

overlapping across the solar 

wavelength range (Figure 1.3, 

top panel). Similarly, surface 

reflectance varies substantially in spectral shape and magnitude between surface types (Figure 1.3, 

bottom panel). In remote sensing applications the challenge of connecting observations to physical 

processes is magnified because atmospheric signals are commonly mixed with signal reflected 

from the surface. Multispectral instruments approach the problem of mixed signals by selecting 

wavelength ranges that minimize the mixing between target signals (Goetz, 2009). This approach 

makes comparatively straightforward retrievals of the selected properties but because of the 

 

Figure 1.3: Optical depths (top) and surface reflectance 

(bottom) of selected atmospheric constituents and selected 

surfaces 
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limited number of wavelength bands observed, there is little opportunity to reduce noise in the 

retrieval by exploiting the correlation in signal across broad spectral regions (Goetz, 2009). 

To highlight the difference in approaches between multi- and hyperspectral approaches 

consider the channels of the MODIS instruments compared to the channels of a hyperspectral 

instrument such as the Hyperspectral Imager for the Coastal Ocean (HICO) (Figure 1.4). MODIS 

includes 36 spectral channels that were each chosen to support a particular science products 

(Barnes et al., 1998; Justice et al., 1998). For example, MODIS channels 17, 18, and 19 were 

primarily used to retrieve atmospheric water vapor, while channels 1 through 7 were intended to 

retrieved land and cloud properties (Barnes et al., 1998). These channels cover only a fraction of 

the entire spectrum (Figure 1.4, top panel), compared to a hyperspectral instrument with 

contiguous and overlapping measurements over the entire spectral range (Figure 1.4, bottom 

panel). In the wavelength range 

between 350 nm and 1100 nm MODIS 

has 16 channels while HICO has 128 

(Barnes et al., 1998; Lucke et al., 

2011). 

In contrast to the multispectral 

instrument approach described above, 

hyperspectral instruments observe 

many wavelengths in a contiguous 

spectrum. This approach does not 

require instrument channels to be 

chosen for a specific function since the 

 

Figure 1.4: Spectral channels of the MODIS instruments 

(top) and the HICO instrument (bottom). 

The spectral extent and primary use of the MODIS 

channels is shown. The HICO image shows an example 

radiance spectrum and only the channel centers are shown 

due to their number. Both panels are plotted on the same 

wavelength axis. [Source data from: Barnes et al., 1998 

(MODIS); Lucke et al., 2011 (HICO)] 
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complete spectrum is observed. Instead the challenge for hyperspectral instruments is making full 

use of the data collected. Traditional multispectral methods can be applied to hyperspectral data 

by extracting specific wavelength bands to mimic a multispectral instrument. However, this 

approach does not make full use of the spectral data provided by hyperspectral measurement. 

Hyperspectral observations are made on the premise that the addition of spectral channels 

to an observation provides more information that can be used to improve the accuracy of property 

retrievals (Rodgers, 1998; Vukicevic et al., 2010). This is an intuitive result that adding spectral 

channels generally adds more information (Coddington et al., 2012; Rodgers, 1998). However, 

channels may include redundant information, or perhaps no information on a particular property, 

so that information content does not increase linearly with the number of spectral channels 

(Rodgers, 1998). Information theory can be applied to quantitatively measure the impact of 

collecting more spectral channels. Shannon information content (Shannon & Weaver, 1949) is one 

commonly employed metric. Previous work has explored the application of information content 

metrics to the selection of wavelength channels and their impacts on property retrievals 

(Coddington et al., 2012; Cooper et al., 2006; L’Ecuyer et al., 2006; Rodgers, 1998, 2000; 

Tamminen & Kyrölä, 2001; Taylor et al., 2008; Vukicevic et al., 2010). For hyperspectral remote 

sensing the continuing challenge is how to best use the increased information content of 

hyperspectral measurements to extract the desired science properties given that the observations 

are composed of signals from many physically distinct sources. 

Another important application of hyperspectral observations is climate change detection 

and monitoring through missions such as the NASA Climate Absolute Radiance and Refractivity 

Observatory (CLARREO) mission (Wielicki et al., 2013). High accuracy observations are needed 

to detect climate change within a reasonable observational period (Wielicki et al., 2013). Spectrally 
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resolved measurements provide more information than their broadband counterparts, reducing the 

time required to detect climate change trends (Wielicki et al., 2013) and attribute them to their 

physical sources (Feldman et al., 2011; Roberts et al., 2011). 

Beyond trend detection, the high accuracy requirements of a planned future climate 

observing system necessitates improved hyperspectral processing methods. Existing methods have 

accuracies of 10-20% for surface reflectance (Richter & Schläpfer, 2002) and 15-20% for aerosol 

optical depth (Levy et al., 2013). Conversely, CLARREO’s solar wavelength instrument has a 

requirement for systematic error less than 0.3% (Wielicki et al., 2013). It should be noted that 

CLARREO’s intended climate change trend detection does not rely on retrieving physical 

properties and these values compare geophysical property retrieval accuracies (of 10-20%) against 

a systematic measurement error (of 0.3%). However, the comparison of the two values highlights 

that retrieval errors are almost two orders-of-magnitude larger than measurement errors 

demonstrating a need for research to improve retrieval methods.  

Hyperspectral instruments have also recently been incorporated into projects such as the 

Airborne Snow Observatory (ASO) (Painter et al., 2016), which measures snowpack to advise 

municipal water systems in California, and NEON’s Airborne Observation Program (AOP) 

(Schimel et al., 2011), which will make yearly observations across the United States. The ASO 

employs a hyperspectral imager and a lidar to measure the snow water equivalent, and snow albedo 

of snowpack in mountain basins (Painter et al., 2016). NEON’s AOP operates a similar payload 

consisting of a hyperspectral imager, lidar, and high-resolution camera, but the goal is to monitor 

terrestrial ecosystems (Kampe, Johnson, Kuester, & Keller, 2010). Chapter 3 of this thesis 

describes research performed with NEON’s AOP to improve surface property retrievals. The 



 

 8 

launch of these two observation programs demonstrates the maturity of hyperspectral 

instrumentation and the versatility of their measurements. 

Figure 1.5 shows a timeline of major hyperspectral instruments, both space-based and 

airborne. In addition to a number of continuing major airborne campaigns there are four major 

space-based hyperspectral missions planning to launch within the next five years. The increasing 

number of operational and planned hyperspectral missions makes it clear that the benefits of these 

observations have been recognized. Given this trend, this thesis presents a timely investigation of 

hyperspectral applications and processing methods. 

 

 

 

 

 

Figure 1.5: A timeline showing major hyperspectral imaging spectrometer instruments. 

Light blue boxes are airborne instruments, while dark blue are satellite instruments. Dashed 

boxes indicate future deployments. 
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Table 1.1: Major hyperspectral instrument missions, historical, ongoing, and planned. 

Instrument: Reference: 

Airborne Imaging Spectrometer (AIS)  (Vane et al., 1984) 

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)  (Green et al., 1998) 

Global Ozone Monitoring Experiment (GOME)  (Burrows et al., 1999) 

Global Ozone Monitoring Experiment 2 (GOME-2) (Callies et al., 2000) 

Hyperion (Pearlman et al., 2003) 

Scanning Imaging Absorption Spectrometer for 

Atmospheric Chartography (SCIAMACHY) 
(Bovensmann et al., 1999) 

Ozone Monitoring Instrument (OMI) (Levelt et al., 2006) 

Hyperspectral Imager for the Coastal Ocean (HICO)  (Lucke et al., 2011) 

AVIRIS – Next Generation (AVIRIS-NG) (Hamlin et al., 2011) 

National Ecological Observatory Network’s Imaging 

Spectrometer (NIS)  

(Kampe, Johnson, Kuester, 

& McCorkel, 2010). 

  

Planned hyperspectral instruments include:  

Environmental Mapping and Analysis Program (EnMAP) (Guanter et al., 2015) 

Climate Absolute Radiance and Refractivity Observatory – 

Pathfinder (CLARREO-PF)  
(Wielicki et al., 2013) 

Plankton, Aerosol, Cloud, Ocean Ecosystem (PACE)  
(NASA Goddard Space 

Flight Center, 2017) 

Hyperspectral Infrared Imager (HyspIRI)  (C. M. Lee et al., 2015) 

 

 Remote Sensing Measurements 

Remote sensing instruments do not directly provide information on surface or atmospheric 

properties. Instead they measure the radiation scattered by the atmosphere and surface that is 

related to their intrinsic properties and therefore, can be used to derive those properties. For 

example, imaging spectrometers measure a radiation quantity called spectral radiance. Spectral 
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radiance is the radiative flux density 

per unit wavelength, per unit solid 

angle that is incident on a surface, 

normal to the direction of incidence 

(Bohren & Clothiaux, 2006). Spectral 

radiance has units of watts per square 

meter per steradian per nanometer (W∙m-2∙sr-1∙nm-1). Another important radiation measurement is 

irradiance, which is the radiance received by a surface of unit area, scaled by the cosine of the 

radiance direction to the surface normal, and integrated over a finite range of solid angle, most 

commonly the hemisphere (Bohren & Clothiaux, 2006). In atmospheric science defining irradiance 

over a hemisphere relative to the Earth’s horizon allows independent measurements of the 

radiation propagating upwards (upwelling irradiance) and radiation propagating towards the 

surface (downwelling irradiance). Spectral irradiance is the irradiance per unit of wavelength, 

with units of watts per square meter per nanometer (W∙m-2∙nm-1).  

The measured quantity depends on the instrument design. Imaging spectrometers record 

spectral radiance, because they must observe in narrow ranges of direction to resolve spatial 

features. Spectral irradiance can be measured with other instruments such as the Solar Spectral 

Irradiance Monitor (SSIM), described in Chapter 2, that integrates over the hemisphere. 

 

 

Table 1.2: Radiometric Quantities (Wyatt et al., 1998) 

Quantity Symbol Unit 

Radiative Flux Φe W 

Radiance L W·m-2·sr-1 

Spectral Radiance Lλ
 W·m-2·sr-1·nm-1 

Irradiance F W·m-2 

Spectral Irradiance Fλ W·m-2·nm-1 
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Figure 1.6: Diagrams showing the definition of radiance (left) and irradiance (right). 

Radiance is defined by the incoming radiation field (𝛷𝑒) that passes through a unit solid angle 

(𝑑𝛺) and passes through a unit of surface area (𝑑𝐴) that is normal to the radiation field. 

Irradiance is the integral of incident radiance over some amount of solid angle (shown here as a 

hemisphere) and is scaled by projected area, which is dependent on the angle (𝛩) between the 

incident radiation and the normal vector of the surface (𝑛⃗ ). 
 

The measured radiance or irradiance is dependent on the observed target and the 

instrument’s location on the ground, on an aircraft, or in space. This at-sensor measurement 

includes contributions from the target and from the atmosphere. Deriving a physical property from 

an at-sensor measurement requires a retrieval process to connect the observed radiation to desired 

quantity through the underlying radiative processes of atmospheric absorption, scattering or 

surface reflectance (Rodgers, 2000). Often a preparatory step known as Atmospheric correction is 

required to separate atmospheric effects from surface reflectance to derive surface information (B.-

C. Gao et al., 1993, 2006). Atmospheric correction is crucial for surface remote sensing because it 

removes the effects of the atmosphere from a measured signal. Typically atmospheric correction 

involves the use of a radiative transfer model to determine the combined radiative sources from 

atmospheric and surface. However, model-based routines can be inaccurate for a variety of reasons 

including assumptions about atmospheric composition, aerosol type and size distributions, and 
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uncertainties in the incident solar spectrum. Improving atmospheric correction could significantly 

affect the accuracy of many science products.  

 Summary of Thesis Chapters 

1.4.1. Chapter 2: Solar Spectral Irradiance Monitor Development 

This chapter describes development and characterization of the Solar Spectral Irradiance 

Monitor (SSIM), a hyperspectral instrument built by the Laboratory for Atmospheric and Space 

Physics (LASP) at the University of Colorado Boulder (CU). This instrument is used to observe 

spectrally resolved irradiance over the most of the solar spectrum, from 350 nm to 2150 nm. This 

chapter discusses improvements to the instrument that were undertaken and validated as part of an 

observational campaign with the National Ecological Observatory Network (NEON) in summer 

2015. These improvements include the testing of a redesigned actively-stabilized optics assembly, 

the validation of the angular response of a new optical design, and the design and validation of a 

spectrometer temperature control system. This chapter also describes the laboratory spectral and 

radiometric calibration of the SSIM and the field calibration of the instrument while it is installed 

on an aircraft. 

1.4.2. Chapter 3: Below-Cloud Atmospheric Correction of Airborne Hyperspectral 

Imagery Using Simultaneous Solar Spectral Irradiance Observations 

This chapter details a study in which the SSIM was flown on a Twin Otter aircraft together 

with the NEON imaging spectrometer (NIS). This study examines how simultaneous hyperspectral 

imagery, from the NIS, and irradiance measurements provided by the SSIM, can be used to 

improve the atmospheric correction of the hyperspectral imagery. For this work we deployed 

calibrated reflectance targets and collected ground truth reference spectra, using a portable field 

spectrometer, at a field site north of Boulder, Colorado. Data collection flights were made over the 

ground site on several days in cloud-free, overcast, and scattered clouds conditions. This work 
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demonstrates that SSIM measurements can be used for more accurate atmospheric correction when 

the aircraft flew below a cloud layer where traditional atmospheric correction methods fail. This 

work also examines the use of upwelling irradiance observations to estimate and correct adjacency 

effects (to be defined in §3.2). 

1.4.3. Chapter 4: An Informed Non-Negative Matrix Factorization Method for Unmixing 

Atmospheric and Surface Signals in Hyperspectral Imagery 

This chapter describes the development of a numerical algorithm, Informed Non-Negative 

Matrix Factorization (INMF), to identify and separate contributions from surface reflectance and 

the atmosphere in hyperspectral imagery. This method was developed to address some of the 

limitations of other commonly used numerical processing techniques. We designed INMF for 

separating signals in at-sensor radiance observations, while most other spectral unmixing (to be 

defined in §4.2) approaches have focused on surface reflectance. To improve the separation of 

physically distinct sources we modified INMF to incorporate knowledge of the physics of remote 

sensing instrumentation and radiative transfer. This was included in the algorithm by constraining 

spectral and spatial smoothness, which are determined by the observing instrument, and the 

spectral shape of molecular scattering, determined by Rayleigh’s Law.. To further guide the 

solution towards physically realistic results, library reflectance spectra are used to generate an 

initial guess of source spectra. We evaluated the performance of INMF using hyperspectral 

imagery collected by the Hyperspectral Imager for the Coastal Ocean (HICO). Using two HICO 

images, we tested INMF’s sensitivity to the choice of scene and the sensitivity of INMF to the 

magnitude of the initial guess spectra. The INMF solutions were compared, in both magnitude and 

spectral shape, with traditional model-based atmospheric correction radiance products.  
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1.4.4. Chapter 5: Evaluation of First Retrievals of Atmospheric and Surface Properties 

from Hyperspectral Imagery using Informed Non-Negative Matrix Factorization 

The goal of numerical unmixing techniques is to produce a result that connects observed 

radiance to radiative properties such as surface reflectance and aerosol or cloud scattering. This 

chapter presents the derivation of two system properties, aerosol optical depth and seafloor depth, 

from INMF results. An initial guess of the aerosol scattering spectrum was derived from radiative 

transfer modeling of standard aerosol profiles from MODTRAN. An initial guess of the spectrum 

of a seafloor below shallow water was extracted from the imagery itself. A significant challenge 

in this work is validating the results: ground-truth measurements for many applications are sparse 

or nonexistent. This work compared the INMF derived properties against independent satellite or 

in-situ measurements. Derived aerosol properties were compared, spectrally and spatially, to 

Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of aerosol properties. 

Seafloor depth data were compared to bathymetric maps derived from sonar measurements. 

1.4.5. Chapter 6: Summary and Directions for Future Work 

This final chapter summarizes the results from the previous chapters and highlights 

possible areas of future work stemming from the results of each chapter.  
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Chapter 2  

Solar Spectral Irradiance Monitor Development 

 

 Overview 

The Solar Spectral Irradiance Monitor (SSIM) is 

the product of iterative improvement upon the NASA 

Ames Research Center Solar Spectral Flux Radiometer 

(SSFR) instrument (Pilewskie et al., 2003). The original 

development of the SSIM leveling and spectrometer 

systems was sponsored by NASA. A sibling instrument 

to National Ecological Observatory Network’s (NEON) 

SSIM was flown during NASA’s Arctic Radiation 

IceBridge Sea and Ice Experiment (ARISE) in 2014 (Smith et al., 2017). This chapter details the 

major improvements over previous generations of this instrument. The description of the 

instrument testing and validation highlights the contributions I have made to the SSIM 

development. 

This SSIM system was built for NEON and consists of three components: a spectrometer 

enclosure, foreoptics, and a leveling platform on the exterior of the aircraft. Figure 2.1 shows an 

 

Figure 2.1: Downwelling irradiance 

measured by the SSIM in cloud-free 

and overcast sky conditions. 
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example of downwelling irradiance spectra measured by the SSIM under both cloud-free and 

overcast conditions. The instrument was delivered to NEON in May 2015. A set of engineering 

test flights were conducted in the first half of June 2015, and the collected data were used for a 

study of retrieving surface reflectance value when the aircraft was flown below clouds. Chapter 3 

reports the results of that work. 

The spectrometer enclosure houses two Zeiss spectrometers that cover a wavelength range 

from 350 nm to 2150 nm. One spectrometer uses a silicon (Si) linear array detector to measure the 

wavelength range from 350 nm to 1000 nm; the other uses an Indium-Gallium-Arsenide (InGaAs) 

detector array for sampling from 900 nm to 2150 nm. The Si spectrometer has spectral sampling 

of 3.3 nm and a Full-Width-Half-Maximum (FWHM) spectral resolution of 9 nm while the 

InGaAs-detector spectrometer has spectral sampling and resolution of 5 nm and 16 nm FWHM, 

respectively. The full-system contains two sets of these spectrometers, one connected to the zenith 

pointing foreoptics for measuring downwelling irradiance, the other to nadir pointing foreoptics 

for measuring upwelling irradiance. In the NEON SSIM the nadir-pointing InGaAs spectrometer 

(900-2150 nm) was not deployed. The spectrometers are housed in a standard 19-inch aircraft rack 

mounted enclosure that includes data acquisition, signal amplification, digitization, spectrometer 

control, and temperature control electronics. Fiber optic cables from the foreoptics connect through 

shutters to the spectrometers. When closed, the shutters enable the in-flight measurement of dark 

current levels that are applied as part of the radiometric calibration of the spectrometer data. 

The foreoptics are hemispheric-viewing light collectors mounted on the exterior of the 

aircraft. Figure 2.2 shows a diagram of the light collector design and Figure 2.3 shows the zenith 

and nadir pointing foreoptics mounted on the NEON Twin Otter aircraft. A light collector consists 

of a fused quartz dome that covers a one-inch diameter integrating sphere. The entrance aperture 
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to the integrating sphere ensures that the signal 

from incident light is weighted by the cosine of 

the zenith angle and is, therefore, proportional to 

irradiance. The integrating sphere serves to 

collect and diffuse the directly transmitted 

radiation. It is made of Fluorilon, which has a 

reflectance of 99% or greater in the visible 

wavelengths. Using this highly reflective material 

increases the system’s signal to noise ratio by 

increasing the amount of radiation reaching the 

detector. A fiber optic bundle is mounted at the 

base of the integrating sphere to transmit light to 

the spectrometers. A baffle inside the integrating sphere prevents direct and first-reflected light 

from entering the fibers. 

  
Figure 2.2: Cross-section of the SSIM light 

collector 

 
Figure 2.3: Photographs showing the SSIM foreoptics installed on the NEON Twin Otter.  

The zenith pointing light collector includes the leveling platform and is located mid-fuselage. 

The nadir light collector is fixed and mounted below the aircraft’s nose. 
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 Leveling Platform 

The leveling platform maintains the light collector parallel to the Earth horizon 

independent of aircraft attitude changes. This improves data quality by reducing frequency of the 

non-horizontal light collector orientations due to aircraft motion and eliminates the need for 

corrections in post-processing (Bucholtz et al., 2008; Wendisch et al., 2001). Implementations of 

solar flux radiometers on many prior flight missions routinely discarded data when aircraft attitude 

exceeded a threshold deviation from horizontal (Bucholtz et al., 2008; Wendisch et al., 2001). 

Even the data that passed the threshold required post-processing corrections for sensor 

misalignment geometry (Wendisch et al., 2001). Thresholding techniques resulted in the loss of 

large amounts of data (Bucholtz et al., 2008; Wendisch et al., 2001) and correcting even small 

pitch and roll offsets still produced data with large uncertainties. Moreover, software corrections 

are of limited value when clouds are present because of the unknown angular dependent scattering 

from the cloud field (Wendisch et al., 2001). 

The SSIM leveling system uses the aircraft inertial navigation system and GPS to control 

a motor driven stage that adjusts to counter the aircraft pitch and roll. Leveling maintains the light 

collector’s horizontal orientation during pitch and roll maneuvers of up to ±7°. Active leveling 

results in usable data not only during steady flight at a fixed pitch, but also throughout any aircraft 

maneuvers or turbulence-induced motions within this angular range. Figure 2.4 shows an example 

of the aircraft attitude during the collection of a NEON Imaging Spectrometer flight line. The 

resulting time series of irradiance at 582.8 nm shows very small deviations from the mean (Figure 

2.4, bottom panel). During this collection pitch and roll varied by ±5° while the irradiance 

remained stable and independent of aircraft attitude. The irradiance time series has a standard 

deviation less than 0.5% and a maximum deviation of 1.6%. An un-stabilized instrument would 
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observe a 4.5% change in irradiance for a 5° roll given the solar zenith angle when these data were 

collected. Aircraft maneuvers outside of a 7 range may occur during ascents, descents, changes 

in heading, and very turbulent conditions, but are uncommon during the normal acquisition of 

imaging spectrometer data. 

 

Figure 2.4: Aircraft roll and pitch for a single flight line are plotted in the top panel. 

Aircraft attitude varied by ± 5° during this 90-second-long collection. The bottom panel shows 

a single irradiance channel over the same time period. Each division is 1%. 

 

 Azimuthal Response 

Previous generations of light-collectors developed at LASP had four narrow metal legs 

supported the baffle and connected it to the sides of the light collector (Figure 2.5, top). These legs 

produced azimuthal artifacts in the observations with throughput dropping by up to 10% when a 

leg was aligned with the direction of incident light (Figure 2.6, bottom). Even when the light 

collector’s angular response is known, azimuthal effects are difficult to correct because the angular 

distribution of incident radiation field is unknown. Measurement uncertainty due to azimuthal 

biases would be especially large when observing irradiance in a cloudy or aerosol-laden 
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atmosphere with that further complicates the radiation field 

by increasing the amount of diffuse radiation relative to 

direct solar radiation. 

To remove the azimuthal dependence, the four-

legged metal baffle support was replaced with a glass disk 

(Figure 2.5, bottom). This redesign eliminated the azimuthal 

dependency of the light collectors with negligible loss of 

signal. Figure 2.6 shows the normalized signal at a single 

wavelength collected through the SSIM foreoptic. The data 

were collected at 5 increments in azimuth and for several 

zenith angles. The four-lobed azimuthal features of the 

metal baffle support are seen for solar zenith angles between 20 and 50. At solar zenith angles 

smaller than 20 the metal baffle support does not produce noticeable azimuthal effects. The light-

collectors with a glass disk baffle support have a consistent azimuthal response across this range 

of zenith angles. Data collected at 10, 20, and40 zenith angles are shown in Figure 2.6. The left 

panel shows a four-lobed pattern in the normalized signal observed by the original foreoptic. The 

dips in signal correspond with the legs of the baffle support. The light collector with the glass 

baffle support had smaller variations with azimuthal orientation with deviations from the mean of 

less than 0.5% over all azimuthal angles.  

 
Figure 2.5: Light collector baffle 

support designs. 
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Figure 2.6: Observed signal, normalized to the mean, as the light collector was rotated azimuthally 

from 0 to 360. 

The black dashed line is the azimuthally averaged signal while the red and blue dashed lines are 

plus and minus 5% of the mean, respectively. The data were collected with a light source at several 

zenith angles, plots are shown for solar zenith angles (SZA) of 10 (top row), 20 (middle row), 

and 40 (bottom row). The panels show the normalized azimuthal response of a light collector 

including a metal baffle support (left) and a light collector with a glass baffle support (right). 
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 Temperature Control 

The detectors used by the SSIM spectrometers are temperature sensitive. Higher 

temperatures can increase the baseline dark signal that is detected in the absence of any incident 

light and the noise that is present in both the dark signal and light measurements. In normal data 

collection, the SSIM periodically closes a shutter to make dark measurements throughout the 

course of a flight. The measured dark signal is subtracted from the open shutter observations to 

correct the signal. Temperature changes that occur between dark measurements are more difficult 

to correct. Therefore, it is important to maintain the spectrometer detectors at a stable temperature. 

Temperature effects are present in both the Si spectrometer and the InGaAs spectrometers, but are 

stronger in the near-infrared InGaAs detector. Because of their sensitivity to thermal effects, the 

manufacturer packages InGaAs spectrometers with a two-stage thermoelectric cooler to maintain 

the detector at -10 C. These tests validated this built-in system. The InGaAs detector array 

remained at -10.30 ± 0.03 C at environmental temperatures from 10 to 35 C. However, this built-

in temperature control only cools the detector array. Temperature changes in the body of the 

InGaAs spectrometer are not controlled and can be observed in the dark signal. This is not detector 

noise but the response of the detectors elements to emission at the longest wavelength limit of 

detector response (greater than 2 𝜇m) from the instrument enclosure.  

The SSIM has an additional level of control to stabilize the thermal environment for the 

spectrometers. An insulated enclosure houses the spectrometers. Within the housing the 

spectrometers are attached to a common aluminum mounting plate. The plate’s temperature is 

controlled by two thermoelectric coolers that expel waste heat with a fan-cooled heat sink to the 

exterior of the spectrometer enclosure. The system was tested in the Laboratory for Atmospheric 

and Space Physics’ (LASP) thermal test facility. Environmental temperature was varied between 
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10 ºC and 35 ºC. The spectrometer thermal control system was set to maintain the central plate 

temperature at 20 ºC. The spectrometer was operated in the chamber for 50 minutes at each 

temperature. Figure 2.7 shows the set-temperature of the thermal chamber, the temperature of the 

InGaAs spectrometer, and an external temperature that was measured inside the SSIM but outside 

of the cooled spectrometer enclosure. 

The performance of the cooling system was evaluated during the final 20 minutes of data 

collection at each temperature, when the system had equilibrated. The cooling system reduced the 

change in the InGaAs spectrometer’s body to 1.6 ºC per 10 ºC of environmental temperature 

change, a reduction of 84% from 

the uncontrolled change. The 

system also provided stable 

temperature control throughout 

testing. The coefficient of 

variation (the ratio of standard 

deviation to the mean) of the 

spectrometer temperature was 

less than 0.45% at any 

temperature.  

 SSIM Calibration 

Spectral and radiometric calibrations were performed on the SSIM before the instrument 

was installed on the aircraft. Spectral calibration was performed using a mercury lamp line source. 

The emission spectrum of mercury gas was then compared with the spectra recorded with the 

SSIM to produce a spectral calibration (Pilewskie et al., 2003). Radiometric calibrations were 

 

Figure 2.7: SSIM temperatures during thermal testing. 

The black line is the set-temperature of the thermal chamber. 

The temperature of the exterior of the InGaAs spectrometer 

is shown in blue. The red line is the temperature of the 

analog-to-digital converter module which was not 

temperature controlled. 
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made prior to the instrument’s integration onto the aircraft at the Atmospheric Radiation 

Laboratory at LASP (Pilewskie et al., 2003). This calibration employed a 1000 W FEL lamp 

traceable to National Institute of Standards and Technology (NIST) standards (Yoon et al., 2002). 

The measurement was repeated for a post-deployment calibration after the instrument was de- 

integrated.  

While the laboratory measurements provide a primary calibration, it is necessary to monitor 

the radiometric calibration of the SSIM 

throughout the observation campaign. Changes 

to the instrument response are possible due to 

events such as modifications to the routing of 

the fiber optic cable connecting the 

spectrometer to light collector, or the unlikely 

breakage of one or more of the fibers within the 

fiber optic bundle. The CU LASP group has 

developed a universal field calibrator (Figure 

2.8) to track any changes in radiometric 

calibration over the course of a field campaign. 

The field calibrator employs two 150 W 

halogen tungsten lamps used in rotation to 

account for changes in lamp output in addition 

to changes in SSIM response. Before and after 

field deployment the primary 1000 W FEL 

lamp calibration is transferred to the field 

 
Figure 2.8: Universal field calibrator installed on 

the SSIM nadir light collector. 

Calibrations were made in the hangar while the 

SSIM was installed on the NEON Twin Otter. An 

opaque two-layered black shroud (not pictured) 

covers the light collector and calibrator when in 

use. 
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lamps. Previous field experience with these 

instruments have demonstrated that the SSIM 

system is generally stable to within ~1% over 

a month (Pilewskie et al., 2003). 

The field calibrator is necessary to 

detect and correct for any changes. Figure 2.9 

shows the instrument response function, 

relative to the mean primary calibration, for the 

zenith-viewing silicon spectrometer. The 

coefficients were derived from seven 

calibrations of the SSIM, including pre- and 

post-flight primary calibrations in LASP’s 

Atmospheric Radiation Laboratory, and five 

mid-campaign field calibrations. Figure 2.9 

demonstrates the importance of field 

calibration, given the discrepancies between 

the laboratory and field coefficients. It also demonstrates that changes to the instrument’s 

calibration generally occur in large discrete jumps that are usually associated with instrument 

installation or hardware modifications, such as modifying the route of the fiber optic cable or the 

breaking of a fiber within the fiber optic bundle. In this figure, two jumps are obvious. One 

occurred during installation. This is seen in the change between the black pre-campaign primary 

calibration and the June 2 field calibration. Another jump, most likely due to changing the fiber 

optic routing, occurred between the June 2 and June 9 field calibrations. After this change, the 

  
Figure 2.9: SSIM Calibration Coefficients. 

(Top) Calibration coefficients relative to the 

mean of the primary calibrations. Primary 

calibrations are in black and field calibration 

coefficients are shown with colored lines. 

(Bottom) Calibration coefficients for field 

calibrations made between June 9 and June 16 

relative to the mean of the four calibrations. 
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field calibration coefficients from June 9 until the end of the field campaign remained within 1.05% 

of the mean of the four calibrations for the wavelengths from 350 nm to 980 nm (Figure 2.9, bottom 

panel). Data at wavelengths shorter than 350 nm are usually excluded due to low signal to noise 

ratio (SNR) of the detector at the limit of its spectral response. The spectra from the Si and InGaAs 

spectrometers are typically merged at 980 nm, the intersection of decreasing SNR for the two 

detectors response limits. 
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Chapter 3  

Below-Cloud Atmospheric Correction of Airborne Hyperspectral Imagery Using 

Simultaneous Solar Spectral Irradiance Observations 

 

 Abstract 

Retrieving surface properties from airborne hyperspectral imagery requires the use of an 

atmospheric correction model to compensate for atmospheric scattering and absorption. In this 

study a Solar Spectral Irradiance Monitor (SSIM) from the University of Colorado Boulder was 

flown on a Twin Otter aircraft with the National Ecological Observatory Network’s (NEON) 

imaging spectrometer. Up- and down-welling irradiance observations from the SSIM were used 

as boundary conditions for the radiative transfer model used to atmospherically correct NEON 

imaging spectrometer data. Using simultaneous irradiance observations as boundary conditions 

removed the need to model the entire atmospheric column so that atmospheric correction required 

modeling only the atmosphere below the aircraft. For overcast conditions, incorporating SSIM 

observations into the atmospheric correction process reduced error in retrieved surface reflectance 

by up to 57%. In addition, upwelling irradiance measurements were used to produce an 

observation-based estimate of the adjacency effect, improving surface reflectance retrievals, under 

cloud-free conditions, by up to 27%. 
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 Introduction 

Hyperspectral imagers, also known as imaging spectrometers, acquire radiance spectra in 

contiguous and overlapping wavelength channels for each spatial pixel in a scene (Goetz et al., 

1985). The large numbers of spectral channels provide the opportunity to develop hyperspectral 

processing methods and science products that exploit more spectral information than the relatively 

few channels of multispectral instruments. However, more sophisticated analytic techniques are 

required to effectively exploit the additional spectral information. Signal unmixing, biophysical 

vegetation property retrieval, and some atmospheric correction methods, all may benefit from the 

increased information provided by hyperspectral data (Goetz, 2009). Taking advantage of these 

benefits, imaging spectrometers are used to produce many diverse surface data products making 

them a valuable tool for a wide variety of research topics including geological, ecological and 

agricultural studies. Imaging spectrometers are also now beginning to support operational 

programs (Kampe, Asner, et al., 2010). 

Deriving surface products from imaging spectrometer data requires atmospheric correction 

to remove the influence of the atmosphere from the observations (B.-C. Gao et al., 2009). This 

step generally uses radiative transfer models to derive atmospheric extinction in order to calculate 

the surface reflectance from aircraft or spacecraft measured spectral radiance. Conventional 

atmospheric correction techniques assume a cloud-free atmosphere, severely limiting the flight 

conditions to which they can be applied. This places a constraint on observation campaigns that 

may lead to: long delays in flights, smaller datasets than would arise from collecting in cloudy and 

cloud-free conditions, reduced frequency of resampling flights, or reduced data quality from 

collecting in sub-optimal conditions. 
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We present a method for retrieving surface reflectance below clouds, or in otherwise 

marginal atmospheric conditions, using coincident airborne observations of up- and down-welling 

irradiance. This method extends the concept of using irradiance measurements for atmospheric 

correction from earlier work that used ground based irradiance observations to improve 

atmospheric correction (Goetz et al., 1998). By using only imagery and irradiance observations 

from the aircraft we collect all the data required for continuous atmospheric correction throughout 

the flight without the need for ground sites. We also demonstrate the use of upwelling irradiance 

observations to estimate the adjacency effect, which is defined as the signal reflected from surface 

regions other than the desired target that is then scattered into the sensor. Quantifying the adjacency 

effect is not possible with exclusively ground-based observations. The data presented in this study 

were collected during a June 2015 flight campaign of the National Ecological Observatory 

Network’s (NEON) Twin Otter aircraft equipped with the NEON Imaging Spectrometer (NIS) and 

the University of Colorado Boulder Solar Spectral Irradiance Monitor (SSIM). 

 Background 

3.3.1. Atmospheric Correction 

The goal of the NEON Airborne Observation Program (AOP) is to produce remotely 

sensed terrestrial ecological data products (Kampe, Johnson, Kuester, & Keller, 2010). The AOP 

is one component of NEON’s strategy to produce a long-term record of ecological change in the 

United States using fixed and relocatable ground sites, and airborne data. Airborne observations 

complement ground-based data by extending NEON’s long-term data record to larger regions 

surrounding the ground sites. Producing these ecological data products requires observations of 

surface reflectance, whereas the NIS acquires reflected radiance at aircraft flight altitude, known 

as at-sensor radiance. The measured at-sensor radiance includes: the signal from the target 
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(surface); contributions from molecular 

scattering; aerosol scattering, including 

cloud particles; the adjacency effect; and 

the signal of atmospheric absorption 

(Figure 3.1). This combination of signals 

makes it difficult to isolate surface 

reflectance from atmospheric effects. 

Atmospheric correction separates 

these signals by determining the irradiance 

at the surface and the transmittance 

between the surface and the flight altitude. 

The most commonly used methods employ an atmospheric radiative transfer model. Many model-

based atmospheric correction routines have been developed to retrieve surface reflectance. 

Examples include Atmospheric REMoval Program, (ATREM) (B.-C. Gao et al., 1993; Thompson, 

Gao, et al., 2015), Atmosphere CORrection Now (ACORN) (Kruse, 2004), High-accuracy 

Atmospheric Correction for Hyperspectral data (HATCH) (Qu et al., 2003), Fast Line-of-sight 

Atmospheric Analysis of Spectral Hypercubes (FLAASH) (Matthew et al., 2002), and 

Atmospheric and Topographic Correction (ATCOR) (Richter & Schläpfer, 2002).  

Conventional model-based atmospheric correction routines start with two measured or 

assumed quantities, the top-of-atmosphere (TOA) solar irradiance and radiance observed by the 

imaging spectrometer. A radiative transfer model uses these quantities to calculate atmospheric 

radiative properties based on inputs of known (e.g., solar geometry and ground elevation) and 

estimated (e.g., visibility) atmospheric conditions. The surface reflectance can be calculated by 

 

Figure 3.1: Contributions to at-sensor radiance: 

scattered radiance from the atmosphere, including 

cloud, aerosol, and molecular scattering; radiance 

reflected by the surface adjacent to the target; and the 

radiance reflected by the target (red square). 
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combining the modeled atmosphere with the TOA solar irradiance and solving for the surface 

reflectance value that matches the modeled radiance to the measured radiance (B.-C. Gao et al., 

2009). More advanced methods of atmospheric correction include the retrieval of atmospheric 

properties such as column water vapor and aerosol optical thickness and methods for topographic 

and adjacency effect correction (Richter & Schläpfer, 2015). The specific atmospheric correction 

process employed by this study is discussed in the Methods section. 

3.3.2. Motivation 

As we will show, atmospheric correction is a large source of error in hyperspectral remote 

sensing of surface properties even under ideal conditions. Using existing techniques, cloud-free 

flight opportunities are required for accurate property retrievals. Sensitivity to atmospheric 

conditions can be problematic because thin clouds such as cirrus, while difficult to detect, can 

impact data quality. Figure 3.2 illustrates that clouds above the aircraft can introduce errors in 

retrieved surface reflectance when atmospheric correction does not account for the cloud-induced 

reduction in atmospheric transmission. The observed reduction of reflectance by factors of two to 

five is unlikely to be due to spatial variability across the scene given the homogeneity seen in the 

true color image. Instead, the changes are almost certainly due to increasing cloud cover that 

decreases the downwelling irradiance at the surface. The greatest impact due to a cloud-free 

atmosphere requirement is a reduction in the number of possible flights in a given time. By 

improving atmospheric correction below clouds, this work aims to increase the number of viable 

flight opportunities for data collection. 
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Figure 3.2: Flight lines of Bartlett Forest on June 2, 2014 (top left panel).  

Flight lines were acquired sequentially from top to bottom. Increasing cirrus cloud cover was 

recorded as the airborne survey progressed; resulting in a reduction in flight line quality from 

green to yellow (top panel, right). The collection times for select flight lines are shown as GPS 

time stamps (hhmmss) recording the time the flight lines were acquired. The true color image, 

imagery from Google, shows the uniformity of vegetation over this scene. The bottom panel 

shows retrieved spectral reflectances for single pixels containing similar vegetation for the flight 

lines shown in the top panel. As time progresses, the increasing cirrus cloud cover reduced the 

magnitude of retrieved spectral reflectance, which should have remained constant. The large 

spikes in reflectance centered on 1380 and 1900 nm are due to the strong water vapor absorption 

bands in those wavelengths. (Figure courtesy of Tristan Goulden, Battelle Ecology Inc./NEON 

Project) 

 

Ground-based observations of downwelling irradiance or surface reflectance may also 

improve atmospheric correction. Ground site measurements of spectral reflectance or irradiance 

may help to remove systematic errors in the retrieved surface reflectance due to the atmospheric 

correction method or instrument error (Baugh & Groeneveld, 2008; Goetz et al., 1998). These 

techniques have drawbacks. Ground sites require the deployment of additional personnel and 



 

 33 

equipment on the ground; a costly and logistically challenging option for an operational system. 

Moreover, surface measurements are limited spatially compared to the much larger region of 

varying atmospheric conditions sampled by aircraft. 

Simultaneous airborne observations of irradiance address these current limitations by 

reducing the number of model atmospheric assumptions, providing continuous information on the 

atmospheric conditions above the aircraft, and providing an airborne reference measurement which 

can complement ground sites for detecting systematic errors. Commercial airborne instruments are 

available for measuring downwelling irradiance, for example, Specim Ltd.’s Fiber Optic 

Downwelling Irradiance Sensor (FODIS). The intended use of this instrument is to derive apparent 

reflectance at the sensor level (Homolova et al., 2009). Unfortunately this instrument lacks a 

stabilizing system, the angular calibration/characterization, and radiative transfer modeling 

required for robust atmospheric correction (Homolova et al., 2009). 

Atmospheric correction accuracy is highly dependent on the accuracy of the radiative 

transfer model. Model errors reduce the accuracy of retrieved surface reflectance in otherwise ideal 

conditions. For example, a commonly employed commercially available routine, ATCOR, can 

have model uncertainties of 0.02 to 0.04 reflectance units (Richter & Schläpfer, 2015). However, 

these uncertainty levels are realized only with perfect knowledge of aerosol and cloud conditions. 

Using downwelling irradiance observations as a model boundary condition rather than TOA solar 

irradiance removes the need to assume atmospheric properties above flight level; only the dotted 

region in Figure 3.3 remains to be modeled. 

In a hyperspectral image, changes in surface reflectance and changing illumination can 

appear as equivalent changes in the observed radiance. Airborne irradiance measurements can be 

used to resolve this ambiguity and separate the two signals. This problem is minor for instruments 
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such as the Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS) (Green et al., 1998) 

when flown aboard the high altitude NASA 

ER-2 (nominal 20 km flight altitude) and is 

non-existent for satellite instruments because 

there is very little or no atmosphere above 

these instruments. However, for a low-flying 

instrument, such as the NIS flying at one 

kilometer above ground level, employing a 

radiative transfer model with assumed above-

aircraft atmospheric transmittance could 

produce a significant difference between 

observed and modeled flight-altitude 

irradiances. 

To demonstrate the magnitude of the error introduced into surface reflectance retrievals by 

assuming a cloud-free atmosphere in the presence of clouds we have modeled this scenario for an 

aircraft at one kilometer above the ground with several thicknesses of cirrus clouds (Figure 3.4). 

The downwelling irradiance and atmospheric transmittance were modeled with the MODTRAN 

5.3 radiative transfer model using its standard cirrus cloud model (Berk et al., 2006, 2013). Even 

a thin cirrus cloud can introduce significant errors in retrieved surface reflectance. The resulting 

errors at 550 nm are 5%, when the cirrus optical depth is 1.0. Additionally, inhomogeneous cloud 

fields can have rapidly varying illumination conditions, further reducing the usefulness of fixed 

atmospheric transmittance assumptions. With an overlying cloud layer, the uncertainty in the 

 

Figure 3.3: The below cloud observations 

scenario. 

Radiance and irradiance observations are made at 

the aircraft. Using irradiance measurements only 

the dotted region must be modeled for 

atmospheric correction. 
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retrieval model exceeds the measurement error. Simultaneous observations of the downwelling 

irradiance provide the information on atmospheric conditions above the aircraft that is necessary 

for reducing this error. 

 
Figure 3.4: Modeled irradiance at the surface (top left), corresponding surface reflectance 

retrievals (top right), and the error in the retrieved reflectance (bottom right) for four atmospheric 

cases: a cloud-free atmosphere and cirrus clouds of 0.1, 1.0 and 10 optical thicknesses. 

In all four cases the surface reflectances were retrieved assuming a cloud-free atmosphere. This 

assumption results in the shown retrieval error. Optical depth values refer to the optical depth at 

550 nm. The final panel (bottom left) shows the difference between modeled (dotted lines) and 

measured (solid lines) downwelling irradiance spectra collected in cloud free (June 8) and 

overcast conditions (June 16). 

 

 Instrumentation 

The data used for this study were collected during a flight campaign of the NEON Twin 

Otter in June 2015 based at the Boulder Municipal Airport in Boulder, Colorado. The instrument 
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payload included the NEON Imaging Spectrometer and the University of Colorado Boulder Solar 

Spectral Irradiance Monitor. Flights were conducted in a variety of atmospheric conditions over 

four days with cloud-free, partly cloudy, and full overcast flight opportunities (Figure 3.5). 

Calibrated reference targets were deployed at the National Oceanic and Atmospheric 

Administration Table Mountain Facility outside of Boulder, Colorado 

(https://www.esrl.noaa.gov/gmd/grad/calfacil/tmtf.html) located at 40.125° latitude, 105.237° 

longitude, and at an altitude of 1689 meters (Figure 3.6). 

 

 
Figure 3.5: Sky conditions for the three flight days examined in this study. 

From left-to-right, cloud-free on June 8, 2015, overcast on June 16, 2015, and partial cloud cover 

on June 17, 2015. In two of the photographs the reflectance reference targets, white and black, 

are visible. In the center photo the Twin Otter aircraft is visible overflying the ground site below 

a cloud layer on June 16. 

https://www.esrl.noaa.gov/gmd/grad/calfacil/tmtf.html
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Figure 3.6. NEON planned flight lines over the NOAA Table Mountain Test site. 

This pattern was collected at least once on each of the flight days. Airborne observations were 

supported by ground based validation data collected at the marked Table Mountain ground site. 

(Imagery and Map Data: Google). 

 

3.4.1. NEON Imaging Spectrometer (NIS) 

The NIS is a hyperspectral imaging spectrometer 

developed for NEON by the Jet Propulsion Laboratory, 

and has been previously described in Johnson et al., 2010 

and Kampe, Asner, Green, Eastwood, et al., 2010. The 

NIS has 426 wavelength bands in the region from 380 nm 

to 2510 nm with a spectral sampling of 5 nm and a full-

width half-maximum (FWHM) spectral resolution of 1 to 

1.5 times the spectral sampling interval. A single 

 
Figure 3.7: NIS image flight tracks at 

1 m resolution overlaying AVIRIS 18 

m imagery (Kampe et al., 2013) 
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spectrometer with a two-dimensional detector array is operated in a pushbroom mode that produces 

greater signal to noise ratio (SNR) than would be achieved with a whiskbroom scanner (Johnson 

et al., 2010). The entire imaging spectrometer is housed in a vacuum chamber cooled to below 150 

K to minimize detector dark current and background emission from the instrument optics. The NIS 

is flown at altitudes between 1 and 3 km. An instantaneous field-of-view of 1 milliradian results 

in a ground resolution of 1 to 3 m and a ground swath 600 to 1800 m wide depending on the flight 

altitude. The NIS has a stated 1-σ radiometric accuracy of greater than 95% (Johnson et al., 2010).  

3.4.2. Solar Spectral Irradiance Monitor (SSIM) 

The SSIM is an airborne spectral irradiance radiometer built by the University of Colorado 

Laboratory for Atmospheric and Space Physics. The system measures both up- and downwelling 

spectral irradiance for the wavelength range from 350-2150 nm. The instrument consists of a 

spectrometer module mounted in the aircraft which is coupled by fiber optic cables to foreoptics 

mounted on the exterior of the aircraft. A leveling platform maintains the foreoptics oriented 

parallel to the Earth horizon for aircraft movements and turbulence of less than ±7º. Chapter 2 

describes the SSIM instrument in detail. 

 Methods 

Atmospheric correction requires relating the NIS radiance to known quantities using a 

radiative transfer model. In this study the MODTRAN version 5.3 (Berk et al., 2006, 2013) 

radiative transfer model is employed for this purpose. MODTRAN is often used as the radiative 

transfer core of atmospheric correction routines as in ACORN (Kruse, 2004) and ATCOR (Richter 

& Schläpfer, 2015). Beginning with version 5.1 MODTRAN introduced the option to output an 

atmospheric correction data (acd) file (Berk & Anderson, 2008). The acd output file simplifies the 
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correction process by producing the transmittance and spherical albedo values necessary to 

perform an atmospheric correction in a single model run.  

 In this section, we describe the standard retrieval process for surface reflectance when only 

imaging spectrometer radiance measurements are available. The retrieval is then extended to 

include the irradiance measurements. 

3.5.1. Standard Atmospheric Correction 

A standard atmospheric correction relates the observed at-sensor radiance to the known 

TOA solar irradiance using the radiative transfer model. MODTRAN model runs are required to 

describe the radiative properties over the path from the top of the atmosphere to the surface and 

back to the aircraft altitude. The surface is assumed to be flat and a perfect diffuse reflector. 

Therefore, the method retrieves a surface reflectance scaled to that from an idealized, Lambertian, 

surface (B.-C. Gao et al., 1993; Richter & Schläpfer, 2002; Schaepman-Strub et al., 2006; 

Thompson, Gao, et al., 2015). For simplicity, scaled surface reflectance will be referred to as 

surface reflectance.  

The at-sensor radiance, 〈𝐿〉𝜆, is comprised of three terms: path radiance, 〈𝐿0〉𝜆, direct 

radiance, 〈𝐿𝑇〉𝜆, and the adjacency radiance, 〈𝐿𝑡〉𝜆 (Eq. (3.1)). These equations are for 

monochromatic light and each quantity is normalized to an instrument’s spectral response function. 

These normalized quantities are defined in Eq. (3.2) and denoted by brackets (〈 〉𝜆) (Berk et al., 

2013).  

 〈𝐿〉𝜆 ≈ 〈𝐿0〉𝜆 + 〈𝐿𝑇〉𝜆 + 〈𝐿𝑡〉𝜆 (3.1) 

 〈𝑥〉𝜆 ≡ ∫ 𝑥(𝜆)𝑓(𝜆)𝑑𝜆
𝜆

 (3.2) 
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These radiance terms are either direct MODTRAN outputs, 〈𝐿0〉𝜆, or are calculated, 〈𝐿𝑇〉𝜆 

and 〈𝐿𝑡〉𝜆, from the following six output quantities: 

 Path Radiance (𝐿0): The contribution of atmospheric scattering alone, this term is the 

radiance that would be present if there were no surface or a completely absorbing surface 

below the atmosphere. 

 Sun-to-ground diffuse transmittance (𝑡𝑠): The fraction of incident radiation that passes 

through the atmosphere with at least one scattering event. 

 Sun-to-ground-to-observer direct transmittance (𝑇𝑠𝑜): The fraction of incident 

radiation directly transmitted through the atmosphere, reflected by the surface, and 

directly transmitted to the observer. 

 Sensor-to-ground embedded diffuse transmittance (𝑡): The fraction of radiation 

scattered into the direction of the sensor by the atmosphere when the sensor is located 

within the atmosphere. 

 Sensor-to-ground direct transmittance (𝑇): The fraction of radiation leaving the surface 

and passing to the sensor without being scattered. 

 Spherical albedo (𝜎): The fraction of radiation leaving the surface that is scattered back 

to the surface by the atmosphere. 

The first of the terms, path radiance, 〈𝐿0〉𝜆, is output directly from MODTRAN. Direct 

radiance, 〈𝐿𝑇〉𝜆, is the portion of the incident radiation that scatters off of the observed target and 

is transmitted directly to the sensor. The term is calculated from the transmittances, spherical 

albedo and TOA solar irradiance (𝐹0) by Eq. (3.3). The final term, adjacency radiance, 〈𝐿𝑡〉𝜆, is 

the contribution from radiation reflected from the surface in the neighborhood of the target and 

then scattered to the sensor; it is calculated by Eq. (3.4). The adjacency term is defined by a 
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neighborhood surface reflectance, 𝜌̅𝜆, which is an average of the surface reflectance within the 

observed pixel’s neighborhood. The size of the relevant neighborhood, also known as adjacency 

range, varies with atmospheric conditions and on instrument altitude (Richter et al., 2006). 

Substituting Eqs. (3.3) and (3.4) into Eq. (3.1) produces the desired relationship between radiance 

observations and model outputs (Eq. (3.5)). Eqs. (3.3), (3.4), and (3.5), relating observed radiance 

and TOA irradiance through the MODTRAN atmospheric correction outputs are adapted from the 

MODTRAN documentation (Berk et al., 2013).  

 
〈𝐿𝑇〉𝜆 =

𝜇𝐹0〈(𝑇𝑠 + 𝑡𝑠)𝑇〉𝜆
𝜋

𝜌𝜆

1 − 〈𝜎〉𝜆𝜌̅𝜆
 (3.3) 

 
〈𝐿𝑡〉𝜆 =

𝜇𝐹0〈(𝑇𝑠 + 𝑡𝑠)𝑡〉𝜆
𝜋

𝜌̅𝜆

1 − 〈𝜎〉𝜆𝜌̅𝜆
 (3.4) 

 
〈𝐿〉𝜆 ≈ 〈𝐿0〉𝜆 +

𝜇𝐹0〈(𝑇𝑠 + 𝑡𝑠)𝑇〉𝜆
𝜋

𝜌𝜆

1 − 〈𝜎〉𝜆𝜌̅𝜆
+

𝜇𝐹0〈(𝑇𝑠 + 𝑡𝑠)𝑡〉𝜆
𝜋

𝜌̅𝜆

1 − 〈𝜎〉𝜆𝜌̅𝜆
 (3.5) 

In Eqs. (3.3), (3.4) and (3.5), 〈𝜎〉𝜆, is the spherical albedo convolved with the channel 

spectral response function and 𝜇 is the cosine of solar zenith angle, 𝜃. The final term, 𝑇𝑠, is the 

direct sun-to-ground transmittance calculated from the model outputs where 𝑇𝑠 = 𝑇𝑠𝑜 𝑇⁄ . In this 

simple standard atmospheric correction we ignore the adjacency effect, assuming that 𝜌𝜆 ≈ 𝜌̅𝜆. 

With this assumption, we solve Eq. (3.1) for surface reflectance: 

 
𝜌𝜆 = 

𝜋(〈𝐿〉𝜆 − 〈𝐿0〉𝜆)

〈𝜎〉𝜆𝜋(〈𝐿〉𝜆 − 〈𝐿0〉𝜆) + 𝜇𝐹0〈(𝑇𝑠 + 𝑡𝑠)(𝑇 + 𝑡)〉𝜆
 (3.6) 

3.5.2. Enhanced Atmospheric Correction 

Irradiance observations can be incorporated into the atmospheric correction process with a 

few modifications to the standard method described in the previous section. Incorporating the 

irradiance measurements avoids assumptions of atmospheric conditions above the aircraft. 



 

 42 

Modeling the atmosphere below the aircraft is still required. Two assumptions are still necessary. 

The irradiance is assumed to be constant in the across-track direction because aircraft irradiance 

measurements are only made at the center of the flight track. This assumption could be validated 

by using the stability of the observed downwelling irradiance as a proxy for the across-track 

variation. The irradiance recorded when the surface was imaged was used for each retrieval and 

the two observations were synchronized using the GPS system time. Matching imagery with 

spectral irradiance acquired when the aircraft was directly above the surface image implies an 

assumption of horizontal uniformity over a distance between zenith and the actual slant path. For 

the scenes examined in this study this horizontal offset distance varied from 200 to 515 m. Figure 

3.8 illustrates the observing geometry of the aircraft and highlights this horizontal offset. 

Determining the importance of this offset would require knowledge of the atmospheric conditions 

above the aircraft. In a cloud-free atmosphere, irradiance may not vary significantly over that 

distance while scattered clouds could produce substantial changes in downwelling irradiance over 

those distances. 

 
Figure 3.8: A diagram of the observing geometry of the NEON AOP Twin Otter System. 

The diagram illustrates the horizontal offset the direct solar radiation path that is incident on the 

surface and the direct solar radiation that is observed at the aircraft.  
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Eqs. (3.5) and (3.6) relate the NIS radiance to the TOA irradiance but this relation is less 

useful for atmospheric correction below clouds if the properties of the atmosphere above the 

aircraft are not known. Rather than assuming atmospheric extinction above the aircraft, the 

downwelling irradiance measured with the SSIM can be used in place of the TOA irradiance, 

requiring a modification of Eq. (3.6). Sun to ground transmittances, 𝑇𝑠 and 𝑡𝑠, are replaced with 

the aircraft to ground transmittances 𝑇 and 𝑡. The spherical albedo value, 〈𝜎〉𝜆, is replaced with 

the spherical albedo of the layer between the ground and flight levels, 〈𝜎𝐿〉𝜆. Additionally, the 

MODTRAN output path radiance no longer sufficiently represents the observed path radiance 

because it is dependent on downwelling irradiance. Instead the path radiance is calculated via the 

atmospheric reflectance (𝜌𝑎𝜆
) which is derived from the cloud-free MODTRAN outputs of path 

radiance and flight-level downwelling irradiance (𝐹𝐹↓) such that 𝜌𝑎𝜆
= 𝐿0 𝐹𝐹↓⁄ . The below cloud 

path radiance is calculated by multiplying 𝜌𝑎𝜆
 by the SSIM downwelling irradiance. Substituting 

the observed flight-level downwelling irradiance for TOA irradiance produces Eq. (3.7).  

 
〈𝐿〉𝜆 ≈ 〈𝐿0〉𝜆 +

𝐹𝐹↓〈(𝑇 + 𝑡)𝑇〉𝜆
𝜋

𝜌𝜆

1 − 〈𝜎𝐿〉𝜆𝜌̅𝜆
+

𝐹𝐹↓〈(𝑇 + 𝑡)𝑡〉𝜆
𝜋

𝜌̅𝜆

1 − 〈𝜎𝐿〉𝜆𝜌̅𝜆
 (3.7) 

At this point we can solve Eq. (3.7) for 𝜌𝜆, employing the same assumption, 𝜌𝜆 ≈ 𝜌̅𝜆, that 

was employed for the standard retrieval. The resulting surface reflectance is the enhanced 

atmospheric correction retrieval, without adjacency correction. 

In the standard and enhanced retrievals above we ignored the adjacency effect, assuming 

𝜌𝜆 = 𝜌̅𝜆. However, the SSIM measurement of upwelling irradiance provides a measure of the 

adjacency effect. The upwelling irradiance expected at the SSIM, (𝐹𝐹↑), can be calculated from the 

observed downwelling irradiance and model outputs, using Eq. (3.8).  
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𝐹𝐹↑ = 𝐹𝐹0 +

𝐹𝐹↓〈(𝑇 + 𝑡)2〉𝜆𝜌ℎ𝜆

1 − 〈𝜎𝐿〉𝜆𝜌ℎ𝜆

 (3.8) 

This relationship is derived from Eq. (3.5) by multiplying the diffuse and direct radiance 

terms by π to transform from radiance to irradiance values, assuming that the surface is a 

Lambertian reflector. In addition we introduce two new variables: 𝐹𝐹0, the irradiance equivalent 

of path radiance; and 𝜌ℎ𝜆
, the hemispherical surface reflectance. Combining the direct and diffuse 

transmittance terms reduces reflectance to a single term, 𝜌ℎ𝜆
. This hemispherical surface 

reflectance term is the average surface reflectance of the hemispherical field-of-view of the SSIM; 

it is weighted by both the cosine of the nadir angle and the atmospheric transmittance. This inherent 

weighting defines the relevant “adjacency neighborhood”. The hemispherical surface reflectance 

can be derived from the upwelling irradiance observations by solving Eq. (3.8) for 𝜌ℎ. 

We can use 𝜌ℎ𝜆
 as an approximation for the true adjacency surface reflectance, eliminating 

the assumption that 𝜌̅𝜆 = 𝜌𝜆. Then the surface reflectance, 𝜌𝜆, is calculated with the assumption 

that 𝜌̅𝜆 = 𝜌ℎ𝜆 , the flight-level downwelling irradiance, 𝐹𝐹↓, and the model output terms: 𝑇, 𝑡, 

〈𝐿0〉𝜆, and 〈𝜎𝐿〉𝜆 (Eq. (3.9)). 

 
𝜌𝜆 = [〈𝐿〉𝜆 − 〈𝐿0〉𝜆 −

𝐹𝐹↓〈(𝑇 + 𝑡)𝑡〉𝜆
𝜋

𝜌̅𝜆

1 − 〈𝜎𝐿〉𝜆𝜌̅𝜆
]
𝜋(1 − 〈𝜎𝐿〉𝜆𝜌̅𝜆)

𝐹𝐹↓〈(𝑇 + 𝑡)𝑇〉𝜆
 (3.9) 

In the results presented below we will refer to this retrieval as the enhanced retrieval with 

adjacency correction. 
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 Results 

The NEON Twin Otter test flights in June 2015 

provided opportunities to test the enhanced atmospheric 

correction. During this flight campaign SSIM and NIS data 

were collected from the aircraft. Ground truth reflectance 

measurements of calibrated reference targets were made at 

the National Oceanic and Atmospheric Administration 

Table Mountain Facility outside of Boulder, Colorado. The 

reference targets were 10 m x 10 m tarps (approximately 100 

NIS pixels) with relatively flat spectral reflectances of 0.03 

and 0.48 (Figure 3.9). Ground truth spectra were acquired 

for the tarp targets as well as the vegetation and road 

surfaces at the ground site. These measurements were made 

using an PANalytical/ASD FieldSpec 3 field spectrometer 

(Goetz et al., 1975). We compared these ground site 

measurements to the surface reflectances retrieved from the 

NIS observations using the standard and enhanced atmospheric correction methods. 

Ground-based surface reflectance measurements were made by observing a NIST traceable 

calibrated Spectralon reference panel, followed by measurements of the target surface, finishing 

with another measurement of the reference panel. By comparing the observations of the unknown 

surface to the known reflectance panel, the unknown reflectance can be derived. However, the 

incident downwelling irradiance between these two reference panel measurements may be 

changing, due to varying atmospheric conditions or solar geometry, introducing uncertainty into 

 

Figure 3.9: True color NIS imagery of 

the field ground site. 

The 0.03 and 0.48 reflectance targets 

are the black and white squares, 

respectively. The brown and green 

rectangles show where the dirt road 

and vegetation reference spectra were 

collected. The tarps, road and 

vegetation regions amount to 

approximately 400 pixels. 
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the retrieved surface reflectance. An additional source of error in the ground measurements is 

imperfect spatial sampling, so that slightly different sections of the reference tarps and vegetated 

surfaces were measured on repeat measurements. These and other possible error sources can result 

in multiple measurements of the same surface with different reflectance values (Figure 3.10). In 

cloud-free conditions on June 8, repeated surface reflectance observations produced standard 

deviations up to 0.025, for the dirt road, and the 0.48 tarp has a standard deviation greater than 

0.02 at all wavelengths longer than 500 nm. Figure 3.10 shows the reflectance spectra and standard 

deviations for the four reference surfaces; the 0.48 tarp, vegetation, and dirt road spectra are plotted 

with the same axes to allow a comparison. Mean derived surface reflectances for June 16 and June 

17 are also shown to illustrate the variation of the observed surface reflectance in different 

illumination conditions. For the reference tarps the mean reflectance values for June 16 and 17 are 

within the standard deviation of cloud-free observations from June 8. The natural surfaces, the dirt 

road and vegetation show more variation between days. The dirt road surface has significantly 

lower reflectance on the overcast day, June 16. It is unclear whether this decrease is due to the 

different illumination or whether the road surface had been changed, possibly becoming damp. 

The NIS retrieved surface reflectance spectra are compared to the mean of several ground surface 

reflectance measurements made on the same day as the airborne observations to account for 

differences in illumination over the three days of observations. 
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Figure 3.10: ASD derived surface reflectances for the 0.03 and 0.48 reflectance reference tarps, 

a vegetated surface and the dirt road. 

The lines show the mean reflectance spectra measured for each of the three collection days. The 

shaded region shows the standard deviation, ±1σ, of the measurements made on June 8 with 

cloud-free conditions. 

 

Airborne flight data were collected over several days with varied atmospheric conditions. 

Figure 3.5 shows a photograph taken during data collection on each day. On the morning of June 

8 observations were made under nearly cloud-free conditions with the aircraft flying at 1000 m 

above ground level (AGL). Clouds were present near the horizon over the mountains far to the 

west of the ground site (Figure 3.5 left panel). On the morning of June 16 conditions were overcast, 

with scattered low cumulus clouds below a stratus cloud layer. On this day the aircraft operated at 

an altitude of 260 m AGL to remain below the cloud base. The flight on the afternoon of June 17 

captured more complex sky conditions with a mixed of scattered cumulus and high altitude cirrus. 

The aircraft flew at 1000 m AGL. The inhomogeneous and optically thick cloud conditions on 
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June 16 present an extreme challenge to atmospheric correction. Our ideal target cloud conditions 

of optically thin, relatively homogeneous cirrus did not occur during the test flight period. Four or 

five flights lines were collected during the flight opportunity on each day. These flight lines were 

collected along latitudinal and meridional tracks centered on the crossroads shown in Figure 3.9. 

The flight directions were rotated with each line collected so that the meridional lines were 

collected in both north to south, and south to north directions while the latitudinal lines were 

collected both east to west, and west to east. Results from a single flight line on each day are 

presented in Figure 3.11. 

For the three flight days we performed a standard atmospheric correction, shown in blue, 

and an enhanced correction, without the adjacency correction, shown in orange, and an enhanced 

correction using the adjacency correction shown in red. These colors have been kept consistent 

across the all the tables and figures. Both the standard and the two enhanced corrections were 

performed using the MODTRAN standard mid-latitude summer atmospheric profile as the input 

to the radiative transfer model. Only the aircraft altitude, solar zenith angle, day of the year, and a 

single scene value of column water vapor were modified in the radiative transfer model. Column 

water vapor was scaled to minimize the residual absorption. No attempt was made to retrieve 

aerosol extinction. The absence of a nadir InGaAs spectrometer limited the enhanced retrievals to 

wavelengths shorter than 1000 nm. 

To quantify the comparison of the standard and enhanced atmospheric correction methods 

we calculated the root-mean-square (RMS) error of result of both retrieval methods compared to 

the ASD measurements, shown in Table 3.1. The error values have not been normalized so the 

values are the absolute error, in reflectance units. 
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Figure 3.11: Atmospheric correction results; from top to bottom, for the 0.03 reflectance tarp, 0.48 

reflectance tarp, vegetation, and dirt road. 

Each column lists results from a single flight day; from left to right, June 8, June 16, and June 17. 

Black lines are ASD-derived surface reflectance. Red spectra are the enhanced retrievals with 

adjacency correction, orange are the enhanced retrievals without adjacency correction, and blue 

spectra are the standard retrievals. The light gray spectra are the flight-level albedos, 𝛑𝐋 𝐅𝐅↓⁄ . 

While this is not the same quantity as surface reflectance it is shown for reference. Spectra are the 

mean value averages over all pixels of that surface type. 
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Table 3.1: RMS errors between the NIS retrieved surface reflectances and the ASD derived 

reflectance values. 

Errors are presented for both the standard and enhanced correction methods. Values are absolute 

error values in reflectance units. 

 June 8, 2015 – Cloud-Free June 16, 2015 - Overcast June 17, 2015 - Mixed 

 

Standard 

Enhanced, 

No 

Adjacency 

Enhanced, 

with 

Adjacency 

Standard 

Enhanced, 

No 

Adjacency 

Enhanced, 

with 

Adjacency 

Standard 

Enhanced, 

No 

Adjacency 

Enhanced, 

with 

Adjacency 

0.03 Tarp 0.0133 0.0072 0.0058 0.0062 0.0106 0.0066 0.0193 0.0121 0.0067 

0.48 Tarp 0.0321 0.0751 0.0548 0.130 0.0556 0.0623 0.0492 0.0496 0.0269 

Vegetation 0.0088 0.0359 0.0404 0.0410 0.0297 0.0278 0.0201 0.0121 0.0164 

Dirt Road 0.0095 0.0598 0.0390 0.0370 0.0483 0.0477 0.0364 0.0155 0.0147 

 Discussion 

3.7.1. Spectral Sampling Challenges with Multiple Instruments 

Below cloud the enhanced atmospheric correction’s surface reflectance values are 

generally closer in magnitude to the field spectra but contain more channel-to-channel variation, 

than the standard correction values. This variation can be attributed to the difference between the 

NIS and SSIM spectral sampling and resolution. Combining measurements made by instruments 

with unique slit functions required spectral resampling. In this work the SSIM measurements were 

resampled to the NIS resolution and response function. A result of the mismatch in spectral 

resolution and sampling between the two instruments is evident in the resulting surface reflectance 

spectra at the 762 nm oxygen A-band where there is a very sharp absorption feature in the original 

radiance and irradiance spectra (Figure 3.12, left panel). Combining measurements from the two 

instruments produces a residual overcorrection feature, shaped like an M, in retrieved surface 

reflectance spectra at the location of the oxygen absorption band (Figure 3.12, center and right 

panels). Figure 3.12 demonstrates this problem by comparing modeled downwelling irradiance 

spectra that have been resampled to the NIS and SSIM slit functions. The 9 nm spectral resolution 

of the SSIM versus 5 nm for the NIS results in a broadening of the absorption band. The broadened 

absorption feature then produces an overcorrection at the edges of the band with less of an 
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overcorrection at the band center resulting in the M shape. This type of artifact is common when 

comparing spectrometers having different spectral and sampling resolutions. 

 
Figure 3.12: SSIM and NIS Sampling of the oxygen A-band. 

Left panel shows modeled downwelling irradiance using the NIS spectral response function, in 

black, the SSIM spectral response function, in blue, and the result of resampling the SSIM 

irradiance with the NIS response function. Center panel is the difference between the NIS-

sampled irradiance and the SSIM irradiance that has been resampled to the NIS response 

function. The characteristic M shape is visible. The right panel shows the enhanced, with 

adjacency correction retrieval of surface reflectance for this same wavelength region for 

comparison. 

 
Figure 3.13: Two surface reflectance spectra retrieved using the enhanced atmospheric 

correction method. 

The dashed black line is the result of using the original wavelength calibrations for the two 

instruments. The solid red line is the result of empirically shifting the center wavelengths to 

minimize the magnitude of the feature at 762 nm. The inset expands the oxygen A-band region; 

demonstrating the reduction in spectral mischaracterization error achieved using the empirically 

derived wavelength offsets. 
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The standard retrieval shows a smaller error at the oxygen A-band and the 940 nm water 

vapor band from imperfect characterization of the single spectrometer; adding an additional 

instrument response function magnifies this error. Without perfect knowledge of wavelength 

calibration and slit function FWHM, convolving measurements from the two instruments will 

produce errors that are especially evident around sharp, strong absorption features. Since this error 

is known to arise from wavelength shifts in the sensor spectral characterization we use an empirical 

fit to minimize the error by shifting the instrument center wavelengths by 0.01 nm increments over 

a range of ±3 nm (Qu et al., 2003). An offset is selected by choosing the value that produces the 

smallest magnitude feature in surface reflectance result at the oxygen A-band (Figure 3.13, solid 

red line). For these flights, the empirical best-fit spectral offsets were 1.28 nm for the NIS and -

2.50 nm for the SSIM. These offsets were used to retrieve the surface reflectances shown in Figure 

3.11. The ideal solution to this spectral mismatch problem is to employ the same spectrometer to 

make both imagery and irradiance measurements. This approach is taken by the Specim FODIS 

instrument (Homolova et al., 2009). 

Water vapor absorption centered on 940 nm is responsible for the other large error spike in 

both the enhanced and standard retrieval spectra. Some of this error can be traced to the spectral 

resampling issues discussed above. However, the errors in the water vapor absorption bands are 

also attributed in part to the method used to determine column water vapor. A single column water 

vapor value was empirically determined for each of the three flight days. It has been previously 

shown that column water vapor can vary significantly over a scene (B.-C. Gao et al., 1993; Qu et 

al., 2003). This source of error in the water vapor bands could be minimized by implementing a 

pixel-by-pixel retrieval. Many existing atmospheric correction algorithms already incorporate such 

a correction (Richter & Schläpfer, 2015). 
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3.7.2. Solar Geometry Correction for Enhanced Retrievals 

Examining the cloud-free results, in the leftmost column of Figure 3.11, we see that there 

are significant differences between the enhanced and standard retrievals. A large improvement was 

not expected in cloud-free conditions; the model atmosphere closely approximates the cloud-free 

conditions for that day. However, both of the enhanced retrievals less accurately match the ground 

surface reflectance measurements, with three of the four surface types show larger RMS errors. 

The enhanced methods produced larger error for the 0.48 reflectance tarp, vegetation, and road 

surfaces while producing smaller errors for the 0.03 reference tarps (Table 3.1). A portion of the 

error is attributable to differences between the observed and modeled downwelling irradiances 

(Figure 3.4, bottom left panel) possibly suggesting that atmospheric conditions did not match the 

modeled cloud-free atmosphere. However, the majority of the error can be attributed to the solar 

geometry of the scene, and the assumptions made for the enhanced retrieval methods. The direct 

solar portion of irradiance has a slant path that is longer than the vertical ground to aircraft path 

(Figure 3.8). This path can be corrected by introducing the cosine of the solar zenith angle, or μ 

(highlighted in red), into the directly transmitted term of Eq. (3.9), producing: 

 
𝜌𝜆 = [〈𝐿〉𝜆 − 〈𝐿0〉𝜆 −

𝐹𝐹↓〈(𝑇 + 𝑡)𝑡〉𝜆
𝜋

𝜌̅𝜆

1 − 〈𝜎𝐿〉𝜆𝜌̅𝜆
]

𝜋(1 − 〈𝜎𝐿〉𝜆𝜌̅𝜆)

𝜇𝐹𝐹↓〈(𝑇 + 𝑡)𝑇〉𝜆
 (3.10) 

Adding this term accounts for the decreased transmittance due to the slant path when the sun is 

off-zenith. However, this correction is only possible if the direct and diffuse components the 

downwelling irradiance are known. Figure 3.14 shows the surface reflectance retrievals including 

the solar zenith angle correction, assuming the MODTRAN modeled direct and diffuse irradiance 

proportions. The result is that the retrieved surface reflectance spectra are very similar to the 

standard retrievals. The RMS errors of the vegetated surface retrievals are decreased to 0.0189 and 

0.0129, respectively, for the enhanced methods with and without adjacency correction. These 
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values are still larger than the standard retrieval value of 0.0088 but less than half of the 

uncorrected RMS error values. 

 

Figure 3.14: June 8 vegetated surface retrievals in cloud-free conditions. 

The left panel reproduces the plot from Figure 3.11. In the right panel the two enhanced 

retrievals, shown in red and orange, have been modified to account for the slant path of the direct 

solar irradiance. 

 

Assuming the modeled direct and diffuse irradiance partitioning improves results for a 

cloud-free scenario. However, this assumption would be poorer in the presence of clouds because 

a cloud layer would increase the amount of diffuse downwelling irradiance relative to the direct 

amount. Since we primarily wanted to demonstrate the below-cloud retrievals all of the result 

shown in Figure 3.11 were retrieved without the solar zenith angle correction in the enhanced 

retrievals. An ideal solution to this problem would be an irradiance instrument that is capable of 

measuring both total and diffuse irradiance allowing for the correction factor to be calculated. This 

measurement is technically difficult to make on an airborne platform and no such instrument has 

yet been deployed. 

3.7.3. Impacts of Upwelling Irradiance based Adjacency Correction 

In all but three cases the enhanced retrieval including the adjacency correction more 

accurately retrieved the surface reflectance spectra, as quantified by RMS error, than the enhanced 
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retrieval without the adjacency correction. This can be seen most clearly in the retrievals for June 

8 and 17 in Figure 3.11. On these days the adjacency effects, while small in a cloud-free 

atmosphere, are responsible for the significant deviation of the standard retrieval from the ground 

truth observations. The effect is most noticeable for the two reference tarps and less pronounced 

for the vegetation or road surface because the tarp surfaces have reflectance spectra that contrast 

significantly with the adjacency reflectance of the scene. The reflectance spectra retrieved with the 

standard method, and enhanced method without the adjacency correction, are too high for the 0.03 

tarp, especially at wavelengths longer than 700 nm, and too low for the 0.48 tarp, especially at 

wavelengths shorter than 700 nm. The direction of these errors is consistent with the adjacency 

effect because the scene’s adjacency reflectance is dominated by the vegetation reflectance 

spectrum, which is brighter than the 0.03 tarp but darker than the 0.48 tarp. The sharp change in 

vegetation reflectance due to the near-infrared edge at 700 nm is consistent with the magnitude of 

the difference between the two enhanced retrieval results which changes at this same wavelength. 

The road and vegetation spectra more closely match the scene adjacency reflectance spectrum, 𝜌̅, 

so the difference between deriving adjacency reflectance from the upwelling irradiance 

observation and assuming that 𝜌̅ = 𝜌 is minimal. 

3.7.4. Below-Cloud Retrieval Performance 

Results from the overcast day, June 16, demonstrate the improvements using the enhanced 

correction method (Figure 3.11, center column). For all the surfaces the standard atmospheric 

correction reflectances are significantly lower than the ASD ground measurements, by as much as 

0.2 at some wavelengths. The low bias results from the standard retrieval not accounting for the 

decrease in atmospheric transmittance due to the overlying cloud. Therefore, the surface 

reflectance must be lower for the modeled radiance to match the NIS observations. For the 

reference tarps, and vegetation surfaces the enhanced method with adjacency correction produces 
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surface reflectance values much closer to the ASD measurements than the standard results. While 

both enhanced retrievals produce a larger error for the dirt road target than the standard method, 

though the enhanced retrievals of reflectance are too high and the standard result is too low. The 

other three surface types show improvement, with RMS errors reduced by up to 57% from the 

standard method. The result is retrieved surface reflectance values with errors that approach the 

radiometric accuracy of the NIS. This regime, when the aircraft is below clouds, is where the 

enhanced retrievals produce the greatest improvements over the standard method.  

Observations from June 17 tell a story that is not entirely captured by the results shown in 

the right column of Figure 3.11. These results show a significant improvement in the surface 

reflectance retrieval with the enhanced methods. However, the sky conditions overlaying these 

observations were mixed scattered cumulus below cirrus clouds. Throughout the collected flight 

lines various clouds, both cirrus and cumulus, drifted in front of the sun with occasional cloud-free 

periods. While the mean spectra and RMS error values shown compare favorably with the other 

results from the other days they do not capture the quickly changing cloud conditions. Over the 

period of 100 seconds, roughly the length of a flight line collection, the downwelling irradiance 

varied by more than ±20%, occasionally changing rapidly, by up to 80% over 10 seconds. In such 

rapidly change conditions the sampling rate of the SSIM, 1 Hz, may be insufficient. Additionally 

differences between scene illumination and the observed downwelling irradiance due to horizontal 

offset problem, discussed in section 3.5.2, from solar zenith angle could introduced very 

substantial errors in the retrieved surface reflectances. 

 Summary 

Accurately retrieving surface properties from airborne hyperspectral imagery below clouds 

is a challenging task for atmospheric correction. The improvements achieved in this work 
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demonstrate that there is great potential for making accurate below cloud retrievals by assimilating 

simultaneous observations of spectral up- and down-welling irradiance. Retrieval accuracy was 

generally improved, with the RMS error in the retrieved surface reflectance reduced by up to 57% 

for the overcast flight. This improvement was made despite the difficult cloud conditions 

encountered on the overcast flight day, June 16. The cloud field on this day presented a very 

complex scene with an optically thick inhomogeneous cloud field including multiple cloud types, 

and quickly changing conditions. There are, however, limitations associated with making 

observations below clouds. The signal-to-noise ratio is necessarily reduced due to the lower 

transmission of the cloud compared to cloud-free atmosphere. There is also an increase in channel-

to-channel variation in the retrieved reflectance due to imperfect spectral resampling arising from 

the differing resolution and sampling of the SSIM and NIS. Simpler cloud conditions, such as thin 

cirrus or more homogeneous scenes should be more straightforward to correct and produce more 

accurate surface reflectance retrievals. However, the ability to retrieve surface properties below 

clouds presents the opportunity to collect additional data, or make more frequent repeat 

observations at times when data collection was previously avoided. 

Incorporating SSIM irradiance measurements into the atmospheric correction routine 

reduced RMS error by up to a factor of two, for below cloud observations. Below clouds, the 

enhanced correction produces more accurate surface reflectances than the standard method. In 

addition, during cloud-free conditions the accuracy of the enhanced method approaches that of the 

standard method. The additional channel-to-channel variation present in the surface reflectances 

spectra retrieved with the enhanced correction is a result of imperfect spectral calibration of the 

two instruments. Ideally the irradiance and imaging spectrometer measurements should be made 

with the same detector to minimize this spectral effect. These improvements are largest and most 



 

 58 

consistent below cloud fields with little horizontal variation, while the variation in irradiance 

below broken cloud fields may exceed the temporal resolution of the current SSIM instrument. 

The SSIM observations result in a second benefit, upwelling irradiance measurements can be used 

to provide an estimate of the adjacency effect of the scene. 

A major limitation of the enhanced retrievals in this study is the spectral sampling between 

instruments. This problem has been previously solved by using the same spectrometer and detector 

to observe irradiance and imagery; an approach used to some extent with other instruments such 

as Specim’s FODIS (Homolova et al., 2009).  

For the cloud-free scenes the enhanced retrieval methods produced less accurate retrievals 

than the standard method due primarily to the solar geometry. Properly correcting this effect, 

without assumptions of the above aircraft transmittances, would require aircraft measurements of 

the direct and diffuse downwelling irradiances. An airborne instrument capable of these 

measurements is technically challenging to build and no such instrument has been previously 

described. Ground-based measurements are often made by periodically moving sun-shades into 

the direct solar radiation path to enable to measurement of diffuse in addition to total irradiance 

(Harrison et al., 1994; Reynold et al., 2001). Implementing a moving sunshade on the exterior of 

an aircraft is a difficult engineering problem which complicates an airborne instrument 

implementation. 

The enhanced retrievals that use the upwelling irradiance measurement to estimate the 

adjacency effect achieve smaller errors than ignoring the adjacency effect. More accurate surface 

reflectance retrievals were achieved using the adjacency correction in both cloud-free and overcast 

scenes. However, we did not examine the performance of this adjacency correction against many 

of the other techniques that are in use such as approximating the adjacency effect from the imagery 
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itself (Richter, 1998; Richter & Schläpfer, 2015). This work shows that an irradiance-based 

adjacency correction is better than no correction. Based on this result, further investigation is need 

to determine how this upwelling irradiance-based method compares to existing adjacency 

correction techniques. 

Beyond the methods presented, there are many opportunities for improving below-cloud 

atmospheric correction method. This work demonstrated that airborne irradiance observations can 

contribute to more accurate atmospheric correction below cloud layers using a simple retrieval 

technique. However, further improvements could be made by incorporating more advanced 

techniques already employed in other atmospheric correction routines, alongside spectral 

irradiance observations. This includes techniques for retrieving atmospheric conditions, such as 

visibility and pixel-by-pixel column water vapor, from the imaging spectrometer data instead of 

using a default atmospheric profile. 
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The predecessor of the NEON leveling platform sub-system was originally developed for 

the NASA aircraft ER-2 under grant NNX10AV05G from NASA's Earth Science Technology 

Office, and later adapted for the NASA C-130 aircraft under NNX12AC11G (NASA's Radiation 

Science Program), which also funded the development of the spectrometer sub-system. The NASA 

ARISE experiment (Smith et al., 2017) included a sibling instrument to the NEON SSIM with both 

spectrometer and leveling platform systems. 
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Chapter 4  

An Informed Non-Negative Matrix Factorization Method for Unmixing Atmospheric and 

Surface Signals in Hyperspectral Imagery 

 

 Abstract 

Radiance observations made by hyperspectral imaging spectrometers in the solar portion 

of the electromagnetic spectrum are a mixture of signals from surface reflectance, atmospheric 

absorption, molecular scattering, and aerosol scattering. To retrieve physical properties from these 

observations the signals must be unmixed and attributed to their sources. Typically, model-based 

methods, such as atmospheric correction, are used in this step. In this paper, we develop a 

numerical unmixing algorithm, Informed Non-Negative Matrix Factorization (INMF), to attribute 

signals in place of model-based approaches. INMF is a cost function minimization routine that has 

been developed to incorporate knowledge of the physics of radiative transfer as constraints to the 

cost function. Implemented constraints include fixing the well-known spectral shape of molecular 

scattering and generating initial guesses of source spectra, also known as endmembers, from 

library reflectance spectra. The improved initial guesses and cost function constraints cause INMF 

to favor physically plausible solutions. INMF was applied to simple dark ocean images collected 

by the Hyperspectral Imager for the Coastal Ocean (HICO). To evaluate the results of the method, 

quantitative metrics of algorithm performance were defined and assessed, and the INMF solutions 
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were compared, in magnitude and spectral shape, with traditional model-based atmospheric 

correction radiance products. Using two of these simple images, we show that the method is 

sensitive to the choice of subset from within the HICO images. We tested the algorithm’s 

sensitivity to initial conditions by perturbing the initial guess endmember spectra with ±30% 

systematic (wavelength-independent) offsets. The resulting solution endmembers converged 

towards the non-perturbed solution. The best case INMF solution of atmospheric scattering and 

water-leaving radiance differed from a standard model-based atmospheric correction (L2GEN or 

the Level-2 data product generator), by 3.4% and 24.9%, respectively. The INMF solutions were 

sensitive to scene type and number of endmembers.  

 Introduction  

Hyperspectral imagers are a growing class of sensors that produce data widely applicable 

to many geophysical disciplines. Hyperspectral instruments are defined by their spectral 

resolution, requiring the “acquisition of images in many narrow contiguous spectral bands” (Goetz 

et al., 1985). Collecting a large number of contiguous spectral channels has many benefits over 

multispectral instruments that collect data in a limited number of discrete bands. For example, 

hyperspectral data can be used to derive a wider variety of science data products, including surface, 

vegetation and atmospheric properties (Goetz, 2009; Shaw & Burke, 2003). A core challenge of 

remote sensing is identifying the radiative processes such as atmospheric scattering, absorption, or 

surface reflectance, that contribute to the observed signal. Spectral unmixing, the process of 

separating hyperspectral imagery into component spectra (Keshava & Mustard, 2002), is one 

technique that was developed to address this attribution challenge by exploiting the additional 

spectral information provided by hyperspectral instruments. Attribution is especially important for 

climate monitoring (Wielicki et al., 2013). 
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Spectral unmixing can also extract sub-pixel information by deriving the fraction of various 

signal sources in a single pixel (Keshava, 2003). The subpixel information is the fraction of signal 

that is attributed to each source present in a pixel as opposed to classifying a pixel as a single type 

of source. Pixels are currently ascribed to a single source in products such as the National Land 

Cover Database (derived from Landsat Thematic Mapper imagery) (Homer et al., 2015), but more 

information can be extracted from subpixel analysis. 

Many unmixing techniques have focused on surface signals, so they have been applied to 

surface reflectances (Bioucas-Dias et al., 2012; Keshava & Mustard, 2002), which are retrieved 

from the observed at-flight level radiances through atmospheric correction (B.-C. Gao et al., 

2009). Atmospheric correction uses modeled atmospheric absorption and transmittance to 

calculate the surface reflectance (Goetz et al., 1997). This process depends on input conditions 

such as trace gas concentration and aerosol optical thickness. Uncertainty in these inputs limits the 

accuracy of the derived surface reflectance (B.-C. Gao et al., 2009). One commonly used 

commercial algorithm, Atmospheric/Topographic Correction for Airborne Imagery (ATCOR) 

(Richter & Schläpfer, 2015), retrieves surface reflectance with an accuracy of 10-20% depending 

on the target’s surface reflectance, with darker surfaces having larger uncertainty (Richter & 

Schläpfer, 2002). A 10-20% accuracy is larger than the radiometric accuracy of modern 

instruments. For example, the Hyperspectral Imager for the Coastal Ocean (HICO) has a 

radiometric accuracy of 5% (Michael R. Corson et al., 2008). Moreover, these uncertainties are 

much larger than what the next generation of hyperspectral imagers are expected to achieve. 

Instruments on the NASA Climate Absolute Radiance and Refractivity Observatory (CLARREO) 

mission aims to have accuracies on the order of 0.3% (Wielicki et al., 2013). The accuracies of 

retrieved products like surface reflectance and instrument measurement accuracies are not the 
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same quantity, but the difference illustrates the need for more accurate retrieval methods to exploit 

improvements in instrumentation. 

Our approach is to avoid model-based atmospheric correction by directly applying a 

numeric unmixing method to the radiance measurement. The observed at-sensor radiance is a 

combination of atmospheric signals, such as molecular, aerosol, and cloud scattering, and surface 

signals. From at-sensor radiance, the unmixing method attributes both surface and atmospheric 

signals while surface reflectance can only be used to attribute surface signals. This is expected to 

improve the accuracy of signal attribution. 

A wide variety of numeric spectral unmixing techniques have been developed and applied 

to hyperspectral imagery including Independent Component Analysis (ICA) (Chiang et al., 2000; 

Comon, 1994), Principal Component Analysis (PCA) (Jolliffe, 2002; Roberts et al., 2014), N-

FINDR (Winter, 1999), Pixel Purity Index (PPI) (Boardman et al., 1995), Non-negative Matrix 

Factorization (NMF) (D. D. Lee & Seung, 1999, 2001; Pauca et al., 2006), Vertex Component 

Analysis (VCA) (Nascimento & Dias, 2005), and many others (Keshava & Mustard, 2002). These 

unmixing techniques have several common limitations. Methods such as ICA and PCA use 

statistical requirements for separating components, such as minimizing mutual information, for 

ICA (Comon, 1994), and orthogonality, for PCA (Jolliffe, 2002). However, important physically 

distinct sources are not necessarily spatially, spectrally, or temporally independent or uncorrelated 

(Rabbette & Pilewskie, 2001; Roberts et al., 2011, 2014). Other approaches, like N-FINDR, PPI, 

and VCA, rely on the presence of a pure pixel of each source type within the image (Boardman et 

al., 1995; Nascimento & Dias, 2005; Winter, 1999), which is not possible when separating surface 

and atmosphere signals. Further, many unmixing methods, such as NMF, have algorithmic issues 
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including sensitivity to initial conditions and uncertainty in the number of endmembers (Berry et 

al., 2007) and others, such as PCA, can produce negative radiance values. 

In this work, we develop a spectral unmixing method, informed non-negative matrix 

factorization (INMF) based on the NMF algorithm (D. D. Lee & Seung, 2001). NMF was chosen 

as the base method for the work because NMF produces a non-negative separation, and is 

algorithmically flexible (Jia & Qian, 2009; Pauca et al., 2006). We exploited this flexibility to add 

constraints to the algorithm that are based on the physics of radiative transfer. This paper details a 

first attempt at using NMF to separate atmospheric and surface contributions. We assess the ability 

of NMF to separate source signals with linear assumptions and physics based constraints and 

whether it is sufficient for this application. Specifically, we evaluate the performance and success 

of the algorithm by examining two HICO images for: 

 sensitivity to initial conditions, including the magnitude of initial endmember spectra, 

 sensitivity to spatial variation within a scene, and 

 comparison to results from a model-based atmospheric correction including 

quantitative measures of absolute error and measures of spectral shape similarity. 

We describe a conventional NMF approach in section 4.3, the INMF spectral unmixing 

method in section 4.4, the HICO atmospheric correction data in section 4.5, the INMF results in 

section 4.6, a discussion of algorithmic sensitivity and performance in section 4.7, and conclusions 

in section 4.8. 

 Non-Negative Matrix Factorization (NMF) 

NMF is a multivariate decomposition technique that has been employed for data analysis 

applications such as text-mining and spectral analysis (Berry et al., 2007). NMF assumes a linear 

mixture model. In this model an observed spectrum, 𝒀, can be represented as a set of endmembers, 
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𝑿, that are scaled by weighting factors, 𝑺, such that 𝒀 = 𝑺𝑿 + 𝑵, where 𝑵 is an additional 

measurement error vector. Linear mixing models have been used extensively in surface remote 

sensing based on the assumption that there is negligible scattering between different surface 

materials (Keshava & Mustard, 2002). We recognize that a linear mixing model is not ideal for 

atmospheric signals because the radiative processes within the atmosphere and at surface are 

affected by non-negligible multiple scattering events between the surface and overlying 

atmosphere and between different physical atmospheric features such as gas molecules and cloud 

droplets (Bioucas-Dias et al., 2012; Keshava & Mustard, 2002). 

When applied to hyperspectral imagery, NMF factors the input data into spectral 

endmembers, which represent the spectral shape of each separated source, and spatial abundances, 

which describe the amount of each endmember in each image pixel. While hyperspectral imagery 

is three-dimensional, with one spectral and two spatial dimensions, it is simplest to perform the 

spectral unmixing on two-dimensional arrays. Therefore, the hyperspectral image is flattened into 

a two-dimensional array, 𝑨, of m spectral bands and n number of pixels. Given a flattened 

hyperspectral image as input, an NMF routine produces an array of spectral endmembers, 𝑾, 

having dimensions of m-by-k and an array of spatial abundance factors, 𝑯, with dimensions k-by-

n, (Figure 4.1). The number of endmembers, k, must be defined by the user; in general, k is chosen 

to be much less than both m and n so the dimensionality of the dataset is decreased. The reduced 

dimensionality results in a reconstruction such that the product of the endmembers and 

abundances, 𝑾𝑯, approximately represents the input data, 𝑨: 𝑨 ≈ 𝑾𝑯. 
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Figure 4.1: A graphical representation of the NMF decomposition. 

The original image data, A, with m rows of wavelengths and n columns of pixels is factored into 

an array of k spectral endmembers, W, and k spatial abundances, H. 

 

Given this framework an NMF algorithm solves for W and H by minimizing a cost 

function. The standard cost function, 𝐷(𝑾,𝑯), is the square of the Euclidean distance between 

the original image and the NMF approximation (D. D. Lee & Seung, 2001): 

 𝐷(𝑾,𝑯) = ‖𝑨 − 𝑾𝑯‖2 (4.1) 

One drawback to this method is that the solution space defined by Eq. (4.1) may have many 

minima, with no guarantee that each represents a physically realistic solution. By simply 

minimizing the cost function the solution may converge to a minimum that is not a physically 

possible result. The presence of multiple minima within the solution space means that the INMF 

algorithm’s result depends on the initial conditions, including initial endmember spectra, initial 

spatial abundances, and the number of endmembers (Pauca et al., 2006). While the algorithm is 

sensitive to the number of endmembers used for unmixing we do not examine approaches to 

automated selection of the number and type of endmembers. Instead we manually chose the 

number and type of endmembers based on the expected major contributing sources from a visual 

inspection of the image. 
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 Informed NMF (INMF) 

4.4.1. Constraints for the INMF Cost Function 

The goal of introducing constraints is to address the inherently under constrained nature of 

the NMF problem and help the INMF solution to be physically realistic. To the basic cost function, 

Eq. (4.1), we introduce constraints on spectral and spatial smoothness that produce a more 

physically realistic result. The spectral constraint assumes that real surface reflectances are 

spectrally smooth at the spectral resolution of hyperspectral instruments (Hunt, 1977). Spatial 

smoothness assumes that spatial patterns vary smoothly across a natural scene, such as a field or 

forest region. Piecewise smoothness is even more appropriate because it can accommodate abrupt 

boundaries, such as sharp land-water boundaries or man-made features that are likely to occur 

within real imagery (Jia & Qian, 2009). 

Piecewise smoothness constraints were introduced by adding two terms to the cost 

function, one for spectral smoothness and another for spatial smoothness (Eq. (4.2)) (Jia & Qian, 

2009). An adaptive potential function (Eq. (4.3)), 𝑔(𝑥𝑖 , 𝑥𝒩𝑖
), determines the smoothness of the 

endmember spectra and spatial abundances based on the difference between the value at a given 

pixel, 𝑥𝑖, or spectral channel, and the values in its spatial or spectral neighborhood (𝒩), 𝑥𝒩𝑖
. The 

size of the neighborhood can be set independently for each endmember and each spatial 

abundance. In this study, we set the spectral neighborhood for all of the endmembers, to five 

spectral channels on either side of the center wavelength. After substantial testing a smoothing 

window of five channels was chosen because five was the smallest window that removed sharp 

channel-to-channel variation from the INMF results. 

 
𝐷(𝑾,𝑯) = ‖𝑨 − 𝑾𝑯‖2 + 𝛼〈𝑔(𝑾 − 𝑾𝒩)〉 + 𝛽〈𝑔(𝑯 − 𝑯𝒩)〉  

(4.2) 

 
𝑔(𝑥𝑖 , 𝑥𝒩𝑖

) =  −𝑒−(𝑥𝑖−𝑥𝒩𝑖
)
2
/𝛾 + 1 

(4.3)  
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The spatial neighborhood was defined as the pixels within a taxicab distance (Krause, 

1986) of two for surface endmembers, and five for the atmospheric endmember. Taxicab distance, 

𝑑𝑡 between two points 𝐴 and 𝐵 with coordinates (𝑥𝑎, 𝑦𝑎) and (𝑥𝑏, 𝑦𝑏), is defined as: 𝑑𝑡 =

|𝑥𝑎 − 𝑥𝑏| + |𝑦𝑎 − 𝑦𝑏|. This distance metric is used because it simplifies the implementation of a 

smoothing window on a gridded data set such as imagery. Setting these neighborhood values 

independently is intended to improve the unmixing of atmospheric and surface contributions which 

vary on different spatial scales. The spatial smoothing window values were set after qualitative 

evaluation of INMF results for simulated and HICO images. These values and the size of the 

spectral smoothing window are dependent on the spatial and spectral resolution of the instrument. 

The spatial windows are also likely to be scene dependent; for example, an urban scene would 

likely require a smaller smoothing window than the ocean scenes examined in this work. 

Implementing the smoothness terms requires four scaling parameters. The constant, 𝛾, 

determines how sharply the cost of the smoothness term decreases as the difference between the 

value, 𝑥𝑖, and the neighborhood values, 𝑥𝒩𝑖
, approaches zero. 𝛾 may have different values for the 

spectral, 𝛾𝑊, and spatial, 𝛾𝐻, domains. The other two parameters, 𝛼 and 𝛽, scale the magnitude of 

the two smoothness parameters relative to the Euclidean norm term.  

The brackets (〈 〉) in Eq. (4.2) represent a sum of matrix elements, and the smoothness 

functions employ their respective parameters, 𝛾𝑊 with 𝑔(𝑾 − 𝑾𝒩) and 𝛾𝐻 with 𝑔(𝑯 − 𝑯𝒩). 

The sensitivity of INMF results to the constraint parameters (𝛼, 𝛽, 𝛾𝑊, 𝛾𝐻) is not examined in this 

paper; these parameters were selected as 0.5, 0.1, 0.01, and 0.5, respectively, following the values 

used in Jia and Qian, [2009]. 
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Using Eq. (4.2) as the INMF cost function results in the following multiplicative update 

rules to minimize the algorithm. For more detailed discussion and proof of this method see Jia and 

Qian, [2009], §IIIB. 

 
𝑾 ← 𝑾 ⊙ (𝑨𝑯𝑇 + 𝛼(𝑾 ⊙ ℎ(𝑾 − 𝑾𝒩) − 𝑔′(𝑾 − 𝑾𝒩)) ⊘ (𝑾𝑯𝑯𝑇

+ 𝛼𝑾 ⊙ ℎ(𝑾 − 𝑾𝒩)) 
(4.4) 

 
𝑯 ← 𝑯 ⊙ (𝑾𝑇𝑨 + 𝛽(𝑯 ⊙ ℎ(𝑯 − 𝑯𝒩) − 𝑔′(𝑯 − 𝑯𝒩))) ⊘ (𝑾𝑇𝑾𝑯

+ 𝛽𝑯 ⊙ ℎ(𝑯 − 𝑯𝒩)) 
 (4.5) 

In these update rules ⊙ and ⊘ denote element-wise multiplication and division, respectively. The 

elements of ℎ(𝑾 − 𝑾𝒩), 𝑔′(𝑾 − 𝑾𝒩), and the corresponding spatial functions ℎ(𝑯 − 𝑯𝒩), 

and 𝑔′(𝑯 − 𝑯𝒩) are defined as: 

 
ℎ(𝑤𝑖 − 𝑤𝒩𝑖

) =
2

𝛾𝑊
∑ 𝑒

−(𝑤𝑖−𝑤
𝑖′
)
2

𝛾𝑊

𝑖′∈𝒩𝑖

 
(4.6)  

 
𝑔′(𝑤𝑖 − 𝑤𝒩𝑖

) =
2

𝛾𝑊
∑ (𝑤𝑖 − 𝑤𝑖′)𝑒

−(𝑤𝑖−𝑤
𝑖′

)
2

𝛾𝑊

𝑖′∈𝒩𝑖

 
(4.7)  

Another constraint, called Abundance-Sum-to-One (ASO), normalizes the abundance of 

each endmember into relative fractions of the total abundance in that pixel. (Heinz & Chang, 2001; 

Jia & Qian, 2009). This constraint does not require a modification of the cost function. Instead, the 

ASO normalization modifies A and W by inserting an additional row vector of ones scaled by a 

parameter, 𝛿, that controls how close the sum of the spatial abundances must be to one: 

 𝑨𝑨 = [
𝑨
𝛿𝟏

]         𝑾𝑨 = [
𝑾
𝛿𝟏

] (4.8) 

These new 𝑨𝑨 and 𝑾𝑨 arrays can simply be substituted for 𝑨 and 𝑾 in the update routine 

(Eqs. (4.4) and (4.5)). 𝛿 can be chosen to be any non-negative number. Increasing the value of 𝛿 

produces a solution where the variability in the sum of abundances is smaller. Decreasing 𝛿 leads 

to larger variability. For all the results presented in this paper 𝛿 was set to 100. This value was 

chosen by testing the two images that were examined in this study. INMF was performed several 

times on the images with a range of 𝛿. With a small value the sums of abundances in any pixel 
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could be larger or smaller than one. As 𝛿 increased the abundance value converge toward one. We 

set 𝛿 = 100 because it was the smallest of the tested values that produced a scene averaged 

abundance sum within 1% of unity (between 0.99 and 1.01). As with many of the parameters used 

for INMF this value will be scene dependent; changes in the number of pixels and radiance level 

of the scene will affect the choice of 𝛿. 

The ASO method can have a drawback when INMF is applied to separating contributions 

from the atmosphere and surface. Consider a highly variable land surface below an unchanging 

atmosphere. In this scenario, while the absolute signal contribution from the atmosphere is constant 

over all the pixels, the relative strength of the surface and atmosphere contributions would vary 

significantly. Since the atmospheric spectral endmember is shared by all pixels, the NMF result 

with an ASO constraint would be unable to produce a correct representation of the atmosphere. 

This problem was resolved by simply modifying the ASO row vector to exclude the atmospheric 

endmembers from the sum constraint. 

4.4.2. INMF Initial Separation Guess 

The presence of an unknown number of minima in the solution space makes the NMF result 

highly dependent on the initial guess. Two random, initialization techniques are widely used with 

NMF. The first randomly generates initial endmember spectra (Berry et al., 2007; Qian et al., 

2011). This approach has obvious limitations given NMF’s strong dependence on initial conditions 

(Berry et al., 2007; Pauca et al., 2006). The second method selects spectra from randomly selected 

pixels to use as the initial guess (Jia & Qian, 2009; Wang et al., 2013). There is a clear drawback 

to this technique for separating atmospheric from surface contributions: these signals are mixed in 

every pixel so the spectrum from any pixel would be a mixed signal making it a poor selection for 

an endmember. Initializing INMF with a physically plausible separation will start the algorithm 

near the correct minimum, increasing the likelihood of convergence toward a physically plausible 
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result. We elected to manually choose the number and type of initialization spectra to ensure a 

physically realistic initial guess. 

The spatial abundance array is initialized with equal abundance fractions. This scheme sets 

the spatial pixels associated with every endmember to the same abundance value. Derived at-

sensor radiance spectra are used as the initial guess of the unmixed endmember spectra for the 

INMF algorithm. The at-sensor radiance spectra are derived using atmospheric and surface library 

spectra in the following approach. Surface reflectance spectra are from the Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) spectral library (Baldridge et al., 2009). 

Cloud reflectance spectra were sourced from NASA Reference Publication 1139 (Bowker et al., 

1985). These cloud spectra are consistent with airborne measurements of cloud albedo from the 

Solar Spectral Flux Radiometer (Kindel et al., 2010). When multiple reflectance spectra were 

available for a single endmember, such as various types of vegetation and soil, the reflectance 

spectra were averaged to produce generic vegetation or soil spectra. The at-sensor radiances 

corresponding to each reflectance spectra (Figure 4.2) were calculated using transmittances 

derived with the MODTRAN radiative transfer model (Berk et al., 2006). MODTRAN calculated 

the transmittances using the solar and observing geometries of each HICO scene and the 

MODTRAN standard mid-latitude summer atmospheric profile. 
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4.4.3. Constraining the Spectral Shape 

of Molecular Scattering 

In addition to the surface and cloud 

reflectance spectra, molecular scattering is a 

significant contributor to at-sensor radiance, 

especially at wavelengths shorter than 600 

nm. Unlike many surface reflectance spectra, 

the spectral shape of molecular scattering is 

well known (Bodhaine et al., 1999). We 

constrain the spectral shape of the molecular 

scattering endmember at each iteration of the 

INMF algorithm so that only the magnitude of 

molecular scattering may vary. In each 

iteration of the algorithm the molecular 

scattering spectral shape is enforced after the 

endmember spectra are updated with Eq. 

(4.4). The known spectral shape of molecular scattering is fit with a scaling factor to the updated 

endmember spectrum by minimizing the least-squares difference. This fitted spectrum is then 

inserted into the endmember array, 𝑾, replacing the existing spectrum for the molecular scattering 

endmember. 

4.4.4. Implementation of Algorithm Introducing a Settle-in Period 

In examining the performance of the INMF algorithm, we found that the solutions could 

diverge from physically plausible endmember spectra. By examining the endmember spectra and 

abundances fractions after every iteration we found that the cause of this divergence was the un-

 

Figure 4.2: Calculated initial guesses of at-sensor 

radiance for a variety of surface types and 

atmospheric contributions. 
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informed initialization of spatial abundance fractions. In the INMF algorithm the spectral 

endmembers and spatial abundances are used in turn to update the other, first with (4.4) and then 

with (4.5), in each iteration. The algorithm produced divergent spectral solutions when the 

endmember spectra are updated using an unrealistic equal and spatially uniform abundances. 

Divergence did not occur for all the scenes examined. The initial endmember spectra and the 

choice of constraint parameters likely also have an effect, though this was not tested. 

A settle-in period was introduced to avoid spectrally divergent results. During the settle-in 

period, the algorithm updates the spatial abundance array, 𝑯, while the endmember spectra are 

held fixed. We propose that introducing the settle-in period reduced the appearance of divergent 

solutions because the abundances were not used to update the endmember spectra for several 

iterations. This meant that the abundances value had already been updated away from the equal 

abundance fraction initialization before they were used to update the endmember spectra. We 

qualitatively determined that a settle-in period of five iterations was sufficient to avoid the 

divergence problem for imagery analyzed in this work. While five iterations were sufficient for 

the scene processed for this study other INMF applications or even other HICO scenes may require 

different periods. After the settle-in period the algorithm begins iterating normally, updating both 

endmembers, 𝑾, and abundances, 𝑯.  

4.4.5. INMF Algorithm Code 

A summary of the INMF algorithm is shown below. The endmember spectra, 𝑾, and 

abundance, 𝑯, arrays are initialized. After initialization, the algorithm enters a settle-in period 

where the spatial abundances values are updated but the endmember spectra are not. After the five 

iterations of the settle-in period the iterative portion of the algorithm updates the spatial abundance, 

𝑯 (step 4a), and the endmember spectra, 𝑾 (step 4b). Then the constrained molecular scattering 

spectrum is inserted into the array of endmember spectra, replacing the existing molecular 
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scattering spectrum (step 4c). Iteration continues until the change in the cost function value 

between subsequent iterations is less than a small value, 𝜖. Appropriate values for 𝜖 depend on the 

dimensions of the scene, number of endmembers, and the average signal level of pixels in a scene. 

For the HICO scenes in this study values of 𝜖 were selected empirically to be between 2×10-10 and 

5×10-10. 

INMF Algorithm 

1. Initialize 𝑾 with derived at-sensor radiances. 

2. Initialize 𝑯 with equal abundance fractions. 

3. Settle-in period: 

a. Update abundances, 𝑯, with Eq. (4.5). 

b. After 5 iterations move to step 4. 

4. Iterate: 

a. Update abundances, 𝑯, with Eq. (4.5) . 

b. Then update endmember spectra, 𝑾, with Eq. (4.4). 

c. Calculate the scaled molecular scattering spectrum and insert into 𝑾. 

d. Iterate until the cost function decrease in an iteration is less than 𝜖. 

 

 Data 

4.5.1. Hyperspectral Imager for the Coastal Ocean (HICO) 

 The Hyperspectral Imager for the 

Coastal Ocean (HICO) was designed and 

built by the U.S. Naval Research Laboratory 

and operated on the International Space 

Station from September 2009 through 

September 2014 (Lucke et al., 2011; Oregon 

State University, 2015). HICO’s focus on 

coastal ocean regions provides challenging 

data for evaluating the INMF spectral 

unmixing method. Coastal ocean scenes are 

 

Figure 4.3: Example spectra of four different 

pixels collected by HICO. 

These top-of-atmosphere radiance values 

include the contributions of molecular and 

aerosol scatter. All of HICO’s 128 wavelength 

channels are shown. 
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complex. They include contributions from water, which includes suspended and dissolved matter, 

chlorophyll, and possibly the ocean bottom (M. R. Corson et al., 2010; Lucke et al., 2011). These 

surface contributions are in addition to atmospheric sources, including aerosol scattering, 

molecular scattering, and clouds, all with overlapping spectral features, that complicate the 

separation of observed signal into source spectra and abundances.  

 HICO had 128 wavelength channels between 352 nm and 1080 nm, with a spectral 

sampling of 5.7 nm and spectral Full-Width-Half-Maximum (FWHM) of 10 nm from 350-745 nm, 

and 20 nm from 746-1080 nm (Lucke et al., 2011). We use a subset of wavelength channels 

between 400 nm and 900 nm where HICO produced its best quality data (Lucke et al., 2011). 

HICO level 1B calibrated radiance data is available from the NASA Ocean Biology Distributed 

Active Archive Center (NASA Goddard Space Flight Center Ocean Ecology Laboratory Ocean 

Biology Processing Group, 2017). Figure 4.3 shows examples of spectra collected by HICO. 

For this work we have applied the vicarious calibration produced by Ibrahim et al., (2018) 

to the HICO level 1B data. Vicarious calibration refers to on-orbit calibration that is performed 

using a target with assumed or measured reflectance properties. In this case the vicarious 

calibration made use of in-situ measurements of water leaving radiance collected by the Marine 

Optical Buoy (MOBY), operated by the National Oceanic and Atmospheric Administration 

(Brown et al., 2007; Clark et al., 1997). The result of this calibration is a gain value for each 

wavelength channel that can then be applied to HICO imagery. 

4.5.2. Atmospheric Correction Products 

To evaluate how well the INMF algorithm performs on the HICO images, we compare the 

INMF solution with the atmospheric and surface signals derived from a standard atmospheric 

correction model. Note that the atmospheric correction data are not ground truth measurements. 

They instead provide a comparison between the INMF results and another approach to separating 
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atmospheric and surface signals. To make these comparisons we processed the HICO scenes with 

a standard atmospheric correction routine, L2GEN (Level 2 Generator) (Ahmad et al., 2010; 

Gordon & Wang, 1994). L2GEN is packaged with NASA’s SeaDAS software package, a satellite 

data processing, analysis and visualization tool (NASA Goddard Space Flight Center Ocean 

Biology Processing Group, 2017). While there are many atmospheric correction tools available we 

chose L2GEN because it is used extensively in the ocean color community. 

We used L2GEN’s atmospheric corrections to determine at-sensor radiances due to the 

atmosphere, from aerosol and molecular scattering; water leaving radiances; and the atmospheric 

transmittances. We compared the INMF molecular scattering endmember to the L2GEN derived 

at-sensor atmospheric radiance. We compared the INMF water endmember to the product of 

L2GEN derived water-leaving radiances and atmospheric transmittances. The accuracy of 

radiances derived with model-based atmospheric routines is affected by the same confounding  

factors that impact INMF results including the viewing geometry, surface reflectance and 

atmospheric transmittance of the scene. The stated goal of this atmospheric correction routine is 

retrieving water-leaving radiance with an uncertainty ≤ 5% (Clark et al., 1997; Gordon & Wang, 

1994; Mobley et al., 2016). 

 INMF Results 

We analyzed two HICO images that include deep ocean regions (Figure 4.4). The first 

shows the Hawaiian Islands of Molokai and Lanai while the second is centered on the Florida 

Keys. The images were chosen for their areas of cloud-free and low aerosol optical thicknesses 

atmosphere that overlie dark ocean regions. This type of image is one of the simplest atmosphere 

and surface separation cases possible because the deep ocean portions of the image have only two  
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significant contributions to the at-sensor 

radiance: the signal from molecular scattering, 

and the signal from the water surface. 

We processed several subsets of each 

image with the INMF algorithm. For the 

Hawaiian Islands image these were the full 

scene, a dark-ocean subset, and a cloud-free 

subset. The dark-ocean subset included only 

dark-ocean regions and was cloud-free. The 

cloud-free subset covers a wider area than the 

dark-ocean subset and includes parts of the 

island. For the Florida Keys image, the 

selections were the full image and a dark-ocean 

subset. 

The Hawaiian Island full image was 

analyzed with five endmembers: water, soil, 

vegetation, cloud, and atmospheric scattering. 

Figure 4.5 and Figure 4.6 show the resulting 

INMF abundance maps, and endmember 

spectra respectively. The cloud-free subset of 

the Hawaiian Islands was processed with four 

endmembers, water, soil, vegetation, and 

atmospheric scattering. The dark-ocean subset 

 
Figure 4.4: True color images of the HICO 

images examined in this paper. 

The left image shows the Hawaiian Islands of 

Molokai and Lanai, and surrounding ocean, the 

right shows the Florida Keys and surrounding 

ocean. The boxes show the three scene subsets 

that were processed with INMF in addition to the 

full scene. On the Hawaiian Islands image, box 

A is the Cloud-free subset and box B is the dark-

ocean subset. On the Florida Keys scene box C is 

the dark-ocean subset. Above each image is the 

HICO ID which corresponds to the time and date 

of the imagery in the format: 

YYYYDDDHHMMSS. The three number long 

day identifier (DDD) is the day of the year.  
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was processed twice, once with only two endmembers (water and atmospheric scattering), and a 

second time with three endmembers (water, cloud and atmospheric scattering).  

 For the Florida Keys image the subsets were the full scene, and the dark-ocean subset 

which was processed with two different sets of endmembers. The full scene was analyzed with 

four endmembers: water, soil, vegetation, and atmospheric scattering. Figure 4.7 and Figure 4.8 

show the resulting INMF abundance maps, and endmember spectra respectively. The dark-ocean 

subset was processed twice, once with only two endmembers (water and atmospheric scattering), 

and a second time with water, vegetation and atmospheric scattering endmembers.  

Abundance maps and endmember spectra are not shown for the selected subsets of Figure 

4.5 and Figure 4.6 but quantitative results are discussed. The significance of the choices for varying 

the number of endmembers and the impacts on the INMF solutions is presented in the following 

section. 
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Figure 4.5: The INMF solution abundances for the full image of the Hawaiian Islands. 

The maps show the abundance fraction of each endmember. On each map the more intense colors 

indicate higher abundance values. 

 

 
Figure 4.6: Endmember spectra for the Hawaiian Islands image. 

The spectra correspond to the same colored map of abundance values from Figure 4.5. The spectra 

in the left panel were used to initialize the INMF algorithm. The right panels shows the 

corresponding solution spectra. 
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Figure 4.7: INMF solution abundances as in Figure 4.5 but for the full image of the Florida 

Keys.  

 

 
Figure 4.8: Endmember spectra as in Figure 4.6 but for the full image of the Florida Keys. 
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 Evaluation of Results 

The INMF results presented in Figure 4.5-Figure 4.8 are for just two images, but we can 

qualitatively examine the strengths and weakness of INMF through these two example cases. 

 In the Hawaiian Islands solution (Figure 4.5 and Figure 4.6), we see that the algorithm 

correctly identifies regions of cloud and vegetation and these endmember spectra are similar to 

their initial spectra. However, the cloudy regions of the image also have significant abundance 

contributions from two other endmembers, atmospheric scattering and soil. This is indicative of 

multiple endmembers representing a single physical source. This confusion is likely a result of the 

high signal level of clouds. The cost function is reduced more by reproducing the bright cloudy 

pixel spectra than by correctly representing the darker soil. The soil endmember appears to have 

been used because it lacked distinctive spectral features. In contrast, there is a physical basis for 

an enhancement in atmospheric scattering over clouds. Cloud scattering within the cloud increases 

atmospheric path length and therefore enhances the signal of atmospheric scattering. 

The water endmember does have high abundances over the ocean but it also has significant 

abundances over the islands. This is a consequence of the low reflectance of surface water. Since 

the signal is small it can appear with significant abundances and not account for significant 

radiance from a land surface pixel. As a result, it often appears in dark non-water regions. For 

example, the water endmember has high abundances in shadowed areas. This is result consistently 

appears in INMF solutions that include the surface water endmember. 

The Florida Keys image is simpler in that it has fewer endmembers and is mostly cloud-

free. However, the INMF solution (Figure 4.7 and Figure 4.8) still suffers from some same 

problems as the Hawaiian Islands image. The water endmember has significant abundance over 

land, though this is less visible since the Keys have fewer land surfaces and less well-defined 
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coastlines. There is also a similar problem with the soil spectrum which does not resemble the 

initial guess. The solution spectrum peaks near 550 nm, in a spectral region where most other 

endmembers are low. This may result from the algorithmic need for an endmember with higher 

signal level between 500 nm and 600 nm where the other endmembers are low. An impact of this 

is that the soil does not appear to represent a pure physical source but rather a part of a source, or 

several sources, when considered in combination with either the vegetation or atmospheric 

scattering endmembers. This interpretation is supported by region below the Keys in the image 

where atmospheric scattering and soil abundances appear correlated. An additional endmember 

might improve the separation of pure physical sources by alleviating the need for a mixing between 

the endmembers. 

This discussion highlighted some of the limitations of the INMF algorithm when applied 

to these two complex scenes. Complex scenes, such as these examples, are cases where both 

atmospheric correction models and numerical approaches struggle.  

4.7.1. Comparison to Atmospheric Correction 

The focus of this paper is the validation of the INMF solutions against atmospheric 

correction approaches for simple cases where only two contributions are expected. Figure 4.9 

shows the comparisons between the INMF results and the L2GEN atmospheric correction radiance 

spectra for the Hawaiian Islands image subsets. Figure 4.10 shows the same for the Florida Keys 

image subsets. The plotted spectra are from the dark-ocean regions (boxes B and C on Figure 4.4 

for the Hawaiian Islands and Florida Keys respectively) of INMF solution for each subset so that 

the same region is compared.  
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Figure 4.9: Comparison of the INMF solutions with the L2GEN atmospheric correction results for 

the Hawaiian Islands image. 

 

The black lines are the atmospheric correction products. The colored lines are the INMF results 

for three different subsets of the scene: red, the full scene; blue, cloud-free subset; and two dark-

ocean subsets, one in orange with two endmembers, and another in green with three endmembers. 

The subsets are outlined on Figure 4.4. The shaded regions on panels (a) and (c) are one standard 

deviation from the mean L2GEN solution for the dark-ocean subset. Shaded standard deviation 

regions are plotted for the INMF results but are so small that they are almost imperceptible. In 

panel (c) the black atmospheric correction line is the L2GEN water-leaving radiance propagate to 

the top-of-the atmosphere using the L2GEN atmospheric transmittance values. The rightmost 

panels, (b) and (d), are the difference between the L2GEN atmospheric correction result and the 

respective INMF mean values. 
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Figure 4.10: Comparison of the INMF solutions with the atmospheric correction results as in 

Figure 4.9 but for the full image of the Florida Keys. 

 

We applied two metrics to quantitatively compare INMF solutions and L2GEN 

atmospheric correction results in Figure 4.9 and Figure 4.10. The first is simply the root-mean-

squared (RMS) difference between the INMF and L2GEN radiance spectra. RMS difference 

measures the absolute difference between the two and gives a measure of the similarity of the two 

signals. An additional measure is necessary to evaluate the spectral shape similarity between the 

atmospheric correction and INMF results. For this we employed the Spectral Information 

Divergence (SID) (Chang, 2000). SID is calculated as the sum of the Kullback-Leibler 

divergences, 𝐷(𝒙||𝒚), calculated for each spectrum with respect to the other, so the 𝑆𝐼𝐷(𝒙, 𝒚) =

𝐷(𝒙||𝒚) + 𝐷(𝒚||𝒙). Kullback-Leibler divergence is defined by: 
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 𝐷(𝒙||𝒚) = ∑ 𝑝𝑙log (
𝑝𝑙

𝑞𝑙
)𝐿

𝑙=1 , (4.9) 

where 𝑝𝑗 = 𝑥𝑗/∑ 𝑥𝑙
𝐿
𝑙=1  and 𝑞

𝑗
= 𝑦

𝑗
/∑ 𝑦

𝑙
𝐿
𝑙=1 . 𝒙 and 𝒚 are the two spectra being compared, in this 

case the atmospheric correction and the INMF radiance spectra. SID has been used extensively to 

quantify the performance of spectral unmixing routines (Chang, 2000; Jia & Qian, 2009; 

Nascimento & Dias, 2005; Plaza et al., 2004). For both RMS difference and SID, smaller values 

indicate higher similarity between spectra. 

Table 4.1 and Table 4.2 provide the results of these quantitative metrics for the Hawaiian 

Islands and Florida Keys images, respectively. We examined how the spatial variability of the 

scene influences the INMF solution by computing the metrics for the full scenes and for subsets 

of the images.  

Table 4.1: Hawaiian Islands image, RMS differences and SID values comparing the three INMF 

results against atmospheric correction results. 

The smallest value for each measure is reported in bold. 

 
Full Scene 

Cloud-Free 

Subset 

Dark Ocean, 

2 Endmembers 

Dark Ocean, 

3 Endmembers 

 RMS 

Diff 

SID RMS 

Diff 

SID RMS 

Diff 

SID RMS 

Diff 

SID 

Atmospheric 

Scattering 
3.14 0.0069 1.27 0.0069 2.55 0.0178 6.70 0.0069 

Water 1.40 0.509 1.20 1.01 4.55 3.91 1.85 0.722 

 

Table 4.2: Florida Keys image, RMS differences and SID values comparing the three INMF results 

against atmospheric correction results. 

The smallest value for each measure is reported in bold. 

 
Full Scene 

Dark Ocean, 

2 Endmembers 

Dark Ocean, 

3 Endmembers 

 RMS Diff SID RMS Diff SID RMS Diff SID 

Atmospheric 

Scattering 
2.52 0.0259 1.96 0.0026 2.31 0.0259 

Water 1.22 0.753 3.50 3.70 1.30 1.45 

 

In both sets of images, the SID values for full scene or subsets of the scene the atmospheric 

endmembers are (nearly) identical. This is by design: the spectral shape of atmospheric scattering 
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endmember was fixed by the INMF algorithm and SID measures the difference between the shapes 

of two spectra. However, we found the dark-ocean subsets with two endmembers behaved 

differently. For these, the algorithm ran for fewer than 35 iterations before a lack of change in the 

cost function caused it to stop, in contrast to 300-500 iterations for the other subsets or full scenes. 

Examining the value of the cost function as the algorithm iterated (Figure 4.11) reveals that the 

two endmember dark-ocean subset failed to converge and did not change substantially after the 

first iteration. Due to the lack of iteration and convergence the INMF solution spectra were nearly 

unchanged from the initialization spectra even though the atmospheric scattering spectrum had not 

yet conformed to the fixed spectral shape. This explains why the SID value for the atmospheric 

scattering in the dark-ocean (2 endmember) subset does not match those from other subsets.  

 

Figure 4.11: Value of the cost function at each iteration of the INMF while processing each 

image subset. 

The five iteration long settle-in period before the endmember spectra are updated is shown in 

gray. The cost values are normalized by each scene’s initial cost. 
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The failure of the INMF algorithm to converge prompted us to evaluate the minimum 

required number of endmembers. The dark-ocean subsets were processed again using three 

endmembers. A cloud-type endmember was added to the Hawaiian Islands image, and a vegetation 

endmember was added to the Florida Keys image. Although these endmember types were not 

actually present in the dark-ocean subsections of the image, adding them resulted in several 

hundred iterations, much greater convergence and significantly improved the results, reducing the 

RMS difference and SID. The abundances of these added endmembers remained small. The cloud 

endmember in the Hawaiian Islands dark-ocean subset had a mean abundance of 6.4% and the 

vegetation endmember in the Florida Keys dark-ocean subset had a mean abundance of 2.7%. 

From this we conclude that more than one endmember must be included in the abundance-sum-

to-one constraint for the INMF algorithm, as currently implemented, to converge to a solution. 

This endmember does not need to be of a type that occurs in the scene, but it must be present to 

provide the degree of freedom required for the algorithm to update endmember and abundance 

values. Because our results for the dark-ocean subset with two endmembers failed to meet the 

physically imposed constraint in the spectral shape of atmospheric scattering, we exclude it in 

further discussion. 

While the SID values for the other atmospheric scattering endmember should remain the 

same, the RMS differences should change between the respective subset results because the 

algorithm did not constrain the amplitude of the endmember. This was observed as expected. 

In Table 4.1 and Table 4.2 we present values of two quantitative metrics, SID and RMS 

difference. The ideal INMF solution would match both the spectral shape and magnitude of the 

reference data and have low SID and RMS difference values. However, none of the scenes 

examined had the lowest value of all four metrics. The results still suggest some general trends. 
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We note that we have only processed scenes from these two images and the reference data was 

from an atmospheric correction model with its own uncertainty.  

We find the INMF algorithm generally performed better on full images, as opposed to 

subsets of images, the exception being when a full image had cloud contributions. These results 

are surprising because we expected the simplest scenes, the dark-ocean subsets, to be easiest to 

separate. Instead the dark-ocean (3 endmember) subsets performed poorly compared to the full 

and cloud-free scenes. This suggests that spatial variability may improve the separation between 

endmembers and an extremely simple case may contain too few features for INMF to produce a 

well-separated result. However, we expect that there is a point above which increased spatial 

variability may decrease the ability of INMF to represent the scene. The work in this study focused 

on the lower limit of variability by examining scenes with few expected sources. Further study is 

need to determine uppers limits on the spatial variability and number of endmembers for INMF. 

Clouds should be considered in the implementation of the INMF algorithm. We suggest 

that the very bright clouds contribute to higher RMS differences with respect to the L2GEN 

atmospheric correction model. For the full Hawaiian Islands scene, there is a significant radiance 

contribution from clouds over the dark ocean region, accounting for some of the difference shown 

in Figure 4.9b. We attributed the error caused by clouds to mixing between the atmospheric 

scattering and the cloud endmembers, which can be seen in the abundances maps shown in Figure 

4.5. In Figure 4.5, both the cloud and atmospheric scattering spatial maps (panels (d) and (e)) have 

high abundance fractions over the cloudy regions in the top left of the image and over the islands. 

This suggests that there is a limit to the dynamic range that the algorithm can successfully unmix. 

Future work could lead to improvements which either increase the dynamic range of the INMF 

algorithm (or reduce the dynamic range of the radiances in the cloudy images) or otherwise 
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improve the cloud separation. For example, new constraints on cloud spectral shape could be 

investigated, or a pre-normalization procedure where all radiances in the image are normalized by 

the largest value at a single wavelength could be investigated. Separately, an initial cloud masking 

could be performed prior to running the INMF algorithm. 

4.7.2. Sensitivity to the Magnitude of Initial Spectral Endmembers  

We examined the sensitivity of the algorithm to variation in magnitude of the initial guess 

spectra by quantifying the variability in the resulting spectral endmembers. An algorithm where 

small changes in the initial conditions result in widely diverging solutions is less useful than one 

where a wider range of similar initial conditions converge to the same solution. We performed 

INMF on the full scene from the Hawaiian Islands image using 32 different sets of initialization 

spectra endmembers. The initialization spectra were produced by systematically perturbing the 

baseline spectra (Figure 4.6 left panel) in magnitude by -30% to +30%. The spectral shapes of the 

initializing endmembers were not changed. The range of resulting solution spectra are shown in 

Figure 4.12. 
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Figure 4.12: Results of sensitivity testing showing the range of initial guesses, range of solutions, 

and dependence on stop condition. 

 

Panels (a) and (c) show the spectra. (a) is the atmospheric scattering endmember. (c) is the water 

endmember. The solid black line is the baseline solution spectrum. The spectra were taken from 

the radiance contributions of each endmember averaged over the dark-ocean subset of Box B in 

Figure 4.4. The gray shaded area shows a range of  30% of the baseline solution spectrum. The 

red shaded area shows the full range of the INMF solutions. Panels (b) and (d) are the 450 nm 

standard deviation of the ensemble of solutions shown in panels (a) and (c), respectively. The x-

axis is the value of the stop condition, 𝜖 × 1010 . Smaller values of 𝝐 result in more iterations. For 

reference the plots report the 450 nm standard deviation of an ensemble  30% of the baseline 

solution (gray shaded area of panels (a) and (c)). 

 

Overall, the variation in the INMF solution endmembers is smaller than the variation of 

the initial guess spectra (Figure 4.12). When the spectral radiance values are small, as in the water 

endmember at wavelengths longer than 530 nm, the variation can exceed 30%. Perturbing the 

magnitude of the initial guess spectra did not result in endmember solution spectra with a different 

spectral shape. Other scenes might behave differently, and should be investigated in future work. 
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The ensembles converge as the number of iterations increases (Figure 4.12 panels (b) and 

(d)), which is expected. The scene was processed with the 32 initial condition sets with varying 

stop conditions, 𝜖. A smaller stop condition leads to more iterations. Convergence was quantified 

by the standard deviation of the ensemble spectra, averaged over all wavelengths. The standard 

deviation decreased with smaller stop condition To provide a reference for these standard deviation 

values we assembled a 32 member ensemble of results by perturbing the baseline solution  30%. 

This ensemble represented the shaded gray region of Figure 4.12(a) and (b). This solution 

ensemble had 450 nm standard deviations of 28.8 and 4.75 for the atmospheric scattering and water 

spectra respectively. The standard deviation decreased only slightly through a wide range of stop 

conditions, indicating that the convergence is achieved slowly. Slow convergence has been 

previously reported with the update algorithm used by INMF (Berry et al., 2007). Smaller stop 

values required too much computing time to investigate. 

This sensitivity analysis demonstrates that perturbing the magnitude of the initial 

endmember guesses by as much as ± 30% did not produce divergent solutions. Additionally, 

increasing the number of iterations led to further convergence of the ensemble members. This 

suggests that, at least for this scene and these constraint parameters, the INMF result is insensitive 

to minor differences in initialization magnitude. 

 Conclusions, Applications and Future Work 

INMF has distinct advantages over conventional NMF and many other commonly used 

spectral unmixing methods. We have demonstrated that INMF is able to separate atmospheric and 

surface water contributions over a dark ocean region (Figure 4.9 and Figure 4.10) based on 

similarity in the separated contributions to the conventional model-based L2GEN atmospheric 

correction. The quality of the INMF separation, measured by similarity to the L2GEN analysis, 
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depended on the choice of scene, the selected number of endmembers, and the number of allowed 

INMF algorithm iterations. The best results, based on quantitative comparisons with the L2GEN 

atmospheric correction model, were achieved using full-scene images, or cloud-free subsets of the 

full images. The RMS difference for the cloud-free Hawaiian Islands scene was 0.68 and 1.20 

W·m-2·sr-1 ·m-1, for the atmospheric scattering and water radiances respectively. The normalized 

percent difference between the INMF and L2GEN values were: 3.4% and 24.9%. The values were 

normalized by the L2GEN radiance because L2GEN water radiance approached zero at longer 

wavelengths). The same values for the full-scene image of the Florida Keys were 2.52 and 1.22 

W·m-2·sr-1 ·m-1, and 13.1% and 38.5%. Ensemble testing of the INMF algorithm to magnitude 

changes in the initial guess spectra of up to ± 30% demonstrated that the ensemble solutions 

converged as the number of iterations of the algorithm increased. 

For the two images examined in this study, processing larger subsets with more spatially 

variable land surfaces and atmospheric contributions produced INMF solutions that were more 

comparable to the L2GEN atmospheric correction results. We found worse performance for simple 

subsets of images, such as the dark-ocean subsets. This was contrary to our expectation that INMF 

would be most similar to the L2GEN results for simple scenes. We demonstrated that the 

abundance-sum-to-one constraint must include at least two endmembers for the algorithm to 

update correctly and converge to a solution. In comparisons against the model-based atmospheric 

correction this simple image result underperformed for the same scene processed with a third 

endmember, even if that third endmember, such as vegetation, did not actually appear in the subset 

of the image. This poor result was a result of the abundance-sum-to-one constraint which requires 

two or more endmembers within the constraint to iterate correctly.  
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The presence of clouds caused additional challenges for the INMF algorithm. We suggest 

the reason was high signal from very bright clouds, which led to a mixing of cloud and atmospheric 

scattering signals in the INMF solution. Cloud-masking, pixel-to-pixel signal level normalization, 

or physical constraints based on the spectral shapes of cloud radiances are possible research areas 

that could be tested in the future. 

Further work is clearly needed to validate and fully characterize the INMF algorithm and 

explore possible applications. This work has examined only two images and a total of seven scenes 

from these images. Generalizing these results will require processing and evaluating a broader 

range HICO images, covering a wider range of conditions. This includes processing images with 

more challenging atmospheric conditions, such as heavier aerosol loading, or scattered cloud 

conditions. It also includes processing images with more complicated surface contributions, 

especially images with more land surface, coastal and shallow waters. These results suggest that 

more spatial variability from within a scene improves the INMF result. More work is need to 

determine how broadly applicable this conclusion is and to determine whether there is a limit at 

which increase variability begins to degrade the INMF results. In a similar direction this study 

established a lower limit for the number of endmembers required but an upper limit remains to be 

determined. The sensitivity of the INMF solution to the spectral shape of the initial guess spectra 

needs to be examined. Additionally, the sensitivity to various constraint parameters such as the 

smoothness constraint parameters (𝛼, 𝛽, 𝛾𝑊, 𝛾𝐻) should be explored.  

The unsupervised selection of endmembers for techniques such as INMF is a more difficult 

problem, especially for highly mixed data (Bioucas-Dias et al., 2012; Pauca et al., 2006). For the 

scenes analyzed in this work, the number and type of the endmembers were chosen manually. 

Automatic selection of the number of endmembers should be a target of future work.  
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A desired outcome of spectral unmixing methods like INMF, is to connect the results from 

spectral endmembers and abundances fractions to physical properties. A study is in preparation to 

evaluate how aerosol properties can be retrieved from INMF results. We intend to use independent 

coincident observations, from the ground, or other satellite instruments, to independently evaluate 

the INMF results, rather than comparing to atmospheric correction routines.  
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Chapter 5  

Evaluation of First Retrievals of Atmospheric and Surface Properties from Hyperspectral 

Imagery using Informed Non-Negative Matrix Factorization 

 

 Abstract 

Hyperspectral instruments generate a large amount of spectral and spatial data. Connecting 

the spectral observations to radiative processes or sources is required for many applications, but it 

is difficult. Model-based property retrievals or atmospheric correction models are commonly used 

to make this connection, but have some drawbacks. Spectral unmixing is another approach. In this 

study we applied a spectral unmixing technique, Informed Non-Negative Matric Factorization 

(INMF), to relate the radiance observed at the top of the atmosphere to physical sources. In 

particular, we tested whether INMF results can be used to determine aerosol properties and 

seafloor bathymetry. We evaluated the INMF solution by comparison to in-situ measurements and 

independent remote sensing retrievals. The U.S. Coastal Relief Model was used as reference 

bathymetry data. An independent measurement of aerosol properties was provided by the 

Moderate Resolution Imaging Spectroradiometer (MODIS). 

Hyperspectral imagery used for this work was acquired from the Hyperspectral Imager for 

the Coastal Ocean (HICO). We examined images collected over three coastal regions. Coasts are 

of particular scientific interest because of their ecological importance, sensitivity to climate 
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change, and their importance to human activities. They are also regions where it is often difficult 

to separate aerosol extinction from underlying ocean color features such as aquatic vegetation, 

suspended sediment, or seafloor in shallow regions.  

The results of this study show that the INMF attributed aerosol radiance has a strong spatial 

correlation (R = 0.972) to MODIS retrieved aerosol properties. However, comparisons revealed 

significant differences over the spectral dimension. The closest agreement between INMF 

endmembers and radiances simulated from MODIS optical depths still differed by a root-mean-

square (RMS) percentage difference of 33%. INMF abundance-derived seafloor depths have a 

mean absolute bias of 2.33 meters and a mean absolute percentage bias of 13.8% when compared 

to bathymetry data. 

 Introduction 

Hyperspectral imagery used for this study was collected by the Hyperspectral Imager for 

the Coastal Ocean, (HICO) instrument onboard the International Space Station (ISS) (Lucke et al., 

2011). This data set was selected because the instrument was spaceborne and HICO data can 

inform our use of planned orbital hyperspectral instruments. The HICO mission also had a strong 

focus on coastal ocean regions. Coastal ocean regions are important and interesting because of 

their ecological diversity, human commercial activity, and sensitivity to climate change, including 

impacts from rising levels, ocean acidification and storm intensification (Wong et al., 2014). 

Remote sensing in these regions is difficult. Coastal regions can be mixtures of deep ocean, 

shallower regions, wetlands, and estuaries that, when combined with low spatial resolution can 

result in a single imaged pixel containing a wide range of surface types, which complicates 

property retrievals, especially considering that coastal regions are also often close to sources of 

industrial pollutants and other continental aerosols (M. Corson et al., 2010; C. Davis et al., 2006; 
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C. O. Davis et al., 2007). Additionally, some assumptions that are commonly made for data 

retrievals cannot be applied to these regions, for example, that ocean surfaces have very low 

reflectances. In practice, this can result in poor data retrievals over coastal regions.  

Model-based atmospheric correction routines are used to connect remote sensing 

observations to surface physical properties (B.-C. Gao et al., 2006; Goetz, 2009). Hyperspectral 

imagery has been used with model-based retrieval methods to derive a wide variety of science data 

products, including surface, vegetation and atmospheric properties (Goetz, 2009; Shaw & Burke, 

2003). 

Alternative approaches to model-based attribution are desired for hyperspectral remote 

sensing because of the volume of data collected and limitations to the accuracy of atmospheric 

correction models. Atmospheric correction requires radiative transfer models to derive 

atmospheric absorption and transmittance in order to infer the surface reflectance (Goetz et al., 

1997). This process is dependent on input conditions, such as trace gas concentrations and spectral 

aerosol extinction. Uncertainty in these assumptions introduces biases that limit the accuracy of 

the derived surface reflectance (B.-C. Gao et al., 2009). One commercially available algorithm, 

Atmospheric/Topographic Correction for Airborne Imagery (ATCOR) (Richter & Schläpfer, 

2015) is capable of retrieving surface reflectance with accuracies of 10-20% depending on the 

target’s surface reflectance (Richter & Schläpfer, 2002). This level of uncertainty is larger than the 

radiometric accuracy of current generation instruments. For example, the Hyperspectral Imager 

for the Coastal Ocean (HICO) has a radiometric accuracy of 5% (Michael R. Corson et al., 2008). 

However, these uncertainties are far larger than what the next generation of hyperspectral imagers 

are expected to achieve. Instruments on the NASA Climate Absolute Radiance and Refractivity 

Observatory (CLARREO) mission will have accuracies on the order of 0.3% (Wielicki et al., 
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2013). The difference between instrument accuracies and the larger retrieval accuracies suggests 

that more research on retrieval improvements is needed to exploit improved instrumental 

capabilities. 

Numerical spectral unmixing methods use the large number of contiguous spectral 

channels provided by hyperspectral instruments to improve signal attribution. Spectral unmixing, 

or just unmixing, refers to algorithms that separate signals into their constituent spectral and spatial 

patterns (Keshava & Mustard, 2002) that ideally are attributable to a single source. Unmixing 

techniques were developed to exploit this additional spectral information for the signal attribution 

that is crucial to using these measurements for climate science applications. Spectral unmixing 

techniques are extensively used for land surface remote sensing problems such as identifying 

mineral types and distributions from surface reflectance data (Bioucas-Dias et al., 2012; Keshava 

& Mustard, 2002; Nascimento & Dias, 2005; Winter, 1999). In this work we applied a spectral 

unmixing technique to measurements that include atmospheric signals. This application of spectral 

unmixing techniques has been recognized (Bioucas-Dias et al., 2012) but is less well explored than 

surface remote sensing applications. 

Many numeric unmixing techniques have been developed and applied to hyperspectral 

imagery including Independent Component Analysis (ICA) (Chiang et al., 2000; Comon, 1994), 

Principal Component Analysis (PCA) (Jolliffe, 2002; Roberts et al., 2014), N-FINDR (Winter, 

1999), Pixel Purity Index (PPI) (Boardman et al., 1995), Non-negative Matrix Factorization 

(NMF) (D. D. Lee & Seung, 1999; Pauca et al., 2006), Vertex Component Analysis (VCA) 

(Nascimento & Dias, 2005), and many others (Keshava & Mustard, 2002). Each technique has its 

own benefits and disadvantages while some common limitations are shared by many methods. 

Many of these methods are based on measures of correlation such as orthogonality (PCA) or 
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mutual information (ICA) (Jolliffe, 2002). However, physically distinct sources are rarely 

spatially, spectrally or temporally uncorrelated (Rabbette & Pilewskie, 2001). 

Additionally, many unmixing techniques have focused on surface signals, and are 

therefore, applied only to surface reflectances (Bioucas-Dias et al., 2012; Keshava & Mustard, 

2002). Surface reflectances are retrieved from the observed at-flight level radiances through an 

atmospheric correction process (B.-C. Gao et al., 2009) which introduces biases and removes 

atmospheric information. Direct application of a numeric unmixing method to radiance avoids 

model-based atmospheric correction, and is intended to improve the accuracy of signal attribution 

and allow for the retrieval of atmospheric properties such as aerosol optical thickness (AOT).  

We have developed an unmixing technique, Informed Non-Negative Matrix Factorization 

(INMF), that does not assume uncorrelated sources, and directly addresses atmospheric 

contributions. INMF, described in Chapter 4, is an algorithm based on Non-Negative Matrix 

Factorization (NMF) (D. D. Lee & Seung, 1999) that has been tailored for use in hyperspectral 

unmixing. INMF was developed specifically for unmixing at-sensor radiances and separating 

atmospheric and surface signals. INMF improves upon standard NMF approaches by introducing 

algorithmic constraints that are based on the physics of radiative transfer and generating an initial 

guess using library reflectance spectra. Chapter 4 of this thesis describes the development and 

validation of the INMF method in detail. 

The goal of this study is to evaluate the efficacy of INMF spectral unmixing results for 

retrieving physical properties. The properties of interest in this study are aerosol optical thickness 

(AOT) and coastal bathymetry, or seafloor depth. We compare INMF-derived aerosol attributed 

radiance with reference data provided by co-located Moderate Resolution Imaging 

Spectroradiometer (MODIS) aerosol observations (Levy et al., 2013). The U.S. Coastal Relief 
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Model (NOAA National Centers for Environmental Information, 2001) was used as reference for 

comparison against INMF derived seafloor depths. 

 Informed Non-Negative Matrix Factorization 

Informed Non-Negative Matrix Factorization (INMF) is a numerical spectral unmixing 

method that was developed specifically for separating atmospheric and surface contributions for 

measurements of at-sensor radiance. At-sensor radiance is the measurement of calibrated radiance 

that includes signals from all sources: molecular, aerosol, cloud scattering, and surface reflectance. 

A summary of the INMF method is presented in this section and a more detailed description of the 

technique is provided in §4.4. 

5.3.1. INMF Algorithm 

INMF factors a hyperspectral image, A, into spectral endmembers, W, representing the 

spectral shape of each separated source, and spatial abundances, H, which describe the prevalence 

of the corresponding endmember in each image pixel (Figure 4.1). The INMF algorithm solves for 

the spectral endmembers and spatial abundances by minimizing a cost function. A standard NMF 

cost function is the square of the Euclidean distance between the original image and the NMF 

approximation (D. D. Lee & Seung, 2001): 𝐷(𝑾,𝑯) = ‖𝑨 − 𝑾𝑯‖2. However, the INMF cost 

function introduces additional constraints to guide the INMF solution to a more physically realistic 

result. These include terms that constrain spectral and spatial smoothness, inherent properties of 

hyperspectral imagery from natural scenes such as a field or forest region at the typical spectral 

and spatial resolution of hyperspectral sensors (Hunt, 1977; Jia & Qian, 2009). 

INMF also uses an Abundance-Sum-to-One (ASO) normalization that scales the 

abundance values for each pixel into relative fractions of each endmember to the total abundance 

of the pixel (Heinz & Chang, 2001; Jia & Qian, 2009). Producing fractional abundances simplifies 
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the interpretation of the INMF output. However, the atmospheric endmembers are excluded from 

the ASO constraint. Consider a highly variable land surface below an unchanging atmosphere. In 

this scenario, while the absolute signal contribution from the atmosphere is constant over all the 

pixels, the relative strength of the surface and atmosphere contributions would vary significantly. 

Since the atmospheric spectral endmember is shared by all pixels, the NMF result with an ASO 

constraint would be unable to produce a correct representation of the atmosphere. To address this 

limitation, we have excluded the atmospheric endmembers of molecular and aerosol scattering 

from the ASO constraint. 

Lastly, we have fixed the spectral shape of the molecular scattering endmember. Unlike 

many surface reflectance spectra, the spectral shape of molecular scattering is well known since it 

follows Rayleigh’s law (Bodhaine et al., 1999). We constrained the spectral shape of the molecular 

scattering endmember at each iteration of the INMF algorithm so that only its magnitude can vary 

in each iteration. 

5.3.2. Informed Initial Endmember Spectra 

A potential limitation of INMF is that it must be given an initial guess of the endmember 

spectra, W, and the spatial abundances, H. This type of algorithm is also known to be sensitive to 

the choice of initial values (Berry et al., 2007; Pauca et al., 2006). A key feature of INMF is the 

use of library reflectance spectra and radiative transfer modeling to produce initial guesses of the 

endmember spectra. At-sensor radiance spectra for the initial guesses were modeled using 

MODTRAN 5.3 (Berk et al., 2006). The lower boundary condition model input of surface spectral 

reflectance was from the ASTER Spectral Library (Baldridge et al., 2009). By starting the iterative 

INMF algorithm with known source spectra, we expect that it is more likely for the solution spectra 

to also be physically plausible spectra. Spatial abundances were distributed uniformly across a 

scene. 
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 Method 

To analyze a hyperspectral image with INMF the algorithm must be provided with three 

pieces of information: the number of endmembers, and initial endmember spectra and abundance 

fractions. The target retrievals for this study were aerosols and seafloor depth. For INMF to 

separate these signals, additional aerosol and seafloor endmembers was added to the INMF 

expected scene endmember spectra and spatial abundances arrays (W and H).  

Other endmember types were selected based on visual inspection of the scene. They 

included open ocean, soil, concrete, vegetation, and molecular scattering. Automating methods for 

selecting the number and type of endmembers for NMF and related unmixing approaches is an 

open area of research (Bioucas-Dias et al., 2012; Pauca et al., 2006). This set of endmembers was 

then input into the INMF algorithm which iterates until the solution changes by a small amount 

between iterations. This threshold value was based on the number of pixels, and signal level of the 

scene. It was set by multiplying a small number, 5∙10-10, by the sum of radiance across all pixels 

and wavelengths. For these three scenes, the resulting average cutoff cost function change was 3, 

or approximately 1∙10-5 times the initial cost function value. The INMF output is radiance spectra 

and spatial abundances for each endmember.  

 Data 

5.5.1. Hyperspectral Imager for the Coastal Ocean (HICO) 

The Hyperspectral Imager for the Coastal Ocean (HICO) was sponsored by the U.S. Office 

of Naval Research and operated on the International Space Station (ISS) from September 2009 

through September 2014 (Lucke et al., 2011; Oregon State University, 2015). The final two years 

of HICO operation were supported by NASA’s International Space Station Program (Oregon State 

University, 2015). HICO had 128 wavelength channels between 352 nm and 1080 nm. This work 
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used the subset of channels between 400 nm and 900 nm where the HICO instrument team stated 

that “The HICO produces its best data…” (Lucke et al., 2011). The details of the HICO instrument 

and the dataset used in this work were presented in full in §4.5. 

5.5.2. MODIS Aerosol Retrievals 

Moderate Resolution Imaging Spectroradiometer (Ardanuy et al., 1991) observations 

provide an independent retrieval of aerosol optical thickness. For this analysis we used the aerosol 

optical depth retrieved with the dark target algorithm (Levy et al., 2013) over the ocean portions 

of the images. We used the 3 km MODIS Collection 6 Atmosphere Level-2 Aerosol Products 

(Levy et al., 2013). The 3 km data was used because the standard 10 km MODIS data is coarse 

compared to the nominal HICO resolution of 90 m. 

One limitation when comparing HICO and MODIS observations is finding 

contemporaneous observations. HICO was onboard the International Space Station while the 

MODIS instruments are on the Aqua and Terra satellites. These spacecraft have orbits with 

different periods, inclinations, and altitudes so HICO and MODIS were often imaging different 

regions. This leads to difficulty in finding HICO images that match the time and location of 

MODIS data. The images used in this study were selected because the MODIS data were collected 

within 30 minutes of the HICO imagery. 

5.5.3. U.S. Coastal Relief Model Bathymetric Data 

We used the U. S. Coastal Relief Model, produced by National Oceanic and Atmospheric 

Administration (NOAA)’s National Centers for Environmental Information, as an independent 

measurement of seafloor depth. The bathymetric data covers the coastal regions of the continental 

US, Hawaii and Puerto Rico with a resolution of 3 arc-seconds (approximately 93 meters at the 

equator, 66 meters at 45° latitude) (NOAA National Centers for Environmental Information, 

2001). The U.S. Coastal Relief Model data products aggregate measurements from a wide number 
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of sources including the hydrographic soundings from NOAA’s National Ocean Service, multi-

beam and track-line sonar surveys, and information from the International Bathymetric Chart of 

the Caribbean Sea and the Gulf of Mexico project (NOAA National Centers for Environmental 

Information, 2001). The coastal relief model for Florida and the East Gulf of Mexico that we use 

in this study reports an assumed vertical accuracy no better than 1 meter (NOAA National Centers 

for Environmental Information, 2001). Similar coastal relief models report bathymetric vertical 

accuracies between 0.1 m and 5% (Calsbeek et al., 2013; Grothe et al., 2011). We will assume the 

accuracy of this data set is the less accurate of 1 m absolute or 5% relative. 

 INMF Aerosol Retrievals 

5.6.1. Initial Aerosol Endmember Spectra 

We selected two HICO images (Figure 5.1 center and right) to evaluate the INMF 

separation aerosol signals from surface reflectance and molecular scattering based on three criteria: 

availability of contemporaneous MODIS observations; MODIS retrieved 550 nm aerosol optical 

thicknesses greater than 0.3; and at least a portion of the image over a region of dark ocean. These 

criteria were met by images of the Persian Gulf (Figure 5.1, center) and of the Korean Peninsula 

and Yellow Sea (Figure 5.1, right). MODIS aerosol retrievals reported scene-averaged 550 nm 

AOT for the Persian Gulf scene was 0.49 and 1.04 for the Korean Peninsula. Together the two 

images cover a range of 550 nm aerosol optical thicknesses from 0.3 to 1.2. Dark ocean surfaces 

are ideal for validating INMF results because contributions are only expected from three sources: 

the water surface, molecular scattering, and aerosol scattering. Limiting the number of  
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Figure 5.1: Three HICO images of scenes with different aerosol optical depths. 

The scenes, from left to right, are centered on the Florida Keys, the island of Bahrain in the Persian 

Gulf and the city of Nampo on the Korean Peninsula. The number above each image is the HICO 

ID which corresponds to the time and date of the imagery in the format: YYYYDDDHHMMSS. 

The three number long day identifier (DDD) refers to the day of the year. 
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expected contributions simplifies the validation of the results, in contrast to highly inhomogeneous 

coastal ocean or land scenes that include a wider range of surface types. Further simplification of 

unmixing problem is provided by reflectance from dark ocean water surface that is small compared 

to the two scattering terms. 

To separate the aerosol signal from molecular scattering and surface reflectance 

contributions, we added an endmember to represent the radiance due to aerosol scattering to the 

set of INMF endmembers. We did not assume an a-priori aerosol composition. Instead, we 

generated five initial guesses of the aerosol scattering radiance using the MODTRAN 5.3 radiative 

transfer model (Berk et al., 2006) and five different aerosol profiles and spectra properties (Figure 

5.2). For four of these spectra, we used aerosol properties and profiles that are defined in 

MODTRAN as standard aerosol models. These aerosol model profiles are defined by the region 

(rural, urban, or desert) and the meteorological visibility, which is a proxy for AOT (Berk et al., 

2013). The MODTRAN defined spectra used the standard MODTRAN aerosol models for Rural 

with 5 km visibility, Rural with 23 km visibility, Urban, and Desert. A fifth aerosol radiance 

spectrum was generated by MODTRAN using the MODIS retrieved aerosol spectral optical 

thickness. A mid-latitude winter atmospheric profile was used for the Korean Peninsula image and 

a standard mid-latitude summer profile was used for the Persian Gulf image. In addition to the 

aerosol properties, the solar and observation angles were set to match the HICO observing 

geometry. Other properties, such as column water vapor, were defined by the standard atmospheric 

profiles. 
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The initial guess of the aerosol 

spectrum was then added to the array of 

other initial endmembers. The aerosol 

endmember was excluded from the 

abundance-sum-to-one constraint, as was 

the molecular scattering endmember. 

INMF was run five times on each 

HICO image, once with each initial aerosol 

spectrum. The Korean Peninsula image 

was processed with a set of six 

endmembers: water, soil, vegetation, 

concrete, aerosol, and atmospheric 

scattering. The Persian Gulf image was 

processed with five endmembers, water, soil, shallow water, aerosol, and atmospheric scattering. 

The result of this processing is a set of endmember spectra and abundance fraction maps (Figure 

5.3 and Figure 5.4).  

 

Figure 5.2: Modeled top-of-atmosphere radiance 

due to aerosol scattering using five different aerosol 

profiles. 

Four are MODTRAN standard aerosol profiles, 

Urban, Desert, Rural with 5 km visibility and Rural 

with 23 km visibility and the last used the MODIS 

retrieved aerosol properties. These spectra were 

generated for the Korean Peninsula Scene (Figure 

5.1 right panel) 
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Figure 5.3: The INMF solution abundances for the HICO image of the Korean Peninsula and 

coastal Yellow Sea. 

The left-most panel is a true-color image of the scene and the remaining maps show the abundance 

fraction of each endmember. 

 

 
Figure 5.4: INMF endmember spectra for HICO image of the Korean Peninsula and coastal Yellow 

Sea. 

The spectra correspond to the maps of abundance values from Figure 4.5. The spectra in the left 

panel were used to initialize the INMF algorithm. The right panel shows the corresponding INMF 

solution spectra. 
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5.6.2. Comparison of MODIS Aerosol Properties and INMF Results 

Evaluating and understanding the INMF output requires examination of both spectral and 

spatial results. For hyperspectral instruments, such as HICO, this necessitates relatively high 

spatial and spectral reference data. To simplify the validation, we focused only on the ocean 

regions of the HICO images. Over ocean it is simpler to isolate radiance due to aerosol because 

there should be only one surface contribution, water reflectance. MODIS aerosol retrievals include 

spectral and spatial information, though at much lower resolutions than HICO. 

Aerosol abundance fraction is the spatial component of the INMF aerosol scattering 

endmember, so ideally it should vary in the same spatial patterns as the MODIS aerosol retrievals 

if both retrievals are accurate. Figure 5.5 shows the INMF aerosol abundance plotted against the 

MODIS 550 nm AOT. For this comparison the 3 km MODIS data was used because the finer 

spatial resolution provides 220 observations over the HICO image. The standard MODIS aerosol 

products at 10 km resolution would only provide 23 data point across the image. Both MODIS 

products have many fewer observations than the 325,000 HICO spatial pixels over in the same 

location. 
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Figure 5.5: INMF Aerosol Abundances plotted against the MODIS retrieved 550 nm AOT. 

The data were binned. Bins are colored by the number of points they contain. (a) and (b) show 

results for the Korean Peninsula image; (a) includes all points that had MODIS aerosol retrievals 

and (b) only includes points from the dark ocean regions of the image. (c) and (d) show results for 

the Persian Gulf image; (c) includes all points that had MODIS aerosol retrievals and (d) excludes 

data points from shallow regions, determined by where INMF reported seafloor abundances 

greater than 0.5. (e) aggregates the results from (b) and (d) for the dark ocean portions of the 

Korean Peninsula and Persian Gulf images. 
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For the Korean Peninsula image Figure 5.5a shows the resulting plot of INMF aerosol 

abundance against MODIS AOT. The two values are poorly correlated as demonstrated by the 

scatter plot. Examination of the aerosol abundance maps (Figure 5.3e) shows that the aerosol signal 

is mixed with surface signals in coastal regions with variable ocean color. This occurs on the left 

side of the image and can clearly be seen at the river’s mouth where the two water masses mix. 

Separating signals in coastal regions is difficult due to the number and variety of possible 

contributors to reflectance spectrum (C. Davis et al., 2006). This increased surface variability also 

reduces the effectiveness of the MODIS retrieval. The MODIS aerosol property retrieval includes 

a quality control flag that rates the retrieval as ‘very good’, ‘good’, ‘marginal’, or ‘poor’ (Levy et 

al., 2013). In the regions of this scene with highly variable ocean color the MODIS reported quality 

decreases from ’very good’ to ’marginal’. Without ground truth measurements we cannot 

determine whether the error is in the INMF separation, MODIS property retrieval, or a 

combination of both. 

Excluding these areas with significant additional surface contributions produces a much 

stronger correlation between the MODIS AOT and the INMF aerosol abundance. Figure 5.5b 

reproduces the first scatter plot but uses only that data from the dark ocean region at the bottom 

right corner of the image. This reduces the number of HICO data points to 144,000. A linear fit 

produces a correlation coefficient, R-value, of 0.870. This value is similar to the reported global 

correlation of MODIS retrievals to AERONET 550 nm optical thicknesses (Levy et al., 2013). 

The Persian Gulf image (Figure 5.2, at center) has slightly more coincident MODIS 

retrievals, 239 at 3 km resolution versus 379,500 HICO spatial pixels. This scene, like the Korean 

Peninsula image, has regions of shallow water that have higher reflectance where INMF did not 

adequately separate the aerosol contributions from the surface signal. This results in a large spread 
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in the data in the abundance fraction dimension (seen as the vertical outliers in Figure 5.5c). 

Complications due to variable ocean color were expected for this image and can be easily identified 

in the true-color image. In attempt to separate the shallow water contributions from the aerosol 

signal we added a shallow water endmember before performing INMF on the image. This approach 

was not entirely successful as evidenced by the outliers in Figure 5.5c. However, the abundance 

of the shallow water endmember does correlate with these higher reflectance shallow regions. The 

shallow water endmember was used to remove the shallow regions by plotting only those data 

points where the abundance of the shallow water endmember was less than 0.5. This eliminated 

many of the outliers, producing the better correlated (R = 0.583) distribution shown in Figure 5.5d. 

These two images included different ranges of aerosol optical thicknesses: 0.8 to 1.2 in the 

Korean Peninsula image, and 0.3 to 0.7 for the Persian Gulf. To combine the INMF results to cover 

this entire range of aerosol conditions we aggregated the results from these two images (Figure 

5.5e). It should be noted that the aerosol abundance derived by INMF is sensitive to surface 

reflectance and scene illumination so two scenes with identical aerosol abundance may differ in 

their INMF result. Nonetheless, the aggregated comparison is quite promising, with R = 0.972. 

These results demonstrate that the INMF is appropriately identifying the spatial patterns of 

aerosol scattering. However, in the coastal regions of both images the INMF aerosol abundance 

values have a broader distribution that is less well correlated with the MODIS AOT values. Both 

the MODIS retrievals and the INMF results had increased uncertainty in these regions. The 

MODIS aerosol quality decreased to ‘marginal’, and uncertainty could be seen in the INMF result 

as an increased attribution of radiance from a non-aerosol source to the aerosol endmember. 

However, there are possible solutions to reduce this mixing that should be a topic of further 

investigation. First, additional endmembers could be introduced to account for the mixed signal. 
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This approach was partially successful in adding a shallow-water endmember to the Persian Gulf 

image. Another approach that could improve separation is to introduce additional constraints, 

although more investigation is required to determine what constraints would be appropriate to 

enhance separation. One possibility would be to limit the similarity in spectral shape between the 

aerosol and other endmember spectra. 

INMF also produces a spectrum of each endmember. We evaluated the spectra first by 

quantifying the radiance attributed to the aerosol endmember in each pixel. This is the product of 

abundance fraction and the aerosol spectrum. The same quantity was approximated for the MODIS 

retrieval. This was done by using the MODTRAN radiative transfer model, using the MODIS 

retrieved aerosol spectral properties and optical thickness as input to model the MODIS radiance 

attributed to aerosols. MODIS retrieves aerosol properties at only seven wavelengths, four of 

which (470 nm, 550 nm, 660 nm, and 860 nm) are within HICO’s wavelength range. To compare 

to the INMF output, the MODIS spectral properties were interpolated between these four 

wavelengths. 

Figure 5.6 shows three sets of spectra from the INMF processing of the Korean Peninsula 

and Persian Gulf scenes: the initial aerosol radiance spectra produced with MODTRAN and used 

as inputs to the INMF algorithm, the solution spectra produced by INMF, and the radiance 

attributed to the aerosol by INMF, calculated as the product of the spectra and abundance fraction 

for the mean aerosol abundance over the image. Note that the absolute magnitudes of the INMF 

solution aerosol spectra are not particularly important because the abundances were allowed to 

vary freely. As mentioned above the product of the endmember spectra and abundance (Figure 

5.6, bottom row) shows the relevant comparison of absolute radiances. 
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Figure 5.6: Aerosol radiance spectra for the Korean (left column) and Persian Gulf images (right). 

The top row shows the MODTRAN modeled aerosol spectra that were used as initial guesses for 

the INMF algorithm. The center row is the resulting INMF endmember spectra for each initial 

aerosol spectrum. The bottom row shows the reconstructed radiance attributed aerosol for the mean 

aerosol abundance over the image. This is the product of the INMF aerosol endmember spectra 

and abundance fraction. For reference the modeled aerosol radiance using the scene averaged 

aerosol properties retrieved with MODIS is shown with the purple line. 
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We applied two quantitative metrics to compare the INMF solutions from the five different 

aerosol types to each other and to the modeled MODIS aerosol spectra. Comparing the INMF 

results from different initial aerosol spectra indicates how sensitive the INMF result is to the initial 

guess. While comparing each result to the MODIS derived aerosol spectra provides a measure of 

how well INMF isolates the aerosol signal from other surface and atmospheric contributions. 

Although we use MODIS observations as a benchmark to compare with the INMF results they are 

not ground truth measurements. MODIS retrievals of aerosol optical thickness have their own 

retrieval challenges with potentially high uncertainties.  

The first comparison metric is the root-mean-squared (RMS) difference between the INMF 

and modeled MODIS aerosol radiance spectra. RMS difference measures the absolute difference 

and the similarity of the magnitudes of the two signals. An additional measure is necessary to 

evaluate the spectral shape similarity between the atmospheric correction and INMF results. For 

this we employed the Spectral Information Divergence (SID) (Chang, 2000). SID is calculated as 

the sum of the Kullback-Leibler divergences, 𝐷(𝒙||𝒚), calculated for each spectrum with respect 

to the other, so the 𝑆𝐼𝐷(𝒙, 𝒚) = 𝐷(𝒙||𝒚) + 𝐷(𝒚||𝒙). Kullback-Leibler divergence is defined by: 

 𝐷(𝒙||𝒚) = ∑ 𝑝𝑙log (
𝑝𝑙

𝑞𝑙
)𝐿

𝑙=1 ,  

where 𝑝𝑗 = 𝑥𝑗/∑ 𝑥𝑙
𝐿
𝑙=1  and 𝑞𝑗 = 𝑦𝑗/∑ 𝑦𝑙

𝐿
𝑙=1 . 𝒙 and 𝒚 are the two spectra being compared, in this 

case aerosol attributed radiance spectra derived from INMF and MODIS. SID has been used 

extensively to quantify the performance of spectral unmixing routines (Chang, 2000; Jia & Qian, 

2009; Nascimento & Dias, 2005; Plaza et al., 2004). For both RMS difference and SID, smaller 

values indicate higher similarity between spectra. 

The SID between the various aerosol endmember spectra for the INMF using different 

initial aerosol spectra provides insight into the performance of the algorithm. Table 5.1 shows the 
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SID values for a comparison between all solution aerosol endmember spectra. For the Korean 

Peninsula image the largest of these values is 0.0626. The Persian Gulf image exhibited lower 

convergence with a largest SID value of 0.1050. As a point of reference, the mean SID between 

two randomly generated spectra is approximately 1.0. These small SID values indicate that there 

is similarity between all of the solution aerosol endmember spectra. This suggests that the spectral 

shape produced by INMF is insensitive to the choice of initial aerosol spectrum within the range 

tested here. Aerosol radiative properties can vary significantly depending on the type, shape size 

distribution and chemistry of the aerosols (Tanré et al., 1997). Our results suggest that it may be 

sufficient to consider a single generic initial aerosol profile which greatly simplifies the analysis. 

More images, covering a broader range of aerosol cases, will need to be examined to validate this 

conclusion. 

Table 5.1: Spectral Information Divergence between the INMF solution Aerosol spectra for the 

Korean Peninsula image (top) and the Persian Gulf image (bottom) 

Korean Peninsula 

Initial Aerosol 

Type: 
Urban Desert 

Rural 

(Vis=5km) 

Rural 

(Vis=23 km) 

Average 

MODIS 

Urban 0. 0.0626 0.0353 0.0378 0.0244 

Desert  0. 0.0522 0.0096 0.0570 

Rural (Vis = 5km)   0. 0.0174 0.0019 

Rural (Vis = 23 km)    0. 0.0212 

Average MODIS     0. 

      

Persian Gulf 

Initial Aerosol 

Type: 
Urban Desert 

Rural 

(Vis=5km) 

Rural 

(Vis=23 km) 

Average 

MODIS 

Urban 0. 0.1050 0.0409 0.0449 0.0017 

Desert  0. 0.0967 0.0263 0.0901 

 Rural (Vis = 5km)   0. 0.0220 0.0272 

Rural (Vis = 23 km)    0. 0.0312 

Average MODIS     0. 
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Table 5.2: RMS Difference and Spectral Information Divergence values between the aerosol 

attributed radiance spectra from the modeled mean MODIS aerosol properties and the INMF 

derive aerosol endmember for 5 INMF solutions processed with different initial aerosol spectra.  

 
INMF Initial 

Aerosol Spectrum 

RMS Difference 

[W∙m-2∙sr-1∙nm-1]/[%] 

Spectral Information 

Divergence 

K
o

re
an

 

P
en

in
su

la
 Urban 20.8 78.6 % 0.108 

Desert 24.3 90.3 % 0.296 

Rural (Vis = 5km) 12.5 57.6 % 0.135 

Rural (Vis = 23 km) 20.4 80.0 % 0.217 

Average MODIS 13.8 60.2 % 0.112 

    

P
er

si
an

 

G
u

lf
 

Urban 6.77 41.3 % 0.106 

Desert 8.53 62.8 % 0.267 

Rural (Vis = 5km) 26.6 166.9 % 0.051 

Rural (Vis = 23 km) 4.03 33.1 % 0.129 

Average MODIS 5.64 33.8 % 0.093 

 

We compared the INMF derived aerosol radiance spectra to the radiance spectrum modeled 

using the MODIS retrieved aerosol properties. The spectra used for the comparison are an average 

over the image. This comparison shows significant differences in the magnitudes of the MODIS 

derived spectrum and all of the INMF results. For the Korean Peninsula image, all of the INMF 

result spectra differed from the MODIS derived spectrum by RMS percentage differences greater 

than 57%. While Table 5.1 shows that the INMF derived aerosol spectra were similar to each other, 

Table 5.2 shows that they are an average of 3 times less similar to the MODIS derived spectrum. 

The SID values averaging 0.174, triple the largest SID from the inter-comparison of INMF solution 

aerosol spectra.  

Compared to the Korean Peninsula image, the SID and RMS difference results for the 

Persian Gulf image are slightly lower. The exception is the INMF solution initialized with a Rural 

aerosol profile and 5 km visibility, which produced a significant overestimate of the magnitude of 

the aerosol radiance. The other INMF solutions more closely match the MODIS data with RMS 
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percent differences between 33.1 and 62.8%. The shapes of the aerosol spectra are also a slightly 

closer match to the MODIS derived spectrum with an average SID of 0.129, ¾ of the average SID 

of for the Korean Peninsula results. 

 Bathymetry Retrievals 

Seafloor depth, or bathymetry, is a common retrieval target for hyperspectral imagery, 

particularly from instruments like HICO. Bathymetric retrieval algorithms have been developed 

using a range of techniques from model-based methods (Adler-Golden et al., 2005) to neural 

networks (Sandidge & Holyer, 1998). Given the interest in retrieving coastal region bathymetry 

from hyperspectral imagery we attempted to retrieve it using the INMF method. We are able to 

compare the INMF derived bathymetry to independent measurements from in-situ sounding 

methods. 

Our evaluation focused on a shallow region of the Gulf of Mexico located to the north of 

the Florida Keys. This area was selected because it is a large region, covering tens of thousands of 

square kilometers, in which the seafloor is shallower than 30 meters. A portion of the region, 

covering approximately 4000 km2, can be seen as the highly reflective area at the top of the left 

panel of Figure 5.1. We have used the U.S. Coastal Relief Model (NOAA National Centers for 

Environmental Information, 2001) as a reference data source because it covers this region with 

similar spatial resolution (3 arc-second) to HICO’s nominal resolution of 90 meters. 

The process of retrieving seafloor depth using INMF is similar to the method used to 

retrieve aerosol signal in the previous section. An endmember is added to the INMF endmember 

spectra and abundance arrays to separate the radiance in each pixel that is attributed to the seafloor. 

The abundance of this seafloor endmember in any pixel is then used as a proxy for the seafloor 

depth. This method assumes that pixels of shallow water will have higher signal than a deep water 
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counterpart because the seafloor reflects more light than water. In theory, a seafloor endmember 

abundance of zero should occur when the seafloor is below the depth of light penetration. In 

practice, the seafloor abundance has a lower limit of approximately 0.0925 that appears even in 

ocean regions with depths greater than 100 meters where there are no seafloor contributions to 

observed radiance. 

The initial guess of the seafloor endmember spectrum was intended to approximate the 

spectral shape of contributions from the ocean bottom. The initial guess was derived from the 

HICO image by taking a mean spectrum from the shallow portion of the image and subtracting the 

other expected contributions from the surface water and molecular scattering (Figure 5.7). This 

leaves a spectrum for the remaining radiance from those pixels, assumed to be contributions from 

the seafloor scattering. 

 
Figure 5.7: Seafloor endmember initial guess spectrum (black) and INMF solution spectrum 

(blue).The INMF solution soil endmember spectrum is also shown (orange). 

 

The image is then processed using the INMF algorithm with five endmember types: 

vegetation, water, soil, seafloor and atmospheric scattering. The contributions of aerosol scattering 

were neglected because the average MODIS retrieved 550 nm AOT for this image was below 0.05. 
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After processing with INMF, the seafloor endmember spectrum maintained a spectral 

shape similar to the initial guess, with a peak at 500 nm before decreasing rapidly near 600 nm 

(Figure 5.7). The corresponding seafloor abundance is shown in Figure 5.8b. To evaluate the 

INMF solutions we compared the seafloor abundances against the U.S. Coastal Relief Model 

depth. Figure 5.8c shows the relationship between depth and INMF seafloor abundance. Below 40 

meters, the seafloor abundance approaches a small value, as expected. In shallower regions, above 

30 meters, there is no clear relationship between depth and INMF seafloor abundance. 

Considerable scatter occurs in the area around and over the Florida Keys, which can be seen as the 

bright band in the center of Figure 5.8a. 
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Figure 5.8: INMF seafloor abundance compared to the U.S. Coastal Relief Model. 

(left) U.S. Coastal Relief Model seafloor depths for the HICO image. Depths greater than 30 

meters are masked in gray. The lower portion of the image includes depths up to 1100 m. (center) 

INMF produced seafloor abundances. (right) Scatter plot of the U.S. Coastal Relief Model 

depths against the INMF seafloor abundances. The data are binned and each bin is colored by 

the number of points contained. 

 

We cropped the image to the shallow region located above of the keys (Figure 5.1, left 

panel), and repeated the analysis. Figure 5.9 shows the relationship between bathymetric depth 

and INMF seafloor abundance for the cropped image. The seafloor abundance generally increased 

with decreasing depth, from 100 meters to a depth of about 15 meters. Shallower than 15 meters, 
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the seafloor abundance decreases as the depth decreases. At the same time, the INMF soil 

endmember abundance increases. The soil and seafloor endmembers have similar spectral shapes, 

although the soil spectrum is shifted to longer wavelengths (Figure 5.7). 

 To derive a predictive model of the relationship between depth and seafloor abundance, 

we fit a surface to the seafloor abundance, soil abundance, and depth data. The relationship 

between depth (𝐷) and the seafloor abundance (𝐴𝑠𝑒𝑎𝑓𝑙𝑜𝑜𝑟) was assumed to be logarithmic due to 

the expected exponential relationship between transmitted radiance and path length. The 

relationship between depth and soil abundance (𝐴𝑠𝑜𝑖𝑙) was assumed to be linear. Given these 

assumptions the function: 𝐷(𝐴𝑠𝑒𝑎𝑓𝑙𝑜𝑜𝑟 , 𝐴𝑠𝑜𝑖𝑙) = 𝑎 + 𝑏 ∙ ln(𝐴𝑠𝑒𝑎𝑓𝑙𝑜𝑜𝑟 − 0.0925) + 𝑐 ∙ 𝐴𝑠𝑜𝑖𝑙, was 

fit to the data by minimizing the least-square error through varying the coefficients 𝑎, 𝑏, and 𝑐. 

The logarithmic offset, 0.0925 was found by taking the mean value of the seafloor abundance at 

depths below 100 meters. 

 
Figure 5.9: Scatter plot of seafloor abundance against depth. 

Only the region to the north of the Florida Keys has been included. The Florida Strait and the 

Keys themselves have been excluded. The data points are colored by their soil abundance. 
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The resulting best fit equation was: 𝐷 = −18.68 + 3.70 ∙ ln(𝐴𝑠𝑒𝑎𝑓𝑙𝑜𝑜𝑟 − 0.0925) +

51.86 ∙ 𝐴𝑠𝑜𝑖𝑙. With this fit we achieve a mean absolute error of 2.33 meters, a mean absolute 

percentage error of 13.8%, a median absolute error of 2.10 meters, and a median absolute 

percentage error of 11.9%. Figure 5.10 shows the error between the depth calculated using the 

INMF derived value and the depth reported by the reference U.S. Coastal Relief Model. 

 

Figure 5.10: Differences between the INMF derived depth and the U.S. Coastal Relief Model. 

Absolute difference between the INMF derived depth values and the reference U.S. Coastal 

Relief Model depths (left). Relative difference between the derived depths and the reference 

depths (right)  

 

The spectral shapes of the two endmembers suggest that the observed radiance spectra shift 

to longer wavelengths in shallower water resulting in the higher soil endmember abundance. This 

could be explained by water absorption increasing with wavelength (Figure 5.11). In shallow 

regions, more light in the 500-700 nm wavelength region, where the soil spectrum peaks (Figure 

5.7), is scattered by the seafloor and travels through the water column without being absorbed. 

There are other possible explanations for the observed relationship between seafloor abundance, 

soil abundance, and water depth. For example, shallower regions may have more suspended 

sediment, plankton or other light-scattering particles that INMF attributed to the soil endmember. 
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Alternatively, the reflectance of the seafloor may have changed in shallow regions due to 

differences in composition or vegetation.  

 

Figure 5.11: Liquid water penetration depth calculated for the HICO wavelength range. 

Absorption data are from Kou et al., 1993 and Pope & Fry, 1997. 

 Summary and Conclusions 

Evaluation of the INMF aerosol attribution shows some promising results and some 

challenges. The spatial comparison against MODIS aerosol retrievals was encouraging. The INMF 

derived aerosol abundances were correlated (R = 0.972) with the MODIS retrieved 550 nm AOT. 

However, this high correlation was achieved only after masking certain sections of the image. 

However, in the absence of a ground truth measurement we have no way of attributing the low 

correlation to either the INMF results or the MODIS retrievals. Contributions from other oceanic 

sources proved particularly difficult. Removing regions of highly variable ocean color 

significantly improved the correlation in the Korean Peninsula image (Figure 5.4a and b), resulting 

in a correlation coefficient R of 0.87. In the Persian Gulf image another endmember was added to 

separate aerosol signal from highly reflective, shallow ocean regions. This approach was partially 

successful. The additional shallow water endmember had a high abundance in the shallow regions, 

but the aerosol abundance was also high. By excluding pixels where the shallow-water endmember 
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abundance was greater than 0.5 we removed regions where the aerosol signal was mixed with 

seafloor reflectance. The resulting data were better correlated (R = 0.583) with the MODIS data. 

Aggregating the results of the two images produced a strong correlation (R = 0.972), which 

suggests that the INMF aerosol abundance is appropriately identifying the spatial variations of the 

aerosol signal.  

INMF derived aerosol spectra are not similar to the MODIS derived aerosol radiance 

spectra in either magnitude or spectral shape, despite the high spatial correlation between the 

INMF result and the MODIS retrieval. The closest results between the MODIS and INMF results 

had an RMS difference of 12.5 W∙m-2∙sr-1∙nm-1, or 57.6%, with a SID of 0.135 for the Korean 

image and 4.03 W∙m-2∙sr-1∙nm-1, or 33.1%, with a SID of 0.129 for the Persian Gulf image. 

The poor correlation between the aerosol spectra and the MODIS derived spectrum 

suggests that the INMF aerosol endmember likely includes a mixture of contributions from other 

sources. Improving this performance would require better separation of aerosol from other sources. 

One approach to improving aerosol separation may be to add additional constraints to INMF. 

Adding constraints improved the separation between molecular scattering and surface signals (see 

Chapter 4) so it is likely that additional constraints can improve the separation of aerosol signals. 

Given these results we conclude that it is possible to derive aerosol optical thicknesses from the 

INMF attributed aerosol signals, but that future work should aim to improve aerosol separation. 

Using INMF to retrieve bathymetry also revealed promising results and challenges. We 

were able to predict depth using a combination of seafloor abundance and soil abundance. Water 

depth calculated with this relationship had a mean absolute error of 2.33 meters and a mean relative 

error of 13.8%. The method appears to produce more accurate depth estimates in deeper water, 

while both relative and absolute error increase in water shallower than 10 meters. It could be that 
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the absorption spectrum in deeper water is most similar to the seafloor initial spectrum guess, but 

shifts towards longer wavelengths in shallower water. Another explanation is that shallow regions 

are more likely to have contributions from sources other than the seafloor bottom or water, such 

as suspended sediments or vegetation. 

Further work to improve water depth retrievals with INMF should optimize the algorithmic 

constraints and the initial guess of the seafloor spectrum. Additionally, there are other approaches 

to hyperspectral retrievals of bathymetry. INMF should be compared to these. Finally, in this work 

only a single image was examined. This method needs to be more broadly tested by examining its 

performance in different shallow regions.   



 

 128 

 

 

 

 

Chapter 6  

Summary and Directions for Future Work 

 

This chapter, summarizes results of the work presented in this thesis and suggest directions 

for future work. The work described focused on developing tools and applications that effectively 

manage data collected by hyperspectral instruments. Considering the growing number of 

operational and planned hyperspectral instruments, this work provides timely information on how 

to make use of the additional spectral data collected beyond previous generation multispectral 

instruments. 

 Instrument Development and Atmospheric Correction 

Chapter 2 describes the characterization, validation and calibration of the Solar Spectral 

Irradiance Monitor (SSIM) that was built for National Ecological Observatory Network (NEON) 

and flown on their Twin Otter aircraft. Substantial improvements were made to the SSIM over 

previous generations of the instrument (Pilewskie et al., 2003). An active stabilizing system, or 

leveling platform, was introduced to the zenith-viewing optics. This system was designed to keep 

the optics level with the Earth horizon for aircraft motion of up to ±7° in pitch or roll (Figure 2.4). 

This system was flight tested and it performance validated through a series of engineering test 

flights in June 2015. The optics themselves underwent a redesign to remove substantial azimuthal 

dependencies. The revised optical design removed the four-lobed pattern from the response 
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function and reduced the magnitude of azimuthal variations in response from ±5% to less than 1% 

(Figure 2.6). A thermal control system was implemented to enclose the spectrometers. Testing in 

a thermal chamber demonstrated that this system dampened the spectrometer temperature 

fluctuations by 84%, which reduced an environmental temperature change of 10ºC to a change in 

spectrometer temperatures of 1.6ºC (Figure 2.7). This chapter also presented an overview of the 

spectral and radiometric calibration methods for the SSIM. 

In Chapter 3 we demonstrated the use of airborne irradiance measurements made by the 

SSIM to atmospherically correct hyperspectral imagery below clouds. This work was a 

collaboration with NEON and compared surface reflectance data retrieved from NEON’s imaging 

spectrometer against ground reflectance spectra measured over a bright and dark reflectance target, 

a dirt road, and a vegetated surface. Below cloud layers the retrieval using SSIM irradiance data 

was up to 58% more accurate than standard retrieval methods (Figure 3.11). We also demonstrated 

the possibility of using an upwelling irradiance measurement to estimate the adjacency effect. 

However, the result of this adjacency correction showed only that the approach was more accurate 

than no correction. Further research is needed to compare this method to other widely used 

adjacency correction methods, such as defining an adjacency range, before concluding whether a 

hemispheric observation like the SSIM upwelling irradiance measure is appropriate for adjacency 

correction. 

Below-cloud atmospheric correction is an important challenge for airborne remote sensing. 

The challenge of retrieving accurate surface reflectances from data collected below clouds is faced 

by all airborne remote sensing platforms and increases the length, and therefore expense of 

deployments if an aircraft is unable to collect the required data. The work presented in Chapter 3 

presents a solution, although there are several additional steps required for these results to be 
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widely implemented. The atmospheric correction routines tested were very basic algorithms. A 

more advanced method could be developed by incorporating methods that are already used in 

currently available commercial routines such as pixel-by-pixel water vapor corrections, retrievals 

of aerosol optical thickness from the imagery itself, and topographic corrections. Lastly, one of 

the most obvious drawbacks of the current implementation is the increase in channel-to-channel 

variation evident in the retrieved data product. To avoid this problem in an operational observing 

system the irradiance spectrometers and hyperspectral imagers should be made with spectrometers 

with the same slit functions or one instrument should over-sample the other. 

 Informed Non-Negative Matrix Factorization Algorithm and Retrievals 

The remaining two chapters discuss the development of the Informed Non-Negative Matrix 

Factorization (INMF) spectral unmixing routine. Chapter 4 describes the development and testing 

of the INMF algorithm. INMF includes both cost function and algorithmic constraints in order to 

incorporate the physics of radiative transfer and remote sensing. These constraints guide the 

algorithm towards a physically plausible identification of component signals, and reduce mixing 

between physically distinct sources in the INMF solution. To test the method two images taken by 

the Hyperspectral Imager for the Coastal Ocean (HICO) were processed with INMF using several 

different subset scenes from within the image and different number of endmembers. One image 

was centered on the Hawaiian Islands, the other on the Florida Keys. To validate the solutions, the 

INMF decomposition of dark, deep ocean portions of each image were compared against model-

based atmospheric correction partitioning of the observed signal (Figure 4.9 and Figure 4.10). The 

best comparison between INMF and the model-based atmospheric correction was achieved for 

scenes with the highest spatial variability. In the best-case-scenario, the relative RMS difference 
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between the two methods was 3.4% for the signal attributed to atmospheric scattering and 24.9% 

for signal attributed to surface water. 

We also investigated the sensitivity of the INMF algorithm to variations in the magnitude 

of the initial guess spectra (Figure 4.12). The results demonstrated that perturbations as large as 

30% from the best initial guess did not produce divergent solutions for endmember shapes and 

magnitudes. This test also showed that increasing the number of iterations for the perturbed 

ensemble led to further convergence of the ensemble members as demonstrated by decreasing 

ensemble standard deviation. For atmospheric scattering the ensemble standard deviation 

decreased to less than 10% of the initial value, and continued to decrease with further iteration 

(Figure 4.12, top right). 

The results from this study suggest a number of new avenues to be explored. For example, 

a new study could examine the effect of perturbing not only initial guess magnitudes but also their 

spectral shapes. This work did not attempt to determine the sensitivity to several of the INMF 

constraint parameters that were adopted from previous studies (Jia & Qian, 2009). Finally, only 

two HICO images were examined; before generalizing results more images should be examined. 

Chapter 5 presents two (out of many possible) retrievals, aerosol optical thickness and 

seafloor depth, using the INMF solution. This work focused on demonstrating whether INMF 

results could be used to derive properties relevant to atmospheric and oceanic science, aerosol 

optical thickness and seafloor depth, respectively. For aerosol optical thickness (AOT) the INMF 

solution was compared spatially and spectrally against aerosol properties retrieved from the 

Moderate Resolution Imaging Spectroradiometer (MODIS) observations. Spatially, the INMF-

derived aerosol abundances correlate strongly with the MODIS AOT values (Figure 5.5). 

However, the INMF attributed aerosol spectrum does not compare well in shape or magnitude to 
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the MODIS derived spectrum (Figure 5.6) because other endmembers are mixed onto the aerosol 

endmember. The poorest comparison against MODIS was produced over shallow regions with 

contributions from the seafloor, or oceans with high turbidity, where MODIS-retrieved aerosol 

properties would also have high uncertainty. Over darker ocean the INMF results match the 

MODIS values more closely. 

Our results show that adding an additional aerosol endmember is insufficient to fully unmix 

the aerosol signal. A better approach may be to add tighter constraints to the INMF algorithm. 

More work is needed to determine what form these constraints should take. Additionally, the 

scenes covered fairly small ranges of aerosol optical thicknesses. Generalizing these INMF results 

will require processing and validating significantly more images over a wider range of atmospheric 

conditions. 

The bathymetry, or seafloor depth, retrieval from the INMF results was derived by 

comparing the abundance of the seafloor endmember against reference depth measurements 

produced by the U.S. Coastal Relief Model (NOAA National Centers for Environmental 

Information, 2001). We examined a single HICO scene over a large shallow region to the north of 

the Florida Keys. The seafloor endmember spectrum resembles the spectrum of penetration depth 

of liquid water (Figure 5.7 and Figure 5.11). It is clear that both the soil and seafloor endmembers 

were related to depth. We derived a predictive equation for the relationship between seafloor 

abundance, soil abundance and depth (Figure 5.9 and Figure 5.10). The derived relationship 

resulted in a mean absolute error of 2.33 meter or 13.8%. 

A next step would be to examine if this relationship correctly predicts depth in other images 

on this same location near the Florida Keys. The end goal is to generalize a relationship between 
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derived seafloor abundance and the depth of any shallow body of water. This requires selecting 

and processing many more images than the single one examined here. 

 Conclusion 

The remote sensing community has capitalized on the benefits that hyperspectral 

measurements afford. However, there are many areas where the data analysis and resulting science 

has not been able to take advantage of the full range information content is this data. This is most 

often evident where data processing methods treat hyperspectral data as a collection of wavelength 

channels similar to multispectral data processing, for example, by replicating multispectral 

techniques such as band ratios. Hyperspectral data affords many more opportunities for data 

analysis because channels are more numerous, continuous, and contiguous over their entire 

spectral range. This thesis addresses some of those challenges by presenting new ways to approach 

hyperspectral data, including new combinations of multiple instruments (Chapter 2 and Chapter 

3) and developing an algorithm to unmix top-of-atmosphere radiance observations (Chapter 4 and 

Chapter 5). As new instruments and their measurements improve in spectral coverage and 

resolution and radiometric accuracy these methods will become increasingly important for 

exploiting the information dense data to its full potential.  
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