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 Transposable elements (TEs) are a large component of many eukaryotic 

genomes, and the evolution of TEs is closely connected to that of their hosts. 

Accurate inference of TE evolutionary relationships is essential to understanding 

the biology and evolution of TE families and the role they play in genome evolution. 

Additionally, the great quantity of TEs makes them a useful model system for 

understanding genomic processes such as mutation and recombination, and their 

utility as a research system also depends on accurate evolutionary inference.  

 In this dissertation, I describe novel computational methods for evolutionary 

inference in TEs, applying them primarily to the Alu family of primate 

retroelements. A major task in TE evolutionary study is the classification of 

elements of a family into subfamilies. I developed the AnTE algorithm, a Bayesian 

approach to subfamily classification that, in contrast to previous deterministic 

methods, allows for probabilistic subfamily classification, an important advance due 

to the high uncertainty involved. I use AnTE to provide a more complete picture of 

the evolutionary history of Alu elements than provided by previous analyses, 

especially regarding the role of gene conversion. This work suggests that current 

Alu subfamily classification found in widely-used databases such as RepeatMasker 

and RepBase provides a misleading account of Alu evolutionary relationships.  

 Building on the AnTE research, I developed a Bayesian phylogenetics 

approach to the detection and characterization of gene conversion events among 
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TEs in a genome. I use this approach to identify a burst of interlocus gene 

conversion among Alu elements in the gorilla genome, occurring at much higher 

rates than on any other branch of the Great Ape phylogeny. Abnormally high Alu 

gene conversion rates in gorilla appear to be driven by binding to Alu by PRDM9, a 

rapidly-evolving protein that targets DNA sequence motifs for double-strand breaks 

in meiosis. These findings indicate one evolutionary pathway for rapid gene 

conversion in a TE family, and the conversion events identified provide a rich 

dataset for understanding the dynamics of gene conversion in primates. 
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CHAPTER I 

 

INTRODUCTION 

 

Transposable elements (TEs) are genomic sequences that can replicate and 

insert themselves elsewhere in the genome. Many TE families have been successful 

at replicating, such that large portions of many eukaryotic genomes are TE-

derived1–3. At least two-third of the human genome appears to be repeat-derived4, 

likely primarily from extinct TE families. As ubiquitous inhabitants of eukaryotic 

genomes, the evolution of TE families is intimately connected to that of their 

hosts5,6. On occasion, TEs can provide major benefits to their hosts7; most 

importantly, TEs can provide the raw material for new functional genes8,9 and 

regulatory elements10–12. However, TEs can also have many deleterious effects. TE 

insertions into genes or regulatory elements can eliminate important 

functionality13, and recombination between TE copies can also cause harmful 

genomic rearrangements14. TE insertions and TE-associated rearrangements in 

both somatic cells and the germline are associated with numerous human 

diseases.13,15–17 

The study of TE evolution is important for at least two reasons. First, TEs 

are important genomic actors. As TEs are a large part of many genomes, to 

understand genome evolution, and genome function, we must understand TE 
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evolution and function. Second, TEs are a useful research tool even when they are 

not the main subject of interest. As it is unlikely that a similar TE inserts at the 

same genomic position multiple times, presence/absence of TE insertions are a 

strong phylogenetic marker18–20. TEs have also been commonly used to study 

neutral mutation process21–23, as they are thought to typically evolve neutrally after 

insertion24. In general, TEs are useful for genome evolution research because they 

serve as a sort of natural experiment. A single active TE might produce numerous 

copies that insert throughout the genome. As these copies are initially identical, 

their subsequent evolution can be thought of as many replicates of an experiment 

differing only by genomic position. The large number of TEs provides a high degree 

of statistical power to test evolutionary hypotheses and fit complex models.  

Despite the ubiquity and utility of TEs, much about their biology and 

evolution remains poorly understood, even for well-studied families. Early research 

on the major human TE families Alu and LINE1 was dominated by the master 

element model of TE evolution25,26, which posits that a tiny number of 

hyperproductive elements produced all copies of its family in the genome. Though 

later research demonstrated that this model was incorrect27,28, no alternative has 

been proposed to explain all that the master element model attempted to explain. 

We have only modest understanding, for example, of the proportion of elements that 

are replicative29, the typical replicative lifetime of active elements, or the processes 

that cause succession between different subclasses of a TE family.  
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The aim of this work is to develop and utilize a toolkit for the evolutionary 

study of transposable elements. Starting from a set of TE sequences of a given 

family, I develop computational methods for aligning elements, classifying 

elements, dating elements, inferring element ancestry, and reconstructing gene 

conversion events between elements. Though methods exist for most of these tasks, 

the Bayesian phylogenetic framework I employ provides substantial benefits in 

accuracy, precision, and conceptual coherency, which are necessary for developing a 

clear picture of TE evolution. After developing this TE evolutionary toolkit, I use it 

to investigate TE evolutionary dynamics and the dynamics of nonallelic gene 

conversion.  

My major study subject is the Alu family30, a primate-specific SINE 

retrotransposon and the most common TE in the human genome. Alu elements were 

derived from a duplication of the ribosomal 7SL RNA gene early in primate 

evolution approximately 65 MYA31.  At around 300 bp in length, Alu does not code 

for its own replication but instead relies on the replication machinery of the much 

larger LINE-1 retroelement32,33.  Alu elements are transcribed by RNA polymerase 

III, then reverse-transcribed and integrated into the genome by two proteins 

encoded by LINE-1.33 Alu has been extraordinarily successful in the primate 

genome, with over 1 million copies that comprise over 10% of the human genome 

overall30. Though most Alu and LINE-1 copies are inactive in the human genome, 

active copies of both remain28, and Alu recombination activity and insertion activity 

are each associated with human diseases15,16. Importantly, large numbers of Alu 



4 
 

elements retain their full length, which facilitates evolutionary inference. Alu 

elements appear to engage in high rates of nonallelic gene conversion34,35 and 

homologous recombination14,36, and are a useful model system for understanding 

these processes in primates. 
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CHAPTER II 

 

THE MEANING OF THE SUBFAMILY CONCEPT IN TRANSPOSABLE 

ELEMENT EVOLUTIONARY STUDIES 

 

Given a sequenced genome, the first step to TE analysis is family 

classification: to identify the TEs in the genome and assign them into families. 

There are numerous TE family classification methods4,37 and I do not attempt to 

improve upon them here. The second step is subclassifcation: given a set of TE 

sequences from a particular family, divide them into smaller subclasses, typically 

called “subfamilies” to facilitate further analysis. Subfamily classification is the 

starting point of most analyses involving TEs, and such classifications are often 

obtained from the databases RepBase38 and RepeatMasker39, the latter of which 

forms the basis for the repeat track on the UCSC Genome Browser40. Despite its use 

in nearly all TE research, the subfamily concept is rarely defined explicitly. Neither 

RepBase nor RepeatMasker give a definition on their websites or in their 

supporting publications38,39; nor does the publication describing the popular CoSeg 

subfamily classification method, which is used by RepeatMasker27.  



6 
 

The earliest reports on Alu subfamily division, by Willard et al.41, Britten et 

al.42 and Jurka et al.43 also contain no explicit definition of “subfamily.” These 

authors performed subfamily classification by identifying sets of nucleotide 

differences from the overall Alu consensus that were correlated with each other in 

their Alu sequence datasets. The identified nucleotides were called “diagnostic 

nucleotides” and subfamily consensus sequences were constructed using the set of 

sequences containing each set of correlated nucleotides. The elements within each 

subfamily were inferred to be derived from retrotransposition from a single source 

gene.42,44 Alu subfamilies were given further evolutionary interpretation with the 

introduction of the master element model25,26,45, which held that only one or a few 

“master” elements were responsible for most Alu insertion in the genome. In this 

model, as a master gene experiences mutations at diagnostic nucleotides during its 

evolution, it creates successive subfamilies, each new subfamily differing from the 

previous at the most recently mutated site. In this conception of “subfamily”, many 

distinct Alu subfamilies share an ancestral locus. 

What, then, are subfamilies? Most usage in the Alu literature is consistent 

with the idea that subfamilies consist of all elements that transposed from a 

common sequence, where sequence here means an ordered set of nucleotides, not a 

particular locus in the genome. That is, if two identical replicative loci both 

generate copies, the copies belong to the same subfamily because they were 

transposed from an identical sequence, but if a single replicative locus experiences 

mutation and remains replicative, the elements replicated from that locus before 
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and after that mutation belong to different subfamilies. This definition is consistent 

with the practice of distinguishing subfamilies by diagnostic nucleotides, as groups 

of elements copied from different sequences will systematically differ at all positions 

that distinguished the replicative sequences. It is also consistent with usage of the 

subfamily concept in the master element model, which holds that a single replicator 

can generate many subfamilies as it evolves.  

An important implication of the sequence-based subfamily definition is that 

there is no necessary evolutionary relation between the elements in a subfamily, 

though in most cases we do expect the relationship to be close. It is tempting to say 

that a group of elements all copied from the same sequence were all descended from 

a common ancestor with that sequence. This need not be the case, however, because 

two distinct replicators, neither on which is ancestral to the other, could converge 

by mutation to an identical sequence. In this case, their descendants (while they 

had that sequence) would be classified together despite being more closely related to 

other elements outside of the class than to each other. This need not be a rare case; 

if replicative elements are highly similar to each other (which they often are; see 

Chapter V) then convergence to identity could be relatively common, especially if 

there are strong sequence constraints on replication such that active elements are 

restricted to a narrow region of sequence space28. A second implication is that there 

is no guarantee that the evolutionary relationships between subfamilies form a tree 

structure, despite common practice of assuming such a structure27,30. As subfamilies 
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may have multiple sources, and those sources may themselves have been descended 

from distinct other sources, a subfamily could have multiple ancestral subfamilies. 

It is generally preferred that biological classifications be based on 

evolutionary relationships, and that taxonomic groups contain all elements 

descended from a common ancestor46,47. Why, then, should we classify elements by 

replication from a common sequence (ordered set of nucleotides) rather than a 

common ancestor, when the former does not imply any particular evolutionary 

relationship? We might consider an alternative approach. Suppose we have a set of 

TE sequences from a newly sequenced genome, and wish to infer their evolutionary 

history. We have methods to infer gene trees from a set of extant homologs48. We 

might propose to apply these methods to the sequences in a dataset of TEs, 

construct a tree, and perhaps identify useful monophyletic groups on the tree as 

“subfamilies.” These subfamilies would, then, be the TE equivalent to species; 

assignment of an element to a subfamily would imply descent, along with all other 

subfamily members, from a common ancestor.  

The problem with this approach is that a single replicative element can 

produce numerous identical copies, and those copies can produce further copies. 

Presented with a large quantity of elements that were identical at insertion, we 

have no sequence data to use to resolve relationships among these identical 

elements. This in itself is not a fatal flaw, as phylogenetic methods are capable of 

dealing with uncertainty49. But a tree of human Alu elements, for example, would 

contain around one million leaves30, and much of its structure would be wasted on 
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representing the unresolvable relationships between elements that were identical at 

insertion. Such a tree would be extremely unwieldy for both visualization and 

analysis.  

Subfamily classification, then, is a practical first step to TE analysis. We 

should group together those elements whose ancestry cannot be distinguished, 

because there is no benefit to considering them separately. If extant elements differ 

from the sequence they replicated from only by the accumulation of random 

mutations after insertion, then these post-insertion differences are not informative 

as to their origin, and elements copied from identical sequences can be safely 

grouped together at no cost to our ability to resolve their evolutionary relationships. 

The task of subfamily classification, in this perspective, is equivalent to the task of 

separating out informative vs. non-informative variants in each element.  

Were transposable element evolution only as complicated as presented so far, 

imprecise definition of the subfamily concept would perhaps not lead to large errors 

in analysis. There is an additional complexity, however, which requires precision to 

navigate, at least in some TE families such as Alu. While retrotransposition is the 

primary means by which Alu elements replicate, gene conversion is an important 

secondary mechanism of Alu replication50. During a gene conversion event, a DNA 

strand at a donor locus serves as a template to replace a homologous sequence 

elsewhere in the genome51. Gene conversion occurs between alleles on homologous 

chromosomes during meiosis, but can also occur ectopically between non-allelic 

homologs as part of the double strand break repair process52,53. There is 
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considerable evidence that Alu elements engage in extensive non-allelic gene 

conversion.34,35,54 Thus, while retrotransposition creates new copies of active 

elements in the genome, gene conversion can create partial or complete copies of 

elements in other already-inserted elements. 

Let us reconsider, in the context of gene conversion, the definition of 

“subfamily” that I argued corresponds to typical usage of the concept: each 

subfamily contains all elements replicated from a given sequence (i.e., ordered set of 

nucleotides). Suppose an element is completely converted by another element. In 

that case, all information about the sequence that the locus was originally copied 

from is lost, making subfamily inference under this definition impossible (such 

complete conversion events have been identified in Alu using orthology data50, but 

conversion can be inferred from orthology only in limited cases). Similarly, if only 

half an element is converted, we cannot distinguish using the sequence data of a 

single genome which half was present at insertion and which was donated. For a TE 

family evolving in the context of extensive gene conversion, it is not workable to 

define subfamilies on the basis of transposition from a common sequence. Given the 

limitations of our sequence data, classification of conversion products must be based 

on the sources of its component parts, with no distinction between the original 

transposition source and later invasions. 

Existing subfamily classification methods essentially ignore gene conversion, 

arbitrarily assigning “hybrid” elements that appear to be derived from multiple 

distinct replicative sequences to subfamilies corresponding to only one of those 
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sequences (see Chapter V for examples). It is unclear what understanding of the 

“subfamily” concept justifies this. Much downstream analysis using TE subfamilies 

relies on the idea that each subfamily member was derived from the subfamily 

consensus20,21,45, but this will be true of only part of the hybrid sequence. In any 

case, given the practical justification for subfamily classification to group together 

elements that differ only by noninformative variants, we should distinguish 

apparent hybrid elements from others, as their evolutionary origins can be 

distinguished. As shown in Chapter V, separating out possible hybrid elements is 

useful for understanding the evolutionary processes operating in a TE family.  

How should we understand subfamilies in TE families characterized by high 

rates of gene conversion? From a practical perspective, subfamilies should group 

together elements differing only by site variants that are not informative as to their 

evolutionary origins. Non-informative variants are the result of random mutations 

that occur in the element after insertion. Elements should be grouped, then, by 

their mutation-reversed sequence: the sequence the element would have, if no part 

of the element experienced mutation after replication and insertion into the 

genome. For an element that never underwent gene conversion, mutation reversal 

simply produces the sequence it was copied from; these elements are thus classified 

the same way as in our previous definition. For converted segments of a hybrid 

element, mutation reversal produces the sequence the homologous segment in the 

conversion donor was copied from. Subfamilies group together all elements with 
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identical mutation-reversed sequences (Figure 1). 

 

Figure 1: Mutation-Reversal of Transposable Elements. 

A) The mutation-reversed sequence of an element that did not experience gene conversion 

is identical to the sequence it was originally copied from. B) The converted and unconverted 

components of the mutation-reversed sequence of a gene conversion acceptor are both 

identical to the homologous sequence of the replicative sequences they were derived from.  

 

Visualization and analysis of TE evolutionary relationships is facilitated by 

grouping elements into subclasses as a first step in analysis. Ideally, we would 

group elements by common ancestry, but the limitations of TE sequence data make 

this approach infeasible in most cases. Instead, I suggest a pragmatic approach: as 

post-insertion mutations are not informative as to the origins of an element, it is 

sensible to group together elements that differ only by such mutations. In this way, 

we can reason collectively about the evolutionary history of elements in each class. 

Subfamily classification under this interpretation can be accomplished using a 

probabilistic mutation-reversal algorithm, the subject of Chapter III.  
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CHAPTER III 

 

THE ANTE METHODOLOGY FOR TRANSPOSABLE ELEMENT ANCESTRAL 

INFERENCE AND MUTATION REVERSAL 

 

AnTE was originally developed to perform the task of ancestral sequence 

reconstruction: identifying the replicative sequences in a TE family and 

probabilistically assigning each element to the sequence (i.e., an ordered set of 

nucleotides, not a specific locus) it was copied from55. This was a new approach to 

essentially the same task attempted by older TE subfamily classification algorithms 

such as CoSeg27 and MASC44. It is still most straightforward to understand AnTE 

as a method for solving the ancestral sequence reconstruction problem, and for most 

of this chapter we will take this perspective. However, as discussed in Chapter II, it 

is not feasible to define subfamilies based on replication from a common sequence in 

a TE family characterized by extensive gene conversion; instead, elements should be 

classified into subfamilies based on their mutation-reversed sequences. We will see 

at the end of the chapter that the AnTE algorithm can be used to accomplish 

mutation-reversal without modifications, but this requires reinterpretation of the 

results. 
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Comparison to Previous Subfamily Classification Algorithms 

 

The earliest TE subfamily classification algorithm was MASC44, using an 

approach similar to hierarchical k-means clustering of element sequences. The 

CoSeg algorithm by Price et al.27 was designed to address limitations in MASC and 

remains the most popular algorithm for TE subfamily classification. The CoSeg 

algorithm iteratively identifies sequences in a family or proposed subfamily that 

contains pairs of sites with nucleotide variants that co-occur more frequently than 

would be expected by random mutation from the subfamily consensus sequence. 

This pair of sites is then used to divide sequences into two new subfamilies, which 

may be further split by the same criteria, and so on to completion. The observation 

of overrepresented nucleotides at a pair of sites suggests that some sequences 

currently assigned to a subfamily were produced by a replicative sequence that 

diverged at these sites prior to replicating. This justifies introducing a new 

subfamily to contain the descendants of that replicator.  

The CoSeg algorithm has two major limitations that motivated the 

development of an alternative method. First, previous work on SINE elements in 

human56 and opposum57 indicated that, after assignment to CoSeg-inferred 

subfamilies, positions in many subfamilies differed from the subfamily consensus 

more than expected from mutation alone. This is a problem for downstream 
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analysis because it leads to unrealistically high estimates of mutation rates at these 

positions if the subfamily consensus is assumed to be the ancestor of all elements in 

the subfamily, and also inflates subfamily age estimates based on molecular clocks. 

The high rates of variation at some sites could be caused by either unidentified 

progenitor sequences or gene conversion. A partial explanation for this problem in 

CoSeg is a rule in the algorithm that forbids using a site to split off a new subfamily 

if it has already been used earlier by the iterative algorithm, even if there is 

sufficient evidence of additional subfamily structure. This rule is intended to avoid 

creating subfamilies that are merely composed of gene conversion products, though 

there is no guarantee that it does not cause some subfamilies descended from 

transpositionally-active sequences to be missed as well. As I argued in Chapter II, it 

is preferable to accept that subfamilies can be composed entirely of gene conversion 

products, and one benefit of this approach is that it avoids the need for arbitrary 

rules that can lead to error in age and mutation rate inference. 

An additional limitation of previous subfamily algorithms27 is that they are 

all deterministic:  each element is assigned to a single subfamily. While 

probabilistic inference is of broad utility in evolutionary study49, it is especially 

important for TEs, because TEs are often very similar to each other and so there is 

often considerable uncertainty in ancestry-descendant relationships. Taking a 

Bayesian perspective, the AnTE algorithm gives the posterior probability each 

element is descended from each ancestral sequence (equivalently, the probability 

each element belongs to each subfamily). 
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The AnTE Approach 

 

The goal of AnTE is to infer, given a set of extant TEs in the genome, the 

ancestral sequences that generated those elements. The core of AnTE is a model 

giving the likelihood of generating the extant TE sequence data given four sets of 

parameters: 1) a set of ancestral sequences 2) the productivity of each ancestral 

sequence 3) the time periods in which each ancestral sequence was active and 4) a 

substitution model describing how elements evolve after insertion. The AnTE 

algorithm uses Markov chain Monte Carlo (MCMC), a powerful technique for 

exploring many-dimensional parameter spaces58, to draw sets of model parameters 

from the posterior distribution. AnTE output is a set of draws of parameter values 

from the posterior, from which we can estimate posterior distributions for 

parameters of interest. 

Thus far, this is a standard Bayesian MCMC approach. However, there is one 

complication. I found that it is not feasible to explore all of sequence space for all 

possible ancestral sequences within the MCMC. A Markov chain in which there can 

be any number of ancestral sequences with any sequence does not mix efficiently 

and therefore produces inconsistent results. Instead, AnTE employs an iterative 

approach. It starts with a reasonable first guess at what the ancestral sequences 

are. Then, the Markov chain is run with a fixed set of ancestral sequences based on 
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this initial guess, while all other parameters are allowed to vary. On the basis of 

that run, the list of ancestors is refined, eliminating prospective ancestral sequences 

that do not appear to have actually been ancestral while adding new ones that 

appear to have support. Further iterations are then run, each time refining the list 

of ancestors. There are, then, three components to the AnTE algorithm: 1) 

generation of the initial list of candidate ancestors 2) the MCMC and 3) candidate 

list refinement. I describe each of these components in turn. 

 

Generating an Initial Set of Candidate Ancestors 

 

In the first published version of AnTE55, we employed a top-down approach to 

initial candidate ancestor generation. Essentially, the idea of the top-down 

approach is to first identify the clearest divisions within the TE family, and then, in 

each individual subset, the clearest division within that subset, and so on. This 

iterative splitting approach can be used to generate an initial guess at subfamily 

structure, to then be refined based on MCMC results. It is conceptually similar to 

CoSeg27, which also employs iterative splitting. However, we found the top-down 

approach to be slow when applied to a large dataset of Alu elements, as it can take 

many iterations to identify small subfamilies. 

The most recent version of AnTE instead employs a bottom-up approach. For 

every element, the N most similar elements in the sequence dataset are identified. 
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The consensus of these N elements serves as a candidate ancestor. The idea 

underlying this approach is that, if an ancestral sequence produces many copies, 

those copies will vary at random due to mutations, but a majority of descendants 

will still have the ancestral nucleotide at all sites. Therefore, consensuses of highly 

similar sequences will tend to be ancestral sequences. Ancestral sequences that 

produced many fewer than N descendants will likely be missed by this method, and 

there may be some false positives, but this is acceptable given that our goal is only 

to produce an initial good guess as to the ancestral sequences, which will be refined 

later. I used N=100 for all analyses reported here. Using this approach, only three 

iterations are necessary to identify subfamily structure in Alu. 

 

Parameter Estimation Using Markov Chain Monte Carlo 

 

Given a set of candidate ancestral sequences, the ancestry model consists of 

three sets of parameters. Aj, the productivity of each candidate ancestor j, is 

proportional to the expected number of copies produced by the candidate and 

defined such that the sum of the vector is equal to 1. Tj, the time of activity of 

candidate ancestor j, describes when that candidate was replicative. I assume a 

single time point of replication (i.e., that all descendants of a given ancestral 

sequence are the same age). Q is a nucleotide substitution matrix giving the 

substitution rate between all pairs of nucleotides, distinguishing the hypermutable 
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CT and GA substitution rate at CpG sites from the non-CpG rate of those 

substitution types.  

The likelihood of generating any TE sequence iS in the sequence dataset S , 

given all parameters, is defined as:   

1

( | , , ) * ( | )
cN

i j j i j

j

L S A P C S T


 A T Q  

where cN  is the number of ancestral candidates, jC  is the jth candidate ancestral 

sequence, jA  is the productivity of candidate j, and ( | )j i jP C S T  is the probability 

of transitioning from sequence jC  to sequence iS  in time period jT . This sequence 

transition probability is the product of the transition probabilities at each site 

between the base in jC  and the base in iS  at that site. The transition probabilities 

between each pair of nucleotides over time jT  are obtained from the matrix 

exponential jQT
e . The overall likelihood of the data, ( | , , )L S A T Q , is the product of 

the likelihood of all sequences: 

𝐿(𝑺|𝑨, 𝑻, 𝑸) =∏𝐿(𝑆𝑖|𝑨, 𝑻, 𝑸)

𝑖

 

Using this likelihood function, each set of parameters is sampled using Metropolis-

Hastings proposals59.  All parameters are given uniform priors. 

To sample productivity vector A, proposals are made in which a randomly-

selected donor contributes a random value uniform between 0 and 0.00015 to a 

random recipient. The T  parameters are sampled by two proposal types. In the 
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first, a candidate ancestor j is selected at random. A random integer n is drawn 

from 0 to 1000, and jT  is set to n/1000. In the second, candidate ancestors i  and j  

are selected at random, and their associated parameters iT  and jT  are swapped. 

The substitution rate parameters are sampled by a single proposal, in which the 

current rate is added to a draw from a normal distribution with mean 0 and 

standard deviation 0.01. As all proposals are symmetric, the chain satisfies detailed 

balance59 if the acceptance probability ( , ')A x x  for the moves from x   to 'x  follows 

the Metropolis-Hastings acceptance proposal, where ( )p x  is the likelihood of the set 

of all parameters x :  

 
( ')

( , ') min 1,
( )

p x
A x x

p x

 
  

 
   

Thus, using this acceptance probability, the stationary distribution of the Markov 

chain will be identical to the posterior probability distribution.  

In each generation of the MCMC, one proposal is made for A and one for T , 

while Q is sampled only once every 1000 rounds. I run the chain for 100,000,000 

generations. The first 20,000,000 generations are burn-in and not used to estimate 

posteriors. After burn-in, I take one parameter set every 1,000 generations for a 

posterior sample. In each posterior sample, every element is randomly assigned to a 

candidate ancestral sequence based on its probability of descent from that ancestor 

given the sampled parameter set.  Good mixing is verified by running three 

replicates with each replicate starting from a random parameter set, and 
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confirming that the within-replicate variance in likelihood was at least 99% of the 

overall variance. 

 

Refining the Set of Candidate Ancestors 

 

The next step is to refine the set of candidate ancestors on the basis of the 

MCMC results. This involves two tasks: first, removing candidates with weak 

evidence for being true ancestors; second, adding new candidates that appear to be 

plausible ancestors. A similar strategy is employed for both tasks. The basic idea is 

to compare the number of elements we expect to mutate towards a particular 

sequence type, given the parameters derived from the MCMC results, to the 

number observed with that sequence type. If the frequency of the type can be 

explained by mutation from descendants of other ancestors, there is no need to infer 

that the candidate ancestral sequence of that type was ever replicative and so it can 

be removed. Alternatively, if the frequency is greater than can be explained by 

mutation, then it justifies adding a candidate ancestral sequence of that type. 

The following process is conducted separately for each draw d from the 

posterior. Each candidate, Ci, is considered for removal in turn. For every other 

candidate ancestor, Cj,j≠i, AnTE estimates, based on the model parameter set, the 

probability a descendant of that candidate ancestor would mutate to the Ci site 

variant at all positions at which Ci and Cj differ. I refer to these as Ci-like elements, 
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as they look like Ci descendants despite not being descended from Ci. Based on the 

probability each ancestor would produce Ci-like elements, 10 simulations are 

performed according to the parameter set, counting the total number of Ci-like 

elements generated in each simulation. I call these counts Hd,r for posterior draw d 

and simulation replicate r. AnTE then counts the number of Ci elements inferred to 

exist according to the element ancestry assignment associated with each parameter 

set. If the number of inferred Ci-like elements, plus inferred descendants of Ci (call 

this sum Jd), is small relative to the expected number of Ci-like elements produced 

by other ancestors (Hd,r), then we do not need Ci as an ancestor to explain the 

sequence data and it can be removed from the list of candidates. For each 

parameter set, we have ten Hd,r counts and 10 Jd counts. If the average Jd value is 

smaller than at least 5% of the Hd,r values, then the candidate is removed. 

Candidates with an average descendant count of less than 5 are also removed. 

After removing candidates with weak support for being ancestral, AnTE then 

considers new candidates to add. AnTE considers every possible sequence, Dk, one 

nucleotide away from the post-removal set of ancestral sequences and not already in 

that set. As above, for every drawn parameter set, 10 simulations are run to 

generate counts of Dk-like elements we expect to arise by mutation, given the model 

parameters (label these counts Ld,r for draw d and simulation replicate r). AnTE 

also infers, for every draw from the posterior, the count of Dk-like elements 

according to the element ancestry assignment associated with that draw (label 

these counts Md). If the count of apparent Di-like elements is too large to be 
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explained by mutation from ancestors within the model, then a new ancestor with 

sequence Dk is necessary to explain the sequence data, and so is added to the 

candidate list. Sequence Dk is added as a candidate if the average Md value is 

greater than 1.3 times as large as 95% of the Ld,r values, the average Dk is at least 

5, and the difference between the average Dk and 95% of Ld,r values is at least 10. I 

find that these thresholds produce reasonable results for the Alu dataset described 

in Chapter V. 

 

Sequence Alignment 

 

AnTE requires as input a dataset of elements in a multiple alignment. In my 

early AnTE work, with small datasets, I used manual alignment, as I found that 

common multiple-alignment methods produced errors that resulted in incorrect 

ancestral inference.55 This is infeasible for large datasets. Therefore, I developed an 

alignment approach specifically for use with Alu elements, though largely based on 

previous work on probabilistic sequence alignment.60 Probabilistic alignment avoids 

biases from deterministic alignment.61 

In probabilistic alignment, rather than producing a single optimal alignment, 

the probability distribution of alignments is approximated by drawing a large 

number of alignments from this distribution. This allows quantification of 

alignment uncertainty. Ideally, probabilistic alignment integrates over gap and 
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scoring matrix parameters as well as the alignments themselves.60 Due to the large 

number of sequences in Alu, full integration of these parameters was 

computationally infeasible, so scoring parameters were instead fixed based on 

estimates from an initial alignment. Probabilistic alignments were conducted using 

the probabilistic version of the Needleman-Wunch algorithm described by Zhu et 

al.60, except with a fixed scoring matrix. 

The initial alignment was constructed using a probability of 0.04 for all 

mismatches, 0.0045 for gap start and 0.009 for gap extension. Preliminary analysis 

suggested that these values produced reasonable alignments. A sequence T0 was 

selected at random from the sequence data to serve as an initial template for 

alignment. All sequences were aligned to T0. Then, at each site, the number of each 

nucleotide variant, insertion, and deletion among all the sequences in the database 

relative to T0 were counted. A new template sequence, T1, was then constructed 

from T0 as a starting point. If a plurality of sequences had a particular difference 

from T0 at any site, T1 incorporated that difference. Thus, T1 represents a consensus 

of all the Alu elements in the dataset. All sequences were then probabilistically 

aligned to T1 using the same scoring matrix. A new scoring matrix was constructed 

from these alignments by setting the probability of any mismatch equal to the 

observed frequency of a mismatch between T1 and each sequence in the data, using 

1000 draws from the alignment distribution for each sequence. Similarly, gap start 

and extend probabilities were estimated from the observed frequency of gaps 
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initiation and continuation among all alignment draws for all sequences. All 

sequences were then realigned to T1 using the new scoring matrix.  

A full alignment can be constructed by randomly selecting one of the draws 

from the alignment distribution for each sequence in the data. Multiple alignments 

can be drawn and analyzed to estimate the effect of alignment draw on results of 

interest.  A single multiple-alignment drawn from the posterior was used for all 

analyses presented in Chapter V. 

 

Interpretation of AnTE Results 

 

The straightforward interpretation of AnTE is that each ancestral sequence 

identified represents a replicative sequence; i.e., that there existed at some point in 

the history of the TE family one or more replicative elements with that exact 

sequence, and that those replicative elements produced perfect copies (by 

assumption) through transposition, which then mutated after insertion according to 

the inferred substitution matrix. The parameters of the model allow us to estimate 

how productive each ancestral sequence was (though not how that productivity was 

distributed among different identical replicative loci) and when it was active. In 

Chapter IV, I use this interpretation of AnTE to analyze the LAVA family of 

transposable elements, which does not appear to engage in high rates of gene 

conversion.55 
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In a TE family that does undergo high rates of gene conversion, such as Alu, 

AnTE results require alternative interpretation. The AnTE method identifies a set 

of sequences such that replication of those sequences followed by mutation of the 

copies can explain the sequence data. Should a sequence expand by gene conversion 

to a count greater than can be explained by mutation from descendants of other 

replicators, that sequence will be interpreted by AnTE as an ancestral sequence 

regardless of whether it was ever transpositionally-active. I argued in Chapter II 

that this is appropriate, as TE subfamily classification should separate out types 

that are products of gene conversion between descendants of different replicative 

sequences. In this case, the “ancestral sequence” represents not necessarily a 

transpositionally-active sequence, but a “mutation-reversed” sequence of all 

elements it is “ancestral” to. Note that this interpretation follows directly from the 

likelihood function used in the MCMC, which gives the probability of producing the 

sequence data by mutation of copies of the “ancestral sequences”. The “ancestral 

sequences”, then, are by construction the sequences their descendants would be if 

the post-insertion mutation process were reversed. Essentially, in the 

straightforward interpretation of AnTE, mutation-reversal is used as a means to 

identify replicators; in the alternative interpretation, mutation-reversal is itself the 

goal. The other model parameters, aside from the rate parameters in the 

substitution matrix Q, require reinterpretation as well. The productivity vector A is 

reinterpreted as giving the expected count of elements that mutation-reverse to 
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each ancestral sequence. The activity time vector T is reinterpreted as giving the 

average age of elements that mutation-reverse to each ancestral sequence. 
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CHAPTER IV 

 

INFERENCE OF LAVA ELEMENT ANCESTRY 

 

LAVAs are a class of element found exclusively in gibbon (Hylobatidae) 

species, and are composed of portions of other TEs usually found in primate 

genomes: L1ME5, AluSz6, and SVA_A62,63. The LAVA elements are an attractive 

system for understanding the evolution of TEs because their recent origin 

(sometime after the Gibbon divergence from other hominids 15-18 million years ago) 

and limited diversification63 make analysis of their relationships tractable. Using 

AnTE, I evaluated whether the likely number of replicating ancestral sequences in 

LAVA differed from the number of subfamilies returned by CoSeg27, whether the 

subfamilies previously identified are compatible with predicted ancestral 

relationships, and whether AnTE solved the problem of unrealistically high implied 

mutation rates at some sites. Finally, I suggest new subfamily designations in the 

gibbon LAVA TE family based on their probable relationships. The AnTE 

methodology used to analyze LAVA is an earlier version than the improved method 

presented in Chapter III; the earlier methodology is fully described in Wacholder et 

al.55. 
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Gibbon LAVA Sequence Filtering and Alignment 

 

LAVA sequences in the Gibbon genome were identified using the probability-

based oligonucleotide clustering method P-clouds 64. The published LAVA consensus 

sequence, which contains only the region 3’ of the VNTR 63, was segmented into 

regions which were used to form clouds. The genome was then searched for 

locations that matched the cloud data. Identified locations were merged if the 

distance between them was less than the length of the region in the consensus 

sequence. This resulted in 1136 sequences will full 3’ regions. Sequence for the 

region 5’ of the VNTR was obtained by building clouds from the region upstream of 

the VNTR in these sequences. Locations matching these clouds were then merged to 

the 5’ sequences to obtain full-length sequences. This process identified 338 

sequences with complete 5’ regions. Alignments for both the 3’ and 5’ regions were 

constructed manually. 

 

Identification of CoSeg Subfamilies and the Problem of Excess Mutations 

 

The CoSeg algorithm was applied to 986 aligned LAVA elements (401 bp) to 

obtain 14 subfamilies. Some sites showed higher levels of divergence from the 

CoSeg-defined subfamily consensus sequences than might be expected due to 
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mutation alone, consistent with previous findings in Alu56. To determine the 

plausibility that the CoSeg subfamily consensus sequences represent all of the 

ancestral sequences of the TEs in the data, I developed a resampling test. Null 

expectations were obtained by resampling substitutions from the consensus 

sequence of each subfamily, accounting for variation in mutation rates among sites 

and mutation types. The substitution resampling process was replicated 1000 times 

to get a predicted distribution of each nucleotide at each site for each subfamily 

under the assumption that all differences between ancestors and descendants are 

due to mutation. The expected sums of deviations from these expectations were 

compared to the observed deviations from expectation among the real by-site 

nucleotide distributions in each CoSeg-inferred subfamily.  

Applying this test to the LAVA CoSeg subfamilies, I found that in 12 of the 

14 CoSeg subfamilies, deviation from expectations exceeded the deviation among 

any of the 1000 resampling replicates (Figure 2). Thus, we can reject the hypothesis 

that the sequence data can be explained solely by substitutions from the subfamily 

consensuses, and infer that there are likely to be many more ancestral sequences 



31 
 

than identified by CoSeg.

 

Figure 2: Deviation from Expectation in Randomly Sampled CoSeg Subfamilies. 

For each CoSeg subfamily, the 99% confidence interval is given for the deviation from 

expectations among 1000 substitution redraws under the hypothesis that all differences 

between subfamily members and the subfamily consensus are due to mutation, rather than 

replication. Diamonds indicate the deviation from expectation in the observed substitution 

data.  
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Support for a Large Number of Replicative LAVA Sequences 

 

Separate Markov chains were run on LAVA for five different prior 

distributions of the total number of replicative sequences, set by applying a penalty 

on each additional ancestor inferred by the model. These penalties consisted of 0, 2, 

4, 6, or 8 log points per ancestor. In LAVA, 38-43 (99% credible region) replicative 

sequences were inferred even under the harsh 8 log penalty, many more than the 14 

subfamilies identified by the CoSeg program (Table 1 and Figure 3). 

Prior 

penalty (log) 

Number replicative LAVA 

sequences (99% credible 

region) 

Mutation-only 

hypothesis p-value 

0 60-72 .090 

2 50-60 .064 

4 44-52 <.001 

6 41-47 .004 

8 38-43 <.001 

 

Table 1: Number of Replicative Sequences Identified for Different Prior Penalties 

in LAVA 
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Figure 3: Posterior Distribution of the Number of Replicative Sequences.  

Posterior distribution of the number of replicative sequences in LAVA for MCMC runs with 

different penalties applied to each additional replicative sequence. Higher penalties 

indicate a prior distribution favoring fewer replicative sequences. Each distribution is an 

average over 10 replicates. 

 

The same substitution resampling method applied to the CoSeg subfamilies 

above was applied to the results from each AnTE run, testing whether mutation 

alone can explain the differences between inferred ancestral sequences and their 

descendants (Table 1). Based on this analysis, we reject the mutation-only 

hypothesis for the LAVA runs with 8 (p<0.001), 6 (p=0.004), or 4 (p<0.001) log 

penalty, inferring that these runs fail to identify some true ancestral sequences. We 

fail to reject the mutation-only hypothesis for the 2 log penalty run (p=0.064) and 

the 0 log penalty run (p=0.090). Thus, we select the results from the 2 log penalty 

chain as a conservative estimate of the number of replicative sequences in the 
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history of LAVA, and use it in all further analyses of LAVA. The 99% credible 

region for the number of replicative elements in the 2 log penalty run is 50-60, 

suggesting 50 as a reasonable lower bound for the total number of replicative 

sequences.  

 

A Bushy Network of Related Ancestral Sequences 

 

Network representations of the relationships among the elements of the 

LAVA families are shown in Figures 4-5. These networks show the predicted 

ancestral relationships among all sequences with more than 50% probability of 

being replicative (shown most clearly in Figure 4a). The arrows on the graph 

indicate the predicted original source of each replicative sequence, with cycles 

representing uncertainty about the direction of original descendancy. Note that 

later copies of that sequence may have arisen from other ancestors, including 

possible back mutation from one of its descendants. Each node in the graph 

represents a particular sequence, with the diameter of the node proportional to its 

estimated frequency of replication.  
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Figure 4: Ancestral Relationships Among LAVA Elements.  

The predicted network of LAVA ancestral relationships is shown. A) All sequences that 

replicated with probability >30% are represented as nodes in the network. Arrows are 

drawn between sequences if there was at least 5% probability that an ancestral relationship 

existed between those sequences, with the direction of the ancestor-descendant 

relationships indicated by the arrows. Sequences are colored based on their CoSeg 

subfamily assignments (Figure 6). Sequences colored white do not exist in the data, but are 

inferred to have existed ancestrally. B) The network in A is modified by the addition of all 

extant TEs in the data added to the network as nodes represented by small dots. Edges are 

drawn between an element and an ancestral sequence if there was at least 5% probability 
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the element descended from the ancestral sequence. Nodes are colored based on CoSeg 

subfamily assignment. 

 

Figure 5: New AnTE Subfamily Assignments for LAVA Elements   

The predicted network of LAVA TE ancestral relationships is shown, as in Figure 4. A) All 

sequences that replicated with probability >30% are represented as nodes in the network, 

exactly as in Figure 4A except that nodes are colored based on their new AnTE-based 

subfamily assignments. B) As in Figure 4B, all TEs in the data are added to the network as 

nodes, represented by small dots, and using the coloring scheme of the new AnTE-based 

subfamily assignments.  
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Figure 6: Subfamily Color Legend. 

Subfamilies as defined by CoSeg are shown divided into two groups: those that correspond 

to a new AnTE subfamily (shared subfamilies #1-9), and those that are not classified as 

AnTE subfamilies (ancestral CoSeg-only subfamilies #10-14). The subfamily colors 

correspond to coloration in Figure 4-5, and numbering corresponds to information in the 

tables.  

 

There are four sequences inferred to have at least a 5% probability of being 

the LAVA root according to the AnTE algorithm. We compared these sequences to 

the segment of the human genome homologous to the 3’ end of LAVA63. One of these 

four plausible root sequences (Figure 4 and 5, marked with an arrow) has only 2 

differences from the human sequence among 73 discriminatory sites; among all 

other candidates with >50% probability of being replicative, there are 4-28 

differences (mean 12.1). Thus, the marked sequence is the probable ancestral 

LAVA, and the inferred root from AnTE is consistent with the homology data. 

 

Revised LAVA Subfamilies 

 

The assignment of CoSeg subfamilies to nodes in the ancestry networks of 

LAVA (Figure 4) indicates that most CoSeg subfamilies are represented by multiple 
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ancestral replicative sequences. Although CoSeg subfamilies tend to cluster 

together in the network, replicative sequences from three LAVA subfamilies 

(colored in purple, magenta and light blue in the graph) are disjointed, with 

intervening replicative sequences from other subfamilies (or that are not assigned 

to a subfamily at all). Additional discrepancies can be found when considering the 

CoSeg subfamily assignments of all sequences, not just replicative sequences 

(Figure 4b). Among descendants of all ancestors with CoSeg subfamily assignment, 

57 LAVA sequences (6.5%) are assigned to different subfamilies than their most 

probable ancestor.  

Based on this result, and considering the ancestral relationships inferred by 

the AnTE MCMC, I propose a subfamily organization for LAVA with 9 new 

subfamilies (Figure 5; see Figure 6 for legend). This subfamily scheme was designed 

based on the desiderata of a) relatively few subfamilies; 2) matching the CoSeg 

subfamilies where possible, to facilitate comparison; and 3) minimizing the number 

of sequences with uncertain subfamily assignment. The low mixing of colors in 

Figure 4b indicates that these goals have largely been achieved, although there is 

unavoidable uncertainty at most boundaries between subfamily groups. I emphasize 

here that the utility of the subfamilies is entirely organizational and aesthetic. I 

recommend that any analytical inference be carried out on the full ancestral 

probability network, and that it should sum over all ancestral uncertainty rather 

than arbitrarily assigning uncertain sequences to one ancestor or another and 

subsequently treating the assignment as though it were data. 
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Analysis of 5’ Region of LAVA 

 

The LAVA sequence is divided by a VNTR (variable number of tandem 

repeats) region of up to 2000 bp. My main analysis focused on the region 3’ from the 

VNTR, as many LAVA loci lack all or part of the VNTR and 5’ region. The full-

length 5’ region is around 350 bp, and I found 337 loci with intact 5’ regions. 

Analysis of these sequences revealed three separate clusters defined by presence or 

absence of two large interior segments of around 100 bp each. I used AnTE to 

reconstruct the ancestral relationships separately within each of these three 

clusters. These ancestral networks largely agree with the analysis of the 3’ region: 

the first cluster consists mostly of sequences from the adjacent green, purple, and 

brown subfamilies from Figure 5 (Figure 7A); the second cluster consists mostly of 

green and grey subfamilies (Figure 7B), and the third cluster is composed mostly of 

the older red, yellow, pink, and blue subfamilies (Figure 7C). However, 26 

sequences (7.7%) are assigned ancestors on the 5’ network that are distantly related 

to ancestors in the 3’ network. A probable explanation for this discrepancy in 

placement between the 3’ and 5’ ancestral networks is recombination across the 

VNTR. Aside from these putative recombinants, the network structure within the 

three 5’ clusters is largely in agreement with the structure of the 3’ network 

(compare Figure 5 and Figure 7).  
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Figure 7: LAVA Ancestry Network Based on 5’ Region  

The predicted network of LAVA ancestry relationships, as described in Figure 4, but based 

on the region 5’ of the VNTR rather than the 3’ region. A) Cluster 1 network B) Cluster 2 

network C) Cluster 3 network. Colors of sequences are based on the subfamily assignments 

shown in Figure 5. 
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Conclusion 

 

We have confirmed here that the CoSeg subfamily classification method fails 

to identify many highly-probable ancestral sequences in LAVA and AluSc, and 

therefore that CoSeg subfamily consensus sequences are problematic for use as 

presumed ancestors in divergence and substitution analysis. In contrast, the AnTE 

method provides a detailed picture of TE evolutionary history, providing ancestral 

sequences, the times of replicative activity of these sequences, and their replication 

frequency. The AnTE method enables the probabilistic evaluation of relationships 

between thousands of elements within subfamilies and between subfamilies.  

Despite the assumptions made in creating subfamilies using previous 

approaches, they have often been used in studies of TE evolution. For example, 

most methods for estimating the age of subfamilies are based on some measure of 

divergence between subfamily consensus sequences and the members of the 

subfamily65–68. The findings presented here suggest that this prior widespread use 

of subfamily consensus sequences as the single ancestral subfamily source sequence 

to analyze TE mutation patterns69 has led to over-estimation of substitution rates 

and TE divergence times, and to incorrect inference of substitution patterns. AnTE 

can be used to improve such analyses, and may be useful to revise existing 

subfamily nomenclature based on more realistic estimates of ancestral replication 

patterns, as I have done with the gibbon LAVA elements. Overall, I expect that 



42 
 

such approaches will be central for evaluating genome structural evolution and 

using TEs to understand genome-wide mutation processes. 
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CHAPTER V 

 

THE NETWORK STRUCTURE OF ALU EVOLUTION 

 

I applied AnTE to a dataset of almost 146,865 Alu elements, identifying 

subfamilies defined by mutation-reversal to a particular ancestral sequence. I then 

analyzed these subfamilies to better understand how gene conversion and 

replication processes influence the sequence architecture of Alu. Previous work 

indicates that Alu engages in extensive gene conversion70–72, with Roy et al. finding 

that gene conversion may be responsible for 10-20% of variation among recent Alu 

elements70. AnTE offers a systematic approach to identifying Alu subfamilies that 

may be explained by gene conversion, and allows for inference about the 

evolutionary mechanisms that may contribute to these subfamilies. Comparing our 

results to the RepeatMasker73 classification of Alu, I find that current classification 

schemes, by ignoring gene conversion, produce fundamentally misleading results.  
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The Network Structure of Alu Diversity 

 

A sequence dataset was constructed by filtering the Alu annotations of the 

hg38 assembly of the human genome from RepeatMasker74. Sequences outside of 

the 275-325 bp length range were excluded to obtain a set of only full-length Alu. A 

subset of this dataset was selected including all elements with an A at position 78 

and a T at position 88; this corresponds mostly to elements in the AluY and AluSc 

subfamilies under traditional classifications. I use this subset of Alu because it 

consists of younger Alu elements, for which evolutionary analysis is more 

straightforward.  

The AnTE algorithm identified 295 distinct Alu subfamilies, each associated 

with a particular ancestral sequence. The subfamilies ranged in expected frequency 

from 5 (the lower limit of detection) to 66,444 for the subfamily associated with the 

AluY consensus sequence. For visualization, the subfamilies were arranged in a 

network in which each subfamily is represented by a node (Figure 8) constructed by 

first drawing edges between all nodes representing subfamilies with ancestral 

sequences that differed by a single site variant. Additional edges were then drawn 

between all nodes that differed by two site variants but were not connected through 

a path of single-variant edges. This process was continued through higher numbers 

of variants until all nodes were connected directly by an edge or via a path along 



45 
 

multiple edges. Seventeen of the identified ancestral sequences are RepBase AluS 

or AluY subfamily consensus sequences, as indicated on the network.

 

Figure 8: Network Representation of Ancestral Sequences.  

Each of the 256 nodes in the network represents the inferred ancestral sequence of at least 

five Alu elements. Size of node is proportional to frequency of elements with that source 

sequence. Notches on each edge indicate the number of sites that differ between the 

sequences of the two nodes connected by that edge. If nodes have sequences identical to a 

RepBase consensus sequence, the AluS or AluY RepBase identifier is noted. The estimated 

mean age of each node on the Alu network is indicated by color. Dashed lines separate four 

groups of nodes selected for individual analysis.   

 

The highest-frequency predicted subfamily, by far, is the subfamily 

associated with the AluY consensus, which contains 37.4% of the elements in our 

dataset. I select four groups of subfamilies around the AluY consensus to facilitate 

analysis of the different regions in the network; each group is at least two variants 

distant from the AluY consensus, relatively well-connected internally and has few 
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external connections (Figure 8). In addition to the four selected groups, there are 

many nodes or small groups of nodes branching directly from the AluY consensus.  

I defined the age of a node as the average age of the elements assigned to its 

represented subfamily by AnTE, with the age of each element estimated by its 

differences from the AluY consensus at invariant sites. Ages were scaled relative to 

the age of the AluY consensus node, which was set to age 1.0 (Figure 8). The oldest 

nodes are in Group 1, which has average node age 1.25 and includes all of the 

RepBase-annotated AluS sequences; it contains only a few nodes that appear to 

have replicated much later than the majority of elements in the region. Group 2 has 

an average age of 0.46 but shows a major division by age, with 20 of 46 nodes 

younger than 0.3 and 21 older than 0.6. We refer to the older subset, with average 

age 0.71, as Group 2A and the younger subset, with average age 0.14, as Group 2B. 

Group 3 is composed entirely of nodes younger than 0.4, with average 0.21, while 

Group 4 contains a wide range of ages, with average 0.61. It thus appears that 

Group 1 contains the ancestors to the other nodes in the network, while the other 

three groups were replicative either concurrent with and/or following the expansion 

of the AluY consensus sequence. 

Visual inspection reveals an abundance of cycles across much of the network. 

Cycles in the network are suggestive of gene conversion, though they can also be 

explained by convergent or revertant mutations among transpositionally-active 

elements (Figure 9). We can estimate an approximate upper bound on the number 

of cycles expected to be generated by mutation, such that the remainder is most 
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plausibly explained by gene conversion. In the absence of sequence constraints on 

replication, we expect no more than 3.4 four-cycles (cycles consisting of four nodes) 

in the network, much smaller than the 76 four-cycles observed. Sequence 

constraints on replication increase the probability of cycles generated by mutation, 

because there are fewer options for mutations that retain replicability and therefore 

a greater probability of convergence among such mutations. If sequence constraints 

are such that only site variants present in source sequences are compatible with 

replication, then we expect no more than 13.2 four-cycles across the network, still 

much lower than the 76 observed. The interconnected network structure in Alu thus 

appears most plausibly explained as a result of extensive gene conversion. 
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Figure 9: Cycle Generation in the TE Network.  

The simplest type of cycle in the network consists of four nodes, each representing one 

possible combination of two sites with two variants each. Each node is labeled by its variant 

at variable positions A and B. As in Figure 8, edges are drawn between nodes that differ by 

a single variant. A) A generic representation of a four-cycle, differing at positions A and B. 

There are multiple mechanisms by which such a four cycle could be generated. B) 

Generation by convergence: two related replicative sequences both generate new replicative 

sequences by the same mutation at site B. C) Generation by reversion: Reversion of a 

mutation at site A creates a new replicative sequence that completes a cycle. D) Generation 

by gene conversion: conversion between two replicative sequences creates a new 

combination of variants, forming the fourth node in the cycle.  
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Classificiation of Nodes in the Alu Network 

 

Ancestral sequences can represent either sequences that were 

transpositionally-active, or sequences that were never active, but were created 

through gene conversion. In general, determining whether ancestral sequences were 

ever replicative is a challenging problem. However, I expect highly productive 

transpositionally-active sequences to be present at high frequency, because all 

copies they produced that did not undergo gene conversion would mutation-reverse 

to that sequence.  Following this reasoning, I divided the nodes in the network into 

three categories: major replicators, intermediate nodes, and minor replicators. The 

major replicators were distinguished as those nodes representing sequences that 

appear to have been transpositionally active due to being high-frequency relative to 

other nodes in their region. The intermediate nodes, located between major 

replicators in the network, represent sequences that contain alternative 

combination of site variants present in the major replicators of their group or the 

AluY consensus but no additional variants. These nodes represent potential gene 

conversion products between copies of the major replicators and AluY, although a 

fraction could also be derived by convergent or revertant mutations, as discussed 

above. Conversion products involving major replicators from different groups are 

also possible, but, as discussed below, I find little evidence for such products 

existing at sufficient frequency for identification. Third, minor replicators are nodes 
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that are relatively low in frequency, but represent ancestral sequences containing 

variants not present in the AluY consensus or the major replicators of their region 

and therefore cannot be explained by gene conversion events among those 

replicators. 

Procedurally, I first classified the highest-frequency node in each group as a 

major replicator, and then classified as intermediates all other nodes containing 

only variants present in either the identified major replicator or AluY. I then 

selected the next most frequent node and classified it as a major replicator, provided 

it contained at least 4% of the total frequency in the group, and classified all 

elements containing only variants present in either major replicator or AluY as 

intermediates. I continued this process until the most frequent unclassified node in 

the group was at less than 4% of region frequency. Remaining nodes were classified 

as minor nodes. In Group 2, which contains two sets of nodes with disparate ages 

(Figure 8), I applied this process separately to Group 2A and 2B to identify the 

major replicators active in each period. 

Overall, I classified 13 nodes as major replicators, 88 as intermediates, and 

155 as minor (Figure 10, Table 2). Group 4 is characterized by a different pattern 

than the other regions. In Groups 1, 2, and 3, there are far more intermediate nodes 

than major replicators, a pattern suggestive of gene conversion, while in Group 4 

there are similar numbers of intermediates and major replicators. Group 4 also 

shows little cyclic structure compared to the other regions. Group 4 is distinguished 
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from AluY by a 2 bp deletion at positions 265-266 in the Alu sequence, which may 

inhibit gene conversion with AluY.  

 

Figure 10: Classification of Subfamilies by Type  

A proposed scheme for classifying subfamilies in the Alu network by type, reflecting the 

possible mechanisms by which each subfamily originated and grew. 

 

Group Node 
Count 

Mean Age Major Replicators Intermediate Nodes Minor Nodes 

1 110 1.25 3 49 58 

2 46 0.46 4 25 17 

3 31 0.61 5 7 19 

4 12 0.21 1 7 4 

Full 
Network 

256 0.87 13 88 155 

Table 2: Properties of the Major Groups in the Alu Network 

 

In Groups 1, 2, and 3, the predicted major replicators and intermediates 

largely follow the patterns that would be expected if the intermediates were 

primarily composed of conversion products of copies of the major replicators. As 
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there are many such possible conversion products I expect many intermediate 

nodes, and since converted products would be divided between these sequences, I 

expect each individual intermediate to be much lower in frequency than the major 

replicators themselves, provided that at least a substantial fraction of elements 

remain unconverted. Both these expectations are largely met (Table 2). In Group 1, 

for example, there are 49 intermediates, each a potential gene conversion product 

from only three major replicators, along with the AluY consensus. Two of the Group 

1 major replicators, corresponding to RepBase consensus sequences AluSc and 

AluSc8, make up 21.7% and 16.3% of the total region frequency, respectively, both 

considerably above the most frequent intermediate at 5.8%. The third Group 1 

major replicator, corresponding to RepBase consensus sequence AluSc5, is only at 

4.5% of Group 1 frequency, less than some intermediates. However, if we consider 

only intermediates containing variants distinguishing AluSc5 from the other major 

replicators, the highest is at 1.7%, so AluSc5 appears much higher frequency than 

its own potential conversion products. With only one exception, no major replicator 

in the first three regions is less than 2.5 times as high frequency as any 

intermediate that shares a distinguishing variant with it. The one exception is the 

major replicator corresponding to RepBase consensus sequence AluYb3a2, which, at 

8.7% of Region 2 frequency, is only moderately higher than an adjacent 

intermediate sequence with 6.7% of region frequency. I refer to this intermediate as 

AluYb3a2-249, as it differs from AluYb3a2 by a single variant at position 249. The 
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abnormally high frequency of AluYb3a2-249 may indicate that this intermediate 

had substantial transposition activity. 

Though major replicators are generally much higher in frequency than 

individual intermediate nodes, intermediate nodes in aggregate make up a 

comparable proportion of frequency to the major replicators. Overall, major 

replicators make up 44.5% of regions 1-3 while intermediates make up 41.0%. There 

appears to be a substantial difference by age in the relative proportion of 

intermediates and major replicators. In Group 1, with average age 1.25, major 

replicators make up 42.6% of the group and intermediates 42.4%. Among the Group 

2 nodes older than 0.5, 28.5% of frequency is made of major replicators and 61.6% of 

intermediates; even excluding the high-frequency intermediate AluYb3a2-249, 

intermediates make up 42.9% of frequency. In contrast, among Group 2 nodes 

younger than 0.5, major replicators make up 71.3% of the frequency and 

intermediates only 17.1%. Similarly, in Group 3, with average node age 0.21, major 

replicators make up 80.2% of the frequency and intermediates 14.3%. The tendency 

of younger groups to have much lower frequency among intermediates suggests that 

gene conversion products accumulate over long time periods. 

While there are many intermediates between major replicators within Group 

1-3, there are few nodes in the network that could be explained by gene conversion 

between copies of major replicators from different regions but not by conversion 

within groups. Such a node would contain, for example, variants present in Group 1 

major replicators but not Group 2 major replicators, as well as the reverse, and only 
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contain variants present in at least one of the two groups. Although seven such 

nodes exist in the network, all seven contain only a single variant not present in the 

major replicators of their own group, suggesting that these may be the result of 

homoplasy rather than conversion. In any case, the total frequency of these nodes is 

only 0.2% of the full network, compared to 20% for within-region intermediates. It 

thus appears that gene conversion between copies of distant replicative sequences is 

rare. 

The 98 minor nodes indicate the existence of numerous replicative sequences 

less productive than the major replicators, and widely spread throughout the 

network. Twelve of thirteen major replicators, and 30 of 88 intermediate nodes, are 

closer to at least one minor node than any other major replicator or intermediate. 

The minor nodes are generally younger than their closest intermediate or major 

replicator: in 51 of 54 cases where the 95% credible region for the age of the minor 

node is outside the 95% credible region of its closest intermediate or major 

replicator, the minor node is younger. This age pattern is expected if intermediate 

nodes are often ancestral to minor replicators, and the large number of minor 

replicators adjacent to intermediate nodes suggests that many intermediate node 

elements were replicators. In many cases, the average age gap between the minor 

nodes and their closest intermediate or major replicator is large. The mean age gap, 

0.22, corresponds to 4.5 expected additional substitutions across the entire Alu 

element between their average times of ancestral activity. Similarly, there are an 

average 6.0 differences between minor nodes and their closest intermediate or 
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major replicator. This result suggests that, in many cases, conversion products 

became active long after the peak activity of the replicators from which they 

derived.  

 

Explaining Intermediate Nodes in the Alu Network 

 

Although intermediate nodes between the major replicators represent 

potential gene conversion products, gene conversion is not the only process than can 

explain intermediate nodes. One possibility is that some intermediate nodes 

represent points on a linear evolutionary trajectory between two major replicators. 

Potentially, as in the master element model of TE evolution25, a single replicative 

locus could slowly evolve from one major replicator to another, producing numerous 

copies at every step along the way. Alternatively, a succession of distinct loci could 

be involved. In either case, the remaining intermediate nodes could be explained by 

gene conversion between the copies generated at each evolutionary step. 

If some intermediate nodes are steps along an evolutionary trajectory, we 

expect a temporal gradient between nodes associated with the earliest and latest 

stages of the trajectory. Surprisingly, there appears to be no substantial age 

gradient across most of Group 1 (Figure 8). Region 1 major replicators are very close 

in age despite substantial differences in sequence. AluSc8 elements are 98.5% as old 

as AluSc elements (95% credible region: 97.9%-99.1%), corresponding to an expected 
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additional 0.4 substitutions across the entire Alu sequence for an AluSc element 

relative to an AluSc8 element. As AluSc and AluSc8 differ at 6 positions, for a single 

master replicator to be responsible for both AluSc and AluSc8 it would need to 

experience substitution at approximately 15 times the expected rate. Similarly, 

AluSc5 elements are 99.0% as old on average as AluSc elements (95% credible 

region: 97.8%-100.0%) and differs from AluSc at 6 positions and AluSc8 at 9 

positions. The closeness in ages among descendants of these three major replicative 

sequences suggests that a distinct Alu locus was responsible for each sequence, that 

these loci were replicative at approximately the same time, and that none were 

descendant from each other. Intermediates are also largely similar in age to the 

major replicators, except for intermediates with AluY variants not present in the 

Region 1 major replicators. The mean age of intermediates with no AluY-specific 

variants is 1.39, as is the mean age of AluY major replicators. The mean age of 

intermediates with at least one AluY-specific variant is 1.31, as expected if these 

are conversion products with the younger AluY. Overall, the pattern of ages in 

Group 1 is not consistent with an evolutionary pathway between major replicators, 

but is consistent with extensive gene conversion between copies of concurrently 

active major replicators.  

There is a temporal gradient between AluY and major replicators AluSc8 in 

Group 1, AluYb3a2 in Group 2, and AluYa5 in Group 3 (Figure 8). Such a gradient 

is consistent with an evolutionary trajectory between these master replicators and 

AluY, in which each step in the trajectory is associated with the production of copies 
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of the sequence at that step. However, we would also expect a temporal gradient if 

copies of two replicators that were active at different times experienced substantial 

gene conversion with each other. In such a scenario, conversion products would be a 

mix of segments of different age, with the average age of the converted element 

equal to the average of the segments weighted by segment length. Thus, we cannot 

determine whether there was an evolutionary pathway of replicative sequences 

between AluY and these major replicators or whether these nodes were created by 

gene conversion after the major replicator was already active. If there were such a 

pathway, it would involve 5 of 49 intermediates in Group 1, 3 of 25 in Group 2, and 

2 of 7 in Group 1.  

Evolutionary pathways link the major replicators, and sequences 

representing steps along those pathways may or may not have been replicative. 

Another potential source of replicative sequences, that could also potentially 

produce intermediate nodes, is branches off these pathways leading to minor 

replicators. A new replicative sequence can be created by mutation of a replicative 

locus that does not eliminate its transposition activity. Mutation to a new 

replicative sequence will generate a sequence associated with an intermediate node 

if the sequence after mutation contains only variants present in the region’s major 

replicators or AluY. 

I attempted to estimate an approximate upper bound on the number of 

intermediate node sequences that would be generated by mutation of an older 

replicative sequence. I first estimated an upper bound on the probability that a 
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random mutation to a new replicative sequence generates an intermediate 

sequence. I consider only mutations to variants present in at least one sequence in 

the network, as other variants may disable replicability. If the starting sequence is 

already an intermediate or major replicator, a single mutation will generate an 

intermediate or major replicative sequence if the mutation is to a site variant 

present only in the region major replicators or in AluY. I calculated the maximum 

possibility of such a mutation among all intermediates and major replicators in the 

region, pmax. If the starting sequence is not a major replicator or intermediate, then 

a single nucleotide mutation can only generate an intermediate if the starting 

sequence is one position away from an intermediate, and then only if the particular 

variable site experiences mutation. As this probability is always lower than the 

probability of an intermediate sequence remaining intermediate after mutation, we 

can ignore this case for the purpose of estimating an upper bound.  

Given that the highest probability that mutation to a new replicative 

sequence results in an intermediate is pmax, we expect the number of intermediate 

sequences produced through this process to be lower than 𝑝𝑚𝑎𝑥 ∗ 𝑁, where 𝑁 is the 

total number of new replicative sequences generated by mutation. The number of 

non-intermediates produced is greater than (1 − 𝑝𝑚𝑎𝑥) ∗ 𝑁. The ratio between 

intermediates and non-intermediate replicative sequences generated by mutation 

will thus be less than 
𝑝𝑚𝑎𝑥

1−𝑝𝑚𝑎𝑥
. Using this ratio, we can estimate an upper bound on 

the number of intermediates generated from mutation by the number of non-

intermediates so generated. An estimate of the number of non-intermediate 
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replicative sequences generated by mutation is simply the count of minor 

replicators in each region. Using this reasoning, I estimated an upper bound on the 

number of intermediate replicative sequences generated from mutation from other 

replicators in each region. I estimated that fewer than 5.7 of 53 intermediates were 

generated by mutation in Group 1, fewer than 1.2 of 25 in Group 2, and fewer than 

0.16 in Group 3. Thus, it appears that the process responsible for minor nodes is 

only a small contribution to the intermediate nodes. 

Subtracting out the number of intermediate nodes that may be explainable as 

steps along an evolutionary trajectory between major nodes, or as mutations to new 

replicators not along such a trajectory, 42 intermediates in Group 1, 20 in Group 2, 

and 4 in Group 3, still require explanation. After considering the mechanisms that 

can generate intermediate node sequence without gene conversion, we are left with 

a majority of intermediate nodes to explain by gene conversion. There are at least 

two distinct explanations for intermediate nodes in which gene conversion plays a 

central role. The elements associated with an intermediate node could all be gene 

conversion products between direct copies of the major replicators. Alternatively, 

some conversion products could themselves be replicative and produce their own 

copies through transposition. We are unable to distinguish between these 

possibilities.  
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Explaining Frequencies of Intermediate Nodes 

 

Though AnTE identifies many intermediate nodes, identified intermediates 

are only a small fraction of the possible intermediates between major replicators. 

Overall, there are 49,152 possible intermediates in groups 1-3, of which 91 are 

identified as ancestral sequences by AnTE. Some possible but unidentified 

intermediates likely represent ancestral sequences with frequencies too low to 

distinguish from mutation. Even among intermediates that are identified, there is 

great frequency variation: within Group 1, for example, there is 190-fold frequency 

difference between the most and least frequent intermediate subfamily. Frequency 

variation between intermediates can reflect either differences in the rate of 

conversion to each class or differences in transposition activity between 

intermediate replicative sequences. 

If gene conversion is the main mechanism governing intermediate 

frequencies, then two predictions follow. First, I predict that intermediates that 

could be created as a result of a single conversion event between copies of major 

replicators will be more commonly identified as source sequences by AnTE, and be 

present at higher frequency, if identified, than intermediates requiring two or more 

conversion events. Second, I predict that, among intermediates that could be 

produced by a single conversion event, the number of possible conversion tracts 

generating that intermediate is positively associated with frequency.  
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There are 426 possible intermediates in groups 1-3 that would result from a 

single conversion event, of which 41 were identified, a rate of 9.6%. This is greatly 

enriched relative to the overall rate of 0.18% of possible intermediates identified, 

confirming the first prediction. The intermediates that could result from a single 

event are also much greater in frequency, having 2.3 times the frequency of other 

intermediates on average.  

The number of possible conversion tracts between major replicator 

descendants that could create a particular sequence is also strongly related to its 

frequency. Among conversion products that could be created by a single event, 

identified source sequences have an average of 4474 tracts that could produce them, 

while unidentified sequences have an average of 1103 (p<0.0001 by two-sided T-

test). Among identified source sequences, the number of possible tracts is correlated 

with frequency (r=0.38, p=0.015). There would be no reason to expect these 

associations, related to spatial patterns of site variants along the element, if 

intermediates were primarily the result of transpositionally-active sequences that 

transitioned from other active sequences by mutation. 

Though these broad patterns indicate a strong role for gene conversion 

dynamics in shaping the frequency of intermediate classes, much remains 

unexplained, and I am unable to come up with a simple set of rules to predict 

intermediate frequency with precision. Frequencies of intermediate nodes reflect 

the probability of conversion between pairs of elements, the distributions of 

outcomes of those conversion events, and transposition activity of elements within 
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intermediate classes, and it is difficult to distinguish the influence of each process 

on frequencies. 

 

Assessing RepeatMasker Annotation 

 

Because gene conversion appears to be a major contributor to Alu sequence 

diversity, it is important to determine the extent to which gene conversion may lead 

to error in Alu annotation. I used the AnTE results to reassess RepeatMasker 

annotation. RepeatMasker assigns elements to subfamilies, each associated with a 

presumed ancestral subfamily consensus sequence. Ideally, all elements assigned to 

a subfamily are descended from the subfamily consensus sequence. I based my 

assessment on how closely this ideal is met.  

I identified the most common RepeatMasker annotation among elements 

associated with each node in the Alu Network (Figure 11). Most intermediate nodes 

and minor replicators identified by AnTE are not distinguished by RepeatMasker; 

thus, only 24 RepeatMasker subfamilies are required to assign the plurality 

annotation to each of 256 nodes in the Alu network. The plurality assignments of 

intermediate nodes to the major replicative sequences generally follows proximity, 

with the more productive replicative sequences favored: AluSc and AluSc8 both 

capture many nearby nodes, while the less successful AluSc5 is assigned to only six.  
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Overall, 60% of elements are assigned to nodes corresponding exactly to 

RepBase subfamily consensus sequences, 20% to intermediates nodes not in 

RepBase, and 20% to other nodes, presumably representing other replicative 

sequences.  The existence of unidentified replicative sequences indicates the need 

for additional subfamily structure in a classification, but the high frequency of 

intermediates presents a more fundamental problem. 

 

Figure 11: Labeling of Nodes in Alu Network by Most Common RepBase 

Annotation. 

Each node is colored by the most common RepeatMasker annotation among elements 

associated with that node. Only 24 RepeatMasker subfamilies are the plurality winners in 

at least one node. The network is the same as in Figure 8. 

 

In Group 1, six site variants distinguish AluSc and AluSc8, the last one of 

which is a single nucleotide indel at position 258. Consider the intermediate node 

representing the sequence that has the AluSc variant at the first five positions and 
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the AluSc8 variant at 258; we refer to this node as “AluSc-258”. RepBase assigns 

87% of the elements associated with that node to AluSc and 8.6% to AluSc8. My 

analysis indicates that most elements associated with this node are likely either 

direct gene conversion products between AluSc and AluSc8 copies, or were copied 

from such a product. Are such conversion products “descended from” AluSc? To 

answer this question, we must consider two difference concepts of “descent” in a TE 

family characterized by gene conversion, corresponding to the two different ways 

such a TE family can copy its sequence, transposition and gene conversion.  

The first concept of “descent” is locus-based: an Alu locus is descended from 

AluSc if the element that was originally inserted at that position was copied from 

the AluSc sequence. According to this interpretation of “descent”, the RepeatMasker 

annotation of elements at the AluSc-258 node represents a claim that 87% of those 

elements were copied from AluSc. We have little reason to believe this. A locus 

copied from AluSc could obtain the position 258 variant by conversion from an 

AluSc8 copy, but a locus copied from AluSc8 could also obtain the first five variants 

from AluSc through a single conversion event covering all five, located between 

positions 78 and 152. We cannot confidently estimate the relative probabilities of 

these scenarios without a much better understanding of the gene conversion 

process, which RepeatMasker does not model. 

The second concept of “descent” is sequence-based: a converted sequence is 

descended from the sequence from which it converted, such that, if an element 

originally replicated from AluSc is converted by an element copied from AluSc8, the 
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converted sequence is descended from AluSc8 while the remainder is descended 

from AluSc. In this interpretation, conversion products between descendants of 

AluSc and AluSc8 are hybrids, containing some AluSc sequence and some AluSc8 

sequence. It is not accurate to claim that a hybrid AluSc-AluSc8 element as a whole 

is descended from AluSc, because the AluSc8-descended segment of the element is 

not. Considering AluSc-258 again, an AluSc derived locus experiencing gene 

conversion from position 153 to 288, or an AluSc8-derived sequence experiencing 

gene conversion at positions 78 to 152, would each be assigned to the AluSc-258 

node by AnTE and likely be classified as AluSc by RepBase, despite containing a 

large fraction (a large majority, in the latter case) of AluSc-8 derived sequence. 

Thus, we cannot say with confidence under either concept of “descent” that elements 

at intermediate nodes were descended from the RepBase subfamily consensus 

sequence of their assigned subfamily.  

 

Incomplete Classification Can Bias Age and Mutation Rate Estimates 

 

Due to their high frequency in the genome and low likelihood of being under 

selection24, transposable elements are useful models for the study of neutral 

evolution21,75. Substitutions are often inferred by comparing each element to the 

consensus sequence of its subfamily, under the assumption that this sequence is 

ancestral to the element, which subsequently evolved according to a typical neutral 
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substitution process. For hybrid elements, however, this assumption is violated, 

because the subfamily consensus is only ancestral to part of the element. 

Differences between the true ancestral sequence of a converted segment and the 

subfamily consensus will be interpreted as mutations, leading to an upward bias in 

estimated mutation rates at sites that differ between the ancestor and subfamily 

consensus (Figure 12). An overestimation of the number of mutations will also 

upwardly bias age estimates based on molecular clocks. 

 

Figure 12: Count of G Variants at each Position that is A in the AluSc Consensus 

Among Elements Assigned to AluSc by RepeatMasker 
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The number of elements assigned to the AluSc subfamily by RepeatMasker with a G at 

each position is plotted for all positions that have an A at the AluSc consensus. Position 74, 

which is G in all other major replicators, is an outlier, suggestive of gene conversion. This 

would lead to inflated mutation rate estimates at position 74 if all differences from the 

subfamily consensus were assumed to be due to mutation. 

 

One partial solution to this problem is to simply exclude sites that vary 

between ancestral sequences56. While this addresses the problem of some sites 

having extremely high apparent mutation rates, it does not solve the problem of 

biased ages. If copies of two replicators active at different times interconvert, and 

are then assigned to one replicator or the other, the estimated average age of both 

classes will be biased towards each other, because each class will contain segments 

descended from the other replicator. To determine whether this is a problem for the 

RepeatMasker Alu annotation, we estimated the average age of elements assigned 

by RepeatMasker to each RepBase subfamily that is identical to AnTE source 

sequence, comparing it to the age estimated by AnTE (Figure 13). Though the 

estimated average ages are in general close, in 3 of 11 cases the 95% credible 

regions for age do not overlap. Distinguishing intermediate elements from major 

replicators should allow more accurate estimates for the periods in which those 

replicators were active. 
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Figure 13: Estimated Average Age of RepBase and AnTE Subfamilies with 

Identical Consensus Sequences 

For every AnTE subfamily with an ancestral sequence exactly matching a consensus 

sequence for a RepBase subfamily, the 95% credible region for the average age of elements 

assigned to the RepBase subfamily (in black) and AnTE subfamily (in red) is plotted.  
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Conclusion 

 

I investigated patterns of sequence diversity among a subset of Alu elements 

in the human genome, attempting to better understand the role of gene conversion 

in Alu evolution. I find strong evidence that gene conversion is a major force 

influencing the sequence architecture of Alu elements. By replacing a segment of 

one Alu element with the homologous sequence from another, the conversion 

process generates elements with a combination of variants present in the donor and 

recipient element. Thus, “intermediate sequences”, with an alternative combination 

of site variants present in two or more replicators, are a signature of the gene 

conversion process. I identified four large groups of related Alu sequences, three of 

which contain both apparent major replicators and high frequencies of intermediate 

sequences. Though gene conversion is not the only possible explanation for 

intermediate sequences, I determined that alternative mechanisms are only a minor 

contribution to the frequency of intermediates. We can therefore conclude that most 

intermediate sequences between major replicators, which make up around 20% of 

our dataset, are either conversion products or direct copies of transpositionally-

active conversion products. 

Prior to this work, there was considerable evidence that gene conversion 

played a major role in Alu evolution70,72,76. However, this work is the first 

systematic attempt, across a large set of Alu elements, to identify and quantify the 

Alu sequence types expected to be produced by gene conversion, and explicitly 
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account for alternative mechanisms by which these sequences could be generated. 

My findings confirm that gene conversion is not a peripheral behavior of Alu 

elements but a frequent occurrence involving a substantial proportion of elements. 

Among the oldest group of Alu elements in the study dataset, approximately 40% 

are associated with major replicators and 40% with intermediates, most of which 

are conversion products or copies of conversion products. Our analysis likely 

understates the extent of conversion, as complete conversion events, or conversion 

events not covering variants distinguishing the replicators ancestral to the elements 

involved, do not produce detectable intermediate sequences. 

The consequence of gene conversion on sequence architecture is the 

accumulation of mosaic conversion products with sequence derived from multiple 

ancestral replicative sequences. Consistent with previous studies, conversion 

appears to be much more frequent between more similar sequences72; as a result, 

high-frequency conversion products tend to be hybrids of closely-related replicators. 

Many of these conversion products appear to have been replicative at some point, 

often much later than the ancestral sequences from which they derived, generating 

new classes of Alu.   

I observe an increasing frequency of intermediates between replicators with 

increasing age of the replicators. As recent conversion events have been identified 

even among some of the oldest Alu subfamilies76, it is not surprising that conversion 

products would accumulate over long time periods. Thus, gene conversion likely 
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plays an even larger role in the sequence architecture of older classes of Alu than 

those in the study dataset, which primarily contains the youngest classes of Alu. 

The finding that Alu engages in high rates of gene conversion presents major 

challenges to subfamily classification schemes that largely ignore gene conversion, 

such as RepeatMasker. In assigning apparent hybrid elements to subfamilies in 

which each member is supposed to be descended from a replicative sequence with 

the subfamily consensus, these classifications are misleading, as at most a portion 

of a hybrid element is derived from any single replicative sequence. The 

classification presented here demonstrates the feasibility of an alternative approach 

in which hybrid elements are assigned their own subfamilies. 
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CHAPTER VI 

 

HIGH RATES OF INTERLOCUS GENE CONVERSION AMONG ALU 

ELEMENTS IN THE GORILLA LINEAGE 

 

Gene conversion is a recombination-associated process in which a donor 

strand is used as a template to repair a double-strand break in a homologous 

acceptor strand, resulting in a unidirectional transfer of genetic information.77 Gene 

conversion can occur between allelic pairs at the same locus or between nonallelic 

pairs at paralogous loci.78,79 Both allelic and interlocus gene conversion have greatly 

influenced the evolution of eukaryotic genomes.80 Allelic gene conversion is an 

important contributor to substitution rate variation and GC-content heterogeneity 

in a variety of taxa80,81, and interlocus gene conversion drives concerted evolution 

among gene families82. Interlocus gene conversion events have also been implicated 

in many human inherited diseases.83 

Alu transposable elements in primates appear to undergo frequent interlocus 

gene conversion due to their high similarity and large copy number72,84. There are 

approximately 1 million Alu elements in the human genome, comprising around 

10% of the human genome overall, most of which shared a common ancestor 45-60 



73 
 

MYA84. Thus, there are many more potential Alu gene conversion pairs than among 

most human gene families that have much lower copy number, but still occasionally 

experience interlocus gene conversion2,10. Evidence for high rates of Alu gene 

conversion70–72,76,85 include identification of numerous “mosaic” Alu elements, 

appearing to result from conversion between elements of different subfamilies70. In 

Chapter V, I provided evidence that approximately 20% of AluY and younger AluS 

elements appear to be mosaic. Aleshin and Zhi72 also found that neighboring Alu 

elements along the genome are substantially more similar than random pairs, 

suggesting high rates of Alu gene conversion among elements in close proximity. 

Given its propensity for gene conversion, Alu is a potentially useful system 

for understanding the conversion process as it has occurred in primate genomes, but 

existing methods for studying it have several limitations. The method of Aleshin 

and Zhi72, based on identifying an excess number of shared mutations among 

nearby elements, can identify signatures of gene conversion but cannot identify 

individual conversion events. Methods such as GENCONV86, which compare pairs 

of sequences to identify regions with higher than expected similarity, can determine 

that a conversion event occurred but can neither distinguish between donor and 

recipient loci, nor infer what the sequence was at either locus prior to conversion.  

To better understand gene conversion in Alu elements, I developed a 

Bayesian phylogenetic approach designed to identify and characterize gene 

conversion events. I applied this approach to sequence data from orthologous Alu 

loci among four Great Apes, identifying gene conversion events between pairs of 
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nearby sequences on each branch of the phylogenetic tree relating these four 

species. For each conversion event, my method infers the branch on which the event 

occurred, identifies both the donor and receptor loci, and probabilistically infers the 

sequence at each locus before and after the conversion. Due to a fortuitously high 

rate of gene conversion along the lineage leading to gorillas, I obtain sufficient 

information for a more complete picture of individual conversion events than 

previous analyses of Alu gene conversion. 

 

Obtaining Alu Ortholog Alignments 

 

A dataset of Alu elements was obtained from the RepeatMasker87 annotation 

of the hg38 assembly of the human genome. Only full-length sequences (275-325 bp) 

were included, producing a dataset of 779,310 elements. Human elements were 

aligned to a consensus of the Alu sequence using the probabilistic version of the 

Needleman-Wunch algorithm described by Zhu et al.60 as described in Chapter III. 

The 6 primate EPO88 whole-genome alignment was acquired from Ensembl 

release 7189, which is based on the GRCh37 assembly of the human genome. We 

used five of these genomes: human, chimpanzee, gorilla, orangutan and macaque. 

The positions of elements in the Alu dataset were used to identify Alu positions in 

the whole-genome alignment. Because EPO contains an alignment of orthologs to 

the human, we used these alignments, together with our alignments of human Alu 

to the consensus, to obtain alignments of each ortholog to the consensus. 
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All Alu loci that did not include human, chimpanzee, gorilla, and orangutan 

orthologs were filtered out. As macaque is used only for substitution rate 

estimation, I did not exclude loci missing only macaque. To protect against 

misalignment of Alu, I also filtered out loci in which chimpanzee, gorilla, or 

orangutan in either 100 bp flanking region around the element differed by more 

than 10% from the human flanking region. 

 

Testing Potential Conversion Pairs 

 

Each pair of elements were tested for conversion between each element 

within 100 kb, considering each in turn as potential donor and acceptor, and 

considering separately the possibility of conversion on each branch in the Great Ape 

phylogeny (i.e., the phylogeny including human, chimpanzee, gorilla, and orangutan 

as leaves). 

Given a possible donor element, a possible acceptor element, and a possible 

branch on which a conversion event occurred, I consider the relative likelihood 

between two scenarios: first, that the two elements evolved independently, neither 

experiencing gene conversion; second, that there was a conversion event in which a 

segment of the recipient element was completely converted to that of the donor 

element.  

The marginal likelihood of a conversion event involving a specified potential 

acceptor, donor, and branch is the sum of the likelihoods of each possible conversion 
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tract. I thus estimate the likelihood of every possible contiguous tract in the 

alignment, relative to the scenario of no conversion. For each position in the tract, I 

consider two possible pairs of trees, the first indicating that the two homologous 

nucleotides at the possible donor and recipient evolved independently according to 

the normal Great Ape phylogeny, and the second indicating that the recipient 

branched off the donor at the point of conversion (Figure 14). The relative likelihood 

of a tract position is the relative likelihood between the trees indicating non-

independent evolution of the homologous nucleotides at that position and the trees 

indicating independent evolution. Outside of the tract, positions evolve along the 

same trees in the conversion and non-conversion scenario, so the relative likelihood 

of each position is one. The relatively likelihood of a tract is the product of the 

relative likelihood of each individual position in the tract. Using this approach, 

estimating the conversion likelihood reduces to the problem of estimating the 

relative likelihood of two sets of trees for every site in the tract. 
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Figure 14: Trees Representing Scenarios of Conversion and Independent 

Evolution for a Homologous site at a Potential Acceptor and Donor Locus.  

Each leaf represents one of eight homologous nucleotides among four orthologues and two 

loci. Leaf labels indicate species (human (H), chimpanzee (C), gorilla (G), and orangutan 

(O)) and presence at either the donor (D) or recipient (R) locus. Each set of trees represents 

one possible scenario. If the site was not converted, both sites evolved independently 

according to the typical Great Ape phylogeny. If the site was converted, the recipient 

branches off from the donor lineage after the conversion event. The tree shown corresponds 

to conversion in the gorilla lineage. 

 

Given a tree, substitution probabilities across each branch, and a set of 

leaves, the tree likelihood can be calculated using Felsenstein’s algorithm.90 The 

leaves of each tree are obtained from the homologous site in the element across the 

potential donor and recipient element in human, chimpanzee, gorilla, and 

orangutan.  Substitution probabilities across the branches of the Great Ape 

phylogeny are straightforward to obtain, as described below. Estimating 

substitution probabilities on the branches surrounding the conversion event itself is 
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more complicated, as the time of conversion is unknown. To address the unknown 

conversion timing, we average tract likelihoods across 100 possible conversion 

points spaced equally across the branch of the Great Ape phylogeny under 

consideration. 

The conversion likelihood for an acceptor-donor pair reflects the strength of 

evidence for conversion of recipient by donor relative to the possibility of 

independent evolution of each element without conversion. However, these are not 

the only possible scenarios. In particular, if the element under consideration as 

recipient was converted, but by a different donor, the conversion scenario may be 

strongly favored over the independence scenario for many considered donors that 

are closer to the actual donor than the recipient. To guard against such false 

positives, for every potential conversion event passing a likelihood threshold, the 

donor-recipient pair under consideration is compared to 10,000 pairings of the 

recipient with random elements in our dataset. Then, the proportion of donors with 

higher likelihoods than the donor under consideration is determined. Ever donor-

acceptor pair, then, is associated with two values: the relative likelihood and donor 

percentile. For a potential conversion pair to go into the conversion set, I required 

that the pair have relative likelihoods larger than e30, and the potential donor have 

higher likelihoods with the recipient than 99.95% of random potential donors. These 

thresholds were chosen to obtain a false positive rate below 5%, as described below. 

If a donor-acceptor pair is in the conversion set, it is of interest to infer 

properties of the conversion event, as well as information about the donor and 
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acceptor before and after the event. I draw events (given donor, recipient, and 

branch) from the posterior distribution using the following procedure. I first draw a 

tract with probability proportional to its relative likelihood. I then draw a point on 

the branch at which the event occurred, conditional on the selected tract. 

Conditional on the above, I then draw trees from the posterior using Felsenstein’s 

algorithm, with each tree indicating the nucleotide at each node in each species in 

the donor and recipient. For analyses, I draw one event from the posterior of each 

pair in the conversion set.    

 

False Positive Rate Estimation 

 

To estimate false positive rates, for every element in the Alu alignment 

dataset, I randomly placed it somewhere else in the genome, at least 1 Mb away 

from its true position. Then, I tested it as a potential conversion recipient for all 

elements within 100 kb. I identify all events passing the same thresholds for 

admission to the conversion set, putting them in the false-positive set. As large-

distance conversion events are unlikely, these events should consist primarily of 

false positives. I estimate the false positive rate as the number of events in the false 

positive set divided by the number of events in the conversion set. 
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Substitution Probability Estimation 

 

Substitution probabilities were estimated from the EPO alignment, which 

contains inferred ancestral sequences. For each branch of the Great Ape phylogeny, 

the probability of being in state Y given state X at the start of the branch was 

estimated by dividing the number of X to Y changes by the number of positions in 

state X across all elements at the start of the branch. Substitution probabilities for 

each possible X to Y substitution were estimated separately, and C to A and G to T 

substitutions at CpG sites are distinguished from other such substitutions. 

For most purposes, these substitution probabilities across the Great Ape 

phylogeny can be used directly. Given a conversion event along a branch, however, 

we must estimate substitution probabilities up to that event, and from that event to 

the present. To do this, substitution probabilities were first converted to rates. As 

substitution probabilities are low, I assume no more than one event per site, in 

which case: 

𝜆𝑋→𝑌,𝑏 =
−log⁡(1 − 𝑝𝑥→𝑦,𝑏)

𝑡
 

where 𝜆𝑥→𝑦,𝑏 is the rate of substitution from X to Y along branch b, 𝑝𝑥→𝑦is the 

probability of substituting from X to Y across that branch, and t is the branch 

length, defined to be 1 for the entire branch. After estimating the rate across the 
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entire branch, I use this equation to estimate substitution probabilities along 

sections of the branch. 

 

Alu Gene Conversion Across the Great Apes 

 

I scanned the Ensembl EPO 5-primate alignment91 for Alu elements 

identified by RepeatMasker73 and present in the human, chimpanzee, gorilla and 

orangutan genomes. I then applied my gene conversion detection algorithm, 

TEConv, to identify a set of high-confidence gene conversion events between 

elements in this set. The algorithm evaluated pairs of loci for possible gene 

conversion, comparing the likelihood of independent evolution of the loci since the 

origin of the Great Apes versus the likelihood a conversion event occurred on one 

terminal branch of the Great Ape tree.  

Previous research indicated that gene conversion occurs much more often 

between close paralogs on the same chromosome than between distant paralogs or 

paralogs on different chromosomes72,78. Because of this, I evaluated conversion only 

between pairs of elements within 100 kb of each other. To estimate the false 

positive rate, each element was successively placed at a random position in the 

genome at least 1 Mb from its true position and the algorithm run as normal; this 

gives the detection rate of the algorithm when there are likely to be essentially no 
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real events. I set thresholds for relative likelihood of conversion to obtain a false 

positive rate of 5% in the high-confidence set. 

I identified 2,537 gene conversion events across the terminal branches of the 

orangutan, gorilla, chimpanzee, and human lineages. Surprisingly, nearly all these 

events, 2,514, occurred along the gorilla lineage, while only 15 occurred along the 

human lineage, 8 along the chimpanzee and 14 in orangutan. To confirm this 

unexpected result, I consider another indicator of gene conversion, the substitution 

rate at highly variable sites within Alu. The most variable sites in Alu distinguish 

Alu subfamilies; i.e., they differ between major replicative sequences and thus differ 

between their descendants. A rate of substitution at these sites higher than 

expected from mutation alone suggests a high rate of conversion between elements 

in different subfamilies. Considering, for example, the sites that are C in the Alu 

consensus, two positions, 153 and 197 in the alignment, have a G in AluY, the 

youngest major division of Alu elements, while a third, 94, has a G in the older 

division AluJ. The rates of substitution from C to G at these sites in most branches 

in the Great Ape phylogeny are well within normal site variation, suggesting most 

substitutions at these sites are from mutation rather than interlocus gene 

conversion (Figure 15). In contrast, these sites are outliers in substitution rate in 

gorilla (Figure 15C), consistent with high rate of gene conversion between 

subfamilies. Thus, it appears that the terminal gorilla branch experienced vastly 

higher rates of gene conversion among Alu elements than other branches of the 



83 
 

Great Apes. As rates of gene conversion are so low outside the terminal gorilla 

branch, further analyses are restricted to conversion events on this branch. 

 

Figure 15: Rate of C to G Substitution Across the Alu Sequence, along Six 

Branches of the Great Ape Phylogeny.  

Each point gives the estimated substitution rate for sites that are C at the start of the 

branch. Only sites that are C in the Alu consensus are shown. Sites that are G in major 

subfamily consensus (AluY, AluS, or AluJ) are shown in red. A) Human terminal branch. B) 

Chimpanzee terminal branch. C) gorilla terminal branch. D) orangutan terminal branch. E) 

Branch between gorilla and chimpanzee divergence. F) Branch between orangutan and 

gorilla divergence. 
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Why are Rates of Alu Gene Conversion Abnormally High in the Gorilla Lineage? 

 

A possible explanation for the two orders of magnitude higher rate of 

interallelic gene conversion along the gorilla lineage might be found in the PRDM9 

recombination targeting system. During meiosis, double strand breaks are induced 

in chromosomes to initialize recombination.92 In mammals, specific sites are 

targeted by DNA binding of the protein PRDM9, resulting in hotspots for 

recombination and double strand breaks.92,93 As alleles containing PRDM9 target 

sites are preferentially converted by alleles which are not targeted94,95, the action of 

PRDM9 binding tends to eliminate target binding sites over time, and the PRDRM9 

protein evolves extremely rapidly, especially at DNA contact sites96, to find new 

binding sites and allow recombination to continue in future generations. The end 

result is that there is essentially no overlap of recombination hotspots among 

different Great Ape species97 and considerable variation even among different 

human populations98. 

Thus, there is a known system operating in the primate genome by which we 

expect high frequency of double strand breaks to be induced at particular targets 

over short time periods on an evolutionary scale. If part of the Alu sequence was 

targeted by PRDM9, we would expect a burst of both allelic and interlocus gene 

conversion among Alu elements over a short time period, likely on a single branch of 

the Great Ape tree, as we observe.   
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A PRDM9 mechanism for excess interlocus gene conversion in gorilla Alu 

elements predicts that there should be a PRDM9 binding motif common among Alu 

elements prior to the period of conversion. Currently PRDM9 motifs have been 

identified by analyzing recombination hotspots93, but predicted PRDM9 motifs 

based on analysis of the gorilla PRDM9 structure96 do not match any sequence close 

to the Alu consensus. This suggests that the putative ancestral gorilla PRDM9-Alu 

binding motif is no longer active, a result that is not surprising given the transiency 

of recombination hotspots. 

 If there is a motif that predicts gene conversion acceptor probability, then 

differences from this motif prior to gorilla divergence should be associated with 

lower levels of conversion. The latest point prior to gorilla divergence at which 

sequence can be inferred for both converted and unconverted elements is the root of 

the Great Ape tree. To search for a motif, I compare the frequency of variants at 

each site among both elements that underwent gene conversion in gorilla and 

elements that did not. If a variant is part of the motif, there should be a higher 

frequency of that variant among converted elements at the root than among 

unconverted elements. To avoid identifying variants that merely indicate subfamily 

membership, I conduct this analysis separately for AluY and AluS elements.  

The ratio of non-consensus variants among elements that did not convert 

relative to those that did is fairly even along the Alu sequence, with the notable 

exception of a significantly elevated region at positions 242-256 (Figure 16, Figure 

17). This result is similar in AluY and AluS sequence. The number of non-consensus 
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variants in the 242-256 region at the root of the Great Apes strongly predicts 

subsequent conversion probability (Figure 18). Among 89,959 elements that 

contained the Alu ancestral motif in this region at the beginning of the gorilla 

lineage, 1.8% were converted along the gorilla lineage, while only 0.68% of the 

97,408 elements with a single difference from the ancestral motif were converted 

along the gorilla lineage (p<.0001, Fisher exact test). In contrast to conversion 

results of acceptor elements, no region of Alu appears to strongly relate to the 

probability that a sequence will act as a donor element (Figure 18). 

 

Figure 16: Ratio of the Frequencies of Non-Consensus Variants for Unconverted 

Elements Versus those for Converted Elements, for each Position in Alu. 

The proportion of Alu loci with non-consensus variants at the root of the Great Apes was 

calculated for each site, and the ratio of unconverted relative to converted is plotted for 
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each site. Positions differing between AluS, AluY, and AluJ were excluded. Analysis was 

conducted separately for AluY elements and AluS elements. 

 

Figure 17: Conversion Acceptor Ratio Between Elements with and Without 

Perfect Match to the Consensus in 15 bp Windows Across Alu.  

For 15 bp windows across Alu, the proportion of elements that are acceptors in the 

conversion set was calculated for loci that had perfect match to the consensus at the root of 

the Great Apes in that window (excluding positions differing between AluS, AluY, and 

AluJ) and all other elements. The white bars show 95% credible regions for AluY elements, 

while the black bars show 95% credible regions for AluS elements. 
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Figure 18: Conversion Percent by Motif Differences.  

For each count of differences from putative motif, the percent of elements with that many 

differences that were gene conversion acceptors is plotted. 
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Figure 19: Conversion Donor Ratio Between Elements with and Without Perfect 

Match to the Consensus in 15 bp Windows Across Alu.  

For 15 bp windows across Alu, the proportion of elements that are donors in the conversion 

set was calculated for loci that had perfect match to the consensus at the root of the Great 

Apes in that window (excluding positions differing between AluS, AluY, and AluJ) and all 

other elements. The white bars show 95% credible regions for AluY elements, while the 

black bars show 95% credible regions for AluS elements. 

 

Known PRDM9 target motifs show depletion in the genome99 because 

substitutions are accelerated by meiotic drive, a tendency for new alleles that 

disrupt PRDM9 binding to be preferentially transmitted to offspring; this can be 

explained if PRDM9 binding induces cis double-strand breaks that then tend to be 

repaired using the new allele on the sister chromatid94. The hypothesis that the 
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ancestral 242-256 Alu motif was bound by PRDM9 for some period of time on the 

gorilla lineage is supported by the observation that the motif is depleted among Alu 

elements in gorillas relative to other Great Apes, while Alu loci with 242-256 region 

motifs differing by 1 or 2 nucleotides from the ancestral motif are more frequent in 

gorillas (Figure 19).  The gorilla genome has 62,138 Alu copies that match the motif 

while other Great Apes have between 68,245 and 69,456 copies with intact motifs.  

 

Figure 20: Count of Elements by Number of Differences from Putative PRDM9 

Binding Motif in Four Great Apes. 

In each of the human, chimpanzee, gorilla, and orangutan genomes, the number of Alu 

elements with each possible number of differences from the putative PRDM9 binding motif 

is plotted. 



91 
 

Identified gene converted loci do not match modern gorilla hotspots identified 

by Stevison et al.97; 12.4% of gene-converted Alu loci are within 10 kb of a Stevison 

hotspot (318 out of 2571), compared to 13.5% of non-converted loci (34021 out of 

251,496). Average gorilla recombination rates within 100 kb of Alu loci, also from 

Stevison et al.97, do not differ significantly between gene-converted loci and non-

converted loci (p=0.29, t-test). However, average human recombination rates, as 

estimated by Kong et al.98, are 5.4% higher on average within 100 kb of  Alu loci 

that were identified as gene-converted on the gorilla lineage, than within 100 kb of 

loci that were not gene-converted on the gorilla lineage (p=0.0003); similarly, 

human recombination rates are 5.1% higher among Alu loci identified as gene-

conversion donors on the gorilla lineage (p=0.0006).  

 

Conversion Probability Declines with Interlocus Distance 

 

 

To evaluate the relationship between interlocus gorilla lineage gene 

conversion events and genomic distance, the distance between the midpoints of 

donor and acceptor elements was determined. As expected from prior research72, the 

rate of interallelic gene conversion along the gorilla lineage declined with 

interallelic distance (Figure 21). Half of identified conversion events occur within 12 

kb and 90% within 50 kb, and the decline appears to be approximately exponential. 
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To quantify this relationship more precisely, we fit an exponential model estimating 

the gene conversion probability along the gorilla lineage by distance: 

𝑝(𝐶|𝑑) = 𝛼𝑒−𝛽𝑑 

where 𝑝(𝐶|𝑑) is the gene conversion probability given a distance, 𝑑, between donor 

and acceptor loci. The value of 𝛼, the gene conversion probability for adjacent loci, 

was estimated as 0.017 (95% credible region: 0.016 - 0.018) and the exponential 

decrease parameter, 𝛽, was 0.000048 (the 95% credible region was 0.000046 - 

0.00005). Extrapolating from the model, fewer than 1% of conversion events are 

predicted to occur at distances greater than the 100 kb distance cutoff used in this 

analysis.  



93 
 

 

Figure 21: Conversion Rate by Distance.  

All possible Alu pairs were placed in bins of 1000 bp based on the distance between donor 

and recipient, measured at midpoint. The proportion of possible pairs in each bin that are 

in the conversion set is plotted. The line shows the predicted rate at each distance from an 

exponential model. 

 

This analysis suggests Alu conversion pairs are generally quite close, but the 

high density of Alu loci would mean that for any given locus there was typically a 

large possible selection of partners. The average element has 3.6 potential partners 

in our dataset within 12 kb and 14 within 50 kb. Among identified gorilla 

conversion events, 34% involved closest neighbors.  
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While 51.3% of potential matchups within 50 kb are in the parallel 

orientation, only 48.4% of inferred conversion events within 50 kb are between 

elements in parallel, a significant difference (p=0.004, Fisher’s exact test). The 

slight preference for anti-parallel orientation among conversion events in this 

dataset differs from the result of Aleshin and Zhi72, who found a stronger signature 

of gene conversion between neighboring Alu elements in parallel. This may indicate 

differences in gene conversion dynamics over time; the Aleshin and Zhi result 

reflects long-term patterns of gene conversion, while these results involve events 

only along the terminal gorilla branch.  

 

  Conversion Tract Sizes and Positions 

 

I used inferred intergenic conversion events to estimate a posterior 

probability distribution of conversion tract sizes. The mean tract size is 118 bp 

(standard deviation 54 bp), with a median of 109 bp. Tract size frequency among 

identified conversion events rises rapidly from 25-75 bp, then steadily but more 

slowly declines in the range from 100-200 bp (Figure 22). To correct for bias against 

detecting shorter tracts, I simulated conversion events to estimate a false negative 

rate for each tract size. These simulations were then used this to infer the corrected 

distribution including missing events, but this does not greatly change the general 

pattern (Figure 22). 
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Figure 22: Tract Size Frequencies.  

All pairs in the conversion set were placed in 10 bp bins based on tract size, and the 

number of pairs in each bin was plotted. The red line gives the estimated frequency in each 

bin after adding in inferred missed conversion events. 

 

I also considered the number of times each position in the Alu element was 

covered by a conversion tract (Figure 23). The most covered region of the element is 

in the middle of the 289 bp Alu alignment, around positions 136-166, and the most 

covered site, position 149, is included in 65% of tracts. In contrast, the ends are 

covered much less: for example, position 20 is in only 5% of tracts, and position 269 
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in 17% of tracts. The putative PDRM9 motif at Alu alignment positions 242-256 

does not appear as an outlier in coverage (only 36% of tracts cover the motif).  

 

Figure 23: Coverage of the Alu Sequence by Conversion Events.  

For each site in Alu, the number of times it was included in a conversion tract was plotted. 

 

Gene Conversion Donors and Acceptors 

 

Our ability to detect conversion events is not independent of the identity of 

donor and recipient elements; conversion between more distantly-related elements 
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is easier to detect than between similar elements because conversion events 

between distant homologs introduce more base changes. Conversion from younger 

to older elements is also easier to detect than the reverse, because older donors 

include more distinct locus-specific variants that can be used to distinguish them 

from other possible donors. The conversion set, therefore, is not representative of 

the conversion events that occurred on the gorilla lineage. The above analysis 

suggests, however, that the rate of false negatives is low (<5%) for conversion tracts 

larger than 100 bp. To address sampling bias, I construct a large-tract subset 

consisting only of events with tracts 100 bp are larger; this subset contains 1428 

events. 

Elements from the youngest major Alu division, AluY, are disproportionately 

likely to be both gene conversion recipients and donors in either the full conversion 

set or the large-tract subset (Table 3). The middle division, AluS, is also 

disproportionately present as both recipients and donors, though to a smaller 

extent. Elements from AluJ, the oldest major division, are greatly underrepresented 

as donors and recipients relative to their frequency in the genome. Note that this 

pattern runs in the opposite direction of the expected bias in identifiability, because 

older elements are more dissimilar to their potential conversion partners. Thus, the 

dataset likely understates the age effect on conversion probability, and we can infer 

that elements that have been in the genome for longer are less likely to be involved 

in gene conversion as either donors or recipients. This result is expected, as 

previous research indicates a strong relationship between sequence similarity and 
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conversion probability72. Consistent with this relationship, identified conversion 

pairs are more likely to belong to the same division than expected from the donor 

and recipient frequencies alone (Table 4). 

 Recipients Donors Large-Tract 

Recipients 

Large-

Tract 

Donors 

All gorilla 

Elements 

Conversion 

Probability 

AluY  18.0% 

(462) 

13.0% 

(334) 

21.6% 

(315) 

14% (205) 8.6% (21,813) 2.1% 

AluS 77.9% 

(2002) 

78.3% 

(2014) 

75.2% 

(1095) 

76% (1109) 67.3% 

(171,041) 

1.2% 

AluJ 4.1% (105) 8.5% 

(219) 

3.2% (46) 9.5% (138) 24% (61,010) 0.2% 

Table 3: Participation of Major Divisions of Alu in Conversion Events 

Recipient: Donor Expected Observed 

Y:Y 2.3% 3.7% 

Y:S 14.1% 13.2% 

Y:J 1.5% 1.1% 

S:Y 10.1% 9.1% 

S:S 61.0% 62.3% 

S:J 6.6% 6.4% 

J:Y 0.5% 0.2% 

J:S 3.2% 2.8% 

J:J 0.3% 1.0% 

Table 4: Percent of Conversion Events Involving Each Possible Pair from the 

Major Divisions of Alu  

 

While younger subfamilies are overrepresented among both donors and 

acceptors, they are more strongly so for recipients than donors (Fisher exact test, 

p<.0001). The donor-acceptor difference is similar in the overall dataset and the 

large-tract subset, so this does not appear to be a result of sampling bias. This 

difference may be partly explained by presence of an intact putative PRDM9 

binding motif, which strongly affects an element’s probability of being an acceptor 

but not its probability of being a donor. Only 28% of AluJ elements had a fully 



99 
 

intact motif at the root of the Great Apes, compared to 34% of AluS elements and 

68% of AluY elements.  If we consider only the 742 pairs in which both elements 

had fully intact motifs, 22.2% of donors (165) are AluY compared to 25.7% (191) of 

recipients, a smaller difference, though still significant (Fisher exact test, 

p=0.0013). It is likely that there are other sites on the Alu sequence than the motif 

itself that are important for double-strand break targeting. The first-identified 

human PRDM9 motif appears to produce stronger hotspots in the background of 

THE1 elements than in other repeats or non-repetitive sequence.99  

On average, pairs of loci involved in conversion along the gorilla lineage 

differed at 53.9 sites (standard deviation 11.5 sites) in their ancestral state at the 

Great Ape root; this is 18.7% of the length of the Alu alignment. In contrast, Alu 

elements overall differed by an average 67.3 positions at the Great Ape root, and 

only 20% differed less 54. Thus, conversion pairs are substantially more similar 

than Alu elements overall, as expected. Surprisingly, however, if we consider only 

elements involved in conversion events, actual conversion pairs were only slightly 

more similar to each other (at the root) than pairs of elements chosen at random 

from the recipient and donor pools, with an average difference of 55.2 sites. Though 

highly significant (p=0.001, t-test), a difference of only around a single base pair (9% 

of a standard deviation) suggests that sequence agreement is of relatively small 

importance to conversion probability among pairs of elements that are individually 

well-suited to be donors and recipients. This result does not appear driven by 
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sampling biases; in the long-tract subset, the average true pair differed by 53.9 sites 

at the root, while random pairs differed by 55.1, both very similar to the full set. 

This degree of sequence similarity between identified conversion pairs in this 

dataset is considerably lower than reported for other identified conversion events in 

primate genomes, which are generally above 95%83. The high density of Alu 

elements offers many more opportunities for pairwise interaction than the typical 

gene family, so conversion events between low-similarity elements may sometimes 

occur even if such events are individually low likelihood. 

 

Gene Conversion Outcomes 

 

To identify the substitutions involved in each conversion event, the inferred 

sequence of each tract immediately after conversion (post-conversion sequence) was 

compared to the same region in the acceptor at the root of the Great Apes (pre-

conversion sequence). As we cannot identify variants acquired in the converted 

region of the acceptor between orangutan divergence and the gene conversion event, 

we cannot compare the sequence in the acceptor immediately before and after 

conversion, and some base changes induced by the conversion event will be missed. 

The average conversion event involved 21.4 identifiable substitutions 

(standard deviation 12) from the donor to the recipient element, around 18% of the 

average tract size. The average non-converting element experienced 3.7 
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substitutions along the terminal gorilla lineage. With an overall conversion rate of 

0.96%, this implies that identified conversion events were responsible for 

approximately 5.3% of the substitutions in Alu in the gorilla lineage, though the 

actual number is likely somewhat higher due to unidentified events.  

The different substitution types involved in conversion events are given in 

Table 5. Allelic gene conversion is known to be biased towards GC variants in a 

wide variety of species100,101, and Aleshin and Zin72 found a GC bias in Alu 

interlocus conversion as well. However, I do not observe such a bias overall. While 

A:TC:G substitutions (i.e., AC and its reverse complement) are more frequent 

than the reverse, as expected, A:TG:C substitutions are less frequent than the 

reverse. This pattern appears largely, but not entirely, driven by CpG sites. If we 

separate out GpC:CpGApT:TpA substitutions from all other substitutions, I 

observe only a slight excess of other G:CA:T substitutions relative to the reverse. 

The patterns in the long-tract subset are similar to the full set, indicating that they 

are likely not driven by sampling biases. 

Substitution Type Full Set Count Full Set 

Reverse 

Count 

Long-tract 

Subset Count 

Long-Tract Subset 

Reverse Count 

C:GA:T 3409 3930 2554 2899 

C:GT:A 20180 17205 14736 12494 

C:GG:C 4152  3086  

A:TT:A 3842  2859  

CpG:GpCTpA:ApT 6561 3752 4897 2745 

C:GT:A (non-CpG) 13619 13453 9839 9749 

Table 5: Counts of Substitution Types in Gene Conversion Events 
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Why do CpG sites show a strong AT bias, in contrast to the GC bias in gene 

conversion found in previous research101? Deamination of methylated CpG sites, 

which results in a GpC:CpGApT:TpA substitution, occurs at a much higher rate 

than other mutation types102. The Alu consensus has 23 of these hypermutable CpG 

sites, which tend to deplete rapidly with age. Recipient elements are more enriched 

in younger subfamilies than donor elements (Table 3) and had 9.6 intact CpG sites 

on average compared to 8.1 for donors at the root of the Great Apes. On the 

conversion tracts themselves, counting at the root, donors had 2.7 intact CpGs 

compared to 3.9 for recipients. Thus, the bias towards AT could be caused by the 

tendency for recipient elements in our dataset to be younger (and therefore more 

CpG-rich) than donors, perhaps because younger sequences are better binding 

targets for PRDM9, counteracting the general GC bias in conversion.  

 

Conclusion 

 

Using a novel algorithm for gene conversion detection among transposable 

elements, I identified 2514 interlocus gene conversion events among Alu elements 

in the gorilla genome, affecting around 1% of aligned elements among the Great 

Apes. The rate of conversion in the terminal gorilla branch vastly exceeded the 

conversion rate in the chimpanzee, human, or orangutan lineage. Conversion 

probability in the gorilla genome was strongly associated with a 15 bp motif within 

the Alu consensus sequence. These observations are consistent with a known 
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mechanism for gene conversion: recognition of a target motif by PRDM999,103, 

resulting in an induced double strand break that is repaired by a nearby 

homologous locus79. Due to the rapid rate of PRDM9 evolution96, it is unsurprising 

that a high rate of gene conversion in Alu would be restricted to a single branch; 

targeting of the Alu consensus motif, as with any PRDM9 motif, would be a 

transient phenomenon.   

It is surprising that PRDM9 would target the Alu consensus at all. It would 

seem a great risk to the host to target the Alu consensus sequence for double strand 

breaks, given the high frequency of Alu in the genome. Alu interlocus gene 

conversion itself is likely relatively harmless to the host, as non-replicative Alu 

elements appear to be largely neutral residents in the genome24; the fitness of the 

host is not expected to be strongly related to variation within Alu elements. 

However, double-strand breaks can also be repaired by nonallelic homologous 

recombination (NAHR)104, which can lead to harmful genetic deletions and 

duplications.36,105 A number of human diseases are associated with such Alu-

induced genomic rearrangements16.  Nevertheless, other PRDM9 targets have been 

identified in less common repeat elements; in particular, a modern human 

recombination hotspot appears to be targeted to a motif located in the inactive 

THE1 retrotransposon family and is strongest in this backgrou3nd.99,106 McVean107 

suggested that the PRDM9 may tend to target motifs found in repetitive sequence 

to avoid targeting functional regions for double strand breaks, and this may 

overcome the cost of increased NAHR risk.  
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Gene conversion is in important force influencing the evolution of Alu 

elements.54,85 The great disparity in conversion rate between the gorilla lineage and 

other branches suggests that much conversion in Alu may occur primarily in bursts, 

whenever motifs common to Alu elements are targeted for double-strand breaks, 

though it is unclear how often such targeting has occurred.  

  



105 
 

 

 

CHAPTER VII 

 

CONCLUSION 

 

With the advent of widespread genome sequencing, considerable scientific 

effort has been dedicated towards using this sequence data to better understand the 

structure, function and evolution of genomes. As transposable elements are a large 

component of many eukaryotic genomes, and appear to be an active player in many 

genomic processes7, this project necessarily includes using TE sequence data to 

inform our understanding of the biology and evolution of TE families. The first step 

towards such an understanding is to identify the TEs within genomes and classify 

them into families, and, though not complete, considerable progress has been made 

towards this goal. TE identification and annotation methods64,87,108–110 have 

revealed the ubiquity and diversity of TEs within the genomes of a wide variety of 

taxa. Having acquired large databases of TE sequences, the next task is to derive 

the evolutionary histories of these TE families and characterize the mechanisms by 

which they have evolved. 

Despite the large quantity of sequence data available to infer TE evolutionary 

relationships, it is a difficult problem. Much variation among extant TEs comes 
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from post-insertion mutation, which are uninformative as to the evolutionary 

relationships among elements. Aside from these uninformative variants, many 

elements are identical or highly similar, making it difficult or impossible to work 

out precise evolutionary relationships among them. Addressing this problem is 

challenging on its own, but becomes much more so for a TE family such as Alu that 

experiences high rates of gene conversion. As gene conversion and transposition 

both involve replication of TE sequence, these processes are difficult to distinguish 

from one another: consider a locus that experiences conversion of the complete 

element, eliminating all information about the source it originally replicated from.  

The major aim of this dissertation was to develop a framework for precise 

evolutionary inference in transposable elements, intending to address the particular 

difficulties with these sequences. To start, I developed, in Chapters II and III, a new 

interpretation of the “subfamily” concept and a method for subfamily classification 

based on this interpretation. To be usable for precise evolutionary inference, 

assignment of an element to a subfamily should represent a specific evolutionary 

claim that can be evaluated with evidence. Yet, despite widespread usage in nearly 

all TE analysis, usage of the subfamily concept has often been ambiguous about 

what exactly it means for an element to belong to a subfamily; in particular, in 

previous classification schemes it is unspecified how hybrid elements resulting from 

gene conversion between elements from different subfamilies should be classified. 

My definition of subfamilies as containing all elements with identical mutation-

reversed sequences eliminates this ambiguity and allows for classification of hybrid 
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elements in a natural way, and the AnTE algorithm I developed provides the means 

for carrying out such a classification. Another important advance of AnTE is 

probabilistic classification, carried out under a Bayesian framework. Due to the 

similarity of many TE sequences, there is often considerable uncertainty in 

ancestry; any deterministic classification expresses too high a degree of confidence, 

which carries through to downstream analyses based on such a classification. 

Probabilistic subfamily assignment is therefore of great importance to precise TE 

evolutionary inference. 

The result of an AnTE analysis is an estimate of the probability each element 

in a TE family sequence database belongs to each possible subfamily, from which an 

an expected frequency for each subfamily can be calculated. Importantly, the AnTE 

results themselves imply no claim about the origin of subfamilies, which could be 

from transposition, gene conversion, or a mix; we do not know enough about the 

dynamics of either process to make such claims with confidence for individual 

subfamilies. However, the overall pattern of subfamily frequencies can be used to 

test hypotheses about the evolutionary processes that may have generated such a 

pattern. In Chapter V, I used this reasoning to assess the role of gene conversion in 

producing observed patterns of Alu sequence diversity, finding that gene conversion 

appeared responsible for a “network” structure of Alu diversity, in which a large 

proportion of Alu elements appear to have sequences intermediate between that of 

major replicators. Though previous analyses70,71,85 have reached qualitatively 

similar conclusions using ad hoc approaches, AnTE is a major advance by allowing 
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for robust, systematic and precise quantitative analyses of the role of gene 

conversion, replication and mutation in generating observed patterns of sequence 

diversity. We can use AnTE to develop a clearer picture, with higher confidence, 

and on a larger scale than previous approaches. 

Ultimately, the purpose of improved TE evolutionary inference is to better 

understand the biology and evolutionary dynamics of TE families. Despite 

comprising a large portion of many eukaryotic genomes, including a majority of the 

human genome4, fundamental aspects of TE evolution remain poorly understood. 

For example, even for well-studied TE families like Alu we lack a clear picture of 

the distribution of replicative activity across elements29 and of the causes of 

succession between different subfamilies111. I believe that the methods presented 

here provide a useful advance towards answering these questions. Given accurate 

age and frequency estimates for TE subfamilies, models of TE replication dynamics 

can be constructed and evaluated based on how well they match these results. 

Precision in subfamily assignment and age estimation is important for accurate 

model comparison. 

Perhaps the most important implication of the large TE content of many 

genomes comes from the tendency of homologous sequences to recombine, which can 

lead to major duplications and deletions of genomic sequence, including of 

functional sequence36,105; this is of great consequence both from an evolutionary36 

and medical16 perspective. The methodology developed in Chapter VI for detection 

of gene conversion events, one consequence of homologous recombination, adds to 
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our understanding to recombination dynamics. As gene conversion between 

elements is a much less drastic effect than deletion or duplication, previous 

methods72 have identified only signatures of the conversion process but not 

individual events. Exploiting the power of Bayesian phylogenetics, the TEConv 

methodology can identify not only individual gene conversion events on a particular 

branch of a phylogenetic tree, but also provide probabilistic estimates for nearly 

every aspect of that event. The burst of gene conversion events we identify among 

Alu elements on the gorilla lineage thus provides a powerful dataset for 

understanding the gene conversion process in primates.  

A similar Bayesian phylogenetic approach could likely be applied to analyze 

TE-mediated deletion. Though previous analyses have already identified many 

apparent Alu-mediated deletions in the human genome36, the Bayesian 

phylogenetic approach would allow for greater detail as to the causes and 

consequences of these events; i.e., by using phylogenetic information to infer the 

before and after state and the position at which the crossover took place. It would be 

of particular interest to determine whether the burst of gene conversion observed in 

gorilla was accompanied by a burst of Alu-mediated deletions. If so, the PRDM9 

mechanism I identify may be an important factor in genomic instability through its 

interactions with transposable element families. As PRDM9 appears to only rarely 

target TE families such as Alu which are both young and large, and therefore highly 

susceptible to interlocus recombination, this could partly explain variation in the 

rate of structural changes112 between lineages. 
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Throughout my dissertation, I have focused primarily on Alu elements, with 

the exception of the AnTE analysis of the gibbon LAVA family in Chapter IV. It is 

thus worth considering the generality of the methods presented to other TE 

families. Most of the ideas presented here are of broad applicability: the need for 

probabilistic evolutionary inference, for precise definition of the “subfamily” concept, 

for careful and systematic assessment of the role of gene conversion and replication 

in generating patterns of sequence diversity. However, different TE families present 

distinct challenges, which may require modification of the methods to address. For 

example, there are large numbers of full-length Alu elements in each Great Ape 

genome, so it was unnecessary in my analyses to consider analysis of fragmented 

elements, though this may be important for other families. Optimization of the 

AnTE algorithm to much larger elements, such as the LINEs, is an important 

avenue for future research. 
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