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Shoemaker, Lauren G. (Ph.D., Ecology and Evolutionary Biology) 

 

Stabilizing and equalizing mechanisms alter community coexistence and macroevolutionary 

diversity patterns 

 

Thesis directed by Prof. Brett A. Melbourne and Prof. Aaron Clauset 

 
Ecological variability, both across space and through time, plays a critical role in 

maintaining the incredible range of biodiversity observed in nature and is foundational to 

coexistence theory. Using a combination of analytical techniques, simulation models, and novel 

paleobiology databases, I examine how ecological variability contributes to coexistence, or how 

competing species are able to persist in a given environment. I quantify the strength of 

coexistence in spatially structured communities and the relative importance of species 

similarities (equalizing mechanisms) and species differences (stabilizing mechanisms) in 

maintaining biodiversity across space and time. I find that trait-tradeoffs among species, abiotic 

heterogeneity, stochasticity, and dispersal limitation within spatially structured communities all 

have unique signatures of coexistence mechanisms. I additionally show that coexistence theory 

allows us to analyze more complex communities with multiple assembly mechanisms. While 

coexistence theory exhibits robust, unique signatures across assembly mechanisms, other, more 

commonly used methods, such as the beta-null deviation measure, are unable to infer community 

assembly processes from patterns in beta-diversity. This is especially evident for the presence-

absence based measure when compared to the abundance-based measure. Finally, I extend the 

stabilizing and equalizing framework of coexistence theory beyond its use in community ecology 

to examine macroecological patterns in mammalian diversity. I show that body mass diversity 
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and its evolution can be well-approximated using primarily equalizing mechanisms. This trend 

holds across terrestrial mammals, a mammalian sub-clade (Equidae), and even across vastly 

different environments. Both marine (cetaceans) and terrestrial mammals exhibit similar body 

mass distributions and evolution, where environmental constraints determine the minimum size 

above which equalizing processes interact in a predictable way to create a right-skewed body 

mass distribution. Across this work, I find that stabilizing mechanisms are critical for 

coexistence in spatially structured communities, but equalizing mechanisms effectively predict 

patterns in mammalian body mass diversity across evolutionary time scales. Generally, the 

equalizing and stabilizing framework of coexistence theory provides a mechanistic 

understanding of patterns in biodiversity, both at the community and macroecological scale. 
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Chapter 1 

 
Introduction 

 
The remarkable range of biodiversity observed in the natural world has, paradoxically, 

long served as a source of both unification and tension within ecology. Attempts to explain 

patterns of species diversity have led to the heated debate of niche versus neutral theory (Hubbell 

2001, Chase and Leibold 2003, Leibold and McPeek 2006), the creation of coexistence theory 

(Tilman 1982, Chesson 2000a,b), and an appreciation of the importance of scale in structuring 

communities (Hutchinson 1959, Chase and Knight 2013). Common among these research fields 

is the acknowledgement that ecological communities are highly complex systems. They consist 

of diverse assemblages of species, all with potentially unique pair-wise and higher-order 

interactions, nonlinear population dynamics, and feedbacks both among different species and 

between species and the abiotic environment.  

Attempts to make sense of the vast amount of complexity inherent in communities have 

led ecologists down disparate paths in search of solutions. For example, in niche theory, 

biodiversity is generally hypothesized to be the outcome of a ‘niche space’ consisting of multiple 

dimensions, such as species’ water, light, and nutrient requirements (Hutchinson 1959). Species 

are hypothesized to segregate in this high-dimensional niche space, yielding diverse communities 

of species, where each species occupies its own, unique region (i.e. niche) of this ecospace. 

While niche theory provides an intuitive explanation for explaining the vast complexity we 

observe in ecological communities, it is difficult to disprove niche theory in a given ecosystem—

or even define an underlying null model for communities—because of the inherent complexity 

and high-dimensionality assumed by the theory. Neutral theory (Hubbell 2001) arose as a direct 

response to these challenges inherent in niche theory. In direct contradiction to niche theory, 
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neutral theory begins by assuming that all species are ecologically identical to one another, and 

hypothesizes that patterns in species assemblages are statistical products of random sampling and 

dynamical random walks through space and time (Hubbell 2001, Vellend et al. 2014). Neutral 

theory has commonly been evoked in highly diverse communities with relatively minor 

environmental variation, such as rainforests (Chave and Leigh 2002; Wiegand et al. 2012) and 

coral reefs (Hubbell 1997, Volkov et al. 2007, though see Dornelas et al. 2006). It currently 

serves as both an explanation of observed patterns and, alternatively, as a null model (or base 

null model, altered to include more realistic and complex scenarios) against which to test aspects 

of niche theory (Rosindell et al. 2012). 

 Within the disparate niche and neutral views of communities, a unifying concept is the 

idea of coexistence (Tilman 1982, Chesson 2000b), which examines how competing species 

persist in a given environment. While the niche versus neutral framework was originally 

presented as a dichotomy, community ecology now embraces that these frameworks instead 

represent two ends of a spectrum (Leibold and McPeek 2006, Adler et al. 2007). Co-occurrence 

of seemingly ecologically equivalent species does not necessarily imply neutral dynamics, as 

niche dynamics also can yield such patterns (Leibold and McPeek 2006). Species may also be 

ecological equivalent in a given trait, but divergent in other critical traits, satisfying different 

elements of both niche and neutral theory.  

Coexistence theory provides a framework for analyzing communities along the niche to 

neutral spectrum, without having to classify communities within a dichotomous framework. 

Instead, in coexistence theory, the relative importance of niche and neutral processes can be 

partitioned and directly compared. Regardless of the underlying complexity inherent in 

communities, the stable biodiversity is quantified as the number of species coexisting in a 
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community. Stable coexistence is defined as the inherent dynamical tendency of species to 

recover from low population density while in the presence of the other species in the community 

(Armstrong and McGehee 1980, Turelli 1981). Without this tendency, coexistence is not stable, 

and species within a community may be trending towards competitive exclusion, as other 

species in the community outcompete them. Or, alternatively, coexistence may be unstable—as 

occurs in neutral theory (Hubbell 2001). In this case, no species is outcompeting one another, but 

rather, species drift towards extinction and are unable to recover when at low densities (Vellend 

et al. 2014).  

 Regardless if a community exhibits stable coexistence, competitive exclusion, or unstable 

coexistence, the magnitude of change in population size for a species at low-density quantifies 

the coexistence strength of a species. If a species tends to recover fast from low-density, then it 

is said to coexist strongly (Shea and Chesson 2002). Alternatively, if a species decreases quickly 

from low-density, then it is strongly outcompeted in the community. Coexistence strength can be 

further partitioned into two general categories to examine the relative importance of niche and 

neutral processes: stabilizing and equalizing mechanisms (Chesson 2000a,b; Adler et al. 2007). 

Stabilizing mechanisms, which are niche differences between species, minimize interactions 

between competitors by increasing intraspecific competition relative to interspecific competition 

(Adler et al. 2007). They include differences in species’ optimal abiotic conditions, nonlinear 

competitive dynamics, and the covariance between a species’ intrinsic fitness and its population 

size across a landscape (Chesson 2000a, Snyder and Chesson 2003, Snyder et al. 2005, Chesson 

2008). For example, spatial heterogeneity in abiotic conditions, dispersal limitation that mediates 

the amount of spatial overlap between species, or trait-tradeoffs causing species to have higher 

fitness in different habitats all increase spatially stabilizing mechanisms of coexistence 



	

	

4	

(Amarasekare and Nisbet 2001, Yu and Wilson 2001). Taken together, stabilizing mechanisms 

quantify the strength of the spatial niche in a spatially varying environment, and alternatively, 

the temporal niche in a temporally varying environment (Shea and Chesson 2002).  

In contrast, equalizing mechanisms measure the degree of neutrality in a community. For 

example, if a community were fully neutral on the niche-to-neutral spectrum, than only 

equalizing mechanisms would be present and the community would exhibit unstable coexistence. 

Equalizing mechanisms are calculated by determining the fitness differences between species if 

all environmental variability was averaged. If equalizing fitness differences between species are 

large (species are not ecologically equivalent), strong stabilizing mechanisms are required for 

coexistence. For example, if one species has a much higher intrinsic growth rate than a second 

species, strong stabilizing mechanisms (e.g. niche differences) are required such that the first 

species does not competitively outcompete the second. This may occur in a highly heterogeneous 

environment with dispersal limitations, in which case the spatial niche would yield coexistence 

of both species. Conversely, if equalizing differences are small (species are more equal, e.g. if 

they have similar intrinsic growth rates), only weak stabilizing mechanisms are necessary for 

coexistence (Chesson 2000, Adler et al. 2007).  

Despite the flexibility of coexistence theory and its popularity within community 

ecology, it has not been directly linked with other major theories of biodiversity, such as 

metacommunity theory (i.e. a theory for spatially structured communities consisting of discrete 

habitat patches). Furthermore, most studies of coexistence theory do not directly quantify 

coexistence strength and partition it into its mechanistic components, nor compare its ability to 

infer diversity patterns from community assembly processes against more commonly used 

measures. Finally, the equalizing and stabilizing framework of coexistence theory was originally 
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created for communities, but can be extended beyond communities to examine macroecological 

patterns of diversity, as I present in my dissertation.  

 

1.1 Overview of Chapters 

My dissertation focuses on quantifying coexistence strength across ecosystems and 

determining the relative roles of equalizing and stabilizing mechanisms in maintaining 

biodiversity both in communities and at the larger macroecological scale. I combine theoretical 

and empirical analyses to explore coexistence in relatively simple simulated two-species 

metacommunities, more complex simulated metacommunities of 25 species, and novel empirical 

databases of diverse assemblages of species within a single clade (e.g. organisms that evolved 

from a common ancestor) spanning millions of years.  

Specifically, in chapters two and three, I focus on the role of spatial structure and 

variation across space in maintaining species richness (defined as the total number of species at 

both the local and regional scale, i.e. alpha- and gamma-diversity). My second chapter links four 

commonly considered ‘paradigms’ of spatial structure from metacommunity theory (Leibold et 

al. 2004, Holyoak et al. 2005) to the equalizing and stabilizing framework of coexistence theory 

(published as Shoemaker and Melbourne 2016 in Ecology). The four paradigms encompass 

multiple key community assembly processes, including dispersal, trait-tradeoffs, neutral theory, 

and habitat heterogeneity (Leibold et al. 2004), and I explore the connection between these 

processes, coexistence strength, and the relative importance of equalizing and stabilizing 

mechanisms. To do so, I create a single modeling framework, simulate spatial community 

dynamics through time, and derive analytical solutions for stabilizing and equalizing coexistence 

mechanisms for each of the four paradigms. Using this framework, I subsequently explore how 
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spatial heterogeneity in habitat quality, trait-tradeoffs, dispersal, and stochasticity alter the 

relative contributions of equalizing and stabilizing mechanisms to coexistence. I additionally 

demonstrate how coexistence theory provides a single framework for comparing 

metacommunities of varying complexity, including metacommunities that are too complex to fit 

within the ‘paradigm’ framework.  

Chapter three combines mechanistic modeling with a commonly-used empirical diversity 

measure to connect the conceptual framework from chapter two to empirical measures of 

diversity across space (Chase et al. 2011). I focus on the beta-null deviation measure, which is 

commonly evoked when determining the relative role of niche (stabilizing) and neutral 

(equalizing) assembly mechanisms in community structure (published as Tucker and Shoemaker 

et al. 2016 in Oikos). Using simulations of metacommunities with known assembly 

mechanisms—both with and without biological stochasticity, I show that the beta-null deviation 

measure is unreliable in its ability to correctly infer underlying community assembly 

mechanisms and stabilizing and equalizing structure. The abundance-based metric (Kraft et al. 

2011, Stegen et al. 2013) is more robust, however, than the presence-absence based metric 

(Chase et al. 2011).	

While chapters two and three rely on analytical, simulation, and statistical methods to 

examine coexistence in spatially varying habitats, chapters four and five explore patterns in 

diversity across temporal—rather than spatial—scales. I extend the equalizing and stabilizing 

framework commonly used in community ecology to examine macroevolutionary patterns of 

mammalian taxonomic and body mass diversity. To do so, I combine extant data on species body 

masses with novel databases I construct of extinct species’ masses and first- and last-

appearances.  I then fit a partial differential equation model to extant body size data and patterns 
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in mammalian body size diversity across evolutionary time. Using this model, I infer the relative 

importance of equalizing and stabilizing mechanisms in maintaining diversity in body masses. 

The model is nearly-neutral and composed of two equalizing processes shared among species: 1. 

a physiological minimum body size and 2. Cope’s rule, or the tendency for lineages to increase 

in body size through time (Alroy 1998, Hone and Benton 2005). The model also includes a 

stabilizing, species-specific extinction risk, as larger species have higher risks of stochastic 

extinction events (Clauset and Erwin 2008, Clauset et al. 2009).  

In chapter four, I measure the relative importance of these processes versus species 

richness in predicting body size diversity through time in the Equidae sub-clade (published as 

Shoemaker and Clauset 2014 in Ecology Letters). I find that patterns of body size previously 

observed in terrestrial mammals more generally (Clauset and Erwin 2008) follow similar patterns 

in the Equidae sub-clade. Furthermore, over 90 percent of the maximum size of Equidae through 

time can be predicted using only the simple stabilizing and equalizing mechanisms described 

above. These changes in maximum size are, surprisingly, largely independent of taxonomic 

diversity. Chapter five compares marine (cetaceans) and terrestrial mammals to examine the 

universality of these processes, exploring commonalities and divergences in patterns across 

environments. I find that patterns in mammalian body size evolution are remarkably 

environmentally independent at the macroevolutionary scale. Environment dictates the minimum 

physiological size above which body size diversity evolves in a manner that can be well 

approximated by equalizing mechanisms (e.g. a random-walk of body sizes biased by Cope’s 

rule) along with a size-dependent extinction risk.  

Finally, in chapter six, I summarize my key results examining processes that maintain 

and promote biodiversity across both space and time. I highlight how ecological and 
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evolutionary processes, such as dispersal, trait-tradeoffs, stochasticity, and speciation relate to 

the equalizing and stabilizing framework of coexistence theory and briefly discuss future 

directions for examining the relative importance of equalizing and stabilizing mechanisms in 

maintaining diversity across both space and time. 
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Chapter 2 

 
Linking Metacommunity Paradigms to Spatial Coexistence Mechanisms 

 
Lauren G. Shoemaker and Brett A. Melbourne 

 
 

Published as: Shoemaker, L. G. and Melbourne, B. A. (2016), Linking metacommunity 

paradigms to spatial coexistence mechanisms. Ecology, 97: 2436–2446. doi:10.1002/ecy.1454. 

 
Four metacommunity paradigms—usually called neutral, species sorting, mass effects, 

and patch dynamics, respectively—are widely used for empirical and theoretical studies of 

spatial community dynamics. The paradigm framework highlights key ecological mechanisms 

operating in metacommunities, such as dispersal limitation, competition-colonization tradeoffs, 

or species equivalencies. However, differences in coexistence mechanisms between the 

paradigms and in situations with combined influences of multiple paradigms are not well 

understood. Here, we create a common model for competitive metacommunities, with unique 

parameterizations for each metacommunity paradigm and for scenarios with multiple paradigms 

operating simultaneously. We derive analytical expressions for the strength of Chesson’s spatial 

coexistence mechanisms and quantify these for each paradigm via simulation. For our model, 

fitness–density covariance, a concentration effect measuring the importance of intraspecific 

aggregation of individuals, is the dominant coexistence mechanism in all three niche-based 

metacommunity paradigms. Increased dispersal between patches erodes intraspecific 

aggregation, leading to lower coexistence strength in the mass effects paradigm compared to 

species sorting. Our analysis demonstrates the potential importance of aggregation of individuals 

(fitness–density covariance) over co-variation in abiotic environments and competition between 
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species (the storage effect), as fitness–density covariance can be stronger than the storage effect 

and is the sole stabilizing mechanism in the patch dynamics paradigm. As expected, stable 

coexistence does not occur in the neutral paradigm, which requires species to be equal and 

emphasizes the role of stochasticity. We show that stochasticity also plays an important role in 

niche-structured metacommunities by altering coexistence strength. We conclude that Chesson’s 

spatial coexistence mechanisms provide a flexible framework for comparing metacommunities 

of varying complexity. 

2.1 Introduction 

 Metacommunity theory has significantly increased our understanding of the role of 

spatial heterogeneity, spatial scales, and dispersal in community structure (Amarasekare 2003, 

Leibold et al. 2004, Holyoak et al. 2005, Moritz et al. 2013). Local communities (patches) 

connected via dispersal form metacommunities, meaning metacommunities may take a multitude 

of forms depending on patch structure, ease of dispersal between patches, environmental 

heterogeneity, and species-specific traits. Metacommunity models, and the natural systems they 

represent, thus could encompass an arbitrarily large parameter space. However, many 

metacommunities exhibit similar dynamics, leading to a theoretical and empirical focus on four 

metacommunity types, which were formalized and termed the metacommunity paradigms by 

Leibold et al. (2004). The paradigm framework reduces the range of possible metacommunity 

types, and their corresponding model parameterizations, to a smaller representative subset. The 

four paradigms—neutral, species sorting, mass effects, and patch dynamics—present a 

simplified view of spatially structured communities and provide a framework for comparing 

community dynamics and co-occurrence patterns from both theoretical and empirical 

perspectives (Leibold et al. 2004; Holyoak et al. 2005). The four paradigms are described in 
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detail in Leibold et al. (2004) and Holyoak et al. (2005) but we describe them briefly here. 

 In the neutral paradigm species are demographically equivalent and all respond to the 

environment in the same manner (Bell 2000, Hubbell 2001, Leibold et al. 2004). Dynamics of 

stochastic neutral metacommunities are governed by ecological drift, where communities follow 

a random walk through time (Vellend 2010). Neutral metacommunity dynamics have been 

observed empirically in systems ranging in scale from aquatic microbial communities (Ostman et 

al. 2010) to tropical trees in Panama (Jabot et al. 2008). 

In comparison, species sorting, mass effects, and patch dynamics are niche-based 

paradigms, where species systematically differ from one another. The species sorting and mass 

effects paradigms fall along a continuum from low to moderate dispersal rates (Mouquet and 

Loreau 2003, Loeuille and Leibold 2008). They require patches to be heterogeneous in 

environmental conditions, and each species is better adapted to a specific patch type, often via 

higher fecundity or survival (Leibold et al. 2004). In the species sorting paradigm dispersal rates 

are low and equal among species, leading to high abundance of a species in its optimal patches 

and low abundance or absence in other patch types. Species sorting has been observed in coral 

colonies between two commensals, a crab (Trapezia cymodoce) and a shrimp (Palaemonella sp.) 

(Caley et al. 2001), as well as explored experimentally, such as in benthic microalgal 

communities (Matthiessen and Hillebrand 2006). In the mass effects paradigm dispersal rates are 

higher but still equal, leading to higher abundance of species in sub-optimal habitats and source-

sink dynamics within the metacommunity (Mouquet and Loreau 2003, Leibold et al. 2004). Mass 

effects dynamics likely occur for beetles dispersing between the matrix and habitat fragments in 

a forest fragmentation experiment in southeast Australia (Davies et al. 2005).  

The final metacommunity paradigm, termed patch dynamics, stems from Levins’s (1969) 
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metapopulation model extended to multiple species. Patches are homogeneous and undergo 

patch-level disturbance events (Hastings 1980, Tilman 1994). Patch dynamics relies on a tradeoff 

between species at the regional and local scale (Leibold et al. 2004, Holyoak et al. 2005). 

Typically, one species exhibits a dispersal advantage (regional scale), while the other is better 

adapted at the local (patch) scale, either through competitive ability (Hastings 1980, Nee and 

May 1992) or fecundity (Yu et al. 2001, Yu and Wilson 2001). Patch dynamics is often studied 

experimentally, such as with a bacteria, protozoa, and rotifer system (Cadotte 2006). A few 

observational studies have also found evidence for patch dynamics, such as for pond-breeding 

mosquitoes (Chase and Shulman 2009). 

 Key differences between the four paradigms, such as homogeneous versus heterogeneous 

patches, competition-colonization versus species sorting dynamics, and niche structure versus 

species equivalency, have so far made it difficult to directly compare paradigms. Different 

models are used for each paradigm in theoretical studies (but see Amarasekare et al. 2004), and 

empirical studies focus on identifying the primary paradigm at play in a particular system, 

although many studies find evidence of multiple paradigms within a single system (e.g. Debout 

et al. 2009, Logue et al. 2011). Little work has focused on comparing coexistence mechanisms 

among paradigms within one modeling framework or quantifying the contribution of multiple 

paradigms to coexistence in more complex metacommunities. 

However, spatial coexistence theory provides an avenue to directly compare community 

dynamics between the four metacommunity paradigms and to extend beyond the paradigm 

framework (Chesson2000a, Amarasekare 2003, Amarasekare et al. 2004). Stable coexistence 

occurs if all species in a community have positive low-density growth rate, while competitive 

exclusion occurs for any species with negative low-density growth rate (Chesson and Valladares 
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2008). We refer to the low density growth rate as coexistence strength and note that it can be 

measured in both theoretical and empirical systems, thus providing a common currency for 

examining community dynamics and spatial niche structure (Chesson 2000a, Snyder and 

Chesson 2003, Snyder et al. 2005, Adler et al. 2013). 

We analyze coexistence strength within each metacommunity paradigm by partitioning 

spatial coexistence into four mutually exclusive and exhaustive mechanistic components: (1) the 

non-spatial mechanism, (2) the spatial storage effect, (3) fitness–density covariance, and (4) 

nonlinear competitive variance (Chesson 2000a). Adler et al. (2007) provides an interpretation of 

Chesson’s theory that places particular emphasis on equalizing versus stabilizing mechanisms. 

Chesson’s non-spatial mechanism corresponds to equalizing mechanisms and incorporates all 

mechanisms that do not depend on spatial variation (Chesson 2000a; Chesson and Valladares 

2008). Specifically, the non-spatial mechanism quantifies the relative fitness among species if 

spatial structure was absent. In comparison, the spatial storage effect and fitness–density 

covariance measure the effect of a species’ spatial niche on coexistence strength and correspond 

to stabilizing mechanisms (Adler et al. 2007; Chesson 2000a). The spatial storage effect 

quantifies the ability of a species to take advantage of high-quality habitat and store individuals 

within such habitat without losing individuals to poor-quality habitat (Chesson 2000a, Sears and 

Chesson 2007). Biologically, the spatial storage effect is often the result of different habitat 

suitability between species, where high-quality habitat for a given species has the added benefit 

of low competition from other species. This scenario occurs when the high-quality habitat for 

one species is low-quality habitat for other species, due to niche differentiation. Fitness–density 

covariance measures the correlation between the intrinsic fitness of a species and its population 

size within patches. The fitness–density covariance mechanism can be viewed as a concentration 
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effect. For example, a positive fitness–density covariance occurs when the spatial dynamics 

concentrate a species into areas of high fitness, such as where the environment is more favorable 

or where individuals experience less competition. Chesson’s final mechanism, nonlinear 

competitive variance, occurs when spatial variation in competition causes a net increase or 

decrease in overall fitness levels (Chesson 2000a; Snyder et al. 2005). However, this mechanism 

is not considered in the conceptual foundation of the four metacommunity paradigms of Leibold 

et al. (2004). We mention it here for completeness but do not pursue it further. Further details of 

each metacommunity paradigm and coexistence mechanism are given in Box 2 of Melbourne et 

al. (2007). 

Here, we compare the relative roles of equalizing and different stabilizing mechanisms in 

the four metacommunity paradigms. The two stabilizing mechanisms, fitness–density covariance 

and the storage effect, together quantify the role of a species’ spatial niche in structuring the 

metacommunity (Shea and Chesson 2002). In our approach we first develop a common 

mathematical model that contains all paradigms, thus removing the constraints and confounding 

effects of different modeling approaches for different paradigms. We model the four paradigms 

by varying key parameters: (1) dispersal rates, (2) growth rates, (3) habitat heterogeneity, (4) 

disturbance, and (5) stochasticity. To analyze the model, we present a hybrid approach of 

mathematical derivations and simulations, which together precisely quantify the equalizing and 

stabilizing mechanisms. Furthermore, coexistence analyses allow us to extend metacommunity 

theory beyond the four paradigms to more complex, and biologically realistic, metacommunity 

structures and processes. We provide examples of more complex metacommunities in two ways: 

first by analyzing coexistence potential in scenarios that combine features of multiple paradigms, 

specifically (a) species sorting combined with mass effects and (b) species sorting combined 
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with patch dynamics, and second by analyzing the contribution of demographic, dispersal, and 

disturbance stochasticity to coexistence and niche-based mechanisms (whereas the role of 

stochasticity is mistakenly often only investigated as part of the neutral paradigm and equalizing 

mechanisms). 

 

2.2 Methods 

2.2.1 Model Description 

 We began with a deterministic model of within-patch dynamics coupled with dispersal 

between patches. We then added stochastic local population growth, stochastic dispersal, and 

stochastic disturbance in various combinations to the deterministic model. In deterministic and 

stochastic versions of the model with parameter settings for different metacommunity types, we 

compared coexistence mechanisms for two-species, 500-patch metacommunities (where 

heterogeneous metacommunities had 50% of each of two patch types), although our model is 

general to any number of species, patches, and patch types. For selected parameter combinations, 

we also examined the role of stochasticity in small (2 or 20 patch) metacommunities. 

 Dispersal connects individual patches within the metacommunity model. Here, we used 

global dispersal, where individuals disperse with equal propensity between all patches (although 

the approach presented to calculate stable coexistence generalizes to any dispersal scenario). In 

the deterministic model, the abundances, N, of all species, j = 1…n, in patch x= 1…p at time t+1 

are given by, 

!!!!,!" = !!!!,!" + !!(
!!!!,!"
!!! −!!!!,!")!!! 		 (2.1)	

where t+h is the period up until just before dispersal (dispersal occurs from t+h to t+1), dj is the 

dispersal rate of species j, z indexes patches (z = 1 … p), and p is the number of patches. 
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We modeled within-patch dynamics before dispersal using the multispecies form of the 

classic discrete-time Beverton-Holt (1957) population model: 

!!!!,!" = !!"!!,!" !
!! !!!!,!"!

					 	 (2.2)	

where Rjx is the density independent growth rate of species j in patch x and αk is the competition 

coefficient for each species k = 1…n. Rjx determines the type of patch x and thus variation in Rjx 

among patches represents spatial environmental heterogeneity. As Beverton-Holt growth is the 

discrete time analogue of logistic growth, it is widely used in theoretical studies and can be 

interpreted in multiple contexts (e.g. Brännström and Sumpter 2005a). 

 We extended this deterministic model to include stochasticity. We modeled demographic 

stochasticity by drawing the number of individuals at a given time from a Poisson distribution 

such that Nt+h,jx ~ Poisson(µ), where µ, the mean of the Poisson distribution, equals the right hand 

side of Eqn. 2. This allows for stochasticity in both births and survival (Melbourne and Hastings 

2008). We modeled dispersal stochasticity by first drawing the number of dispersing individuals 

from a binomial distribution with the number of trials equal to population size in patch x at time t 

+ h and probability equal to dispersal rate dj. Individuals then randomly dispersed with equal 

probability to a new patch. This approach is equivalent to modeling dispersal as a multinomial 

distribution with probabilities of 1- dj of not dispersing and dj /(p-1) of dispersing to a patch 

z=1… p such that z≠x. We modeled patch-level disturbance stochasticity in the patch dynamics 

paradigm by imposing disturbance events that resulted in extinction of all species in the patch. 

Disturbance events were drawn from an independent Bernoulli distribution for each patch with 

probability equal to the rate of extinction, e. We also modeled disturbance events 

deterministically, where extinction occurred in each patch every 1/e generations.  

 To parameterize the above model for each of the metacommunity paradigms and the 
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more complex communities combining paradigms, we altered Rjx , dj , and e (model 

parameterizations in Table 2.1). Species sorting and mass effects are mechanistically equivalent 

models with either low or high dispersal rate, respectively. Thus to change between these 

paradigms we altered only the dispersal rate (from 0.05 to 0.15). To compare paradigms on the 

same scale, we parameterized species sorting, mass effects, and the neutral paradigms such that 

the average landscape level fitness, defined as the average density independent growth rate, !! 

where the overbar indicates the average across patches, was equal for each species. This is not 

necessary for coexistence or for the general approach described here, but it allows for a direct 

comparison between niche-based paradigms and the neutral paradigm while controlling for 

competitive differences between species. The neutral model had equal fitness of all species in all 

patches and a dispersal rate of 0.1 (intermediate between the rate used in the species sorting and 

mass effects models). In the patch dynamics paradigm, we used a density independent growth 

rate-dispersal rate tradeoff (an instance of the classic competition-colonization tradeoff; Tilman 

1994) where species 1 was the better disperser with a higher dispersal rate, dj, between patches 

and species 2 was the better competitor with a higher average landscape level fitness, !!. Patch 

disturbance occurred with an extinction rate, e, of 0.05 in the patch dynamics paradigm. We 

examined the generality and robustness of our results to parameter choices by systematically 

altering Rjx, dj, and the differences between species in these parameters for all paradigms.  
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	 d1	 d2	 R1	patch	

type	1	
R1	patch	
type	2	

R2	patch	
type	1	

R2	patch	
type	2	

e	 α	

Neutral	 0.1	 0.1	 1.45	 --	 1.45	 --	 0	 1/2000	
Species	sorting	 0.05	 0.05	 1.6	 1.3	 1.25	 1.65	 0	 1/2000	
Mass	effects	 0.15	 0.15	 1.6	 1.3	 1.25	 1.65	 0	 1/2000	
Patch	dynamics	 0.2	 0.05	 1.4	 --	 1.45	 --	 0.05	 1/2000	
Species	
sorting/Mass	
effects	

0.15	 0.05	 1.7	 1.3	 1.25	 1.65	 0	 1/2000	

Species	
sorting/Patch	
dynamics	

0.2	 0.05	 1.6	 1.3	 1.25	 1.75	 0.05	 1/2000	

	
Table 2.1 Parameter values used in the metacommunity models. 
 
 
 We created the species sorting/mass effects combined scenario with unequal dispersal 

rates between species 1, the low disperser, and species 2, the high disperser. Species 1 was 

parameterized according to the species sorting paradigm while species 2 was parameterized 

according to mass effects. For illustration of coexistence in metacommunities without 

metacommunity level neutrality, species 1 additionally had a higher metacommunity average 

intrinsic growth rate. In the species sorting/patch dynamics combined model, patches were 

heterogeneous, with each species exhibiting a higher intrinsic growth rate in a given patch type. 

Species 1 was a better disperser and species 2 was, on average, a better competitor (see Table 2.1 

for details). 

 

2.2.2 Mutual Invasibility Criterion and Strength of Coexistence 

 Stable regional coexistence occurs if each species can increase when rare in the landscape 

(Chesson 2000b, Chesson and Valladares 2008). While multiple processes across both spatial 

and temporal scales can promote or hinder coexistence, mutual invasibility is a strong test for 

stable coexistence, regardless of the mechanism (Chesson 2000a, Adler et al. 2007, Chesson and 
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Valladares 2008). Furthermore, the strength of coexistence can be inferred from the magnitude 

of the total low-density growth rate, which can be decomposed into contributions from the 

spatial coexistence mechanisms. 

Following Chesson (2000a), to test for and quantify regional coexistence, we defined a 

given species as the invader, i. We removed the invader from the metacommunity, and allowed 

the community to reach equilibrium (deterministic model) or a stationary distribution (stochastic 

model) both within and across patches. Then, we introduced species i at low-density (0.5% of the 

total metacommunity carrying capacity), which we refer to as the invader’s regional abundance I. 

At each time step, we reset the number of individuals in the invading metapopulation to I by 

dividing the number of invaders in each patch by I while allowing for patch-level abundance to 

change during each time step via birth and dispersal. Thus, the relative abundance of the 

invading species across patches changed during each iteration, while the regional 

metacommunity abundance was maintained at abundance I. We repeated this process until the 

number of invaders in each patch reached a spatial equilibrium and remained constant between 

time steps. To calculate coexistence strength in the deterministic case, we then iterated one more 

time step to obtain the low-density growth rate of the invader relative to the resident species, 

which we decomposed into contributions from the different coexistence mechanisms (Chesson 

2000a, 2000b, Snyder et al. 2005, Chesson and Valladares 2008). We thus calculated coexistence 

strength with the invader at low abundance, the resident at equilibrium abundance, and invader 

and residents at their equilibrium spatial distributions. We repeated this process for each species 

in the community. If all species were able to invade at low densities (low-density growth rate > 

0), we concluded that the metacommunity exhibits regional stable coexistence.  

In the stochastic models, we calculated the low-density growth rate as the average of 100 
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separate time steps, where we reset the regional invader density to I for each time step. We also 

examined between versus within-run stochasticity in coexistence strength using a linear mixed 

effects model with time-step nested within run using the function lmer in R.  

 

2.2.3 Contributions to Coexistence from Spatial Mechanisms 

 Here we briefly describe the derivation of coexistence mechanisms (the full derivation is 

given in Appendix 1). While we focus in the main text on the derivation and results for a two-

species system, we also extend this derivation to the n-species case in Appendix 1. Coexistence 

occurs in a metacommunity if, for each species, the low-density growth rate, !!, of the invader is 

greater than the equilibrium growth rate, !!, of the resident species, i.e.  is greater than 0, 

where  (Chesson 2000a), N is the number of individuals of species j, and the overbar 

indicates the average across patches. The tilde indicates that we are measuring the invasion 

criterion, i.e. !! is the growth rate of the resident species at equilibrium abundance in the absence 

of the invader and !! is the growth rate of the invader at low-density while the resident is at 

equilibrium. 

For ease of calculation, we subtract 1 from the growth rate such that 

. Subtracting 1 does not alter the relationship, but allows us 

to solve for the exact form of each spatial coexistence mechanism. Following Chesson, we divide 

both sides by the natural scaling units for both the resident and invader (Chesson and Valladares 

2008). The natural scaling units correct for the sensitivity of different species to the common 

competitive factor (competition for space, in this case) (Chesson and Valladares 2008) and this 

correction allows for a direct comparison of the invader and resident by standardizing using 

ri λλ
~~

−

λ j =
Nt+1, j

Nt, j

λi −1− ( λr −1) =
Nt+1,i

Nt,i

−1− (Nt+1,r

Nt,r
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average growth rate (Chesson 2000b, Chesson et al. 2005, Chesson and Valladares 2008). We 

define the natural scaling units as the average metacommunity growth rate for each species, or 

!!. We therefore use 

  (2.3) 

to derive an expression for the spatial coexistence mechanisms.  

We next define the competitive term, ,

 

for the environment from the competitive term 

in the Beverton-Holt equation, thus: !! = 1− !
!! !!!!,!"!

. This function provides an intuitive 

choice for the competitive term, where more competition is reflected by a higher numerical 

value. We define the effect of environment on fitness, !!", as the fitness for a given patch 

relative to metacommunity-level fitness: !!" =
!!"
!!

 . We use equation 2.3 to derive expressions 

for the equalizing (e.g. non-spatial fitness) and stabilizing (e.g. the storage effect and fitness–

density covariance) spatial coexistence mechanisms and find  

   (2.4) .  

Here, Cov is the covariance,  is the relative density of species j in a patch (the number 

of individuals in patch x divided by the average number of individuals across all patches) and !!" 

and !!" are the growth rates of the invader and resident species respectively in patch x. Because 

both species have the same growth equation, there is no contribution to coexistence from 

nonlinear competitive variance (Chesson 2000a, 2000b, Chesson and Valladares 2008). Future 

extensions include modifying the metacommunity paradigm framework such that nonlinear 
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competitive variance, the final spatial coexistence mechanism of Chesson (2000a), is 

incorporated. Eqn 4 provides an exact decomposition of the relative contributions of the different 

coexistence mechanisms (i.e. no approximations were made to derive this expression). Analytical 

expressions for the covariances on the right hand side of Eqn 4 cannot be obtained in general but 

the covariances are straightforward to quantify from model simulations. Thus, Eqn 4 together 

with model simulations provides a hybrid analytical-simulation approach to precisely quantify 

the contributions of equalizing and stabilizing mechanisms. 

 

2.3 Results 

 As expected, and by definition, species in the neutral paradigm did not exhibit stable 

coexistence, but rather co-occurrence (Figure 2.1). The low-density growth rate in the neutral 

paradigm was zero for both species in the deterministic model. A growth rate above zero 

indicates long-term stable coexistence, while a growth rate below zero indicates competitive 

exclusion. Species were unable to recover from low densities, and persisted indefinitely in the 

deterministic neutral model and on average for 2,180 generations in the stochastic two patch 

model.  
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Figure 2.1 Spatial coexistence strength in different metacommunity paradigms (500-patch 
deterministic models). The total for both species must be positive for coexistence. For species 1 
and 2 (indicated by numbers), non-spatial coexistence, the storage effect, fitness–density 
covariance and total community level coexistence strength is shown for the neutral paradigm 
(N), species sorting (SS), mass effects (ME), patch dynamics (PD), and two scenarios 
representing a mixture of paradigms. SS/ME is a mixture of species sorting and mass effects and 
SS/PD is a mixture of species sorting and patch dynamics paradigms (see methods). 
 

 All three niche-based paradigms exhibited stable, long-term coexistence. For our model 

structure, species sorting had the highest coexistence strength of all paradigms, as measured by 

the total low-density growth rate for each species (Figure 2.1). The largest contribution to 

coexistence strength in the species sorting model came from fitness–density covariance, with the 

storage effect playing a more minor role (Figure 2.1). Since species by design had landscape-

level neutrality, the non-spatial mechanism contributed by equalizing species. That is, the non-

spatial fitness difference was zero. Stable coexistence thus required only a non-zero contribution 

from stabilizing mechanisms. For the mass effects model the overall strength of coexistence was 

lower than species sorting, and the largest contribution was from fitness–density covariance 

(Figure 2.1).  

Patch dynamics had the smallest coexistence strength of the three niche-based paradigms. 
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It was the only niche-based paradigm without contribution from the spatial storage effect (Figure 

2.1). Because patches are homogeneous in the patch dynamics paradigm, and our model of 

disturbance did not alter the environmental conditions of patches, there was no environmental 

variability and thus no spatial storage effect. Species 1 (the poorer competitor) had a negative 

contribution from the non-spatial mechanism, which was counteracted by a positive contribution 

from fitness–density covariance to give positive coexistence strength. Because species 1 was a 

poorer competitor, non-spatial fitness was negative. Species 1 therefore depends on fitness–

density covariance for coexistence, since the storage effect is absent in homogeneous 

metacommunities, regardless of model specifics. In contrast, species 2 (the better competitor) 

had a positive contribution from the non-spatial mechanism, while fitness–density covariance 

eroded its low–density growth rate. Species 2 still maintained a positive overall coexistence 

strength. Thus, a hallmark of the patch dynamics paradigm is that the two species show opposing 

effects of fitness–density covariance, which is an outcome of the spatial pattern formation driven 

by the competition-colonization tradeoff. 

The model combining both species sorting and mass effects had positive contributions 

from all spatial coexistence mechanisms for species 1, leading to a higher coexistence strength 

than for species 2 (Figure 2.1). For species 2, the non-spatial mechanism was negative, eroding 

the strength of coexistence from stabilizing mechanisms. This was offset by a positive storage 

effect and fitness–density covariance. The low-density growth rate was enhanced for both 

species in the combined model when compared to their respective individual paradigms (Figure 

2.1).  

The model combining both species sorting and patch dynamics had a positive 

contribution from the storage effect (Fig 1). This differs from the pure patch dynamics model, 
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where the spatial storage effect did not contribute to coexistence. The coexistence strength was 

slightly lower than species sorting but much greater than for the patch dynamics paradigm. 

 

2.3.1 Generality of Coexistence Strength 

A coexistence strength of zero, indicating co-occurrence but not coexistence, occurred in 

the neutral paradigm, regardless of dispersal rate, growth rate, or carrying capacity (Figure 2.2). 

This is a general phenomenon, characteristic of species that are ecologically equivalent.  
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Figure 2.2 Comparison of coexistence mechanism strength across parameter space for species 
sorting (SS) and mass effects (ME), the neutral paradigm (N), and for both species in patch 
dynamics (PD1 and PD2). Gray areas show positive low-density growth rate. Low dispersal rates 
and high niche differentiation yields the highest coexistence strength in species sorting and mass 
effects. The neutral paradigm always exhibits a coexistence strength of 0, regardless of 
parameterization. In patch dynamics, species 2 (the better competitor) is able to persist across 
parameter space. However, only a limited area of parameter space, with relatively low 
differences in growth rate (R) and high differences in dispersal rate allow for coexistence. 

 

Dispersal and niche differentiation (i.e. differences in growth rates between patch types) 

both altered the relative contributions of the storage effect and fitness–density covariance along 

the species sorting to mass effects continuum, where low dispersal rate with high differences in 

growth rates gave the largest coexistence strength (Figure 2.2). Fitness–density covariance and 
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the storage effect both decreased with increasing dispersal rate, and fitness–density covariance 

was greater than the storage effect for low to moderately high dispersal in our model (dj <0.6).  

Patch dynamics generally exhibited lower coexistence strength than the species sorting or 

mass effects paradigms. The poorer competitor (species 1) had a linear positive response to 

increases in the difference in dispersal rates between the two species, while the better competitor 

(species 2) had a negative nonlinear response to increases in dispersal rates (Figure 2.2). A 

relatively large difference in dispersal rate but a small difference in growth rates was required for 

coexistence in the patch dynamics model.  

 

2.3.2 Effect of Stochasticity 

Metacommunities with fewer patches had more between-run and within-run variation in 

the strength of coexistence. Using species sorting in a two-patch metacommunity as an example, 

demographic stochasticity caused runs with negative low-density growth rates in scenarios where 

the two-patch deterministic model or the 500-patch models (with or without stochasticity) had 

positive low-density growth. The majority of this variation was from within-run (between time 

step) variation rather than between-run variation. A maximum of 4% of variation in the storage 

effect was from between-run variability, while for fitness–density covariance and overall low-

density growth rate, a maximum of 12% was from between-run variability. Between-run 

variation represents non-neutral drift and arises within this niche-based model because of the 

evolving spatial pattern of abundances between metacommunity patches. 
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Importantly, in small metacommunities, stochasticity can alter the average strength of 

spatial coexistence mechanisms. As an example, the stochastic 20 patch species sorting/patch 

dynamics model had much stronger coexistence on average compared to the 500-patch stochastic 

model or the deterministic model (Figure 2.3). Species 2 had lower storage effect strength, but 

markedly higher fitness–density covariance, resulting in higher coexistence strength. Species 1 

also had higher coexistence strength, resulting from higher storage effect and fitness–density 

covariance strengths. This increase occurred only with disturbance stochasticity (where patches 

experience stochastic local extinctions) rather than demographic or dispersal stochasticity alone 

(Figure 2.3). In other words, stochastic disturbance promoted coexistence more in small than 

large metacommunities. Stochastic disturbance also reduced variance in fitness–density 

covariance and thereby reduced variance in total coexistence strength for our model (Figure 2.3). 

 

Figure 2.3 Spatial storage effect (SE), fitness–density covariance (FD), non-spatial fitness (NS) 
and total coexistence strength (TOT) for the species sorting-patch dynamics combined 
metacommunity model with 20 patches. Relative contributions of each mechanism are compared 
for both species in the fully deterministic model, a model with stochastic birth and dispersal but 
deterministic extinction, and the fully stochastic model (100 runs). Overlaid grey bars show plus 
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and minus one standard error from the simulation means. Stochasticity in disturbance events 
alters the strength of coexistence compared to models with deterministic disturbance. Tukey 
boxplots are shown. 

 

2.4 Discussion 

 While the metacommunity paradigms of Leibold et al. (2004) have a rich history of 

qualitative comparison both theoretically and empirically, Chesson’s (2000a) spatial coexistence 

theory provides a way to quantitatively compare paradigms and allows for a detailed analysis of 

metacommunities that do not fit neatly within the paradigm framework. We show that each 

metacommunity paradigm is characterized by its own signature of spatial coexistence 

mechanisms and that more complex metacommunities, such as those with multiple paradigms or 

with stochasticity, can also be compared using Chesson’s (2000a) spatial coexistence theory. 

 

2.4.1 Coexistence Signatures of Metacommunity Paradigms 

 As expected, when examining coexistence mechanisms in the neutral paradigm, we find 

co-occurrence, rather than stable coexistence because species are equivalent and thus no 

stabilizing mechanisms are present. Regardless of parameterization, the neutral paradigm yields 

low-density growth rates of zero for each species, which is insufficient for stable coexistence. 

Species instead go extinct from population drift through time, where no species outcompetes 

another. The rate of drift to extinction depends on biological and spatial structure, such as the 

number of patches or carrying capacities of each patch (Economo and Keitt 2007).  

 In comparison, all niche-based metacommunity paradigms exhibit stable coexistence 

rather than co-occurrence, meaning that niche based coexistence mechanisms allow for species 

to recover from low-density. Stable coexistence occurs with three distinct signatures in our 

model of the niche-based paradigms: (1) in species sorting the storage effect and fitness–density 
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covariance work in unison leading to the highest coexistence strength of all paradigms, as 

species segregate into their preferred habitat types, (2) in mass effects the storage effect and 

fitness–density covariance also work in unison but the increased dispersal rate erodes the effect 

of both mechanisms compared to species sorting, and (3) in patch dynamics there is no storage 

effect but trait tradeoffs lead first to the formation of spatial structure that in turn leads to 

opposing effects of fitness–density covariance between species that, when properly balanced, 

allow for coexistence.  

In our model, both species sorting and mass effects rely to a much greater degree on 

fitness–density covariance than on the storage effect for coexistence in metacommunities. 

Fitness–density covariance is stronger than the storage effect in all cases that have the low to 

moderate dispersal characteristic of metacommunities (dj<0.6) (Figure 2.2). A lower dispersal 

rate in species sorting allows a higher proportion of individuals to remain in their optimal habitat, 

thus maximizing both the spatial storage effect and fitness–density covariance. In comparison, as 

dispersal becomes high and the community well-mixed, fitness–density covariance tends toward 

zero because density is homogenized across the metacommunity. By exploring parameter space 

we show that the dominance of fitness–density covariance over the storage effect is robust to 

different dispersal rates and habitat contrasts along the species sorting to mass effects continuum 

(Figure 2.2, row 1) and is the only spatial coexistence mechanism in the patch dynamics 

paradigm. While empirical studies have so far focused on the spatial storage effect (Sears and 

Chesson 2007, Caballero et al. 2007), our results suggest that increased attention to fitness–

density covariance would also be fruitful. Since our model captures the essential features of the 

metacommunity paradigms, we expect the dominance of fitness–density covariance to be quite 

general, at least for competitive communities. However future work is needed to see if a greater 
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contribution from fitness–density covariance is found in natural systems and different 

mathematical models of the metacommunity paradigms. 

The patch dynamics paradigm is the only niche-based paradigm without the storage 

effect. This is because patch environmental conditions are homogeneous, whereas the storage 

effect requires environmental heterogeneity. Instead, the effect of dispersal on spatial pattern 

formation is key to coexistence in patch dynamics, where the negative effect of a lower non-

spatial fitness needs to be balanced by a positive effect of fitness–density covariance for the 

worse competitor. Without disturbance or other events that reduce the abundance of competitors, 

the better competitor would exclude the poorer competitor through its superior non-spatial fitness 

(Roxburgh et al. 2004). However, the poorer competitor—who is the better disperser—can take 

advantage of recent disturbance events. On average, the better disperser migrates to disturbed 

patches sooner and in higher densities, and thus can increase in population size because of the 

lack of interspecific competition (Nee and May 1992, Yu and Wilson 2001). The more general 

explanation provided here is that the combination of dispersal and disturbance creates spatial 

structure, captured by a unique signature of spatial coexistence mechanisms. The better disperser 

is given a boost through fitness–density covariance, compensating for its relative deficit in non-

spatial fitness. In comparison, the better competitor persists from non-spatial fitness greater than 

the negative effect of fitness–density covariance.  

 

2.4.2 Complex Metacommunities and Effect of Stochasticity 

By focusing on spatial coexistence mechanisms, we can examine more complex 

metacommunities than encompassed by the four paradigm framework. We illustrate this in two 

ways. In the first, we explore complex metacommunity dynamics, exemplified by the combined 
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species sorting/mass effects and species sorting/patch dynamics scenarios. In the species 

sorting/patch dynamics scenario, trait tradeoffs still lead to opposing effects of coexistence 

mechanisms. However, in this scenario and in some cases with more complex disturbance 

regimes (e.g. Miller et al. 2011a), patch heterogeneity allows the storage effect to also contribute 

to coexistence. In metacommunity models that deviate from the patch dynamics paradigm such 

that disturbance alters the abiotic conditions within a patch and creates environmental 

heterogeneity (Miller et al. 2011a, 2011b), we would also expect to see a spatial storage effect 

along with potentially a lesser effect of fitness–density covariance. 

Stochasticity within metacommunities not only causes variability in coexistence strength, 

but also can alter mean coexistence strength. Spatial coexistence mechanisms rely on spatial 

variation in environmental quality and competition; metacommunities with environmental 

stochasticity tend to experience more variability than deterministic systems, which can increase 

coexistence strength in the metacommunity. This effect is exemplified in the species 

sorting/patch dynamics model, where stochasticity in disturbance events increases coexistence 

strength compared to deterministic disturbance, especially in the smallest metacommunities. 

Because the better disperser has an advantage only after disturbance, variability in the timing of 

disturbance among patches increases coexistence via the storage effect and fitness–density 

covariance. This in turn, actually decreases variance in coexistence strength in our model, 

contrary to the common intuition that increasing stochasticity increases variability or instability 

in communities. In this case, stochasticity plays a larger role than just contributing to neutral drift 

(Vellend 2010). Instead, stochasticity contributes to niche based metacommunity coexistence by 

altering the spatial structure between patches, thus reinforcing the distinction between the effects 

of stochasticity and the effects of neutrality.  
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2.5 Conclusion 

Empirical metacommunity studies often focus on disentangling the paradigms within a 

given system to determine the primary metacommunity paradigm at play (Ellis et al. 2006, 

Calcagno et al. 2006). Not surprisingly, the majority of studies find that the four paradigm 

framework is too restrictive and non-theoretical systems often do not conform to a single 

paradigm, but rather exhibit features described by multiple paradigms (Cottenie 2005, Ellis et al. 

2006, Cadotte 2007, Logue et al. 2011). The approach of Chesson (2000a) using spatial 

coexistence mechanisms can be applied to the traditional paradigms but also, as we have shown, 

to more complex, biologically realistic metacommunities that mix paradigms, such as patch 

dynamics with spatial heterogeneity or metacommunities with varying dispersal abilities between 

species. This framework can also be extended to species rich metacommunities (Appendix 1), 

allowing for comparing complex multi-species metacommunities. We have shown that 

examining coexistence mechanisms in metacommunities provides a flexible framework for 

comparing metacommunities because systems that do not easily fit within one of the four 

paradigms can still be analyzed using a single, unifying framework.  
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Chapter 3 

 
Differentiating between niche and neutral assembly in metacommunities using null 

models of beta-diversity 
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model and coexistence strength under all scenarios. Caroline Tucker analyzed simulation model 

outputs using the presence/absence and abundance β-null deviation measure. Both first-authors 

contributed equally to writing and editing. 

 

The β-null deviation measure, developed as a null model for β-diversity, is increasingly 

used in empirical studies to detect the underlying structuring mechanisms in communities (e.g. 

niche vs. neutral and stochastic vs. deterministic). Despite growing use, the ecological 

interpretation of the presence/absence and abundance-based versions of the β-null diversity 

measure have not been tested against communities with known assembly mechanisms, and thus 

have not been validated as an appropriate tool for inferring assembly mechanisms. Using a 

mechanistic model with known assembly mechanisms, we simulated replicate metacommunities 
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and examined β-null deviation values (1) across a gradient of niche (species-sorting) to neutrally 

structured metacommunities, (2) through time, and (3) we compared the effect of changes in 

assembly mechanism on the performance of the β-null deviation measures. The impact of 

stochasticity on assembly outcomes was also considered. β-null deviation measures proved to be 

interpretable as a measure of niche or neutral assembly. However, the presence/absence version 

of the β-null deviation measure could not differentiate between niche and neutral 

metacommunities if demographic stochasticity were present. The abundance-based β-null 

deviation measure was successful in distinguishing between niche and neutral metacommunities 

and was robust to the presence of stochasticity, changes through time, and changing assembly 

mechanisms. However, we suggest that it is not robust to changing abundance evenness 

distributions or sampling of communities, and so its interpretation still requires some care. We 

encourage the testing of the assumptions behind null models for ecology and care in their 

application.  

 

3.1 Introduction 

There are two traditionally separate approaches to understanding ecological community 

structure. Theoretical approaches rely on mathematical models of species interactions to predict 

the resulting dynamics, including species coexistence, community diversity, stability, and 

evenness. Alternately, empirical approaches (both experimental and observational) rely on 

sampling existing or constructed ecological communities and collecting data on species’ 

identities or abundances, and then analyzing observed presence/absence or abundance patterns 

using statistical models. Merging theoretical and empirical approaches is often problematic, as it 

is difficult to connect observed patterns with models of community processes: a single 
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mechanism may produce multiple patterns depending on parameter values, while multiple 

mechanisms may lead to convergent patterns (e.g. Mackey and Currie, D. J. 2001, Mayfield and 

Levine 2010).  

Null models, which compare observed statistical patterns to those expected in the absence 

of a particular assembly mechanism (Colwell and Winkler 1984, Gotelli and Graves 1996, Ulrich 

and Gotelli 2007), represent one common approach for connecting statistical patterns to 

assembly mechanisms. Null models randomly sample ecological data to generate patterns 

representative of random or ‘null’ processes; empirical data are then compared to the generated 

null distribution and differences from null are often used to infer the specific processes, which 

are (or are not) structuring the community. Null models in a variety of formulations have been 

used to explore community co-occurrence patterns (Connor and Simberloff 1979), community 

phylogenetic patterns (Kembel 2009), assembly rules (Weiher and Keddy 1999), and 

macroecology (Colwell and Winkler 1984) and are a fundamental component of modern 

ecological analysis.  

Local and regional diversity, and the ecological processes creating observed diversity 

patterns, are often the focus of empirical studies: such studies may consider the multiple 

components of diversity, including local species richness or α-diversity; compositional variance 

between communities or β-diversity; and regional richness or γ-diversity. α-, β-, and γ-diversity 

are interrelated (Jost 2007), and thus when local richness is low, small changes in composition 

can have disproportionate effects on β-diversity, making it difficult to differentiate meaningful 

(process-driven) changes in β-diversity from those resulting from random variability in species 

identity and low local richness. To control for this, Chase and colleagues (2011) emphasized the 

use of β-null deviation: a null model to account for such changes in β-diversity while controlling 
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for stochastic variation and associated changes in α-diversity (i.e. local species richness) (see 

also Crist et al. 2003). β-null deviation methods have also been used to correct for the 

interrelation between α-diversity and β-diversity (e.g. Grman and Brudvig 2014). It logically 

follows that if observed communities are more or less similar than expected compared to null 

communities, this could provide evidence for certain community assembly mechanisms and, 

therefore, that β-null deviation values could also be used as indices of community structure 

(Chase 2010)  

The β-null deviation method as introduced in Chase et al. (2011) relies on occurrence 

(presence/absence) data and uses a null model to generate a distribution of β-diversity values 

expected when artificial communities, equal in α-diversity to the observed communities, are 

randomly assembled from the regional species pool. The observed β-diversity is then compared 

to this null distribution, e.g. βobs –E(βnull), where E(βnull) is the expected value of the βnull 

distribution. The resulting value represents β-diversity that is independent of α-diversity. As 

such, null deviation values may represent communities that are more similar than expected by 

chance (a negative null deviation value), less similar than expected by chance (a positive null 

deviation value), or close to the chance expectation (values near zero). Large deviations from the 

random expectation have been interpreted as reflecting communities structured by non-neutral 

assembly mechanisms, such as shared environmental filtering (negative values; communities 

more similar than expected by chance) or competitive interactions (positive values; communities 

less similar than expected by chance) (Chase 2010, Chase and Myers 2011). Of course, other 

processes (or combinations of processes) may produce negative or positive β-null deviation 

values but these interpretations of β-null deviation measure dominate applications of the 

measure.  
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Additional formulations of β-null deviation incorporate local densities to more finely 

understand how community structure might diverge from random expectations: the null model in 

such approaches removes spatial aggregation within and among species and possible effects of 

random sampling (Kraft et al. 2011, Stegen et al. 2013). In these, the random communities are 

constructed by shuffling individuals of each species among sites, while maintaining each 

species’ total abundance in the metacommunity. Abundance-based measures may be more robust 

to minor variation in community composition, such as occurs when a species’ local population is 

maintained by dispersal from source populations.  

The usage of β-null deviation measures in this capacity – to hint at underlying assembly 

mechanisms – has increased rapidly across multiple sub-disciplines (e.g. Azeria et al. 2011, 

Ferrenberg et al. 2013, Germain et al. 2013, Guo et al. 2013, Mori et al. 2015, Püttker et al. 2014, 

Rocha-Ortega and Favila 2013, Segre et al. 2014, Siepielski and McPeek 2012, Stegen et al. 

2012, Tanentzap et al. 2013). Most papers citing the Chase et al. (2011) methods paper include 

the term “assembly” in the title or abstract, reflecting the trend for the increasing usage of β-null 

deviation as an index of assembly processes, rather than simply as a null model for β-diversity 

that controls for differences in α-diversity. Despite the growing popularity of this approach to 

disentangle ecological processes in observational data, there are a number of issues that currently 

remain unaddressed. First, the papers that originated the method and those that have applied it 

are inconsistent in their interpretation of the β-null deviation values. While deviation from zero 

is consistently interpreted as reflecting some ecological structuring process, exactly what process 

drives changes in the value of the β-null deviation is unknown and interpreted in multiple ways. 

Initial usage (Chase 2010, Chase et al. 2011) suggested that deviations from zero in β-null 

deviation values might reflect deterministic assembly. Values near to zero were interpreted as 



	

	

39	

showing increasingly stochastic assembly of communities (since stochasticity in assembly should 

result in greater randomness in community composition, implying that such communities would 

appear similar to those assembled by randomizing the empirical data) while values much greater 

or much less than zero were suggestive of deterministic processes driving community assembly. 

More recently the measure has been interpreted as differentiating between niche versus neutral 

processes (Ferrenberg et al. 2013, Püttker et al. 2014). Values closer to zero were interpreted as 

neutral communities, where species are ecologically equivalent to one another. Deviations from 

zero were interpreted as niche structured communities, where increasing ecological differences 

among species in heterogeneous environments cause greater deviations from zero. Other 

interpretations suggest that β-null deviations could capture dispersal limitation or homogenizing 

dispersal versus drift (Stegen et al. 2012). Which, if any, of these interpretations best reflects the 

meaning of the β-null deviation measure is unexplored.  

One outcome of the popularity of this measure for empirical studies is that mechanistic 

interpretations have not kept pace – for example, null deviation values of zero have been 

interpreted as representing both stochastic and neutral assembly; differences from zero have 

been interpreted as representing both niche and deterministic. These terms are not 

interchangeable (Leibold and McPeek 2006, Vellend et al. 2014), and clarifying the precise 

interpretation of β-null deviation values would greatly benefit our understanding of processes in 

natural systems. Demographic rates such as birth, death, and dispersal are key. An interpretation 

of neutrality reflects that species are ecologically equivalent and so share identical demographic 

rates (Hubbell 2001), while stochasticity implies that there is random variation in demographic 

rates (i.e. they are probabilistic) without implying anything about the mean values of those 

demographic rates (Table 3.1). Similarly, niche processes imply differentiation in mean 
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demographic rates between species (Carroll et al. 2011), while determinism indicates an absence 

of random variation in species’ demographic rates. Though simplistic, one can interpret the 

niche-neutral axis as reflecting differences in mean demographic rates or lack of differences, 

while the stochastic-deterministic axis reflects the presence or absence of probabilistic variation 

about those mean demographic rates. Vellend et al. (2014) reduce these two axes/dimensions to a 

single dimension with a continuum from drift (neutral stochasticity) to selection, but our 

categorization is useful for exploring the full range of models and contains their broader 

conceptualization as a special case. For example, a system may be both neutral (mean 

demographic rates constant across species) and deterministic (no variation about these 

demographic rates), and as a result dynamics in such a system would differ from those expected 

from a neutral and stochastic (variation about demographic rates) system (Adler et al. 2007). 

Natural communities of course are unlikely to exist at the extremes of these two axes, and 

instead will be structured by multiple levels of these processes, e.g. demographic stochasticity 

and niche differentiation (Adler et al. 2007, 2014). In the case of multiple structuring processes, 

the interpretation of β-null deviation values is altogether unexplored.  
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Term Definition Model Term 
Niche Ecological 

differentiation between 
species in a 
community. 

Each species has an 
optimal patch where 
its growth rate is 
maximum, with lower 
growth in the sub-
optimal patches. 

 
!!"#$%& > !!"#!!"#$%&' 

 

Neutral Ecological equivalence 
of species in a 
community. 

All species have 
identical intrinsic 
growth rates to one 
another in all patches. 
 

 
!!"#$%& = !!"#!!"#$%&' 

 

Deterministic Processes are non-
probabilistic, invariant 
outcomes of the 
systems inputs. 

Growth and dispersal 
rates are fixed. 

Rix is fixed according to values in 
Table 3.2 and m=0.05 

Stochastic Processes are 
probabilistic and 
affected by 
randomness in the 
system, such as 
through demographic 
variability in birth, 
death, and dispersal 
rates. 

Growth and dispersal 
rates are drawn from 
distributions (Poisson 
and binomial, 
respectively), where 
the mean is equivalent 
to the deterministic 
rate. 

 
!!"!!,!"~!"#$(!!"!!,!") 

 

!!" = !!"
1

1 + ! !!,!"!
 

 
!!"!!"!!,!"~!"#$%(!!"!!,!" ,!) 

 

Table 3.1 Definition of the focal four processes affecting community assembly—as modelled in 
this study—including details on how they are incorporated into the model described in Equation 
3.1. 
 

The meaning of β-null deviation values cannot be determined using observational data 

alone, but rather requires that the β-null deviation measure be applied to communities 

assembling with known processes (whether neutral, niche, deterministic or stochastic). This will 

help clarify the interpretation of the null deviation measure and its robustness to differences in 

assembly processes and in communities with multiple processes at play. Like a statistical null 

hypothesis (Ho), the null model for β-null deviation values may find, for a given community, that 

data differ from a random distribution of species. Without testing against simulated communities 

with known assembly processes, we cannot infer which particular ecological process may create 
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this significant difference, as the β-null deviation measure is currently used to do. The 

connection between a statistical null model and the ecological ‘null’ process it is supposed to 

represent must be justified. The null model at the heart of the β-null deviation measure could 

differ substantially in community structure from a neutral community model—the mechanistic 

ecological ‘null’ model. Appropriate tests of the β-null deviation measure for communities with 

known assembly processes (whether neutral, niche, deterministic or stochastic) are lacking, and 

its robustness to changes in ecological parameters and assembly processes remains unknown.  

In this paper, we use simulated metacommunities to explore how both stochastic and 

deterministic formulations of metacommunity models with varying strengths of niche structure 

alter the value (and interpretation) of the presence/absence and abundance β-null deviation 

measures, and thus the appropriate use of the measure for inferring assembly mechanisms. We 

show that β-null deviation values near zero occur when assembly dynamics are neutral, and the 

absolute value of the measure diverges from zero when assembly dynamics are niche-based. 

However, this is only true in specific cases. We show that (1) stochasticity, (2) changes in 

assembly mechanism thru time, and (3) population drift through time alter the value of the 

presence/absence β-null deviation in unexpected ways, but that the abundance β-null deviation 

measure is robust to these processes. Finally, we provide a discussion of the conditions for which 

null deviation measures may be appropriate for inferring community assembly processes.  

 

3.2 Methods 

We generated replicated artificial data using a metacommunity model: β-diversity and β-null 

deviation values were then calculated using these data. Further, we varied parameters of the 
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model to generate metacommunities along a gradient from niche to neutral structure. We also 

generated both deterministic and stochastic versions of metacommunities.  

 

3.2.1 Mathematical formulation of metacommunity model 

We created a discrete time mechanistic metacommunity model of 25 species and 25 

patches (e.g. a habitat patch that can contain a local community). The model includes birth and 

death of individuals, inter- and intra-specific competition for space within patches, and migration 

between patches. The model with global migration between patches is a patch model and not 

spatially explicit (Mouquet and Loreau 2003) (although it could be made spatially explicit). 

Dynamics within patches were modeled using the classic competition form of the Beverton-Holt 

model (Beverton and Holt 1957, Leslie and Gower 1960): 

!!!!,!" = !!"!!,!" !
!!! !!,!"!

    N!!!,!" = R!"N!,!" !
!! !!!!,!"!

   (3.1). 

N represents the population of a given species i in patch x at time t, and t + h is the time up until 

just before migration. Rix is the density-independent growth rate of species i in patch x, which 

depends on the niche-structure in the simulation (see Table 3.2 for parameter values). The term 

1+ ! !!,!"! is the competition experienced by species i (Chesson 2000b), where α is the 

competition coefficient ( α = 1/600 for all simulations). Migration occurred after within-patch 

dynamics. For global dispersal, metacommunity dynamics were given by  

!!!!,!" = !!!!,!" +!!( !!!!,!"
!!! −!!!!,!")!!!  (3.2) 

where mi is the migration rate of species i, z indexes patches, and p is the total number of patches 

(25 for all analyses). To model local dispersal, we modified the above global dispersal model 

(Eq. 2) into a coupled map lattice (Brännström and Sumpter 2005b). For local dispersal, an 

individual could only migrate to a patch directly adjacent in one of the four cardinal directions (5 
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x 5 lattice). We present results from global and local dispersal with m = 0.05. Lower values of m 

did not lead to results qualitatively different from those presented here; higher values of m 

produced metacommunities with β-null deviation values closer to zero. We started all 

simulations with 150 individuals of each species in each patch. 

 

  Regional 
neutrality 

Community 
type 

Intrinsic growth rate, 
optimal patch 

(Roptimal) 

Intrinsic 
growth rate, 
sub-optimal 

patch 
(Rsub-optimal) 

Niche 
 
 
 
 

Neutral 

 Yes 1 1.45 1.095833 
 Yes 2 1.35 1.1 
 Yes 3 1.25 1.104167 
 Yes 4 1.15 1.108333 
 Yes 5 1.11 1.11 

         
Niche 

 
 
 
 

Neutral 

 No 1 unif(1.55, 2.1) unif(1.0, 1.22) 
 No 2 unif(1.45, 1.9) unif(1.0, 1.22) 
 No 3 unif(1.35, 1.7) unif(1.0, 1.22) 
 No 4 unif(1.25, 1.4) unif(1.0, 1.22) 
 No 5 1.11 1.11 

 

Table 3.2 Species’ density-independent growth rates for their optimal (niche) and sub-optimal 
patches in the metacommunity, for each of the five metacommunity types. Parameter values are 
listed for cases with regional neutrality, and without regional neutrality. 
 

Because the deterministic model has abundance on a continuous scale (i.e. there can be 

less than one individual), by definition no species ever goes extinct in a patch. For deterministic 

models, we therefore applied a detection threshold of 2 individuals per species to determine 

presence/absence – this is a conservative choice representing the minimum requirement for 

reproduction in a sexual population.  
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3.2.1a Stochastic and deterministic versions of the model 

The above deterministic model is the mean field counterpart to its stochastic version 

(Hiebeler 1997), in which we include demographic stochasticity for births and dispersal (Table 

3.1). We incorporated demographic stochasticity by drawing the number of individuals at a given 

time from a Poisson distribution, where the mean of the distribution equaled Nt+h/Nt from Eqn. 1. 

This allows for stochasticity in both births and survival (Melbourne and Hastings 2008). 

Stochasticity in dispersal was included by using a multinomial distribution with probability m/(p-

1) of dispersing to patch z=1, 2, . . . 25 such that z≠x. 

 

3.2.2 Establishing metacommunities along a niche to neutral gradient 

To create a gradient from niche to neutral, we varied density-independent growth rates, 

Rix, among patches between the five scenarios (Table 3.2 shows parameter values). Differences 

in Rix can be interpreted as representing differences in the species' responses to the abiotic 

environments of the patches. The metacommunity with the greatest niche structure (type 1 in 

Figure 3.1) had the largest difference in growth rate between the optimal patch (e.g. niche) for 

each species compared to all other patches. In this scenario, competitive exclusion of all species 

not in their optimal patches occurred, creating a species-sorting metacommunity (Leibold et al. 

2004). At the other extreme, the metacommunity was neutral, where all species had identical 

density-independent growth rates in all patches (type 5 in Figure 3.1). Metacommunities of types 

2, 3, and 4 were intermediate between species sorting and neutrality. For all metacommunity 

types, we held average fitness equal among all species at the metacommunity level, thus 

removing any effect of variation in average fitness among metacommunities and among 

scenarios. Thus, although species had niches or different growth rates in patches within the 
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metacommunity, their average fitness across the metacommunity was identical ("regional 

similarity", Mouquet et al. 2003). This assumption of regional similarity controls for the effect of 

fitness difference variation on the β-null deviation measure, allowing us to explore the effects of 

changes in local structuring processes while controlling for regional level contributions to local 

coexistence. 

 

Figure 3.1 Strength of niche processes as measured by the magnitude of stabilizing coexistence 
mechanisms for the five possible models of metacommunity assembly, ranging from niche-
structured (type 1, species sorting), to neutral (type 5) in which species co-occur in all patches. 
Model parameter values are listed in the Methods and Table 3.2. 
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3.2.3 Quantifying the strength of stabilizing coexistence mechanisms 

We quantified the relative strength of niche-partitioning within each community type 

using the spatial coexistence mechanisms defined in Chesson (2000a). We measured the strength 

of stable coexistence as the tendency of a focal species to recover from low density (the long 

term low-density growth rate) while the rest of the community was at equilibrium for 

deterministic models or stationarity for stochastic models (Armstrong and McGehee 1980, 

Chesson 2000a, Turelli 1981). Because the average, metacommunity level fitness was equal for 

all species, low-density growth rate reflected contributions to coexistence exclusively from two 

stable coexistence mechanisms: fitness-density covariance and the spatial storage effect, which 

together define the spatial niche of a species (Chesson 2000a, Chesson 2008). Thus, the 

magnitude of the low-density growth rate is the sum of the contribution of these stabilizing 

mechanisms along the gradient from niche separation (species-sorting) to neutrality. In the 

neutral case, the low-density growth rate is zero, indicating a lack of stabilizing mechanisms and 

a metacommunity structured exclusively by equalizing mechanisms (Adler et al. 2007). 

 

3.2.4 Removing regional similarity of species 

To explore whether the absence of regional similarity alters our findings, we also 

constructed stochastic metacommunities in which species do not exhibit metacommunity-level 

neutrality. Following Melbourne et al. (2007), we did this by randomly drawing growth rates for 

each species in each patch from uniform distributions (Table 3.2). If that species coexisted with 

all other species thus far drawn (i.e. had a positive low-density growth rate), we kept that species 

for the simulation. If the species was unable to coexist, it was removed. We repeated this process 

until a metacommunity with 25 coexisting species was obtained: we used this process to produce 
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50 replicates of each metacommunity type. 

 

3.2.5 Beta-null deviation calculation 

β-null deviation values indicate the magnitude of deviation between the observed β-

diversity (βobs) and the expectation for β-diversity, E(βnull), from a randomly assembled pair of 

patches. We follow the method described in Chase et al. (2011) for the presence/absence β-null 

deviation measure. βobs represents the pairwise Jaccard dissimilarity between two patches. To 

determine the null expectation E(βnull) for this pair of patches, 1000 pairs of patches—with α-

diversity matched to the observed two patches—were then assembled by randomly selecting 

species weighted by their observed frequency in the metacommunity. Pairwise β-diversity 

between the 1000 randomly assembled pairs of patches was then calculated to produce a 

distribution of null β-diversity values: the null deviation value represents the difference between 

the observed pairwise β-diversity and the mean of the null distribution of β-diversity values (that 

is, βobs - E(βnull)). For a metacommunity, the overall β-null deviation was the mean deviation 

across all patch pairs. 

Abundance-based β-null deviation values used the same procedure but with a different 

dissimilarity metric and null model. We used the Bray-Curtis dissimilarity metric, which takes 

account of species' relative abundances (Tuomisto 2010).The null model was created by 

randomly placing each observed individual into a patch until every individual had been placed 

into a patch in the metacommunity (Kraft et al. 2011, Stegen et al. 2013). This maintains the 

observed metacommunity-level abundance distribution but randomizes the location of 

individuals.  
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3.2.6 Analyses 

We calculated both presence/absence and abundance-based β-null deviation measures for 

four distinct scenarios. In scenario 1, we examined how β-null deviation values changed for 

metacommunities along the gradient from niche to neutral assembly (types 1-5), for both 

deterministic and stochastic formulations of the model. We allowed dynamics to continue for 

150 generations to ensure that analyses captured the equilibrium state (deterministic) or 

stationary distribution (stochastic) rather than transient dynamics, and then calculated β-null 

deviation measures. In scenario 2, we explored how the β-null deviation measure captures 

transient dynamics in stochastic models for niche (type 1) and neutral (type 5) communities. We 

measured β-null deviation for 750 generations (measuring values at 10, 50, 100, 150, 250, 500, 

750 generations) while holding all parameters constant. In scenario 3 we considered the effect of 

changes in assembly mechanism through time, such as is typical in manipulative experiments. 

After the metacommunity reached its equilibrium (deterministic) or stationary distribution 

(stochastic), we applied a simulated experimental treatment that caused either (1) a niche 

structured metacommunity to become neutrally structured (parameter values changed from type 

1 to type 5) or (2) a neutral metacommunity to become niche structured (parameter values 

change from type 5 to type 1). We then compared the β-null deviation values before treatment to 

a 150-generation time-series after the treatment for both stochastic and deterministic versions of 

the model. In scenario 4, we examined how β-null deviation values changed along a gradient 

from niche to neutral assembly (types 1 through 5), but this time removing the constraint of 

regional similarity. In all analyses of stochastic models, we simulated 50 metacommunities for 

each model type and calculated the β-null deviation measure for each metacommunity. 
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3.2.7 Effect of degree of regional species pool sampling on beta-null deviation 

Thus far we have assumed a complete census of the regional species pool. However, 

observational data are typically from a sample and involve uncertainty about the true abundances 

of species in a region. To examine the effect of this uncertainty, we sampled less than the true 

number of patches in the 25 species metacommunity, including only 5, 10, 15, or 20 local 

patches from the 25-patch metacommunity to calculate the null deviation measure. We repeated 

the sampling 250 times for each level to determine whether the accuracy of the abundance-based 

measure varied with the proportion of sites sampled from the metacommunity. Results for 

samples of 10, 15, and 20 patches fell predictably between those of 5 patches and all 25 patches, 

so we present results from the most extreme case (only 5 patches or 20% of the 

metacommunity).  

 

3.3 Results 

3.3.1 Niche to neutral gradient 

We confirmed that the species-sorting (type 1) to neutral (type 5) metacommunity 

gradient represented a gradient of niche strength. Along the niche to neutral gradient, 

metacommunities of type 1 (species-sorting) had the highest low-density growth rate (Figure 

3.1), which declined in each metacommunity type to a value of 0 for neutral communities. This 

means that in neutral metacommunities, while species did not drive others towards extinction, 

they did not have a tendency to recover from low-density. Thus, stabilizing coexistence 

mechanisms (or niches) were strongest in type 1 metacommunities and absent from type 5 

metacommunities, which were structured exclusively by equalizing mechanisms. 
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3.3.2 Scenario 1 

Jaccard dissimilarity β-diversity values for the deterministic metacommunities varied 

from 1 (patches differ completely in their composition) to 0 (patches have identical 

compositions), respectively, along the gradient from niche-structured to neutral 

metacommunities. Values of the presence/absence β-null deviation measure reflected the 

changing structure along this gradient. They distinguished between neutral or near-neutral 

metacommunities (types 4-5), which had β-null deviation values of zero—indicating an absence 

of niche processes—and niche metacommunities (1-3), which had values larger than zero (Figure 

3.2a)—indicating niche processes were causing patches in a metacommunity to be more 

dissimilar than expected. The abundance β-null deviation measure also varied for 

metacommunities along this gradient: from mean values of 0.793 for niche structured 

metacommunities (type 1) to -0.341 for neutral metacommunities (type 2). Negative β-null 

deviation values suggest that species composition is more similar between patches than expected 

under the null model of random assembly. This makes sense because, in contrast to the null 

model, deterministic neutral communities are not randomly assembled thus removing a source of 

dissimilarity. The abrupt jump in β-null deviation values between metacommunities of type 3 

and 4 in the deterministic case reflects the detection threshold. 
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Figure 3.2 β-null deviation values from simulated metacommunity models, for five assembly 
types representing a gradient from niche to neutral. Subplots show beta-diversity (Jaccard), 
presence/absence β-null deviation values, and abundance β-null deviation values for (a) 
deterministic metacommunity models and (b) stochastic metacommunity models. Each bar 
represents 50 replicate metacommunities (see Methods): dark lines show the mean value, 
whiskers capture the interquartile range, and points show extreme values. Note that y-axes differ 
for presence/absence and abundance b-null deviation results. 
 

We considered the same gradient of assembly for stochastic metacommunity models. 

Compared to deterministic metacommunities, which had little variability in β-null deviation 

values, stochastic metacommunities had more variability in β-null deviation values, indicated by 

the greater interquartile range (Figure 3.2b). Variability in β-null deviation in deterministic 
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metacommunities is due exclusively to Monte Carlo error induced by the null model, whereas 

variability in β-null deviation in stochastic models reflects variability in metacommunity 

structure. Monte Carlo error is the error in the null deviation that arises because its estimate 

relies on a stochastic simulation of the null model (Hammersley and Handscomb 1964, Koehler 

et al. 2009). Mean β-diversity values ranged between approximately 0.5 and 0.7, indicating patch 

level composition, on average, was quite dissimilar. The presence/absence β-null deviation 

values ranged between 0.016 (± 0.190) to -0.05 (± 0.062) for niche and neutral metacommunities 

(here and elsewhere, we report mean ± standard deviation). The trend toward more negative 

values of β-null deviation for neutral metacommunities suggests that species composition of 

patches in the metacommunity is more similar than expected under the null model of random 

assembly. This shows that the null model does not correctly capture beta diversity for the neutral 

metacommunities. β-null deviation values for the abundance version of the measure varied 

between 0.739 (± 0.018) to 0.367 (± 0.064) for niche through neutral metacommunities, 

declining consistently toward zero along the niche-neutral gradient. Positive values of the β-null 

deviation measure for neutral metacommunities suggest that species composition was less 

similar between patches compared to the random expectation. 

Deterministic and stochastic model results did not depend on dispersal type, suggesting 

they are robust to variation in dispersal rates and dispersal strategies, ranging from restricted 

local movement to global dispersal (Appendix 2 Figure S1 and S2). 

 

3.3.3 Scenario 2 

For stochastic niche structured metacommunities, the presence/absence β-null deviation 

measure did not vary greatly over 750 generations (measured at generations 10, 50, 100, 150, 
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250, 500 and 750 generations), µ±σ: -0.001±0.011, 0.003±0.016, 0.002±0.016, 0.001±0.017, 

0.002±0.015, 0.002±0.015, 0.002±0.016). All values were close to zero, the expectation for 

neutral rather than niche metacommunities. Values for abundance β-null deviations initially rose, 

in response to the non-equilibrium starting conditions, and then remained constant with positive 

values over the 750 generations (measured at generations 10, 50, 100, 150, 250, 500 and 750 

generations): 0.350±0.039, 0.750±0.015, 0.750±0.015, 0.750±0.016, 0.750±0.016, 0.750±0.015, 

0.750±0.015) (Figure 3.3).  
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Figure 3.3 Changes in β-null deviation values over time. β-null deviation results are shown for 
niche-structured metacommunities (type 1) and neutrally-structured metacommunities (type 5) 
for stochastic models, where dynamics were allowed to continue for 750 generations. Both 
presence/absence and abundance β-null deviation measures were calculated. Each bar represents 
50 replicate metacommunities. Note the x-axis is categorical, not a continuous scale. 
 

For stochastic neutral metacommunities, presence/absence β-null deviation values 

initially centered at zero (as expected), but became more negative with time and increased in 

variance (for time points 10-750: -0.001±0.010, -0.016±0.034, -0.040±0.044, -0.057±0.052, -
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0.066±0.057, -0.082±0.070, -0.084±0.072). The abundance-based β-null deviation values for 

stochastic neutrally structured metacommunities rose slightly and then declined through time, 

although values remained positive (for time points 10-750: 0.228±0.032, 0.415±0.044, 

0.391±0.044, 0.359±0.051, 0.332±0.057, 0.265±0.061, 0.222±0.066).  

 

3.3.4 Scenario 3 

In both scenarios (a change from niche to neutral assembly, and a change from neutral to 

niche assembly), although the value of the presence/absence measure changed, it did not change 

in the way expected to correctly detect the structuring mechanism (i.e. the experimental 

treatment) (Figure 3.4). In the niche to neutral scenario presence/absence β-null deviation values 

became increasingly negative, falsely indicating an increase in community structure compared to 

randomly assembled communities: at the start of the experiment, the mean β-null deviation value 

was 0.007 (±0.020) and after 150 generations it was -0.052 (±0.061). Variance in β-null 

deviation also increased over time. Conversely, in the neutral to niche scenario, presence/absence 

β-null deviation values were initially negative (-0.045±0.058) but after the simulated 

experimental treatment, the β-null deviation values increased to near zero (-0.001±0.02), falsely 

suggesting a neutral metacommunity rather than a niche-structured metacommunity.  
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Figure 3.4 The effect of changes in assembly processes on β-null deviation values. Figure shows 
the effect of changes from niche to neutral assembly (top) and from neutral to niche assembly 
(bottom) over time, for stochastic metacommunity models. Both presence/absence and 
abundance β-null deviation measures were calculated. Each bar represents 50 replicate 
metacommunities. Note the x-axis is categorical, not a continuous scale. 
 

The abundance based β-null deviation measure performed better, declining towards zero 

after a change to neutral assembly (from 0.740±0.067 at t=0 to 0.377±0.067 at t=150), and 

becoming increasingly positive after a change to niche assembly processes (from 0.383±0.125 at 

t=0 to 0.587±0.125 at t=150). Variance in β-null deviation between realizations in the stochastic 
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neutral to niche models was largely a result of variation in the state of neutral metacommunities 

(resulting from stochasticity) just before the switch to niche processes. 

 

3.3.5 Scenario 4 

Removing the regional similarity constraint did not alter the distribution of β-null 

deviation values along the niche-neutral gradient (Figure 3.5). Results were qualitatively similar 

to those from the stochastic metacommunity with regional similarity (Figure 3.2b).  
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Figure 3.5 β-null deviation values from simulations of stochastic metacommunities when 
species do not have equal fitness at the metacommunity scale (i.e. in the absence of regional 
similarity). See Methods for the five assembly types. 
 
 

3.3.6 Effect of degree of regional species pool sampling on beta-null deviation estimates 

Sampling the metacommunity resulted in higher null deviation values than those from a 

complete census of the metacommunity (Figure 3.6). There was a significant interaction between  

sample size and metacommunity type: niche metacommunity β-null deviation values were more 
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biased when under-sampled while neutral metacommunities were more uncertain.  

 

Figure 3.6 Effect of incomplete sampling of the regional species pool for abundance-based null 
deviation metric values. Error bars represent standard deviations for 50 replicates of the sampling 
procedure (see Methods). 
 

3.4 Discussion 

The β-null deviation measure, initially developed as a null model for β-diversity, has 

increasingly been used as an index of community assembly mechanisms and applied to empirical 

data. This analysis compared β-null deviation for simulated communities with known assembly 

mechanisms to determine how values of the β-null deviation measure should be interpreted and 

how effectively it performs in this role. Our results help to clarify the correct interpretation of the 
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β-null deviation measure: we found that its values differentiate between niche (values further 

from zero) and neutrally structured metacommunities (values nearer to zero). This is in contrast 

to the interpretation of deterministic versus stochastic processes (e.g. Chase and Myers 2011, 

Stegen et al. 2013). The presence/absence β-null deviation measure was not robust to the effect 

of demographic stochasticity on assembly, so we cannot recommend it. In contrast, the 

abundance based measure changed consistently along the niche-neutral gradient and to changes 

in assembly, although its utility is primarily as a comparative (focusing on changes in value), 

rather than absolute measure. 

 

3.4.1 How should beta-null deviation values be interpreted? 

In the absence of any stochasticity, presence absence β-null deviation values relate—as 

originally assumed—to the structuring processes assembling a community. Values of zero 

differentiate neutral communities from those that are niche structured (absolute values much 

greater than zero). This differs from the original interpretation of β-null deviation values (Chase 

2010, Chase et al. 2011), which suggested that values near zero reflect stochastic assembly 

processes and those different from zero reflect deterministic processes. Instead, we show that, for 

the presence/absence measure, the null expectation for β-diversity between random samples of 

species from the regional species pool converges on the expectation for a neutral community, i.e. 

all species are similarly likely to be present in a patch. Thus the statistical null model reflects our 

neutral model of assembly.  

 

3.4.2 Performance of different versions of the β-null deviation measure 

We found that β-null deviation measures varied in their properties depending on whether 
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they were calculated using presence/absence or abundance data. In particular, the 

presence/absence measure was not robust to (1) stochasticity in assembly, (2) the number of 

generations from assembly to sampling (due to variation from stochasticity in population 

dynamics), and (3) changes in assembly mechanisms through time. Demographic stochasticity in 

particular affects the β-null deviation measure, because it decreases the relative differences in β-

null deviation between niche and neutral communities while increasing variance, making it 

difficult to correctly distinguish between these mechanisms. This difficulty is enhanced when 

assembly mechanisms change through time. For example, historical contingency can alter 

community structure far from the expectation for niche or neutral assembly, and the 

presence/absence measure is not robust to such contingency. The presence/absence β-null 

deviation measure (and many presence/absence based null models) relies on variation in species 

identity between local communities to distinguish between structuring processes: except in 

highly diverse metacommunities, there is often not enough variation in species’ composition to 

provide strong evidence for a particular assembly process.  

The abundance-weighted β-null deviation measure was developed in part because of such 

limitations, and is used to control for the effects of spatial aggregation of individuals in samples 

(e.g. Stegen et al. 2012). Performance of this measure was markedly better than that of the 

presence/absence version: the absolute value of the abundance-weighted β-null deviation 

measure increased in response to niche processes and declined in response to neutral processes. 

The abundance-weighted β-null deviation measure was effective in identifying increases or 

decreases in niche or neutral structure in communities through space and/or time. Further, it 

behaved reasonably consistently in the presence of stochasticity, through time, and for 

communities lacking regional similarity, all of which suggests that it is better suited to use with 
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empirical data. However, a number of issues must still be considered. First, similar values of the 

abundance β-null deviation measure may still reflect different assembly processes, as in Myers et 

al. (2013), in which the authors showed that β-null deviation values for tropical and temperate 

forests were similar, but different mechanisms (environmental filtering vs. dispersal limitation) 

produced these similar values. Results of similar magnitudes are not necessarily comparable 

across different metacommunities: a metacommunity in one system should not be said to be 

“more niche structured” because it has a larger β-null deviation value than that measured in a 

different system. The β-null deviation is not robust to comparisons across systems or habitats, 

and likely should be restricted to geographically similar analyses, such as within 

metacommunities or regions, or across time or experimental treatments for a single locale. 

In addition, absolute values of the abundance β-null deviation measure did not 

correspond with the expectation for niche or neutral communities. The abundance β-null 

deviation measure reflects changes in aggregations of individuals, but it is also sensitive to 

changes in abundance evenness distributions. Non-random abundance evenness distributions, 

such as may result from neutral assembly of patches, can cause null deviation values to diverge 

from zero, simply because the null model has random uneven) abundances. This may result in 

negative values of the β-null deviation metric (e.g. deterministic model, Figure 3.2a, where 

abundances are more even than random), or positive values (e.g. stochastic model, Figure 3.2b, 

where abundances are less even than the random expectation due to stochasticity). The inability 

to disentangle whether the abundance-weighted β-null deviation measure changes as a result of 

changing aggregations of individuals, or changing evenness in composition, also limits its utility. 

The β-null deviation measure relies on knowing the true abundance distribution of the 

regional species pool. One important limitation occurs when the true abundance distribution of a 
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regional species pool is unknown, such as due to undersampling of sites or difficulties in 

delimiting the “regional pool”. We found that where only 20% of the true metacommunity 

patches were sampled (e.g. 5 patches), the decline in the β-null deviation values across the niche-

neutral gradient was significantly different from that of the complete sample, though the realized 

effect size was small (~7%). Because species sorting in our niche-structured metacommunities 

implies that each patch should have unique species abundances, values of the measure are biased 

for niche structured metacommunities when there is under sampling of patches in the region. 

Alternately, a scheme that subsamples individuals in each patch, such as through use of transects 

or point counts, would tend to be less accurate for stochastic neutral communities (since at each 

patch many species co-occur and so site abundances are lower if carrying capacity is constant, 

and undersampling would increase variation). The issue of accuracy in sampling and defining the 

abundance-weighted regional species pool is an important one for observational data, where 

uncertainty is expected. β-diversity measures are sensitive to undersampling (particularly those 

based on presence-absence data) (Beck et al. 2013); compounding this, the reliance of the null 

deviation measure on the observed abundance or range size distribution provides an additional 

source of bias when species’ abundances or presences are not well reflected by the data. Future 

work should consider the implications of undersampling for null models such as this one. 

We considered five different strengths of stabilizing coexistence mechanisms, from 

strong niche differences between species to neutrality, covering three of the four metacommunity 

paradigms: species sorting, neutrality, and mass effects. Our model produced strong gradients in 

beta-diversity (values from 0-1) as a result of differences in species’ innate growth rates in 

patches, making it a valuable first approach to testing the β-null deviation measure. However, 

these are likely not the only factors influencing β-diversity in natural systems. Other drivers of β-
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diversity, such as speciation, dispersal barriers or limitations, and extinctions, as well as more 

realistic assumptions (such as larger species pools) should be considered as well. While spatial 

aggregation may additionally influence the ability of the β-null deviation measure to detect 

underlying community assembly processes, lowering dispersal rate or using limited local 

dispersal did not alter our conclusions. However, in well-mixed communities (e.g. a dispersal 

rate of 50%), increased dispersal causes communities to appear increasingly similar and so 

measures of β-diversity and community assembly are no longer meaningful (e.g. Appendix 2). 

 

3.5 Conclusion 

Though originally developed as a null model for β-diversity, β-null deviation measures 

are increasingly used as an indicator of the processes structuring communities. They speak to a 

fundamental issue in ecology – the need to reconcile empirical data, statistical models, and 

theoretical explanations. However, as with most measures meant to bridge observational and 

theoretical analyses, many assumptions are needed. This work clarifies for the first time the 

appropriate interpretation of the β-null deviation measures: to differentiate between niche and 

neutral communities, rather than between deterministic and stochastic communities. Our results 

suggest, however, that presence/absence based β-null deviation measures lack the resolution to 

differentiate between niche and neutral communities, particularly when stochasticity or changes 

in assembly though time are present, but that the abundance based β-null deviation measure 

performs adequately under these conditions. However, null models that precisely and robustly 

disentangle the different processes structuring communities remain elusive. 
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Horses (family Equidae) are a classic example of adaptive radiation, exhibiting a nearly 

60-fold increase in maximum body mass and a peak taxonomic diversity of nearly 100 species 

across four continents. Such patterns are commonly attributed to niche competition, in which 

increased taxonomic diversity drives increased size disparity. However, neutral processes, such 

as macroevolutionary ``diffusion,'' can produce similar increases in disparity without increased 

diversity. Using a comprehensive database of Equidae species size estimates and a common 

mathematical framework, we measure the contributions of diversity-driven and diffusion-driven 

mechanisms for increased disparity during the Equidae radiation. We find that more than 90\% 

of changes in size disparity are attributable to diffusion alone. These results clarify the role of 

species competition in body size evolution, indicate that morphological disparity and species 

diversity may be only weakly coupled in general, and demonstrate that large species may evolve 

from neutral macroevolutionary diffusion processes alone. 

 

4.1 Introduction 

Horses (family Equidae) are a classic example of adaptive radiation. First appearing 56 

million years ago (Ma) in Holarctica, horses underwent a dramatic diversification in the late 
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Oligocene and early-to-mid Miocene. By the end of this period, Equidae included nearly 100 

contemporaneous species, spread across four continents, in sizes ranging from approximately 

10–1200kg (Hulbert 1993, Eisenmann, 2003). Although the biological mechanism driving this 

dramatic size disparity remains unclear, insights would inform both the evolutionary and 

ecological history of horses (MacFadden 1992, Janis, 2007) and shed light on the general 

processes that shape morphological, taxonomic, and ecological diversity in mammals (Stanley 

1973, Brown, 1995).  

Many characteristics of horses changed during their radiation including body size, hoof 

shape, diet, and molar characteristics (MacFadden 1992, Janis 2007). Here, we focus on species 

body mass or size, a fundamental biological variable that correlates strongly with ecological 

traits, including habitat preference, diet, range, life span, gestation period, metabolic rate, and 

population size (Brown 1995, West et al. 2002, Cardillo et al. 2005, Smith et al., 2002), as well 

as trophic level and niche position in food webs (Williams et al. 2010). For these reasons, size is 

an easy-to-measure proxy (Lucas et al. 2008) for studying and modeling species characteristics, 

ecosystem structure, and ecological niches, even across evolutionary time (Gittleman 1985). 

Moreover, the distribution of species sizes within a taxonomic group is an effective summary of 

species characteristics.  

Among major animal lineages, including mammals, birds, fish, and insects, this 

distribution often exhibits a canonical right-skewed pattern (McShea 1994, Kozlowski and 

Gawelczyk 2002, Clauset et al. 2009, Smith and Lyons 2011). For example, the most common 

size of a terrestrial mammal is roughly 40 g (like the common Pacific Rat, Rattus exulans), while 

both larger and smaller species are less common, but asymmetrically so: the largest, like the 
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African Elephant (Loxodonta africana, 4 × 106 g), are orders of magnitude larger, while the 

smallest, like Remy’s Pygmy Shrew (Suncus remyi, 2 g), are only slightly smaller.  

The origin of this ubiquitous pattern is commonly attributed to one of two biological 

mechanisms: asymmetric dispersion, produced by macroecological competition for niches, 

around a preferred or optimal body size (Maurer et al. 1992, Smith et al. 2010), or constrained 

macroevolutionary “diffusion” (Table 4.1) in the presence of a hard limit at the lower end, due to 

physiological constraints, and a soft limit at the upper end, caused by extinction rates that gently 

increase with body size (Stanley 1973, Clauset and Erwin 2008). Traditionally, the evidence for 

these two mechanisms has been documented separately, and relatively little work has compared 

them directly using data. Crucially, these explanations make distinct predictions about the 

relationship between diversity and disparity during the expansion of a taxonomic group: the 

macroecology explanation predicts that increases in size disparity are driven directly by increases 

in species diversity or number, while the macroevolution explanation predicts that disparity can 

increase without a concurrent increase in diversity.  
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Term Definition 
Body size distribution Relative frequencies of species body masses within 

a taxonomic group 
Diversity Number of species in a taxonomic group 
Size disparity Difference in body mass between the largest and 

smallest species in a group 
Diffusion Aggregate result of many individuals following, 

possibly constrained, random-walk-like trajectories 
through a fixed or evolving space 

CESR model Mathematical model of a species size distribution, 
in which individual species sizes follow a 
constrained, branching (cladogenetic) 
multiplicative random walk 

Diversity-driven disparity Mechanism for increased size disparity, in which 
interspecific competition drives new species into 
larger bodied, unoccupied niches 

Diffusion-driven disparity Mechanism for increased size disparity, in which 
species sizes vary independently of nearby niche 
occupation, as in diffusion 

Cope’s Rule Average multiplicative change between an ancestor 
A’s and descendant species D’s mass, !"# =
ln (!!

!!
)  (While there are two common definitions 

of Cope’s Rule, we use Alroy’s, which lends itself 
to quantitative analysis.) (Alroy, 1998) 

 

Table 4.1 Terminology for body size evolution model 

 

The Equidae family is well suited for investigating this question: it is an ecologically 

important monophyletic family and has a well resolved fossil record with reliable size estimates 

for hundreds of species over its duration. Furthermore, horses exhibit many of the patterns 

associated with adaptive radiations (Gavrilets and Losos 2009): over the past 56 millions of years 

(My) but particularly from 24–20 Ma, both size disparity and the number of species increased 

dramatically, horse morphology diversified considerably, with many lineages switching from 

grazing to browsing and increasing their geographical ranges (MacFadden and Hulbert 1988), 

new species arose from nonallopatric speciation, and mostly small phenotypic changes occurred 

after the main diversification period. The concurrent increases in diversity and disparity presents 
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a simple but fundamental question: was the increase in disparity driven by increased diversity or 

not?  

We investigate this question using a clade-level mathematical model that captures the 

distinct predictions of the two explanations for species body size distributions. Although still 

other explanations are possible, we focus on these two general hypotheses. Both hypotheses have 

extensive associated literatures and examine factors within a given clade that are hypothesized to 

contribute to expansion of body size.   

By using the same mathematical model to capture both mechanisms, we control the 

impact of auxiliary assumptions and place the hypotheses on equal footing, allowing for a self-

contained pairwise comparison. We then use this model to measure the relative importance of 

each mechanism for explaining the observed increase in Equidae maximum size.  

The first mechanism, which we call the diversity-driven model (Foote 1993, Erwin 

2003), assumes a fixed set of available niches that are unequal in their attractiveness to species, 

e.g., due to different associated reproductive rates (Maurer et al. 1992, Brown 1995). When the 

number of niches at a particular size is small, increasing diversity implies the occupation of 

progressively less attractive niches, via inter-specific competition. When competition is strong, a 

fixed number of n species will occupy the n niches closest to the optimal or most attractive size, 

and as new species are added, niches are occupied in decreasing order of their attractiveness. The 

result is that most or every available niche at a given size will be filled before many niches at 

more extreme sizes are filled (Maurer et al. 1992, Foote 1993, Erwin 2003), and when no more 

niches are available, a saturating maximum body size is observed (Smith et al. 2010). Thus, 

under this hypothesis, disparity increases only from increasing diversity.  
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The second mechanism, which we call the diffusion-driven model, assumes that 

ecological pressures or selective effects on species body size are not dependent on the occupation 

status of nearby niches, and instead vary randomly both in direction and magnitude over 

evolutionary time, across a taxonomic group (Stanley 1973, McShea 1994, Clauset and Erwin 

2008). The aggregate result of such pressures is a macroevolutionary diffusion process (Raup 

1977, Hunt, 2007) in which species body size varies like a random walk from ancestor to 

descendant. For a fixed number of species, individual lineages are occasionally pushed into 

larger-bodied niches as the result of these uncorrelated selective pressures, causing size disparity 

to increase over time without the addition of new species. Heterogenous ecological variables like 

interspecific competition, life history, and habitat play secondary roles in this type of 

mechanism, being aggregated across large spatial and temporal scales. Instead, the governing 

variables are those specifying the distribution of size changes at each step of the random walk 

and any constraints on the range of possible sizes (Clauset and Erwin 2008). Under this 

mechanism, niche space remains sparsely occupied (in contrast to the diversity-driven model), 

species sizes may change independently of the occupation of niches at smaller sizes, and 

disparity can increase without increased diversity.  

We first construct a comprehensive database of size data for Equidae over the past 56 My 

and then formalize the two hypotheses within a single quantitative framework. The mathematical 

form of this framework makes precise statements about both the theoretical structure of the one-

dimensional body size morphospace as well as its species occupation number, without needing to 

model individuals or population dynamics. Using this model, we can predict both body size 

distribution and the increase in disparity through time. We apply this framework to our horse 
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data to measure the relative importance of the two mechanisms for explaining Equidae’s nearly 

60-fold increase in maximum size.  

 

4.2 Materials and Methods 

4.2.1 Family Equidae 

Horses (family Equidae) consist of 246 known fossil species from 43 genera, which are 

found in North America, Europe, Asia, and South America (Janis 2007). The family originated in 

Europe 56 Ma (MacFadden 1992), and is a subclade of order Perissodactyla, or odd-toed 

ungulates (Janis 2007). Over the course of Equidae evolution, horses have ranged in size from 

roughly 10 kg to over 1200 kg. The horse family is well-represented in the paleontological and 

paleobiological literatures, making it an ideal group for the study of body size evolution within 

mammalian taxonomic subgroups. In general, estimates of fossil horse species size are made 

from molar measurements, using standard techniques (MacFadden 1986).  

The earliest horses belonged to Hyracotherium (56 Ma), which had small hooves, a 

footpad, and molars with low crowns for crushing leaves, berries, and other fibrous vegetation 

(Janis 2007). The subsequent expansion of the Equidae family is divided into three subfamilies, 

the Hyracotheriinae (Eocene), the Anchitheriinae (Eocene to Miocene), and the Equinae 

(Miocene to present) (Janis 2007). The first subfamily, the Hyracotheriinae, found in North 

America and Europe, were relatively small, forest-dwelling horses with a fibrous diet that 

emphasized leaves (Janis 2007). In comparison, the second subfamily, the Anchitheriinae, 

developed more specialized hooves and molars, and exhibited three-toes and longer limbs that 

were more efficient for locomotion (Janis 2007). Their teeth shape and microwear indicates a 

specialized diet of leaves, now from a temperate rather than tropical forest. From 24 to 20 Ma, 
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Equidae exhibited enormous taxonomic diversification, increasing from less than 20 to nearly 

100 known species, forming three distinct Equidae lineages (Figure 4.1), exhibiting a broad 

range of body masses (Figure 4.2).  

 

Figure 4.1 Equidae diversity over time, showing species- and genera-level counts from our 
database of 246 species and the estimated diversity range (shaded region) based on extrapolating 
high and low species counts from genera diversity. PO, Pliocene epoch; PS, Pleistocene. 
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Figure 4.2 Equidae body masses over time for 225 species. Each line gives the estimated body 
mass of a single species and spans that species’ known duration. Solid lines indicate estimates 
from molar or length measurements; dashed lines indicate estimates from genera-level ranges. 
 

The third subfamily, the Equinae, shifted to a relatively fibrous or grassy diet, just as 

grasslands expanded at the expense of tropical broadleaf forests, and included the first “grazing 

horse,” Merychippus, in North America. Corresponding skeletal evolution includes an elongation 

of the face and a deepening of the lower jaw. Equinae lost footpads and late Equinae members 

exhibit the single toe characteristics of modern horses (Janis 2007).  

 

4.2.2 Equiade species mass data 

We constructed a database of species body mass estimates that covers 225 (91%) of the 

246 known Equidae species, which is nearly four times larger than previous databases 
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(MacFadden 1986). Only plausibly independent, scientifically derived estimates were included 

(Hay 1917, Sachs 1967, Radinsky 1978, Janis 1982, Hulbert 1985, MacFadden 1986, Legendre 

and Roth 1988, Damuth and MacFadden 1990, Gingerich 1991, MacFadden 1992, Hulbert 1993, 

Storer and Bryant 1993, Janis et al. 1994, MacFadden and Ceding 1994, Alberdi et al. 1995, 

Silva and Downing 1995, Azzaroli 1998, Blondel 1998, MacFadden 1998, Eisenmann and 

Sondaar 1998, MacFadden et al. 1999, MacFadden 2001, Forsten 2002, Mustoe 2002, 

Eisenmann 2003, Ting et al. 2003, Gould and MacFadden 2004, Scott and Maga 2005, Mendoza 

2006, Lambert 2006, Pesquero et al. 2006, Janis 2007, Paleobiology Database 2012).  

Species body masses were estimated using one of four methods, depending on the data 

available for a species (see Appendix 3). In the first case, a species’ body mass estimate was 

previously published in the literature; these estimates were included without modification.  

Following MacFadden’s approach (MacFadden 1986) for the second method, we convert 

upper first molar measurements, found in the literature, into head-body length estimates, using 

MacFadden’s linear model. We then convert head-body length measurements into species body 

mass estimates using MacFadden’s exponential model (MacFadden 1986) (Appendix 3). 

Although this method slightly overestimates the sizes of smaller, earlier Equidae species, it is 

widely used and well accepted. We employ it here to maintain consistency with other studies. 

Furthermore, overestimating small sizes decreases size disparity for our study, providing a 

conservative framework for our analysis.  

Modifying the above approach (MacFadden 1986) for the third method, we converted 

lower first molar measurements into head-body length estimates, again using a linear model 

(Appendix 3). This model was estimated using a dataset of lower molar measurements and body 

size estimates from methods one or two (see Appendix 3). Subsequently, this model was used to 
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estimate body sizes when lower first molar measurements were available but no body mass data 

was found in the literature. Estimates of body mass from head-body length used the exponential 

model described for method 2 (MacFadden 1986).  

If a body mass estimate could be derived using several of the methods, the different 

results were averaged. Estimates produced by these methods cover 152 (62%) of 246 Equidae 

species listed in the Paleobiology Database by December 2011.  

Finally, for an additional 73 species (30%), only a genus-level size range was known. 

Here, we estimated a species mass by aligning a Normal distribution’s 5 and 95% quantiles with 

the reported upper and lower values, and then drawing an estimated size from this distribution (a 

method similar to the convention in paleontology of taking the mid-point of the range). These 

species included none of the maximum sizes in any part of our study period, but included many 

of the smaller species, close to the lower-end of the Equidae size distribution.  

 

4.2.3 Modeling species mass distributions 

Our mathematical model for the species body mass distribution takes two forms, one for 

the diversity-driven hypothesis and one for the diffusion-driven hypothesis. For mathematical 

consistency, we require that the long-term behavior of both forms converge on the same final 

species mass distribution.  

Relatively few mathematical models provide stationary and dynamical models of these 

distributions that are a good fit to the observed data. Here, we use the model developed by 

Clauset, Erwin, Schwab, and Redner (CESR model) (Clauset and Erwin 2008; Clauset et al. 

2009, Clauset and Redner 2009), which satisfies these requirements and can be fitted to our data 

on horse body sizes.  
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Under the diversity-driven model, the allowed distribution of species masses is fixed, 

representing a stable set of body-mass niches. The number of species is then increased over time, 

following the empirical diversity data. As new species are added, niches become occupied in 

proportion to their relative frequencies within the background distribution, which represents a 

weak assumption on the strength of inter-specific competition for more attractive niches. As 

species are added, niches closer to the modal or most preferred size in the background 

distribution tend to be filled before niches farther away, and the maximum size increases steadily 

until no more niches are available. Under this formalization, disparity increases faster than if all 

niches at some size were filled before any at more extremal sizes, either larger or smaller—as in 

the case of strong inter-specific competition. Thus, this approach provides a conservative upper-

bound on the rate of disparity increase across a range of strengths for inter-specific competition.  

Under the diffusion-driven model, niches are occupied without regard to the occupation 

status of other niches, and the distribution’s evolution is driven instead by stochastic selective 

pressures on species sizes. The specification for this model is mathematically more complicated 

as it defines precisely how the species body mass distribution itself changes over time, even 

while the number of species remains fixed.  

A detailed mathematical derivation of the CESR model may be found in the existing 

literature (Clauset et al. 2009, Clauset and Redner 2009). Here, we summarize the model’s basic 

assumptions and sketch the derivation of the equations that specify the background distributions 

used in the diversity- and diffusion-driven models. The CESR model assumes only 

macroevolutionary “neutral” processes (Hubbell 2001): speciation, extinction, size variation, a 

minimum viable size, all species in the taxonomic group obey a common set of governing 
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equations and constraints, and individualizing variables, e.g., predation relationships, life history, 

habitat, and geography, are omitted.  

In the CESR model, a species of mass M produces descendant species with masses λM, 

where λ is a random variable drawn from a fixed distribution that represents the net pressures 

with different magnitudes and directions. The value of a particular λ summarizes all selective 

pressures on this species’ size at the time of speciation (Figure 4.3), e.g., environmental 

gradients, interspecific competition and resource constraints. Anagenetic variation, or changes in 

size between speciation events, need not be modeled separately as their impact is implicitly 

captured by the λ associated with each speciation event.  

 

Figure 4.3 Schematic of body mass distribution model. Depicted in (a) are the three factors 
affecting body mass distribution through time, a lower boundary effect, short-term selective 
advantages, and long-term risk of extinction; (b) shows the cladogenetic model depiction of 
species body mass evolution, in which an ancestor species of mass M gives rise to descendant 
species of mass λM, where λ is a random variable. Species masses are constrained to be at 
least some minimum viable size !!"# and species extinction increases with larger mass. 
 

The resulting multiplicative random walk model (Raup 1977, Hunt, 2007) is constrained 

at the lower end of sizes by physiological limits that induce a minimum viable size for every 

species. The minimum for Equidae is set to !!"# = 20 kg based on empirical data.  
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On the upper end, the probability of species extinction rises with increasing size (Liow et 

al. 2008, Davidson et al. 2012), which compactly summarizes risk contributions from all sources, 

including energetic requirements (McNab 2009), smaller populations (White et al. 2007), longer 

generation times (Martin and Palumbi 1993), and demographic stochasticity (Jeppsson and 

Forslund 2012). The net effect is a soft upper boundary on species sizes, in contrast to the hard 

limits typically derived from energetic constraints alone.  

The resulting species mass distribution may be simulated directly (Clauset and Erwin 

2008) or approximated analytically as the stationary or time-evolving solution to a constrained 

convection-reaction-diffusion equation (Clauset et al. 2009, Clauset and Redner 2009). Here, we 

use the analytic solution, which has a clean mathematical form and a small number of parameters 

that can be estimated directly from data.  

We now sketch the main mathematical results of the CESR model that are necessary to 

conduct our comparison of the diversity and diffusion models in Equidae. Let c(x, t) denote the 

fraction or density of observed species with mass x = ln M at time t. The value of c(x, t) is then 

modeled using a modified form of the standard convection-diffusion-reaction equation (Berg 

1993, Krapivsky et al. 2010):  

!"
!" + !

!"
!" = ! !!!

!!! + ! − ! − !" !  (4.1) 

 

On the left-hand side, the first term models the density’s time dynamics, while the second 

models the impact of the average change in size from ancestor to descendant, i.e., the strength of 

Cope’s rule, represented by v = 〈ln λ〉. On the right, the first term models the impact of the 

variability in size changes from ancestor to descendant, quantified by D = 〈(ln λ)2〉, while the 

second models the changes in density due to extinction and speciation; k denotes the mean 
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speciation rate, A the background or size-independent extinction rate (k − A is the net 

background speciation rate) and B quantifies how quickly the extinction rate increases with size 

(Clauset et al. 2009, Clauset and Redner 2009).  

We may then rewrite 4. (5.1) in the form of Airy’s differential equation (Berg 1972) by 

changing variables to ! = !/!, ! = !/!, and ! = ! − ! /!, which normalizes these 

parameters by the variance of size changes. We then impose a boundary condition on the 

solution by requiring the density go through zero c(x,t) = 0 at the minimum viable size 

! = !!"# = !"!!"#. The steady-state solution can then be shown to be  

!!(!) ∝ !
!"
! !"[!

!
! ! − !!"# + !!,  (4.2) 

where Ai[.] is the Airy functions, and !! = −2.3381… is the location of its first zero (Clauset et 

al. 2009). The full time-evolving solution can also be derived from Eq. (4.1), using an 

eigenfunction expansion.  

The resulting solution is a sum of eigenmodes  

! !, ! =  !!(!!)!!(!)!!!!!! ,   (4.3) 

 where each eigenmode !!(!) has the form of Eq. (4.2) with !! replaced by !! = !! − !!/!!!/! 

where  !! denotes the decay rate for the ith eigenmode of the series, and where !! = !"!! is the 

size of the taxonomic group’s founder species (Clauset and Redner 2009). The rates !! form an 

increasing sequence so that higher terms decay more quickly with time. In the long-time limit, all 

of the decaying eigenmodes with i > 0 become negligible and the species mass distribution 

converges to the steady state in 4. (4.2). (Note: the parameter α is eliminated in both solutions by 

normalization.)  

Given choices for parameters µ, β, and !!"#, Eq. (4.2) fully specifies a steady-state 

species mass distribution. With the additional choice of !! = !!"#, Eq. (4.3) fully specifies a 
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time-evolving distribution. Previous studies using this model estimated µ ≈ 0.2 and β ≈ 0.08 for 

terrestrial mammals (Clauset and Redner 2009), and we use these values here. The lower end of 

the empirical horse size distribution remained close to the size of Hyracotherium, which has a 

mean estimated size of 20 kg (across multiple estimates found in the literature), until 

approximately 5 Ma. We choose this value for !!"#.  

Finally, this model is a deterministic approximation of an explicitly stochastic model 

(Clauset and Erwin 2008). The predicted distribution, however, agrees well with extant data for 

all terrestrial mammals (Clauset and Erwin 2008), all birds (Clauset et al. 2009), and all 

cetaceans (Clauset 2013). Furthermore, its temporal dynamics agree well with the expansion of 

terrestrial mammals as a whole in the late Cretaceous and early Paleogene (Clauset and Redner 

2009). It thus provides a well-motivated and empirically reasonable mathematical framework by 

which to formalize the diversity- and diffusion-driven mechanisms.  

 

4.2.4 Model Evaluation 

The key period for evaluating these mechanisms is the rapid diversification around 24 

Ma, during which both the species number and their maximum size increased dramatically. This 

period includes the expansion of browsing horses (Parahippus, Anchitherium, Hypohippus, 

Anchitherium, and Archaeohippus) at 24 Ma and the expansion of grazing horses in North 

America between 18 and 15 Ma (MacFadden and Hulbert 1988). We define the period before 24 

Ma as “pre-diversification” and the period after as “post-diversification.”  

 We measure the extent to which each model correctly predicts the empirically observed 

increase in maximum size over 56 My (Figure 4.2). Each model produces a probability 

distribution c(x) for Equidae species masses at each time point. For any such distribution, the 
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expected maximum species size !∗ for n species is given mathematically by 1− ! !" !∗ =

 1 !, where 1− ! !∗ =  ! ! !"!
!"!∗ , i.e. where the complementary cumulative distribution 

function (ccdf) crosses the horizontal line 1 !. For a fixed distribution and increasing n, or for 

fixed n and a distribution with a lengthening right tail, the location of this intersection will shift 

toward larger sizes.  

For the diversity-driven model, we fix the species mass distribution c(x) and let n vary 

according to the empirically observed species counts over time (Figure 4.1). We control the 

impact of distribution variance—niche space “width”—by testing two choices of c(x): one fitted 

to the pre-diversification empirical mass distribution and one fitted to the broader post-

diversification distribution. For the diffusion-driven model, we fix the number of species n and 

let c(x) evolve over time, reflecting the empirically observed expanding size distribution (Figure 

4.2). We control the impact of species diversity by testing two choices of n, corresponding to the 

pre-and post-diversification species counts. For each model, the predicted maximum body mass 

was extracted for each 5 My period starting at 56 Ma and then compared to the observed 

maximum in the same period.  

 

4.3 Results 

4.3.1 Data Summary 

From 56–24 Ma, horse diversity remained relative low (less than 30 species, up to 4 

genera; Figure 4.1), and the maximum mass only approached 100kg toward the end of this 

period. However, during the early Miocene (24–12 Ma), both diversity and disparity increased 

dramatically, reaching a peak of 98 species with maximum mass of nearly 800 kg (Figure 4.2). 
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This increase in diversity represented the appearance of many new genera, with genus diversity 

growing to 17 distinct groups by 12 Ma.  

Subsequently, however, both species and genus counts decreased dramatically. This trend 

continued into the Pleistocene extinction, reflecting the broader loss of diversity seen across 

mammals (Owen-Smith 1987, Guthrie 2006), during which roughly half of all mammalian 

genera with body masses over 5kg became extinct. For Equidae, this loss of diversity impacted 

mainly smaller-bodied species, rather than larger ones, as is typically expected (Liow et al. 

2008). We observe no tendency for these emptied niches to be refilled from larger-bodied 

lineages, as we would expect from the reproductive-power hypothesis. To the contrary, the broad 

extinction of small-bodied lineages suggests high-level and long-term selection, possibly related 

to changing climate or reorganizing ecosystems, with better adapted species groups expanding 

into niche-space previously filled by Equidae.  

The expansion of Equidae’s body mass distribution was thus highly asymmetric, but 

consistent with expansion from minimum viable size (Stanley 1973, McShea 1994) at roughly 

20kg. This pattern suggests the existence of a stable, and previously unidentified, physiological 

constraint at the lower end of the horse mass distribution. Furthermore, statistical tests indicate 

little evidence for either sampling bias in diversity data or non-stationary processes in the 

variation of body sizes over the study period (see Appendix 3).  

 

4.3.2 Diversity or diffusion? 

To extract the necessary distributions for our tests, we first fix the model parameters µ, β 

and !!"#, as described above. For diversity-driven models, we divided the mass data into pre- 

and post-diversification periods from which we estimate the corresponding background mass 
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distributions. The diversity data were then converted into a time series of eleven 5 My periods, 

starting at 56 Ma. For diffusion-driven models, mass data were divided into the same sequence 

of 5 My periods, and pre- and post-diversification species averages were fixed at !!"# = 15 and 

!!"#$ = 69 , respectively. (Modest variations in the division date yield similar results in both 

cases.)  

For each of the two model types, we fitted the time-evolving model to the respective 

sequence of distributions using the non-parametric method of Clauset and Redner (Clauset and 

Redner 2009), which chooses a mapping of model-time to real-time that minimizes the 

distributional distances between the evolving distribution and the sequence of empirical 

distributions. This approach yields good agreement with the empirical pattern (Figure 4.4).  

  



	

	

87	

 

 

Figure 4.4 Comparison of empirical (blue; smoothed with a Gaussian kernel) and model-based 
(dashed, black) Equidae body mass distributions, in 5-million-year increments, showing good 
agreement. 
 

For each 5 My period, we calculated the predicted maximum mass !∗under each model, 

which we compared to the observed maximum, smoothed using an exponential kernel. In both 

diversity-driven models, the empirical diversification pattern failed to produce a large increase in 

disparity (Figure 4.5a), even when the background distribution itself was broad. To quantify a 

model’s prediction accuracy, we computed the sum of squared errors (SSE) between the 

diversity-driven prediction for ln (!∗) and the observed values. The pre-diversification 

diversity-driven model yielded the largest SSE across all models, with !!"#,!"# = 35.42, and 

failed to produce any species larger than 50 kg. The post-diversification model yielded a small 
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improvement, with !!"#,!"#$ = 22.05, but this model dramatically overestimated the initial size 

disparity and produced very little increase in disparity over 50 My.  

 

Figure 4.5 Evolution of species mass disparity in the Equidae lineage over 56 Ma, showing the 
empirical trend (bold line) and the predicted maximum sizes from (a) diversity-driven models, 
with background distributions fitted to pre- and post-diversification data, and (b) the diffusion-
driven models, with a time-evolving distribution containing a number of species fixed at pre- or 
post-diversification levels. All models predict an increase in disparity, but diversity-driven 
disparity models show only modest increases, regardless of what background distribution is used, 
while diffusion-driven disparity accounts for 92% of the observed increase over this period, 
regardless of the number of species assumed. 
 

 

In contrast, both diffusion-driven models accurately predict the observed increase in 

disparity (Figure 4.5b), with the post-diversification model performing slightly better over the 

last 20 My. The SSE for the pre-diversification diffusion prediction was !!"##,!"# = 1.29, or 

about 27 times closer than !!"#,!"#, while the post-diversification model yielded !!"##,!"#$ =

0.18, or about 118 times closer. Overall, the post-diversification diffusion model (with n = 69) 

succeeds in explaining 92% of the observed increase in maximum size, from 39 kg to 1200 kg, 

over the 56 My expansion of Equidae.  
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4.4 Discussion 

Previous studies (Stanley 1973, Maurer et al. 1992, Clauset and Erwin 2008, Smith et al. 

2010) have advanced specific mechanistic explanations for the body size distributions within 

large taxonomic groups, particularly mammals. Here, we investigated the ability of two general 

hypotheses, formalized within a common mathematical framework, to explain the common 

pattern of increased disparity in an expanding lineage. Using the family Equidae as a model 

system, we found that macroevolutionary “diffusion,” in which selective effects on species body 

size vary independently of the occupation status of nearby niches, explains substantially more of 

the observed changes in the Equidae body mass distribution over 56 My (Figure 4.4) than does a 

diversity-driven mechanism, in which niches closer to a preferred or optimal size are filled 

before less attractive and larger-bodied niches are filled. These results suggest that increases in 

disparity are not necessarily driven by macroecological competition for niches, as is commonly 

assumed. Instead, disparity may increase from neutral diffusion effects alone, even when small-

sized niches are available and the niche space is sparsely occupied.  

While some studies (Allen et al. 2002, Secord et al. 2012) have suggested a coupling 

between global temperatures and species body sizes, we found no such correlation with horse 

body sizes. However, global temperatures do appear to correlate with Equidae taxonomic 

diversity, which achieves its highest point during warm periods and low points during glaciation 

and cooler global temperatures (Figure 4.1). For instance, the first member of Equidae appeared 

at 56 Ma, during a thermal maximum. From 56–42 Ma, 18O isotope data show that average 

global temperatures were relatively cool (Zachos et al. 2001), and our data show that during this 

period both species and genera counts were low, with fewer than 30 species and 4 genera. 

Taxonomic counts increased substantially from 24–21 Ma and reached their peak during the 
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global warming period spanning the Oligocene-Miocene boundary to the mid-Miocene (Figure 

4.1), which generated a loss of Antarctic ice and warmer deep water temperatures (Zachos et al. 

2001).  

This pattern suggests a climate-diversity coupling for Equidae in particular, and this 

pattern may also hold for other lineages. Although the evolutionary and ecological causes of the 

Equidae adaptive radiation remain unclear, the climatic connection provides a novel hypothesis, 

in which a warming climate drove changes in flora and the expansion of grassland ecosystems, 

which expanded the distribution of unoccupied niches, allowing the evolution of grazing horses 

and the corresponding increase in diversity (MacFadden and Hulbert 1988). Regardless of the 

cause of the radiation, our results suggest that Equidae disparity would have increased without 

any increase in species counts, and whatever mechanism caused the increase in diversity played 

only a minor role in the simultaneous increase in body size disparity.  

The success of the diffusion-driven model in matching the observed tempo and 

magnitude of size disparity in Equidae over 56 My suggests that morphological disparity may 

generally be driven at the clade-level by diffusive processes rather than diversification processes. 

Such macroevolutionary diffusion is the natural consequence of randomly varying selective 

pressures on species sizes within fixed constraints on size (Clauset and Erwin 2008), and is 

entirely consistent with an expanding space of niches (Odling-Smee et al. 1996). For horses in 

particular, although both the distribution and diversity expanded during their adaptive radiation, 

diffusion appears to have played the dominant role in producing increasingly large-bodied 

species (Figure 4.5b), a point that is reinforced by the steady expansion of the mass distribution 

even with a roughly stable species number prior to 24 Ma (Figures 4.1 and 4.2).  
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A large role for diffusion does not undermine the general ecological importance of 

competition, but rather clarifies its role in generating broad-scale patterns for horses in particular, 

and for evolving systems in general. Macroevolutionary diffusion is an effective large-scale 

description of many roughly independent ecological interactions and evolutionary constraints on 

species size variation. Short-term selective effects on size for a particular species can stem from 

any number of specific mechanisms, including but not limited to competition over ecological 

niches. So long as the magnitude and direction of these effects, as defined at the species-level, 

are roughly independent across the taxonomic group, the large-scale pattern will be well-

described by diffusion. Ecological competition may thus be crucial for individual species, but its 

effects are more diffuse at the large scale because competition is typically a local process.  

In the body mass evolution and diversification of horses, competition between Equidae 

species appears to have played a minor role in driving the dramatic and sometimes rapid changes 

in species morphology observed over 56 My. Future work in which among-clade dynamics are 

additionally modeled could shed additional light on the relative roles of inter-clade (e.g., 

competition or predation) versus within-clade (e.g., diversification or diffusion) processes in 

structuring changes in the Equidae body-size distributions through time. Furthermore, 

understanding the ecological or evolutionary reason for the apparent coupling of climate and 

Equidae diversity and the apparent minimum viable size at roughly 20 kg, both identified here, 

may shed new light on Equidae evolution. Finally, diffusion-driven and diversity-independent 

increases in disparity may hold beyond Equidae, given the strong support for diffusion-type 

models in explaining the shape and dynamics of other species size distributions (Stanley 1973, 

McShea 1994, Clauset and Erwin 2008, Clauset and Redner 2009, Clauset 2013). Determining 

the generality of this pattern is an important direction for future work.  
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Chapter 5 

 
Universal Processes Govern Body Mass Evolution in Marine and Terrestrial 

Environments 

Lauren G. Shoemaker and Aaron Clauset 
 

 

Extreme differences between marine and terrestrial environments are believed to drive 

divergent patterns in species morphology and ecosystem structure. Using comprehensive data on 

extant and extinct marine (cetacean) and terrestrial mammal species, we quantify the impact of 

environment on macroecological and macroevolutionary patterns of species body size, a 

fundamental biological variable. We show that the distribution of cetacean body sizes is 

indistinguishable from that of terrestrial mammals, except that sizes are 10! g times larger. This 

equivalence holds throughout the modern radiation of mammals, and is natural consequence of a 

universal cladogenetic diffusion process unfolding above a minimum viable body size. 

Environment thus appears to determine the location of the size distribution among mammals, 

while its shape follows a universal curve. 

 

5.1 Introduction 

Body mass is a fundamental species characteristic, as it correlates with physiological, 

ecological, and developmental traits, including metabolic rate, home range size, fecundity, and 

population size (Peters 1986, Brown 1995). Body mass is also relatively easy to measure for both 

extinct and extant species (MacFadden 1986, Smith et al. 2003), and thus represents a key 
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biological variable through which to develop general ecological and evolutionary theories that 

span large spatial and temporal scales. In terrestrial environments, extant species from large and 

evolutionarily distinct clades, such as mammals (Clauset and Erwin 2008), birds (John B 

Dunning 2007), lizards (Meiri 2008), and even insects (Stanley 1973), exhibit a common pattern 

in their mass (e.g. weight) or size (e.g. biovolume) distributions. It is unknown, however, what 

aspects of this pattern are shaped by environmental factors, or driven by endogenous biological 

dynamics.  

Most research on body size distributions has focused on extant terrestrial species 

(Lomolino 1985, Brown 1995, Clauset and Erwin 2008, Shoemaker and Clauset 2014), showing 

a canonical, right-skewed distribution, such that the most common body size within a clade is 

only slightly larger than the smallest, but the largest size is orders of magnitude greater than the 

most common size (Clauset and Erwin 2008). Relatively little work, however, has focused on 

species size distributions in freshwater or marine environments. Terrestrial and marine 

ecosystems exhibit strong biotic and environmental differences that drive different 

macroecological patterns, and these differences should be reflected in species body mass 

distributions. For instance, marine systems have lower species diversity, lower average biomass 

and productivity, and conversely greater food chain length and more trophic interactions on 

average than in terrestrial systems (Cohen and Fenchel 1994).  Additionally, marine systems 

exhibit decreased temporal variability (e.g. temperature fluctuations through time) as a result of 

the buffering capacity of water (Webb 2012). However, it is unknown the extent to which these 

or other environmental factors drive differences in species mass distributions across marine and 

terrestrial environments, in part because most extant animal groups are either fully terrestrial or 

fully aquatic. Using comprehensive data on extant and extinct members of a large animal clade 
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that contains both fully terrestrial species, and a monophyletic fully marine sub-clade, we 

construct a phylogenetically-controlled characterization of the impact of disparate environments 

on the evolution and distribution of species body size. 

While unknown in marine systems, recent theory suggests the canonical right skewed 

distribution observed in terrestrial environments may be attributed to a neutral 

macroevolutionary random walk, or ‘diffusion’ process (e.g. the generalization of a random walk 

using continuous rather than discrete time) at each speciation event. This diffusion process for 

body mass evolution on land is constrained by the interactions of three well-understood 

mechanisms (Clauset and Erwin 2008, Clauset et al. 2009). The first—a  minimum size—arises 

from metabolic constraints required for thermoregulation and sets the lower bound of the body 

mass distributions (Pearson 1948, West et al. 2002). The second—Cope’s rule—is the widely 

observed macroecological pattern that, on average, lineages tend to increase in body size over 

time due to ecological advantages associated with larger sizes, such as escaping predation or 

foraging in larger home ranges (Stanley 1973, Alroy 1998). Cope’s rule leads to increased 

species’ sizes through time, and thus plays a critical role in forming the right-skew in body mass 

distributions. The third mechanism—a slight increased risk of extinction for larger species—

occurs because larger species tend to have smaller population sizes and longer generation times 

(Hone and Benton 2005); they are therefore at higher risk of stochastic extinction events or 

extinction caused by large scale environmental disturbances (Cardillo et al. 2005, Liow et al. 

2008). This final mechanism provides a soft upper-bound on body size distributions and 

constrains both the maximum size and the strength of the right skew.  

Here, we test whether the commonly observed right-skewed body mass distributions, the 

evolution of body size, and the mechanisms hypothesized to create a right-skewed distribution 
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are environmentally driven or, alternatively, are conserved across marine and terrestrial 

environments.  We do so by comparing mammalian body mass distributions and their evolution 

in marine and terrestrial systems. We further quantify the degree to which the three processes 

known to create the canonical distribution in terrestrial environments are present in marine 

systems. We test for the presence and strength of a minimum size constraint, Cope’s rule, and a 

size-dependent extinction risk. We utilize this comparison—which controls for many 

confounding factors that would arise in comparing clades with more distant shared ancestry—to 

determine what governing effects the multitude of differences in environments have on extant 

body mass distributions and their evolution. 

To conduct these tests, we constructed a novel and comprehensive database of extant and 

extinct cetacean body size. The infraorder Cetacea (whales, dolphins, and porpoises; originating 

from Artiodactyls—even-toed ungulates) is ideal to test the commonalities of mammalian body 

mass distributions because it has a long evolutionary history (originating 56 million years ago) 

and is sufficiently speciose to explore body size distributions, as the only other fully aquatic 

clade, Sirenia, only has four extant species. To construct the database, we recorded species-level 

first and last appearances and measurements of body length, occipital width, and condylobasal 

length from the primary literature (see Appendix 4 for a detailed description of data collection 

and methods). We then used allometric scaling of body length, occipital width, and condylobasal 

length to estimate body mass (g) from each fossil measurement and all potential combinations of 

measurements (see Appendix 4 Materials and Methods for details). This yielded mass estimates 

for 292 cetacean species. This is, to our knowledge, the largest current database of cetacean body 

sizes, giving us comparatively high resolution of both the extant body mass distribution, and the 

evolution of cetacean body mass through time. Using 4,002 extant terrestrial mammal species 



	

	

97	

(Smith et al. 2003, 2007) and 1,702 extinct North American species’ mass estimates and first and 

last appearance dates (Clauset and Redner 2009), we then compared body mass distributions and 

governing mechanisms between marine and terrestrial ecosystems.  

 

5.2 Extant Distributions 

The extant cetacean body mass distribution closely matches that observed in multiple 

terrestrial clades (Figure 5.1). Across environments, we observe a canonical distribution skewed 

to the right, with the only major difference being a shift to larger sizes by ~3.5 orders of 

magnitude for marine mammals when compared to terrestrial mammals. As with terrestrial 

mammals, the median size of cetaceans (356 kg) is only slightly larger than the smallest (37.5 

kg, Pontoporia blainvillei), but nearly 500 times smaller than the largest (175,000 kg, 

Balaenoptera musculus). Thus, given the extreme physical differences between marine and 

terrestrial environments and previously observed biotic differences (e.g. average food chain 

length, primary production) we would a priori expect different selection pressures in marine and 

terrestrial environments. Yet, we find that the shape of extant mammalian body mass 

distributions follows the same macroecological pattern and exhibits a highly right skewed 

distribution regardless of environmental differences. 
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Figure 5.1 Cetacean and terrestrial body mass distributions. 
Empirical body mass distributions for terrestrial mammals (green) and cetaceans (blue) show 
similar right-skewed patterns with the cetacean distribution shifted to larger sizes by ~3.5 orders 
of magnitude. For both terrestrial and marine environments, the median size is close to the 
smallest observed size, while relatively few species are much larger than the smallest or median 
size. 

 

The canonical, right-skewed body mass distribution observed for mammals in both 

marine and terrestrial environments may be a product of: (i) the same macroecological 

mechanisms operating at the same strength in marine environments as terrestrial environments, 

(ii) the same mechanisms operating at different, but complementary, strengths in marine 

environments compared to terrestrial environments, producing a universal pattern via 

complementary processes, or (iii) different mechanisms operating in marine environments which 

create a marine body mass distribution convergent to that observed for terrestrial environments. 

To discriminate among these hypotheses, we first tested for the effects of a minimum size, 
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Cope’s rule, and a size-dependent extinction risk in marine environments; support for these 

mechanisms have previously been shown in terrestrial environments for mammals (Clauset and 

Erwin 2008). Evidence for these three mechanisms in marine environments would corroborate 

hypothesis (i) or (ii), where the same evolutionary mechanisms in marine and terrestrial 

environments yield a similar shape in extant body mass distributions; determining the relative 

strength of the three processes subsequently allows us to differentiate between hypothesis (i) 

versus (ii). Alternatively, if we find no evidence for a minimum size, Cope’s rule, nor a size-

dependent extinction risk, we can infer that hypothesis (iii) is correct, and alternate mechanisms 

created convergent extant body mass distributions in marine and terrestrial environments.  

 

5.3 Macroecological Principles 

The first mechanism, a minimum viable size, is known both theoretically and empirically 

to occur at 2 g in terrestrial environments (Pearson 1948, Ahlborn 2000). Below 2 g, an 

individual’s heat loss in air is too great to maintain its required internal temperature. In 

comparison, the convective heat loss in water is 90.8 times greater than in air (Downhower and 

Blumer 1988), pushing the theoretical minimum size in marine ecosystems orders of magnitude 

higher to 6.8-10 kg (Downhower and Blumer 1988, Ahlborn 1999, 2000) (Table 5.1). This range 

closely matches the weight (7-9 kg) of a newborn Pontoporia blainvillei, the smallest extant 

cetacean, providing both theoretical and empirical evidence for a minimum physical size in 

marine environments. This increase in minimum size due to greater heat loss in water creates a 

hard left-boundary for the marine body mass distribution. This, in turn, must shift the entire body 

mass distribution rightward to larger sizes (Figure 5.1). It also suggests a larger median and 

maximum size solely due to the increased minimum size, although increases in the median and 
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maximum size are also mediated by the number of species in a clade, Cope’s rule, and the 

strength of a size-dependent extinction risk.  

 
Process Parameter 

Estimate 
(Marine) 

Range 
(Marine) 

Parameter 
Estimate 

(Terrestrial) 

Range 
(Terrestrial) 

Minimum Size 6.8 kg 6 – 10 kg 1.8 g 1.5-2.0 g 
Cope’s Rule -0.021 -0.049 – 0.007 0.103 0.095 – 0.110 

Size-
Dependent 
Extinction 

Risk 

0.045 0.037 – 0.053 0.040 0.039 – 0.042 

 

Table 5.1 Comparison of the strength of macroevolutionary processes in marine versus 
terrestrial environments. 

 

The second proposed mechanism is Cope’s rule, or the tendency for species body mass to 

increase as a lineage evolves. Larger sizes have been shown to benefit mating success, provide a 

greater range of acceptable foods, increase survival via increased defense against predation, 

increase intra- and inter-specific competitive abilities, and extend longevity (Hone and Benton 

2005). For an evolutionary advantage of increasing sizes during speciation events, these benefits 

have to outweigh negative fitness effects associated with larger sizes, such as increased food and 

water requirements, lower fecundity, and increased pre- and post-natal development times (Hone 

and Benton 2005). While there are multiple definitions of Cope’s rule in the literature, we follow 

Alroy’s method (Alroy 1998), which restricts our estimates of the strength of Cope’s rule to the 

species level, where we compare masses of species within a single genus. This approach is 

robust to confounding factors such as increased variance in body size through time and 

expansion from a minimum size. We additionally minimize the effect of ghost-lineages (i.e. 

ancestors without estimated masses or currently unknown ancestors) in our calculations, and test 
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for the strength of Cope’s rule at the smallest possible taxonomic level (within genera), giving us 

a conservative and unbiased estimate of the strength of Cope’s rule (Alroy 1998).  

While we find terrestrial mammals are on average 10% larger than older congeneric 

species (range: 0.095 to 0.110), agreeing with previous results (Alroy 1998, Clauset and Erwin 

2008), cetaceans are on average 2% smaller than older congeneric species (range: -0.049 to + 

0.007). Cetaceans therefore exhibit an absence or slight negative strength of Cope’s rule (Table 

5.1) and are thus not expected to become larger during speciation events. Rather, they exhibit a 

slight tendency to decrease in size during speciation. We demonstrate the first published 

example, to our knowledge, of a zero, or slightly negative strength of Cope’s rule for marine 

mammals (Table 5.1).  

While in terrestrial environments, Cope’s rule is the outcome of short-term selective 

advantages for larger sized organisms (Hone and Benton 2005, Clauset and Erwin 2008), this 

finding implies the presence of different selective pressures in marine systems which mitigate the 

effect of terrestrial selective pressures and, rather, select for smaller sizes. One potential 

explanation for this pattern is that the distribution of resources in marine environments leads to a 

slight negative strength of Cope’s rule for marine mammals. The most productive waters in 

marine systems are near-shore, while the open ocean can be considered a caloric desert (Field 

1998). As cetaceans increase in size, they are more constrained to the offshore, poor-quality open 

ocean. This may select for smaller sizes as cetaceans evolve, negating the selective pressures 

that, most generally, leads to a moderately positive strength of Cope’s rule. This hypothesis is 

consistent with previous literature, showing positive strength for Cope’s rule in gastropods (Hunt 

and Roy 2006), crustaceans (Klompmaker et al. 2015), or when aggregating over 17,000 genera 

of marine animals (Heim et al. 2015); the negative pressures opposing Cope’s rule would not be 
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predicted to be as strong in small sized marine organisms (though, see (Arnold et al. 1995, 

Jablonski 1997), but rather only present at the size distribution where individuals with large mass 

would no longer be able to utilize inshore resources.  

The third and final mechanism we test is a size-dependent extinction risk. Extinction risk 

is predicted to be greater for larger species for multiple reasons. Larger species have smaller 

populations, making them more vulnerable to demographic stochasticity, and correspondingly 

higher extinction risk (Hone and Benton 2005, Cardillo et al. 2005). They also require more 

food, making them more susceptible to environmental disturbances, and have longer generation 

times, making it difficult for them to rapidly evolve in response to changing environments (Hone 

and Benton 2005) or recover from demographic fluctuations in population size. We estimate the 

strength of a size-dependent extinction risk by minimizing the distance between extant body 

mass distributions and the stationary distribution of a macroevolutionary diffusion model (see 

Appendix 4 Materials and Methods) (Massey 1951) that incorporates a minimum size, Cope’s 

Rule, and a size-dependent extinction risk as parameters (Clauset and Erwin 2008, Clauset and 

Redner 2009, Clauset et al. 2009, Shoemaker and Clauset 2014). Size-dependent extinction risk 

is present in both environments and at a similar strength (marine: 0.045± 0.008; terrestrial: 

0.040± 0.002), implying that this macroecological mechanism is common across environments 

at a universal strength. While marine environments have different food web structures, 

distribution of resources, and other ecological characteristics, this does not affect the relationship 

between body size and extinction risk at the macroecological scale. This result has striking 

implications for the relative roles of stochastic and deterministic structure in macroevolutionary 

patterns, implying that demographic stochasticity at small population sizes (Melbourne 2012) 
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may play a larger role than deterministic signatures created by environmental differences in 

predicting extinction risk and its relation to body size. 

Across marine and terrestrial clades, the fundamental body size distribution is shaped by 

the clade’s minimum size, Cope’s rule, and extinction risk. The clade’s minimum size provides a 

hard left bound on the distribution, while the asymmetrical right-skew to the distribution is the 

outcome of the size-dependent extinction risk. In terrestrial environments, Cope’s rule 

accentuates the asymmetrical right-skew to the distribution, which is mitigated by the size-

dependent extinction risk. The realized body size distribution also results from the number of 

species within a clade, as these represent random draws from the fundamental body size 

distribution. The more species within a clade, the more likely it is that the fundamental 

maximum size is observed in the dataset. Therefore, as there are 4,002 terrestrial mammals 

versus 78 cetaceans in our databases, the size range in terrestrial environments spans 6 orders of 

magnitude but only 5 in marine environments, and, correspondingly, the right tail of the cetacean 

body mass distribution has a slightly steeper slope than in terrestrial environments (Figure 5.1).  

Incorporating these mechanisms into a constrained macroecological diffusion model, we 

accurately predict both marine and terrestrial mammalian extant body mass distributions using 

the model’s steady state distribution (Figure 5.2). This lends support to hypothesis (ii), where the 

same macroecological principles operating at complementary strengths produce a similar body 

mass pattern in marine environments compared to terrestrial environments. 
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Figure 5.2 Macroecological model fit to extant body mass distributions. 
Comparison of empirical body mass distributions (blue for cetaceans and green for terrestrial 
mammals) and model fits (dashed, black lines) for cetaceans (A, a) and terrestrial mammals (B, 
b). A and B show the percentage of species larger than a given size; a and b show the density of 
species with a given mass.  

 

5.4 Evolution of body size 

While the three macroecological mechanisms are sufficient to produce the extant body 

mass distribution in marine and terrestrial environments, with extant data alone, we cannot rule 

out the possibility that their similarity is a recent convergence, and that different mechanisms 

governed their evolution over time. Thus, we subsequently conduct two tests of the universality 
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of these mechanisms and their ability to accurately predict the evolution of marine and terrestrial 

body sizes. First, we test if these mechanisms accurately predict maximum size and frequency of 

body sizes over 56 Ma for cetaceans and 100 Ma for terrestrial mammals. Second, we examine if 

the strength of these processes appears constant across time, using the previous estimates of 

minimum size, Cope’s Rule, and the size-dependent extinction risk. 

To do so, we use the time-dependent macroevolutionary diffusion model (Clauset and 

Redner 2009) (see Appendix 4 Materials and Methods for details), rather than the steady-state 

distribution used previously. We model predicted body size distributions and the corresponding 

frequency of body mass through time at every 5 million-year increment using the mechanism 

estimates described previously, and thus assuming a constant strength through time. We 

additionally solve for the expected maximum body mass, !!"#, at each million year increment. 

The expected maximum size depends on both the underlying distribution at a given period of 

time and the species-level diversity estimate (Appendix 4). If the same three macroevolutionary 

mechanisms are present at relatively constant strengths through time and are the primary 

mechanisms at play, then our model should predict the most commonly observed body size 

through time as well as provide an upper bound on the maximum size. If, alternatively, the 

similarity of marine and terrestrial body mass distributions is a recent convergence, then we 

would expect that the model would be unable to recover the most common body sizes in marine 

environments nor an upper bound on maximum size through time.  

A constrained macroevolutionary ‘diffusion’ of body sizes (i.e. a random walk in 

continuous time) does indeed accurately predict maximum terrestrial and marine mammalian 

mass across evolutionary timescales. For terrestrial mammals, these processes are sufficient to 

replicate the small maximum size of 102–103 g observed from 100 million years ago (Ma) to 80 
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Ma, followed by the rapid increase in maximum size from 70 Ma to 55 Ma, where maximum 

size increased by three orders of magnitude (Figure 5.3A).  The macroevolutionary model then 

produces a relatively constant maximum size, in good agreement with the observed fossil data. 

Thirteen terrestrial species (0.76% of the dataset) fall outside of the expected maximum size for 

their lifespan, while 99.24% of terrestrial species fall within the mass range predicted using 

macroevolutionary diffusion constrained by the three mechanisms. This slight deviation between 

model predictions and observed masses through time may be explained by: (i) temporal variation 

in the strength of Cope’s Rule or the size-dependent extinction risk or (ii) higher species-level 

diversity than currently estimated.   
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Figure 5.3 Cetacean and terrestrial body mass evolution. 
 
Comparison of empirical terrestrial mammal (A) and cetacean (B) body masses through time 
against model predictions. Black horizontal lines show body mass and first and last appearance 
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for individual species. The yellow-to-blue heatmap depicts predicted density of species with a 
given body mass using the diffusion model with parameter estimates from Table 5.1. The 
maroon line shows the model predicted maximum size given mammalian and cetacean diversity 
through time.  

 

In marine environments, the time-dependent macroecological diffusion model accurately 

predicts a maximum expected size as large or larger than any species observed in our database, 

with 100% of cetacean species falling within the mass range predicted by constrained 

macroevolutionary diffusion. The model therefore provides an upper bound on maximum size 

(Figure 5.3B). Consistent with the fossil record, maximum size is predicted to increase rapidly 

from 56 Mya to 40 Mya. Subsequently, maximum size is then predicted to decrease during the 

early Oligocene because maximum size correlates with taxonomic diversity, which decreases at 

the beginning of this epoch. Maximum size then increases again as taxonomic diversity recovers 

28 Mya, and stays relatively consistent around ~ 108 g until present day. Thus, maximum 

cetacean size during the past 56 Ma is well predicted by a constrained macroevolutionary 

diffusion model that utilizes our previously estimated mechanism strengths.  

Comparing the expected body mass distributions through time to observed cetacean body 

masses (Figure 5.3B), we demonstrate that the most commonly observed body masses match the 

range predicted with a constant strength of the three macroecological principles. Additionally, in 

data-poor periods, the observed body sizes are consistent with the most likely sizes predicted by 

the model. For example, during the origination of cetaceans 55 Mya-50 Mya (Uhen 2010), there 

are only two known species, but both exhibit body masses predicted by the three universal 

macroecological processes. The same holds for 35 Mya-30 Mya, during which known cetacean 

diversity fell to only eight known genera (Uhen and Pyenson 2007). It is currently possible to 

estimate masses for only four species during this time period using our methods, but all four 
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have masses predicted to occur with the highest frequency. We find that, just as in the terrestrial 

environment (Clauset and Redner 2009, Clauset et al. 2009), the evolution of cetacean body 

mass distributions and maximum size is controlled by three macroecological processes with 

relatively constant strengths across evolutionary time, lending support to the universality of body 

size evolution regardless of environmental differences. 

 

5.5 Conclusion 

We demonstrate that the ubiquitous right-skewed distribution of body mass observed for 

terrestrial mammals (Clauset and Erwin 2008), birds (John B Dunning 2007), lizards (Meiri 

2008), and even insects (Stanley 1973) appears robust to environmental differences between 

marine and terrestrial ecosystems. Marine mammals exhibit a strikingly similar distribution 

despite enormous differences in ecosystem structure, resource distribution, and environmental 

conditions. The main exception we find is thermoregulation, which sets the size scale at which 

these universal processes unfold, where marine mammals display the same distribution as 

terrestrial mammals, but shifted toward larger sizes. The extant body mass distributions, as well 

as the evolution of body mass distributions and maximum size, appear to be the outcome of three 

macroecological mechanisms that constrain diffusion (i.e. a continuous time random walk) of 

cladogenesis. While ecological and evolutionary selective forces vary greatly across 

environments, clades, and time, their contributions to body size evolution through time in 

mammals can be summarized by three relatively simple macroecological mechanisms.  

Here, we compared fully marine and fully terrestrial species within a single clade. Future 

work should extend this comparison to other marine clades, mirroring past work examining 
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diverse terrestrial clades (Meiri 2008). Further, we would expect more complex dynamics for 

clades that exhibit partially marine and terrestrial lifestyles, as individuals would experience 

unique, and more likely complex, ecological and thermoregulatory constraints when allocating 

their time between different environments. A broad examination of body size evolution across 

environments and clades will allow us to better disentangle the relative importance of 

environmental constraints versus general processes, as evidenced here, in shaping body size 

distributions, macroevolutionary patterns, and their corresponding mechanisms. 
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Chapter 6 

 
Conclusions 

 
 My dissertation combines analytical models, simulations, statistical methods used in 

empirical community ecology, and novel databases of extinct and extant species, all with the aim 

of understanding how equalizing and stabilizing mechanisms contribute to diversity across both 

space and time. Ecological communities are highly complex systems, with a multitude of biotic 

interactions, environmental filtering, feedbacks, and stochasticity, making it difficult to 

understand the relative importance of processes that maintain diversity (Vellend 2016). This 

difficulty is compounded by the fact that multiple mechanisms may yield similar community 

composition patterns, or alternatively, that a single set of mechanisms may produce divergent 

patterns depending on their strength and inherent stochasticity (Mackey and Currie 2001, 

Mayfield and Levine 2010). In my dissertation, I used the equalizing and stabilizing coexistence 

framework (Chesson 2000b) to compare patterns in diversity across multiple communities with 

varied ecological mechanisms maintaining diversity, ranging from two and twenty-five-species 

simulated metacommunities to mammalian communities spanning the paleobiology record.  

Coexistence theory was originally formulated for communities, and the importance of 

stabilizing and equalizing mechanisms has disproportionately been examined across short 

temporal scales (i.e. several years, with a focus on the temporal storage effect) (Sears and 

Chesson 2007; Angert et al. 2009; Kraft et al. 2015). In my dissertation, I instead examined how 

spatial coexistence theory (Chesson 2000a) elucidates underlying community assembly 

mechanisms (e.g. dispersal, competitive strength, habitat heterogeneity) in metacommunities, 

providing an avenue for connecting coexistence theory and metacommunity theory (Leibold et 

al. 2004; Holyoak et al. 2005). I also extended the equalizing and stabilizing framework beyond 
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community ecology to macroecology, allowing me to use a parallel framework for exploring 

patterns in diversity in the paleobiology record. I compared diversity in body size of terrestrial 

mammals and the Equidae (horse) sub-clade, and explored the relative importance of stochastic 

processes and taxonomic diversity in predicting body size diversity. I also examined the 

universality of mammalian body size distributions and the role of environmental filtering by 

comparing the evolution of body size in terrestrial and marine environments. 

At the metacommunity scale, as expected, I found that neutral metacommunities 

comprise only equalizing mechanisms, and therefore do not exhibit stable coexistence. 

Additional community structuring mechanisms, such as habitat heterogeneity, dispersal, and 

trait-tradeoffs stabilize metacommunities disproportionately via the fitness-density covariance 

mechanism (Shoemaker and Melbourne 2016; Chapter 2). In my thesis, I also highlight the 

versatility of coexistence theory, and I show how it allows comparisons of more complex 

metacommunities within a single framework. Furthermore, the coexistence framework 

successfully differentiates between diverse community structuring mechanisms, while the beta-

null deviation metric, commonly used for determining community structure, fails to connect 

process with pattern. Similar patterns in beta-null deviation arise for metacommunities with 

different underlying structuring processes; stochasticity makes the underlying structuring 

processes even more difficult to detect (Tucker, Shoemaker, et al. 2016; Chapter 3). 

I extended the equalizing and stabilizing framework of coexistence theory beyond 

communities to explore patterns in size diversity in mammals. In chapters four and five, I 

showed that primarily equalizing mechanisms predict current mammalian body size distributions 

and the evolution of body size. I do so using a model of ‘diffusion’ of body sizes (i.e. a random 

walk in continuous time) constrained by a physiological minimum size, Cope’s rule, and a single 
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stabilizing mechanism—a size-dependent extinction risk. These mechanisms accurately predict 

body mass evolution across mammals, a mammalian subclade (Equidae; Shoemaker and Clauset 

2014; Chapter 4), and across both terrestrial and marine environments (Chapter 5). Thus, while 

stabilizing mechanisms maintain coexistence in metacommunities, across evolutionary time 

equalizing mechanisms play a critical role in the evolution of diversity. There are multiple 

potential explanations for this difference when comparing scales. One likely explanation is that, 

by extending the equalizing and stabilizing framework from communities to macroecological 

patterns, we average over large spatial and temporal scales. While stabilizing mechanisms likely 

are still critical at smaller temporal and spatial scales, the average of these stabilizing 

mechanisms can be well-represented using almost solely equalizing mechanisms when 

examining macroecological patterns over millions of years.   

Across chapters, a unifying theme is the importance of stochasticity in structuring 

communities. For example, even in highly competitive metacommunities, where abundances are 

largely unaffected by demographic stochasticity, I showed that demographic stochasticity 

decreases coexistence strength. Environmental stochasticity, in comparison, increases the 

strength of coexistence by increasing available niche space. Both of these effects arise because 

stochasticity, regardless of its origin, disproportionately affects stabilizing mechanisms 

(Shoemaker and Melbourne 2016; Chapter 2). Stochasticity additionally obfuscates patterns in 

beta-null deviation, making it difficult to infer processes structuring communities from 

abundance patterns alone. Instead, I advocate for directly measuring the processes of interest, 

whether competitive strength, environmental stochasticity, or the role of dispersal (Tucker, 

Shoemaker et. al. 2016; Chapter 3); these processes can then be directly connected to the 

equalizing and stabilizing framework of coexistence.  
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When examining the relative importance of equalizing and stabilizing mechanisms at 

macroevolutionary temporal scales, stochasticity still plays a critical role. In fact, the constrained 

random walk of body size evolution explains over 90% of the increase in Equidae maximum size 

through time, while taxonomic diversity, surprisingly, plays only a minor role (Shoemaker and 

Clauset 2014; Chapter 4). Furthermore, while we would expect environmental differences to 

yield variation in body size distributions across marine and terrestrial environments, we find that 

the patterns in body size evolution are remarkably similar. Body size distributions, and their 

evolution, are indistinguishable across environments, except that environmental filtering sets the 

minimum size above which equalizing mechanisms along with a size-dependent extinction risk 

operate to produce right-skewed distributions (Chapter 5).   

 In summary, community coexistence is the outcome of interactions between stabilizing 

and equalizing mechanisms; the relative importance of these opposing mechanisms depends on 

species’ competitive strengths, dispersal, stochasticity, and environmental effects. In general, my 

dissertation research suggests that stabilizing mechanisms are critical across relatively small 

spatial scales, but that equalizing mechanisms may effectively predict macroecological patterns 

across longer temporal scales. Stochasticity plays a critical, and currently understudied, role 

across scales and in its contribution to coexistence. I suggest that future work should continue to 

incorporate stochasticity and examine its effects, beyond its role in neutral drift (Vellend et al. 

2014), in structuring community and macroecological patterns of diversity. Additionally, a 

fruitful direction forward would be to continue integrating community ecology and 

macroecology concepts and frameworks, and specifically by examining the interaction of spatial 

and temporal coexistence mechanisms in maintaining biodiversity across scales. In my thesis, I 

focused on relatively small spatial scales and, in contrast, large temporal scales. More work is 
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needed to bridge this gap across scales (e.g. Beck et al. 2012) and to synthesize across both 

spatial and temporal variation.   

Additional studies are also needed to see if the pattern I observe—where diversity in 

body size can be well-described using primarily equalizing mechanisms—holds when examining 

additional clades as well as other forms of biological diversity. Mammalian body size diversity is 

fairly well studied, yet it is unknown if the general patterns I observe hold for other clades, in 

particular when comparing across environments. These patterns could be further explored across 

scales. I show that the right-skewed distribution is observed within the Equidae sub-clade, but 

this pattern should also be examined for smaller scales, such as within species or even 

populations.  

Finally, empirical tests of my theoretical predictions in metacommunities—specifically 

examining the role of environmental and demographic stochasticity and the relative importance 

of the spatial storage effect versus fitness-density covariance—are needed, both to test theory, 

and to further integrate experimental and theoretical studies across spatial scales. Continuing to 

examine coexistence and the relative importance of equalizing and stabilizing mechanisms 

across spatial and temporal scales will allow us to better understand community structure and to 

more fully integrate community and macroecology with the goal of predicting patterns in 

biodiversity on our changing planet. 
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Appendix 1 
 

Chapter 2: Derivation of Spatial Coexistence Mechanisms 

Local dynamics 
 

Local dynamics of species j within patch x are Beverton-Holt: 

             (S1) 

where k indexes all of the species, including the focal species j. 

 

Growth Rate 

Using (S1), the growth rate for a single time step for a given species, j, is: 

 .             (S2) 

We now define the competitive term as: 

.              (S3) 

In this choice,  increases as a function of species’ densities, which meets our intuitive 

relationship between competition and density. In other words, as density in a given patch 

increases, the effect of competition on growth rate increases as well. Additionally, the effect of 

competition is zero when densities are zero, as we would intuitively expect. 

Using (S3),  

,              (S4) 

Nt+1, jx = RjxNt, jx
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which is an exact quadratic form, allowing for an exact solution to our model rather than a 

quadratic approximation. 

Furthermore, we define the effect of environment on fitness as: 

 , so that the growth rate is 

,              (S5) 

where the overbar indicates the spatial average across patches. 

 

Natural Scaling Unit 

The natural scaling unit, is the rate that the growth rate for j in a patch changes in 

response to changes in the magnitude of competition (Chesson and Valladares 2008). The natural 

scaling unit is always positive (Chesson and Valladares 2008). 

For our model, we want to choose  such that linear terms in disappear when we 

compare average lambda’s across space. This allows us to compare both species on the same 

scale (i.e. when accounting for intrinsic metacommunity level differences in growth rates). 

Additionally, we choose  such that, since the linear terms in disappear, we can directly 

solve for each coexistence mechanism, rather than using a quadratic approximation, as is 

commonly done (Chesson 2000a). For this, we define 

. 

 

 

 

Ejx =
Rjx

Rj

λ jx = RjEjx (1−Cx )
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Metacommunity dynamics 

We want to know the fitness of species i (the invader) at the metacommunity scale, which 

we will denote  (Chesson 2000a, 2000b). We will here develop a full spatial equation to 

calculate  scaled by the natural units. Since we want to examine fitness at the community 

level, we need to compare the scaled values of  (invader) and  (resident), i.e. we want to 

determine 

 .               (S6) 

For ease of future calculations, we subtract 1 from each fitness in (S6) to achieve: 

.              (S7) 

We then divide both the invader’s and resident’s growth rates by their natural scaling 

units (i.e. their intrinsic growth rates) so that we are comparing the invader and resident on the 

same scale. Thus, we wish to solve:   

.               (S8) 

 

Scaling From Individual Patch Growth Rate to Metacommunity Level 

Growth Rate 

The fitness at the metacommunity scale is the fitness averaged across all individuals in 

the metapopulation, that is: 

               (S9) 

which follows from the metacommunity scale dynamics given by 

iλ
~

iλ
~
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ri λλ
~~

−
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λi −1
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−
λr −1
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λ j =
Nt+1, j

Nt, j
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. 

The metacommunity scale fitness is related to the average patch level fitness in the 

following way. 

 

           (S10) 

,          (S11) 

where 

             (S12) 

is the relative abundance of species j in patch x.  

 

Derivation: Fitness–density Covariance 

We solve (S8) using equation (S11). Thus, 

 

      (S13) 

 

where 

Nt+1, jx = λ j Nt, jx
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           (S14) 

is a comparison of the fitness–density covariance between invader and resident and quantifies the 

fitness–density covariance mechanism.  

To generalize our model for more than one resident species (i.e. more than two species 

present in the community) (S14) would be modified as follows: 

 

!"#(!!",!!,!")
!!

− !"#(!!",!!,!!)
!!

,           (S15) 

where !  indicates an average across all resident species. 

 

Derivation: Storage Effect 

We will now continue by parsing  to find the other spatial components for 

our model. First, we compare the lambda values of the invader and resident: 

 

        (S16) 

Now, taking (S16) and averaging in space: 
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    (S17)

 

 

From here, recall , which we use to simplify (S17) as follows:

     (S18) 

showing that there is no nonlinear competitive variance for this model, since  is 

multiplied by zero. 

 

We can further simplify (S18), and find 

 

	       (S19)

 

where  

            (S20) 
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quantifies the spatial storage-effect mechanism. 

 

Furthermore 

               (S21) 

quantifies the non-spatial fitness mechanism. 

 

The derivation above follows Chesson and Valladares (2008). It is possible to verify the 

results and directly calculate Chesson’s !!, the sub-additivity term of the effects of the 

environment and competition on growth rate (Chesson 2000a), by taking the cross partial 

derivative of !!"in !!" and !!". This yields !! = −!!, so 
!!
!!
= −1, as we find above. 

To generalize (S18) to more than two species, i.e., more than one resident species, 

(S18) becomes instead: 

 

!! − 1
!!

− !! − 1!!
 = 1

!!
− 1
!!
+ Cov !!" , 1− !!" − Cov !!" , 1− !!"  

    = !
!!

− !
!!
+ Cov !!" , 1− !!" − Cov !!" , 1− !!" .     (S22) 

 

Then, since for our model, !!" = !!" we can simplify further: 
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    = !
!!

− !
!!
− Cov !!" − !!" ,!!        (S23) 

where  

−Cov !!" − !!" ,!!              (S24) 

is the spatial storage effect and 

!
!!

− !
!!

               (S25) 

is the non-spatial fitness.  

Thus, taken together we combine (S14), (S20), and (S21) to find that the metacommunity spatial 

coexistence mechanisms for a two species system are: 

 

.      (S26) 

For the general case of an arbitrary number of species, the metacommunity spatial coexistence 

mechanisms are: 

!
!!

− !
!!
− Cov !!" − !!" ,!! + !"# !!",!!,!"

!!
− !"# !!",!!,!"

!!
        (S27) 

where  

!
!!

− !
!!

              (S28) 

is the non-spatial fitness, 

Cov !!" − !!" ,!!              (S29) 

is the storage effect, 

!"#(!!",!!,!")
!!

− !"#(!!",!!,!")
!!

            (S30) 

is the fitness–density covariance and there is no non-linear competitive variance. 
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Appendix 2 

Chapter 3: Effect of dispersal on beta-diversity metrics 

Local dispersal results 
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Figure S1 Null deviation results from simulations of deterministic and stochastic 

metacommunity models with local dispersal for 5 community types. β-diversity 

presence/absence, and abundance β-null deviation values for A) deterministic metacommunity 

models and B) stochastic metacommunity models. Results for both metacommunity types are 

shown for each of metacommunity types 1-5, and represent 50 replicates (see Methods). 
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Variation in dispersal rates 
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Figure S2 Comparison of the effect of dispersal rate (m) on β-null deviation values from 

simulated metacommunity models, for 5 assembly types representing a gradient from niche to 

neutral. Subplots show β-diversity (Jaccard), presence/absence β-null deviation values, and 

abundance β-null deviation values for stochastic metacommunity models. Results represent 50 

replicate metacommunities. Note that y-axes differ for presence/absence and abundance β-null 

deviation results. 
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Appendix 3 
 

Chapter 4: Equidae Data Collection and Data Consistency  
 

Data Collection Methods  

Species names and durations were derived from the list of all Equidae species contained 

within the Paleobiology Database (Paleobiology Database, 2012). Using the mass estimation 

methods described below, we estimated body sizes for 225 (91%) of these 246 known species.  

Estimation method 1: All independent estimates of species body size from the literature 

were included without modification. If multiple estimates were found in the literature, these were 

averaged together. 

Estimation method 2: MacFadden's estimating technique for Equidae body size 

(MacFadden, 1986). For all species with upper molar measurements, we multiplied reported 

upper molar length (mm) by width (mm), to find upper first molar area m (in mm2). Following 

(MacFadden, 1986), head-body length (mm) L, was related to upper first molar area by L = 

2:49m + 579:38 (r2 = 0.99), estimated via maximum likelihood from extant data. We then 

convert head-body length L measurements or estimates into a species body mass M using 

MacFadden's exponential model (MacFadden, 1986), ln! = 0.00158! + 2.21 

(r2 = 0.92). 

Estimation method 3: Modifying the second method, we used a similar concept for our 

third estimation method of body size. Lower first molar area was calculated as lower first molar 

length (mm) multiplied by width (mm). We then converted lower first molar measurements into 

head-body length estimates yielding ! = 4.22! + 666.3 (r2 = 0.93). This model was estimated 

using the dataset of lower molar measurements and body size estimates from methods one or two 

(see Figure S3). The linear model was then utilized for all species with lower first molar 
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measurements. 

 

Figure S3 Linear model for converting lower first molar measurements into head-body length 

estimates. Model is fit to data where lower molar measurements and body size estimates from 

methods one or two are available. 

 

 

Combining multiple estimates: If multiple estimates were produced for a single species 

from method one, two, or three, we averaged the estimates from each for a single body mass 

average for each species. Together, these methods produced estimates for 152 species (62%). 

Estimation method 4: This method was only utilized for species lacking specific body 

mass estimates from the above methods (73 species), but for whom a genus-level size range was 

available. In some case, several species in the same genus were known, but no size estimates 

were available for them. Size estimates for such species can thus be derived from the size ranges, 

but we note that such estimates should not be considered as accurate as estimates derived from 
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other three methods. 

To assign a rough size estimate to such a species, we first aligned a Normal distribution 

to the genus-level size range, placing the 5 and 95% quantiles at the reported lower and upper 

values. We then drew a random value from the fitted Normal distribution for each species in the 

genus without a size estimate. 

Notably, these species include none of the maximum sizes in our study, which are the 

main focus of our analysis. Including estimates derived via this method provides (i) a more 

reliable estimate of minimum size through time, which is more susceptible to biases within the 

fossil record, and (ii) a more complete picture of the Equidae body mass distribution that would 

be presented if this information were excluded. 

 

Data consistency 

 

We test for potential bias in our fossil data, e.g., due to sampling effects (Foote and 

Sepkoski, 1999), by comparing the observed species counts over time with a range derived from 

a non-parametric estimate. This estimate is produced by first smoothing the genus counts via an 

exponential kernel and then multiplying by 0.5 and 1.5 times the average number of species per 

genus. The resulting envelope—lower and upper estimated species counts—agrees well with the 

observed counts, suggesting reasonably even sampling rates across time and taxonomic level. 

We test the assumption of a stationary size-variation mechanism by comparing the 

estimated strength of Cope’s rule in pre- and post-diversification periods. Here, we use the 

modern, species-level definition of Cope’s rule (Alroy, 1998), the average change in size from 

ancestor to descendent species, which is equivalent to v (see Eq. 4.1). Using Alroy’s method 
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(Alroy, 1998), we estimate v among all species whose durations intersect the pre- and post-

diversification period, and for the entire study period. The corresponding estimates are 

!!"# ≈ 0.103, !!"!! ≈ 0.117, and !!"# ≈ 0.112 which are statistically indistinguishable 

(ANOVA, p = 0.14) and span the estimated value for all terrestrial mammals, v = 0.109 (Clauset 

and Redner, 2009), in agreement with a stationary size-variation mechanism. 
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Appendix 4 

Chapter 5: Supplementary Materials and Methods 

Data Collection 

To compare within-clade body mass distributions between terrestrial and marine 

environments, we first constructed a novel database of extinct and extant cetacean body mass 

measurements. To do so, we downloaded a complete list of all known cetacean species (56 

million years ago to present) from the Paleobiology Database. Body mass was estimated for 

extinct cetacean species using the allometric scaling relationship ! = !"! (Huxley 1932), 

derived from 78 extant cetaceans. When expressed using a log-log scale, this is equivalent to 

log! = ! log ! + log !, where y is estimated body mass (g) and x is the skeletal measurement 

(m). We estimated body mass (g) from body length (Figure S4), condylobasal length (i.e. skull 

length, measured from the anterior premaxilla points to the occipital condyles’ posterior surface; 

Figure S5), and occipital condyle width (the width of rounded nodes on the occipital bone, 

forming a joint with the first cervical vertebra; Figure S6). These measurements are most 

commonly reported for cetaceans, and thus provided a large enough sample size for allometric 

scaling. All skeletal measurements and body mass estimates were collected from the primary 

literature and the Paleobiology Database (Huxley 1864, Cope 1867, 1890, Lydekker 1894, True 

1907, 1910, Allen 1921, Kellogg 1923, 1924, 1925, Cabrera 1926, Kellogg 1928, 1929, 1936, 

Benham 1937, Barwick 1939, Marples 1956, Kellogg 1957, 1965, Pryor et al. 1965, Kellogg 

1966, Long 1968, Kellogg 1968, Brownell and Herald 1972, Brownell 1975, Czyzewska and 

Ryziewicz 1976, Whitmore and Sanders 1976, Barnes 1976, Aslanova 1977, Reeves and Tracey 

1980, Gingerich and Russell 1981, Demere and Cerutti 1982, Mead et al. 1982, Brownell 1983, 
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Barnes 1984, Ridgway and Brownson 1984, Brownell and R 1984, Barnes 1985a, 1985b, Barnes 

et al. 1985, Nagorson 1985, Loughlin and Perez 1985, Demere 1986, Heyning and Dahlheim 

1988, Perrin et al. 1989, Stewart and Stewart 1989, Gingerich et al. 1990, Amano et al. 1992, 

Jefferson et al. 1993, Best and Silva 1993, Jefferson and Newcomer 1993, Gingerich et al. 1994, 

Hirota and Barnes 1994, Ichishima et al. 1994, Jefferson and Newcomer 1994, Stacey et al. 

1994, Gingerich et al. 1995, Dawson 1996, Gingerich and Uhen 1996, Thewissen et al. 1996, 

Uhen 1996, Silva and Best 1996, Newcomer et al. 1996, Gingerich et al. 1997, Jefferson and 

Barros 1997, Uhen et al. 1998, Jefferson 1998, Perrin 1998, Thewissen 1998, Bajpai and 

Gingerich 1998, Clapham and Mead 1999, Cranford 1999, de Muizon et al. 1999, Archer and 

Perrin 1999, Stacey and Arnold 1999, Ichishima and Kimura 2000, Marino et al. 2000, Bajpai 

and Johannes 2000, Bianucci 2001, Mazin and de Buffrénil 2001, Thewissen and Bajpai 2001, 

Gingerich 2001, Thewissen et al. 2001, Jefferson and Karczmarski 2001, Norman and Mead 

2001, Bianucci and Landini 2002, de Muizon et al. 2002, Fordyce 2002, Fordyce et al. 2002, 

Kimura and Ozawa 2002, Sanders and Barnes 2002, Spoor et al. 2002, Thewissen and Williams 

2002, Emry 2002, Perrin 2002, Dalebout et al. 2003, Fordyce 2003, Smith et al. 2003, Jefferson 

and Curry 2003, Bilal and Bamy 2004, Culik et al. 2004, Dooley et al. 2004, Marino et al. 2004, 

Perrin et al. 2004, Jefferson and Hung 2004, Bisconti 2005, Dooley 2005, Gingerich et al. 2005, 

Ichishima and Kimura 2005, Kazár and Grigorescu 2005, Lambert 2005a, 2005b, Pledge 2005, 

Souza et al. 2005, Uhen 2005, Bianucci and Landini 2006, Bisconti 2006, Bouetel and de 

Muizon 2006, Hampe 2006, Lambert and Louwye 2006, Berta et al. 2006, Manger 2006, Borsa 

2006, Henry-Stamper 2006, Fitzgerald 2006, Bianucci et al. 2007, Buchholtz 2007, Fuller and 

Godfrey 2007, Madar 2007, Demere and Berta 2008, Godfrey and Barnes 2008, Lambert 2008, 

Uhen 2008a, 2008b, Lambert et al. 2008, Bisconti 2008, 2009, Gutstein et al. 2009, Lambert et 
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al. 2009, Perrin et al. 2009, Thewissen and Bajpai 2009, Gingerich et al. 2009, Berta and Demere 

2009, Perrin 2009, Godfrey 2009, Fitzgerald 2009, Robineau et al. 2007, Robovský and Benda. 

2006, Wikimedia Foundation). When a range in sizes or measurements were found, we used the 

midpoint of the range for our estimates, and we used all combinations of the three measurements 

when possible, such that no data was excluded (Table S1). For all allometric models, !! ranged 

between 0.82 and 0.97. This provided estimated body mass measurements for 214 of the known 

403 extinct cetaceans (53% coverage), spanning from 56 million years ago to present, yielding 

the most comprehensive database of cetacean sizes through time to date.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S4 Allometric scaling model from body length to body mass. 
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Figure S5 Allometric scaling model from condylobasal length to body mass. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure S6 Allometric scaling model from occipital condyle width to body mass. 
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Model Allometric Equation !! Sample size 
(n) 

OcW and L ! = 52839!!.!"#$!"#!.!"#$ 0.97 17 
CbL and L ! = 24506!!.!"!!!"#!.!"#$ 0.96 60 
CbL and OcW ! = 17958136!"#!.!"#$!"#!.!"#$ 0.90 15 
L and CbL and 
OcW  

! = 47.98!!.!"#$!"#!.!"#$!"#!.!"!# 0.97 15 

 

Table S1 Allometric scaling for combined models.  

M is mass, L is length, OcW is occipital condyle width, and CbL is condylobasal length. All 

skeletal measurements are in meters and body mass is in grams. 

 

The terrestrial mammalian database includes both first and last appearance and estimated 

body mass for extinct species (Clauset and Redner 2009) and body mass for extant species 

(Smith et al. 2003, 2007). Combining three previous datasets (Smith et al. 2003, 2007, Clauset 

and Redner 2009) yielded 4,002 extant terrestrial mammals and 2,034 extinct North American 

species.  

 

Diversity Through Time 

To calculate our cetacean database’s coverage through time, we assume that, on average, 

there are a uniform number of species per family through time. We estimated the number of 

species expected at each 1 million year increment as the number of known families multiplied by 

the number of species per family. As family is a higher taxonomic class, our estimate of family 

diversity is less likely to be prone to biases in the fossil record. Our database has high coverage 

of the estimated total number of cetaceans during most of the Eocene and the mid-Miocene to 

present (Figure S7), and low coverage of species from the Eocene/Oligocene transition into the 
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Oligocene/Miocene transition. Low coverage is due to a paucity of fossils from the late Eocoene 

and Oligocene. The Eocene/Oligocene transition experienced a drop in sea level that likely 

prevented cetacean fossil deposition and destroyed fossils via erosion, causing a 

underrepresentation of cetacean species in the fossil record for this time period (Fordyce 2003, 

Uhen and Pyenson 2007, Uhen 2010), consistent across the literature as well as our database.  

 

 

 

 

 

 

 

 

 
Figure S7 Cetacean taxon count from 55 million years to present.  

The black solid line shows the estimated number of families; grey shows observed number of 

families. Blue lines are the expected number of species through time and light blue is the 

observed number of species in our dataset. 

 

Modeling Body Mass Evolution Through Time 

 We estimated body mass distributions, and the relative density of body sizes through 

time, using a convection-diffusion-reaction model that follows a branching multiplicative 
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diffusion process of cladogenesis, constrained by three well-documented mechanisms: a clade-

specific minimum size, !!"#, Cope’s rule, and size dependent extinction risk. Following 

(Clauset et al. 2009), we fit the steady state version of the model to the extant marine and 

terrestrial body mass distributions, while the time-dependent evolving model was subsequently 

compared to fossil estimates of body mass distributions over the past 100 million years 

(terrestrial) and 56 million years (marine) respectively. A full model description can be found in 

(Clauset and Redner 2009, Clauset et al. 2009). Here, we provide an overview of the analytical 

model that allows for mathematical analyses without relying on simulations.  

 

Model Description 

Let !(!, !) denote the fraction, or density, of observed species with mass x = ln M at a 

given time, t. Each species with a given mass, !, produces descendants according to a 

branching, multiplicative process through time. A given descendant’s mass, !! depends on its 

ancestor’s mass such that !! = !!!, where M is mass of the descendent (D) or ancestor (A) and 

λ is a random variable. The strength of Cope’s rule, which is estimated independently of the 

model (see Estimating Cope’s Rule, below), is 〈ln λ〉, where the brackets denote the mean value.  

The number of descendant species produced is proportional to species’ density, !(!, !), as 

is the size-dependent extinction probability, !(!). Here, the probability that a species goes 

extinct is represented as a loss term proportional to !(!, !), but with a weak linear dependence on 

the species’ mass, such that ! ! = ! + !". The value of ! !, !  is then modeled using a 

modified form of the standard convection-diffusion-reaction equation (Krapivsky et al. 2010): 

!"
!" + !

!"
!" = ! !!!

!!! + ! − ! − !" !      (1). 
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On the left-hand side, the first term, !"!", models the density’s time dynamics, while the 

second, ! !"!", models the average change in size from ancestor to descendant. This change, 

Cope’s rule, is represented by v = 〈ln λ〉 where λ is a random variable denoting bias towards 

either larger (positive values of λ ) or smaller (negative values of λ) descendant body sizes 

compared to ancestors. On the right hand side of the equation, the first term, ! !!!
!!!, models the 

impact of the variability in size changes from ancestor to descendant, which is quantified by D = 

〈(ln λ)2〉. The second term on the right hand side, ! − ! − !" !, models changes in density of 

species that occurs from extinction and speciation events. Here, k denotes the mean speciation 

rate, A the background or size-independent extinction rate, and B quantifies the increase in 

extinction rate with body size. We normalize these parameters by the variance of size change to 

define: ! = !/!, ! = !/!, and ! = ! − ! /!, and require that the density go through zero at 

the minimum viable size, xmin.  

After substituting the eigenfunction expansion ! !, ! =  !!!!(!)!!!!!!  in equation (1), 

the time-dependent solution is the sum of eigenmodes: 

! !, ! =  !!(!!)!!(!)!!!!!!       (2) 

where each eigenmode !!(!) ∝ !
!"
! !"[!

!
! ! − !!"# + !! − !!/!!!/!]. Here, !! = !" !! is the 

size of the founder species, Ai[.] is the Airy functions, !! denotes the decay rate for the ith 

eigenmode of the series, and !! = −2.3381 is the location of the Airy zero (Clauset and Redner 

2009) . The steady state solution for the species mass distribution is 

! ! ∝  !
!"
! !"[!

!
! ! − !!"# + !!      (3). 

Furthermore, we estimate the expected maximum species size, !∗, for n species as 
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!(!)!"!
!"!∗ = 1/!      (4), 

i.e. where the complementary cumulative distribution function crosses the horizontal line 1/n. 

This yields predictions of increasing maximum observed size for a fixed distribution and 

increasing n, as well as for fixed n and a distribution with a lengthening right tail via diffusion. 

 

Estimating Minimum Size 

 A minimum viable size is the result of metabolic constraints for maintaining body 

temperature in endotherms. We estimated the minimum viable size for both marine and 

terrestrial clades from a combination of empirical data and previous theoretical work—

independent of the body mass evolution model described above. For terrestrial mammals, the 

empirically observed lower limit on body size is !!"# ≅ 2 g, matching the size of the bumblebee 

bat (Craseonycteris thonglongyai), Etruscan shrew (Suncus etruscus), and Remy’s pygmy shrew 

(Suncus remyi). This lower limit is further supported by metabolic scaling theory, which suggests 

that the smallest mass of a terrestrial mammal is approximately 1 g (West et al. 2002). Finally, 

this limit appears constant in terrestrial mammals since at least the Cretaceous-Tertiary (K-T) 

boundary (Smith et al. 2003, 2007). 

 We estimated marine mammal minimum size as !!"# ≅ 6.8 kg, as heat loss in water is 

over 90 times higher than in air. This matches the newborn weight (7 – 9 kg) of the smallest 

marine mammal, the La Plata dolphin (Pontoporia blainvillei). This lower limit is further 

supported by theoretical calculations where endothermic heat production is balanced by 

convection and conductive heat loss (6.8 – 10 kg), below which an individual would be too small 

to generate sufficient heat to compensate for heat loss to water (Downhower and Blumer 1988, 

Ahlborn 1999, 2000).   
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Estimating Cope’s Rule 

 Following the methods of (Alroy 1998), we estimated Cope’s Rule as the average 

multiplicative change in body mass from ancestors to descendants. For each species, a possible 

ancestor was chosen from the set of all species within the same genus whose last appearance date 

overlaps with the first appearance date of the descendent. If no such species exists, a descendant 

was otherwise chosen from the set of species within the same genus that has the closest last 

appearance date. If multiple species fit this requirement, we randomly drew an ancestor with 

uniform probability for all potential ancestors. We estimated the strength of Cope’s Rule, !, such 

that ln ! = ln !!/!! , where M is mass of the descendent (D) or ancestor (A) and the brackets 

donate the average. We followed this process for all species, excluding genera with only a single 

species. We repeated this process 5,000 times and took the average strength of Cope’s Rule 

across runs.  

 

Estimating Extinction Risk 

A predicted increased risk of extinction at larger body sizes provides a soft-upper bound 

on the body mass distribution, as larger species are more likely to go extinct. We first estimated 

the minimum physiological size and Cope’s rule independently of the model. Using the 

independent estimates of the minimum size and Cope’s rule, yielded one free model parameter—

an increased risk of extinction with larger body sizes—which we estimated by minimizing the 

distance between the steady state model distribution and the empirical distribution using a 

weighted Kolmogorov-Smirnov (Massey 1951) test. 


