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ated Function Systems

Thesis directed by Prof. Judith Packer

Given a compact metric space X, the collection of Borel probability measures on X can be

made into a compact metric space via the Kantorovich metric [14]. We partially generalize this well

known result to projection-valued measures. In particular, given a Hilbert space H, we consider

the collection of projection-valued measures from X into the projections on H. We show that this

collection can be made into a complete and bounded metric space via a generalized Kantorovich

metric. However, we add that this metric space is not compact, thereby identifying an important

distinction from the classical setting. We have seen recently that this generalized metric has been

previously defined by F. Werner in the setting of mathematical physics in 2004 [26]. We develop

new properties and applications of this metric. Indeed, we use the Contraction Mapping Theorem

on this complete metric space of projection-valued measures to provide an alternative method for

proving a fixed point result due to P. Jorgensen (see [18] and [17]). This fixed point, which is a

projection-valued measure, arises from an iterated function system on X, and is related to Cuntz

algebras. We conclude this document with a discussion of unitary representations of the Baumslag-

Solitar group which arise from the Cantor set. We identify a family of partial isometries which can

be used to construct the unitary operators which realize the representation of the Baumslag-Solitar

group. These partial isometries satisfy relations similar to the Cuntz algebra relations.
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Chapter 1

Overview

In this opening chapter, we will provide an overview of what is to come. To begin, let (Y, d)

be a complete and separable metric space.

Definition 1.0.1. A Lipschitz contraction, L, on Y is a map L : Y → Y such that

d(L(x), L(y)) ≤ rd(x, y)

for all x, y,∈ Y , where 0 < r < 1.

Let L : Y → Y be a Lipschitz contraction on Y . It is well known that L has a unique fixed

point y ∈ Y , meaning that L(y) = y. This result is known as the Contraction Mapping Principle,

or the Banach Fixed Point Theorem. In 1981, J. Hutchinson published a seminal paper (see [14]),

where he generalized the Contraction Mapping Theorem to a finite family, S = {σ0, ..., σN−1}, of

Lipschitz contractions on Y , where N ∈ N is such that N ≥ 2. Unless otherwise specified, this

N will be the same throughout the document. Indeed, one can associate to S a unique compact

subset X ⊆ Y which is invariant under the S, meaning that

X =
N−1⋃
i=0

σi(X).

A finite family of Lipschitz contractions on Y is called an iterated function system (IFS) with respect

to Y , and the compact invariant subset X described above is called the fractal set associated to

the IFS. We will briefly describe the different methods that have been discovered for realizing the

fractal set. The reader will note that the Contraction Mapping Theorem is used at some point
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in every method. Therefore, it is appropriate to view the fractal set as a generalization of the

Contraction Mapping Theorem.

(1) Closure of the Fixed Points:

We first note that since each σi : Y → Y is a Lipschitz contraction, σi1 ◦ ... ◦σik : Y → Y is

a Lipschitz contraction as well, where ij ∈ {0, ..., N − 1} for 1 ≤ j ≤ k, and where k ∈ N.

We note that there can be repetitions of the indices ij ; that is, it is possible to have ij = ik

when j 6= k. By the Contraction Mapping Theorem, σi1 ◦ ... ◦ σik has a unique fixed point

in Y , which we call si1...ik . Hutchinson showed in [14] that the fractal set X is the closure

of the set of fixed points si1...ik , for any finite length tuple (i1, ..., ik). This gives a first

characterization of the fractal set.

(2) Hutchinson-Barnsley Operator:

If A,B ⊆ Y , the Hausdorff metric, δ, is defined by

δ(A,B) = sup{d(a,B), d(b, A) : a ∈ A, b ∈ B}.

Denote by K the collection of compact subsets of Y . It is known that the metric space

(K, δ) is complete. The following result is due to J. Hutchinson and M. Barnsley.

Theorem 1.0.2. [14][3][Hutchinson, Barnsley] The Hutchinson-Barnsley operator F :

K → K given by

K 7→
N−1⋃
i=0

σi(K)

is a Lipschitz contraction in the δ metric. By the Contraction Mapping Theorem, there

exists a unique compact X ⊆ Y such that F (X) = X. That is,

X =

N−1⋃
i=0

σi(X).

(3) The Markov Operator:

The fractal set can be realized as the support of a Borel probability measure, µ, on Y ,

called the Hutchinson measure. In particular, this measure will be the unique fixed point
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of a Lipschitz contraction, T , on a complete metric space of Borel probability measures on

Y . The metric H, which we will refer to as the classical Kantorovich metric, is given by

H(µ, ν) = sup
f∈Lip1(Y )

{∣∣∣∣∫
Y
fdµ−

∫
Y
fdν

∣∣∣∣} , (1.1)

where Lip1(Y ) = {f : Y → R : |f(x)− f(y)| ≤ d(x, y) for all x, y ∈ Y }, and where µ and ν

are Borel probability measures on Y . The map T is given by

T (ν) =
N−1∑
i=0

1

N
ν(σ−1

i (·)). (1.2)

The goal of Chapter 1 is to discuss the classical Kantorovich metric. In the case that (Y, d)

is an arbitrary complete and separable metric space, this metric is not necessarily well defined

(finite) on all Borel probability measures on Y . Hence, there has been research to determine which

sub-collection of measures will make the Kantorovich metric well defined and complete. The new

results that we present in Chapter 1 are metric space completion results (see Theorem 2.2.1 and

Theorem 2.4.3).

Let us restrict the Hutchinson measure, µ, to its support, which is the fractal set X. Consider

the Hilbert space L2(X,µ). Further, assume that there exists a measurable function σ : X → X

such that σ ◦ σi = idX for all 0 ≤ i ≤ N − 1. On this Hilbert space, define the following operator:

Si : L2(X,µ)→ L2(X,µ) by φ 7→ (φ ◦ σ)
√
N1σi(X)

for all 0 ≤ i ≤ N − 1, and the adjoint

S∗i : L2(X,µ)→ L2(X,µ) by φ 7→ 1√
N

(φ ◦ σi)

for all 0 ≤ i ≤ N − 1.

P. Jorgensen showed (see [17], [18]) that there exists a unique projection-valued measure,

E(·), defined on the Borel subsets of X taking values in the projections on L2(X,µ) such that

(I) E(·) =
∑N−1

i=0 SiE(σ−1
i (·))S∗i , and
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(II) E(σi1 ◦ ... ◦ σik(X)) = Si1 ◦ ... ◦ SikS∗ik ◦ ... ◦ S
∗
i1

for all k ∈ Z+ and (i1, ..., ik) ∈ ΓkN , where

ΓN = {0, ..., N − 1}.

We make several observations about this result:

• The projection-valued measure E is the canonical projection-valued measure given by mul-

tiplication by the indicator function. That is, if ∆ is a Borel subset of X, E(∆) = M1∆ .

• E can be thought of as a functional analytic generalization of the Hutchinson measure,

because it satisfies a fixed point relation (item (I) above) which is similar to equation (1.2),

and because one can recover the Hutchinson measure from E. Indeed, if we consider the

the element 1 ∈ L2(X,µ), we can define the positive measure E1,1(·) := 〈E(·)1, 1〉L2(X,µ).

For all (i1, ..., ik) ∈ ΓkN ,

E1,1(σi1 ◦ ... ◦ σik(X)) =

∫
X

1σi1◦...◦σik (X)dµ = µ(σi1 ◦ ... ◦ σik(X)).

This equality can be extended to all Borel subsets of X, and therefore, E1,1 = µ.

Jorgensen proved this result by showing the existence and uniqueness of a projection-valued

measure E which satisfies item (II) above. In particular, he used a standard technique of extending

the map σi1 ◦ ... ◦ σik(X) 7→ Si1 ◦ ... ◦ SikS∗ik ◦ ... ◦ S
∗
i1

to all Borel subsets of X, and therefore by

construction, obtaining the desired projection-valued measure. As a consequence of item (II), he

showed that E also satisfies item (I).

In the following chapters, we will develop an alternative approach to proving this result. In

particular, we will realize the map

F 7→
N−1∑
i=0

SiF (σ−1
i (·))S∗i

as a Lipschitz contraction on a complete metric space of projection-valued measures from the Borel

subsets of X into the projections on L2(X,µ). We will then be able to use the Contraction Mapping

Theorem to guarantee the existence and uniqueness of a projection-valued measure satisfying item

(I) above. By induction, we will obtain item (II).
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The contents of Chapter 3 include defining a generalized Kantorovich metric on the space of

projection-valued measures from the Borel subsets of a compact metric space to the projections on

a fixed Hilbert space (see Theorem 3.1.9). Importantly, we would like to note that this metric was

defined previously by F. Werner in the setting of mathematical physics (see [26]) in 2004. We will

develop new properties and applications of this metric. In particular, our application for this metric

is discussed in the above paragraph; we will put X to be the (compact) fractal set, and H to be

the Hilbert space L2(X,µ) (or more generally, a Hilbert space which admits a representation of the

Cuntz algebra on N generators). The main result of Chapter 3 is that this metric space is complete

(see Theorem 3.1.15). In addition, we will define a weak topology on the space of projection-valued

measures, and show that this topology coincides with the topology induced by the generalized

Kantorovich metric (see Theorem 3.2.2). We will conclude the chapter by showing that this metric

space is not compact, thereby identifying an important distinction from the classical setting (see

Proposition 2.3.3).

There is a well known generalization of a projection-valued measure to that of a positive

operator-valued measure. Positive operator-valued measures share many of the properties of

projection-valued measures, except that they take values in the positive operators on a Hilbert

space, rather than the projections on a Hilbert space. In Chapter 4, we will extend the generalized

Kantorovich metric to positive operator-valued measures. We will show that this metric space is

complete (see Theorem 4.1.7). Since we know by the above discussion that this metric space is not

compact, we will introduce a topology on this collection of positive operator-valued measures which

is compact (see Corollary 4.2.5). We will call this topology the WOT-weak topology. Importantly,

this topology was previously introduced by S. Ali (see [1]), and he proved the compactness result

using more general theory. Our proof will generalize a diagonalization argument that is used for

the proof of an analogous fact in the classical setting (see Proposition 2.3.3).

In Chapter 5, we will consider the situation that the underlying metric space, say (Y, d),

is complete and separable, but not necessarily compact. We will extend the results discussed in

Chapter 2 to the generalized Kantorovich metric. In particular, we will show that a certain sub-
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collection of projection-valued measures from the Borel subsets of Y to the projections on a fixed

Hilbert space forms a complete metric space with respect to the generalized Kantorovich metric

(see Theorem 5.2.2).

In Chapter 6, we will present the main application of our above developed theory. Specifically,

we will consider the situation that the underlying metric space (X, d) is the fractal set corresponding

to an iterated function system, and that H = L2(X,µ), or more generally that H is a Hilbert space

which admits a representation of the Cuntz algebra on N generators. In this setting, we will show

that the map

F 7→
N−1∑
i=0

SiF (σ−1
i (·))S∗i ,

is indeed a Lipschitz contraction on the space of projection-valued measures with respect to the

generalized Kantorovich metric (see Theorem 6.2.2). Therefore, this map will have a unique fixed

point E satisfying item (I) above. The fact that E satisfies item (II) will follow with an induction

argument. We will conclude this chapter with a brief foray into the topic of multifunctions, which

are set-valued functions.

In 1996, A. Edalat introduced the notion of a weak hyperbolic iterated function system

(see [13]), which we will abbreviate as whIFS. In Chapter 7, we will discuss a specific example

of a whIFS which is closely related to the classical Cantor set. The members of this whIFS are

τ0 : [0, 1] → [0, 1] by τ0(x) = 1
3x

3 and τ1 : [0, 1] → [0, 1] by τ1(x) = 1
3x

3 + 2
3 . The reader will note

that these functions are ‘almost’ Lipschitz contractions; their derivative is less than 1 except at

x = 1, where their derivative is equal to 1. Indeed, we will show that these functions satisfy the

conditions of a whIFS, and moreover, we extend the results of Chapter 6 to this example.

In Chapter 8, we will discuss unitary representations of the Baumslag-Solitar group associated

to the Cantor set, which is the fractal set constructed from the IFS σ0(x) = 1
3x and σ1(x) = 1

3x+ 2
3

on [0, 1]. The Baumslag-Solitar group, denoted BS(1, N), is the group on two generators, a and

b, with the relation aba−1 = bN where N ∈ N. For the Cantor set, we take N = 3. Specifically,

we will discuss two Hilbert spaces which admit isomorphic unitary representations of BS(1, 3), the
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first being an L2-space on a so called inflated fractal space (see [12]), and the second being an

L2-space on a compact topological group called the 3-solenoid (see [11]). The main result of this

chapter is to construct a family of partial isometries {Ti}N−1
i=0 defined on the latter Hilbert space

which satisfy the following Cuntz-like relations:

•
N−1∑
i=0

TiT
∗
i =

N−1∑
i=0

T ∗i Ti = 1H, and

• T ∗i Tj = TiT
∗
j = 0 if i 6= j where 0 ≤ i, j ≤ N − 1.

It will turn out that the two unitary operators on the latter Hilbert space which satisfy the relation

of BS(1, 3) can be derived from these partial isometries. We note that this construction can be

generalized to any N ∈ N with N ≥ 2.

In the final chapter, we will calculate Fourier transform formulas for several measures on the

solenoid. These measures will be constructed from so called generating filters. One of these filters

will be related to the Cantor set.

We note that some of the results below can be found in a recent paper by the author (see

[10]). Accordingly, we will use the citation [10] next to some of the results.



Chapter 2

The Classical Kantorovich Metric

In this chapter, we will discuss the classical Kantorovich metric, which provides a way of

measuring the distance between Borel probability measures on a metric space. In the case that

the underlying metric space is compact, the Kantorovich metric is defined on the collection of

all Borel probability measures on the metric space, and the resulting metric space of measures is

compact (in particular, complete). However, if the metric space is not compact, one must restrict

the Kantorovich metric to a sub-collection of Borel probability measures on the metric space, where

it is defined. The choice for this sub-collection may or may not yield a complete metric space of

measures. To our knowledge, there are two standard choices for a sub-collection which have been

studied, and which we will discuss; one which is not complete in the Kantorovich metric and one

which is complete. We will show that the completion of the former metric space is the latter.

2.1 Defining the Kantorovich Metric

Let (Y, d) be a complete and separable metric space, and let µ and ν be two Borel probability

measures on Y . The Kantorovich metric, H, between the two measures, µ and ν, is given by

H(µ, ν) = sup
f∈Lip1(Y )

{∣∣∣∣∫
Y
fdµ−

∫
Y
fdν

∣∣∣∣} , (2.1)
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where Lip1(Y ) = {f : Y → R : |f(x)− f(y)| ≤ d(x, y) for all x, y ∈ Y }. Consider the following two

collections of Borel probability measures on Y :

• Mloc(Y ) is the collection of Borel probability measures on Y with bounded support. The

support of a measure µ, denoted supp(µ), is supp(µ) = Y \∪{A ⊆ Y : A is open and µ(A) =

0}.

• M(Y ) is the collection of Borel probability measures µ on Y such that
∫
Y |f |dµ < ∞ for

all f ∈ Lip(Y ), where Lip(Y ) is the collection of all real valued Lipschitz functions on Y .

It was first claimed in [14] that (Mloc(Y ), H) is a complete metric space. However, we will

briefly outline an example, presented in [21], which shows this not to be true.

Claim 2.1.1. [21][Kravchenko] Let (Y, d) be an unbounded metric space. Then (Mloc(Y ), H) is not

complete.

Proof. Choose a sequence of points xk ∈ Y for k = 0, 1, 2, ..., such that d(x0, xk) ≤ k for all k, and

d(xk, x0)→∞. For a point x ∈ Y , define the delta measure at x by

δx(A) =


1 if x ∈ A

0 if x /∈ A.

For n = 1, 2, 3, ..., define the sequence of measures νn = 2−nδx0 + Σn
k=12−kδxk ∈ Mloc(Y ). This

sequence is Cauchy in (Mloc(Y ), H). However, it can be shown that it does not converge to a

measure in (Mloc(Y ), H).

Since (Mloc(Y ), H) is not a complete metric space (when Y is unbounded), we consider the

larger sub-collection of measures, M(Y ), equipped with the H metric. Indeed, we will review that

Mloc(Y ) ⊆M(Y ).

Definition 2.1.2. A measure µ on the metric space Y is said to be regular if for every Borel subset

A ⊆ Y , and every ε > 0, there exists a closed set F and an open set G such that F ⊆ A ⊆ G and

µ(G \ F ) < ε.
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Definition 2.1.3. A measure µ on the metric space Y is said to be tight if for every ε > 0, there

exists a compact set K such that µ(Y \K) < ε.

Remark 2.1.4. Since Y is a complete and separable metric space, every Borel probability measure

on Y is regular and tight (see Ch. 1, Section 1 in [5]). In particular, the measures in M(Y ) and

Mloc(Y ) are all regular and tight.

Lemma 2.1.5. [5][Ch. 1, Section 1 in Billingsley] A Borel probability measure µ is tight on

the metric space Y if and only if for each Borel subset A ⊆ Y , µ(A) = sup{µ(K) : K ⊆

A and K compact }.

Corollary 2.1.6. If µ is a Borel probability measure which is tight on the metric space Y , then

µ(Y \ supp(µ)) = 0.

Proof. Note that Y \ supp(µ) = ∪{A ⊆ Y : A is open and µ(A) = 0} which is a Borel set in Y .

Therefore by Lemma 2.1.5, µ(Y \ supp(µ)) = sup{µ(K) : K ⊆ Y \ supp(µ) and K compact }. Now

if K ⊆ Y \ supp(µ), then since K is compact, it has a finite subcovering by µ-measure zero open

sets. Hence, µ(K) = 0, and therefore µ(Y \ supp(µ)) = 0.

Proposition 2.1.7. Mloc(Y ) ⊆M(Y ).

Proof. Let µ ∈ Mloc(Y ). To show that µ ∈ M(Y ), we need to show that
∫
Y |f |dµ < ∞ for all

f ∈ Lip(Y ). Choose f ∈ Lip(Y ) with Lipschitz constant γ, and choose a point x0 ∈ Y . Since µ has

bounded support, we can assume that there exists a K ≥ 0 such that supp(µ) ⊆ BK(x0), where

BK(x0) = {x ∈ Y : d(x, x0) ≤ K}. Moreover, µ(Y \ BK(x0)) = 0 by Corollary 2.1.6. This implies

that ∫
Y
|f |dµ =

∫
BK(x0)

|f |dµ+

∫
Y \BK(x0)

|f |dµ

=

∫
BK(x0)

|f |dµ.
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Continuing, observe that∫
BK(x0)

|f(x)|dµ(x) ≤
∫
BK(x0)

|f(x)− f(x0)|dµ(x) +

∫
BK(x0)

|f(x0)|dµ(x)

≤
∫
BK(x0)

γd(x, x0)dµ(x) +

∫
BK(x0)

|f(x0)|dµ(x)

≤ γKµ(BK(x0)) + |f(x0)|µ(BK(x0))

< ∞.

This shows that Mloc(Y ) ⊆M(Y ).

Up to now we have been tacitly assuming that H is a metric on M(Y ). This was shown by

C. Akerlund-Bistrom in [6]. Akerlund-Bistrom also proved that if Y = Rn, then (M(Y ), H) is a

complete metric space. The author A. S. Kravchenko recently proved in [21] the general case (Y

an arbitrary complete and separable metric space).

Theorem 2.1.8. [21][Kravchenko] The metric space (M(Y ), H) is complete.

2.2 The Completion of Mloc(Y )

In this section, we will show that the metric space completion of (Mloc(Y ), H) is (M(Y ), H).

This question was posed by A. Gorokhovsky during a seminar talk that the author presented at

the University of Colorado in November 2012.

Theorem 2.2.1. [Davison] (M(Y ), H) is the completion of the metric space (Mloc(Y ), H).

Proof. Suppose that µ is a Borel probability measure in M(Y ). We need to find a sequence

of measures {µn}∞n=1 ⊆ Mloc(Y ) such that µn → µ in the H metric. We know from earlier,

namely Lemma 2.1.5, that there exists a sequence of compact subsets {Kn}∞n=1 of Y such that

limn→∞ µ(Kn) = 1. We can choose this sequence of compact sets such that K1 ⊆ K2 ⊆ K3 ⊆ ...,

because the union of finitely many compact sets is compact, and because measures are monotone.

Next, choose some x0 ∈ K1. Since eachKn is compact, it is bounded so there exists a positive integer
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kn such that Kn ⊆ Bkn(x0), where Bkn(x0) = {x ∈ Y : d(x, x0) ≤ kn}. For each n = 1, ...,∞,

define a Borel measure µn on Y by µn(∆) =
µ(∆ ∩Kn)

µ(Kn)
for all Borel subsets ∆ ⊆ Y . Furthermore

for f ∈ C(Y ), note that ∫
Y
fdµn =

1

µ(Kn)

∫
Y
f1Kndµ.

We claim that each µn has bounded support. Consider the open set Y \Kn.

µn(Y \Kn) =
µ((Y \Kn) ∩Kn)

µ(Kn)
= 0,

and hence the support of µn is contained within the bounded set Kn. Also, observe that

µn(Y ) =
µ(Y ∩Kn)

µ(Kn)
=
µ(Kn)

µ(Kn)
= 1,

so that µn is a Borel probability measure on Y . We have shown that for all n = 1, 2, ..., µn ∈

Mloc(Y ). It remains to show that µn → µ in the H metric. For this we use the alternate formulation

for the H metric which is shown in [6]; namely

H(µn, µ) = sup
f∈Lip1(x0)

{∣∣∣∣∫
Y
fdµn −

∫
Y
fdµ

∣∣∣∣} ,
where Lip1(x0) are the Lip1(Y ) functions which vanish at x0. Let ε > 0. Choose some f ∈ Lip1(x0).

Then ∣∣∣∣∫
Y
fdµn −

∫
Y
fdµ

∣∣∣∣ =

∣∣∣∣ 1

µ(Kn)

∫
Y
f1Kndµ−

∫
Y
fdµ

∣∣∣∣
=

1

µ(Kn)

∣∣∣∣∫
Y
f1Kn − µ(Kn)fdµ

∣∣∣∣
≤ 1

µ(Kn)

∣∣∣∣∫
Kn

(f1Kn − µ(Kn)f)dµ

∣∣∣∣+
1

µ(Kn)

∣∣∣∣∣
∫
Y \Kn

(f1Kn − µ(Kn)f)dµ

∣∣∣∣∣
≤
(

1− µ(Kn)

µ(Kn)

∫
Kn

|f |dµ
)

+

∫
Y \Kn

|f |dµ

≤
(

1− µ(Kn)

µ(Kn)

∫
Kn

d(x, x0)dµ

)
+

∫
Y \Kn

d(x, x0)dµ := I(n),
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where the last inequality is because |f(x)| = |f(x)− f(x0)| ≤ d(x, x0).

Since µ ∈M(Y ) and d(x, x0) ∈ Lip1(Y ) ⊆ Lip(Y )

0 ≤
∫
Y
d(x, x0)dµ := L <∞.

Because d(x, x0) is a non-negative function, we note that for all n, 0 ≤
∫
Kn

d(x, x0)dµ ≤ L < ∞

and 0 ≤
∫
Y \Kn d(x, x0)dµ ≤ L <∞.

Since limn→∞ µ(Kn) = µ(Y ) = 1, and K1 ⊆ K2 ⊆ ..., observe that 1Y \Knd(x, x0)

decreases pointwise to 0 µ-almost everywhere. By the dominated convergence theorem,

lim
n→∞

∫
Y \Kn

d(x, x0)dµ = lim
n→∞

∫
Y

1Y \Knd(x, x0)dµ =

∫
Y

lim
n→∞

1Y \Knd(x, x0)dµ = 0.

Also, lim
n→∞

(
1− µ(Kn)

µ(Kn)

)
= 0. Choose an N such that for n ≥ N ,

(
1− µ(Kn)

µ(Kn)

)
≤ ε

2L
,

and ∫
Y

1Y \Knd(x, x0)dµ ≤ ε

2
.

For n ≥ N , I(n) ≤ ε
2L(L) + ε

2 = ε. Since the choice of N is independent of the choice of

f ∈ Lip1(x0), we can conclude that H(µn, µ) ≤ I(n) ≤ ε. Therefore, we have shown that M(Y ) is

the completion of the metric space Mloc(Y ) in the H metric.

2.3 The Compact Case

In this section, we consider the case that the underlying metric space is compact, and record

the known facts. Accordingly for this section, assume that (X, d) is a compact (and therefore

separable) metric space.

Remark 2.3.1. In this case, Mloc(X) = M(X). Indeed, since compact metric spaces are bounded

Mloc(X) is the collection of all Borel probability measures on X. Since Lipschitz functions on a
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compact metric space are bounded, M(X) also is the collection of all Borel probability measures on

X.

Definition 2.3.2. A sequence of measures {µn}∞n=1 ⊆ M(X) converges weakly to a measure µ ∈

M(X), written µn ⇒ µ, if for all f ∈ CR(X),
∫
X fdµn →

∫
X fdµ, where CR(X) is the set of all

continuous real valued functions on X.

The motivation behind the above definition is the following. For each f ∈ CR(X), define a

mapping f̂ : M(X) → R by µ 7→
∫
X fdµ. For each ν ∈ M(X), for each ε > 0, and for any finite

collection of functions {f1, ..., fk} ⊆ CR(X), consider the subset {µ ∈ M(X) : |f̂j(µ) − f̂j(ν)| <

ε for all 1 ≤ j ≤ k} of M(X). If we consider the collection of all finite intersections of such sets,

we obtain a basis for a topology on M(X) which is called the weak topology on M(X). Note that

since CR(X) is a separable metric space, the weak topology is first countable, and hence can be

characterized by sequences.

This leads us to the following facts, presented by F. Latremoliere in [20].

Proposition 2.3.3. [20][Latremoliere]

(1) (M(X), H) is a compact metric space.

(2) The H metric on M(X) induces a topology which coincides with the weak topology on

M(X).

(3) The map ι : X → M(X) given by x 7→ δx is an injective metric space isometry (where δx

is the delta measure at x).

In the following chapter, we will generalize the classical Kantorovich metric to projection-

valued measures. We will refer back to Proposition 2.3.3 in order to observe what elements of this

proposition are retained or lost in the generalized setting.
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2.4 A Modified Kantorovich Metric

We return to the situation that (Y, d) is an arbitrary complete and separable metric space. Let

Q(Y ) denote the collection of all Borel probability measures on Y . Hence, we have the containment

Mloc(Y ) ⊆M(Y ) ⊆ Q(Y ).

Define a modified Kantorovich metric, MH, on Q(Y ) as follows. For µ, ν ∈ Q(Y ),

MH(µ, ν) = sup

{∣∣∣∣∫
Y
fdµ−

∫
Y
fdν

∣∣∣∣ : f ∈ Lip1(Y ) and ||f ||∞ ≤ 1

}
. (2.2)

The condition ||f ||∞ ≤ 1 guarantees that MH will be well defined (finite) on Q(Y ). We note that

the MH metric is equivalent to the metric, D, given by

D(µ, ν) = sup

{∣∣∣∣∫
Y
fdµ−

∫
Y
fdν

∣∣∣∣ : ||f ||Lipb(Y ) ≤ 1

}
, (2.3)

where || · ||Lipb(Y ) is a norm defined on Lipb(Y ), the collection of real valued bounded Lipschitz

functions on Y . The norm is given by

||f ||Lipb(Y ) = ||f ||∞ + Lip(f),

where Lip(f) denotes the Lipschitz constant of f (see Section 8.3 of [7]).

We can equip Q(Y ) with the weak topology. Indeed, a net of measures {µλ}λ∈Λ ⊆ Q(Y )

converges weakly to a measure µ ∈ Q(Y ), if for all f ∈ Cb(Y ),
∫
Y fdµλ →

∫
Y fdµ, where Cb(Y ) is

the set of all bounded continuous real valued functions on Y . The following result can be found in

Section 8.3 of [7].

Theorem 2.4.1. [7][Section 8.3 in Bogachev] The weak topology on Q(Y ) coincides with the topol-

ogy induced by the MH metric on Y .

We now state a result recently proved in [21]. We will use Proposition 2.4.2 in later chapters.

Proposition 2.4.2. [21] [Kravchenko] Let {µn}∞n=1 be a sequence of Borel measures on the complete

and separable metric space Y such that µn(Y ) = K < ∞ for all n = 1, 2, ..., and such that for all
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f ∈ Lipb(Y ), the sequence {
∫
Y fdµn}

∞
n=1 of real numbers is Cauchy. Then there exists a Borel

measure µ on Y such that µ(Y ) = K, and such that the sequence {µn}∞n=1 converges in the weak

topology to µ.

We note that this proposition will imply that (Q(Y ),MH) is a complete metric space. Indeed,

if {µn}∞n=1 is a Cauchy sequence of measures in Q(Y ), one can show that for all f ∈ Lipb(Y ), the

sequence {
∫
Y fdµn}

∞
n=1 of real numbers is Cauchy. Therefore, by the above proposition there will

exist a Borel probability measure µ such that µn converges to µ in the weak topology, or equivalently,

in the MH metric. We now adapt Theorem 2.2.1 to this setting.

Theorem 2.4.3. [Davison] The completion of the metric space (Mloc(Y ),MH) is (Q(Y ),MH).

Proof. The proof of this theorem is similar to the earlier proof of Theorem 2.2.1. Suppose that

µ ∈ Q(Y ). We need to find a sequence of measures {µn}∞n=1 ⊆ Mloc(Y ) such that µn → µ in the

MH metric. Define, exactly as before, a sequence of measures {µn}∞n=1 ⊆ Mloc(Y ). In particular,

µn satisfies
∫
fdµn = 1

µ(Kn)

∫
Y f1Kndµ for all f ∈ C(Y ). Choose f ∈ Lip1(X) such that ||f ||∞ ≤ 1.

Then ∣∣∣∣∫
Y
fdµn −

∫
Y
fdµ

∣∣∣∣ =

∣∣∣∣∫
Y
fdµn −

∫
Y
fdµ

∣∣∣∣
=

∣∣∣∣ 1

µ(Kn)

∫
Y
f1Kndµ−

∫
Y
fdµ

∣∣∣∣
=

1

µ(Kn)

∣∣∣∣∫
Y
f1Kn − µ(Kn)fdµ

∣∣∣∣
≤ 1

µ(Kn)

∣∣∣∣∫
Kn

(f1Kn − µ(Kn)f)dµ

∣∣∣∣
+

1

µ(Kn)

∣∣∣∣∣
∫
Y \Kn

(f1Kn − µ(Kn)f)dµ

∣∣∣∣∣
≤

(
1− µ(Kn)

µ(Kn)

∫
Kn

|f |dµ
)

+

∫
Y \Kn

|f |dµ

≤
(

1− µ(Kn)

µ(Kn)

∫
Kn

1dµ

)
+

∫
Y \Kn

1dµ

≤ (1− µ(Kn)) + µ(Y \Kn)

= 2µ(Y \Kn).
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The last line of the above expression is independent of the choice of f and goes to zero as n goes

to infinity. Hence, µn → µ in the MH metric.



Chapter 3

Generalizing the Kantorovich Metric

In this chapter, we will generalize the classical Kantorovich metric to projection-valued mea-

sures from a compact metric space into the projections on a fixed Hilbert space. In particular,

we will discuss what properties of the metric space are retained or lost in the generalized setting.

Recall that Proposition 2.3.3 reviews the main properties of the classical Kantorovich metric space,

in the case that the underlying metric space is compact.

3.1 A Metric Space of Projection-Valued Measures on X:

Let (X, d) be a compact (and therefore separable) metric space, and let H be an arbitrary

Hilbert space. We take the convention that the inner product 〈·, ·〉 on H is linear in the first

coordinate and conjugate linear in the second coordinate. Let B(X) denote the σ-algebra of Borel

subsets of X, and let B(H) denote the C∗-algebra of bounded operators on H. We first will recall

several basic facts about projection-valued measures.

Definition 3.1.1. A projection P ∈ B(H) satisfies P ∗ = P and P 2 = P .

For the next definition, we denote the empty set by ∅.

Definition 3.1.2. A projection-valued measure with respect to the pair (X,H) is a map F :

B(X)→ B(H) such that:

• F (∆) is a projection in B(H) for all ∆ ∈ B(X);
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• F (∅) = 0 and F (X) = idH (the identity operator on H);

• F (∆1 ∩∆2) = F (∆1)F (∆2) for all ∆1,∆2 ∈ B(X) (where the product F (∆1)F (∆2) is in

B(H));

• If {∆n}∞n=1 is a sequence of pairwise disjoint sets in B(X), and if g, h ∈ H, then〈
F

( ∞⋃
n=1

∆n

)
g, h

〉
=
∞∑
n=1

〈F (∆n)g, h〉.

Lemma 3.1.3. [8][Lemma IX.1.9 in Conway] Let F be a projection-valued measure with respect

to the pair (X,H), and let g, h ∈ H. For all ∆ ∈ B(X) define

Fg,h(∆) = 〈F (∆)g, h〉.

Then Fg,h(·) defines a countably additive (complex-valued) measure on B(X) with total variation

less than or equal to ||g|| ||h||. Moreover, Fg,h(·) = Fh,g(·).

Remark 3.1.4. If h ∈ H, then Fh,h(·) is a positive measure with Fh,h(X) = ||h||2. This follows

from the fact that projections are positive operators, and that F (X) = idH. Also, Fh,h(·) is a regular

measure on B(X). This follows from Remark 2.1.4.

Lemma 3.1.5. [8][Proposition IX.1.10 in Conway] Let F be a projection-valued measure with

respect to the pair (X,H). Let ψ : X → C be a bounded Borel measurable function. Then there

exists a unique bounded operator,
∫
ψdF , that satisfies〈(∫

ψdF

)
g, h

〉
=

∫
X
ψdFg,h,

for all g, h ∈ H. Moreover, ||
∫
ψdF || ≤ ||ψ||∞, where || · || denotes the operator norm, and || · ||∞

denotes the supremum norm.

Lemma 3.1.6. Let F be a projection-valued measure with respect to the pair (X,H), and let

ψ : X → R be continuous. Then
∫
ψdF is a self-adjoint operator on B(H).
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Proof. Since ψ is continuous on the compact space X, it is a bounded Borel measurable function.

Therefore, one can define
∫
ψdF according to Lemma 3.1.5. If g, h ∈ H, then〈(∫

ψdF

)
g, h

〉
=

∫
X
ψdFg,h

=

∫
X
ψdFh,g

=

∫
X
ψdFh,g

=

〈(∫
ψdF

)
h, g

〉
=

〈
g,

(∫
ψdF

)
h

〉
,

where the second equality depends on the fact that ψ is real-valued.

Lemma 3.1.7. If λ ∈ C is a constant, then∫
λdF = λidH.

Proof. Let g, h ∈ H. Then 〈(∫
λdF

)
g, h

〉
=

∫
X
λdFg,h(x)

= λ

∫
X
dFg,h(x)

= λ〈F (X)g, h〉

= λ〈idHg, h〉

= 〈λidHg, h〉.

Let P (X) be the collection of all projection-valued measures with respect to the pair (X,H).

As we mentioned in Chapter 1, the author recently discovered that the below metric was also defined

by F. Werner in [26] in 2004. We will develop new properties and applications of the metric.
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Definition 3.1.8. [10][26][Davison, Werner] Define a metric ρ on P (X) by

ρ(E,F ) = sup
f∈Lip1(X)

{∣∣∣∣∣∣∣∣∫ fdE −
∫
fdF

∣∣∣∣∣∣∣∣} , (3.1)

where || · || denotes the operator norm in B(H), and E and F are arbitrary members of P (X).

This metric directly generalizes the Kantorovich metric discussed in Chapter 2.

Theorem 3.1.9. [10][Davison] ρ is a metric on P (X).

Proof.

(1) Let E,F ∈ P (X). We will show that ρ is well defined (i.e. ρ(E,F ) <∞). Let f ∈ Lip1(X)

and x0 ∈ X. By Lemma 3.1.7, with λ = f(x0),∣∣∣∣∣∣∣∣∫ fdE −
∫
fdF

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∫ fdE − f(x0)idH + f(x0)idH −
∫
fdF

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∫ fdE −
∫
f(x0)dE −

(∫
fdF −

∫
f(x0)dF

)∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣∫ (f − f(x0))dE

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∫ (f − f(x0)) dF

∣∣∣∣∣∣∣∣ (3.2)

By Lemma 3.1.6, since f−f(x0) is a real-valued continuous function on X,
∫

(f−f(x0))dE

is a self-adjoint operator, and therefore∣∣∣∣∣∣∣∣∫ (f − f(x0))dE

∣∣∣∣∣∣∣∣ = sup
h∈H,||h||=1

{∣∣∣∣〈(∫ (f(x)− f(x0))dE

)
h, h

〉∣∣∣∣} .
Let h ∈ H with ||h|| = 1. Then∣∣∣∣〈(∫ (f(x)− f(x0))dE

)
h, h

〉∣∣∣∣ =

∣∣∣∣∫
X

(f(x)− f(x0))dEh,h(x)

∣∣∣∣ ≤∫
X
|f(x)− f(x0)|dEh,h(x) ≤

∫
X
d(x, x0)dEh,h(x) ≤

diam(X)

∫
X
dEh,h(x) = diam(X)〈E(X)h, h〉 = diam(X)||h||2 = diam(X) <∞,

where diam(X) denotes the diameter of the metric space X. This quantity is finite because

X is compact. Hence ∣∣∣∣∣∣∣∣∫ (f − f(x0))dE

∣∣∣∣∣∣∣∣ ≤ diam(X) <∞,
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and by the same argument,∣∣∣∣∣∣∣∣∫ (f − f(x0))dF

∣∣∣∣∣∣∣∣ ≤ diam(X) <∞,

which implies that the last line of (3.2) is less than or equal to 2 diam(X) < ∞. Since

diam(X) is independent of the choice of f ∈ Lip1(X), ρ(E,F ) ≤ 2 diam(X) <∞.

(2) Let E,F ∈ P (X). It is clear from the definition of ρ that ρ(E,F ) = ρ(F,E).

(3) Let E,F ∈ P (X). We will show that ρ(E,F ) = 0 if and only if E = F . The backwards

direction is clear from the definition of ρ. For the forwards direction, suppose that ρ(E,F ) =

0. We need to show that E = F . That is, for all ∆ ∈ B(X), we need to show that

E(∆) = F (∆). Choose a closed subset C ⊆ X. Define fn : X → R for n = 1, ...∞ by

fn(x) = max{1 − nd(x,C), 0}. Note that fn ∈ Lipn(X) = {f : X → R : |f(x) − f(y)| ≤

nd(x, y) for all x, y ∈ X}. Therefore, 1
nfn ∈ Lip1(X). Since ρ(E,F ) = 0∫

1

n
fndE =

∫
1

n
fndF

for all n, which implies

∫
fndE =

∫
fndF (3.3)

for all n. Note that fn ↓ 1C pointwise. Also, f1 is bounded and therefore integrable

with respect to Borel probability measures on X. Choose h ∈ H with ||h|| = 1. By the

dominated convergence theorem,

Eh,h(C) =

∫
X

1CdEh,h = lim
n→∞

∫
X
fndEh,h

and,

Fh,h(C) =

∫
X

1CdFh,h = lim
n→∞

∫
X
fndFh,h.

By (3.3), ∫
X
fndEh,h =

∫
X
fndFh,h,



23

for all n, and hence, Eh,h(C) = Fh,h(C) for all closed sets C ⊆ X. Since Eh,h(·) and

Fh,h(·) are regular measures (see Remark 3.1.4), Eh,h(∆) = Fh,h(∆) for all ∆ ∈ B(X).

Equivalently, 〈(E(∆) − F (∆))h, h〉 = 0 for all ∆ ∈ B(X). Since E(∆) − F (∆) is a self-

adjoint operator (being the difference of two projections),

||E(∆)− F (∆)|| = sup
h∈H,||h||=1

|〈(E(∆)− F (∆))h, h〉| = 0.

Therefore, E(∆) = F (∆) for all ∆ ∈ B(X).

(4) Let E,F,G ∈ P (X). We will show that ρ satisfies:

ρ(E,G) ≤ ρ(E,F ) + ρ(F,G). (3.4)

Choose f ∈ Lip1(X). Then∣∣∣∣∣∣∣∣∫ fdE −
∫
fdG

∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∫ fdE −
∫
fdF

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∫ fdF −
∫
fdG

∣∣∣∣∣∣∣∣ .
By taking the supremum of both sides over all Lip1(X) functions, inequality (3.4) follows.

Corollary 3.1.10. [10][Davison] The metric space (P (X), ρ) is bounded.

Proof. In (1) of the above proof, we showed that for any E,F ∈ P (X), ρ(E,F ) ≤ 2diam(X) <

∞.

We will now show that the metric space (P (X), ρ) is complete.

Definition 3.1.11. Let C(X) denote the C∗-alegbra of continuous functions from X to C, with

pointwise operations. A representation π : C(X)→ B(H) is a ∗-homomorphism that preserves the

identity.

Theorem 3.1.12. [8][Proposition IX.1.12 in Conway] Let E be a projection-valued measure with

respect to the pair (X,H). The map π : C(X)→ B(H) given by

f 7→
∫
fdE
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is a representation.

Theorem 3.1.13. [8][Theorem IX.1.14 in Conway] Let π : C(X) → B(H) be a representation.

There exists a unique projection-valued measure E : B(X)→ B(H) such that

π(f) =

∫
fdE

for all f ∈ C(X).

Lemma 3.1.14. [20] Lip(X) is dense in CR(X), where Lip(X) is the collection of real-valued

Lipschitz functions on X.

Theorem 3.1.15. [10][Davison] The metric space (P (X), ρ) is complete.

Proof. Let {En}∞n=1 ⊆ P (X) be a Cauchy sequence of projection-valued measures in the ρ metric.

For each n = 1, 2, ..., use Theorem 3.1.12 to define a representation πn : C(X)→ B(H) by

f 7→
∫
fdEn.

Claim 3.1.16. Let f ∈ C(X). The sequence of operators {πn(f)}∞n=1 is Cauchy in the operator

norm.

Proof of claim: Let ε > 0. Let f = f1 + if2, where f1, f2 ∈ CR(X). By Lemma 3.1.14, choose

g1, g2 ∈ Lip(X) such that ||f1 − g1||∞ ≤ ε
6 and ||f2 − g2||∞ ≤ ε

6 .

There is a K > 0 such that 1
K g1 ∈ Lip1(X) and 1

K g2 ∈ Lip1(X). Since {En}∞n=1 is a Cauchy

sequence in the ρ metric, the sequence {πn( 1
K g1)}∞n=1 is Cauchy in the operator norm, and hence

the sequence {πn(g1)}∞n=1 is Cauchy in the operator norm. Similarly, {πn(g2)}∞n=1 is Cauchy in the

operator norm. Therefore, choose N such that for n,m ≥ N ,

||πn(g1)− πm(g1)|| ≤ ε

6
and ||πn(g2)− πm(g2)|| ≤ ε

6
.
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If m,n ≥ N ,

||πn(f1)− πm(f1)|| ≤ ||πn(f1)− πn(g1)||+ ||πn(g1)− πm(g1)||+ ||πm(g1)− πm(f1)||

≤ ||πn(f1 − g1)||+ ε

6
+ ||πm(f1 − g1)||

≤ ε

2
,

where the third inequality is because ||πn(f1−g1)|| ≤ ||f1−g1||∞ and ||πm(f1−g1)|| ≤ ||f1−g1||∞.

Similarly, ||πn(f2)− πm(f2)|| ≤ ε
2 . Then if n,m ≥ N ,

||πn(f)− πm(f)|| = ||πn(f1 + if2)− πm(f1 + if2)||

= ||(πn(f1)− πm(f1)) + i(πn(f2) + πm(f2))||

≤ ||πn(f1)− πm(f1)||+ ||πn(f2)− πm(f2)||

≤ ε.

This proves the claim.

Define π : C(X) → B(H) by f 7→ limn→∞ πn(f). This map is well defined by Claim 3.1.16,

and the fact that B(H) is complete in the operator norm. We show that π is a representation.

(1) π is linear: Let f, g ∈ C(X) and α ∈ C. Then π(αf + g) = limn→∞ πn(αf + g) =

limn→∞(απn(f) + πn(g)) = α limn→∞ πn(f) + limn→∞ πn(g) = απ(f) + π(g).

(2) π is an algebra homomorphism: Let f, g ∈ C(X). Then π(fg) = limn→∞ πn(fg) =

limn→∞ πn(f) limn→∞ πn(g) = π(f)π(g).

(3) π is a ∗-homomorphism: Let f ∈ C(X). Then π(f) = limn→∞ πn(f) = limn→∞ πn(f)∗ =

π(f)∗, where the last equality is because ||πn(f)−π(f)|| = ||(πn(f)−π(f))∗|| = ||πn(f)∗−

π(f)∗||.

(4) π preserves the identity: π(1) = limn→∞ πn(1) = limn→∞ 1H = 1H.
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By Theorem 3.1.13, there exists a unique projection-valued measure E with respect to the

pair (X,H) such that π(f) =
∫
fdE for all f ∈ C(X). We show that En → E in the ρ metric as

n→∞. Let ε > 0. Choose N such that for n,m ≥ N , ρ(En, Em) ≤ ε. Let n ≥ N and f ∈ Lip1(X).

Observe that ∣∣∣∣∣∣∣∣∫ fdEn −
∫
fdE

∣∣∣∣∣∣∣∣ = lim
m→∞

∣∣∣∣∣∣∣∣∫ fdEn −
∫
fdEm

∣∣∣∣∣∣∣∣
≤ ε,

where the equality is because limm→∞
∫
fdEm = limm→∞ πm(f) = π(f) =

∫
fdE, and the inequal-

ity is because ρ(En, Em) ≤ ε for m ≥ N . Since the choice of N is independent of the choice of f ,

we have for n ≥ N ,

ρ(En, E) = sup
f∈Lip1(X)

{∣∣∣∣∣∣∣∣∫ fdEn −
∫
fdE

∣∣∣∣∣∣∣∣} ≤ ε.
Hence, En → E in the ρ metric as n→∞ and the metric space (P (X), ρ) is complete.

3.2 The Weak Topology on P (X)

In this section, we will define the weak topology on the space P (X). As in the classical

setting (see Proposition 2.3.3), it will turn out that the weak topology will coincide with the

topology induced by the generalized Kantorovich metric, ρ, on P (X) (see Definition 3.1.8).

Definition 3.2.1. A sequence of projection-valued measures {Fn}∞n=1 ⊆ P (X) converges weakly to

a projection-valued measure F ∈ P (X), written Fn ⇒ F , if for all f ∈ CR(X),
∫
Y fdFn →

∫
Y fdF ,

where convergence is in the operator norm on B(H).

Theorem 3.2.2. [10][Davison] The weak topology on P (X) coincides with the topology induced by

the ρ metric on P (X).

Proof. Suppose that {En}∞n=1 ⊆ P (X) converges to a projection-valued measure E ∈ P (X) in the

ρ metric. We will show that En ⇒ E. Toward this end, let ε > 0 and choose f ∈ CR(X). We

use Lemma 3.1.14 to choose a function g ∈ Lip(X), with Lipschitz constant K > 0, such that
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||f − g||∞ ≤ ε
3 . Since En → E in the ρ metric, we know there exists an N such that for n ≥ N ,

ρ(En, E) ≤ ε
3K . In particular, for n ≥ N∣∣∣∣∣∣∣∣∫

X

g

K
dEn −

∫
X

g

K
dE

∣∣∣∣∣∣∣∣ ≤ ρ(En, E) ≤ ε

3K
,

which implies that ∣∣∣∣∣∣∣∣∫
X
gdEn −

∫
X
gdE

∣∣∣∣∣∣∣∣ ≤ ε

3
.

Combining this information, we get that for n ≥ N

∣∣∣∣∣∣∣∣∫
X
fdEn −

∫
X
fdE

∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∫
X
fdEn −

∫
X
gdEn

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∫
X
gdEn −

∫
X
gdE

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∫
X
gdE −

∫
X
fdE

∣∣∣∣∣∣∣∣
≤ ||f − g||∞ +

ε

3
+ ||f − g||∞

= ε,

which implies that En ⇒ E.

Next, suppose that En ⇒ E. We show that En converges to E in the ρ metric. Choose

x0 ∈ X. Consider the set B = {f ∈ CR(X) : f ∈ Lip1(X) and f(x0) = 0}.

• B is closed in the supremum norm in CR(X): Suppose that {fn}∞n=1 ⊆ B converges in the

supremum norm to some f ∈ CR(X). We need to show that f ∈ B. In particular, choose

x, y ∈ X. Since {fn}∞n=1 ⊆ B converges in the supremum norm to f , {fn}∞n=1 converges

pointwise to f . Therefore

|f(x)− f(y)| = lim
n→∞

|fn(x)− fn(y)| ≤ |x− y|,

because each fn ∈ B. Also

f(x0) = lim
n→∞

fn(x0) = 0.

Hence f ∈ B.
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• B is pointwise bounded: If x ∈ X, and f ∈ B, then |f(x)| = |f(x) − f(x0)| ≤ d(x, x0) ≤

diam(X) <∞.

• B is equicontinuous: Let x ∈ X and ε > 0. If y ∈ X such that d(x, y) < ε, |f(x)− f(y)| ≤

d(x, y) < ε for all f ∈ B.

The above facts show that by Ascoli’s Thoerem, see [23], B is compact in the supremum

norm. Accordingly, choose {f1, ..., fk} ⊆ B such that B ⊆ ∪kj=1O ε
3
(fj), where O ε

3
(fj) represents

the open ball of radius ε
3 centered at fj . Since En ⇒ E, and fj ∈ CR(X) for all 1 ≤ j ≤ k, there

exists an N such that for n ≥ N ∣∣∣∣∣∣∣∣∫
X
fjdEn −

∫
X
fjdE

∣∣∣∣∣∣∣∣ ≤ ε

3

for all 1 ≤ j ≤ k. Let g ∈ Lip1(X). Define f(x) = g(x)− g(x0), and note that f ∈ B. There exists

an fj such that ||f − fj ||∞ ≤ ε
3 . Observe that if n ≥ N ,

∣∣∣∣∣∣∣∣∫
X
gdEn −

∫
X
gdE

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∫
X
fdEn −

∫
X
fdE

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣∫
X
fdEn −

∫
X
fjdEn

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∫
X
fjdEn −

∫
X
fjdE

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∫
X
fjdE −

∫
X
fdE

∣∣∣∣∣∣∣∣
≤ ||f − fj ||∞ +

ε

3
+ ||f − fj ||∞

= ε.

Since N does not depend on the choice of g, ρ(En, E) ≤ ε if n ≥ N .

3.3 Isometry of Metric Spaces

In this section, we will show that an isomorphism of Hilbert spaces induces a bijective isometry

between the associated metric spaces of projection-valued measures.
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Theorem 3.3.1. [Davison] Suppose that H1 and H2 are two isomorphic Hilbert spaces with iso-

morphism S : H1 → H2. Consider the two associated complete metric spaces (PH1(X), ρ1) and

(PH2(X), ρ2). Define Θ : (PH1(X), ρ1)→ (PH2(X), ρ2) by

E(·) 7→ SE(·)S∗.

Then Θ is a bijective isometry of metric spaces.

Remark 3.3.2. We note that S satisfies the relation S∗S = idH1 and SS∗ = idH2.

Proof. We will first show that Θ is well defined. Choose some E ∈ PH1(X) and show that Θ(E) ∈

PH2(X). By construction, Θ(E)(∆) is a bounded operator in B(H2) for all Borel subsets ∆ ⊆ X.

• Θ(E)(∆)∗ = (SE(∆)S∗)∗ = SE(∆)S∗ = Θ(E)(∆) for all ∆ ∈ B(X).

• Θ(E)(∆)Θ(E)(∆) = SE(∆)S∗SE(∆)S∗ = SE(∆)E(∆)S∗ = SE(∆)S∗ = Θ(E)(∆) for all

∆ ∈ B(X).

• Θ(E)(∅) = SE(∅)S∗ = 0.

• Θ(E)(X) = SE(X)S∗ = SS∗ = 1H2 .

• Θ(E)(∆1 ∩∆2) = SE(∆1 ∩∆2)S∗ = SE(∆1)E(∆2)S∗ =

SE(∆1)S∗SE(∆2)S∗ = Θ(E)(∆1)Θ(E)(∆2) for all ∆1,∆2 ∈ B(X).

• Let {∆n}∞n=1 be a sequence of pairwise disjoint Borel subsets of X and let h, k ∈ H2. Then

〈Θ(E)(∪∞n=1∆n)(h), k〉 = 〈SE(∪∞n=1∆n)S∗h, k〉 = 〈E(∪∞n=1∆n)S∗h, S∗k〉 =

∞∑
n=1

〈E(∆n)S∗h, S∗k〉 =
∞∑
n=1

〈SE(∆n)S∗h, k〉 =
∞∑
n=1

〈Θ(E)(∆n)h, k〉,

where the third equality is because E is a projection-valued measure.

Hence, Θ(E) is a projection-valued measure. Now we will show that Θ preserves the metric.

In particular, let E,F ∈ (PH1(X), ρ1). We want to show that ρ2(Θ(E),Θ(F )) = ρ1(E,F ). To this
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end, choose f ∈ Lip1(X) and suppose h ∈ H2 with ||h|| = 1. Observe∣∣∣∣〈(∫ fdΘ(E)−
∫
fdΘ(F )

)
h, h

〉∣∣∣∣ =

∣∣∣∣〈(∫ fdSE(·)S∗ −
∫
fdSF (·)S∗

)
h, h

〉∣∣∣∣ =∣∣∣∣〈(∫ fdE −
∫
fdF

)
S∗h, S∗h

〉∣∣∣∣ .
Since S∗ is a surjective isometry, {k ∈ H1 : ||k|| = 1} = {S∗h : h ∈ H2, ||h|| = 1}. Hence∣∣∣∣∣∣∣∣∫ fdΘ(E)−

∫
fdΘ(F )

∣∣∣∣∣∣∣∣ = sup
h∈H2,||h||=1

∣∣∣∣〈(∫ fdΘ(E)−
∫
fdΘ(F )

)
h, h

〉∣∣∣∣
= sup

h∈H2,||h||=1

∣∣∣∣〈(∫ fdE −
∫
fdF

)
S∗h, S∗h

〉∣∣∣∣
= sup

k∈H1,||k||=1

∣∣∣∣〈(∫ fdE −
∫
fdF

)
k, k

〉∣∣∣∣
=

∣∣∣∣∣∣∣∣∫ fdE −
∫
fdF

∣∣∣∣∣∣∣∣ .
By taking the supremum over all Lip1(X) functions we get that, ρ2(Θ(E),Θ(F )) = ρ1(E,F ).

We will now show that Θ is surjective. Choose E ∈ (PH2(X), ρ2). Consider S∗E(·)S ∈

(PH1(X), ρ1). Then, Θ(S∗E(·)S) = SS∗E(·)SS∗ = E(·), and Θ is surjective. To show Θ is

injective, suppose E,F ∈ PH1(X) are such that SE(·)S∗ = SF (·)S∗. By using the fact that

S∗S = idH1 , we get that E = F .

3.4 An Injective Isometry

We will show in this section that item (3) of Proposition 2.3.3 generalizes to the metric space

(P (X), ρ).

Definition 3.4.1. Let x ∈ X. Define the projection-valued measure Ex ∈ P (X) by

Ex(∆) =


idH if x ∈ ∆

0 if x /∈ ∆.
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Proposition 3.4.2. [Davison] The map ι : X → P (X) by x 7→ Ex is an injective isometry.

Proof. It is clear the ι is injective. Choose x, y ∈ X. We need to show that, d(x, y) = ρ(Ex, Ey).

Let f ∈ Lip1(X). Then ∣∣∣∣∣∣∣∣∫
X
fdEx −

∫
X
fdEy

∣∣∣∣∣∣∣∣ = ||f(x)idH − f(y)idH||

≤ d(x, y).

Hence, ρ(Ex, Ey) ≤ d(x, y).

Consider the Lip1(X) function d(s, y), a function of s. Then∣∣∣∣∣∣∣∣∫
X
d(s, y)dEx −

∫
X
d(s, y)dEy

∣∣∣∣∣∣∣∣ = ||d(x, y)idH − d(y, y)idH||

= d(x, y).

Therefore d(x, y) ≤ sup
g∈Lip1(X)

{∣∣∣∣∣∣∣∣∫
X
gdEx −

∫
X
gdEy

∣∣∣∣∣∣∣∣} = ρ(Ex, Ey), which completes the proof.

3.5 Non-compactness of (P (X), ρ)

It turns out that item (1) of Proposition 2.3.3 does not generalize to (P (X), ρ). That is, in

this section we will describe a counterexample which shows that (P (X), ρ) is not a compact metric

space. We begin with several preliminary facts.

Definition 3.5.1. Let H be a Hilbert space. A normal operator N on H satisfies NN∗ = N∗N .

Definition 3.5.2. Let E be a projection-valued measure with respect to the pair (X,H). The

support of E, denoted supp(E), is the subset supp(E) = X \
⋃
{U ⊂ X : U open and E(U) = 0}.

Proposition 3.5.3. [8] [Proposition IX.1.12 in Conway] Let E be a projection-valued measure with

respect to the pair (X,H), and let f, g ∈ C(X). Then∫
fgdE =

(∫
fdE

)(∫
gdE

)
,

where the right side of the equality is operator composition. We say that E is multiplicative to

describe this property.
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Theorem 3.5.4. [8] [Theorem IX.2.2 in Conway] If N is a normal operator on H, there exists a

unique projection-valued measure E on the Borel subsets of C whose support is σ(N) (the spectrum

of N) such that

N =

∫
σ(N)

zdE(z).

Let H be a Hilbert space and let M > 0 be some fixed constant. Let BM be the collection of

all normal operators on H such that ||N || ≤ M , where || · || denotes the operator norm of N . We

note that if N ∈ BM , then σ(N) is contained in B0(M) the closed ball of radius M in C centered

at the origin. By Theorem 3.5.4, there exists a one to one correspondence between BM and the

collection of projection-valued measures with respect to the pair (B0(M),H). That is, the map

N ∈ BM 7→ E ∈ P (B0(M)), where E satisfies N =
∫
σ(N) zdE(z), is bijective.

We now note that (P (B0(M)), ρ) is a complete metric space since B0(M) is compact. More-

over, the ρ metric induces a metric, s, on BM in the following way. If N,A ∈ BM , define

s(N,A) = ρ(E,F ),

where N =
∫
σ(N) zdE(z), and A =

∫
σ(A) zdF (z). The bijective correspondence N ∈ BM 7→ E ∈

P (B0(M)) guarantees that s is a metric, and that the metric space (BM , s) is complete. By

definition, a sequence {Nk}∞k=1 ⊆ BM converges to N ∈ BM in the s metric if and only if the

corresponding sequence {Ek}∞k=1 ⊆ B0(M) converges to E ∈ B0(M) in the ρ metric.

Proposition 3.5.5. [10][Davison] The topology induced by the s metric on BM coincides with the

topology induced by the operator norm on BM .

Proof. First, suppose that {Nk}∞k=1 ⊆ BM converges to N ∈ BM in the s metric. We will show

that {Nk}∞k=1 ⊆ BM converges to N ∈ BM in the operator norm. That is, given ε > 0, we will

find a K such that ||Nk −N || ≤ ε for k ≥ K. Since {Nk}∞k=1 ⊆ BM converges to N ∈ BM in the

s metric, there exists a K such that s(Nk, N) ≤ ε
2 for k ≥ K. That is, since s(Nk, N) = ρ(Ek, E),

we have that

sup
f∈Lip1(B0(M))

{∣∣∣∣∣
∣∣∣∣∣
∫
B0(M)

fdEk −
∫
B0(M)

fdE

∣∣∣∣∣
∣∣∣∣∣
}
≤ ε

2
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for k ≥ K. Note that the maps Re(f) : B0(M)→ R given by x+ iy 7→ x, and Im(f) : B0(M)→ R

given by x+ iy 7→ y are both elements of Lip1(B0(M)). If k ≥ K,

||Nk −N || =

∣∣∣∣∣
∣∣∣∣∣
∫
B0(M)

zdEk(z)−
∫
B0(M)

zdE(z)

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
(∫

B0(M)
Re(f)dEk(z)−

∫
B0(M)

Re(f)dE(z)

)
+ i

(∫
B0(M)

Im(f)dEk(z)−
∫
B0(M)

Im(f)dE(z)

)∣∣∣∣∣
∣∣∣∣∣ ≤∣∣∣∣∣

∣∣∣∣∣
∫
B0(M)

Re(f)dEk(z)−
∫
B0(M)

Re(f)dE(z)

∣∣∣∣∣
∣∣∣∣∣+∣∣∣∣∣

∣∣∣∣∣
∫
B0(M)

Im(f)dEk(z)−
∫
B0(M)

Im(f)dE(z)

∣∣∣∣∣
∣∣∣∣∣ ≤ 2ρ(Ek, E) ≤ ε.

Hence, {Nk}∞k=1 ⊆ BM converges to N ∈ BM in the operator norm. Conversely, suppose that

{Nk}∞k=1 ⊆ BM converges to N ∈ BM in the operator norm. We need to show that{Nk}∞k=1 ⊆ BM

converges to N ∈ BM in the s metric, which is equivalent to showing that {Ek}∞k=1 ⊆ P (B0(M))

converges to E ∈ P (B0(M)). Moreover, by Theorem 3.2.2, it is enough to show that {Ek}∞k=1 ⊆

P (B0(M)) converges to E ∈ P (B0(M)) in the weak topology.

Since {Nk}∞k=1 ⊆ BM converges to N ∈ BM in the operator norm,

lim
k→∞

∫
B0(M)

zdEk(z) =

∫
B0(M)

zdE(z),

where convergence is in the operator norm. Since projection-valued measures are multiplicative

(see Proposition 3.5.3), and since integration with respect to projection-valued measures is linear,

we can claim that

lim
k→∞

∫
B0(M)

p(z, z̄)dEk(z) =

∫
B0(M)

p(z, z̄)dE(z),

where p(z, z̄) is a polynomial on B0(M) in the variables z and z̄, and again, convergence is in the

operator norm. Let f ∈ CR(B0(M)). By the Stone-Weierstrass Theorem (see [8]), there exists a

polynomial p(z, z̄) on B0(M) such that ||f − p(z, z̄)||∞ ≤ ε
3 . Choose K such that for k ≥ K,∣∣∣∣∣

∣∣∣∣∣
∫
B0(M)

p(z, z̄)dEk(z)−
∫
B0(M)

p(z, z̄)dE(z)

∣∣∣∣∣
∣∣∣∣∣ ≤ ε

3
.



34

If k ≥ K, ∣∣∣∣∣
∣∣∣∣∣
∫
B0(M)

fdEk(z)−
∫
B0(M)

fdE(z)

∣∣∣∣∣
∣∣∣∣∣ ≤∣∣∣∣∣

∣∣∣∣∣
∫
B0(M)

fdEk(z)−
∫
B0(M)

p(z, z̄)dEk(z)

∣∣∣∣∣
∣∣∣∣∣+

∣∣∣∣∣
∣∣∣∣∣
∫
B0(M)

p(z, z̄)dEk(z)−
∫
B0(M)

p(z, z̄)dE(z)

∣∣∣∣∣
∣∣∣∣∣+∣∣∣∣∣

∣∣∣∣∣
∫
B0(M)

p(z, z̄)dE(z)−
∫
B0(M)

fdE(z)

∣∣∣∣∣
∣∣∣∣∣ ≤ 3

( ε
3

)
= ε.

Hence, {Ek}∞k=1 ⊆ P (B0(M)) converges to E ∈ P (B0(M)) in the weak topology, and the proof of

the proposition is done.

We now use Proposition 3.5.5 to show the non-compactness of the metric space (P (X), ρ).

Indeed, let H = L2(R,m) where m is Lebesgue measure, and let M = 1. Consider B1 and the

associated metric space (B1, s). For n = 1, 2, ..., define φn = 1[n,n+1) ∈ L∞(R,m), and consider the

self-adjoint (and therefore normal) operators Mn, which are given by multiplication by φn. Indeed,

Mn(h) = φnh for all h ∈ H. Note that for all n, ||Mn|| = 1, and hence the sequence {Mn}∞n=1 ⊆ B1.

Consider the function φnm = 1√
2
1[n,n+1) + 1√

2
1[m,m+1) ∈ L2(R,m) for m 6= n. Now,

||φnm||L2 =

(∫
R
|φnm|2dm

) 1
2

=

(∫
R

1

2
1[n,n+1) +

1

2
1[m,m+1)dm

) 1
2

= 1.

Hence for n 6= m ||Mn−Mm|| ≥ ||(Mn−Mm)φnm||L2 = ||φnm||L2 = 1. This shows that {Mn}∞n=1 ⊆

B1 has no convergent subsequence in the operator norm. By Proposition 3.5.5, {Mn}∞n=1 has no

convergent subsequence in the s metric. Equivalently, the corresponding sequence of projection-

valued measures {En}∞n=1 ⊆ P (B0(1), ρ) has no convergent subsequence in the ρ metric. This shows

that P (B0(1), ρ) is not compact.
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Generalizing to Positive Operator-Valued Measures

In this section, we will generalize the Kantorovich metric to the space of positive operator-

valued measures on a Hilbert space, which are operator-valued measures which take values in the

positive operators. The positive operators on a Hilbert space contain the projections.

4.1 A Metric Space of Positive Operator-Valued Measures

Let (X, d) be a compact metric space, and let H be an arbitrary Hilbert space. We begin

with some preliminary definitions and facts.

Definition 4.1.1. A positive operator L ∈ B(H) satisfies 〈Lh, h〉 ≥ 0 for all h ∈ H.

Definition 4.1.2. A positive operator-valued measure with respect to the pair (X,H) is a map

A : B(X)→ B(H) such that:

• A(∆) is a positive operator in B(H) for all ∆ ∈ B(X);

• A(∅) = 0 and A(X) = idH (the identity operator on H);

• If {∆n}∞n=1 is a sequence of pairwise disjoint sets in B(X), and if g, h ∈ H, then〈
A

( ∞⋃
n=1

∆n

)
g, h

〉
=

∞∑
n=1

〈A(∆n)g, h〉.

Remark 4.1.3. A projection-valued measure with respect to the pair (X,H) is a positive operator-

valued measure because projections are positive operators.
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Remark 4.1.4. Let A be a positive operator-valued measure with respect to the pair (X,H). The

map [g, h] ∈ H ×H 7→ Ag,h(·) is sesquilinear. This follows from the fact that the inner product on

H is sesquilinear.

Our below discussion will rely on the following two standard theorems of functional analysis,

which are stated with the amount of generality we will need.

Theorem 4.1.5. [8] [Theorem III.5.7 in Conway] Let X be a compact metric space, and T :

C(X) → C be a bounded linear functional. There exists a unique complex-valued regular Borel

finite measure µ on X such that ∫
X
fdµ = T (f),

for all f ∈ C(X), and such that ||µ|| = ||T || (where ||µ|| denotes the total variation norm of µ).

Theorem 4.1.6. [8] [Theorem II.2.2 in Conway] Let u : H × H → C be a bounded sesquilinear

form with bound M . There exists a unique operator A ∈ B(H) such that u(g, h) = 〈Ag, h〉 for all

g, h ∈ H, and such that ||A|| ≤M .

Let S(X) be the collection of all positive operator-valued measures with respect to the pair

(X,H). Note that the properties described in the beginning of Chapter 3 for projection-valued

measures also hold true for positive operator-valued measures (i.e. integration is well defined).

Accordingly, consider the metric ρ on S(X). That is,

ρ(A,B) = sup
f∈Lip1(X)

{∣∣∣∣∣∣∣∣∫ fdA−
∫
fdB

∣∣∣∣∣∣∣∣} , (4.1)

where || · || denotes the operator norm in B(H), and A and B are arbitrary members of S(X).

Theorem 4.1.7. [Davison] The metric space (S(X), ρ) is complete.

Proof. Let {An}∞n=1 ⊆ S(X) be a Cauchy sequence in the ρ metric. This assumption implies that

for f ∈ C(X), the sequence of operators {
∫
fdAn}∞n=1 is Cauchy in the operator norm. Indeed, the

proof that {
∫
fdAn}∞n=1 is Cauchy in the operator norm follows the proof of the similar result for

projection-valued measures (see Claim 3.1.16).
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In particular, the fact that {
∫
fdAn}∞n=1 is Cauchy in the operator norm implies the following:

if g, h ∈ H and f ∈ C(X), the sequence of complex numbers of {
∫
X fdAng,h}

∞
n=1 is Cauchy. This is

because we have the bound∣∣∣∣∫
X
fdAng,h −

∫
X
fdAmg,h

∣∣∣∣ =

∣∣∣∣〈(∫ fdAn −
∫
fdAm

)
g, h

〉∣∣∣∣ ≤∣∣∣∣∣∣∣∣∫ fdAn −
∫
fdAm

∣∣∣∣∣∣∣∣ ||g||||h||,
and the last term goes to zero as m and n approach infinity.

For g, h ∈ H, define µg,h : C(X)→ C by f 7→ limn→∞
∫
fdAng,h , which is well defined by the

above discussion, and since C is complete. Observe that µg,h is a bounded linear functional. We

will show that it is bounded, and leave the proof of linearity to the reader. Let f ∈ C(X). Then

|µg,h(f)| =
∣∣∣∣ lim
n→∞

∫
X
fdAng,h

∣∣∣∣ = lim
n→∞

∣∣∣∣∫
X
fdAng,h

∣∣∣∣ .
Now for all n ∣∣∣∣∫

X
fdAng,h

∣∣∣∣ ≤ ∫
X
|f |d|Ang,h | ≤ ||f ||∞||g||||h||,

and hence

lim
n→∞

∣∣∣∣∫
X
fdAng,h

∣∣∣∣ ≤ ||f ||∞||g||||h||.
This shows that µg,h is bounded by ||g||||h||. We can now invoke Theorem 4.1.5 to conclude that

µg,h is a measure.

The map [g, h] ∈ H × H 7→ µg,h is sesquilinear. Indeed, we will show that [g, h] 7→ µg,h is

linear in the first coordinate. The remaining properties of sesquilinearity are proved with a similar

approach, and are left to the reader.

Let g, h, k ∈ H, and let f ∈ C(X). Then∫
X
fdµg+h,k = lim

n→∞

∫
X
fdAng+h,k

= lim
n→∞

(∫
X
fdAng,k +

∫
X
fdAnh,k

)
=

∫
X
fdµg,k +

∫
X
fdµh,k,
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where the second equality is because of Remark 4.1.4.

Consider a closed subset C ⊆ X, and choose a sequence of functions {fm}∞m=1 ⊆ C(X) such

that fm ↓ 1C pointwise. See Part (3) of Theorem 3.1.9 for a specific formula for these functions.

By the dominated convergence theorem,∫
X

1Cdµg+h,k = lim
m→∞

∫
X
fmdµg+h,k

= lim
m→∞

(∫
X
fmdµg,k +

∫
X
fmdµh,k

)
=

∫
X

1Cdµg,k +

∫
X

1Cdµh,k.

Hence, for any closed C ⊆ X

µg+h,k(C) = µg,k(C) + µh,k(C). (4.2)

By decomposing the measures µg+h,k, µg,k, µh,k into their real and imaginary parts, we can

show that (4.2) is equivalent to the following:

Reµg+h,k(C) = Reµg,k(C) + Reµh,k(C), (4.3)

and

Imµg+h,k(C) = Imµg,k(C) + Imµh,k(C). (4.4)

By further decomposing Reµg+h,k,Reµg,k,Reµh,k into their positive and negative parts (de-

noted Reµ+
g+h,k and Reµ−g+h,k respectively), we can show, by rearranging terms, that (4.3) is equiv-

alent to

M1(C) = M2(C), (4.5)

where M1 = Reµ+
g+h,k + Reµ−g,k + Reµ−h,k, and M2 = Reµ−g+h,k + Reµ+

g,k + Reµ+
h,k.

Since M1 and M2 are positive Borel measures on a metric space, M1 and M2 are regular (see

Remark 2.1.4). That is, we can conclude that M1(∆) = M2(∆) for any Borel subset ∆ ∈ B(X). By

invoking the equivalence of (4.3) and (4.5), we have that (4.3) is true for all ∆ ∈ B(X). A similar

approach, will yield that (4.4) is true for all ∆ ∈ B(X). Hence, (4.2) is true for all ∆ ∈ B(X).
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This shows linearity in the first coordinate. As mentioned above, the following additional properties

listed below are proved similarly:

• Let g, h, k ∈ H. Then µg,h+k = µg,h + µg,k.

• Let α ∈ C and g, h ∈ H. Then µαg,h = αµg,h.

• Let β ∈ C and g, h ∈ H. Then µg,βh = βµg,h.

Hence, the map [g, h] 7→ µg,h is sesquilinear. We also note that µg,h inherits the following three

additional properties:

• For h ∈ H, µh,h is a positive Borel measure on X.

• For g, h ∈ H, µg,h has total variation less than or equal to ||g||||h||.

• For g, h ∈ H, µg,h = µh,g.

We will spend a short time justifying the second item in the above list. Suppose that ∆1, ...,∆n is

a collection of disjoint subsets of B(X). Then using a generalized Schwarz inequality for positive

sesquilinear forms we calculate that

n∑
k=1

|µg,h(∆k)| ≤
n∑
k=1

(µg,g(∆k)µh,h(∆k))
1
2 ≤

(
n∑
k=1

µg,g(∆k)

n∑
k=1

µh,h(∆k)

) 1
2

= (µg,g(X)µh,h(X))
1
2 = (||h||2||g||2)

1
2 = ||g||||h||,

which shows that the total variation of µg,h is less than or equal to ||g||||h||.

Let ∆ ∈ B(X). The map [g, h] 7→
∫
X 1∆dµg,h is a bounded sesquilinear form with bound 1.

Indeed,

|[g, h]| ≤ ||1∆||∞||g||||h|| = ||g||||h||.

By Theorem 4.1.6, there exists a unique bounded operator, A(∆) ∈ B(H), such that for all

g, h ∈ H

〈A(∆)g, h〉 =

∫
X

1∆dµg,h,
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with ||A(∆)|| ≤ 1. Accordingly, define A : B(X) → B(H) by ∆ 7→ A(∆), and note that for

g, h ∈ H, Ag,h = µg,h.

Claim 4.1.8. A is a positive operator-valued measure.

Proof of claim:

(1) Let ∆ ∈ B(X), and h ∈ H. Then

〈A(∆)h, h〉 =

∫
X

1∆dµh,h ≥ 0.

Hence, A(∆) is a positive operator.

(2) Let h ∈ H. Then

〈A(X)h, h〉 =

∫
X
dµh,h = µh,h(X) = 〈h, h〉,

and

〈A(∅)h, h〉 =

∫
X

1∅dµh,h = µh,h(∅) = 0.

Hence, A(X) = idH and A(∅) = 0.

(3) If {∆n}∞n=1 are pairwise disjoint sets in B(X), then for all g, h ∈ H,〈
A

( ∞⋃
n=1

∆n

)
g, h

〉
=

∫
X

1⋃∞
n=1 ∆n

dµg,h =

∞∑
n=1

µg,h(∆n) =

∞∑
n=1

∫
X

1∆ndµg,h =
∞∑
n=1

〈A(∆n)g, h〉.

This completes the proof of the claim.

We will now show that An → A in the ρ metric. Let ε > 0. Choose an N such that for

n,m ≥ N , ρ(An, Am) ≤ ε. Let f ∈ Lip1(X). If n ≥ N , and h ∈ H with ||h|| = 1,∣∣∣∣〈(∫ fdAn −
∫
fdA

)
h, h

〉∣∣∣∣ =

∣∣∣∣∫
X
fdAnh,h −

∫
X
fdAh,h

∣∣∣∣
= lim

m→∞

∣∣∣∣∫
X
fdAnh,h −

∫
X
fdAmh,h

∣∣∣∣
= lim

m→∞

∣∣∣∣〈(∫ fdAn −
∫
fdAm

)
h, h

〉∣∣∣∣ ,
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where the second equality is because
∫
fdAh,h = µh,h(f) = limn→∞

∫
fdAnh,h . For m ≥ N∣∣∣∣〈(∫ fdAn −

∫
fdAm

)
h, h

〉∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∫ fdAn −
∫
fdAm

∣∣∣∣∣∣∣∣ ||h||2
=

∣∣∣∣∣∣∣∣∫ fdAn −
∫
fdAm

∣∣∣∣∣∣∣∣
≤ ρ(An, Am)

≤ ε.

Hence

lim
m→∞

∣∣∣∣〈(∫ fdAn −
∫
fdAm

)
h, h

〉∣∣∣∣ ≤ ε,
and therefore ∣∣∣∣∣∣∣∣∫ fdAn −

∫
fdA

∣∣∣∣∣∣∣∣ ≤ ε.
Since the choice of N is independent of f ∈ Lip1(X), ρ(An, A) ≤ ε, which shows that the metric

space (S(X), ρ) is complete.

Since we have previously shown that (P (X), ρ) is a complete metric space, and P (X) ⊆ S(X),

where (S(X), ρ) is also complete, we can conclude that P (X) is a closed subset of S(X) in the ρ

metric. We can also consider the weak topology on S(X). Using the same argument as before, one

can show that the the weak topology on S(X) coincides with the topology induced by the ρ metric.

4.2 WOT-weak Topology

In Chapter 2, we showed that (P (X), ρ) is not compact, and therefore, (S(X), ρ) is also not

compact. In this section, we will consider a topology on (S(X), ρ) that is weaker than the topology

induced by the ρ metric, which we call the WOT-weak topology. We will show that the WOT-weak

topology on (S(X), ρ) is compact, by directly generalizing the proof of compactness in the classical

setting (Proposition 2.3.3 Part 1). Importantly, we note that this fact has been previously shown

by Ali [1], using more general theory.
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Definition 4.2.1. Let H be a Hilbert space. The weak operator topology (WOT) on B(H) is

the locally convex topology defined by the semi norms {ph,k : h, k ∈ H} where ph,k = |〈Ah, k〉|.

Accordingly, a net of operators {Li}i∈I ⊆ B(H) converges to an operator L ∈ B(H) in the weak

operator topology if 〈Lih, k〉 → 〈Lh, k〉 for all h, k ∈ H.

Theorem 4.2.2. [8][Proposition IX.5.5 in Conway] If M > 0, the subset of {L ∈ B(H) : ||L|| ≤

M} ⊆ B(H) is compact in the weak operator topology.

Equip B(H) with the weak operator topology. For each f ∈ C(X), define a mapping f̂ :

S(X)→ B(H) by A 7→
∫
X fdA. We note here that we will use the following equivalent notations:

f̂(A) =

∫
X
fdA = A(f).

Let the WOT-weak topology be the weakest topology on S(X) that makes the collection of

maps {f̂ : f ∈ CR(X)} continuous where we put the weak operator topology on B(H). In other

words, a net of positive operator-valued measures {Ai}i∈I ⊆ S(X) converges to a positive operator-

valued measure A ∈ S(X), if for all f ∈ CR(X), f̂(Ai) converges to f̂(A) in the weak operator

topology. Since the weak operator topology is a weaker topology than the operator norm topology

on B(H), the WOT-weak topology is a weaker topology than the weak topology (or equivalently

the topology induced by the ρ metric) on the space of positive operator-valued measures S(X).

Theorem 4.2.3. [1][Ali, Davison] The WOT-weak topology is sequentially compact.

Proof. Let {An}∞n=1 be a sequence in S(X). Since X is compact, C(X) is separable, and therefore

choose a countable dense subset of functions {fi}∞i=1 ⊆ C(X). Consider the bounded operators

{An(f1)}∞n=1. Note that for all n = 1, ..., ||An(f1)|| ≤ ||f1||∞. Since the subset {L ∈ B(H) :

||L|| ≤ ||f1||∞} ⊆ B(H) is compact in the weak operator topology (see Theorem 4.2.2), the se-

quence {An(f1)}∞n=1 admits a convergent subsequence in the weak operator topology, which we call

{A1
n(f1)}∞n=1. Consider the sequence of bounded operators {A1

n(f2)}∞n=1. Since for all n = 1, ...∞,

||A1
n(f2)|| ≤ ||f2||∞, the subsequence {A1

n(f2)}∞n=1 admits a further subsequence {A2
n(f2)}∞n=1 which

is convergent in the weak operator topology. If we continue the process, we obtain for each
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i = 1, ...∞ a sequence {Ain(fi)}∞n=1 which is convergent in the weak operator topology, such that

{Ai+1
n }∞n=1 is a subsequence of {Ain}∞n=1. Now choose some fi ∈ C(X) for 1 ≤ i ≤ ∞, and consider

the diagonal sequence, {Ann(fi)}∞n=1. For n ≥ i, {Ann(fi)} is a subsequence of {Ain(fi)}, and since

{Ain(fi)}∞n=i is convergent in the weak operator topology, so is {Ann(fi)}∞n=i, which implies that

{Ann(fi)}∞n=1 is convergent in the weak operator topology.

Let f ∈ C(X) and g, h ∈ H. We will show that the sequence {〈Ann(f)g, h〉}∞n=1 is Cauchy in

C. If g = 0 or h = 0, then the result is clear because every term in the sequence is zero. Therefore,

suppose that g 6= 0 and h 6= 0. Choose fi ∈ C(X) such that

||f − fi||∞ ≤
ε

3||h||||g||
.

By above, we know that {Ann(fi)}∞n=1 is convergent in the weak operator topology. Therefore, there

exists an N such that for m,n ≥ N , |〈Ann(fi)g, h〉 − 〈Amm(fi)g, h〉| ≤ ε
3 . Thus, if m,n ≥ N

|〈Ann(f)g, h〉 − 〈Amm(f)g, h〉| ≤ |〈Ann(f)g, h〉 − 〈Ann(fi)g, h〉|

+ |〈Ann(fi)g, h〉 − 〈Amm(fi)g, h〉|

+ |〈Amm(fi)g, h〉 − 〈Amm(f)g, h〉|

≤
∫
X
|f − fi|dAnng,h +

ε

3
+

∫
X
|f − fi|dAmmg,h

≤ ε.

Hence, for all f ∈ C(X) and g, h ∈ H, the sequence {〈Ann(f)g, h〉}∞n=1 =
{∫

X fdA
n
ng,h

}∞
n=1

is

Cauchy in C. Define µg,h : C(X)→ C by f 7→ limn→∞
∫
X fdA

n
ng,h. Observe that µg,h is a bounded

linear functional, and hence by Theorem 4.1.5, µg,h is a measure.

Using a similar approach as in the proof of Theorem 4.1.7, we note that the map [g, h] 7→ µg,h

is sesquilinear, and accordingly, there exists a positive operator-valued measure A ∈ S(X) such that

〈A(∆)g, h〉 = µg,h(∆) for all ∆ ∈ B(X).

It remains to show that {Ann}∞n=1 converges to A in the weak operator topology. Choose

f ∈ CR(X), and g, h ∈ H. By construction,

〈Ann(f)g, h〉 → 〈A(f)g, h〉.
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Hence, {An}∞n=1 admits a convergent subsequence {Ann}∞n=1 in the WOT-weak topology, which

completes the proof.

Proposition 4.2.4. [1][Ali, Davison] Let H be a separable Hilbert space. The WOT-weak topology

on S(X) is first countable.

Proof. Since H is a separable Hilbert space, let O = {hj : j = 1, ...,∞} be a countable orthonormal

basis in H. Since CR(X) is separable, let P be a countable dense subset of CR(X).

Let A ∈ S(X), f1, ..., fk ∈ P , and hj , hl ∈ O. For n ∈ N = {1, 2, ...}, consider the following

subset of S(X):

{B ∈ S(X) : |〈B(fi)hj , hl〉 − 〈A(fi)hj , hl〉| <
1

n
for all i = 1, ..., k}.

Consider the collection of all finite intersections of subsets of S(X) of the above form where A ∈

S(X), f1, ..., fk ∈ P , hj , hl ∈ O, n ∈ N are all arbitrary. This forms a basis for a topology on S(X)

which is first countable, and let this topology be denoted ξ.

We claim that the the ξ topology and the WOT-weak topology coincide. To this end, put

the weak operator topology on B(H), and let f ∈ CR(X). We will show that the previously defined

map f̂ : S(X)→ B(H) is continuous with respect to the ξ topology. Since the WOT-weak topology

is the weakest topology making all of the maps of the form {f̂ : f ∈ CR(X)} continuous, we will

have shown that the WOT-weak topology is weaker than the ξ topology.

Since the ξ topology is first countable, it can be defined by sequences. Therefore, suppose

{An}∞n=1 ⊆ S(X) converges in the ξ topology to A ∈ S(X). We need to show that f̂(An)→ f̂(A)

in the weak operator topology. Note that for all n∣∣∣∣∣∣∣∣∫ fdAn

∣∣∣∣∣∣∣∣ ≤ ||f ||∞
and hence,

sup
n=1,...,∞

∣∣∣∣∣∣∣∣∫ fdAn

∣∣∣∣∣∣∣∣ <∞.
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Therefore, by Proposition IX.1.3 in [8], it is enough to show that limn→∞〈An(f)hj , hl〉 = 〈A(f)hj , hl〉

for all hj , hl ∈ O. Accordingly, let hj , hl ∈ O, and let ε > 0. Choose g ∈ P such that

||f − g||∞ ≤ ε
3||hj ||||hl|| , and choose s > 0 such that 1

s ≤
ε
3 . Consider

O =

{
B ∈ S(X) : |〈B(g)hj , hl〉 − 〈A(g)hj , hl〉| <

1

s

}
.

Since An → A in the ξ topology, there exists an N such that for n ≥ N , An ∈ O. For n ≥ N

|〈An(f)hj , hl〉 − 〈A(f)hj , hl〉| ≤ |〈An(f)hj , hl〉 − 〈A(g)hj , hl〉|

+ |〈An(g)hj , hl〉 − 〈A(g)hj , hl〉|

+ |〈A(g)hj , hl〉 − 〈A(f)hj , hl〉|

≤ ||f − g||∞||hj ||||hl||+
1

s
+ ||f − g||∞||hj ||||hl||

≤ ε.

Hence, An(f)→ A(f) in the weak operator topology.

Let A ∈ S(X) and letW = {B ∈ S(X) : |〈B(fi)hj , hl〉−〈A(fi)hj , hl〉| < 1
n for all i = 1, ..., k}

be an arbitrary sub-basis element of the the ξ topology. We need to show that W is open in the

WOT-weak topology. Define Oi = f̂i
−1

({L ∈ B(H) : |〈Lhj , hl〉− 〈A(fi)hj , hl〉| < 1
n}). Since the set

{L ∈ B(H) : |〈Lhj , hl〉 − 〈A(fi)hj , hl〉| < 1
n} is open in the weak operator topology, Oi is open in

the WOT-weak topology. Notice that Oi = {B ∈ S(X) : |〈B(fi)hj , hl〉 − 〈A(fi)hj , hl〉| < 1
n}. Now

observe that W =
⋂k
i=1Oi, which is an open element in the WOT-weak topology, because each Oi

is open in the WOT-weak topology. Hence, the two topologies coincide. Since the ξ topology is

first countable, the WOT-weak topology is first countable as well.

Corollary 4.2.5. [1][Ali, Davison] Let H be a separable Hilbert space. Then the WOT-weak topol-

ogy on S(X) is compact.

Proof. Since H is a separable Hilbert space, the above proposition shows that the WOT-weak

topology on S(X) is first countable. By Theorem 4.2.3, we know that S(X) is sequentially compact.
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In first countable topologies, sequential compactness and compactness are equivalent. Hence, S(X)

with the WOT-weak topology is compact.



Chapter 5

Generalizing to Non-Compact Metric Spaces

In this chapter, we will consider the generalized Kantorovich metric when the underlying

metric space is complete and separable (not necessarily compact). In Chapter 1, we presented

the known results for the classical Kantorovich metric over an underlying complete and separable

metric space. Indeed, the reader may recall that for an appropriate collection of Borel probability

measures, the resulting metric space of measures equipped with the Kantorovich metric is complete.

It will turn out that the same result is true for an appropriate collection of projection-valued and

positive operator-valued measures.

5.1 The Appropriate Collection of Projection Valued Measures

Let (Y, d) be a complete and separable metric space. Let H be a Hilbert space, and let P0(Y )

be the collection of projection valued measures with respect to the pair (Y,H) with the following

additional property: If E ∈ P0(Y ), then for all f ∈ Lip(Y ), there exists an 0 ≤ Mf,E < ∞ such

that ∣∣∣∣∫
Y
fdEg,h

∣∣∣∣ ≤Mf,E ||g||||h||,

for all g, h ∈ H, and where Lip(Y ) denotes the collection of all real-valued Lipschitz functions

on Y . An example of an element in P0(Y ) would be a projection-valued measure E such that

E(K) = 1H, for K a compact subset of Y . In this case, note that E(Y \K) = 0. If f ∈ Lip(Y ),
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let Mf,E = maxx∈K |f(x)| and observe that∣∣∣∣∫
Y
fdEg,h

∣∣∣∣ ≤ ∣∣∣∣∫
K
fdEg,h

∣∣∣∣+

∣∣∣∣∣
∫
Y \K

fdEg,h

∣∣∣∣∣
≤

∫
K
|f |d|Eg,h|

≤ Mf,E ||g||||h||,

for all g, h ∈ H. Hence, E ∈ P0(Y ).

On this sub-collection of projection-valued measures we will consider the generalized Kan-

torovich metric. That is, for E,F ∈ P0(Y ) define (exactly as before)

ρ(E,F ) = sup
f∈Lip1(Y )

{∣∣∣∣∣∣∣∣∫ fdE −
∫
fdF

∣∣∣∣∣∣∣∣} .
We will now show that this metric is well defined (finite) on P0(Y ). To do this, we need to make a

preliminary observation. In particular, if E ∈ P0(Y ) and f ∈ Lip(Y ), there exists by definition an

Mf,E ≥ 0 such that ∣∣∣∣∫
Y
fdEg,h

∣∣∣∣ ≤Mf,E ||g||||h||,

for all g, h ∈ H. This means that the map [g, h] 7→
∫
Y fdEg,h is a bounded sesquilinear form. By

Theorem 4.1.6 there exists a bounded operator
∫
fdE ∈ B(H) such that〈(∫

fdE

)
g, h

〉
=

∫
Y
fdEg,h,

for all g, h ∈ H, where
∣∣∣∣∫ fdE∣∣∣∣ ≤ Mf,E . With this observation, we will proceed to showing the

finiteness of ρ. Let E,F ∈ P0(Y ), f ∈ Lip1(Y ), and x0 ∈ Y . Then∣∣∣∣∣∣∣∣∫ fdE −
∫
fdF

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∫ fdE − f(x0)idH + f(x0)idH −
∫
fdF

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∫ fdE −
∫
f(x0)dE −

(∫
fdF −

∫
f(x0)dF

)∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣∫ (f − f(x0))dE

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∫ (f − f(x0)) dF

∣∣∣∣∣∣∣∣
Let h ∈ H with ||h|| = 1. Then
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∣∣∣∣〈(∫ (f(x)− f(x0))dE

)
h, h

〉∣∣∣∣ =

∣∣∣∣∫
Y

(f(x)− f(x0))dEh,h(x)

∣∣∣∣
≤

∫
Y
|f(x)− f(x0)|dEh,h(x)

≤
∫
Y
d(x, x0)dEh,h(x)

≤ Md(x,x0),E ||h||2

= Md(x,x0),E ,

where Md(x,x0),E ≥ 0 is the non-negative number associated to the Lip(Y ) (in fact, Lip1(Y ))

function d(x, x0) and the projection valued measure E. Hence,∣∣∣∣∣∣∣∣∫ (f − f(x0))dE

∣∣∣∣∣∣∣∣ ≤Md(x,x0),E .

Similarly, there exists an Md(x,x0),F ≥ 0 such that∣∣∣∣∣∣∣∣∫ (f − f(x0))dF

∣∣∣∣∣∣∣∣ ≤Md(x,x0),F .

Since Md(x,x0),E and Md(x,x0),F do not depend on the choice of f ∈ Lip1(Y ), ρ(E,F ) ≤Md(x,x0),E +

Md(x,x0),F <∞.

5.2 The Metric Space (P0(Y ), ρ) is Complete

In this section, we will show that the metric space (P0(Y ), ρ) is complete. We will rely

on Proposition 2.4.2. We will also use the following lemma, which can be found in the proof of

Proposition 1 in [4].

Lemma 5.2.1. [4] [Proposition 1 in Berberian] Let {Bn}∞n=1 be a sequence of positive operators

on the Hilbert space H such that ||Bn|| ≤ M for all n = 1, 2, ..., and such that for all h ∈ H,

limn→∞〈Bnh, h〉 = 0. Then limn→∞ ||Bnh|| = 0.

Proof. Let h ∈ H. Note that ||Bnh||2 = 〈Bnh,Bnh〉 = |〈Bnh, g〉| where g = Bnh. By a generalized

Schwarz inequality,

0 ≤ |〈Bnh, g〉| ≤ 〈Bnh, h〉
1
2 〈Bng, g〉

1
2 ≤ 〈Bnh, h〉

1
2 (||Bng||||g||)

1
2 ≤
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〈Bnh, h〉
1
2 (||Bn||3||h||2)

1
2 ≤ 〈Bnh, h〉

1
2M

3
2 ||h||.

By assumtion, limn→∞〈Bnh, h〉 = 0. Hence, limn→∞〈Bnh, h〉
1
2M

3
2 ||h|| = 0, which implies that

limn→∞ ||Bnh|| = 0.

Theorem 5.2.2. [Davison] The metric space (P0(Y ), ρ) is complete.

Proof. We note that the proof of this result uses some of the same techniques as in the proof of

the analogous result by Kravchenko [21] that (M(Y ), H) is complete (see Theorem 2.1.8). Suppose

that {En}∞n=1 is a Cauchy sequence of elements in (P0(Y ), ρ). We want to find an E ∈ (P0(Y ), ρ)

such that En → E in the ρ metric.

Claim 5.2.3. Let h ∈ H and f ∈ Lip(Y ). The sequence {
∫
Y fdEnh,h}

∞
n=1 is a Cauchy sequence of

real numbers.

Proof of Claim: This claim follows from the observation that there exists a T > 0 such that

f
T ∈ Lip1(Y ). Hence

0 ≤
∣∣∣∣∫
Y

f

T
dEnh,h −

∫
Y

f

T
dEmh,h

∣∣∣∣ =

∣∣∣∣〈(∫ f

T
dEn −

∫
f

T
dEm

)
h, h

〉∣∣∣∣ ≤∣∣∣∣∣∣∣∣∫ f

T
dEn −

∫
f

T
dEm

∣∣∣∣∣∣∣∣ ||h||2 ≤ ρ(En, Em)||h||2 → 0

as m,n→∞. Since ||h|| and T are fixed,∣∣∣∣∫
Y
fdEnh,h −

∫
Y
fdEmh,h

∣∣∣∣→ 0

as m,n→∞. This proves the claim.

Observe that Enh,h(Y ) = 〈En(Y )h, h〉 = ||h||2 for all n = 1, 2, .... Since Lipb(Y ) ⊆ Lip(Y ),

we can use Proposition 2.4.2 to conclude that there exists a Borel measure µh,h on Y such that

µh,h(Y ) = ||h||2, and such that Enh,h converges to µh,h in the weak topology. By convergence in the

weak topology, we mean that for all f ∈ Cb(Y ),
{∫

Y fdEnh,h
}∞
n=1

converges to
∫
Y fdµh,h (where

Cb(Y ) are the real valued continuous functions on Y that are bounded). We note that Proposition

2.4.2 is the key result of Kravchenko that allowed him to prove the analogous result which is that

(M(Y ), H) is a complete metric space.
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We now want to define µg,h for g, h ∈ H such that
{∫

Y fdEng,h
}∞
n=1

converges to
∫
Y fdµg,h

for all f ∈ Cb(Y ). Let g, h ∈ H. If Eng,h = ReEng,h + iImEng,h , we can calculate that ReEng,h =

1
2(Eng+h,g+h − Eng,g − Enh,h) and ImEng,h = −1

2(Enig+h,ig+h − Eng,g − Enh,h). Accordingly, define

Reµg,h := 1
2(µg+h,g+h − µg,g − µh,h) and Imµg,h := −1

2(µig+h,ig+h − µg,g − µh,h). Hence, by the

discussion in the above paragraph, we can conclude that
{∫

Y fdEng,h
}∞
n=1

converges to
∫
Y fdµg,h

for all f ∈ Cb(Y ).

Using a similar method as in the proof of Theorem 4.1.7, we can conclude that the map

[g, h] 7→ µg,h is sesquilinear, and that µg,h inherits the following two additional properties:

• For g, h ∈ H, µg,h has total variation less than or equal to ||g||||h||.

• For g, h ∈ H, µg,h = µh,g.

Let ∆ ∈ B(Y ). The map [g, h] 7→
∫
Y 1∆dµg,h is a bounded sesquilinear form with bound 1.

By Theorem 4.1.6, there exists a unique bounded operator, E(∆) ∈ B(H), such that for all g, h ∈ H

〈E(∆)g, h〉 =

∫
Y

1∆dµg,h,

with ||E(∆)|| ≤ 1. Define E : B(Y )→ B(H) by ∆ 7→ E(∆), and note that for g, h ∈ H, Eg,h = µg,h.

This map E is a positive operator valued measure (see the proof in Theorem 4.1.7). It remains to

show that E ∈ P0(Y ). That is, we need to show:

(1) For f ∈ Lip(Y ), there exists an Mf,E < ∞ such that
∣∣∫
Y fdEg,h

∣∣ ≤ Mf,E ||g||||h|| for all

g, h ∈ H.

(2) {En}∞n=1 converges to E in the ρ metric.

(3) E is a projection-valued measure.

We will first show (1). Choose some f ≥ 0 ∈ Lip(Y ). There exists a T > 0 such that 1
T f ∈ Lip1(Y ).

Since we are assuming the sequence {En}∞n=1 is Cauchy in the ρ metric, the sequence of self-adjoint
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operators
{∫

fdEn
}∞
n=1

is Cauchy in the operator norm topology on B(H). This implies that these

operators are uniformly bounded. That is, there exists an N > 0 such that∣∣∣∣∣∣∣∣∫ fdEn

∣∣∣∣∣∣∣∣ ≤ N
for all n = 1, ...∞.

For all g, h ∈ H, we claim that
∣∣∫
Y fdEg,h

∣∣ < ∞. Indeed, choose h ∈ H and consider the se-

quence {Enh,h}∞n=1 which converges to Eh,h in the weak topology. Define fk(x) = minx∈Y {k, f(x)} ∈

Cb(Y ) ∩ Lip(Y ), and note that fk ↑ f on Y . We note here that the idea of using the cutoff func-

tion, fk, is also a central part of the proof of Theorem 2.1.8 by A. Kravchenko. By the monotone

convergence theorem ∫
Y
fkdEh,h ↑

∫
Y
fdEh,h.

Suppose this is an unbounded increasing sequence. Then choose a kl such that∫
Y
fkldEh,h > l,

where l = 1, 2, .... For a fixed l, ∫
Y
fkldEnh,h →

∫
Y
fkldEh,h,

because {Enh,h}∞n=1 converges to Eh,h in the weak topology and fkl ∈ Cb(Y ). Hence choose an nl

such that ∫
Y
fkldEnlh,h > l.

Again by the monotone convergence theorem∫
Y
fkldEnlh,h ↑

∫
Y
fdEnlh,h ,

and hence, ∫
Y
fdEnlh,h > l.

This last line is a contradiction to the fact that the sequence
{∫

Y fdEnh,h
}∞
n=1

is a Cauchy sequence

of real numbers (because f ∈ Lip(Y ) and Claim 5.2.3) . Hence
∫
Y fdAh,h < ∞ for all h ∈ H. For
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g, h ∈ H, we can decompose Ag,h into its positive measure parts, as we have done previously, to

get that
∣∣∫
Y fdAg,h

∣∣ <∞.
The next thing to note is that since fk(x) ≤ f(x),

∫
fkdEn ≤

∫
fdEn for all n, as elements

of B(H). Hence for any k and n, ∣∣∣∣∣∣∣∣∫ fkdEn

∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∫ fdEn

∣∣∣∣∣∣∣∣ ≤ N.
We are now prepared to show that there exists an Mf,E <∞ such that∣∣∣∣∫

Y
fdEg,h

∣∣∣∣ ≤Mf,E ||g||||h||,

for all g, h ∈ H. Let ε > 0 and let g, h ∈ H. Since fk ↑ f and
∣∣∫
Y fdEg,h

∣∣ < ∞, there exists a k

such that ∣∣∣∣∫
Y

(f − fk)dEg,h
∣∣∣∣ < ε.

Observe that

∣∣∣∣∫
Y
fdEg,h

∣∣∣∣ ≤ ∣∣∣∣∫
Y

(f − fk)dEg,h
∣∣∣∣+

∣∣∣∣∫
Y
fkdEg,h

∣∣∣∣
≤ ε+ lim

n→∞

∣∣∣∣∫
Y
fkdEng,h

∣∣∣∣ ,
where the second inequality is because fk ∈ Cb(Y ). We know that for all n and k that∣∣∣∣∫

Y
fkdEng,h

∣∣∣∣ ≤ ∣∣∣∣〈(∫ fkdEn

)
g, h

〉∣∣∣∣ ≤ N ||g||||h||.
Therefore

ε+ lim
n→∞

∣∣∣∣∫
Y
fkdEng,h

∣∣∣∣ ≤ ε+N ||g||||h||.

Since ε is arbitrary, ∣∣∣∣∫ fdEg,h

∣∣∣∣ ≤ N ||g||||h||.
Note that N does not depend on the choice of g, h ∈ H. It only depends on the choice of f ≥ 0 ∈

Lip(Y ). Hence, we can let Mf,E = N .
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For any arbitrary f ∈ Lip(Y ), decompose f into its positive and negative parts; f = f+−f−.

Note that f+ and f− are both non-negative elements of Lip(Y ). Let Mf,E = Mf+,E +Mf−,E . For

g, h ∈ H, ∣∣∣∣∫ fdEg,h

∣∣∣∣ ≤ ∣∣∣∣∫ f+dEg,h

∣∣∣∣+

∣∣∣∣∫ f−dEg,h

∣∣∣∣
≤ Mf+,E ||g||||h||+Mf−,E ||g||||h||

= Mf,E |g||||h||

This complete the proof of (1). We will next show (2). We need to show that En → E in the

ρ metric. Let ε > 0. Since {En}∞n=1 is Cauchy in the ρ metric, there exists an N such that

for n,m ≥ N , ρ(En, Em) ≤ ε
6 . Let n ≥ N , let f ∈ Lip1(Y ) with f ≥ 0, and define fk(x) =

minx∈Y {k, f(x)} ∈ Cb(Y )∩Lip1(Y ). As before, observe that fk ↑ f on Y . Let h ∈ H with ||h|| = 1.

By the monotone convergence theorem,∫
Y
fkdEnh,h ↑

∫
Y
fdEnh,h <∞

and ∫
Y
fkdEh,h ↑

∫
Y
fdEh,h <∞,

where the finiteness of the limiting integrals is because En ∈ P0(Y ), and because E satisfies part

(1) above. Accordingly, choose k such that∣∣∣∣∫
Y
fkdEnh,h −

∫
Y
fdEnh,h

∣∣∣∣ ≤ ε

6

and ∣∣∣∣∫
Y
fkdEh,h −

∫
Y
fdEh,h

∣∣∣∣ ≤ ε

6
.

Since {Emh,h}∞m=1 converges in the weak topology to Eh,h, and fk ∈ Cb(Y ),

lim
m→∞

∫
Y
fkdEmh,h =

∫
Y
fkdEh,h.

Then ∣∣∣∣〈(∫ fdEn −
∫
fdE

)
h, h

〉∣∣∣∣ =

∣∣∣∣∫
Y
fdEnh,h −

∫
Y
fdEh,h

∣∣∣∣
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≤
∣∣∣∣∫
Y
fdEnh,h −

∫
Y
fkdEnh,h

∣∣∣∣+

∣∣∣∣∫
Y
fkdEnh,h −

∫
Y
fkdEh,h

∣∣∣∣+

∣∣∣∣∫
Y
fkdEh,h −

∫
Y
fdEh,h

∣∣∣∣
=

∣∣∣∣∫
Y
fdEnh,h −

∫
Y
fkdEnh,h

∣∣∣∣+ lim
m→∞

∣∣∣∣∫
Y
fkdEnh,h −

∫
Y
fkdEmh,h

∣∣∣∣+

∣∣∣∣∫
Y
fkdEh,h −

∫
Y
fdEh,h

∣∣∣∣
≤ ε

6
+ lim
m→∞

∣∣∣∣∫
Y
fkdEnh,h −

∫
Y
fkdEmh,h

∣∣∣∣+
ε

6

=
ε

3
+ lim
m→∞

∣∣∣∣〈(∫ fkdEn −
∫
fkdEm

)
h, h

〉∣∣∣∣ ≤ ε

3
+
ε

6
=
ε

2
,

because of the inequality∣∣∣∣〈(∫ fkdEn −
∫
fkdEm

)
h, h

〉∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∫ fkdEn −
∫
fkdEm

∣∣∣∣∣∣∣∣ ||h||2 ≤ ρ(En, Em)||h||2 = ρ(En, Em).

Hence for n ≥ N and f ∈ Lip1(Y ) such that f ≥ 0,∣∣∣∣∣∣∣∣∫ fdEn −
∫
fdE

∣∣∣∣∣∣∣∣ ≤ ε

2
.

Now for arbitrary f ∈ Lip1(Y ), decompose f into its positive and negative parts; f = f+−f−.

Note that f+ and f− are both non-negative elements of Lip1(Y ). Then for n ≥ N∣∣∣∣∣∣∣∣∫ fdEn −
∫
fdE

∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∫ f+dEn −
∫
f+dE

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∫ f−dEn −
∫
f−dE

∣∣∣∣∣∣∣∣
≤ ε

2
+
ε

2

= ε,

which shows that ρ(En, E) ≤ ε. This is because the choice of N is independent of the choice of

f ∈ Lip1(Y ).

Lastly, we need to show (3). That is, we need to show that E is a projection-valued measure.

Since we know that E is a positive operator-valued measure, E(∆) is self adjoint for all ∆ ∈ B(Y ).

Hence, to show that E is a projection valued measure, it is enough to show that E(∆1 ∩ ∆2) =

E(∆1)E(∆2) for ∆1,∆2 ∈ B(Y ). To this end, let C and D be closed subsets of Y . Let {fn}∞n=1

be a sequence of functions in Lip(Y ) such that fn ↓ 1C and such that ||fn||∞ ≤ 1 for all n = 1, 2..

(see the proof of Theorem 3.1.9 for a specific definition of this sequence of functions). Similarly, let

{gn}∞n=1 be a sequence of functions in Lip(Y ) such that gn ↓ 1D and such that ||gn||∞ ≤ 1 for all

n = 1, 2...
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For all h ∈ H, by the dominated convergence theorem,〈(∫
fndE

)
h, h

〉
→
〈(∫

1CdE

)
h, h

〉
as n→∞. That is, for all h ∈ H ∫

Y
fn − 1CdEh,h ↓ 0

as n→∞. Also, note that for all n = 1, 2, ...,∣∣∣∣∣∣∣∣∫ fn − 1CdE

∣∣∣∣∣∣∣∣ ≤ ||fn − 1C ||∞ ≤ 1.

Moreover, since E is already known to be a positive operator valued measure, and since fn−1C ≥ 0

for all n = 1, 2, .., the sequence of operators {
∫
fn−1CdE}∞n=1 are positive operators. By the above

discussion, we see that the sequence of operators {
∫
fn − 1CdE}∞n=1 satisfies Lemma 5.2.1. This

means that for all h ∈ H

lim
n→∞

∣∣∣∣∣∣∣∣(∫ fn − 1CdE

)
h

∣∣∣∣∣∣∣∣ = 0,

which is equivalent to saying that

lim
n→∞

∣∣∣∣∣∣∣∣(∫ fndE

)
h− E(C)h

∣∣∣∣∣∣∣∣ = 0. (5.1)

Similarly,

lim
n→∞

∣∣∣∣∣∣∣∣(∫ gndE

)
h− E(D)h

∣∣∣∣∣∣∣∣ = 0. (5.2)

We now have the following claim.

Claim 5.2.4. For all n = 1, 2, ...,(∫
fndE

)(∫
gndE

)
=

∫
fngndE.

Proof of Claim: Choose some n = 1, 2, .... Since fn ∈ Lip(Y ) with ||fn||∞ ≤ 1, and since

gn ∈ Lip(Y ) with ||gn||∞ ≤ 1, fngn ∈ Lip(Y ). Next, since Em → E in the ρ metric, we have

that
∫
fndEm →

∫
fndE,

∫
gndEm →

∫
gndE, and

∫
fngndEm →

∫
fngndE as m → ∞ where

convergence is in the operator norm. Moreover, since Em is a projection valued measure, and since
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fn and gn are bounded, we have that
(∫
fndEm

) (∫
gndEm

)
=
(∫
fngndEm

)
for all m = 1, 2, ...

Combining all of this data, we get that∫
fngndEm =

(∫
fndEm

)(∫
gndEm

)
→
(∫

fndE

)(∫
gndE

)
,

and ∫
fngndEm →

∫
fngndE,

which shows that
∫
fngndE =

(∫
fndE

) (∫
gndE

)
. This completes the proof of the claim.

We will now show that E(C)E(D) = E(C ∩ D) as an operator on H. Note that fn ↓ 1C ,

gn ↓ 1D, and moreover, fngn ↓ 1C∩D. Hence for h ∈ H, we also have that〈(∫
fngndE

)
h, h

〉
→
〈(∫

1C∩DdE

)
h, h

〉
,

as n → ∞. Since E is a positive operator-valued measure, we know that E(C) is self adjoint.

Therefore,

〈E(C)E(D)h, h〉 = 〈E(D)h,E(C)h〉 = lim
n→∞

〈(∫
gndE

)
h,

(∫
fndE

)
h

〉
=

lim
n→∞

〈(∫
fngndE

)
h, h

〉
=

〈(∫
1C∩DdE

)
h, h

〉
= 〈E(C ∩D)h, h〉,

where the second equality is by equations (5.1) and (5.2), and the third equality is because of Claim

5.2.4.

Now let ∆1,∆2 ∈ B(Y ). If h ∈ H, note that Eh,h is a regular measure. Hence, there

exists a sequence of compact subsets {Ck}∞k=1 ⊆ B(Y ) such that Eh,h(Ck) ↑ Eh,h(∆1), and a

sequence of compact subsets {Dk}∞k=1 ⊆ B(Y ) such that Eh,h(Dk) ↑ Eh,h(∆2). Additionally,

Eh,h(Ck ∩Dk) ↑ Eh,h(∆1 ∩∆2). Note that

〈(E(∆1)− E(Ck))h, h〉 → 0,

as k → ∞. Next, note that since Ck ⊆ ∆1 for all k = 1, 2, ..., the operator E(∆1) − E(Ck)

is a positive operator. Moreover, ||E(∆1) − E(Ck)|| ≤ 2 for all k = 1, 2, .... We can appeal to
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Lemma 5.2.1 to conclude that limk→∞ ||(E(∆1)−E(Ck))h|| = 0, or equivalently, limk→∞ ||E(∆1)h−

E(Ck)h|| = 0. Similarly, limk→∞ ||E(∆2)h− E(Dk)h|| = 0. Then

〈E(∆1)E(∆2)h, h〉 = 〈E(∆2)h,E(∆1)h〉 = lim
k→∞
〈E(Dk)h,E(Ck)h〉 =

lim
k→∞
〈E(Ck)E(Dk)h, h〉 = lim

k→∞
〈E(Ck ∩Dk)h, h〉 = 〈E(∆1 ∩∆2)h, h〉,

where the fourth equality is because Ck and Dk are compact (in particular, closed). Hence, E is a

projection-valued measure, and this completes the proof of part (3), and the theorem.

5.3 A Modified Generalized Kantorovich Metric

As we did in Chapter 2, we will consider a modified Kantorovich metric. Indeed, let P (Y )

denote the collection of all projection-valued measures with respect to the pair (Y,H).

Definition 5.3.1. Define the modified generalized Kantorovich metric, Mρ, on P (Y ) by:

Mρ(E,F ) = sup

{∣∣∣∣∣∣∣∣∫ fdE −
∫
fdF

∣∣∣∣∣∣∣∣ : f ∈ Lip1(Y ) and ||f ||∞ ≤ 1

}
for E,F ∈ P (Y ).

The condition ||f ||∞ ≤ 1 guarantees that this metric will be finite on P (Y ).

Theorem 5.3.2. [Davison] The metric space (P (Y ),Mρ) is complete.

Proof. The proof of this theorem follows the proof of Theorem 5.2.2, with several differences that

we will point out. Suppose that {En}∞n=1 is a Cauchy sequence of elements in (P (Y ),Mρ). We

want to find an E ∈ (P (Y ),Mρ) such that En → E in the Mρ metric. Because Mρ takes a

supremum over f ∈ Lip1(Y ) such that ||f ||∞ ≤ 1, we obtain a version of Claim 5.2.3 only for

Lipb(Y ) functions. However, this is not an impediment, because Proposition 2.4.2 only considers

Lipb(Y ) functions. Hence, using the techniques of the proof of Theorem 5.2.2, we obtain a positive

operator-valued measure E on Y . The proof that E is a projection-valued measure depends on

the construction of a sequence {fn}∞n=1 ∈ Lip(Y ), but one can see that actually this sequence of
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functions is contained in Lipb(Y ). Hence, the proof that E is a projection-valued measure carries

over to the Mρ metric.

Lastly, we need to show that En → E in the Mρ metric. Let ε > 0. Choose an N such that

for n,m ≥ N , Mρ(En, Em) ≤ ε. Let f ∈ Lip1(Y ) with ||f ||∞ ≤ 1, and let h ∈ H with ||h|| = 1. If

n ≥ N ∣∣∣∣〈(∫ fdEn −
∫
fdE

)
h, h

〉∣∣∣∣ =

∣∣∣∣∫
Y
fdEnh,h −

∫
X
fdEh,h

∣∣∣∣
= lim

m→∞

∣∣∣∣∫
X
fdEnh,h −

∫
X
fdEmh,h

∣∣∣∣ ,

where the last equality is because f ∈ Cb(Y ) and Emh,h converges weakly to Eh,h. Observe that

for all m ≥ N , ∣∣∣∣∫
X
fdEnh,h −

∫
X
fdEmh,h

∣∣∣∣ =

∣∣∣∣〈(∫ fdEn −
∫
fdEm

)
h, h

〉∣∣∣∣
≤ Mρ(En, Em)||h||2

≤ ε.

Therefore if n ≥ N ,
∣∣∣∣∫ fdEn − ∫ fdE∣∣∣∣ ≤ ε. Since N does not depend on the choice of f ,

Mρ(En, E) ≤ ε, and (P (Y ),Mρ) is complete.



Chapter 6

A Fixed Projection-Valued Measure

In this chapter, we will introduce the well known notion of an iterated function system (IFS)

on a compact metric space. In particular, we will use the Contraction Mapping Theorem on the

complete metric space, (P (X), ρ), of projection-valued measures to provide an alternative method

for proving a fixed point result due to P. Jorgensen (see [17] and [18]). This fixed point, which is a

projection-valued measure, is related to Cuntz algebras.

6.1 Preliminaries

Let (X, d) be a compact metric space and consider the compact metric space (M(X), H),

where we recall thatM(X) is the collection of Borel probability measures onX andH is the classical

Kantorovich metric (see Proposition 2.3.3) . Let S = {σ0, ..., σN−1} be an iterated function system

(IFS) on (X, d). That is, for all 0 ≤ i ≤ N − 1, σi : X → X such that for all x, y ∈ X

d(σi(x), σi(y)) ≤ rid(x, y),

where 0 < ri < 1. Indeed, each σi is a Lipschitz contraction on X, and ri is the Lipschitz constant

associated to σi.

Let σ : X → X be a Borel measurable function such that σ ◦ σi = idX for all 0 ≤ i ≤ N − 1.

Assume further that

X =

N−1⋃
i=0

σi(X), (6.1)

where the above union is disjoint. We provide a standard example for the above scenario:
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• Let X = Cantor Set ⊆ [0, 1], with the standard metric on R.

• Let σ0(x) = 1
3x and σ1(x) = 1

3x+ 2
3 .

• Let σ(x) = 3x mod 1.

We now state the following important result due to Hutchinson.

Theorem 6.1.1. [14][Hutchinson] The map T : M(X)→M(X) by

ν(·) 7→
N−1∑
k=0

1

N
ν(σ−1

k (·)),

is a Lipschitz contraction in the (M(X), H) metric space, with Lipschitz constant r := max0≤i≤N−1{ri}.

By applying the Contraction Mapping Theorem to the Lipschitz contraction T , there exists

a unique measure, µ ∈M(X), such that T (µ) = µ. That is

µ(·) =
N−1∑
k=0

1

N
µ(σ−1

k (·)).

This unique invariant measure, µ, is called the Hutchinson measure associated to S. Consider the

Hilbert space L2(X,µ). Define

Si : L2(X,µ)→ L2(X,µ) by φ 7→ (φ ◦ σ)
√
N1σi(X)

for all i = 0, ..., N − 1, and its adjoint

S∗i : L2(X,µ)→ L2(X,µ) by φ 7→ 1√
N

(φ ◦ σi)

for all i = 0, ..., N − 1. This leads to the following result due to P. Jorgensen.

Theorem 6.1.2. [16] [Jorgensen] The maps {Si : 0 ≤ i ≤ N − 1} are isometries, and the maps

{S∗i : 0 ≤ i ≤ N − 1} are their adjoints. Moreover, these maps and their adjoints satisfy the Cuntz

relations:

(1)

N−1∑
i=0

SiS
∗
i = 1H

(2) S∗i Sj = δi,j1H where 0 ≤ i, j ≤ N − 1.
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Corollary 6.1.3. [16] [Jorgensen] The Hilbert space L2(X,µ) admits a representation of the Cuntz

algebra, ON , on N generators.

Let ΓN = {0, ..., N − 1}. For k ∈ Z+, let ΓkN = ΓN × ...× ΓN , where the product is k times.

If a = (a1, ..., ak) ∈ ΓkN , where aj ∈ {0, 1, ..., N − 1} for 1 ≤ j ≤ k, define

Ak(a) = σa1 ◦ ... ◦ σak(X).

Using that (6.1) is a disjoint union, we conclude that {Ak(a)}a∈ΓkN
partitions X for all k ∈ Z+. For

k ∈ Z+ and a = (a1, ..., ak) ∈ ΓkN define,

Pk(a) = SaS
∗
a,

where Sa = Sa1 ◦ ... ◦ Sak . The Cuntz relations suggest that Pk(a) is a projection on the Hilbert

space L2(X,µ).

We state another result due to Jorgensen.

Theorem 6.1.4. [17] [18] [Jorgensen] There exists a unique projection-valued measure E(·) defined

on the Borel subsets of X, B(X), taking values in the projections on L2(X,µ) such that

(1) E(·) =
∑N−1

i=0 SiE(σ−1
i (·))S∗i , and

(2) E(Ak(a)) = Pk(a) for all k ∈ Z+ and a ∈ ΓkN .

One can calculate that Pk(a) = M1Ak(a)
, where M1Ak(a)

is the projection on L2(X,µ) given

by multiplication by 1Ak(a). Hence, E(·) is the canonical projection valued measure given by

multiplication by the indicator function.

In the next two sections, we will provide an alternative proof of this theorem. In particular,

we will realize the map

F (·) 7→
N−1∑
i=0

SiF (σ−1
i (·))S∗i

as a Lipschitz contraction on a complete metric space of projection-valued measures from B(X) into

the projections on L2(X,µ). The Contraction Mapping Theorem will then guarantee the existence

of a unique projection-valued measure E satisfying part (1) of Theorem 6.1.4. Part (2) of Theorem

6.1.4 will follow as a consequence, via induction.
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6.2 A Lipschitz Contraction on (P (X), ρ)

Suppose that H = L2(X,µ), or more generally, that H is a Hilbert space which admits a

representation of the Cuntz alegra on N generators. Consider the associated complete metric space

(P (X), ρ).

Remark 6.2.1. During the revision process, it was pointed out by Krystal Taylor (University of

Minnesota) that my original proof of the below theorem contained an error in the latter half of the

proof. The mistake has been corrected in the proof below. The author wants to acknowledge K.

Taylor for her important observation. The author’s article, see [10], was published before the error

was discovered. Hence, there will be an erratum associated to the article.

Theorem 6.2.2. [10][Davison] The map Φ : P (X)→ P (X) given by

E(·) 7→
N−1∑
i=0

SiE(σ−1
i (·))S∗i

is a Lipschitz contraction in the ρ metric.

Proof. We will begin by showing that the map Φ is well defined. That is, we will show that if

E ∈ P (X), then Φ(E) is a projection-valued measure.

• Let ∆1,∆2 ∈ B(X). Then,

Φ(E)(∆1 ∩∆2) =

N−1∑
i=0

SiE(σ−1
i (∆1 ∩∆2))S∗i

=

N−1∑
i=0

SiE(σ−1
i (∆1) ∩ σ−1

i (∆2))S∗i

=
N−1∑
i=0

SiE(σ−1
i (∆1))E(σ−1

i (∆2))S∗i

=

N−1∑
i=0

SiE(σ−1
i (∆1))S∗i SiE(σ−1

i (∆2))S∗i

=

N−1∑
i=0

SiE(σ−1
i (∆1)S∗i

N−1∑
j=0

SjE(σ−1
j (∆2))S∗j

= Φ(E)(∆1)Φ(E)(∆2),
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where the third equality is because E is a projection-valued measure, and the fourth and

fifth equalities are because S∗i Sj = δi,j idH. Next, note that Φ(∆) is self-adjoint, which

implies by the above computation that Φ(∆) is a projection.

• Φ(E)(∅) =
∑N−1

i=0 SiE(σ−1
i (∅))S∗i =

∑N−1
i=0 SiE(∅)S∗i = 0.

• Φ(E)(X) =
∑N−1

i=0 SiE(σ−1
i (X))S∗i =

∑N−1
i=0 SiE(X)S∗i =

∑N−1
i=0 SiS

∗
i = idH.

• Let {∆n}∞n=1 be a sequence of disjoint subsets in B(X). Let h, k ∈ H. Note that

〈Φ(E)(∪∞n=1∆n)h, k〉 =

〈(
N−1∑
i=0

SiE(σ−1
i (∪∞n=1∆n))S∗i

)
h, k

〉
=

N−1∑
i=0

〈
SiE(σ−1

i (∪∞n=1∆n))S∗i h, k
〉

=

N−1∑
i=0

〈
E(σ−1

i (∪∞n=1∆n))S∗i h, S
∗
i k
〉
. (6.2)

Since E is a projection-valued measure, for each 0 ≤ i ≤ N − 1 we have that

〈E(σ−1
i (∪∞n=1∆n))S∗i h, S

∗
i k〉 = 〈E(∪∞n=1σ

−1
i (∆n))S∗i h, S

∗
i k〉 =

∞∑
n=1

〈E(σ−1
i (∆n))S∗i h, S

∗
i k〉.

Hence, the last expression of equation (6.2) is equal to

N−1∑
i=0

∞∑
n=1

〈E(σ−1
i (∆n))S∗i h, S

∗
i k〉 =

∞∑
n=1

N−1∑
i=0

〈E(σ−1
i (∆n))S∗i h, S

∗
i k〉 =

∞∑
n=1

N−1∑
i=0

〈SiE(σ−1
i (∆n))S∗i h, k〉 =

∞∑
n=1

〈Φ(E)(∆n)h, k〉.

This completes the discussion that Φ is well defined. We will next proceed to the following claim,

which will be helpful in showing the Φ is a Lipschitz contraction.

Claim 6.2.3. Let h ∈ H. Then,

Φ(E)h,h(∆) =

N−1∑
i=0

ES∗i h,S∗i h(σ−1
i (∆)),

for all ∆ ∈ B(X).
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Proof of claim: Let ∆ ∈ B(X). Then

Φ(E)h,h(∆) = 〈Φ(E)(∆)h, h〉

=

〈(
N−1∑
i=0

SiE(σ−1
i (∆))S∗i

)
h, h

〉

=

N−1∑
i=0

〈SiE(σ−1
i (∆))S∗i h, h〉

=
N−1∑
i=0

〈E(σ−1
i (∆))S∗i h, S

∗
i h〉

=
N−1∑
i=0

ES∗i h,S∗i h(σ−1
i (∆)),

which completes the proof of the claim.

We will now show that Φ is a Lipschitz contraction in the ρ metric. Accordingly, choose

E,F ∈ P (X). We will show that

ρ(Φ(E),Φ(F )) ≤ rρ(E,F ).

Recall that r = max0≤i≤N−1{ri}, where ri is the Lipschitz constant associated to σi. Choose

f ∈ Lip1(X), and h ∈ H with ||h|| = 1. Then

∣∣∣∣〈(∫ fdΦ(E)−
∫
fdΦ(F )

)
h, h

〉∣∣∣∣ =∣∣∣∣〈(∫ fdΦ(E)

)
h, h

〉
−
〈(∫

fdΦ(F )

)
h, h

〉∣∣∣∣ =

∣∣∣∣∫
X
fdΦ(E)h,h −

∫
X
fdΦ(F )h,h

∣∣∣∣ =∣∣∣∣∣
N−1∑
i=0

∫
X
fdES∗i h,S∗i h(σ−1

i (·))−
N−1∑
i=0

∫
X
fdFS∗i h,S∗i h(σ−1

i (·))

∣∣∣∣∣ =

∣∣∣∣∣
N−1∑
i=0

∫
X

(f ◦ σi)dES∗i h,S∗i h −
N−1∑
i=0

∫
X

(f ◦ σi)dFS∗i h,S∗i h

∣∣∣∣∣ =

∣∣∣∣∣
N−1∑
i=0

(∫
X

(f ◦ σi)dES∗i h,S∗i h −
∫
X

(f ◦ σi)dFS∗i h,S∗i h
)∣∣∣∣∣ =

∣∣∣∣∣
N−1∑
i=0

r

(∫
X

(
f ◦ σi
r

)
dES∗i h,S∗i h −

∫
X

(
f ◦ σi
r

)
dFS∗i h,S∗i h

)∣∣∣∣∣ ≤
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r

(
N−1∑
i=0

∣∣∣∣∫
X

(
f ◦ σi
r

)
dES∗i h,S∗i h −

∫
X

(
f ◦ σi
r

)
dFS∗i h,S∗i h

∣∣∣∣
)

=

r

(
N−1∑
i=0

∣∣∣∣〈(∫ (f ◦ σir

)
dE −

∫ (
f ◦ σi
r

)
dF

)
S∗i h, S

∗
i h

〉∣∣∣∣
)
≤

r

(
N−1∑
i=0

∣∣∣∣∣∣∣∣∫ (f ◦ σir

)
dE −

∫ (
f ◦ σi
r

)
dF

∣∣∣∣∣∣∣∣ ||S∗i h||2
)
.

Note that the function
f ◦ σi
r
∈ Lip1(X) for all 0 ≤ i ≤ N − 1. Hence

r

(
N−1∑
i=0

∣∣∣∣∣∣∣∣∫ (f ◦ σir

)
dE −

∫ (
f ◦ σi
r

)
dF

∣∣∣∣∣∣∣∣ ||S∗i h||2
)
≤

rρ(E,F )

(
N−1∑
i=0

〈S∗i h, S∗i h〉

)
= rρ(E,F )

(
N−1∑
i=0

〈SiS∗i h, h〉

)
=

rρ(E,F )

〈(
N−1∑
i=0

SiS
∗
i

)
h, h

〉
= rρ(E,F ) 〈h, h〉 = rρ(E,F ),

Therefore ∣∣∣∣∣∣∣∣∫ fdΦ(E)−
∫
fdΦ(F )

∣∣∣∣∣∣∣∣ ≤ rρ(E,F ).

Since f is an arbitrary element of Lip1(X),

ρ(Φ(E),Φ(F )) ≤ rρ(E,F ).

This proves that Φ is a Lipschitz contraction in the ρ metric on P (X).

6.3 An Alternative Proof of Theorem 6.1.4:

By Theorem 3.1.15 and Theorem 6.2.2, we know that Φ is Lipschitz contraction on the

complete metric space (P (X), ρ). By the Contraction Mapping Theorem, there exists a unique
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projection-valued measure E ∈ P (X) such that

E(·) =

N−1∑
i=0

SiE(σ−1
i (·))S∗i . (6.3)

It remains to show that E(Ak(a)) = Pk(a) for all k ∈ Z+ and a ∈ ΓkN . This will be done by

induction on k. Indeed, suppose that k = 1, and consider A1(j) = σj(X) for some j ∈ ΓN . Then

by equation (6.3),

E(σj(X)) =

N−1∑
i=0

SiE(σ−1
i (σj(X)))S∗i

= SjE(X)S∗j

= SjS
∗
j

= P1(j).

This proves the base case. Suppose that E(An−1(b)) = Pn−1(b) for all b ∈ Γn−1
N where n ∈ Z+ with

n > 1. We will show that E(An(a)) = Pn(a). Choose some a ∈ ΓnN . Suppose that a = (a1, ..., an)

and b = (a2, ..., an). Then

E(An(a)) =

N−1∑
i=0

SiE(σ−1
i (An(a)))S∗i

=

N−1∑
i=0

SiE(σ−1
i (σa1(An−1(b)))S∗i

= Sa1E(An−1(b))S∗a1

= Sa1Pn−1(b)S∗a1

= Pn(a).

Hence, an alternative proof of Theorem 6.1.4 is complete.

Remark 6.3.1. The alternative proof that we have presented depends on the fact that the subsets

Ak(a), for k ∈ Z+ and a = (a1, ..., an) ∈ ΓkN , satisfy

Ak(a) = σa1 ◦ ... ◦ σak(X),

where {σi}N−1
i=0 is an iterated function system of Lipschitz contractions on X. The proof of Jorgensen

does not require this assumption. Rather, it only requires that for each k ∈ Z+, there is a sequence
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of subsets {Ak(a)}a∈ΓkN
which partitions X with the following property. Given ε > 0, there exists a

K such that for k ≥ K

diam(Ak(a)) < ε

for all a ∈ ΓkN . In summary, the result of Jorgensen is more general. Assuming the above decay

condition, he shows that the assignment Ak(a) 7→ Pk(a) extends to a projection-valued measure,

and the subsets do not have to be constructed from an iterated function system.

6.4 Multifunctions and IFS

We will take a brief foray away from functional analysis to discuss the notion of a multifunc-

tion, and its relationship to iterated functions systems and fixed points. Indeed, let (X, d) be a

compact metric space, and let S = {σ0, ..., σN−1} be an iterated function system (IFS) on (X, d),

where σi has Lipschitz constant 0 < ri ≤ 1. We adopt the notation from the previous sections in

this chapter. That is, let ΓN = {0, ..., N − 1}. If a = (a1, ..., ak) ∈ ΓkN , define

Ak(a) = σa1 ◦ ... ◦ σak(X).

Let K denote the collection of all compact subsets of X. As we discussed in Chapter 1, K

can be equipped with the Hausdorff metric, δ, given by

δ(B,C) = max{sup
b∈B

d(b, C), sup
c∈C

d(B, c)},

and the resulting metric space (K, δ) is complete.

Definition 6.4.1. Let T be a set. A multifunction with respect to T and X is a set-valued function

F : T → K. That is, F (t) is a compact subset of X for each t ∈ T , and we assume that F (∅) = X.

Let F(T,X) denote the collection of all multifunctions with respect to T and X. Define a

metric d∞ on F(T,X) by

d∞(F,G) = sup
t∈T

δ(F (t), G(t)).

We have the following result due to D. Torre, F. Mendivil, and E. Vrscay in [25].
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Proposition 6.4.2. [25] [Torre, Mendivil, Vrscay]The metric space (F(T,X), d∞) is complete.

We now will discuss a specific application of this theory. For 0 ≤ i ≤ N−1, define σ∗i : K → K

by B 7→ σi(B), which is well defined because the continuous image of a compact set is compact.

In addition, σ∗i is a Lipschitz contraction in the δ metric, with Lipschitz constant ri . Indeed, if

B,C ∈ K

δ(σ∗i (B), σ∗i (C)) = δ(σi(B), σi(C)) = max{sup
b∈B

inf
c∈C

d(σi(b), σi(c)), sup
c∈C

inf
b∈B

d(σi(b), σi(c))} ≤

max{sup
b∈B

inf
c∈C

rid(b, c), sup
c∈C

inf
b∈B

rid(b, c)} = riδ(B,C).

Next, let T = ∪k∈Z+ΓkN . For 0 ≤ i ≤ N − 1, define wi : T → T by a = (a1, ...., ak) 7→ (i, a1, ...., ak).

Define U : F(T,X)→ F(T,X) by

U(F )(a) = σ∗a1
(F (w−1

a1
(a))),

where a = (a1, ..., ak) ∈ T . Note that if a = (a1) ∈ ΓN , U(F )(a) = σa1(F (∅)) = σa1(X), because

we are assuming F (∅) = X. The map U is very similar to the union operator presented in [25], and

can be shown to be a Lipschitz contraction in the d∞ metric. To see this, if F,G ∈ F(T,X), then

d∞(U(F ), U(G)) = sup
a∈T

δ(U(F )(a), U(G)(a)) = sup
a∈T

δ(σ∗a1
(F (w−1

a1
(a))), σ∗a1

(G(w−1
a1

(a)))) ≤

sup
a∈T

ra1δ(F (w−1
a1

(a)), G(w−1
a1

(a))) ≤ r sup
a∈T

δ(F (a), G(a)) = rd∞(F,G),

where r = max0≤i≤N−1 ri. Hence, there exists a unique fixed multifunction E ∈ F(T,X) that

satisfies

E(a) = σ∗a1
(E(w−1

a1
(a)))

for all a ∈ T . One can use induction to compute that E : T → X is given by

a ∈ T 7→ σa1 ◦ ... ◦ σak(X) = Ak(a).

In summary, in this short section we have realized the map a 7→ Ak(a) as a fixed point of the

Lipschitz contraction U .



Chapter 7

Weak Hyperbolic Iterated Function Systems

In this chapter, we will discuss weak hyperbolic iterated functions systems (whIFS). A whIFS

is a generalization of an IFS where the members of the whIFS do not have to be Lipschitz contrac-

tions; however, there is an assumption that the diameters of the sets σi1 ◦ ... ◦ σin(X) converge to

zero as n→∞. A formal definition is given below. We will begin our discussion of this topic with

a motivating example, and then discuss the map E(·) 7→
∑N−1

i=0 SiE(σ−1
i (·))S∗i in this generalized

setting.

7.1 A whIFS Cantor Set

We begin with the definition of a whIFS over a compact metric space, which can be found in

[13].

Definition 7.1.1. [13][Edalat] Let (X, d) be a compact metric space. A weak hyperbolic iterated

function system S = {σ0, ..., σN−1} is a family of continuous functions σi : X → X for 0 ≤ i ≤ N−1

such that

lim
n→∞

diam (σi1 ◦ ... ◦ σin(X)) = 0,

for any sequence i1, ..., in, ....

Note that if we assume in addition that each σi is a non-expansive mapping, meaning that

d(f(x), f(y)) ≤ d(x, y) for all x, y ∈ X, we can claim the following: For ε > 0, there exists a K

such that for k ≥ K

diam (σi1 ◦ ... ◦ σin(X)) < ε
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for all i1, ...., in. That is, the diameters converge uniformly to 0. A proof of this follows from

Proposition 2.2 of [13], and the fact that each map is non-expansive.

We will now present an interesting example of a non-expansive whIFS, which is inspired by

one of the examples presented in [13], and has similarities to the IFS which produces the Cantor

set. Consider f0(x) = 1
3x

3 and f1(x) = 1
3x

3 + 2
3 be a family of functions on [0, 1]. We note that

these function satisfy the following properties:

(1) f ′i(x) < 1 for x ∈ [0, 1) and fi(1) = 1 for i = 0, 1.

(2) fi is increasing and concave up on [0, 1] for i = 0, 1.

We can can use property (1) and the mean value theorem to conclude that fi are non-expansive

for i = 0, 1. We can can use property (2) and the mean value theorem to conclude the following:

If [a, b] and [c, d] are two intervals in [0, 1] such that b ≤ c, and such that |b − a| ≤ |d − c|, then

|fi(b)− fi(a)| ≤ |fj(d)− fj(c)| for i, j ∈ {0, 1}. We call this property ∗.

Let Γ2 = {0, 1} and Γk2 = Γ2× ...×Γ2 for k ∈ Z+ and the product is k times. One can prove

via induction that if a, b ∈ Γk2 for some k, and if a 6= b, then

fa1 ◦ ... ◦ fak([0, 1]) ∩ fb1 ◦ ... ◦ fbk([0, 1]) = ∅.

We now have the following claim.

Claim 7.1.2. Let a ∈ Γk2. Then

diam (fa1 ◦ ... ◦ fak([0, 1])) ≤ diam (fk1 ([0, 1])),

where fk1 ([0, 1]) = f1 ◦ ... ◦ f1([0, 1]) (k times).

Proof. We first note that fa1 ◦ ... ◦ fak([0, 1]) is an interval in [0, 1], and f1 ◦ ... ◦ f1([0, 1]) is an

interval in [0, 1] of the form [c, 1] for some c. We will prove this claim by induction on k. When

k = 1

diam(fa1([0, 1]) =
1

3
= diam(f1([0, 1]).
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Suppose that the claim is true for k = l ≥ 1. We need to show it is true for k = l + 1. Let

a = (a1, ..., al+1) ∈ Γl+1
2 . By the induction assumption,

diam (fa2 ◦ ... ◦ fal+1
([0, 1])) ≤ diam (f l1([0, 1])).

We have two cases:

(1) Suppose that a2 = 1, ..., al+1 = 1. Then fa2 ◦ ... ◦ fal+1
([0, 1]) = f l1([0, 1]), which means that

diam (fa1 ◦ ... ◦ fal+1
([0, 1])) = diam (f l+1

1 ([0, 1])).

(2) Suppose that ai 6= 1 for some 2 ≤ i ≤ l+ 1. Then fa2 ◦ ... ◦ fal+1
([0, 1])∩ f l1([0, 1]) = ∅, and

moreover, if fa2 ◦ ... ◦ fal+1
([0, 1]) := [a, b] and f l1([0, 1]) := [c, 1], we must have that b ≤ c.

By invoking property ∗, we can conclude that

diam (fa1 ◦ ... ◦ fal+1
([0, 1])) ≤ diam (f l+1

1 ([0, 1])).

This completes the proof of the claim.

We will now show that

lim
n→∞

diam(fn1 ([0, 1])) = 0. (7.1)

Note that to show equation (7.1), it is enough to show that limn→∞ diam(gn([0, 1])) = 0, where

g(x) = 1 − f1(1 − x). The g function is easier to work with because it has a fixed point at x = 0,

rather than at x = 1 1 . Consider the function h(x) = x
x+1 on [0, 1]. Notice that

h(x)− g(x) =
x3(2− x)

3(1 + x)
≥ 0

for all x ∈ [0, 1], and that h(0) = g(0). It follows by induction that gn([0, 1]) ⊆ hn([0, 1]) for all

n = 1, 2, .... Additionally, it follows by induction that that hn([0, 1]) =
[
0, 1

n+1

]
for all n = 1, 2, ....

1 I would like to acknowledge Darsh Ranjin (UC Berkeley) who provided the idea of considering the function g.
This suggestion was made via Math Stack Exchange; see Iterated Function System Question.
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Hence, gn([0, 1]) ⊆ hn([0, 1]) =
[
0, 1

n+1

]
for all n = 1, 2, .... Since limn→∞ diam

([
0, 1

n+1

])
= 0, we

get that limn→∞ diam(gn([0, 1])) = 0.

We are now prepared to show that f0 and f1 comprise a weak hyperbolic iterated function

system. Let i1, i2, ... be a sequence in Ω := Γ2×Γ2× .... Let ε > 0. Choose K such that for k ≥ K,

diam(fk1 ([0, 1]))) ≤ ε.

By the claim, if k ≥ K

diam (fi1 ◦ ... ◦ fik([0, 1])) ≤ diam (fk1 ([0, 1])) ≤ ε.

This shows that f0 and f1 comprise a weak hyperbolic iterated function system, and moreover, the

convergence is uniform in Ω.

Given the non-expansive whIFS, S = {f0, f1}, the work in [13] shows that there exists a

unique compact subset C ⊆ [0, 1] such that C = f0(C) ∪ f1(C). The subset C is a generalized

Cantor set. Moreover, if we define M(C) to be the collection of Borel probability measures on

C, we can consider the map T : M(C) → M(C) by ν(·) 7→
∑1

i=0
1
2ν(f−1

i (·)). Since the maps fi

for i = 0, 1 are not Lipschitz contractions, the map T is not a Lipschitz contraction. However,

it is still possible to show that T admits a unique fixed measure, which we call µ. The proof of

this fact is not included, because a similar kind of proof will be included below for the analogous

projection-valued measure fixed point result. Let us now consider the Hilbert space L2(C, µ).

Let σ : [0, 1]→ [0, 1] be given by

σ(x) =



3
1
3x

1
3 if x ∈ [0, 1

3 ]

0 if x ∈ (1
3 ,

2
3)

3
1
3 (x− 2

3)
1
3 if x ∈ [2

3 , 1]

One can calculate σ ◦ f0 = id and σ ◦ f1 = id, and therefore σ(C) = C. As we did in the previous

chapter, define

Si : L2(C, µ)→ L2(C, µ) by φ 7→ (φ ◦ σ)
√

21fi(C)
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for i = 0, 1, and its adjoint

S∗i : L2(C, µ)→ L2(C, µ) by φ 7→ 1√
2

(φ ◦ fi)

for i = 0, 1. It can be shown that these maps, S0 and S1, and their adjoints satisfy the Cuntz

relations, and hence, L2(C, µ) admits a representation of the Cuntz algebra on two generators. We

now use the notation of the previous chapter. That is for k ∈ Z+ and a ∈ Γk2, define

Ak(a) = fa1 ◦ ... ◦ fak(C).

Using that C = f0(C) ∪ f1(C) is a disjoint union, we conclude that {Ak(a)}a∈Γk2
partitions C for

all k ∈ Z+. Moreover, the collection of subsets {Ak(a)}a∈Γk2
satisfies the assumptions of Remark

6.3.1, because S = {f0, f1} is a non-expansive whIFS. If we define P (C) to be the collection of

projection-valued measures with respect to the pair (C,L2(C, µ)), we can conclude that there exists

a unique projection-valued measure E ∈ P (C) such that

E(·) =

1∑
i=0

SiE(f−1
i (·))S∗i . (7.2)

Like we did in Chapter 6, we will now present an alternative proof of this fixed point result

by showing that the map F (·) 7→
∑1

i=0 SiE(f−1
i (·))S∗i on P (C) has a unique fixed point, even

though it is not a Lipschitz contraction. In particular, let (X, d) be a compact metric space, and let

S = {σ0, ..., σN−1} be a non-expansive whIFS on X. Recall that we have the following: for ε > 0,

there exists a K such that for k ≥ K, diam (σi1 ◦ ... ◦ σik(X)) < ε for all i1, ...., ik.

LetH be a Hilbert space which admits a representation of the Cuntz algebra on N generators;

the isometries being {Si}N−1
i=0 . Consider the complete metric space (P (X), ρ) of projection valued

measures with respect to the pair (X,H), and the map Φ : P (X)→ P (X) given by

F 7→
N−1∑
i=0

SiF (σ−1
i (·))S∗i .

Recall that the topology on P (X) induced by the metric ρ coincides with the weak topology on

P (X).
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Lemma 7.1.3. [Davison] The map Φ : P (X)→ P (X) by F 7→
∑N−1

i=0 SiF (σ−1
i (·))S∗i is continuous

in the ρ metric.

Proof. Since the topology on P (X) induced by the metric ρ coincides with the weak topology

on P (X), it is enough to show that Φ is continuous in the weak topology. Indeed, suppose that

{En}∞n=1 ⊆ P (X) is a sequence of projection-valued measures that converges weakly to E ∈ P (X).

We need to show that Φ(En) → Φ(E) in the weak topology. That is, choose f ∈ CR(X) and let

ε > 0. Since the maps {σi : 0 ≤ i ≤ N − 1} are continuous, we have that {f ◦σi : 0 ≤ i ≤ N − 1} ⊆

CR(X). Since En ⇒ E, and {f ◦ σi : 0 ≤ i ≤ N − 1} is a finite set of maps, there exists an N such

that for n ≥ N ∣∣∣∣∣∣∣∣∫ f ◦ σidEn −
∫
f ◦ σidE

∣∣∣∣∣∣∣∣ ≤ ε.
Let n ≥ N , and choose h ∈ H such that ||h|| = 1. Then∣∣∣∣〈(∫ fdΦ(En)−

∫
fdΦ(E)

)
h, h

〉∣∣∣∣ ≤
N−1∑
i=0

∣∣∣∣〈(∫ f ◦ σidEn −
∫
f ◦ σidΦ(E)

)
S∗i h, S

∗
i h

〉∣∣∣∣ ≤
N−1∑
i=0

∣∣∣∣∣∣∣∣∫ f ◦ σidEn −
∫
f ◦ σidE

∣∣∣∣∣∣∣∣ ||S∗i h||2 ≤
ε
N−1∑
i=0

||S∗i h||2 = ε||h||2 = ε.

Hence, for n ≥ N ∣∣∣∣∣∣∣∣∫ fdΦ(En)−
∫
fdΦ(E)

∣∣∣∣∣∣∣∣ ≤ ε,
and Φ is continuous in the weak topology, and therefore in the ρ metric.

For x0 ∈ X define the projection valued measure Ex0 ∈ P (X) as follows:

Ex0(∆) =


1H if x0 ∈ ∆

0 if x0 /∈ ∆,

where ∆ is Borel subset of X.
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Lemma 7.1.4. [Davison] Let x0 ∈ X. The sequence of projection valued measures {Φn(Ex0)}∞n=1

is Cauchy in the the ρ metric.

Proof. It is enough to show that {Φn(Ex0)}∞n=1 is Cauchy in the weak topology. Let f ∈ CR(X)

and let ε > 0. Note that for h ∈ H and n ∈ N,〈(∫
fdΦn(Ex0)

)
h, h

〉
=
∑
a∈ΓnN

∫
f ◦ σa(x)dEx0S∗ah,S∗ah

=

∑
a∈ΓnN

f ◦ σa(x0)〈S∗ah, S∗ah〉,

where a = (a1, ..., an) ∈ ΓnN , and σa = σa1 ◦ ... ◦ σan .

Since f ∈ CR(X) and X is compact, f is uniformly continuous. That is, there exists a δ > 0

such that when x, y ∈ X with d(x, y) < δ, |f(x)− f(y)| ≤ ε. By earlier, we know that there exists

an M such that for k ≥M ,

diam(σa(X)) ≤ δ

for all a ∈ ΓkN .

Suppose that k,m ≥ M , and without loss of generality that m ≥ k. Let b ∈ ΓmN with b =

(a1, ..., ak, bk+1, ..., bm), where a = (a1, ..., ak). Note that σa(x0) ∈ σa(X) and σb(x0) = σa(σbk+1
◦

... ◦ σbm(x0)) ∈ σa(X). Hence d(σa(x0), σb(x0)) ≤ δ, which means that |f(σa(x0))− f(σb(x0))| ≤ ε.

Let k,m ≥M with m ≥ k. We will show that∣∣∣∣∣∣∣∣∫ fd(Φk(Ex0))−
∫
fd(Φm(Ex0))

∣∣∣∣∣∣∣∣ ≤ ε.
We can assume that m > k, because if they are equal, the above quantity is zero. Choose h ∈ H

with ||h|| = 1. Then ∣∣∣∣〈(∫ fd(Φk(Ex0))−
∫
fd(Φm(Ex0))

)
h, h

〉∣∣∣∣ =∣∣∣∣∣∣
∑
a∈ΓkN

〈f ◦ σa(x0)S∗ah, S
∗
ah〉 −

∑
b∈ΓmN

〈f ◦ σb(x0)S∗ah, S
∗
ah〉

∣∣∣∣∣∣ .
Now choose a = (a1, ..., ak) ∈ ΓkN . Consider b ∈ ΓmN such that a1 = b1, ..., ak = bk, where b =

(b1, ..., bk, bk+1, ..., bm). Then
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f ◦ σb(x0)〈S∗bh, S∗bh〉 = 〈f ◦ σb(x0)S∗bm ...S
∗
bk+1

S∗ak ...S
∗
a1
h, S∗bm ...S

∗
bk+1

S∗ak ...S
∗
a1
h〉

= 〈f ◦ σb(x0)Sbk+1
...SbmS

∗
bm ...S

∗
bk+1

S∗ah, S
∗
ah〉

Hence ∣∣∣∣∣∣
∑
a∈ΓkN

〈f ◦ σa(x0)S∗ah, S
∗
ah〉 −

∑
b∈ΓmN

〈f ◦ σb(x0)S∗ah, S
∗
ah〉

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
a∈ΓkN

(
〈f ◦ σa(x0)S∗ah, S

∗
ah〉 −

∑
∗
〈f ◦ σb(x0)Sbk+1

...SbmS
∗
bm ...S

∗
bk+1

S∗ah, S
∗
ah〉

)∣∣∣∣∣∣ =

(where ∗ denotes all the b ∈ ΓmN such that b1 = a1, ..., bk = ak)∣∣∣∣∣∣
∑
a∈ΓkN

〈(
f ◦ σa(x0)−

∑
∗
f ◦ σb(x0)Sbk+1

...SbmS
∗
bm ...S

∗
bk+1

)
S∗ah, S

∗
ah

〉∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
a∈ΓkN

〈(
f ◦ σa(x0)

∑̂
−
∑
∗
f ◦ σb(x0)Sbk+1

...SbmS
∗
bm ...S

∗
bk+1

)
S∗ah, S

∗
ah

〉∣∣∣∣∣∣ ≤

(where
∑̂

:=
∑
∗ Sbk+1

...SbmS
∗
bm
...S∗bk+1

and the above equality is because
∑̂

= 1H)

∑
a∈ΓkN

(∑
∗
|f ◦ σa(x0)− f ◦ σb(x0)|

∣∣∣〈(Sbk+1
...SbmS

∗
bm ...S

∗
bk+1

)
S∗ah, S

∗
ah
〉∣∣∣) ≤

ε
∑
a∈ΓkN

(∑
∗

∣∣∣〈(Sbk+1
...SbmS

∗
bm ...S

∗
bk+1

)S∗ah, S
∗
ah〉
∣∣∣) =

ε
∑
a∈ΓkN

(∑
∗
〈(Sbk+1

...SbmS
∗
bm ...S

∗
bk+1

)S∗ah, S
∗
ah〉

)
=

(because Sbk+1
...SbmS

∗
bm
...S∗bk+1

are positive operators)

ε
∑
a∈ΓkN

〈(∑
∗
Sbk+1

...SbmS
∗
bm ...S

∗
bk+1

)
S∗ah, S

∗
ah

〉
= ε

∑
a∈ΓkN

〈(∑̂)
S∗ah, S

∗
ah

〉
=



78

ε
∑
a∈ΓkN

〈S∗ah, S∗ah〉 = ε

〈∑
a∈ΓkN

SaS
∗
a

h, h

〉
= ε||h||2 = ε.

Hence ∣∣∣∣∣∣∣∣∫ fd(Φk(Ex0))−
∫
fd(Φm(Ex0))

∣∣∣∣∣∣∣∣ ≤ ε
for k,m ≥M . This completes the proof of the lemma.

Since {Φn(Ex0)}∞n=1 is Cauchy in the the ρ metric, and (P (X), ρ) is a complete metric space,

there exists an element E ∈ P (X) such that Φn(Ex0) → E in the ρ metric. Since Φ is continuous

with respect to the ρ metric, Φ(Φn(Ex0))→ Φ(E). But Φ(Φn(Ex0))→ E, since {Φ(Φn(Ex0))}∞n=1 =

{Φn(Ex0)}∞n=2. This implies that Φ(E) = E. We will show that E is the unique fixed point of Φ.

We will need the following lemma.

Lemma 7.1.5. [Davison] Let F ∈ P (X), and x0 ∈ X. Given f ∈ CR(X) and ε > 0, there exists

an M such that for k ≥M ∣∣∣∣∣∣∣∣∫ fdΦk(Ex0)−
∫
fdΦk(F )

∣∣∣∣∣∣∣∣ ≤ ε.
Proof. Let f ∈ CR(X) and ε > 0. As before, since f is in CR(X) and X is compact, f is uniformly

continuous. That is, there exists a δ > 0 such that when x, y ∈ X with d(x, y) ≤ δ, |f(x)−f(y)| ≤ ε.

By earlier, we know that there exists an M such that for k ≥ M , diam(σa(X)) ≤ δ for all

a ∈ ΓkN . In particular, if k ≥ M and a ∈ ΓkN , then d(σa(x), σa(x0)) ≤ δ for all x ∈ X, so

that |f ◦ σa(x)− f ◦ σa(x0)| ≤ ε for all x ∈ X.

Choose k ≥M . Let h ∈ H with ||h|| = 1. Then,∣∣∣∣〈(∫ fdΦk(F )−
∫
fdΦk(Ex0)

)
h, h

〉∣∣∣∣ =

∣∣∣∣∣∣
∑
a∈ΓkN

〈(∫
f ◦ σadF − f ◦ σa(x0)

)
S∗ah, S

∗
ah

〉∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
a∈ΓkN

〈(∫
f ◦ σa(x)dF −

∫
f ◦ σa(x0)dF

)
S∗ah, S

∗
ah

〉∣∣∣∣∣∣ ≤
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(because
∫
f ◦ σa(x0)dF = f ◦ σa(x0)1H)

∑
a∈ΓkN

∣∣∣∣∫ f ◦ σa(x)− f ◦ σa(x0)dFS∗ah,S∗ah

∣∣∣∣ ≤
∑
a∈ΓkN

∫
|f ◦ σa(x)− f ◦ σa(x0)| dFS∗ah,S∗ah ≤

ε
∑
a∈ΓkN

∫
dFS∗ah,S∗ah =

ε
∑
a∈ΓkN

〈F (X)S∗ah, S
∗
ah〉 =

ε

〈∑
a∈ΓkN

SaS
∗
a

h, h

〉
=

ε||h||2 = ε.

Hence, for k ≥M , ∣∣∣∣∣∣∣∣∫ fdΦk(Ex0)−
∫
fdΦk(F )

∣∣∣∣∣∣∣∣ ≤ ε.

Since Φn(Ex0) → E in the weak topology, the above lemma implies that Φn(F ) → E in the

weak topology, and therefore, in the ρ metric.

Proposition 7.1.6. [Davison] E is the unique invariant projection-valued measure for Φ.

Proof. Suppose F ∈ P (X) such that Φ(F ) = F . By the discussion before this proposition, Φn(F )→

E in the ρ metric. But Φn(F ) = F for all n, and hence, Φn(F ) → F in the ρ metric. Therefore,

E = F .



Chapter 8

Unitary Representations of the Baumslag Solitar Group Associated to the

Cantor Set

For N ∈ N and N ≥ 2, the Baumslag-Solitar group, denoted BS(1, N), is the group on

two generators a and b that satisfy the relation a−1ba = bN (or equivalently aba−1 = bN ). In

this chapter, we will be discussing unitary representations of BS(1, 3) on Hilbert spaces. These

representations will be related to the Cantor set.

8.1 Background

Let X = Cantor Set ⊆ [0, 1] equipped with the standard metric on R. Recall that σ0(x) = 1
3x

and σ1(x) = 1
3x+ 2

3 comprise the iterated function system which gives rise to X. By Theorem [14],

there exists a Borel probability measure µ on X such that

µ(·) =
1

2
µ(σ−1

0 (·)) +
1

2
µ(σ−1

1 (·)). (8.1)

Following the work in [12], we define the inflated fractal set R ⊂ R as R = ∪k,n∈Z3−n(X + k). We

note that R satisfies the following properties (see Proposition 2.1 in [12]):

• R+ k
3n = R for k, n ∈ Z, and

• 3nR = R.

The measure µ can be extended to a Borel measure µ̄ on R that satisfies the relation µ̄(·) =

1
2 µ̄(3(·)). This follows from the fact the µ satisfies the invariance equation (8.1). Moreover, µ̄ is
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invariant under translation by numbers of the form k
3n for k, n ∈ Z. Consider the Hilbert space

L2(R, µ̄). Define the dilation and translation operators on L2(R, µ̄) by

Df(x) =
√

2f(3x),

T f(x) = f(x− 1),

for all f ∈ L2(R, µ̄). The operators D and T are unitary operators on L2(R, µ̄). Indeed, the fact

that T is a unitary follows from the fact that µ̄ is invariant under translation by the integer 1.

The fact that D is a unitary operator follows from the relation µ̄(·) = 1
2 µ̄(3(·)). Specifically, if

f ∈ L2(R, µ̄),

||Df ||2L2(R,µ̄) =

∫
R
|Df |2dµ̄ = 2

∫
R
|f(3x)|2dµ̄ = 2

∫
R
|f(3x)|2

(
1

2

)
dµ̄(3(·)) =

∫
R
|f |2dµ = ||f ||2L2(R,µ̄),

which shows that D is an isometry. To show that D is surjective, we note that D( 1√
2
f(x3 )) = f

and that ∣∣∣∣∣∣∣∣ 1√
2
f
(x

3

)∣∣∣∣∣∣∣∣2
L2(R,µ̄)

=
1

2

∫ ∣∣∣f (x
3

)∣∣∣2 2dµ̄

(
1

3
(·)
)

= ||f ||2L2(R,µ̄) <∞.

We will now show that D−1TD = T 3. This will show that L2(R, µ̄) admits a unitary

representation of BS(1,3). In particular, if f ∈ L2(R, µ̄)

TDf = T (
√

2f(3x)) =
√

2f(3(x− 1)) =
√

2f(3x− 3)

and

DT 3f = Df(x− 3) =
√

2f(3x− 3).

Since T is a unitary operator, the spectrum of T is contained in T ⊆ C, where T denotes the

unit circle in C. By the spectral theorem for normal operators (unitary operators are normal) and

the Borel functional calculus, there exists a unique projection valued measure E : T→ B(L2(R, µ̄))

that satisfies ∫
ψ(z)dE = ψ(T )
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for all ψ ∈ BB(T), where BB(T) denotes the bounded Borel functions on T. This allows us to

reformulate the relation D−1TD = T 3 as

D−1

(∫
ψ(z)dE

)
D =

∫
ψ(z3)dE (8.2)

for all ψ ∈ BB(T). Let us now consider the function φ = 1X ∈ L2(R, µ̄) and put V0 = span{T k(φ) :

k ∈ Z}, which is the closed subspace of L2(R, µ̄) spanned by the orthogonal elements {T k(φ) : k ∈

Z}. Further, define Vn = Dn(V0) for all n ∈ Z. It is shown in [12] that the subspaces {Vn : n ∈ Z}

comprise a multi-resolution analysis of L2(R, µ̄). That is,

(1) Vn ⊆ Vn+1 for all n ∈ Z

(2) ∪∞n=−∞Vn is a dense linear subspace of L2(R, µ̄), and

(3) ∩∞n=−∞Vn = ∅.

In particular, φ ∈ V0 ⊆ V1 = span{DT k(φ) : k ∈ Z}. One can calculate that

φ =
1√
2
D(φ) +

1√
2
DT 2(φ).

Equivalently,

D−1(φ) =

(
1√
2

+
1√
2
T 2

)
(φ) =

(
1√
2

+
1√
2

∫
z2dE

)
(φ) =

(∫ (
1 + z2

√
2

)
dE

)
φ.

We call h(z) = 1+z2
√

2
∈ BB(T) ⊆ L∞(T) the generating filter corresponding the function φ.

This generating filter is the starting point for realizing a representation of BS(1,3) on a Hilbert

space associated to a compact topological group called the 3-solenoid. One can calculate that this

generating function satisfies ∑
w3=z

|h(w)|2

3
= 1 (8.3)

or equivalently,
2∑
j=0

|h(e−2πiτj(x))|2

3
= 1,

where x ∈ [0, 1) and τj(x) : [0, 1)→ [0, 1) by x 7→ x+j
3 for 0 ≤ j ≤ 2.
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We now remark that it was shown in [19] that given a generating filter h ∈ L∞(T) that

satisfies equation (8.3), there exists a representation of BS(1,3) on a Hilbert space H (with unitary

operators D and T satisfying D−1TD = T 3), and a vector φ ∈ H such that

D−1φ =

(∫
h(z)dE

)
φ, (8.4)

where E is the unique projection valued measure associated to the unitary T . Moreover, this repre-

sentation is unique up to isomorphism. In view of this result, we see that L2(R, µ̄) is one realization

of this representation. As mentioned above, we will now present another known realization of this

representation. Toward this end, we will first introduce needed preliminary material and notation

in the below subsections.

8.1.1 The 3-Alphabet Space

Let Γ = {0, 1, 2}, and define Ω = ΓN. Indeed, an element ω ∈ Ω is of the form ω =

(ω1, ω2, ω3, ....), where ωi ∈ Γ for all i = 1, 2, ..... We call Ω the 3-Alphabet Space. If we put the

discrete topology on Γ, then by Tychonoff’s Theorem, Ω is compact in the product topology. For

n ∈ N, define

A(ω1, ω2, ..., ωn) = {ω1} × ....× {ωn} × Γ× Γ× ...,

an open subset of Ω. Let h(z) be the generating filter defined above. Define W (z) = |h(z)|2
3 ∈

BB(T). Equation (8.3) becomes ∑
w3=z

W (w) = 1, (8.5)

or equivalently,
2∑
j=0

W (τj(x)) = 1,

where we define W (τj(x)) = W (e−2πiτj(x)). The next result can be found in a textbook of P.

Jorgensen ([15] Lemma 2.4.1). We refer the reader to this reference for a proof.

Proposition 8.1.1. [15][Jorgensen] For each x ∈ [0, 1), there exists a unique probability measure
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Px on Ω such that

Px(A(ω1, ω2, ..., ωn)) = W (τω1(x)) · · ·W (τωn ◦ ... ◦ τω1(x)),

for all open subsets of the form A(ω1, ω2, ..., ωn).

This proposition will become useful when we describe the construction of a measure on the

3-solenoid associated to the generating filter. We make two remarks regarding this proposition.

Remark 8.1.2. For x ∈ [0, 1), Px is a (Borel) probability measure on Ω. To see why this is true,

observe that Ω = ∪ω1A(ω1), which is a disjoint union. Hence

Px(Ω) =
∑
ω1

Px(A(ω1)) =
∑
ω1

W (τω1(ξ)) = 1,

where the last equality is by equation (8.5).

Remark 8.1.3. Suppose f ∈ C(ω) depends on the first n coordinates. That is, f(ω) = f(ω1, ..., ωn).

Then ∫
f(ω)dPx(ω) =

∑
ω1,...,ωn

W (τω1(x)) · · ·W (τωn ◦ ... ◦ τω1(x))f(ω1, ..., ωn).

8.1.2 The 3-solenoid

As defined above, let T ⊆ C be the unit circle. Since T is compact in the induced topology,

the product space TN∪{0} is compact in the product topology. The 3-solenoid, denoted S3, is the

subset of TN∪{0} described below. An element (zn)∞n=0 is contained in S3 if for all n = 0, ...,∞,

z3
n+1 = zn.

Proposition 8.1.4. S3 is a subgroup of TN∪{0}.

Proof. The identity element (1, 1, 1....) ∈ S3. If (zn)∞n=0 and (wn)∞n=0 are two elements in S3, their

product

(zn)∞n=0 · (wn)∞n=0 = (zn · wn)∞n=0
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is an element on S3 because for all n = 0, ...,∞, (zn+1 · wn+1)3 = z3
n+1w

3
n+1 = zn · wn. The inverse

of an element (zn)∞n=0 is (z̄n)∞n=0. Since for all n = 0, ...∞, z3
n+1 = zn, we have that z̄3

n+1 = z̄2
n,

which shows that the inverse element is in S3. Hence, S3 is a subgroup.

We note that S3 is a closed subset of TN∪{0}, and hence a compact subset. Moreover, the

group operation in S3 is continuous which makes S3 a compact abelian group. The Pontryagin dual

of the 3-solenoid is the group, Z
[

1
3

]
, defined as follows:

Z
[

1

3

]
=

{
l

3p
: l ∈ Z and p ∈ N ∪ {0}

}
,

where the group operation is:

l

3p
+
m

3r
=
l3r +m3p

3p+r
.

An element l
3p ∈ Z

[
1
2

]
is a character on S3 via the map:〈

l

3p
, (zn)∞n=0

〉
= zlp ∈ T.

To see why all the characters are of this form, we will show that the dual of Z
[

1
3

]
is S3. By

invoking the Pontryagin Duality Theorem, the dual of S3 will be isomorphic to Z
[

1
3

]
. To this end,

choose some λ in the dual of Z
[

1
3

]
. Consider the sequence,

(λ(1), λ

(
1

3

)
, λ

(
1

32

)
, ...),

which we claim is an element of S3. First, since λ is a character, each entry in the above sequence

is an element of T. Choose some n = 0, 1, .... By the homomorphism property of λ,

λ

(
1

3n

)
= λ

(
1

3n+1
3

)
= λ

(
1

3n+1

)3

,

which shows that the above element is in S3. Moreover, by using the homomorphism property

again, for any l ∈ Z, and n = 0, 1, ...,

λ

(
l

3n

)
= λ

(
1

3n

)l
.



86

If (zn)∞n=0 is an element of S3, it induces a character on Z
[

1
3

]
via the map:

l

3n
7→ zln,

where l ∈ Z, and n = 0, 1, .... The above discussion shows that the dual of Z
[

1
3

]
is S3.

We now will relate the 3-solenoid to the 3-alphabet space defined previously. In particular,

choose some x ∈ [0, 1), and ω ∈ Ω. Consider the infinite tuple

Φ(x, ω) := (e−2πix, e−2πiτω1 (x), ..., e−2πiτωn◦...◦τω1 (x), ...).

Note that Φ(x, ω) is an element of S3. Indeed, for some n = 0, ...,∞,

(e−2πiτωn+1◦...◦τω1 (x))3 = (e−2πi
τωn◦...◦τω1 (x)+ωn+1

3 )3 =

e−2πiτωn◦...◦τω1 (x)e−2πiωn+1 = e−2πiτωn◦...◦τω1 (x).

This leads to the following proposition which can be found in a paper of D. Dutkay ([11] Proposition

4.1).

Proposition 8.1.5. [11][Dutkay] The map Φ : [0, 1)× Ω→ S3 defined by

Φ(x, ω) = (e−2πix, e−2πiτω1 (x), ..., e−2πiτωn◦...◦τω1 (x), ...),

for x ∈ [0, 1) and ω ∈ Ω is a measurable bijection.

To conclude this subsection, define S : S3 → S3 by

(z0, z1, z2, ...) 7→ (z3
0 , z0, z1, ...),

and S−1 : S3 → S3 by

(z0, z1, z2, ...) 7→ (z1, z2, ...).

8.1.3 Measure on the 3-solenoid

We will now define a measure on S3 according to [11]. Let f ∈ C(S3) and consider the

function f ◦Φ : [0, 1)×Ω→ C, which is measurable by Proposition 8.1.5, and bounded since S3 is

compact. Following the work of D. Dutkay, define m : C(S3)→ C as the iterated integral
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m(f) :=

∫
[0,1)

∫
Ω
f ◦ Φ(x, ω)dPx(ω)dx. (8.6)

This integral is finite because Px is a probability measure on Ω. In fact, we have |m(f)| ≤ ||f ||∞

for all f ∈ C(S3). Further, observe that m is a positive linear functional on C(S3). By the Riesz

Representation Theorem, there exists a corresponding measure on S3 which for ease of notation we

also denote by m, and which satisfies the property that for all f ∈ C(S3),∫
S3

fdm =

∫
[0,1)

∫
Ω
f ◦ Φ(x, ω)dPx(ω)dx.

We will now state some properties of the measure m (see Proposition 4.2 in [11])

Lemma 8.1.6. [11][Dutkay] m is a probability measure on S3.

Proof.

m(S3) =

∫
S3

dm =

∫
[0,1)

∫
Ω
dPx(ω)dx = 1.

Theorem 8.1.7. [11] [Dutkay] Let f ∈ C(S3). Then∫
S3

f ◦ S−1dm =

∫
S3

3W · fdm,

where we think of W ∈ BB(T) as a function on S3 by W ((zn)∞n=0) = W (z0).

Remark 8.1.8. We can reformulate the integral equation in the above theorem as∫
S3

fd(m ◦ S) =

∫
S3

3W · fdm

for all f ∈ L1(S3,m). This implies that 3W = d(m◦S)
dm , where d(m◦S)

dm denotes the Radon-Nikodym

derivative. In particular, m ◦ S is absolutely continuous with respect to m.

Theorem 8.1.9. [11] [Dutkay] Let f ∈ C(S3). For n = 1, ...,∞∫
S3

f ◦ S−ndm =

∫
S3

3nB(n)(·)fdm (8.7)

where B(n)((zl)
∞
l=0) : S3 → C is defined by

(zl)
∞
l=0 7→W (z0)...W (z3n−1

0 ).
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Proof. This will be proved by induction on n. The case when n = 1 is the content of Theorem

8.1.7. Suppose equation (9.2) is true for n = k for k ≥ 1. We need to show equation (9.2) is true

for n = k + 1. ∫
S3

f ◦ S−(k+1)dm =

∫
S3

f ◦ S−k ◦ S−1dm =∫
S3

3Wf ◦ S−kdm =

∫
S3

3(W ◦ Sk) ◦ S−kf ◦ S−kdm =∫
S3

3 · 3kB(k)(·)(W ◦ Sk) · fdm =

∫
S3

3k+1B(k+1)(·)fdm.

We now make the observation that the generating filter h(z) = 1+z2
√

2
satisfies the property

that ν({z ∈ T : h(z) = 0}) = 0, where ν is the standard Haar measure on T. Following the

literature, we say that h is a non-singular generating filter. An important consequence of this

observation is the following, which can be found in Theorem 4.3 in [11].

Lemma 8.1.10. [11] [Dutkay] The measure m on S3 associated to the non-singular generating

function h = 1+z2
√

2
is absolutely continuous with respect to the measure m ◦ S on S3. Moreover, the

Radon-Nikodym derivative is

dm

d(m ◦ S)
=

1

3W
.

Following the work in [11] (see Theorem 4.3), define the operator U : L2(S3,m)→ L2(S3,m)

by

Uf((zn)∞n=0) = h(z0)f ◦ S((zn)∞n=0).

The operator U is an isometry. Indeed, if f ∈ C(S3), then f is bounded (because S3 is compact).

Therefore

||Uf ||2L2(S3,m) =

∫
S3

|Uf |2dm =

∫
S3

|h(z0)|2|f ◦ S|2dm =

∫
S3

3W |f ◦ S|2dm =

∫
S3

d(m ◦ S)

dm
|f ◦ S|2dm =

∫
S3

|f ◦ S|2d(m ◦ S) =

∫
S3

|f |2dm = ||f ||2L2(S3,m).
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Since continuous functions are dense in L2(S3,m), U extends to an isometry on L2(S3,m). More-

over, Lemma 8.1.10 allows one to show that U is surjective (see Theorem 4.3 in [11]), which implies

that U is a unitary operator on L2(S3,m).

Consider the projection valued measure F : T→ B(L2(S3,m)) given by

∆ 7→M1∆ , (8.8)

where ∆ denotes an arbitrary Borel subset of T, and where M1∆ : L2(S3,m)→ L2(S3,m) is given

by M1∆f((zn)∞n=0) = 1∆(z0)f((zn)∞n=0). Note that for all ψ ∈ BB(T)(∫
ψdF

)
f((zn)∞n=0) = ψ(z0)f((zn)∞n=0).

Define the operator S =
∫
zdF ∈ B(L2(S,m)). We will show that S is a unitary operator on

L2(S,m). Let f ∈ L2(S,m). Then

||Sf ||2L2(S,m) =

∫
S3

|Mzf |2dm =

∫
S3

|z0f((zn)∞n=0)|2dm((zn)∞n=0) =

∫
S3

|f |2dm = ||f ||2L2(S,m),

where the third equality is because |z0|2 = 1. This shows that S is an isometry. Observe that∫
z−1dF is the inverse of S, which implies that S is a unitary. Let φ = 1 ∈ L2(S3,m). Observe

that

Uφ((zn)∞n=0) = h(z0)(1 ◦ S((zn)∞n=0)) = h(z0) =

(∫
h(z)dF

)
1 =

(∫
h(z)dF

)
φ.

We see that U and S satisfy equation (8.4). It remains to show that U and S satisfy the Baumslag-

Solitar relation, namely USU−1 = S3, or equivalently, US = S3U . Let f ∈ L2(S3,m). Observe

that

USf((zn)∞n=0) = U

(∫
zdF

)
f((zn)∞n=0) = U(z0f((zn)∞n=0)) =

h(z0)(z0 ◦ S)(f ◦ S)((zn)∞n=0) = z3
0h(z0)(f ◦ S)((zn)∞n=0).

Next note that

S3Uf((zn)∞n=0) = S3(h(z0)(f ◦ S)((zn)∞n=0)) =(∫
z3dF

)
(h(z0)(f ◦ S)((zn)∞n=0)) = z3

0h(z0)(f ◦ S)((zn)∞n=0).



90

As we did in equation (8.2), we can reformulate the Baumslag-Solitar relation as

U

(∫
ψ(z)dF

)
U−1 =

∫
ψ(z3)dF (8.9)

for all ψ ∈ BB(T), where we recall that BB(T) denotes the bounded Borel functions on T. In

summary, we have shown that the data h, L2(S3,m), and φ = 1 ∈ L2(S3,m) induce a representation

of the Baumslag-Solitar group. By work of P. Jorgensen, representations of this form are unique

up to isomorphism [19]. The following result in [11] shows that the isomorphism between L2(R, µ̄)

and L2(S3,m) behaves like a generalized Fourier transform, because under the isomorphism, the

translation operator T ∈ B(L2(R, µ̄)) becomes the multiplication operator S ∈ B(L2(S3,m)).

Before we state the result, we remark that for λ ∈ Z[1
3 ], let χλ : S3 → T be the associated

character on S3 defined earlier in this chapter. Moreover, for λ ∈ Z[1
3 ], define the (generalized)

translation operator Tλ : L2(R, µ̄)→ L2(R, µ̄) by Tλ(f)(x) = f(x− λ). It can be shown that Tλ is

a unitary.

Proposition 8.1.11. [11] [Dutkay] There is a unique isomorphism F3 : L2(R, µ̄) → L2(S3,m)

that satisfies:

(1) F3TλF−1
3 (f) = χλf for all λ ∈ Z[1

3 ], and f ∈ L2(S3,m) (in particular, F3TF−1
3 (f) = S(f)

for λ = 1).

(2) F3D
−1F−1

3 (f) = U(f).

(3) F3(1X) = 1.

8.2 Decomposing the Unitary into a Sum of Partial Isometries

In this section, we will decompose the unitary U : L2(S3,m)→ L2(S3,m) given by

Uf((zn)∞n=0) = h(z0)f ◦ S((zn)∞n=0),

for h(z) = 1+z2
√

2
into a sum of partial isometries {Ti}2i=0, which will satisfy relations similar to the

Cuntz relations.



91

For 0 ≤ i ≤ 2, let Ai = {f ∈ L2(m) : f ◦ Φ(x, ω) = 0 when ω1 6= i}, where ω ∈ Ω is of

the form ω = (ω1, ω2, ...). These Ai are pairwise orthogonal closed subspaces of L2(S3,m), and

moreover

L2(S3,m) = ⊕2
i=0Ai.

Indeed, if f ∈ L2(S3,m)

f =

2∑
i=0

f1[0,1)×σi(Ω) ◦ Φ−1(·),

where for 0 ≤ i ≤ 2, define σi : Ω → Ω by (ω1, ω2, ...) 7→ (i, ω1, ω2, ...). Accordingly, we let Pi for

0 ≤ i ≤ 2 be the orthogonal projection of L2(S3,m) onto Ai. We note that Pi = M1[0,1)×σi(Ω)◦Φ−1(·),

where M1[0,1)×σi(Ω)◦Φ−1(·) is multiplication by 1[0,1)×σi(Ω) ◦ Φ−1(·).

For 0 ≤ i ≤ 2, let Bi = {f ∈ L2(m) : f ◦ Φ(x, ω) = 0 when x /∈ τi([0, 1))}, where τi : [0, 1)→

[0, 1) is given by x 7→ x+i
3 . These Bi are pairwise orthogonal closed subspaces of L2(S3,m), and

moreover

L2(S3,m) = ⊕2
i=0Bi.

Indeed, if f ∈ L2(S3,m)

f =
2∑
i=0

f1τi([0,1))×Ω ◦ Φ−1(·).

Accordingly, we let Qi for 0 ≤ i ≤ 2 be the orthogonal projection of L2(S3,m) onto Bi. We note

that Qi = M1τi([0,1))×Ω◦Φ−1(·). We continue with some notation and definitions:

(1) Define τ : [0, 1)→ [0, 1) by τ(x) = 3x(mod1). Note that τ ◦ τi = id[0,1) for 0 ≤ i ≤ 2.

(2) Define σ : Ω→ Ω by σ(ω1, ω2, ...) = (ω2, ω3, ...). Note that σ ◦ σi = idΩ for 0 ≤ i ≤ 2.

(3) For 0 ≤ i ≤ 2, define si : [0, 1)× Ω→ [0, 1)× Ω by (x, ω) 7→ (τi(x), σ(ω)).

(4) For 0 ≤ i ≤ 2, define ri : [0, 1)× Ω→ [0, 1)× Ω by (x, ω) 7→ (τ(x), σi(ω)).

For 0 ≤ i ≤ 2, define Ti : C(S3)→ L2(S3,m) by

f ∈ C(S3) 7→ (f ◦ Φ ◦ ri ◦ Φ−1)(1τi([0,1))×Ω ◦ Φ−1)h.
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We will first show that Ti is a bounded operator on C(S3), and then extend Ti uniquely to L2(S3,m)

by using a standard density argument. Recall that |h(z)|2 = 3W . Let f ∈ C(S3), and note that f

is bounded since S3 is compact. Moreover

||Ti(f)||2L2(S3,m) =

∫
S3

|f ◦ Φ ◦ ri ◦ Φ−1|2(1τi([0,1))×Ω ◦ Φ−1)3Wdm =∫
S3

|f ◦ Φ ◦ ri ◦ Φ−1|2(1τi([0,1))×Ω ◦ Φ−1)
d(m ◦ S)

dm
dm =∫

S3

|f ◦ Φ ◦ ri ◦ Φ−1|2(1τi([0,1))×Ω ◦ Φ−1)d(m ◦ S) =∫
S3

|f ◦ Φ ◦ ri ◦ Φ−1 ◦ S−1|2(1τi([0,1))×Ω ◦ Φ−1 ◦ S−1)dm.

Suppose that (zn)∞n=0 ∈ S3 is such that Φ−1 ◦ S−1((zn)∞n=0) ∈ τi([0, 1)) × Ω. This implies that

(zn)∞n=0 = Φ(x, ω) where ω = (i, ω2, ω3, ...). Moreover, for this element (zn)∞n=0 ∈ S3

f ◦ Φ ◦ ri ◦ Φ−1 ◦ S−1((zn)∞n=0) = f ◦ Φ ◦ ri(τi(x), σ(ω)) =

f ◦ Φ(τ ◦ τi(x), σi ◦ σ(ω)) = f ◦ Φ(x, (i, ω2, ...)) = f ◦ Φ(x, ω) = f((zn)∞n=0).

Hence, ∫
S3

|f ◦ Φ ◦ ri ◦ Φ−1 ◦ S−1|2(1τi([0,1))×Ω ◦ Φ−1 ◦ S−1)dm =∫
S(Φ(τi([0,1))×Ω))

|f |2dm ≤
∫
S3

|f |2dm = ||f ||2L2(S3,m).

This calculation shows that Ti is bounded. It is also clear that Ti is linear. Since continuous

functions are dense in L2(S3,m), Ti extends uniquely to a bounded linear operator on L2(S3,m).

For 0 ≤ i ≤ 2, define T ∗i : C(S3)→ L2(S3,m) by

f ∈ C(S3) 7→ (f ◦ Φ ◦ si ◦ Φ−1)(1[0,1)×σi(Ω) ◦ Φ−1)
1

h ◦ Φ ◦ (τi × idΩ) ◦ Φ−1
,

where (τi × idΩ) : [0, 1)× Ω→ [0, 1)× Ω by (x, ω) 7→ (τi(x), ω). Let f ∈ C(S3). Then

||T ∗i (f)||L2(S3,m) =

∫
S3

|f ◦ Φ ◦ si ◦ Φ−1|2(1[0,1)×σi(Ω) ◦ Φ−1)
1

3

1

W ◦ Φ ◦ (τi × idΩ) ◦ Φ−1
dm.
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Now suppose that (zn)∞n=0 ∈ S3 is such that Φ−1((zn)∞n=0) ∈ [0, 1) × σi(Ω). This implies that

(zn)∞n=0 = Φ(x, (i, ω2, ...)). Then

W ◦ S−1((zn)∞n=0) = W (e−2πiτi(x)).

Meanwhile for this (zn)∞n=0, we also have that

W ◦ Φ ◦ (τi × idΩ) ◦ Φ−1((zn)∞n=0) = W ◦ Φ ◦ (τi × idΩ)(x, (i, ω2, ...)) =

W ◦ Φ(τi(x), (i, ω2, ...)) = W (e−2πiτi(x)).

These calculations show that

(1[0,1)×σi(Ω) ◦ Φ−1)
1

3

1

W ◦ Φ ◦ (τi × idΩ) ◦ Φ−1
= (1[0,1)×σi(Ω) ◦ Φ−1)

1

3W ◦ S−1
=

(1[0,1)×σi(Ω) ◦ Φ−1)
dm

d(m ◦ S)
◦ S−1

Hence ∫
S3

|f ◦ Φ ◦ si ◦ Φ−1|2(1[0,1)×σi(Ω) ◦ Φ−1)
1

3

1

W ◦ Φ ◦ (τi × idΩ) ◦ Φ−1
dm =∫

S3

|f ◦ Φ ◦ si ◦ Φ−1|2(1[0,1)×σi(Ω) ◦ Φ−1)
dm

d(m ◦ S)
◦ S−1dm =∫

S3

|f ◦ Φ ◦ si ◦ Φ−1 ◦ S ◦ S−1|2(1[0,1)×σi(Ω) ◦ Φ−1 ◦ S ◦ S−1)
dm

d(m ◦ S)
◦ S−1dm =∫

S3

|f ◦ Φ ◦ si ◦ Φ−1 ◦ S|2(1[0,1)×σi(Ω) ◦ Φ−1 ◦ S)
dm

d(m ◦ S)
d(m ◦ S) =∫

S3

|f ◦ Φ ◦ si ◦ Φ−1 ◦ S|2(1[0,1)×σi(Ω) ◦ Φ−1 ◦ S)dm.

Suppose that (zn)∞n=0 = Φ(x, (ω1, ω2, ...)). Note that

Φ−1 ◦ S((zn)∞n=0) = Φ−1(e−2πiτ(x), e−2πix, e−2πiτω1 (x), ...).

Now Φ−1 ◦ S((zn)∞n=0) ∈ [0, 1) × σi(Ω) means that x = τi ◦ τ(x), so that Φ−1 ◦ S((zn)∞n=0) =

(τ(x), (i, ω1, ω2)) . Then if Φ−1 ◦ S((zn)∞n=0) ∈ [0, 1)× σi(Ω),

f ◦ Φ ◦ si ◦ Φ−1 ◦ S((zn)∞n=0 = f ◦ Φ ◦ si(τ(x), (i, ω1, ω2, ...)) =
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f ◦ Φ(τi ◦ τ(x), σ(i, ω1, ω2, ...)) =

f ◦ Φ(x, (ω1, ω2, ...)) = f((zn)∞n=0).

Hence ∫
S3

|f ◦ Φ ◦ si ◦ Φ−1 ◦ S|2(1[0,1)×σi(Ω) ◦ Φ−1 ◦ S)dm =

∫
S−1(Φ([0,1)×σi(Ω))

|f |2dm ≤
∫
S3

|f |2dm = ||f ||L2(S3).

This calculation shows that T ∗i is bounded. It is also clear that T ∗i is linear. Since continuous

functions are dense in L2(S3,m), T ∗i extends uniquely to a bounded linear operator on L2(S3,m).

We will now show that indeed T ∗i is the adjoint of Ti. Let f, g ∈ C(S3). Then

〈Tif, g〉L2(S3,m) =

∫
S3

(f ◦ Φ ◦ ri ◦ Φ−1)(1τi([0,1))×Ω ◦ Φ−1)hgdm =

∫
S3

(f ◦ Φ ◦ ri ◦ Φ−1)(1τi([0,1))×Ω ◦ Φ−1)

(
1

h
g

)
hhdm =

∫
S3

(f ◦ Φ ◦ ri ◦ Φ−1)(1τi([0,1))×Ω ◦ Φ−1)

(
1

h
g

)
3Wdm =

∫
S3

(f ◦ Φ ◦ ri ◦ Φ−1)(1τi([0,1))×Ω ◦ Φ−1)

(
1

h
g

)
d(m ◦ S)

dm
dm =

∫
S3

(f ◦ Φ ◦ ri ◦ Φ−1)(1τi([0,1))×Ω ◦ Φ−1)

(
1

h
g

)
d(m ◦ S) =

∫
S3

(f ◦ Φ ◦ ri ◦ Φ−1 ◦ S−1)(1τi([0,1))×Ω ◦ Φ−1 ◦ S−1)

(
1

h ◦ S−1

)
g ◦ S−1dm.

We note that the fourth equality is because the integrand in fourth integral is integrable with

respect to the measure m ◦ S. Using similar kinds of computations as above, one can show that

(f ◦ Φ ◦ ri ◦ Φ−1 ◦ S−1)(1τi([0,1))×Ω ◦ Φ−1 ◦ S−1)

(
1

h ◦ S−1

)
g ◦ S−1 =
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f(g ◦ Φ ◦ si ◦ Φ−1)(1[0,1)×σi(Ω) ◦ Φ−1)
1

h ◦ Φ ◦ (τi × idΩ) ◦ Φ−1
= fT ∗i g

Hence,

〈Tif, g〉L2(S3,m) = 〈f, T ∗i g〉L2(S3,m)

Since continuous functions are dense in L2(S3,m), this adjoint relation extends to all of L2(S3,m),

and T ∗i is the adjoint operator of Ti.

Proposition 8.2.1. [Davison] The operators {Ti}2i=0 satisfy the following:

Ti1 · · · TinT ∗in · · · T
∗
i1 = M1τi1◦...◦τin ([0,1))×Ω◦Φ−1 ,

where M1τi1◦...◦τin ([0,1))×Ω◦Φ−1 is multiplication by 1τi1◦...◦τin ([0,1))×Ω ◦ Φ−1.

Proof. This will be proved by induction. Let 0 ≤ i ≤ 2, and let f ∈ L2(S3,m). Then

TiT
∗
i f = Ti

(
f ◦ Φ ◦ si ◦ Φ−1(1[0,1)×σi(Ω) ◦ Φ−1)

1

h ◦ Φ ◦ (τi × idΩ) ◦ Φ−1

)
=

(f ◦ Φ ◦ si ◦ Φ−1 ◦ Φ ◦ ri ◦ Φ−1)(1[0,1)×σi(Ω) ◦ Φ−1 ◦ Φ ◦ ri ◦ Φ−1)

1

h ◦ Φ ◦ (τi × idΩ) ◦ Φ−1 ◦ Φ ◦ ri ◦ Φ−1
1τi([0,1))×Ω ◦ Φ−1h.

Let (zn)∞n=0 ∈ S3 be such that (zn)∞n=0 = Φ(x, ω). Then by the above calculation

TiT
∗
i f((zn)∞n=0) = (f ◦ Φ ◦ si(τ(x), σi(ω)))(1[0,1)×σi(Ω) ◦ ri(x, ω))

1

h ◦ Φ(τi ◦ τ(x), σi(ω))
(1τi([0,1))×Ω(x, ω))h ◦ Φ(x, ω) =

(f ◦ Φ ◦ (τi ◦ τ(x), σ ◦ σi(ω)))(1[0,1)×σi(Ω) ◦ (τ(x), σi(ω))
1

h ◦ Φ(τi ◦ τ(x), σi(ω))

(1τi([0,1))×Ω(x, ω))h ◦ Φ(x, ω) =

(f ◦ Φ ◦ (τi ◦ τ(x), ω))
1

h ◦ Φ(τi ◦ τ(x), σi(ω))
(1τi([0,1))×Ω(x, ω))h ◦ Φ(x, ω).

Now observe that if x ∈ τi([0, 1)), then τi ◦ τ(x) = x. Hence

(f ◦ Φ ◦ (τi ◦ τ(x), ω))
1

h ◦ Φ(τi ◦ τ(x), σi(ω))
(1τi([0,1))×Ω(x, ω))h ◦ Φ(x, ω) =
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(f ◦ Φ ◦ (x, ω))
1

h ◦ Φ(x, σi(ω))
(1τi([0,1))×Ω(x, ω))h ◦ Φ(x, ω) =

(1τi([0,1))×Ω(x, ω))(f ◦ Φ ◦ (x, ω)) =

(1τi([0,1))×Ω ◦ Φ−1 ◦ Φ(x, ω))(f ◦ Φ ◦ (x, ω)) = M1τi([0,1))×Ω◦Φ−1f,

where the third to last equality is because h ◦ Φ only depends on the variable x. This completes

the proof of the base case. Suppose that the proposition is true for n− 1 with n ≥ 2. We will show

that

Ti1 · · · TinT ∗in · · · T
∗
i1 = M1τi1◦...◦τin ([0,1))×Ω◦Φ−1 .

Let f ∈ L2(S3,m). Then

Ti1 · · · TinT ∗in · · · T
∗
i1f =

Ti1Ti2 · · · TinT ∗in · · · T
∗
i2

(
f ◦ Φ ◦ si1 ◦ Φ−11[0,1)×σi1 (Ω) ◦ Φ−1 1

h ◦ Φ ◦ (τi1 × idΩ) ◦ Φ−1

)
=

Ti1

(
1τi2◦...◦τin ([0,1))×Ω ◦ Φ−1f ◦ Φ ◦ si1 ◦ Φ−11[0,1)×σi1 (Ω) ◦ Φ−1 1

h ◦ Φ ◦ (τi1 × idΩ) ◦ Φ−1

)
=

(1τi2◦...◦τin ([0,1))×Ω ◦ ri1 ◦ Φ−1)Ti1

(
f ◦ Φ ◦ si1 ◦ Φ−11[0,1)×σi1 (Ω) ◦ Φ−1 1

h ◦ Φ ◦ (τi1 × idΩ) ◦ Φ−1

)
=

(1τi2◦...◦τin ([0,1))×Ω ◦ ri1 ◦ Φ−1)1τi1 ([0,1))×Ω ◦ Φ−1f,

where the last equality is shown by using the base case. Suppose that (zn)∞n=0 ∈ S3 is such that

(zn)∞n=0 = Φ(x, ω). Then

1τi2◦...◦τin ([0,1))×Ω ◦ ri1 ◦ Φ−1 ◦ Φ(x, ω)1τi1 ([0,1))×Ω ◦ Φ−1 ◦ Φ(x, ω) =

1τi2◦...◦τin ([0,1))×Ω(τ(x), σi1(ω))1τi1 ([0,1))×Ω(x, ω) =

Now x ∈ τi1([0, 1)) means that x = τi1(γ) for some γ ∈ [0, 1). Note that τ(x) = τ ◦ τi1(γ) = γ.

Observe that τ(x) ∈ τi2 ◦ ... ◦ τin([0, 1)) means that γ ∈ τi2 ◦ ... ◦ τin([0, 1)). Hence x = τi1(γ) ∈

τi1 ◦ ... ◦ τin([0, 1)). This shows that

(1τi2◦...◦τin ([0,1))×Ω ◦ ri1 ◦ Φ−1)1τi1 ([0,1))×Ω ◦ Φ−1f = 1τi1◦...◦τin ([0,1))×Ω ◦ Φ−1f,

which completes the proof of the proposition.
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Proposition 8.2.2. [Davison] The operators {Ti}2i=0 satisfy the following:

T ∗i1 · · · T
∗
inTin · · · Ti1 = M1[0,1)×σi1◦...◦σin (Ω)◦Φ−1 ,

where M1[0,1)×σi1◦...◦σin (Ω)◦Φ−1 is multiplication by 1[0,1)×σi1◦...◦σin (Ω) ◦ Φ−1.

Proof. This will be proved by induction. Let 0 ≤ i ≤ 2, and let f ∈ L2(S3,m). Then

T ∗i Tif = T ∗i ((f ◦ Φ ◦ ri ◦ Φ−1)(1τi([0,1))×Ω ◦ Φ−1)h) =

(f ◦ Φ ◦ ri ◦ si ◦ Φ−1)(1τi([0,1))×Ω ◦ si ◦ Φ−1)(h ◦ Φ ◦ si ◦ Φ−1)

(1[0,1)×σi(Ω) ◦ Φ−1)
1

h ◦ Φ ◦ (τi × idΩ) ◦ Φ−1
.

Suppose that (zn)∞n=0 ∈ S3 is such that (zn)∞n=0 = Φ(x, ω). Then

T ∗i Tif((zn)∞n=0) = (f ◦ Φ(τ ◦ τi(x), σi ◦ σ(ω)))(1τi([0,1))×Ω(τi(x), σ(ω)))

(h ◦ Φ(τi(x), σ(ω)))(1[0,1)×σi(Ω)(x, ω))
1

h ◦ Φ(τi(x), ω)
=

f ◦ Φ(x, σi ◦ σ(ω))(1[0,1)×σi(Ω)(x, ω)) = f ◦ Φ(x, ω)(1[0,1)×σi(Ω)(x, ω)) =

1[0,1)×σi(Ω) ◦ Φ−1((zn)∞n=0)f((zn)∞n=0).

This completes the proof of the base case. Suppose that the proposition is true for n − 1 with

n ≥ 2. We will show that

T ∗i1 · · · T
∗
inTin · · · Ti1 = M1[0,1)×σi1◦...◦σin (Ω)◦Φ−1 .

Let f ∈ L2(S3,m). Then

T ∗i1 · · · T
∗
inTin · · · Ti1f = T ∗i1(M1[0,1)×σi2◦...◦σin (Ω)◦Φ−1)Ti1f =

T ∗i1

[
(1[0,1)×σi2◦...◦σin (Ω) ◦ Φ−1)Ti1f

]
=

(1[0,1)×σi2◦...◦σin (Ω) ◦ si ◦ Φ−1)(1[0,1)×σi1 (Ω) ◦ Φ−1)f =

(1[0,1)×σi1◦...◦σin (Ω) ◦ Φ−1)f,

and this completes the proof of the proposition.
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We note that by Propositions 8.2.1 and 8.2.2, for 0 ≤ i ≤ 2, TiT
∗
i = Qi = M1τi([0,1))×Ω◦Φ−1(·),

and T ∗i Ti = Pi = M1[0,1)×σi(Ω)◦Φ−1(·). This leads to the following result.

Proposition 8.2.3. [Davison] The operators {Ti}2i=0 are partial isometries which satisfy the fol-

lowing relations:

(1)
∑2

i=0 TiT
∗
i =

∑2
i=0 T

∗
i Ti = idL2(S3,m).

(2) T ∗i Tj = TiT
∗
j = 0 if i 6= j.

Proof. The fact that Ti are partial isometries follows from the fact that TiT
∗
i and T ∗i Ti are projec-

tions. Item (1) is true because
∑2

i=0Qi =
∑2

i=0 Pi = idL2(S3,m). If i 6= j, the fact that T ∗i Tj = 0

follows from

1[0,1)×σj(Ω) ◦ ri ◦ Φ−1 = 0,

and the fact that TiT
∗
j = 0 follows from

1τj([0,1))×Ω ◦ si ◦ Φ−1 = 0.

Theorem 8.2.4. [Davison] The unitary U : L2(S3,m)→ L2(S3,m) by

Uf((zn)∞n=0) = h(z0)f ◦ S((zn)∞n=0),

satisfies U =
∑2

i=0 Ti.

Proof. Let f ∈ L2(S3,m). Then,

2∑
i=0

Tif =

(
2∑
i=0

(f ◦ Φ ◦ ri ◦ Φ−1)(1τi([0,1))×Ω) ◦ Φ−1)

)
h.

Choose some (zn)∞n=0 ∈ L2(S3,m). Suppose without loss of generality (zn)∞n=0 = Φ(x, ω) with

x ∈ τj([0, 1)). Then

2∑
i=0

Tif((zn)∞n=0) = (f ◦ Φ ◦ rj(x, ω))(1τj([0,1))×Ω)(x, ω))h(z0) =
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(f ◦ Φ(τ(x), σj(ω)))(1τj([0,1))×Ω)(x, ω))h(z0) =

(f ◦ S((zn)∞n=0))h(z0) = Uf.

Consider now the measurable bijection ψ : [0, 1) → T given by x 7→ e−2πix. For 0 ≤ i ≤ 2,

define ρi : T→ T by ρi = ψ ◦ τi ◦ψ−1, and define ρ : T→ T by ρ = ψ ◦ τ ◦ψ−1. Note that ρ(z) = z3

and ρ ◦ ρi = idT for 0 ≤ i ≤ 2.

For k ∈ Z+ and a ∈ Γk3, let Ak(a) = ψ ◦ τa1 ◦ ... ◦ τak([0, 1)). Observe that Ak(a) = ρa1 ◦ ... ◦

ρak(T). For a ∈ Γk3, define the projection Pk(a) = Ta1 · · · TakT ∗ak · · · T
∗
a1

= M1τa1◦...◦τak ([0,1))×Ω◦Φ−1

on L2(S3,m). We remark that

• T = ∪a∈Γk3
Ak(a) for all k ∈ Z+, and the union is disjoint.

• Given ε > 0, there exists a K ∈ Z+ such that for k ≥ K, diam(Ak(a)) ≤ ε for all a ∈ Γk3.

•
∑

a∈Γk3
Pk(a) = idL2(S3,m) for all k ∈ Z+.

• Pk(a)Pk(b) = 0 if a 6= b and a, b ∈ Γk3.

• Pk+1(a) is contained in some Pk(b) (i.e. Pk(b)Pk+1(a) = Pk+1(a)).

The first two items of the above list imply that {Ak(a)}a∈Γk3
comprise a 3-adic system of partitions

of T (see Definition 3.1 in P. Jorgensen’s paper [17]). The last three items of the above list imply

that {Pk(a)}a∈Γk3
comprise a 3-adic system of projections on L2(S3,m) (see Definition 3.2 in P.

Jorgensen’s paper [17]). This allows us to invoke the result of Jorgensen mentioned in Remark

6.3.1 to conclude that there exists a unique projection valued measure G from the Borel subsets of

T to the projections on L2(S3,m) that satisfies

• G(Ak(a)) = Ta1 · · · TakT ∗ak · · · T
∗
a1
, and
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• G(·) =
∑2

i=0 TiG(ρ−1
i (·))T ∗i

Let us now note the following. If f ∈ L2(S3,m) and a ∈ Γk3,

Ta1 · · · TakT
∗
ak
· · · T ∗a1

f((zn)∞n=0) = M1τa1◦...◦τak ([0,1))×Ω◦Φ−1(·)f((zn)∞n=0) =

1τa1◦...◦τak ([0,1))×Ω ◦ Φ−1((zn)∞n=0)f((zn)∞n=0) = 1ψ◦τa1◦...◦τak ([0,1))(z0)f((zn)∞n=0).

1Ak(a)(z0)f((zn)∞n=0).

This shows that G is the unique projection valued measure which satisfies

G(Ak(a))f((zn)∞n=0) = 1Ak(a)(z0)f((zn)∞n=0) (8.10)

for all f ∈ L2(S3,m). Let us recall that the previously defined projection valued measure F (see

equation (8.8)) satisfies the relation of equation (8.10). This proves the following proposition.

Proposition 8.2.5. [Davison] The projection valued measure F equals the projection valued mea-

sure G.

In summary, what we have shown is that the partial isometries {Ti}N−1
i=0 are the building

blocks for constructing the unitary operators U and S on L2(S3,m) which satisfy the Baumslag-

Solitar relation USU−1 = S3. That is,

• U =
∑N−1

i=0 Ti, and

• S =
∫
T zdF where F is the unique projection valued measure satisfying

F (·) =

2∑
i=0

TiF (ρ−1
i (·))T ∗i .

Remark 8.2.6. The author of this thesis was fortunate to be able to recently discuss this chapter

with Palle Jorgensen. He encouraged the author to relate the material in this chapter to research

done by M. Marcolli and A.M. Paolucci in [22]. This is something that the author looks forward to

doing in future research.



Chapter 9

Fourier Transform Calculations for Measures on the Solenoid

In this chapter, we will present formulas for the Fourier transforms of several measures on

the N -solenoid (for N ∈ N with N ≥ 2). These measures will be derived from generating filters in

BB(T), the bounded Borel functions on T. The specific filters that we will consider are the Haar

filter for dilation by N = 2, the (more general) Haar filter for dilation by N ∈ N with N ≥ 2, and

the Cantor generating filter discussed in Chapter 8.

9.1 Preliminaries

We first note that the solenoid can be generalized to any natural number N ∈ N for N ≥ 2.

Indeed, an element in the the N -solenoid is an infinite tuple (zn)∞n=0 ∈ T×T×... such that zNn+1 = zn

for all n = 0, 1, .... Moreover, an element of the dual of the N -solenoid is of the form l
Np for l ∈ Z

and p = 0, 1, 2, .... If W ∈ BB(T) satisfies

∑
wN=z

W (w) = 1

for all z ∈ T, one can generalize the techniques discussed in Chapter 8 (to arbitrary N ∈ N) to

show that W induces a Borel probability measure m on the N -solenoid, given by

m(f) :=

∫
[0,1)

∫
Ω
f ◦ Φ(x, ω)dPx(ω)dx (9.1)

for all f ∈ C(SN ), where Ω, Px, and Φ are defined according to Chapter 8. This measure satisfies

several important integral formulas.
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Lemma 9.1.1. [11] [Dutkay] Let f ∈ C(SN ) be such that it depends only on the first coordinate,

z0, of SN . Then ∫
SN

fdm =

∫
T
fdz.

where we think of f as a function on T by f((zn)∞n=0) = f(z0).

The next formula is stated in Theorem 8.1.9 for N = 3. We restate it in general below.

Theorem 9.1.2. [11][Dutkay] Let f ∈ C(SN ). For n = 1, ...,∞∫
SN

f ◦ S−ndm =

∫
SN

NnB(n)(·)fdm (9.2)

where B(n)((zl)
∞
l=0) : SN → C is defined by

(zl)
∞
l=0 7→W (z0)...W (zN

n−1

0 ).

9.2 Haar Filter for N = 2

Consider the Hilbert space L2(R, µ), where µ is Lebesgue measure. Define dilation and

translation operators on L2(R, µ) by

Df(x) =
√

2f(2x),

T f(x) = f(x− 1),

for all f ∈ L2(R, µ). These operators are unitary operators and they satisfy the relation D−1TD =

T 2, which is the defining relation for BS(1, 2). Moreover, if we let φ = 1[0,1), one can calculate that

φ =
1√
2
D(φ) +

1√
2
DT (φ).

As before, writing the unitary operator T as T =
∫
T zdE, for some projection valued measure E,

we get that

D−1(φ) =

(
1√
2

+
1√
2
T

)
(φ) =

(
1√
2

+
1√
2

∫
zdE

)
(φ) =

(∫ (
1 + z√

2

)
dE

)
φ.
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We call g(z) = 1+z√
2

the Haar generating filter. This is because the dilation and translation

operators defined above give rise to a multi-resolution analysis on L2(R, µ). In particular, one can

recover the Haar wavelet from this multi-resolution analysis. The Haar wavelet function, ψ, is given

by ψ(t) = 1 for 0 ≤ t < 1
2 , ψ(t) = −1 for 1

2 ≤ t < 1, and ψ(t) = 0 otherwise. The doubly indexed

family of functions

ψj,k(t) = 2j/2ψ(2jt− k)

for j, k ∈ Z form an orthonormal basis of L2(R, µ). In other words, ψ is a wavelet in L2(R, µ) for

dilation by 2. Let us define W (z) = |g(z)|2
2 . It can be shown that

∑
w2=z

W (z) = 1. (9.3)

Therefore W induces a measure m on S2. We now characterize the Fourier transform of the measure

m. In particular, the Fourier transform of m on S2, denoted m̂, is defined by

m̂(λ) :=

∫
S2

χλdm,

where λ ∈ Z
[

1
2

]
, and χλ is the associated character on S2 given by χλ((zn)∞n=0) = zlp (assuming

λ = l
2p )

Lemma 9.2.1. [11] [Dutkay] Let λ = l
2p for l ∈ Z and p = 1, 2, ...,. Then

χl ◦ S−p = χλ

Proof. Let (zn)∞n=0 ∈ S2. Then

χl ◦ S−p((zn)∞n=0) = zlp = χλ((zn)∞n=0).

Proposition 9.2.2. [11] [Dutkay] For λ = l ∈ Z
[

1
2

]
m̂(λ) =

∫
T
zldz.
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Proof. Since χl only depends on the first coordinate, we can apply Lemma 9.1.1 to conclude that

m̂(λ) =

∫
S2

χλdm =

∫
T
zldz.

Proposition 9.2.3. [11] [Dutkay] For λ = l
2p ∈ Z

[
1
2

]
, where p = 1, 2, ...

m̂(λ) =

∫
T
zl · 2pB(p)(z)dz.

Proof. The proof of this theorem relies on Theorem 9.1.2 and Lemma 9.2.1. That is

m̂(λ) =

∫
S2

χλdm =

∫
S2

χl ◦ S−pdm =

∫
S2

2pB(p)(·)χldm.

Since B(p) and χl only depend on the first coordinate of S2, we can apply Lemma 9.1.1 to conclude

that ∫
S2

2pB(p)χldm =

∫
T

2pB(p)(z)zldz =∫
T
zl2pB(p)(z)dz.

We will investigate the structure of the Laurent polynomial 2pB(p)(z) for p = 1, 2, ... In

particular, recall that g(z) = 1√
2

(1 + z) . Hence

W (z) =
|g(z)|2

2
=

(z + 2 + z−1)

22
,

where we are using the fact that z = z−1 for z ∈ T. Therefore

2pB(p)(z) = 2pW (z)...W (z2p−1
) =

2

(
(z + 2 + z−1)

22

)
· ... · 2

(
(z2p−1

+ 2 + z−2p−1

22

)
=

(
(z + 2 + z−1)

2

)
· ... ·

(
(z2p−1

+ 2 + z−2p−1

2

)
=
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z

2
+ 1 +

z−1

2

)
· ... ·

(
z2p−1

2
+ 1 +

z−2p−1

2

)
. (9.4)

We will now determine a general formula for expression (9.4).

Proposition 9.2.4. [Davison] Let p = 1, 2, .... Then(
z

2
+ 1 +

z−1

2

)
· ... ·

(
z2p−1

2
+ 1 +

z−2p−1

2

)
=

1

2p
z2p−1+...+2+1 +

2

2p
z(2p−1+...+2+1)−1 + ...+

2p − 1

2p
z + 1+

2p − 1

2p
z−1 + ...+

2

2p
z−((2p−1+...+2+1)−1) +

1

2p
z−(2p−1+...+2+1).

Proof. We will prove this by induction on p. If p = 1(
z

2
+ 1 +

z−1

2

)
is of the claimed form, and hence the base case is proved. Suppose for p ≥ 1, the above Laurent

polynomial is of the claimed form. We will show the Laurent polynomial is of the claimed form for

p+ 1. That is, we will show(
z

2
+ 1 +

z−1

2

)
· ... ·

(
z2p

2
+ 1 +

z−2p

2

)
=

1

2p+1
z2p+...+2+1 +

2

2p+1
z(2p+...+2+1)−1 + ...+

2p+1 − 1

2p+1
z + 1+

2p+1 − 1

2p+1
z−1 + ...+

2

2p+1
z−((2p+...+2+1)−1) +

1

2p+1
z−(2p+...+2+1).

By the induction assumption, we know that(
z

2
+ 1 +

z−1

2

)
· ... ·

(
z2p

2
+ 1 +

z−2p

2

)
=

(
z2p

2
+ 1 +

z−2p

2

)
(

1

2p
z2p−1+...+2+1 + ...+

2p − 1

2p
z + 1 +

2p − 1

2p
z−1 + ...+

1

2p
z−(2p−1+...+2+1)

)
=

1

2p+1
z2p+...+2+1 + ...+

2p

2p+1
z2p +

2p − 1

2p+1
z2p−1 + ...+

1

2p+1
z2p−(2p−1+...+2+1)+
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1

2p
z2p−1+...+2+1 + ...+

2p − 1

2p
z + 1 +

2p − 1

2p
z−1 + ...+

1

2p
z−(2p−1+...+2+1)+

1

2p+1
z−(2p−(2p−1+...+2+1)) + ...+

2p − 1

2p+1
z−(2p−1) +

2p

2p+1
z−2p + ...+

1

2p+1
z−(2p+...+2+1) =

(we will now use that 2p − 1 = 2p−1 + ...+ 2 + 1, for p = 1, 2, ..)

1

2p+1
z2p+...+2+1 + ...+

2p

2p+1
z2p +

2p − 1

2p+1
z2p−1 + ...+

1

2p+1
z+

1

2p
z2p−1 + ...+

2p − 1

2p
z + 1 +

2p − 1

2p
z−1 + ...+

1

2p
z−(2p−1)+

1

2p+1
z−1 + ...+

2p − 1

2p+1
z−(2p−1) +

2p

2p+1
z−(2p) + ...+

1

2p+1
z−(2p+...+2+1) =

(by combining like terms we get)

1

2p+1
z2p+...+2+1 + ...+

2p

2p+1
z2p +

2p + 1

2p+1
z2p−1 + ...+

2p+1 − 1

2p+1
z + 1+

2p+1 − 1

2p+1
z−1 + ...+

2p + 1

2p+1
z−(2p−1) +

2p

2p+1
z−(2p) + ...+

1

2p+1
z−(2p+...+2+1) =

1

2p+1
z2p+...+2+1 + ...+

2p+1 − 1

2p+1
z + 1 +

2p+1 − 1

2p+1
z−1 + ...+

1

2p+1
z−(2p+...+2+1),

which is the desired form.

Remark 9.2.5. We note that for p = 1, 2, ..., the Laurent polynomial

1

2p
z2p−1+...+2+1 +

2

2p
z(2p−1+...+2+1)−1 + ...+

2p − 1

2p
z + 1+
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2p − 1

2p
z−1 + ...+

2

2p
z−((2p−1+...+2+1)−1) +

1

2p
z−(2p−1+...+2+1)

has the property that for 1 ≤ k ≤ 2p−1 + ... + 2 + 1, the coefficient of zk is 2p − k. Moreover, the

coefficient of zk equals the coefficient of z−k.

We note that the following theorem was first stated in 2008 by J. Packer in [24].

Theorem 9.2.6. [24][Packer]

(1) Suppose that λ = l ∈ Z
[

1
2

]
where l ∈ Z. Then

m̂(λ) =


0 if l 6= 0

1 if l = 0

(2) Suppose that λ = l
2p ∈ Z

[
1
2

]
where l ∈ Z and p = 1, 2, .... Then

m̂(λ) =


1− |λ| if |l| ≤ 2p−1 + ...+ 2 + 1

0 if |l| > 2p−1 + ...+ 2 + 1

Proof. We prove (1) first: Recall that for λ = l ∈ Z
[

1
2

]
where l ∈ Z, we have by Proposition 9.2.2

m̂(λ) =

∫
T
zldz.

This integral is zero for l 6= 0 and 1 for l = 0, which proves the first part of the theorem.

We now prove (2). Recall that for λ = l
2p ∈ Z

[
1
2

]
where l ∈ Z and p = 1, 2, ..., we have by

Proposition 9.2.3, and Proposition 9.2.4,

m̂(λ) =

∫
T
zl · 2pB(p)(z)dz =

1

2p

∫
T
zlz2p−1+...+2+1dz + ...+

2p − 1

2p

∫
T
zlzdz +

∫
T
zldz+

2p − 1

2p

∫
T
zlz−1dz + ...+

1

2p

∫
T
zlz−(2p−1+...+2+1)dz
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If l = 0, we refer to (1), in which case m̂(λ) = 1 = 1−|0|. Suppose now that 1 ≤ l ≤ 2p−1+...+2+1.

Then the above sum of integrals will reduce to one integral, namely

2p − l
2p

∫
T
zlz−ldz =

2p − l
2p

= 1− |λ|.

This is because all other terms will involve an integral of zn for some non-zero integer n, which will

integrate to zero.

Suppose that −1 ≥ l ≥ −(2p−1 + ... + 2 + 1). Similar to above, the above sum of integrals

will reduce to one integral, namely

2p − |l|
2p

∫
T
zlz−ldz =

2p − |l|
2p

= 1− |λ|.

Suppose that |l| > 2p−1 + ...+ 2 + 1. Then every integral will be zero, and hence, m̂(λ) = 0.

This completes the proof of the theorem.

The above theorem can be condensed into the following statement.

Theorem 9.2.7. [24][Packer] Suppose that λ = l
2p ∈ Z

[
1
2

]
where l ∈ Z and p = 0, 1, .... Then

m̂(λ) =


1− |λ|, if |λ| < 1

0, if |λ| ≥ 1

.

9.3 Haar Filter for Arbitrary N

Consider the Hilbert space L2(R, µ), where µ is Lebesgue measure, and choose N ∈ N with

N ≥ 2. Define the unitary dilation and translation operators on L2(R, µ) by

Df(x) =
√
Nf(Nx),

T f(x) = f(x− 1),

for all f ∈ L2(R, µ). Using the same procedure as above, we obtain the Haar generating filter

g(z) = 1+z+...+zN−1
√
N

. This generating filter induces a measure mN on the N -solenoid, SN , which
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satisfies an analogous result as Theorem 9.2.7. This result, stated below, does require a slightly

generalized proof, which we will not include.

Theorem 9.3.1. Suppose that λ = l
Np ∈ Z

[
1
N

]
where l ∈ Z and p = 0, 1, .... Then

m̂N (λ) =


1− |λ|, if |λ| < 1

0, if |λ| ≥ 1

.

9.4 Cantor Generating Filter

Recall that h(z) = 1+z2
√

2
is the generating filter associated to the Cantor set. This filter

induces a measure, m, on S3, as described above. In this section, we will determine a formula

for the Fourier transform of this measure with respect to the characters on S3. We note that this

formula was first presented by D. Dutkay in [11]; in his proof he relied on Proposition 8.1.11. In

our proof we will use an induction argument to find a general formula for the Laurent polynomial

3pB(p)(z), for p = 1, 2, ....

Proposition 9.4.1. [Davison] For p = 1, 2, 3, ..., the Laurent polynomial 3pB(p)(z) is of the form

M(p)∑
j=−M(p)

cjz
j

where M(p) := 2 + 2 · 3 + ...+ 2 · 3p−1 and

cj =


1
2a if j even

0 if j odd

for some a = 0, 1, 2, ... We note that this sum has 3p non-zero terms.

Proof. This will be proven by induction on p. If p = 1

3B(1)(z) = |h(z)|2 =
z2

2
+ 1 +

z−2

2
.
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By observation, we see that 3B(1)(z) is of the above form, and moreover there are 31 = 3 non-zero

terms. Suppose that 3p−1B(p−1)(z) is of the above form for p ≥ 2. We need to show that 3pB(p)(z)

is of the above form. Observe that

3pB(p)(z) =

(
1 +

(z3p−1
)2

2
+

(z3p−1
)−2

2

)
3p−1B(p−1)(z) =

(
1 +

(z3p−1
)2

2
+

(z3p−1
)−2

2

) M(p−1)∑
−M(p−1)

cjz
j

 =

(
1 +

z2·3p−1

2
+
z−2·3p−1

2

) M(p−1)∑
j=−M(p−1)

cjz
j


where M(p− 1) = 2 + 2 · 3 + ...+ 2 · 3p−2. At this point, we would like to note the useful facts:

• −M(p− 1) + 2 · 3p−1 = M(p− 1) + 2.

• M(p− 1)− 2 · 3p−1 = −M(p− 1)− 2.

This allows us to observe that(
1 +

z2·3p−1

2
+
z−2·3p−1

2

) M(p−1)∑
j=−M(p−1)

cjz
j

 =

M(p)∑
j=−M(p)

cjz
j

where

• cj = 0 for j odd,

• cj = 1
2cj−2·3p−1 for M(p− 1) < j ≤M(p) and j even,

• cj = 1
2cj+2·3p−1 for −M(p− 1) > j ≥ −M(p) and j even.

Using the induction assumption, we can conclude that 3pB(p)(z) is of the above form, and moreover

that there are 3p non-zero terms.
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We will now derive a general formula for the coefficients cj of 3pB(p)(z). We first note that

cj = c−j for all j, which means that we only need to determine the coefficients of cj for j ≥ 0. To

this end, choose an index j such that 0 ≤ j ≤ 2 + 2 · 3 + ... + 2 · 3p−1. If j is odd, the cj = 0.

Suppose that j is even. It is possible to express j uniquely as

j = d0 + d1(3) + ...+ dk(3
k),

where di ∈ {−2, 0, 2} for all 0 ≤ i ≤ k, and k ≤ p− 1. We claim that

cj =
1

2
|d0|+...+|dk|

2

.

We will prove this by induction on k. If k = 0, then j = d0. One can verify that cj = 1

2
|d0|

2

for d0 ∈ {−2, 0, 2}. Choose k ≥ 1, and suppose that the formula is true for all coefficients whose

decomposition is of length k − 1. We will show that it is true for k. That is, suppose j =

d0 + d1(3) + ...+ dk(3
k), where dk = 2 or dk = −2. Note that we can assume that dk 6= 0, because

in this case the decomposition would be of length k − 1 and we can use the induction assumption.

We will first assume that dk = 2. In this case, M(k) < j ≤M(k + 1) which implies that

cj =
1

2
cj−2·3k =

1

2

(
1

2
|d0|+...|dk−1|

2

)
=

1

2
|d0|+...|dk|

2

,

where the last equality is by the induction assumption. A similar argument is used to show the

formula in the case that dk = −2.

The next result is first due to D. Dutkay in [11]. We will provide another proof of this result

that will rely on the previous proposition.

Proposition 9.4.2. [11][Dutkay] Suppose that λ is a character on S3, and let m be the measure

on S3 induced from the Cantor generating filter. Then

m̂(λ) =


1

2
|d1|+...+|dp|

2

if λ =
∑p

k=1
dk
3k

0 else

where dk ∈ {−2, 0, 2} for all k = 1, ..., p.
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Proof. If λ =
∑p

k=1
dk
3k

, then 3pλ = d13p−1 + ... + dp. Note that 3pλ is an even integer such that

0 ≤ |3pλ| ≤ 2 + 2 · 3 + ...+ 2 · 3p−1. Hence, since λ = 3pλ
3p where 0 ≤ |3pλ| ≤ 2 + 2 · 3 + ...+ 2 · 3p−1,

we observe that

m̂(λ) =

∫
T
z3pλ · 3pB(p)(z)dz =

M(p)∑
j=−M(p)

cj

∫
T
z3pλzjdz = c|3pλ| =

1

2
|d1|+...+|dp|

2

.

Now suppose that λ is not of the form
∑p

k=1
dk
3k

for some p = 1, 2, .... Assume that λ = l
3q for some

q = 0, 1, 2, ... and some l ∈ Z. We will consider two cases:

• Suppose that l is even: In this case, we claim that |l| ≥ 2 · 3q. This is because if l < 2 · 3q,

we could write λ in the above form, which is a contradiction. If l ≥ 2 · 3q, m̂(λ) = 0.

• Suppose that l is odd. In this case, m̂(λ) = 0, because the coefficients of the odd powers

of 3qB(q)(z) are all odd for any q = 1, 2, ....

We will finish this chapter with a result that was first stated by J. Packer in 2008 in [24]. We

can use the above theory to prove it.

Proposition 9.4.3. [Packer] The quantity m̂(λ) 6= 0 if and only if λ ∈ Z
[

1
3

]
with |λ| < 1 and |λ|

has an even number of 1’s in its standard ternary expansion.

Proof. We first prove the forwards direction. Suppose that m̂(λ) 6= 0, and suppose that λ = l
3p

for some p = 0, 1, 2, ..., and some l ∈ Z. If p = 0, l = 0 because m̂(l) = 0 for all l 6= 0. Hence

|λ| = 0 < 1, and moreover |λ| has zero 1’s in its standard ternary expansion. If p = 1, 2, ..., then

l has to be even, and 0 ≤ |l| ≤ M(p) := 2 + 2(3) + ... + 2(3p−1) (this is because we are assuming

m̂(l) 6= 0). Hence, for all p = 1, 2, ...,

|λ| =
∣∣∣∣ l3p
∣∣∣∣ < 1.
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Since l is even, |l| = a0 + a1(3) + ... + ap−1(3p−1), where ai ∈ {0, 1, 2} for all 0 ≤ i ≤ p − 1, and

where there is an even number of ai’s equal to 1. Observe that

|λ| = |l|
3p

=
a0

3p
+ ...+

ap−1

3
,

which shows that |λ| has an even number of 1’s in its standard ternary expansion.

Conversely, suppose that |λ| < 1, and that |λ| has an even number of 1’s in its standard

ternary expansion. Suppose that λ = l
3p for some p = 0, 1, 2, .... If p = 0, l = 0 because |λ| < 1.

Hence, m̂(λ) = m̂(0) 6= 0. If p = 1, 2, ..., |l| ≤ M(p), because |λ| < 1. This means that |l| =

a0 + a1(3) + ...+ ap−1(3p−1), where ai ∈ {0, 1, 2}. Then

|λ| = |l|
3p

=
a0

3p
+ ...+

ap−1

3
. (9.5)

Since the standard ternary expansion of |λ| is unique, and since we are assuming that the ternary

expansion must have an even number of 1’s, we get that there must be an even number of ai’s

equal to 1 in expression (9.5). This allows us to claim that |l| is even (and we already know that

|l| ≤M(p)). Hence, m̂(λ) 6= 0.
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