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We first provide an example of a finite algebra with a Taylor term whose subpower member-

ship problem is NP-hard. We then prove that for any consistent strong linear Maltsev condition

M which does not imply the existence of a cube term, there exists a finite algebra satisfying M

whose subpower membership problem is EXPTIME-complete. We characterize consistent strong

linear Maltsev conditions which do not imply the existence of a cube term, and show as a corollary

that there are finite algebras which generate congruence distributive and congruence k-permutable

(k ≥ 3) varieties whose subpower membership problem is EXPTIME-complete. Finally, we show

that the spectrum of complexities of the problems SMP(A) for finite algebras A in varieties which

are congruence distributive and congruence k-permutable (k ≥ 3) is fuller than P and EXPTIME-

complete by giving examples of finite algebras in such a variety whose subpower membership prob-

lems are NP-complete and PSPACE-complete, respectively.
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I thank my advisor, Prof. Ágnes Szendrei, for her extreme patience and investment in me,

and for her invaluable guidance in producing the work in this thesis. I have grown tremendously

through our discussions and observing her approach, and I am honored to have had the opportunity

to work with her. I would also like to thank Peter Mayr for his feedback in response to my talks,

for offering helpful suggestions for improvements, and for his careful reading of this thesis. I am

grateful to my thesis committee for their time and involvement.

To the members of MATH 366: thank you for your willingness to engage and for your

friendship.

This material is based upon work supported by the National Science Foundation under Grant

No. DMS 1500254.



vi

Contents

Chapter

1 Introduction 1

2 Preliminaries 5

2.1 Complexity Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Algebras and the Subpower Membership Problem . . . . . . . . . . . . . . . . . . . . 6

2.3 Compatible Relations and Congruences . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Terms, Identities, and Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Linear Identities and Kelly’s Completeness Theorem . . . . . . . . . . . . . . . . . . 9

2.6 Interpretability and Strong Maltsev Conditions . . . . . . . . . . . . . . . . . . . . . 10

2.7 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 The SMP and algebras with a Taylor term 16

4 The SMP and strong linear Maltsev conditions 33

4.1 The main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 An upper bound for the complexity of SMP(AM) 45

Bibliography 51



vii

Tables

Table

3.1 The operation table for the binary operation +A. . . . . . . . . . . . . . . . . . . . . 18

3.2 The range of values at the coordinate level for r1 and r2 depending on conflict. . . . 32

4.1 The operation table for →d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



viii

Figures

Figure

2.1 The term tree Tr for the term r(x1, x2) = g(t(f(t(x1, x2)), x2)). . . . . . . . . . . . . 8

4.1 The term tree Tp for the term p(x1, . . . , xn) in the language F ∪ H (left), and the

evaluation of p at (u1, . . . , un) (right). . . . . . . . . . . . . . . . . . . . . . . . . . . 38



Chapter 1

Introduction

In 2007 [27], Ross Willard posed the subpower membership problem, which is a combi-

natorial decision problem involvling computations in algebraic structures. An algebraic struc-

ture, briefly algebra, A is a nonempty set of elements A along with a set of operations defined

on A. For example, groups, rings, and fields are all algebras. A subalgebra B of A is an algebra

whose element set is a subset B of A, and whose operations are the operations of A restricted to

the elements in B. For example, a subgroup of a group is a subalgebra. For a fixed integer m, the

mth direct power of A is the algebra Am whose element set consists of the m-tuples of A, and

whose operations are the operations of A defined coordinate-wise.

A space-efficient way to represent a subalgebra is by using generators. Thus, given an element

b and generators a1, . . . , an, deciding whether b is a member of the subalgebra 〈a1, . . . , an〉 generated

by a1, . . . , an is an important problem in computational algebra. For a fixed finite algebra A, the

question of whether a given element b ∈ Am is generated by generators a1, . . . , an ∈ Am is precisely

the subpower membership problem for A, denoted SMP(A).

We are interested in analyzing the time complexity of the subpower membership problem for a

fixed finite algebra A. Assuming the input consists of n generators a1, . . . , an and one distinguished

element b in the mth direct power of A, the time complexity of this problem is measured with

respect to the input size (n + 1)m. A naive algorithm can compute the answer to this problem

by computing the full subalgebra 〈a1, . . . , an〉, and checking if b is a member. Since the size of a

subalgebra is bounded by |A|m, this computation can be done in exponential time with respect to
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the input size (n + 1)m (i.e., the problem is in the complexity class EXPTIME). M. Kozik [17]

provided an example which shows this problem can be as hard as possible (EXPTIME-complete).

We know many cases in which this problem can be answered in polynomial time with respect

to the input size (i.e., the problem is in the complexity class P). For example, if A is a finite

dimensional vector space over a finite field, then SMP(A) is solved in polynomial time by using

Gaussian elimination. Other examples where SMP(A) can be shown to be in P include when A is

a finite group [9], finite ring [27], or finite lattice (using the Baker–Pixley theorem [1]).

The examples of algebras A listed above for which SMP(A) is in P all have an m-cube term

for some integer m ≥ 2. An m-cube term is an operation satisfying a particular list of m identities

(which will be defined in Section 2.6). For example, groups have a 2-cube term c(x, y, z) = xy−1z

which satisfies the identities

c(y, y, x) ≈ x and

c(x, y, y) ≈ x,

and lattices have a 3-cube term c(x, y, z) = (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z) which satisfies the identities

c(y, y, x) ≈ y,

c(y, x, y) ≈ y, and

c(x, y, y) ≈ y.

The following has been conjectured:

Conjecture 1.1. The decision problem SMP(A) is in P for all finite algebras A which have an

m-cube term for some integer m ≥ 2.

The conjecture is known to be true for some classes of algebras [4, 18], but is unknown in

general. The answer to this conjecture has applications in computer science. For example, there are

applications to the constraint satisfaction problem (CSP) [13] and problems on learnability [6, 13].

First, we describe applications to the CSP. An instance of the CSP consists of a finite set of variables,
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a finite set of elements (the domain), and a finite set of constraints. A constraint consists of an

m-tuple of variables along with an m-ary relation R over the domain for some positive integer m.

The task is then to determine whether we can assign the variables values from the domain such that,

under this assignment, every constraint is satisfied; that is, whenever the tuple of variables from

a constraint are assigned their respective values of the domain, the result is a tuple which belongs

to the constraint relation. Since relations over the domain are part of the input, it matters how

they are represented when considering computational complexity. If the constraint relations are

subalgebras of powers of a finite algebra A, then we may represent the relations using generators,

as opposed to listing every member. Checking whether a proposed solution satisfies a constraint is

an instance of the subpower membership problem for the algebra A.

Now we describe applications to learnability. A concept c is a subset of the set of all

finitary tuples over a fixed finite set A. A concept class C is a set of concepts, and is said

to be polynomially evaluable if there is a polynomial-time algorithm which, given a concept c

from C and any finitary tuple b over A, determines if b is in c. This is a highly desired property

in computational learning theory. When C is taken to be all finitary relations over A which are

subalgebras of powers of a finite algebra A and relations c of C are represented by generating sets [6],

checking whether C is polynomially evaluable is multiple instances of the subpower membership

problem for the algebra A.

In this thesis, we provide hardness results for the subpower membership problem. An m-

cube term (see Example 2.3) is a specific example of a Taylor term (see Example 2.2). We first

construct an example of a finite algebra A with a Taylor term for which SMP(A) is NP-hard by

reducing a known NP-complete problem (POSITIVE 1, 3-SAT [11]) to SMP(A). We then provide

examples of finite algebras with more structure whose subpower membership problem is EXPTIME-

complete by proving a more general hardness result, which makes use of previous hardness results

for the subpower membership problem. We now briefly describe this general hardness result.

The existence of an m-cube term for some integer m ≥ 2 is an example of a strong linear

Maltsev condition, which is a condition requiring the existence of finitely many terms that satisfy
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a given finite set of identities. These have proven useful in characterizing important structural

properties of algebras and varieties. For example, there is a Maltsev condition, weaker than the

existence of an m-cube term, which characterizes varieties for which each member’s congruence

lattice is modular [7]. The main result of this thesis is that if a consistent strong linear Maltsev

condition M does not imply the existence of an m-cube term for any m ≥ 2, then for any finite

algebra A, there exists a finite algebra AM such that AM satisfies the Maltsev condition M and

SMP(AM) is at least as hard as SMP(A). We will characterize consistent strong linear Maltsev

conditions which do not imply the existence of an m-cube term for any m ≥ 2. We will then apply

these results to Kozik’s algebra B [17] for which SMP(B) is EXPTIME-complete to construct a

finite algebra A which generates a congruence distributive and congruence k-permutable (k ≥ 3)

variety for which SMP(A) is EXPTIME-complete. Though Conjecture 1.1 remains unresolved, this

result suggests that the conjecture is focused on the correct class of finite algebras.

From the work of Bulatov, Kozik, Mayr, and Steindl [3, 26, 25], we know there exist examples

of finite semigroups whose subpower membership problem is NP-complete and examples of finite

semigroups whose subpower membership problem is PSPACE-complete. From the general hardness

result described above, we can deduce that if we expand these semigroups to algebras that belong

to certain ‘nice’ classes, the subpower membership problem for the expanded algebra is at least as

hard as the subpower membership problem for the original algebra. It is natural to ask about the

upper bound for the complexity of these problems. We provide an answer by showing that when

we expand a finite algebra to belong to a congruence 3-permutable and congruence 3-distributive

variety, the subpower membership problem for the expanded algebra is no harder than the subpower

membership problem for the original algebra.



Chapter 2

Preliminaries

In this chapter, we introduce the requisite definitions and notation for the results of Chap-

ters 3, 4, and 5. For more details, see [24, 11, 5].

2.1 Complexity Theory

A decision problem is in the complexity class P (respectively, EXPTIME) if there is an

algorithm which decides any instance in polynomial (respectively, exponential) time with respect

to the size of the instance. A decision problem is in NP if any instance with a ‘yes’ answer is

verifiable, given a certificate of proof, in polynomial time with respect to the size of the instance. A

decision problem is in PSPACE if there is an algorithm which decides any instance in polynomial

space with respect to the size of the instance, and is in NPSPACE if any instance with a ‘yes’

answer is verifiable in polynomial space with respect to the size of the instance. The following

inclusions of complexity classes are well known:

P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME

Whether or not the above inclusions are proper is unknown.

Given two decision problems Π1 and Π2, a polynomial time many-one reduction from

Π1 to Π2 is a polynomial time algorithm for transforming any instance of Π1 to a corresponding

instance of Π2 such that both instances have the same answer. If Π1 has a polynomial time many-

one reduction to Π2, we also say Π1 has a polynomial time reduction to Π2, or Π2 is at
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least as hard as Π1. The problem Π2 is at least as hard as the problem Π1 in the sense that an

algorithmic solution to Π2 provides an algorithmic solution to Π1 of the same complexity. We say

the decision problems Π1 and Π2 are polynomial time equivalent if Π2 is at least as hard as

Π1, and Π1 is at least as hard as Π2.

Given a complexity class C, a decision problem is said to be C-hard if it is at least as hard

as any other problem in C. A problem is C-complete if it is in C and it is C-hard. Thus to show

that a problem Π is C-complete, it suffices to show that Π is polynomial time equivalent to a known

C-complete problem.

2.2 Algebras and the Subpower Membership Problem

For a nonempty set A we set A0 = {∅}, and for n > 0, we set An equal to the set of all n-tuples

with elements from A. An n-ary operation on A is a map from An to A. An algebraic language

is a family F of operation symbols for which each symbol f ∈ F is assigned a nonnegative integer

n. We call n the arity of f , and say f is an n-ary operation symbol. An algebra A in the

language F is an ordered pair 〈A;F〉, where A is a nonempty set and F is a family of finitary

operations on A indexed by the language F ; i.e., for each n-ary f ∈ F , there is an n-ary operation

fA ∈ F on A. An algebra A is finite if the underlying set A is finite, and is trivial if A has one

element.

Let A = 〈A;F〉 be an algebra in the language F . We will now define several related algebras

in the language F . A subalgebra B of A is an algebra whose element set is a subset B of A

which is closed under the operations of A, and for each f ∈ F , fB is defined to be fA restricted

to B. If a1, . . . , an ∈ A, we use 〈a1, . . . , an〉 to denote the smallest subalgebra of A which contains

the elements a1, . . . , an, and call this subalgebra the subalgebra generated by a1, . . . , an. For a

positive integer m, we define the mth direct power of A to be the algebra Am whose underlying

set is Am, and for each f ∈ F , fA
m

is defined by computing fA coordinate-wise.

For a fixed finite algebra A, we define the subpower membership problem for A to be
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the following combinatorial decision problem:

SMP(A)

Input: A positive integer m and m-tuples a1, . . . , an, b ∈ Am.

Question: Is b in the subalgebra 〈a1, . . . , an〉 of Am generated by a1, . . . , an?

2.3 Compatible Relations and Congruences

For a set A, an m-ary relation on A is a subset of Am. If f is an operation on A and R is

an m-ary relation on A, we say R is compatible with f , or f preserves R, if R is a subalgebra

of the mth direct power of 〈A; f〉.

A congruence of an algebra A = 〈A;F〉 is an equivalence relation on A which is compatible

with every operation in F . The set of all congruences of A is denoted Con(A), and forms a lattice

〈Con(A); {∧,∨}〉. The compatibility property of a congruence θ allows us to form a quotient

algebra on the set of equivalence classes of θ. The lattice structure of Con(A) can also be of use

in determining properties of the algebra A, as we will see below (Examples 2.4 and 2.5).

2.4 Terms, Identities, and Varieties

Let V = {v1, v2, . . . } be a countably infinite set of distinct variables. For an algebraic

language F and an initial segment X ⊆ V , a term in the language F over X, briefly a term,

is defined by recursion:

(i) Every variable in X and every 0-ary operation symbol in F is a term.

(ii) If p1, . . . , pn are terms and f is an n-ary operation symbol in F , then f(p1, . . . , pn) is a

term.

We write t(v1, . . . , vn) to indicate that the variables which appear in the term t are among v1, . . . , vn.

If vi appears in the term t, we say t depends on vi. For any algebra A in the language F and any

term t in the language F over X, the operation tA is called a term operation. We note here that
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for any algebra A, there is a connection between generated subalgebras of A and term operations

of A. Specifically, b ∈ 〈a1, . . . , an〉 if and only if b = tA(a1, . . . , an) for some n-ary term t.

It will be useful for us to visualize a term by its term tree. We use the convention that

the leaves of the tree are labeled by variables, and every node which is not a leaf is labeled by a

single operation symbol. An example in the language f (unary), g (unary), and t (binary) is given

in Figure 2.1. The height of a vertex is the number of edges in the longest path from that vertex

f

t

x2x1 x2

t

g

Figure 2.1: The term tree Tr for the term r(x1, x2) = g(t(f(t(x1, x2)), x2)).

to a leaf. We refer to the vertex of maximum height in this tree as the root, and denote the term

tree of a term r by Tr. For any term r in an algebraic language F , we define the size of r to be

the number of vertices in Tr which are labeled by operation symbols from F .

An identity in the language F over X is any expression of the form p ≈ q, where p and

q are terms in the language F over X. Note we may always write p(x1, . . . , xn) ≈ q(x1, . . . , xn),

where p and q do not necessarily depend on every variable x1, . . . , xn. An algebra A in the language

F satisfies p ≈ q if pA(a1, . . . , an) = qA(a1, . . . , an) for every choice (a1, . . . , an) ∈ An.

If Σ is a set of identities in the language F , we may consider the class V of all algebras which

satisfy every identity of Σ. We call V the variety determined by Σ.

Example 2.1 (Groups). Let Σ be the following set of identities in the language {+,−, 0}, where
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+ is binary, − is unary, and 0 is nullary:

x+ (y + z) ≈ (x+ y) + z

x+ 0 ≈ 0 + x ≈ x

x+−(x) ≈ −(x) + x ≈ 0.

The variety G determined by Σ is the variety of groups. The variety A determined by Σ∪{x+ y ≈

y + x} is the variety of Abelian groups.

For a fixed algebra A, the variety generated by A is the variety determined by all identities

satisfied by A. We denote this variety by V(A).

2.5 Linear Identities and Kelly’s Completeness Theorem

For a fixed algebraic language, a term in that language is called linear if it contains at most

one operation symbol, and an identity s ≈ t is called linear if both s and t are linear terms. If

Σ ∪ {φ} is a set of linear identites, then φ is a consequence of Σ, written Σ |= φ, if every model

of Σ is a model of φ. David Kelly’s Completeness Theorem [16, 15] characterizes the |= relation

using a simple proof system for linear identities, which we will now describe.

If Σ is a set of linear identities over the variable set X, the weak closure of Σ in the

variables X is the smallest set Σ of linear identities containing Σ for which the following properties

hold:

(1) u ≈ u ∈ Σ for all linear terms u with variables from X.

(2) If u ≈ v ∈ Σ, then v ≈ u ∈ Σ.

(3) If u ≈ v ∈ Σ and v ≈ w ∈ Σ, then u ≈ w ∈ Σ.

(4) If u ≈ v ∈ Σ and γ : X → X is a function, then u[γ] ≈ v[γ] ∈ Σ, where u[γ] denotes the

linear term obtained from u by replacing each variable x ∈ X with γ(x) ∈ X.
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We write Σ `X φ if φ ∈ Σ. Kelly’s Completeness Theorem states that Σ |= φ if and only if

Σ `X φ or Σ `X x ≈ y (for x 6= y), provided that X is large enough for Σ ∪ {φ}; that is,

• X contains at least 2 variables,

• |X| ≥ arity(f) for any operation symbol f occurring in Σ, and

• |X| is at least as large as the number of distinct variables occurring in any identity in

Σ ∪ {φ}.

If X and Y are variable sets both large enough for Σ ∪ {φ}, then Kelly’s Completeness

Theorem implies that Σ `X φ if and only if Σ `Y φ. Thus, if Σ `X φ for some X which is large

enough for Σ ∪ {φ}, we simply write Σ ` φ and say Σ entails φ. Accordingly, we will refer to

properties (1) through (4) above as entailment properties.

We say Σ is inconsistent if Σ entails x ≈ y for distinct variables x and y. Using Kelly’s

Completeness Theorem, we see Σ is inconsistent if and only if the only models of Σ are the trivial

(one element) algebras. If Σ is not inconsistent (or equivalently, has a non-trivial model), we say

Σ is consistent.

2.6 Interpretability and Strong Maltsev Conditions

Let V and W be two varieties, and let {fi}i∈I be the languange of V. We say that V is

interpretable in W if for every operation symbol fi, there is a term ti (of the same arity) in

the language of W such that for all A ∈ W, the algebra 〈A; {tAi }i∈I〉 is a member of V. If V is

interpretable inW, we write V ≤ W. For example, if G is the variety of groups and A is the variety

of Abelian groups, then G ≤ A. The relation ≤ is a quasi-order, and by identifying varieties which

interpret into each other, this becomes a partial order. This partial order forms a lattice known as

the lattice of interpretability types of varieties [10].

LetM = (H,Σ), where H is a finite set of operation symbols and Σ is a finite set of identities

involving terms in the language H. We denote the variety determined by Σ by VM. For any variety
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V, VM ≤ V means that for every n-ary operation symbol h ∈ H, there is a term th(v1, . . . , vn)

in the language of V such that for all A ∈ V, the algebra 〈A; {tAh}h∈H〉 satisfies the identities in

Σ. In this case, we say V satisfies M. We call a condition which requires the existence of term

operations indexed by H which satisfy the identities of Σ a strong Maltsev condition. For

notational convenience, we will represent a strong Maltsev condition by the pair M = (H,Σ) with

the existential condition being implied. If the existential statement is true in an algebra A, we say

A satisfies M. A strong Maltsev condition is linear if all of the identities in Σ are linear, and a

strong linear Maltsev condition is consistent if Σ is consistent.

We conclude this section with some important examples of strong linear Maltsev conditions.

Example 2.2 (Existence of a Taylor term). We describe a strong linear Maltsev condition which

is implied by any idempotent Maltsev condition that is not satisfied in every algebra [20]. A term

t in the language of a variety V is a Taylor term for V if V satisfies that t is idempotent (i.e.,

t(x, x, . . . , x) ≈ x), and also satisfies a set of identities of the form

t(x, ∗, ∗, . . . , ∗) ≈ t(y, ∗, ∗, . . . , ∗),

t(∗, x, ∗, . . . , ∗) ≈ t(∗, y, ∗, . . . , ∗),

...

t(∗, ∗, ∗ . . . , x) ≈ t(∗, ∗, ∗, . . . , y),

where ∗ may be replaced with either x or y. An algebra A has a Taylor term if there is a term t in

the language of A for which A satisfies a set of identities of the above form. M. Oľsák [20] showed

that the existence of a Taylor term is a strong linear Maltsev condition when he characterized

varieties containing a Taylor term by the existence of an idempotent 6-ary term t for which every

algebra in the variety satisfies the identitities

t(x, y, y, y, x, x) ≈ t(y, x, y, x, y, x) ≈ t(y, y, x, x, x, y).

Example 2.3 (Existence of an m-cube term for fixed m ≥ 2). We describe a linear Maltsev

condition which characterizes finite algebras with few subpowers [2]; that is, algebras for which
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the cardinality of the set of subalgebras of An is exponential in n (as opposed to doubly exponential

in n). Fix an integer m ≥ 2. A term c in the language of a variety V is an m-cube term for V if

V satisfies a set of m identities given by the rows of

c



x1
 , . . . ,

xn


 ≈

y

...

y

 ,
where x1, . . . , xn ∈ {x, y}m \ (y, . . . , y). An algebra A has an m-cube term if there is a term c in the

language of A for which A satisfies a set of m identities of the above form. It was shown in [2] that

the finite algebras with few subpowers are precisely the finite algebras which contain an m-cube

term for some m ≥ 2. We refer to the above identities as a set of m cube identities for c. If the

integer m is clear from context or irrelevant, then we may say more briefly that c is a cube term

for V or A.

For example, the variety of groups has a cube term since the term c(x, y, z) = xy−1z satisfies

the identites given by the rows of

c

x
y

x

x

y

x

 ≈
y
y

 ,
and the variety of lattices has a cube term since the term c(x, y, z) = (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z)

satisfies the identities given by the rows of

c


x

y

y

y

x

y

y

y

x

 ≈

y

y

y

 .
Example 2.4 (Strong Maltsev condition for congruence k-distributivity). For an algebra A, the

lattice 〈Con(A); {∧,∨}〉 satisfies the distributive law if for all congruences θ1, θ2, θ3 ∈ Con(A),

θ1 ∨ (θ2 ∧ θ3) = (θ1 ∨ θ2) ∧ (θ1 ∨ θ3).

If an algebra’s congruence lattice satisfies the distributive law, we say the algebra is congruence

distributive. We say a variety V is congruence distributive if every algebra in V is congruence
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distributive. B. Jónsson [14] characterized congruence distributive varieties by the existence of

ternary terms d0, . . . , dk (for some k ≥ 1) for which every algebra in the variety satisfies the

following set of identities:

d0(x, y, z) ≈ x,

dk(x, y, z) ≈ z,

di(x, y, x) ≈ x for all 0 ≤ i ≤ k,

di(x, x, y) ≈ di+1(x, x, y) for all even i, and

di(x, y, y) ≈ di+1(x, y, y) for all odd i.

The terms d0, . . . , dk are referred to as Jónsson terms, and CD(k) is often used to refer to the

class of algebras which have Jónsson terms d0, . . . , dk. Note that the sequence of classes CD(k) is

an increasing sequence; that is, if A is a member of CD(k), A is also a member of CD(`) for all

` > k.

Example 2.5 (Strong Maltsev condition for congruence k-permutability). For an algebra A and

congruences θ1, θ2 ∈ Con(A), the relational product of θ1 and θ2 is the binary relation θ1 ◦ θ2

defined by

(a, b) ∈ θ1 ◦ θ2 ⇐⇒ there exists a c such that (a, c) ∈ θ1 and (c, b) ∈ θ2.

The k-fold relational product is defined as

θ1 ◦k θ2 = θ1 ◦ θ2 ◦ θ1 ◦ . . . ,

where there are k−1 occurrences of ◦ on the right hand side. An algebra A is said to be congruence

k-permutable if for every θ1, θ2 ∈ Con(A),

θ1 ◦k θ2 = θ2 ◦k θ1.

We say a variety V is congruence k-permutable if every algebra in V is congruence k-permutable.

J. Hagemann and A. Mitschke [12] characterized congruence k-permutable varieties by the existence
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of ternary terms p0, . . . , pk for which every algebra in the variety satisfies the following set of

identities:

p0(x, y, z) ≈ x,

pk(x, y, z) ≈ z, and

pi(x, x, y) ≈ pi+1(x, y, y) for all i.

The terms p0, . . . , pk are referred to as Hagemann–Mitschke terms, and CP(k) is often used to

refer to the class of algebras which have k+ 1 Hagemann–Mitschke terms p0, . . . , pk. We note that

the sequence of classes CP(k) is also an increasing sequence.

2.7 Structure of this thesis

In Chapter 3, we construct a finite algebra A with a binary Taylor term such that SMP(A) is

NP-hard by reducing a known NP-complete problem (POSITIVE 1, 3-SAT [11]) to SMP(A). The

existence of a Taylor term is an example of a consistent strong linear Maltsev condition which does

not imply the existence of a cube term.

In Chapter 4, we prove Theorem 4.1 which claims that the above mentioned property of a

consistent strong linear Maltsev conditionM is sufficient to construct, from any finite algebra A, a

new finite algebra AM which satisfies M such that SMP(AM) is at least as hard as SMP(A). We

will also characterize consistent strong linear Maltsev conditions which do not imply the existence

of a cube term in Corollary 4.4. We use this characterization along with Theorem 4.1 to show that

there exist examples of finite algebras A which generate congruence distributive and congruence

k-permutable (k ≥ 3) varieties for which SMP(A) is EXPTIME-complete.

Finally, in Chapter 5, we show that we can expand a finite algebra to belong to varieties which

are congruence distributive and congruence k-permutable (k ≥ 3) so that the subpower membership

problem for the original algebra is polynomial time equivalent to the subpower membership problem

for the expanded algebra. As a consequence, we show that the spectrum of complexities of the

problems SMP(A) for finite algebras A in varieties which are congruence distributive and congruence
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k-permutable (k ≥ 3) is fuller than P and EXPTIME-complete by giving examples of finite algebras

in such a variety whose subpower membership problems are NP-complete and PSPACE-complete,

respectively.



Chapter 3

The SMP and algebras with a Taylor term

In this chapter, we will construct a finite algebra A with a Taylor term such that SMP(A) is

NP-hard by reducing a known NP-complete problem (POSITIVE 1, 3-SAT [11]) to SMP(A). Several

computations were made using the Universal Algebra Calculator [8] to gain intuition during the

initial phases of constructing this example.

Let A = 〈A;F〉 be the algebra with element set

A = {0, 1, 2, 3, c1, c2, c3, c1,2, c1,3, c2,3, c2,1, c3,1, c3,2, d1,2, d1,3, d2,3, e1, e2, e3, e, a},

and set of operations

F = {+A, fA, gA}.

The operation fA is unary such that

fA(i) =



ci if i ∈ {1, 2, 3},

0 if i = 0,

a otherwise,

and g is unary such that

gA(x) =


e if x ∈ {e1, e2, e3},

a otherwise.

We want A to have a Taylor term, which will be accomplished with the operation +A. The

symmetric binary operation +A is given in Table 3.1 (since +A is symmetric, we only include the
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upper diagonal of the table). Note that since +A is idempotent and symmetric, it follows that +

is a Taylor term for A. We will typically omit the superscript from operation symbols since the

algebra we are computing in will be clear from context. We will assume terms are evaluated from

left to right if no parentheses are given.

The intuition behind the definitions of the operations f, g, and + is that an element x ∈

A \ {0, 1, 2, 3, a} encodes a ‘simplest’ usage of elements in {1, 2, 3} and operations in {f, g,+} to

generate x:

• The elements ci are generated by f(i).

• The elements ci,j are generated by f(i) + j.

• The elements di,j are generated by i+ j.

• The elements ei are generated by applying f to i and adding the remaining non-zero

elements, such as f(i) + j + k, where {i, j, k} = {1, 2, 3}.

• The element e is generated by applying f to exactly one element in {1, 2, 3}, adding the

remaining non-zero elements, then applying g. For example, e = g(f(i) + j + k), where

{i, j, k} = {1, 2, 3}.

The element a acts as an absorbing element with respect to the operations; that is,

• a+ ∗ = ∗+ a = a for every element ∗,

• f(a) = a, and

• g(a) = a.

We will show the following:

Theorem 3.1. The decision problem SMP(A) is NP-hard.
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+A 0 1 2 3 c1 c2 c3 c1,2 c1,3 c2,3 c2,1 c3,1 c3,2 d1,2 d1,3 d2,3 e1 e2 e3 e a

0 0 1 2 3 c1 c2 c3 c1,2 c1,3 c2,3 c2,1 c3,1 c3,2 d1,2 d1,3 d2,3 e1 e2 e3 e a
1 1 d1,2 d1,3 a c2,1 c3,1 a a e2 a a e3 a a a a a a a a
2 2 d2,3 c1,2 a c3,2 a e1 a a e3 a a a a a a a a a
3 3 c1,3 c2,3 a e1 a a e2 a a a a a a a a a a
c1 c1 a a a a a a a a a a e1 a a a a a
c2 c2 a a a a a a a a e2 a a a a a a
c3 c3 a a a a a a e3 a a a a a a a
c1,2 c1,2 a a a a a a a a a a a a a
c1,3 c1,3 a a a a a a a a a a a a
c2,3 c2,3 a a a a a a a a a a a
c2,1 c2,1 a a a a a a a a a a
c3,1 c3,1 a a a a a a a a a
c3,2 c3,2 a a a a a a a a
d1,2 d1,2 a a a a a a a
d1,3 d1,3 a a a a a a
d2,3 d2,3 a a a a a
e1 e1 a a a a
e2 e2 a a a
e3 e3 a a
e e a
a a

Table 3.1: The operation table for the binary operation +A.

We will prove Theorem 3.1 by reducing a known NP-complete problem to SMP(A). The

known NP-complete problem we will use is POSITIVE 1, 3-SAT [11]:

POSITIVE 1, 3-SAT

Input: A set X of variables and a collection C1, . . . , Cm of clauses over X

such that |Ci| = 3 for all i and no clause contains a negated literal.

Question: Is there a truth assignment for X such that each clause has exactly

one true literal?

To prove Theorem 3.1, we must show that for every instance of POSITIVE 1, 3-SAT, we can

construct a corresponding instance of SMP(A) in polynomial time which has a ‘yes’ answer if and

only if the POSITIVE 1, 3-SAT instance has a ‘yes’ answer. We will argue this in two parts:

(1) Given a fixed instance of POSITIVE 1, 3-SAT, we will construct a corresponding instance

of SMP(A), and show the construction can be done in polynomial time. We will then show

that if the instance of POSITIVE 1, 3-SAT has a satisfying truth assignment, then the

corresponding instance of SMP(A) has a ‘yes’ answer.
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(2) We will show that if the corresponding instance of SMP(A) has a ‘yes’ answer, then the

instance of POSITIVE 1, 3-SAT has a satisfying truth assignment.

Fix an instance C1, . . . , Cm of POSITIVE 1, 3-SAT over the variables {x1, . . . , xn}. To show

part (1), for each Ci, fix an ordering of the three variables in Ci and label them 1 through 3. We

then create the instance of SMP(A)

a0, . . . , an, b ∈ Am,

where aij , 1 ≤ j ≤ n, 1 ≤ i ≤ m, is the label of the variable xj in Ci if one exists, and 0 otherwise.

We set a0 = (0, . . . , 0) and b = (e, . . . , e). We include a0 for technical reasons.

In constructing the instance of SMP(A), we run over C1, . . . , Cm once to label the variables,

and n times to create the generators a1, . . . , an. We can write down a0 and b in m steps each, so

the reduction requires O((n+ 3)m) steps. Since m ≤
(
n
3

)
, we can produce the instance of SMP(A)

in polynomial time with respect to the input size (at least n) of POSITIVE 1, 3-SAT.

Now suppose the instance of POSITIVE 1, 3-SAT is satisfiable, and let xi1 , . . . , xik be the

variables assigned FALSE and xik+1
, . . . , xin be the variables assigned TRUE in a satisfying assign-

ment. Then we claim

p(a0, . . . , an) := g(ai1 + · · ·+ aik + f(aik+1
+ · · ·+ ain)) = b. (†)

Indeed, fix a coordinate 1 ≤ i ≤ m, and let xt1 , xt2 , xt3 be the variables used in clause Ci.

Then {ait1 , a
i
t2 , a

i
t3} = {1, 2, 3} and all other generators are 0 in the ith coordinate. Since we have

a satisfying truth assignment, exactly one argument of f is non-zero (say ait3), and exactly two

arguments outside of f are non-zero (ait1 and ait2). Since 0 is an additive identity with respect to
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+, we have

p(a0, . . . , an)|i = g(ait1 + ait2 + f(ait3))

= g(dait1 ,a
i
t2

+ cait3
)

= g(eait3
)

= e.

Thus, p(a0, . . . , an) = b, so b ∈ 〈a0, . . . , an〉. This completes part (1).

We will complete part (2) by showing that if b ∈ 〈a0, . . . , an〉 in the corresponding instance

of SMP(A), then the instance of POSITIVE 1, 3-SAT has a satisfying truth assignment (and thus

complete the proof of Theorem 3.1). We will do this by proving the following theorem:

Theorem 3.2. Let C1, . . . , Cm be an instance of POSITIVE 1,3-SAT over the variable set

{x1, . . . , xn}, and let a0, . . . , an, b ∈ Am be the corresponding instance of SMP(A). If

b ∈ 〈a0, . . . , an〉, then there exists a term p(x0, . . . , xn) such that

(1) p(a0, . . . , an) = b,

(2) each variable x1, . . . , xn labels exactly one leaf in the term tree of p, and

(3) for all 1 ≤ i ≤ m, exactly one variable in Ci belongs to a subterm of p whose root is f .

Hence, assigning a variable TRUE if and only if it belongs to a subterm of p whose root is f is a

satisfying assignment for the instance C1, . . . , Cm of POSITIVE 1,3-SAT.

Fix an instance C1, . . . , Cm of POSITIVE 1, 3-SAT over the variable set {x1, . . . , xn} such

that the corresponding instance a0, . . . , an ∈ Am of SMP(A) has a ‘yes’ answer. We spend the

remainder of this chapter proving Theorem 3.2. Toward this goal, we introduce some notation and

terminology.

For any term r(x0, . . . , xn), we recall that the term tree of r is denoted by Tr. We use Tr to

denote the isomorphic tree in which the leaf in Tr labeled xj is labeled aj , and T
i
r, 1 ≤ i ≤ m, to
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denote the isomorphic tree in which the leaf in Tr labeled xj is labeled aij . In T
i
r, if a leaf is labeled

aij we say that leaf has color aij .

Definition 3.3. Let r(x0, . . . , xn) be any term.

(a) The conflict of r in the ith coordinate is the number of leaves of T
i
r with color in

{1, 2, 3}. We denote this number by ci(r).

(b) The conflict of r is the number C(r) := max
1≤i≤m

ci(r).

Definition 3.4. A term is an f-term if it has the form f (
∑w

i=1 xki) and C (
∑w

i=1 xki) = 1. A

term is in f-form if it is a g-free term, and every subterm whose root is f is an f -term.

We will make frequent use of the following proposition:

Proposition 3.5. Let r(x0, . . . , xn) be a g-free term.

(1) If r is in f -form and C(r) > 1, then the root of Tr is +.

(2) If C(r) = 1 and r(x0, . . . , xn) = f(r′(x0, . . . , xn)) where r′ is an f -free subterm, then there

exists an f -term r̂(x0, . . . , xn) such that r(a0, . . . , an) = r̂(a0, . . . , an).

Proof. For (1), we prove the contrapositive statement. If r is in f -form and the root of Tr is f ,

then by definition r is an f -term, so C(r) = 1.

For (2), let L be the set of leaves of Tr′ (or equivalently, of Tr) and L the corresponding

set of leaves of Tr′ (or equivalently, of Tr). Consider the f -term f
(∑

`∈L label(`)
)
. If ci(r) = 0,

then every label of T
i
r is 0, so

f(r′(a0, . . . , an))|i = 0 = f

∑
`∈L

label(`)

∣∣∣
i
.

If ci(r) = 1, let x be the non-zero label of a leaf in T
i
r. Then since 0 is an additive identity with

respect to +, we have that

f(r′(a0, . . . , an))|i = cx = f

∑
`∈L

label(`)

∣∣∣
i
.

Thus, the proof is complete by letting r̂(x0, . . . , xn) = f
(∑

`∈L label(`)
)
.
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Recall that the element a acts as an absorbing element with respect to the operations. Thus

since bi = e for all 1 ≤ i ≤ m, if a term p satisfies p(a0, . . . , an) = b, then no subterm of p may

evaluate to a in any coordinate. We will use this fact often.

We are assuming b ∈ 〈a0, . . . , an〉, so there is a term p such that p(a0, . . . , an) = b. We make

the following two assumptions on the term p:

(1) The term p is the shortest term of minimal conflict, meaning that there is no term p′

such that

• p′(a0, . . . , an) = b and

• |Tp′ |+
∑m

i=1 ci(p
′) < |Tp|+

∑m
i=1 ci(p),

where |Tr| is the size of r.

(2) Every subterm of p of the form f(r′(x0, . . . , xn)) where the subterm r′ is

• g-free, f -free, and

• satisfies C(r′) = 1

is an f -term.

Assumption (2) is valid since any subterm of p which satisfies the listed criteria may be replaced

by an f -term which is equal on evaluation at (a0, . . . , an) by Proposition 3.5(2).

We will show that the term p is the desired term of Theorem 3.2. We will do this in the

following manner:

I. We establish in Lemma 3.6 that p(x0, . . . , xn) = g(s(x0, . . . , xn)), where s is a g-free subterm

which evaluates to elements of the form e∗ in every coordinate. The role of the operation g

is only to ‘normalize’ the elements of the form e∗: the labeling of the variables in {1, 2, 3}

is random and is performed per clause. The same variable may have different non-zero

labels in different clauses, so we cannot predict what the specific output will be in any
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given coordinate. Thus, we need the operation g to ‘accept’ any output of the form e∗.

After proving Lemma 3.6, the remainder of the work is to analyze the g-free term s.

II. We collect results (Lemma 3.7 – Corollary 3.9) which describe how the range (at the

coordinate level) of a subterm r of s in f -form is connected to the non-zero labels present

in T
i
r.

III. We establish multiple properties about the term s, the most notable being

(a) the term s is in f -form (Lemma 3.17),

(b) the term s satisfies ci(s) = 3 for all 1 ≤ i ≤ m (Corollary 3.20), and

(c) the non-zero labels of T
i
s are distinct for each 1 ≤ i ≤ m (Corollary 3.16).

We will then observe that (a), (b), (c), and Lemma 3.7 prove Theorem 3.2.

We note here that we do not actually argue that p has the exact form in (†). It is possible

to deduce that p must have exactly one f -term as in (†), though this is not neccessary to obtain a

satisfying assignment for our given instance of POSITIVE 1, 3-SAT.

Lemma 3.6. The term p has the form g(s(x0, . . . , xn)), where s(x0, . . . , xn) is a g-free subterm

and s(a0, . . . , an)|i = eji for some ji ∈ {1, 2, 3}, for all 1 ≤ i ≤ m.

Proof. First, note that p cannot be a g-free term, since a0, . . . , an ∈ {0, 1, 2, 3}m and e is not

generated by the operations f and + on the domain {0, 1, 2, 3}. Now consider a subterm r of p

whose root is a minimal occurrence of g in Tp (with respect to height).

Since the range of g is {a, e}, we must have that r outputs e in each coordinate; that is,

r(a0, . . . , an) = b. Since r is a subterm of p and p is the shortest term of minimal conflict which

evaluates to b, we must have p(x0, . . . , xn) = r(x0, . . . , xn) = g(s(x0, . . . , xn)). Since the root of r

is a minimal occurrence of g, we have that s is a g-free subterm.

Further, g(x) 6= a if and only if x = ej for some j ∈ {1, 2, 3}, so in fact p(x0, . . . , xn) =

g(s(x0, . . . , xn)), where s(a0, . . . , an)|i = eji for some ji ∈ {1, 2, 3}, for all 1 ≤ i ≤ m.
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Lemma 3.7. Let r be a subterm of s in f -form. Suppose a coordinate i is such that T
i
r has exactly 3

leaves, `1, `2, `3, whose colors are in {1, 2, 3} and are distinct. Then exactly one of `1, `2, `3 belongs

to an f -term (call it `j), and r(a0, . . . , an)|i = elabel(`j).

Proof. Let x, y, z denote the distinct labels of `1, `2, `3. Suppose more than one of `1, `2, `3 belongs

to an f -term. Since the conflict of an f -term is 1 and `1, `2, `3 all have non-zero colors, the leaves

must belong to distinct f -terms. If all of `1, `2, `3 belong to an f -term, then since all other leaves of

T
i
r besides `1, `2, `3 are colored 0, r(a0, . . . , an)|i evaluates as f(x)+f(y)+f(z), up to permutation of

x, y, and z. Since x, y, and z are distinct, this always evaluates to a, a contradicition. If exactly two

of `1, `2, `3 belong to an f -term, then r(a0, . . . , an)|i evaluates as f(x) +f(y) + z or f(x) +y+f(z),

up to permutation of x, y, and z. This always evaluates to a, again a contradiction. Thus, at most

one of `1, `2, `3 belongs to an f -term.

Suppose now that none of `1, `2, `3 belong to an f -term. Then r(a0, . . . , an)|i evaluates as

x + y + z, up to permutation of x, y, and z. This always evaluates to a, a contradiciton. Hence,

exactly one of `1, `2, `3 belongs to an f -term.

Finally, if x is the label of the leaf belonging to an f -term, then since x, y, and z are distinct,

r(a0, . . . , an)|i evaluates as

(f(x) + y) + z = cx,y + z = ex,

(f(x) + z) + y = cx,z + y = ex, or

(y + z) + f(x) = dy,z + cx = ex.

Thus, we see that r(a0, . . . , an)|i = ex.

In the following, we denote the set of leaves of Tr by Lr, the set of leaves of T
i
r by L

i
r, and

the set of non-zero labels of L
i
r by label(L

i
r).

For x ∈ {1, 2, 3}, define

Sx := {x, cx, dx,∗, cx,∗, c∗,x, e∗} ⊂ A.
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Notationally, d2,1 is the element d1,2, d3,1 is the element d1,3, and d3,2 is the element d2,3. Note

that Sx satisfies the following properties, which can be verified by Table 3.1:

If u ∈ Sx and v ∈ A, then u+ v ∈ Sx ∪ {a}. (‡)

If u, v ∈ Sx, then u+ v 6= a iff u = v. (?)

Lemma 3.8. Let r be a subterm of s in f -form. Then x ∈ label(L
i
r) if and only if r(a0, . . . , an)|i ∈

Sx.

Proof. ⇒ We induct on ci(r). Since label(L
i
r) is the set of non-zero labels of L

i
r, ci(r) ≥ 1. So

the base case of our induction is ci(r) = 1. If ci(r) = 1, then there is exactly one leaf labeled x in

T
i
r, and all other leaves of T

i
r are labeled 0. Thus, r(a0, . . . , an)|i ∈ {x, cx} ⊂ Sx.

Now suppose ci(r) > 1, and r′(a0, . . . , an)|i ∈ Sx whenever x ∈ label(L
i
r′) and 0 < ci(r

′) <

ci(r). By Proposition 3.5(1), we may write

r(x0, . . . , xn) = r1(x0, . . . , xn) + r2(x0, . . . , xn),

where we may assume 0 < ci(r1) ≤ ci(r2) < ci(r). Since x ∈ label(L
i
r), we must have that

x ∈ label(L
i
rj ) for at least one j ∈ {1, 2}. WLOG, we assume x ∈ label(L

i
r1). Then we have that

r1(a0, . . . , an)|i,∈ Sx

by the induction hypothesis. Since r(a0, . . . , an)|i 6= a, property (‡) implies r(a0, . . . , an)|i =

r1(a0, . . . , an)|i + r2(a0, . . . , an)|i ∈ Sx.

⇐ Assume x 6∈ label(L
i
r). If label(L

i
r) = {y} (y 6= x), then r(a0, . . . , an)|i ∈ {y, cy}, so

r(a0, . . . , an)|i 6∈ Sx. So suppose label(L
i
r) = {y, z} (z 6= x). By the forward direction of the proof

of this Lemma, we have that

r(a0, . . . , an)|i ∈ Sy ∩ Sz = {dy,z, cy,z, cz,y, e∗},

of which only the elements e∗ are in Sx. But no two elements in {1, 2, 3} can generate an element

of the form e∗, so r(a0, . . . , an)|i ∈ {dy,z, cy,z, cz,y}, implying r(a0, . . . , an)|i 6∈ Sx.
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Corollary 3.9. Let r be a subterm of s in f -form such that r(x0, . . . , xn) = r1(x0, . . . , xn) +

r2(x0, . . . , xn). Then r1(a0, . . . , an)|i = r2(a0, . . . , an)|i 6= 0 if and only if

label(L
i
r1) = label(L

i
r2) 6= ∅.

Proof. ⇒ Note that

r1(a0, . . . , an)|i, r2(a0, . . . , an)|i ∈ A \ {0, a} = S1 ∪ S2 ∪ S3.

Since r1(a0, . . . , an)|i ∈ Sx if and only if r2(a0, . . . , an)|i ∈ Sx, Lemma 3.8 implies that x ∈

label(L
i
r1) if and only if x ∈ label(L

i
r2).

⇐ Let x ∈ label(L
i
r1) = label(L

i
r2). By Lemma 3.8, we have

r1(a0, . . . , an)|i, r2(a0, . . . , an)|i ∈ Sx.

By property (?), r1(a0, . . . , an)|i = r2(a0, . . . , an)|i 6= 0.

Lemma 3.10. If r is a subterm of s in f -form such that

r(x0, . . . , xn) = r1(x0, . . . , xn) + r2(x0, . . . , xn),

then for every 1 ≤ i ≤ m, we have

label(L
i
r1) ∩ label(L

i
r2) = ∅.

Proof. We will assume the statement is false, and construct a term r(x0, . . . , xn) such that

r(a0, . . . , an) = r(a0, . . . , an) and |Tr| +
∑m

i=1 ci(r) < |Tr| +
∑m

i=1 ci(r). Replacing r with r in p

contradicts that p is the shortest term of minimal conflict satisfying p(a0, . . . , an) = b.

Define the sets of coordinates

I= = {1 ≤ i ≤ m | label(L
i
r1) = label(L

i
r2) 6= ∅}, and

I∩ = {1 ≤ i ≤ m | label(L
i
r1) ∩ label(L

i
r2) 6= ∅}.

Claim 3.11. I= = I∩.



27

Proof of Claim 3.11. It is clear that I= ⊆ I∩. We show I∩ ⊆ I=. Let i ∈ I∩, and x ∈ label(L
i
r1) ∩

label(L
i
r2). By Lemma 3.8, we have rj(a0, . . . , an)|i ∈ Sx for j ∈ {1, 2}. Then using property

(?), we see r1(a0, . . . , an)|i = r2(a0, . . . , an)|i 6= 0. By Corollary 3.9, this implies label(L
i
r1) =

label(L
i
r2) 6= ∅, so i ∈ I=. �

In what remains, we will refer to these equal sets of coordinates as the set I. Since we are

assuming label(L
i
r1) ∩ label(L

i
r2) 6= ∅ for some i, we know I is nonempty.

For i ∈ I, let {`i1, . . . , `
i
j} ⊆ L

i
r1 be the subset of leaves whose labels are in label(L

i
r1), and

let Li = {`1, . . . , `j} be the corresponding subset of leaves of Lr1 . Then define L =
⋃

i∈I Li. We

define r(x0, . . . , xn) to be the term r1(x0, . . . , xn) + r2(x0, . . . , xn), where r1(x0, . . . , xn) is obtained

from r1(x0, . . . , xn) by replacing label(`) with x0 for each ` ∈ L, and r2(x0, . . . , xn) = r2(x0, . . . , xn).

Recall that a0 = (0, . . . , 0). Thus for all i ∈ I, all leaves of T
i
r1 are labeled 0, so that r(a0, . . . , an)|i =

r2(a0, . . . , an)|i = r2(a0, . . . , an)|i for all i ∈ I.

Note ci(r) < ci(r) for i ∈ I and ci(r) ≤ ci(r) for i 6∈ I. Thus, we have
∑m

i=1 ci(r) <∑m
i=1 ci(r). Further, we obtained r from r by changing labels of leaves, so |Tr| = |Tr|. Hence,

|Tr| +
∑m

i=1 ci(r) < |Tr| +
∑m

i=1 ci(r). It remains to show that r(a0, . . . , an) = r(a0, . . . , an). We

use two claims:

Claim 3.12. If i ∈ I, then r1(a0, . . . , an)|i = r2(a0, . . . , an)|i. Thus,

r(a0, . . . , an)|i = r2(a0, . . . , an)|i

for all i ∈ I.

Proof of Claim 3.12. Let i ∈ I = I∩. We showed in the proof of Claim 3.11 that if i ∈ I∩, then

r1(a0, . . . , an)|i = r2(a0, . . . , an)|i. Then using the fact that + is idempotent, we compute

r(a0, . . . , an)|i = r1(a0, . . . , an)|i + r2(a0, . . . , an)|i

= r2(a0, . . . , an)|i.

�
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Claim 3.13. If i 6∈ I, then label(`
i
) = 0 for all ` ∈ L. Thus, r(a0, . . . , an)|i = (r1+r2)(a0, . . . , an)|i

for all i 6∈ I.

Proof of Claim 3.13. For the first statement, we prove the contrapositive. Let ` ∈ L and i be a

coordinate such that label(`
i
) ∈ {1, 2, 3}. The label of ` in Tr1 is a variable xj , and label(`

i
) ∈

{1, 2, 3} implies that the variable xj is in clause Ci. Since ` ∈ L, we know ` ∈ Lk for some k ∈ I.

Thus `
k

has a non-zero label c ∈ {1, 2, 3} in T
k
r1 (so xj is in clause Ck), and since k ∈ I, T

k
r2 also

has a leaf `
k
∗ labeled c. Since exactly one variable is labeled c in clause Ck, this means that the

label of the leaf `∗ in Tr2 is also the variable xj . But then `
i
∗ in T

i
r2 has the same non-zero label as

`
i

in T
i
r1 , so i ∈ I∩ = I.

Thus, if i 6∈ I and ` ∈ L, the labels of `
i

in T
i
r1 being replaced by 0 labels to obtain T

i
r1 were

already 0. Hence, r1(a0, . . . , an)|i = r1(a0, . . . , an)|i, so that

r(a0, . . . , an)|i = r1(a0, . . . , an)|i + r2(a0, . . . , an)|i

= (r1 + r2)(a0, . . . , an)|i

for all i 6∈ I. �

Then we compute

r(a0, . . . , an)
Claim 3.12

=


r2(a0, . . . , an)|i if i ∈ I

(r1 + r2)(a0, . . . , an)|i if i 6∈ I

Claim 3.13
= r(a0, . . . , an),

which completes the proof.

Definition 3.14. Let r(x0, . . . , xn) be any term.

(a) T
i
r is monochromatic of size q for q ≥ 1 if each leaf has color in {0, k}, for some

k ∈ {1, 2, 3}, and there are q leaves colored k.



29

(b) A monochromatic subtree of size q (≥ 1) is a subtree of T
i
r which corresponds to a

subterm of r, and is monochromatic of size q.

(c) A term r is simplified if for every 1 ≤ i ≤ m, T
i
r has no monochromatic subtree of size

q ≥ 2.

We use Lemma 3.10 to show that every subterm of s in f -form is simplified.

Corollary 3.15. If r is a subterm of s in f -form, then r is simplified.

Proof. Suppose the statement is false. Then there exists a coordinate i and a monochromatic

subtree T
i
r′ of T

i
r of size q ≥ 2. Assume T

i
r′ is a minimal monochromatic subtree of size q ≥ 2.

Since T
i
r′ is monochromatic of size q ≥ 2, we know C(r′) ≥ 2. By Proposition 3.5, the root of

r′ is + so we may write r′(x0, . . . , xn) = r′1(x0, . . . , xn) + r′2(x0, . . . , xn). Since T
i
r′ is a minimal

monochromatic subtree of size q ≥ 2, we must have that ci(r
′
1) = ci(r

′
2) = 1, so that T

i
r′ is

monochromatic of size 2 and is minimal with this property.

Now T
i
r′ being a minimal monochromatic subtree of size 2 implies the two leaves, `1 and `2,

of T
i
r′ colored k ∈ {1, 2, 3} satisfy that (WLOG) `1 belongs to T

i
r′1

and `2 belongs to T
i
r′2

. That is,

label(L
i
r1) ∩ label(L

i
r2) 6= ∅, which contradicts Lemma 3.10. Thus, r must be simplified.

Corollary 3.16. If r is a subterm of s in f -form and C(r) ≤ 3, then the non-zero labels of T
i
r are

distinct for all 1 ≤ i ≤ m.

Proof. Choose a coordinate i, and recall that r is simplified by Corollary 3.15. If ci(r) ∈ {0, 1}, the

result is clear. If ci(r) = 2, then the result follows since otherwise T
i
r is monochromatic of size 2.

Finally, suppose ci(r) = 3. Then C(r) ≥ 3, so by Proposition 3.5, the root of r is +. Thus,

we may write r(x0, . . . , xn) = r1(x0, . . . , xn) + r2(x0, . . . , xn) (and assume ci(rj) > 0 for each

j ∈ {1, 2}). Then WLOG, ci(r1) = 2. Since r is simplified, the non-zero labels of T
i
r1 are distinct.

By Lemma 3.10, label(L
i
r1) ∩ label(L

i
r2) = ∅, so all non-zero labels of T

i
r are distinct.

Lemma 3.17. The term s is in f -form.



30

Proof. Suppose the statement is false. Recall, we are assuming that every subterm of p of the form

f(r(x0, . . . , xn)), where the subterm r is g-free, f -free, and satisfies C(r) = 1, is an f -term. Thus,

if s is not in f -form there exists a subterm f(r(x0, . . . , xn)) such that either the subterm r is not

f -free, or C(r) > 1.

Suppose first that the subterm r is not f -free. Let r′ be a subterm of r whose root is a maximal

occurrence of f in Tr. Choose a coordinate i such that T
i
r′ has at least one leaf with a non-zero

label. Then r′(a0, . . . , an)|i ∈ {c∗, a}, and since the root of r′ is a maximal occurrence of f in Tr,

Table 3.1 can be used to verify that r(a0, . . . , an)|i ∈ {a, c∗, c∗,∗, e∗}. But then f(r(a0, . . . , an))|i = a,

a contradiction. Thus we assume r is an f -free subterm.

Now suppose C(r) > 1. We begin with a claim.

Claim 3.18. If u is a subterm of s in f -form and C(u) > 1, then u(a0, . . . , an)|i 6∈ {0, 1, 2, 3} for

some coordinate i.

Proof of Claim 3.18. We induct on C(u). For the base case, assume C(u) = 2. Let i be a coordinate

such that ci(u) = 2. Then |label(L
i
u)| = 2, for otherwise T

i
u would be monochromatic of size 2,

contradicting that u is simplified (Corollary 3.15). Thus if label(L
i
u) = {x, y}, then by Lemma 3.8

we have that

u(a0, . . . , an)|i ∈ Sx ∩ Sy = {dx,y, cx,y, cy,x, e∗} 6∈ {0, 1, 2, 3}.

Now suppose C(u) > 2, and if 1 < C(u′) < C(u), then we have that u′(a0, . . . , an)|i 6∈

{0, 1, 2, 3} for some coordinate i. By Proposition 3.5, we may write u(x0, . . . , xn) = u1(x0, . . . , xn)+

u2(x0, . . . , xn), and assume 1 ≤ C(uj) < C(u) for j ∈ {1, 2}. If C(u1) = C(u2) = 1, then

C(u) ≤ 2. Hence we must have that (WLOG) 1 < C(u1) < C(u). Then by the induction hy-

pothesis, u1(a0, . . . , an)|i 6∈ {0, 1, 2, 3} for some coordinate i. It is clear from Table 3.1 that if

x + y ∈ {0, 1, 2, 3}, then x, y ∈ {0, 1, 2, 3}. Since u1(a0, . . . , an)|i 6∈ {0, 1, 2, 3}, it must be that

u(a0, . . . , an)|i 6∈ {0, 1, 2, 3}. �

Now since r is an f -free subterm by the first part of this lemma, r is trivially in f -form. By
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the claim, r(a0, . . . , an)|i 6∈ {0, 1, 2, 3} for some coordinate i. But then f(r(a0, . . . , an))|i = a, a

contradiction.

Thus, every subterm of the form f(r(x0, . . . , xn)) must satisfy that r is an f -free subterm

and C(r) = 1, which means s is in f -form.

Lemma 3.19. The term s satisfies C(s) ≤ 3.

Proof. We show that if h is the height of Ts and 0 ≤ k ≤ h, then any subterm r of s whose root

has height k in Ts satisfies C(r) ≤ 3. We proceed by induction on the height k of the root of a

subterm r of s in Ts.

If k = 0, then r is a variable. Thus, C(r) = 1, and the base case is proven.

So let k ≥ 1 be the height of the root of r in Ts and assume any subterm r′ whose root has

height less than k satisfies C(r′) ≤ 3.

Since s is in f -form, r is in f -form. Thus, if the root of r is f , then r is an f -term so C(r) = 1.

So we may assume the root of r is +. Then r(x0, . . . , xn) = r1(x0, . . . , xn) + r2(x0, . . . , xn), where

C(r1) ≤ 3 and C(r2) ≤ 3 by the induction hypothesis. Further, the non-zero labels of each of T
i
r1

and T
i
r2 are distinct for all i by Corollary 3.16.

We’d like to describe the range of rj (j ∈ {1, 2}) at the coordinate level based on ci(rj).

If ci(rj) = 0, then all leaves of T
i
rj are labeled 0, so the range is {0}. If ci(rj) = 1, then there

is exactly one leaf of T
i
rj with a non-zero label. Thus, the range is {1, 2, 3, c∗}. If ci(rj) = 2,

then C(rj) ≥ 2, so the root of rj is + by Proposition 3.5. Thus we may write rj(x0, . . . , xn) =

rj,1(x0, . . . , xn) + rj,2(x0, . . . , xn), where we assume ci(rj,1) = ci(rj,2) = 1. Thus the range of both

rj,1 and rj,2 in the ith coordinate is {1, 2, 3, c∗}. Since the non-zero labels of Trj are distinct and

rj(a0, . . . , an) 6= a, the range in the case that ci(rj) = 2 is {d∗,∗, c∗,∗}. If ci(rj) = 3, since rj is in

f -form and T
i
rj has 3 distinctly colored leaves, by Lemma 3.7 the range is {e∗}. We summarize our

conclusions in Table 3.2.

From Table 3.2 we see that for all 1 ≤ i ≤ m,

ci(r1 + r2) = ci(r1) + ci(r2) 6= 5,
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ci(rj) Range

0 {0}
1 {1, 2, 3, c∗}
2 {d∗,∗, c∗,∗}
3 {e∗}

Table 3.2: The range of values at the coordinate level for r1 and r2 depending on conflict.

as adding any element from the range corresponding with conflict 2 to any element from the range

corresponding with conflict 3 results in a. Further, if ci(r1+r2) ∈ {4, 6}, then ci(r1) = ci(r2) = 2 or

ci(r1) = ci(r2) = 3. In both cases, we see from Table 3.2 that r1(a0, . . . , an)|i = r2(a0, . . . , an)|i 6= 0.

Thus label(L
i
r1) = label(L

i
r2) 6= ∅ by Corollary 3.9, contradicting Lemma 3.10.

Thus we have shown that ci(r1 + r2) ≤ 3 for all i, which means C(r) ≤ 3 as desired. By

induction, we have that the term s satisfies C(s) ≤ 3.

Corollary 3.20. The term s satisfies ci(s) = 3 for all 1 ≤ i ≤ m.

Proof. By the Lemma 3.19, ci(s) ≤ 3 for all 1 ≤ i ≤ m. But no two elements of the set {1, 2, 3} can

generate an element of the form e∗, so we also have ci(s) ≥ 3 for all 1 ≤ i ≤ m. Hence, ci(s) = 3

for all 1 ≤ i ≤ m.

Now p(a0, . . . , an) = b by assumption, and Corollaries 3.20 and 3.16 imply that each variable

xi ∈ {x1, . . . , xn} labels exactly one leaf in Tp. Finally, Lemma 3.7 implies that for all 1 ≤ i ≤ m,

exactly one variable in Ci belongs to a subterm of p whose root is f . We thus have proven

Theorem 3.2.



Chapter 4

The SMP and strong linear Maltsev conditions

In the previous chapter, we constructed an algebra with a Taylor term whose subpower

membership problem is NP-hard. The existence of a Taylor term is a consistent strong linear

Maltsev condition which does not imply the existence of a cube term. In this chapter, we prove

in Theorem 4.1 that this property of a consistent strong linear Maltsev condition M is sufficient

to produce finite algebras which satisfy M and have a subpower membership problem which is

EXPTIME-complete. We will then discuss consequences of Theorem 4.1.

4.1 The main result

Theorem 4.1. Let M = (H,Σ) be a consistent strong linear Maltsev condition such that Σ does

not entail cube identities for any h ∈ H.

(i) For any finite algebra A, there exists a finite algebra AM such that the language of AM

contains H, AM |= Σ, and SMP(A) has a polynomial time reduction to SMP(AM).

(ii) In particular, there exists a finite algebra BM such that the language of BM contains H,

BM |= Σ, and SMP(BM) is EXPTIME-complete.

Proof. (i) Let A = 〈A;F〉 be a finite algebra. We assume the languages F and H are disjoint, and

now define AM. We define the element set of AM to be the set A ∪ {0}, where the element 0 is

distinct from all elements of A. The language of AM will be F ∪ H, which we must interpret in

AM. For k-ary f ∈ F and (a1, . . . , ak) ∈ (A ∪ {0})k, we define fAM(a1, . . . , ak) = fA(a1, . . . , ak) if
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ai 6= 0 for all 1 ≤ i ≤ k, and fAM(a1, . . . , ak) = 0 otherwise. Thus, 0 is an absorbing element with

respect to the operations fAM for f ∈ F .

To interpret the operation symbols of H in AM, we need to introduce some terminology

and notation. Let X be a variable set which is large enough for Σ. Since M is consistent, we

know Σ does not entail x ≈ y for distinct x, y ∈ X. For any positive integer k, we will say that

(x1, . . . , xk) ∈ Xk and (a1, . . . , ak) ∈ Ak have the same equality pattern if, for all 1 ≤ i, j ≤ k,

the tuples have the property that xi = xj if and only if ai = aj . For a ∈ Ak, define

Pa = {x ∈ Xk | x and a have the same equality pattern}.

We are now ready to describe the interpretation of the symbols in H. For k-ary h ∈ H and

a = (a1, . . . , ak) ∈ (A ∪ {0})k, define

hAM(a1, . . . , ak) =



ai if there exist (x1, . . . , xk) ∈ Pa and 1 ≤ i ≤ k

such that Σ ` h(x1, . . . , xk) ≈ xi

0 otherwise.

Note that if h is 0-ary, then hAM = 0.

We first show hAM is well-defined for each h ∈ H. We must show that if

(y1, . . . , yk), (z1, . . . , zk) ∈ Pa,

and

Σ ` h(y1, . . . , yk) ≈ yr and Σ ` h(z1, . . . , zk) ≈ zq, 1 ≤ r, q ≤ k,

then ar = aq. To see this is the case, note that (y1, . . . , yk), (z1, . . . , zk) ∈ Pa implies that yi = yj

if and only if zi = zj for all 1 ≤ i, j ≤ k. Thus, the map γ : {y1, . . . , yk} → {z1, . . . , zk}, yi 7→ zi,

is well-defined, and by entailment property (4) we have that Σ ` h(z1, . . . , zk) ≈ zr. Thus, by

entailment properties (2) and (3), Σ ` zr ≈ zq. Since Σ is consistent, it must be that zr = zq, hence

(z1, . . . , zk) ∈ Pa implies that ar = aq. This completes the definition of AM = 〈A ∪ {0};F ∪H〉.

Next we show AM |= Σ. In order to show this, we will first discuss how to evaluate, in

AM, an arbitrary linear term in the language H. In the following, we use “=” to denote equality
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of terms. Let w(y1, . . . , y`) be any linear term with distinct variables y1, . . . , y`, where ` ≤ |X|

and w need not depend on all variables. If w(y1, . . . , y`) = yi for some 1 ≤ i ≤ `, then for any

(a1, . . . , a`) ∈ (A ∪ {0})`, we have that wAM(a1, . . . , a`) = ai. Otherwise, since w is a linear term,

w(y1, . . . , y`) = h(yt(1), . . . , yt(k)) for some k-ary h ∈ H and some map t : {1, . . . , k} → {1, . . . , `}.

The following claim establishes how we evaluate w(y1, . . . , y`) in AM.

Claim 4.2. Let w(y1, . . . , y`) = h(yt(1), . . . , yt(k)) be a linear term in the language H (` ≤ |X|). If

a = (a1, . . . , a`) ∈ (A ∪ {0})`, then

wAM(a1, . . . , a`) =



aj if there exist (x1, . . . , x`) ∈ Pa and 1 ≤ j ≤ `

such that Σ ` w(x1, . . . , x`) ≈ xj

0 otherwise.

Proof of Claim 4.2. Let a = (a1, . . . , a`) ∈ (A ∪ {0})`, and let at = (at(1), . . . , at(k)) ∈ (A ∪ {0})k.

We first show that the following two conditions on a and at are equivalent:

(a) There exist (x1, . . . , x`) ∈ Pa and 1 ≤ j ≤ ` such that

Σ ` w(x1, . . . , x`) ≈ xj .

(b) There exist (xt(1), . . . , xt(k)) ∈ Pat and 1 ≤ i ≤ k such that

Σ ` h(xt(1), . . . , xt(k)) ≈ xt(i).

(a) ⇒ (b) If (x1, . . . , x`) ∈ Pa, then (xt(1), . . . , xt(k)) ∈ Pat . Further,

Σ ` xj ≈ w(x1, . . . , x`) by assumption and entailment property (2), and

w(x1, . . . , x`) = h(xt(1), . . . , xt(k)).

Thus, Σ ` h(xt(1), . . . , xt(k)) ≈ xj by entailment property (2). Since Σ is consistent, j = t(i) for

some 1 ≤ i ≤ k.
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(b) ⇒ (a) Let ≡ denote the equivalence relation on the set {1, . . . , `} defined by r ≡ q if and only

if ar = aq, and denote the ≡-class of r ∈ {1, . . . , `} by [r]. Let T be the set of ≡-classes. Since

|T | ≤ ` ≤ |X| and

t(q) ≡ t(r) ⇐⇒ at(q) = at(r) ⇐⇒ xt(q) = xt(r),

there is a well-defined and one-to-one map ψ : T → X such that ψ([t(r)]) = xt(r) for all numbers of

the form t(r) (1 ≤ r ≤ k). For each s ∈ {1, . . . , `}, define zs := ψ([s]). Then (z1, . . . , z`) ∈ Pa, and

xt(r) = ψ([t(r)]) = zt(r) for all 1 ≤ r ≤ k. We compute

Σ ` xt(i) ≈ h(xt(1), . . . , xt(k)) by assumption and entailment property (2), and

h(xt(1), . . . , xt(k)) = h(zt(1), . . . , zt(k))

= w(z1, . . . , z`).

By entailment property (2), we have Σ ` w(z1, . . . , z`) ≈ xt(i). Since xt(i) = zt(i), we have Σ `

w(z1, . . . , z`) ≈ zt(i), where 1 ≤ t(i) ≤ `. This completes the argument that (a) and (b) are

equivalent.

Now we compute

wAM(a1, . . . , a`) = hAM(at(1), . . . , at(k))

=



at(i) if there exist (xt(1), . . . , xt(k)) ∈ Pat and 1 ≤ i ≤ k

such that Σ ` h(xt(1), . . . , xt(k)) ≈ xt(i)

0 otherwise

=



aj if there exist (x1, . . . , x`) ∈ Pa and 1 ≤ j ≤ `

such that Σ ` w(x1, . . . , x`) ≈ xj

0 otherwise,

where the last equality follows from the equivalence of (a) and (b). �

We now finish the argument that AM |= Σ. Let u ≈ v ∈ Σ, where u and v are linear terms

in the language H. Since X is large enough for Σ, we may write u(y1, . . . , y`) ≈ v(y1, . . . , y`),
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where y1, . . . , y` are distinct variables (` ≤ |X|) and u and v need not depend on every variable. If

a = (a1, . . . , a`) ∈ (A∪ {0})`, entailment properties (2), (3), and (4) imply that if (x1, . . . , x`) ∈ Pa

and 1 ≤ j ≤ `, then Σ ` u(x1, . . . , x`) ≈ xj if and only if Σ ` v(x1, . . . , x`) ≈ xj . Thus by Claim 4.2,

uAM(a1, . . . , a`) = vAM(a1, . . . , a`), so AM |= u ≈ v.

To show that SMP(AM) is at least as hard as SMP(A), we will transform any instance

of SMP(A) to a corresponding instance of SMP(AM) in polynomial time such that the SMP(A)

instance has a ‘yes’ answer if and only if the corresponding SMP(AM) instance has a ‘yes’ answer.

Fix an instance a1, . . . , an, b ∈ Am of SMP(A). This is also an instance of SMP(AM), and we

will use this same instance in our reduction. Since we have not changed the instance, this reduction

can be done in constant time.

The main goal now is to show that b is in the subalgebra of Am generated by a1, . . . , an if and

only if b is in the subalgebra of Am
M generated by a1, . . . , an. To distinguish generated subalgebras of

Am and generated subalgebras of Am
M, we will denote the subalgebra 〈a1, . . . , an〉 of B ∈ {Am,Am

M}

by 〈a1, . . . , an〉B.

Suppose first that the SMP(A) instance has a ‘yes’ answer. That is, b ∈ 〈a1, . . . , an〉Am . Let

p(x1, . . . , xn) be a term in the language F such that pA
m

(a1, . . . , an) = b. Then p(x1, . . . , xn) is

also a term in the language F ∪ H and pA
m

(a1, . . . , an) = pA
m
M(a1, . . . , an), so b ∈ 〈a1, . . . , an〉Am

M
.

Thus the SMP(AM) instance also has a ‘yes’ answer.

For the converse direction, we will show that if u1, . . . , un ∈ (A ∪ {0})m, w ∈ Am, and

w ∈ 〈u1, . . . , un〉Am
M

, then there exists a term p(x1, . . . , xn) in the language F such that

pA
m
M(u1, . . . , un) = w. Since a1, . . . , an, b ∈ Am ⊆ (A∪{0})m, this will show that b ∈ 〈a1, . . . , an〉Am

M

implies b ∈ 〈a1, . . . , an〉Am .

Claim 4.3. If u1, . . . , un ∈ (A∪{0})m, w ∈ Am, and w ∈ 〈u1, . . . , un〉Am
M

, then there exists a term

p(x1, . . . , xn) in the language F such that

pA
m
M(u1, . . . , un) = w.

Proof of Claim 4.3. Let u1, . . . , un ∈ (A ∪ {0})m and w ∈ Am. Let p(x1, . . . , xn) be a term in the
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language F ∪ H such that pA
m
M(u1, . . . , un) = w. We assume p(x1, . . . , xn) was chosen so that the

term tree Tp has the minimum number of vertices with labels fromH and satisfies pA
m
M(u1, . . . , un) =

w. If Tp has no label from H, then the claim is proven. So we assume Tp has at least one vertex

with label from H. We will analyze the term p(x1, . . . , xn) in parallel with the evaluation of p at

u1, . . . , un, as illustrated in Figure 4.1.

Choose a maximal vertex with respect to height with label fromH, and say the label is h ∈ H.

Call this vertex ν. The subtree of Tp whose root is ν corresponds to a subterm q of p. If h is k-ary,

the vertex ν has k edges corresponding to k subterms of q, which we will denote as s1, . . . , sk. For

1 ≤ i ≤ k, we define ci := s
Am
M

i (u1, . . . , un). Set z := hA
m
M(c1, . . . , ck). For 1 ≤ j ≤ m, we write z|j

to denote the jth coordinate of the m-tuple z. Since ν is a maximal vertex in Tp with label from

Tp

Tq

hTs1 Tsk

pA
m
M(u1, . . . , un)

w

z
c1 ck

Figure 4.1: The term tree Tp for the term p(x1, . . . , xn) in the language F ∪ H (left), and the
evaluation of p at (u1, . . . , un) (right).

H, the term p has the form t(. . . , q(x1, . . . , xn), . . . ), where t is a term in the language F . Since 0 is

an absorbing element with respect to the operations fAM for f ∈ F , and w|j 6= 0 for all 1 ≤ j ≤ m,

we must have that

hA
m
M(c1, . . . , ck)|j = z|j = qA

m
M(u1, . . . , un)|j 6= 0

for all 1 ≤ j ≤ m. For 1 ≤ j ≤ m, define

Bj = {i ∈ {1, . . . , k} | hAm
M(c1, . . . , ck)|j = ci|j}.
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If
⋂m

j=1Bj 6= ∅, we choose i ∈
⋂m

j=1Bj and form a new term p′ by replacing the subterm

q(x1, . . . , xn) = h(s1(x1, . . . , xn), . . . , sk(x1, . . . , xn)) of p with si(x1, . . . , xn). Since i ∈
⋂m

j=1Bj , we

have qA
m
M(u1, . . . , un) = hA

m
M(c1, . . . , ck) = ci, so

pA
m
M(u1, . . . , un) = tA

m
M(. . . , qA

m
M(u1, . . . , un), . . . )

= tA
m
M(. . . , ci, . . . )

= tA
m
M(. . . , s

Am
M

i (u1, . . . , un), . . . )

= p′A
m
M(u1, . . . , un).

Thus, p′A
m
M(u1, . . . , un) = w. Further, Tp′ has fewer vertices with labels from H than Tp, which

contradicts the choice of the term p.

Thus, it must be that
⋂m

j=1Bj = ∅. For each 1 ≤ j ≤ m, let c|j = (c1, . . . , ck)|j . Since

hA
m
M(c1, . . . , ck)|j 6= 0, there exist (xj1, . . . , x

j
k) ∈ Pc|j and 1 ≤ ` ≤ k such that Σ ` h(xj1, . . . , x

j
k) ≈

xj` . In particular, ` ∈ Bj . Define γj : {xj1, . . . , x
j
k} → {x, y}, for distinct variables x, y ∈ X, by

γj(x
j
i ) =


y if i ∈ Bj

x otherwise.

This map is well-defined since xjr = xjs if and only if cr|j = cs|j , which implies (r ∈ Bj ⇐⇒ s ∈ Bj).

Then computing h[γj ] for all 1 ≤ j ≤ m and using entailment property (4), we have that

Σ ` h



γ1(x
1
1) γ1(x

1
2) . . . γ1(x

1
k)

γ2(x
2
1) γ2(x

2
2) . . . γ2(x

2
k)

...

γm(xm1 ) γm(xm2 ) . . . γm(xmk )


≈



y

y

...

y


.

Since
⋂m

j=1Bj = ∅, no column in the above matrix on the left hand side is the tuple (y, . . . , y).

Thus, Σ entails cube identities for h. This is also a contradiction, so we must have that p is a term

in the language F . �

Thus, if b ∈ 〈a1, . . . , an〉Am
M

, then there is a term p(x1, . . . , xn) in the language F such

that pA
m
M(a1, . . . , an) = b. Since a1, . . . , an ∈ Am, we have pA

m
M(a1, . . . , an) = pA

m
(a1, . . . , an), so
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b ∈ 〈a1, . . . , an〉Am . We have thus shown that SMP(AM) is at least as hard as SMP(A), which

completes the proof of statement (i) of Theorem 4.1.

(ii) Let B be the finite algebra of Kozik [17] for which SMP(B) is EXPTIME-complete. Then

by statement (i) of the theorem, there exists a finite algebra BM such that BM |= Σ and SMP(BM)

is at least as hard as SMP(B). Since the subpower membership problem can always be answered

in EXPTIME, it follows that SMP(BM) is EXPTIME-complete.

4.2 Applications

We discuss some consequences of Theorem 4.1. We will prove a characterization of consistent

strong linear Maltsev conditions which do not imply the existence of a cube term, similar to the

results of Opršal [21] and Moore and McKenzie [19]. We will use this characterization along with

Theorem 4.1 to show there exist examples of finite algebras which generate congruence distributive

and congruence k-permutable (k ≥ 3) varieties whose SMP is EXPTIME-complete. Before stating

and proving the corollaries, we first recall some definitions and notation.

Let V and W be two varieties, and let {fi}i∈I be the language of V. We recall that V is

interpretable in W if for every operation symbol fi, there is a term ti (of the same arity) in

the language of W such that for all A ∈ W, the algebra 〈A; {tAi }i∈I〉 is a member of V. If V is

interpretable in W, we write V ≤ W. For a strong Maltsev condition M = (H,Σ), we denote the

variety determined by Σ by VM.

The dual algebra of the 2-element implication algebra (with a constant) I = 〈{0, 1}; {→,1}〉

is the algebra Id = 〈{0, 1}; {→d,0}〉, where the operation →d is binary and is obtained from the

operation table of → by permuting 0 and 1 (see Table 4.1), and 0 is the constant 0 operation.

→d 0 1

0 0 1
1 0 0

Table 4.1: The operation table for →d.
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Corollary 4.4. If M = (H,Σ) is a strong linear Maltsev condition, then the following are equiva-

lent:

(i) M is consistent and Σ does not entail the existence of cube identities for any h ∈ H.

(ii) VM ≤ V(Id).

Proof. (i) ⇒ (ii) Let A = 〈{1}; ∅〉 be the 1-element algebra whose language is the empty set. Let

AM = 〈{0, 1};H〉 be the constructed algebra of Theorem 4.1. For any positive integer m and tuples

a1, . . . , an ∈ {0, 1}m, by Claim 4.3 we see that if (1, . . . , 1) ∈ 〈a1, . . . , an〉Am
M

, then there is a term p

in the language ∅ such that pA
m
M(a1, . . . an) = (1, . . . , 1); that is, ai = (1, . . . , 1) for some 1 ≤ i ≤ n.

Thus, the operations of AM preserve the relation Rm = {0, 1}m \ (1, . . . , 1) for all m ≥ 1.

Let R be the relational structure 〈{0, 1}; {Rm}m≥1〉. Let Pol(R) denote the set of all oper-

ations of arity at least one which preserve the relations of R, and define Pol0(R) = Pol(R) ∪ {0}.

Let Clo(Id) denote the clone of term operations of Id. Since the operations of AM are a subset of

Pol0(R) and Pol0(R) = Clo(Id) [23], for every h ∈ H of arity k, there is a term th of arity k in

the language of Id such that hAM(c1, . . . , ck) = tI
d

h (c1, . . . , ck) for all (c1, . . . , ck) ∈ {0, 1}k. Note

that we required 0 be an operation of Id so that if h ∈ H is 0-ary, then th can be taken to be

0. Thus, 〈{0, 1}; {tIdh }h∈H〉 |= Σ. If B ∈ V(Id), then B satisfies all identities satisfied by Id, so

〈B; {tBh}h∈H〉 |= Σ. This implies that 〈B; {tBh}h∈H〉 ∈ VM. Hence, VM ≤ V(Id).

(ii) ⇒ (i) If VM ≤ V(Id), then for each operation symbol h ∈ H there is a term th in

the language of Id such that the algebra A = 〈{0, 1}; {tIdh }h∈H〉 is a member of VM. Thus M is

consistent. Since Pol0(R) = Clo(Id) [23], the tuples {0, 1}m \ (1, . . . , 1) are the element set of a

subalgebra of (Id)m for all m ≥ 1. Thus, Id does not have a cube term, so A cannot have a cube

term. Thus, Σ does not entail the existence of cube identities for any h ∈ H.

We may quasi-order strong linear Maltsev conditions by interpretability. That is, we say

M1 ≤M2 if and only if VM1 ≤ VM2 . By identifying varieties which interpret into each other, this

becomes a partial order. If M1 ≤M2, we say M2 is stronger than M1.
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Given a finite index set J and finitely many strong linear Maltsev conditions indexed by J ,

Mj = (Hj ,Σj), we may form a new strong linear Maltsev condition M = (
⋃

j∈J Hj ,
⋃

j∈J Σj).

Lemma 4.5. If Hi ∩Hj = ∅ for all i 6= j, then the following are equivalent:

(i) For all j ∈ J , Mj is consistent and Σj does not entail the existence of cube identities for

any h ∈ Hj.

(ii) For all j ∈ J , VMj ≤ V(Id).

(iii) VM ≤ V(Id).

(iv) M is consistent and
⋃

j∈J Σj does not entail the existence of cube identities for any h ∈⋃
j∈J Hj.

Proof. The equivalences (i) ⇐⇒ (ii) and (iii) ⇐⇒ (iv) follow from Corollary 4.4. We now show

(ii) ⇐⇒ (iii).

If we assume, for all j ∈ J , there is a map from Hj to terms in the language of V(Id), then

we have an induced map from
⋃

j∈J Hj to terms in the language of Id. The induced map is well-

defined since Hi ∩Hj = ∅ for all i 6= j. If we assume there is a map from
⋃

j∈J Hj to terms in the

language of Id, then for all j ∈ J we have an induced map from Hj to terms in the language of Id

by restriction.

Let A ∈ V(Id). The algebra 〈A; {tAh}h∈Hj
〉 satisfies the identities in Σj for all j ∈ J if and

only if the algebra 〈A; {tAh}h∈⋃j∈J Hj
〉 satisfies the identities in

⋃
j∈J Σj . Thus

〈A; {tAh}h∈Hj
〉 ∈ VMj for all j ∈ J ⇐⇒ 〈A; {tAh}h∈⋃j∈J Hj

〉 ∈ VM,

which shows VMj ≤ V(Id) for all j ∈ J if and only if VM ≤ V(Id).

Thus from finitely many strong linear Maltsev conditions for which Theorem 4.1 applies, we

may produce a stronger strong linear Maltsev condition for which Theorem 4.1 applies. We will use

this strategy to obtain examples of finite algebras in varieties that are congruence distributive and

congruence k-permutable (k ≥ 3) whose subpower membership problem is EXPTIME-complete.
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We first recall several important facts from Examples 2.4 and 2.5. B. Jónsson [14] charac-

terized congruence distributive varieties by the existence of an integer k ≥ 1 and ternary terms

d0, . . . , dk which satisfy the set of identities from Example 2.4. Recall that the terms d0, . . . , dk are

referred to as Jónsson terms, and CD(k) is often used to refer to the class of algebras which have

Jónsson terms d0, . . . , dk.

J. Hagemann and A. Mitschke [12] characterized congruence k-permutable varieties by the

existence of ternary terms p0, . . . , pk which satisfy the set of identities from Example 2.5. Recall

that the terms p0, . . . , pk are referred to as Hagemann–Mitschke terms, and CP(k) is often used

to refer to the class of algebras which have Hagemann–Mitschke terms p0, . . . , pk.

The sequence of the classes CD(k) (respectively, CP(k)) is an increasing sequence; that is, if

A is a member of CD(k) (respectively, CP(k)), A is also a member of CD(`) (respectively, CP(`))

for all ` > k.

An algebra is in CD(1) if and only if it is trivial, and is in CD(2) if and only if it has a

majority term operation. If an algebra is in CP(2) and is also in a congruence distributive variety,

then the algebra has a majority term operation [22]. Thus, every finite algebra which satisfies one

of these properties has a subpower membership problem in P by the Baker–Pixley theorem [1].

Corollary 4.6. If k ≥ 3 and ` ≥ 3, then there exists a finite algebra A ∈ CD(k)∩CP(`) such that

SMP(A) is EXPTIME-complete.

Proof. LetM1 = (H1,Σ1) be the strong linear Maltsev condition for CD(3). Note that the boolean

operation ∧ is a term operation of Id given by x ∧ y = (x →d y) →d y. It is straightforward to

check that the term operations

d1(x, y, z) = ((y →d x) ∧ (z →d x))→d x,

d2(x, y, z) = (x→d y)→d z,

and the projections d0 and d3 satisfy the identities of CD(3), and so VM1 ≤ V(Id). By Corollary 4.4,

M1 is consistent and Σ1 does not entail the existence of cube identities for any h ∈ H1.
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Let M2 = (H2,Σ2) be the strong linear Maltsev condition for CP(3). It is straightforward

to check that the term operations

p1(x, y, z) = (z →d y)→d x,

p2(x, y, z) = (x→d y)→d z,

and the projections p0 and p3 satisfy the identities of CP(3), and so VM2 ≤ V(Id). By Corollary 4.4,

M2 is consistent and Σ2 does not entail the existence of cube identities for any h ∈ H2.

By Lemma 4.5,M = (H1∪H2,Σ1∪Σ2) is consistent and Σ1∪Σ2 does not entail the existence

of cube identities for any h ∈ H1∪H2. Then by Theorem 4.1(ii), there exists BM ∈ CD(3)∩CP(3)

(thus in CD(k) ∩ CP(`) for k, ` ≥ 3) such that SMP(BM) is EXPTIME-complete.



Chapter 5

An upper bound for the complexity of SMP(AM)

For any finite algebra A, we know from Theorem 4.1(i) that if we expand A to the algebra

AM that satisfies a strong linear Maltsev condition M which does not imply the existence of a

cube term, the subpower membership problem for the expanded algebra is at least as hard as the

subpower membership problem for the original algebra. It is natural to ask about the upper bound

for the complexity of the problem SMP(AM). In this chapter, we prove the following theorem:

Theorem 5.1. Let A = 〈A;F〉 be any finite algebra, and M = (H,Σ) be a consistent strong linear

Maltsev condition such that Σ does not entail cube identities for any h ∈ H. If H has a 0-ary

operation symbol 0 and a ternary operation symbol d such that

• Σ ` d(x, x, y) ≈ x,

• Σ ` d(x, y, x) ≈ x, and

• Σ 6` d(x, y, y) ≈ x,

then the problem SMP(A) is polynomial time equivalent to the problem SMP(AM).

From Theorem 4.1, we know SMP(AM) is at least as hard as SMP(A). We will now turn our

attention to proving that SMP(A) is at least as hard SMP(AM).

We will be computing with a 0-ary symbol and a ternary symbol in AM or a direct power

of AM, so we record the interpretation of these symbols in AM according to the construction in

Theorem 4.1:
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Lemma 5.2. Let 0 be a 0-ary operation symbol and d a ternary operation symbol which satisfies

the conditions of Theorem 5.1. In AM, we have 0AM = 0 and

dAM(x1, x2, x3) =


x1 if x1 = x2 or x1 = x3

0 otherwise.

Proof. All 0-ary operation symbols are mapped to 0 according to the construction in Theorem 4.1,

so 0AM = 0. Since Σ ` d(x, x, y) ≈ x and Σ ` d(x, y, x) ≈ x by assumption, we have that

dAM(x1, x2, x3) = x1 if x1 = x2 or x1 = x3. Finally, Σ 6` d(x, y, y) ≈ x by assumption, Σ 6`

d(x, y, y) ≈ y since Σ does not entail cube identities for d, and Σ 6` d(x, y, y) ≈ z for any other

variable z since M is consistent. Thus, Σ also does not entail that d(x, y, z) equals a variable for

distinct variables x, y, z, so dAM(x1, x2, x3) = 0 if x1 6= x2 = x3 or x1 6= x2 6= x3.

The algebra in which we are performing computations will be clear from context, so we will

simply write d instead of dAM or dA
m
M . Recall that to finish the proof that SMP(A) is polynomial

time equivalent to SMP(AM), we must show that SMP(A) is at least as hard as SMP(AM). To

achieve this, we will prove Theorem 5.3 stated below. This characterization will be used to construct

a polynomial time reduction from SMP(AM) to SMP(A).

Theorem 5.3. Let A be any finite algebra, and M a consistent strong linear Maltsev condition

which satisfies the conditions of Theorem 5.1. Let a1, . . . , an, b ∈ (A ∪ {0})m be an SMP(AM)

instance. Let [m] denote the set {1, . . . ,m}, and define J = {i ∈ [m] | b|i = 0}. Let {i1, . . . i`} ⊆

{1, . . . , n} be the set of all subscripts such that ai1 |[m]\J , . . . , ai` |[m]\J ∈ A|[m]\J |. The following are

equivalent:

(1) b ∈ 〈a1, . . . , an〉Am
M

.

(2) The projection b|[m]\J satisfies b|[m]\J ∈ 〈ai1 |[m]\J , . . . , ai` |[m]\J〉A|[m]\J|, and for all i ∈ [m]\J

and j ∈ J , the projection b|{i,j} satisfies b|{i,j} ∈ 〈a1|{i,j}, . . . , an|{i,j}〉A2
M

.

Proof. (1) ⇒ (2) If b ∈ 〈a1, . . . , an〉Am
M

, then we must have that for all i ∈ [m] \ J and j ∈ J , the

projection b|{i,j} satisfies b|{i,j} ∈ 〈a1|{i,j}, . . . , an|{i,j}〉A2
M

. Further, since a1|[m]\J , . . . , an|[m]\J ∈
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(A ∪ {0})|[m]\J |, b|[m]\J ∈ A|[m]\J |, and b|[m]\J ∈ 〈a1|[m]\J , . . . , an|[m]\J〉A|[m]\J|
M

, by Claim 4.3, there

is a term p(x1, . . . , xn) in the language F such that pA
|[m]\J|
M (a1|[m]\J , . . . , an|[m]\J) = b|[m]\J . But

since 0 is an absorbing element for all f ∈ F and b|[m]\J ∈ A|[m]\J |, the term p must only depend

on the variables in {xi1 , . . . , xi`}. Thus, there is a term p′(x1, . . . , x`) in the language F such that

p′A
|[m]\J|
M (ai1 |[m]\J , . . . , ai` |[m]\J) = b|[m]\J , so b|[m]\J ∈ 〈ai1 |[m]\J , . . . , ai` |[m]\J〉A|[m]\J| as desired.

(2) ⇒ (1) If J = [m] (that is, b is the all 0-tuple), then b ∈ 〈a1, . . . , an〉Am
M

since 0 (the

constant 0 operation) is an operation of AM. If J = ∅, then b|[m]\J = b, so b ∈ 〈a1, . . . , an〉Am
M

by

assumption. So we assume J is nonempty and J 6= [m]. We first present a method of generating

m-tuples which approximate b. Specifically, for every j ∈ J , we will show there is an m-tuple

cj ∈ 〈a1, . . . , an〉Am
M

for which cj |j = 0 and cj agrees with b in all coordinates of [m] \ J . We will

do this by induction on the size of subsets of [m] \ J .

Claim 5.4. For every j ∈ J , there is an m-tuple cj ∈ 〈a1, . . . , an〉Am
M

such that

• cj |i = b|i if i ∈ [m] \ J , and

• cj |j = 0.

Proof of Claim 5.4. To prove the claim, we prove the following stronger statement:

For every j ∈ J and for every nonempty subset K ⊆ [m] \ J , there is an

m-tuple cj ∈ 〈a1, . . . , an〉Am
M

such that

• cj |i = b|i if i ∈ K, and

• cj |j = 0.

(†)

We will prove (†) by induction on |K|, and the claim will follow by letting K = [m] \ J .

For the base case, let j ∈ J and i ∈ [m]\J . By assumption, b|{i,j} ∈ 〈a1|{i,j}, . . . , an|{i,j}〉A2
M

.

Thus, there exists cj ∈ 〈a1, . . . , an〉Am
M

such that cj |{i,j} = b|{i,j}. That is,

cj |i = b|i

and

cj |j = b|j = 0.
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This completes the proof of the base case.

Let j ∈ J and |K| > 1. We assume that for any nonempty subset K ′ of [m]\J of size strictly

smaller than |K|, there is an m-tuple in 〈a1, . . . , an〉Am
M

satisfying the conditions of (†). Choose

k ∈ K. Using the induction hypothesis on the sets {k} and K \ {k}, we know

• there is an m-tuple sj ∈ 〈a1, . . . , an〉Am
M

satisfying sj |k = b|k and sj |j = 0, and

• there is an m-tuple rj ∈ 〈a1, . . . , an〉Am
M

satisfying rj |i = b|i for i ∈ K \ {k} and rj |j = 0.

By assumption, b|[m]\J ∈ 〈ai1 |[m]\J , . . . , ai` |[m]\J〉A|[m]\J| . Thus, there is anm-tuple b′ ∈ 〈a1, . . . , an〉Am
M

such that b′|i = b|i for all i ∈ [m] \ J . Then we set cj = d(b′, sj , rj) and compute

cj |k = d(b′|k, sj |k, rj |k) = d(b|k, b|k, ∗) = b|k,

cj |i = d(b′|i, sj |i, rj |i) = d(b|i, ∗, b|i) = b|i if i ∈ K \ {k}, and

cj |j = d(b′|j , sj |j , rj |j) = d(∗, 0, 0) = 0.

Thus, cj ∈ 〈a1, . . . , an〉Am
M

and satisfies the properties of (†). �

To prove that b ∈ 〈a1, . . . , an〉Am
M

, we prove the following stronger statement:

For every nonempty subsetK ⊆ J , there is anm-tuple tK ∈ 〈a1, . . . , an〉Am
M

such that

• tK |i = b|i if i ∈ [m] \ J , and

• tK |i = 0 if i ∈ K.

(‡)

We will prove (‡) by induction on |K|, and b ∈ 〈a1, . . . , an〉Am
M

will follow by letting K = J .

For the base case, let {j} ⊆ J . By Claim 5.4, there an m-tuple cj ∈ 〈a1, . . . , an〉Am
M

satisfying

cj |i = bi if i ∈ [m] \ J and cj |j = 0. Setting t{j} = cj completes the base case.

So assume |K| > 1, and for every nonempty subset K ′ of J of size strictly less than |K|

there is an m-tuple tK′ ∈ 〈a1, . . . , an〉Am
M

satisfying the conditions of (‡). Choose k ∈ K. Using the

induction hypothesis on the sets {k} and K \ {k}, we know
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• there is an m-tuple t{k} ∈ 〈a1, . . . , an〉Am
M

satisfying t{k}|i = b|i if i ∈ [m] \J and t{k}|k = 0,

and

• there is an m-tuple tK\{k} ∈ 〈a1, . . . , an〉Am
M

satisfying tK\{k}|i = b|i if i ∈ [m] \ J and

tK\{k}|i = 0 if i ∈ K \ {k}.

Then we set tK = d(tK\{k}, t{k},0) and compute

tK |i = d(tK\{k}|i, t{k}|i,0|i) = d(b|i, b|i, 0) = b|i if i ∈ [m] \ J,

tK |k = d(tK\{k}|k, t{k}|k,0|k) = d(∗, 0, 0) = 0, and

tK |i = d(tK\{k}|i, t{k}|i,0|i) = d(0, ∗, 0) = 0 if i ∈ K \ {k}.

Thus, tK ∈ 〈a1, . . . , an〉Am
M

and satisfies the properties of (‡).

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. From Theorem 4.1, we know SMP(AM) is at least as hard as SMP(A). We

will now show that SMP(A) is at least as hard as SMP(AM) by giving a polynomial time reduction

from SMP(AM) to SMP(A).

Let a1, . . . , an, b ∈ (A ∪ {0})m be an instance of SMP(AM). If b is the all 0-tuple, then we

conclude that b ∈ 〈a1, . . . , an〉Am
M

since 0 (the constant 0 operation) is an operation of AM. Let

[m] denote the set {1, . . . ,m}, and define J = {i ∈ [m] | b|i = 0}. We generate, for all i ∈ [m] \ J

and j ∈ J , the full subalgebra 〈a1|{i,j}, . . . , an|{i,j}〉A2
M

with a closure algorithm, and check if the

projection b|{i,j} satisfies b|{i,j} ∈ 〈a1|{i,j}, . . . , an|{i,j}〉A2
M

. If this condition fails for some i ∈ [m]\J

and j ∈ J , then we conclude b 6∈ 〈a1, . . . , an〉Am
M

. Otherwise, we know for all i ∈ [m] \ J and j ∈ J ,

the projection b|{i,j} satisfies b|{i,j} ∈ 〈a1|{i,j}, . . . , an|{i,j}〉A2
M

. Each subalgebra of A2
M can be

generated in constant time O((|A| + 1)2), and the number of subalgebras we must generate is

bounded by m2. Thus, this step may be completed in time O(m2).

Let {i1, . . . i`} ⊆ {1, . . . , n} be the set of all subscripts such that ai1 |[m]\J , . . . , ai` |[m]\J ∈

A|[m]\J |. To determine if b is in the subalgebra 〈a1, . . . , an〉Am
M

, we form a corresponding instance
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ai1 |[m]\J , . . . , ai` |[m]\J , b|[m]\J ∈ A|[m]\J | of SMP(A). To form this instance, we run through the m

coordinates of the tuple b and determine the nonempty set [m]\J . Then for each of the n generators,

we run through the coordinates in [m] \ J to determine the tuples ai1 |[m]\J , . . . , ai` |[m]\J . This can

be done in time O((n+ 1)m). We check the answer of the instance ai1 |[m]\J , . . . , ai` |[m]\J , b|[m]\J ∈

A|[m]\J | of SMP(A). Since the input passed the tests described in the preceding paragraph, we know

from Theorem 5.3 that b ∈ 〈a1, . . . , an〉Am
M

if and only if b|[m]\J ∈ 〈ai1 |[m]\J , . . . , ai` |[m]\J〉A|[m]\J| .

Since the size of the instance of SMP(AM) isO((n+1)m), we have provided a polynomial time

algorithm for either answering the instance of SMP(AM), or transforming the instance of SMP(AM)

to a corresponding instance of SMP(A). In the latter case, the SMP(AM) instance satisfies that for

all i ∈ [m]\J and j ∈ J , the projection b|{i,j} satisfies b|{i,j} ∈ 〈a1|{i,j}, . . . , an|{i,j}〉A2
M

, so we know

from Theorem 5.3 that the SMP(AM) instance has a ‘yes’ answer if and only if the corresponding

SMP(A) instance has a ‘yes’ answer. Thus, SMP(A) is at least as hard as SMP(AM).

Let M be the strong linear Malstev condition for CD(3) ∩ CP(3) expanded by a new 0-ary

operation symbol. It is easy to verify that the ternary symbol d1 from Example 2.4 satisfies the

conditions of Theorem 5.1. We obtain the following corollary as an immediate consequence of

Theorems 4.1 and 5.1:

Corollary 5.5. For every finite algebra A, there exists a finite algebra AM ∈ CD(3) ∩CP(3) such

that SMP(A) and SMP(AM) are polynomial time equivalent.

Further, there exists a finite semigroup S such that SMP(S) is NP-complete and a finite

semigroup T such that SMP(T) is PSPACE-complete [3]. We obtain the following corollary as an

immediate consequence of Corollary 5.5:

Corollary 5.6. There exist finite algebras SM,TM ∈ CD(3) ∩ CP(3) such that

(1) SMP(SM) is NP-complete, and

(2) SMP(TM) is PSPACE-complete.
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