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Chapter 1

Introduction

This thesis develops some properties of a congruence lattice operation, called the higher

commutator, for varieties of algebras that are congruence modular. The higher commutator is a

higher arity generalization of the binary commutator, which was first defined in full generality in

the seventies.

We begin by quickly reviewing some notions fundamental to Universal Algebra. For a more

thorough treatment the reader is referred to [7] or [16]. Here, an algebra is a set equipped with

some finitary operations. That is, let F = {Fi : i ∈ I} be a collection of operation symbols and

let σ : I → ω be a function that specifies the arity of each symbol. Under this scheme we allow

function symbols with arity 0 which will interpret as constants. An algebra A of type F is pair

〈A;FA〉, where A is a nonempty set called the universe of A, and FA = {FA
i : i ∈ I} is a collection

of σ(i)-ary functions FA
i : Aσ(i) → A.

If we set L to be the first order language with nonlogical symbols F and variables X, then

the set of all terms TL(X) can be endowed with algebraic structure of type F . We call this algebra

the term algebra over X, and call its elements term operations. For two term operations

t1(x), t2(x), the formula t1(x) ≈ t2(x) is called an identity, and we say that an algebra A of type

F satisfies the identity t1(x) ≈ t2(x) if A |= ∀x(t1(x) ≈ t2(x)). A class of algebras of similar type

that is closed under the formation of homomorphic images, subalgebras and products is called a

variety. The famous HSP theorem of Garrett Birkhoff states that varieties of algebras are exactly

the classes of algebras that are axiomatized by a set of identities.
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The structure (up to isomorphism) of all homomorphic images of an algebra A is encoded

in the collection of equivalence relations on its underlying set that are compatible with its fun-

damental operations. These equivalence relations are called congruences, and the collection of

them is denoted by Con(A). This collection of relations is equipped with the natural order of set

containment. In this case, the order actually gives Con(A) the structure of an algebraic lattice.

There are sometimes non-obvious and deep connections between the identities true in a

variety V and the structure of the congruence lattices across V. For example, Mal’cev discovered

that a variety V has a term operation p(x, y, z), now called a Mal’cev operation, that satisfies the

identities

(1) p(x, x, y) ≈ y

(2) p(y, x, x) ≈ y

if and only if the relational product of congruences α, β ∈ Con(A) is commutative for all A ∈ V.

If a variety satisfies the latter condition it is called a congruence permutable variety, and if

it satisfies the former condition it is called a Mal’cev variety. The existence of a Mal’cev operation

for a variety is an example of a strong Mal’cev condition. Using this language, we see that the

class of congruence permutable varieties is definable with a strong Mal’cev condition. Many well

studied varieties belong to this class, for example, the varieties of Groups, Rings, R-Modules, Loops

and Lie Algebras are all congruence permutable.

Fix some algebra A and suppose Con(A) is permutable. An interesting consequence of per-

muting congruences is that Con(A) must satisfy the modular law:

(x ∨ y = x)→ (x ∧ (z ∨ y) ≈ (x ∧ z) ∨ y)

A variety is called congruence modular if every every member has a modular congruence lattice.

So, the class of congruence permutable varieties is contained in the class of congruence modular

varieties. The containment is strict as, for instance, the variety of lattices is congruence modular but

not congruence permutable. As it turns out, the class of congruence modular varieties is definable
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from what is called a Mal’cev condition, which was shown by Alan Day in [8]. Properties of

the Mal’cev condition characterizing congruence modularity are crucial for developing a robust

commutator and higher commutator theory for a congruence modular variety, which is the subject

of this thesis. For a thorough treatment of Mal’cev conditions we refer the reader to [20].

We now discuss the evolution of centrality in algebra. Centrality is easily understood in groups

as the commutativity of multiplication. Here, it plays an essential role in defining important group-

theoretic notions such as abelianness, solvability, nilpotence, etc. Naturally, a systematic calculus

to study centrality was developed. For a group G and a, b ∈ G, the group commutator of a and b

is defined to be

[a, b] = a−1b−1ab.

Actually, one can go further and use group commutators to define a very useful operation on

the lattice of normal subgroups of G.

Definition 1.0.1. Suppose that G is a group and M and N are normal subgroups of G. The group

commutator of M and N is defined to be

[M,N ] = SgG({[m,n] : m ∈M,n ∈ N})

Suppose that f : G→ H is a surjective homomorphism and {Ni : i ∈ I} are normal subgroups

of G. The following properties are easy consequences of Definition 1.0.1, where ∧ and ∨ denote the

operations of meet and join in the lattice of normal subgroups of G:

(1) [M,N ] ⊂M ∧N ,

(2) [f(M), f(N)] = f([M,N ]),

(3) [M,N ] = [N,M ],

(4) [M,
∨
i∈I Ni] =

∨
i∈I [M,Ni],
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(5) For any normal subgroup K of G contained in M ∧N , the elements of M/K commute with

N/K if and only if [M,N ] ⊂ K.

Rings have an analogous commutator theory. For two ideals I, J of a ring R the commutator

is [I, J ] = IJ−JI. This operation satisfies the same basic properties as the commutator for groups

and allows one to analogously define abelian, solvable and nilpotent rings. As it turns out, the

notion of centrality and the existence of a well-behaved commutator operation is not an idiosyncrasy

of groups or rings. In [19], J.D.H. Smith defined a language-independent type of centrality that

generalized the known examples. He then used this definition to show that any algebra belonging

to a Mal’cev variety came equipped with a commutator as powerful as the commutator for groups

or rings.

Hagemann and Hermann later extended the results of Smith to congruence modular vari-

eties in [11]. The language-independent definition of centrality allows for language-independent

definitions of abelianness and related notions such solvability and nilpotence. The existence of a

robust commutator for a congruence modular variety means that these definitions are powerful and

well-behaved, and provide an important tool to study the consequences of congruence modularity.

For example, quotients of abelian algebras that belong to a modular variety are abelian, but this

need not be true in general.

The importance of these investigations was immediately apparent and the theory was rapidly

developed, see [9] and [10]. While the entirety of the theory is too broad for this introduction, we

do mention an aspect related to nilpotence, because it is a prelude to the higher arity commutator.

Roger Lyndon showed in [14] that the equational theory of a nilpotent group is finitely based.

Now, finite nilpotent groups are the product of their Sylow subgroups, so for finite groups Lyndon’s

result states that a group that is a product of p-groups has a finite basis for its equational theory.

A result of Michael Vaughan-Lee, with an improvement due to Ralph Freese and Ralph McKenzie,

generalizes this finite basis result to finite algebras generating a modular variety that are a product

of prime power order nilpotent algebras, see [9]. Keith Kearnes showed in [12] that for a modular
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variety the algebras that are the product of prime power order nilpotent algebras are exactly the

algebras that generate a variety with a small growth rate of the size of free algebras.

Note that while for the variety of groups the condition of being a product of prime power

order nilpotent algebras is equivalent to being nilpotent, this condition is in general stronger than

nilpotence. This stronger condition is now known to be equivalent to being supernilpotent, which

is a condition that is definable from the higher arity commutator that is the subject of our work.

The definition of higher centrality was first introduced formally by Andrei Bulatov, see [6].

Bulatov was interested in counting the number of distinct polynomial clones on a finite set that

contain a Mal’cev operation. Although this problem was solved in [2] using other methods, higher

commutators have found other important uses. Higher commutators are used in [4] and [1] to

study algebras that are expansions of groups. Higher commutators are used in [18] to demonstrate

that there is no uniform bound for all finite groups on the arity of relations that determine the

clone of term operations. In [15], the clone of polynomial functions of a Mal’cev algebra with

every subdirectly irreducible image having a supernilpotent centralizer of its monolith is shown to

be determined by finitely many relations. In [5], supernilpotence is shown to be an obstacle to a

Mal’cev algebra having a natural duality. Also, as noted earlier, finite supernilpotent algebras that

generate congruence permutable varieties must have a finitely based equational theory.

Erhard Aichinger and Neboǰsa Mundrinski developed the basic properties of the higher com-

mutator for congruence permutable varieties, see [3]. In [17], Jakub Opršal contributed to the

properties of the higher commutator by developing a relational description that is similar to the

original definition of centrality used by J.D.H. Smith, Hagemann and Hermann.

We present here our initial work on the higher commutator. In Chapter 3, we develop its

basic properties. In Chapter 4, we prove that the higher commutator is the same as a higher

commutator defined with a two term condition.



Chapter 2

Centrality and Matrices

2.1 Preliminaries

2.1.1 Background

We begin with the term condition definition of the k-ary commutator as introduced by Bu-

latov in [6]. The following notation is used. Let A be an algebra with δ ∈ Con(A). A tuple will

be written in bold: x = (x0, ..., xn−1). The length of this tuple is denoted by |x|. For two tuples

x,y such that |x| = |y| we write x ≡δ y to indicate that xi ≡δ yi for 0 ≤ i < |x|, where xi ≡δ yi

indicates that 〈x, y〉 ∈ δ. Also, the integers are considered to be the finite ordinals, and the ∈

relation is used to compare them.

Definition 2.1.1. Let A be an algebra, k ∈ N≥2, and choose α0, . . . , αk−1, δ ∈ Con(A). We say

that α0, . . . , αk−2 centralize αk−1 modulo δ if for all f ∈ Pol(A) and tuples a0,b0, . . . ,ak−1,bk−1

from A such that

(1) ai ≡αi bi for each i ∈ k

(2) If f(z0, . . . , zk−2,ak−1) ≡δ f(z0, . . . , zk−2,bk−1) for all (z0, . . . , zk−2) ∈ {a0,b0} × · · · ×

{ak−2,bk−2} \ {(b0, . . . ,bk−2)}

we have that

f(b0, . . . ,bk−2,ak−1) ≡δ f(b0, . . . ,bk−2,bk−1)

This condition is abbreviated as C(α0, . . . , αk−1; δ).
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It is easy to see that if for some collection {δi : i ∈ I} ⊂ Con(A) we have C(α0, . . . , αk−1; δi),

then C(α0, . . . , αk−1;
∧
i∈I δi). We therefore make the following

Definition 2.1.2. Let A be an algebra, and let α0, . . . , αk−1 ∈ Con(A) for k ≥ 2. The k-ary

commutator of α0, . . . , αk−1 is defined to be

[α0, . . . , αk−1] =
∧
{δ : C(α0, . . . , αk−1; δ)}

The following properties are immediate consequences of the definition:

(1) [α0, . . . , αk−1] ≤
∧

0≤i≤k−1 αi,

(2) For α0 ≤ β0, . . . , αk−1 ≤ βk−1 in Con(A), we have [α0, . . . , αk−1] ≤ [β0, . . . , βk−1] (Mono-

tonicity),

(3) [α0, . . . , αk−1] ≤ [α1, . . . , αk−1].

We will demonstrate the following additional properties of the higher commutator for a congruence

modular variety V, which are developed for the binary commutator in [9]:

(4) [α0, ..., αk−1] = [ασ(0), ..., ασ(k−1)] for any permutation σ of the congruences α0, ..., αk−1

(Symmetry),

(5) [
∨
i∈I γi, α1, ..., αk−1] =

∨
i∈I [γi, α1, ..., αk−1] (Additivity),

(6) [α0, ..., αk−1] ∨ π = f−1([f(α0 ∨ π), ..., f(αk−1 ∨ π))]), where f : A → B is a surjective

homomorphism with kernel π (Homomorphism property),

(9) Kiss showed in [13] that for congruence modular varieties the binary commutator is equiva-

lent to a binary commutator defined with a two term condition. This is true for the higher

commutator also.

2.1.2 Day Terms and Shifting

The following classical results about congruence modularity are needed. For proofs see [8],

[10] and [9].
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Proposition 2.1.3 (Day Terms). A variety V is congruence modular if and only if there exist term

operations me(x, y, z, u) for e ∈ n+ 1 satisfying the following identities:

(1) me(x, y, y, x) ≈ x for each e ∈ n+ 1,

(2) m0(x, y, z, u) ≈ x,

(3) mn(x, y, z, u) ≈ u,

(4) me(x, x, u, u) ≈ me+1(x, x, u, u) for even e, and

(5) me(x, y, y, u) ≈ me+1(x, y, y, u) for odd e.

Proposition 2.1.4 (Lemma 2.3 of [9]). Let V be a variety with Day terms me for e ∈ n+ 1. Take

δ ∈ Con(A) and assume 〈b, d〉 ∈ δ. For a tuple 〈a, c〉 ∈ A2 the following are equivalent:

(1) 〈a, c〉 ∈ δ,

(2) 〈me(a, a, c, c),me(a, b, d, c)〉 ∈ δ for all e ∈ n+ 1.

Lemma 2.1.5 (The Shifting Lemma). Let V be a congruence modular variety, and take A ∈ V.

Take θ1, θ2 ∈ Con(A) and γ ≥ θ1 ∧ θ2. Suppose a, b, c, d ∈ A are such that 〈a, b〉, 〈c, d〉 ∈ θ1,

〈a, c〉, 〈b, d〉 ∈ θ2 and 〈b, d〉 ∈ γ. Then 〈a, c〉 ∈ γ. Pictorially,

a
θ1

θ2

b

γ

c d

implies a
θ1

θ2 γ

b

γ

c d

2.1.3 Matrices and Centralization

Take A ∈ V and θ0, θ1 ∈ Con(A). The development of the binary commutator in [9] relies on

a so-called term condition that can be defined with respect to a subalgebra of A4, the subalgebra

of (θ0, θ1)-matrices. We will now generalize these ideas to the higher commutator. To motivate the

definitions, we state them for the binary commutator.
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Definition 2.1.6 (Binary). Take A ∈ V, and θ0, θ1,∈ Con(A). Define

M(θ0, θ1) =







t(a0,a1) t(a0,b1)

t(b0,a1) t(b0,b1)


 : t ∈ Pol(A),a0 ≡θ0 b0,a1 ≡θ1 b1





It is readily seen that M(θ0, θ1) is a subalgebra of A4, with a generating set of the form







x x

y y


 : x ≡θ0 y




⋃






x y

x y


 : x ≡θ1 y





The notion of centrality given in Definition 2.1.1 with congruences θ0, θ1, δ is expressible as a

condition on (θ0, θ1)-matrices. This is shown in Figure 2.1, where for δ ∈ Con(A) the implications

depicted hold for all 

t(a0,a1) t(a0,b1)

t(b0,a1) t(b0,b1)


 ∈M(θ0, θ1).

It is easy to generalize the idea of matrices to three dimensions. For congruences θ0, θ1, θ2, δ

of an algebra A, the condition C(θ1, θ2, θ0; δ) is equivalent to the implication depicted in Figure 2.2

for all t ∈ Pol(A) and a0 ≡θ0 b0,a1 ≡θ1 b1, a2 ≡θ2 b2.

The main arguments in this paper are essentially combinatorial and rely on isolating certain

squares and lines in matrices. In the case of the matrix shown in Figure 2.2, we identify the squares

shown in Figure 2.3, which we label as (0, 1)-supporting and pivot squares (see Definition 2.1.11).

Notice that both squares are (θ0, θ1)-matrices, where the supporting square corresponds to the

polynomial t(z0, z1,a2) and the pivot square corresponds to the polynomial t(z0, z1,b2).

We also identify the lines shown in Figure 2.3, which are labeled as either a (0)-supporting

line or a (0)-pivot line (see Definition 2.1.11). Notice that each line corresponds to a polynomial

s(z0) = t(z0,x1,x2), where x1 ∈ {a1,b1} and x2 ∈ {a2,b2}. Notice that C(θ1, θ2, θ0; δ) is equivalent

to the statement that if every (0)-supporting line of such a matrix is a δ pair, then the (0)-pivot

line is a δ-pair.

We therefore require for a sequence of congruences (θ0, . . . , θk−1) the notion of a matrix, as

well as a notation to identify a matrice’s supporting and pivot squares and lines.
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t(a0,a1) t(a0,b1)

t(b0,a1) t(b0,b1)

θ0

θ1

δ

→

t(a0,a1) t(a0,b1)

t(b0,a1) t(b0,b1)

θ0

θ1

δ

δ

C(θ0, θ1; δ) is the condition that any (θ0, θ1)-matrix with
its top row a δ-pair also has its bottom row as a δ-pair.

t(a0,a1) t(a0,b1)

t(b0,a1) t(b0,b1)

θ0

θ1

δ →

t(a0,a1) t(a0,b1)

t(b0,a1) t(b0,b1)

θ0

θ1

δδ

C(θ1, θ0; δ) is the condition that any (θ0, θ1)-matrix with
its left column a δ-pair also has its right column as a δ-pair.

Figure 2.1: Binary centrality

Definition 2.1.7. Let T = (θ0, . . . , θk−1) ∈ Con(A)k be a sequence of congruences of A. A pair

τ = (t,P) is called a T -matrix label if

(1) t = t(z0, . . . , zk−1) ∈ Pol(A)

(2) P = (P0, . . . , Pk−1) is a sequence of pairs Pi = (ai,bi) such that ai ≡θi bi

Let τ = (t(z0, . . . , zk−1),P) be a T -matrix label. From the above examples, we see that τ can

be used to construct a k-dimensional cube whose vertices correspond to evaluating each variable

tuple zi in t at one of the tuples belonging to Pi. We also need to identify the squares and lines
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t(a0,a1,a2) t(a0,b1,a2)

t(a0,b1,b2)

t(b0,a1,a2) t(b0,b1,a2)

t(b0,a1,b2) t(b0,b1,b2)

t(a0,a1,b2)

θ1

θ0

θ2

δ

This δ-pair follows from C(θ1, θ2, θ0; δ)

Figure 2.2: Ternary Centrality

of this matrix, which are in fact 2 and 1-dimensional matrices. As in the above examples, these

objects correspond to the evaluation of some of the zi at tuples in P. We introduce notation to

identify which of the zi in t(z0, . . . , zk−1) are being evaluated and which variable tuples zi remain

free.

Let S ⊂ k. Denote by TS the subsequence (θi1 , . . . , θis) of congruences from T that is indexed

by S. For a function f ∈ 2k\S let τf = (t|f ,PS) be the TS-matrix label such that

(1) t|f (zi1 , . . . , zis) = t(x1, . . . ,xk) with

(a) (zi1 , . . . , zis) is the collection of variable tuples indexed by S

(b) xi = zi if i ∈ S

(c) xi = ai if f(i) = 0

(d) xi = bi if f(i) = 1

(2) PS is the subsequence (Pi1 , . . . , Pis) of pairs of tuples from P that is indexed by S.

Notice that if S = ∅ then each τf specifies a way in which to evaluate each tuple zi at either

ai or bi. As we will see, these are vertices of the matrices which we now define.
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t(a0,a1,a2) t(a0,b1,a2)

t(a0,b1,b2)

t(b0,a1,a2) t(b0,b1,a2)

t(b0,a1,b2) t(b0,b1,b2)

t(a0,a1,b2)

(0, 1)-Supporting Square

(0, 1)-Pivot Square

t(a0,a1,a2) t(a0,b1,a2) t(a0,b1,b2)

t(b0,a1,a2) t(b0,b1,a2) t(b0,a1,b2) t(b0,b1,b2)

t(a0,a1,b2)

(0)-Supporting Lines (0)-Pivot Line

Figure 2.3: Squares and Lines

Definition 2.1.8. Choose k ≥ 1. Let T = (θ0, . . . , θk−1) be a sequence of congruences of A. Let

τ = (t,P) be a T -matrix label. A T -matrix is an element

m ∈
∏

f∈2k
A = A2k

such that mf = t|f for all f ∈ 2k. We say in this case that m is labeled by τ . Denote by M(T )

the collection of all T -matrices.

Remark 2.1.9. If T = (θ1, . . . , θk) is a sequence of congruences of A, then we also denote M(T ) by

M(θ1, . . . , θk).
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If we consider the set k as a set of coordinates, the set of functions 2k can be viewed as a

k-dimensional cube, where f is connected to g by an edge if f(i) = g(i) for all i ∈ k \ {j} for some

coordinate j. Each T -matrix m labeled by τ is therefore a k-dimensional cube, with a vertex mf for

each f ∈ 2k. Moreover, if mf and mg are connected by an edge where f(i) = g(i) for all i ∈ k \ {j}

for some coordinate j, then mf ≡θj mg.

As noted in the case of the binary commutator, the collection of (α, β)-matrices is a subalgebra

of A4 and is generated by those m ∈ M(α, β) that are constant across rows or columns. These

facts easily generalize to the collection of T -matrices.

Lemma 2.1.10. Let T = (θ0, . . . , θk−1) be a sequence of congruences of an algebra A. The collection

M(T ) forms a subalgebra of A2k , and is generated by those matrices m ∈ M(T ) that depend only

on one coordinate.

We now define the ideas of a cross-section square and a cross-section line. Let T = (θ0 . . . , θk−1)

be a sequence of congruences and m ∈ M(T ) be labeled by τ = (t,P). Choose two coordinates

j, l ∈ k with j 6= l. For f∗ ∈ 2k\{j,l} let mf∗ ∈M(θj , θl) be the (θj , θl)-matrix labeled by τf∗ . We call

mf∗ the (j, l)-cross-section square of m at f∗. Similarly, for a coordinate j ∈ k and f ∈ 2k\{j}

let mf ∈ M(θj) be the (θj)-matrix labeled by τf . We call mf in this case the (j)-cross-section

line of m at f .

A typical (j, l)-cross-section square mf∗ will be displayed as

mf∗ =



tf∗(aj ,al) tf∗(aj ,bl)

tf∗(bj ,al) tf∗(bj ,bl)


 =



rf∗ sf∗

uf∗ vf∗




and a typical (j) or (l)-cross-section line of m is a column or row, respectively, of such a square.

We set

S(m; j, l) = {mf∗ : f∗ ∈ 2k\{j,l}} and

L(m; j) = {mf : f ∈ 2k\{j}}

to be the collections of all (j, l)-cross-section squares and (j)-cross-section lines of m, respectively.
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Definition 2.1.11. Let T = (θ0, . . . , θk−1) ∈ Con(A)k, and take m ∈ M(T ). Choose j, l ∈ k such

that j 6= l. Let jl ∈ 2k\{j,l}, j ∈ 2k\{j} and 1 ∈ 2k be the constant functions that take value 1 on

their respective domains. We call the (j, l)-cross-section square of m at jl the (j, l)-pivot square.

All other (j, l) cross-section squares of m will be called (j, l)-supporting squares. Similarly, we

call the (j) cross-section square of m at j the (j)-pivot line, and all other (j) cross-section lines

will be called (j)-supporting lines.

We now reformulate Definition 2.1.1 with respect to these definitions.

Definition 2.1.12. We say that T is centralized at j modulo δ if the following property holds

for all T -matrices m ∈M(T ):

(*) If every (j)-supporting line of m is a δ-pair, then the (j)-pivot line of m is a δ-pair.

We abbreviate this property C(T ; j; δ).

Definition 2.1.13. We define [T ]j =
∧{δ : C(T ; j; δ)}

Remark 2.1.14. Notice that [T ]j = [θi0 , . . . , θik−2
, θj ] for any permutation of the k − 1 congruences

that are not θj , where the left side is given by Definition 2.1.13 and the right is given by Definition

2.1.2.

We conclude this chapter with a general picture of the (j, l)-supporting and pivot squares

of a T -matrix m labeled by some τ = (t,P), a T -matrix label for a sequence of congruences

T = (θ0, . . . , θk−1). The conditions C(T ; j; δ) and C(T ; l; δ) are shown in Figure 2.4, respectively.
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(j, l)-Supporting Squares mf∗ for
f∗ ∈ 2k\{j,l} \ jl (j, l)-Pivot Square mjl

tf∗(aj ,al) tf∗(aj ,bl)

tf∗(bj ,al) tf∗(bj ,bl)

tjl(aj ,al) tjl(aj ,bl)

tjl(bj ,al) tjl(bj ,bl)

tf∗(aj ,al) tf∗(aj ,bl)

tf∗(bj ,al) tf∗(bj ,bl)

tjl(aj ,al) tjl(aj ,bl)

tjl(bj ,al) tjl(bj ,bl)

The j-pivot line of m, denoted mj

The l-pivot line of m, denoted ml

Figure 2.4: Higher Centrality, Squares and Lines



Chapter 3

Properties

3.1 Symmetry of Higher Commutator

For the remainder of this document a variety V is assumed to be congruence modular. In

this section we will show that the commutator of Definition 2.1.2 is symmetric. We fix A ∈ V,

with V a congruence modular variety with Day terms me for e ∈ n + 1. For k ≥ 2 let T =

(θ0, . . . , θk−1) ∈ Con(A)k be a sequence of congruences of A. We wish to show that [θ0, . . . , θk−1] =

[θσ(0), . . . , θσ(k−1)] for any permutation σ of the elements of k. By Remark 2.1.14 it will suffice to

show that [T ]j = [T ]l for all j, l ∈ k. This will imply that [θ0, . . . , θk−1] = [θσ(0), . . . , θσ(k−1)] =

[T ]j = [T ]l for all permutations σ of k and all j, l ∈ k.

We begin with the following

Lemma 3.1.1. Let V be a congruence modular variety with Day terms me for e ∈ n + 1, and let

A ∈ V. Let T = (θ0, . . . θk−1) ∈ Con(A)k. For each choice of j, l ∈ k such that j 6= l and e ∈ n+ 1

there is a map Rej,l : M(T )→M(T ) with the following properties:

(1) If h ∈M(T ) has the set of (j, l)-cross-section squares

S(h; j, l) =




hf∗ =



rf∗ sf∗

uf∗ vf∗


 : f∗ ∈ 2k\{j,l}





then Rej,l(h) has the set of (j, l)-cross-section squares S(Rej,l(h); j, l) =



Rej,l(m)f∗ =




sf∗ sf∗

me(sf∗ , rf∗ , uf∗ , vf∗) me(sf∗ , sf∗ , vf∗ , vf∗)


 : f∗ ∈ 2k\{j,l}
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(2) If every (j)-supporting line of h is a δ-pair, then every (l)-supporting line of Rej,l(h) is a

δ-pair.

(3) Suppose the (j)-supporting line belonging to the (j, l)-pivot square of h is a δ-pair. The

(j)-pivot line of h is a δ-pair if and only if the (l)-pivot line of Rej,l(h) is a δ-pair for all

e ∈ n+ 1.

The map Rej,l will be called the eth shift rotation at (j, l).

Proof. Let h ∈ M(T ) be labeled by τ = (t,P), where t = t(z0, . . . , zk−1) and P = (P0, . . . , Pk−1)

with Pi = (ai,bi). Fix j, l ∈ k with j 6= l and take e ∈ n+ 1. Let

tej,l(y0, ...,yk−1) = me(t0, t1, t2, t3)

where

t0 =t(y0, . . . ,y
0
j , . . . ,y

0
l , . . . ,yk−1)

t1 =t(y0, . . . ,y
1
j , . . . ,y

1
l , . . . ,yk−1)

t2 =t(y0, . . . ,y
2
j , . . . ,y

2
l , . . . ,yk−1)

t3 =t(y0, . . . ,y
3
j , . . . ,y

3
l , . . . ,yk−1)

and yj = (y0
j ,y

1
j ,y

2
j ,y

3
j ), yl = (y0

l ,y
1
l ,y

2
l ,y

3
l ) are concatenations of tuples.

For each i ∈ k , define a pair of tuples P ei = (a′i,b
′
i) as follows:

(1) P ei = Pi if i 6= j, l

(2) P ej = (a′j ,b
′
j) = ((aj ,bj ,bj ,aj), (aj ,aj ,bj ,bj))

(3) P el = (a′l,b
′
l) = ((bl,al,al,bl), (bl,bl,bl,bl))

Let Pej,l = (P e0 , . . . , P
e
k−1), and set τ ej,l = (tej,l,Pej,l). Define Rej,l(h) ∈M(T ) to be the T -matrix

labeled by τ ej,l.
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We now compute S(Rej,l(h); j, l), the set of (j, l) cross-section squares of Rej,l(h). Take f∗ ∈

2k\{j,l}. Consider the (j, l) cross-section square of h at f∗:

hf∗ =



rf∗ sf∗

uf∗ vf∗




By the definitions given above we therefore compute

Rej,l(h)f∗ =




(tej,l)f∗(a
′
j ,a
′
l) (tej,l)f∗(a

′
j ,b
′
l)

(tej,l)f∗(b
′
j ,a
′
l) (tej,l)f∗(b

′
j ,b
′
l)




=



me(sf∗ , uf∗ , uf∗ , sf∗) me(sf∗ , vf∗ , vf∗ , sf∗)

me(sf∗ , rf∗ , uf∗ , vf∗) me(sf∗ , sf∗ , vf∗ , vf∗)




=




sf∗ sf∗

me(sf∗ , rf∗ , uf∗ , vf∗) me(sf∗ , sf∗ , vf∗ , vf∗)




where the final equality follows from identity (1) in Proposition 2.1.3. This proves (1) of the lemma.

We now prove (2) and (3). A picture is given in Figure 3.1, where a typical (j, l)-supporting

square and the (j, l)-pivot square are shown for both h and Rej,l(h). Supporting lines are drawn in

bold.

Indeed, any constant pair 〈s, s〉 is a δ-pair, so the top row of any (j, l)-cross-section square of

Rej,l(h) is a δ-pair. That the other (l)-supporting lines of Rej,l(h) are δ-pairs follows from Proposition

2.1.4. Finally, Proposition 2.1.4 shows that the (j)-pivot line of h is a δ-pair if and only if for every

e ∈ n + 1 the (l)-pivot line of Rej,l(h) is a δ-pair, which is indicated in the picture with dashed

curved lines. This proves (3).

Proposition 3.1.2. Let T = (θ0, . . . , θk−1) ∈ Con(A)k. Suppose for δ ∈ Con(A) that C(T ; l; δ)

holds for some l ∈ k. Then C(T ; j; δ) holds for all j ∈ k.

Proof. Choose j 6= l. By definition 2.1.12, it suffices to show that for each h ∈ M(T ) that if each

(j)-supporting line of h is a δ-pair then the (j)-pivot line of h is a δ pair. For e ∈ n + 1 consider
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tf∗(aj ,bl) = sf∗

tf∗(bj ,al) = uf∗ tf∗(bj ,bl) = vf∗

tjl(aj ,al) = rjltf∗(aj ,al) = rf∗

h ∈ M(T ) Supporting and Pivot squares

tjl(aj ,bl) = sjl

tjl(bj ,al) = ujl tjl(bj ,bl) = vjl

Prop. 2.1.4

(tej,l)f∗(a′
j ,a

′
l) = sf∗

Re
j,l(h) ∈ M(T ) Supporting and Pivot squares

(tej,l)f∗(a′
j ,b

′
l) = sf∗

(tej,l)f∗(b′
j ,a

′
l) =

me(sf∗ , rf∗ , uf∗ , vf∗)
(tej,l)f∗(a′

j ,b
′
l) =

me(sf∗ , sf∗ , vf∗ , vf∗)

(tej,l)jl(a
′
j ,a

′
l) = sjl (tej,l)jl(a

′
j ,b

′
l) = sjl

(tej,l)jl(b
′
j ,a

′
l) =

me(sjl, rjl, ujl, vjl)

(tej,l)jl(b
′
j ,b

′
l) =

me(sjl, sjl, vjl, vjl)

constant pair constant pair

Prop. 2.1.4 Prop. 2.1.4

Figure 3.1: Shift Rotations

the eth shift rotation at (j, l) of h. By (2) of 3.1.1, each (l)-supporting line of Rej,l(h) is a δ-pair.

We assume that C(T ; l; δ) holds, therefore the (l)-pivot line of Rej,l is a δ-pair. Because this is true

for every e ∈ n+ 1, (3) of 3.1.1 shows that the (j)-pivot line of h is a δ-pair. We therefore conclude

that C(T ; j; δ) holds.

Theorem 3.1.3. [T ]j = [T ]l for all j, l ∈ k.

Proof. [T ]j =
∧{δ : C(T ; j; δ)} =

∧{δ : C(T ; l; δ)} = [T ]l.



20

We can now omit the coordinate j when stating C(T ; j; δ) or referring to [T ]j , writing C(T ; δ)

and [T ] instead.

3.2 Generators of Higher Commutator

In this section we construct for a sequence of congruences T = (θ0, . . . , θk−1) ∈ Con(A)k a

set of generators X(T ) for [T ]. The idea of the construction is to consider all possible sequences of

consecutive shift rotations for an arbitrary T -matrix h. Each such sequence will produce a T -matrix

that is constant on all (k − 1)-supporting lines. The (k − 1)-pivot line of such a T -matrix must

belong to any δ such that C(T ; δ) holds. This is illustrated for 3-dimensional matrices in Figure

3.2, where constant pairs are indicated with bold.

θ1

θ0

θ2

θ1

θ0

θ2

θ1

θ0

θ2

rotations at 0, 1h ∈M(θ0, θ1, θ2) rotations at 1, 2

(2)-pivot line must belong to any δ such that C((θ0, θ1, θ2); δ)

Figure 3.2: Ternary Generators

As usual, let V be a congruence modular variety with Day terms me for e ∈ n + 1, and let

T = (θ0, . . . , θk−1) ∈ Con(A)k for A ∈ V. For a T -matrix h we will apply a composition of k − 1

shift rotations, first at (0, 1), then at (1, 2), ending at (k− 2, k− 1). For each stage there are n+ 1
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many choices of Day terms, each giving a different shift rotation. It is therefore quite natural to

label these sequences of shift rotations with branches belonging to the tree of height k with n+ 1

many successors of each vertex. Set

Dk = 〈(n+ 1)<k;<〉,

where for d1, d2 ∈ (n+1)<k, we have d1 < d2 if d2 extends d1. Note that Dk has the empty sequence

∅ as a root.

Lemma 3.2.1. Let V be a variety with Day terms me for e ∈ n + 1. Let T = (θ0, . . . , θk−1) ∈

Con(A)k. Let h ∈M(T ) be labeled by τ = (t,P). Set h∅ = h. For each non-empty d = (d0, . . . , di) ∈

Dk there is a T -matrix hd ∈M(T ) labeled by some τd = (td;Pd) such that

(1) hd = R
d(i)
i,i+1(h

c), where c is the predecessor of d.

(2) Let f ∈ 2k\{i+1} be such that f(j) = 0 for some j ∈ i+ 1. Then the (i+ 1)-supporting line

of hd at f :

(hd)f =

[
(td)f (adi+1) (td)f (bdi+1)

]

is a constant pair.

Proof. We proceed by induction. The base case follows easily from Lemma 3.1.1. Suppose it holds

for c and let d be a successor of c. Let f ∈ 2k\{i+1} be such that f(j) = 0 for some j ∈ i + 1. We

need to establish that the supporting line

(hd)f =

[
(td)f (adi+1) (td)f (bdi+1)

]

is a constant pair. Let f∗ = f |2k\{i,i+1} be the restriction of f to k \ {i, i+ 1}. We treat two cases:

(1) Suppose j = i, and for no other j ∈ i+1 does f(j) = 0. Consider the (i, i+1)-cross-section

square of hc at f∗:
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(hc)f∗ =



rf∗ sf∗

uf∗ vf∗




By 3.1.1, the (i, i+ 1)-cross-section of md at f∗ is:

(hd)f∗ =




sf∗ sf∗

md(i)(sf∗ , rf∗ , uf∗ , vf∗) md(i)(sf∗ , sf∗ , vf∗ , vf∗)




The (i+ 1)-supporting line of hd at f is the top row of the above square, that is,

(hd)f =

[
sf∗ sf∗

]

(2) Suppose that f(j) = 0 for some j ∈ i. In this case the inductive assumption applies to hc,

so columns of the (i, i+ 1)-cross-section of hc at f∗ are therefore constant:

(hc)f∗ =



rf∗ sf∗

rf∗ sf∗




We therefore compute the (i, i+ 1)-cross-section of hdi+1 at f∗ as:

(hd)f∗ =




sf∗ sf∗

md(i)(sf∗ , rf∗ , rf∗ , sf∗) md(i)(sf∗ , sf∗ , sf∗ , sf∗)


 =



sf∗ sf∗

sf∗ sf∗




The (i+1)-cross-section line of hd at f is either the top or bottom row of the above square,

if f(i) = 0 or f(i) = 1 respectively. Therefore

(hd)f =

[
sf∗ sf∗

]

Let d = (d0, . . . , dk−2) be a leaf of Dk. By Lemma 3.2.1, all (k− 1)-supporting lines of hd are

constant pairs 〈s, s〉. If we assume that C(T ; δ) holds then the (k− 1)-pivot line of md must belong

to δ. That is, (hd)k-1 ∈ δ for any h ∈M(T ) and any leaf d ∈ Dk. Set

X(T ) = {(hd)k-1 : h ∈M(T ), d ∈ Dk a leaf },
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see Figure 3.3 for a picture.

rotations at 0, 1

h∅ = h

rotations at 1, 2

rotations at k − 2, k − 1

hd for d a leaf. The (k − 1)-pivot line is a generator.

Figure 3.3: Tree

δ generator

(3) of Lemma 3.1.1

Figure 3.4: Ternary Generator Tree
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We have just observed that

Lemma 3.2.2. Let T = (θ0, . . . , θk−1) ∈ Con(A)k for A ∈ V, where V is congruence modular.

Suppose that δ ∈ Con(A) is such that C(T ; δ) holds. Then X(T ) ⊂ δ. In particular, Cg(X(T )) ≤ [T ]

By induction over Dk we now demonstrate the following

Lemma 3.2.3. Let δ = Cg(X(T )). Then C(T ; δ) holds. In particular, [T ] ≤ Cg(X(T )).

Proof. Take h ∈ M(T ). By symmetry, it suffices to consider that all (0)-supporting lines of h are

δ-pairs. We need to show that the (0)-pivot line of h is also a δ-pair. By a repeated application

of (2) of Lemma 3.1.1, each (i + 1)-supporting line of hd is a δ-pair, where d = (d0, . . . , di) ∈ Dk.

Take c = (c0, . . . , ci−1) ∈ Dk, and suppose that for all successors d = (c0, . . . , ci−1, di) of c that the

(i+ 1)-pivot line of hd is a δ-pair. Applying (3) of Lemma 3.1.1 yields that the (i)-pivot line of hc

is a δ-pair. Because δ = Cg(X(T )), the (k − 1)-pivot line of hd is a δ-pair for any d ∈ Dk that is a

leaf. By induction it follows that the (0)-pivot line of h is a δ-pair, as desired. See Figure 3.4 for a

picture.

Theorem 3.2.4. Let T = (θ0, . . . , θk−1) ∈ Con(A)k for A ∈ V, where V is congruence modular.

The following hold:

(1) [T ] = Cg(X(T ))

(2) For δ ∈ Con(A), C(T ; δ) if and only if [T ] ≤ δ

Proof. This follows from Lemmas 3.2.2 and 3.2.3.

3.3 Additivity and Homomorphism Property

We are now ready to show that the commutator is additive and is preserved by surjections.

We begin by example, demonstrating additivity for the 3-ary commutator. Let θ0, θ1, γi(i ∈ I)

be a collection of congruences of A. We want to show that [θ0, θ1,
∨
i∈I γi] =

∨
i∈I [θ0, θ1, γi]. It
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is immediate that [θ0, θ1,
∨
i∈I γi] ≥

∨
i∈I [θ0, θ1, γi], because of monotonicity. To demonstrate the

other direction, it suffices to show that C((θ0, θ1,
∨
i∈I γi);α) holds, where α =

∨
i∈I [θ0, θ1, γi].

Let h ∈M(θ0, θ1,
∨
i∈I γi) be labeled by τ = (t(z0, z1, z2), ((a0,b0)), (a1,b1), (a2,b2))). Sup-

pose that each (0)-supporting line of h is an α-pair. We need to show that the (0)-pivot line of h

is also an α-pair.

Because a2 ≡∨
i∈I γi

b2, there exist tuples c0, . . . , cq such that

a2 = c0 ≡γi0 c1 . . . cq−2 ≡γq−1 cq = b2

This sequence of tuples produces the sequence of cross-section squares shown in Figure 3.5.

Each square is a (θ0, θ1)-matrix labeled by (t(z0, z1, cs), ((a0,b0)), (a1,b1))), for cs a tuple from

c0, . . . , cq. Each consecutive pair of squares labeled by

(t(z0, z1, cs), ((a0,b0)), (a1,b1))) and (t(z0, z1, cs+1), ((a0,b0)), (a1,b1)))

are the 2-cross-section squares of a (θ0, θ1, γis)-matrix. As usual, α-pairs are indicated with curved

lines.

(θ0, θ1, γis)-matrix(θ0, θ1, γi0)-matrix (θ0, θ1, γiq−1)-matrix

0-pivot line of h

r

s

u

v

Figure 3.5: Sequence of Matrices

To show that the (0)-pivot line of h is an α-pair it suffices to show that

〈me(s, s, v, v),me(s, r, u, v)〉 ∈ α

for all e ∈ n + 1. Therefore, we consider for each e ∈ n + 1 the e-th shift rotation at (0, 1) of the

above sequence of matrices. This is shown in Figure 3.6. Constant pairs are indicated by bold

lines.
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me(s, r, u, v)

me(s, s, v, v)

1-pivot line of Re
0,1(h)

Figure 3.6: Rotated Sequence

Because [θ0, θ1, γi] ≤ α for all i ∈ I, we have that C(θ0, θ1, γi;α) holds. Because each cube in

the above sequence is a (θ0, θ1, γi)-matrix for some i ∈ I, it follows by induction that (1)-pivot line

of Re0,1(h) is an α-pair, as desired.

To show the additivity of a commutator of any arity, the same argument is used. For h ∈

M(T ) we consider all hd for any d ∈ Dk that is a predecessor of a leaf. By 3.2.1, all (k − 2)-

supporting lines that do not belong to the (k − 2, k − 1)-pivot square of hd are constant pairs.

The argument is then essentially the same as the 3-ary example above, complicated slightly by an

induction over the tree Dk.

Theorem 3.3.1. Let V be a congruence modular variety, and take A ∈ V. Let γi for i ∈ I be

a collection of congruences of A. Set T = (θ0, ..., θk−1,
∨
i∈I γi) and Ti = (θ0, ..., θk−1, γi), where

θ0, ..., θk−1 ∈ Con(A). Then [T ] =
∨
i∈I [Ti].

Proof. By monotonicity,
∨
i∈I [Ti] ≤ [T ]. Set α =

∨
i∈I [Ti]. We need to show that C(T ;α) holds.

Let h ∈ M(T ) be labeled by τ = (t(z0, . . . , zk),P), where P is a sequence of pairs of tuples

((a0,b0), . . . , (ak,bk)). Suppose that every (0)-supporting line of h is a α-pair. We will show that

the (0)-pivot line of h is an α-pair also.

Here we have that ak ≡∨
i∈I γi

bk. We illustrate the (k + 1)-dimensional matrix h as the

product of two k-dimensional matrices in Figure 3.7, given by evaluating zk at either ak or bk.

These two matrices are called η0 and η1 respectively.

Notice that the (0)-pivot line of h is equal to the (0)-pivot line of η1. By an induction identical



27

∨
i∈I γi 0-pivot line

η0 η1

hs ∈M(Tis)

0-pivot line

η0 η1

(hs)
d ∈M(Tis)

(k − 1, k)-pivot square

α

(k − 1)-pivot line of (η1)
d

is an α-pair

(η1)
d

Figure 3.7: Sequence of Matrices and Rotations

to that given in the proof of Lemma 3.2.3 it therefore suffices to show that the (k− 1)-pivot line of

(η1)
d is an α-pair, for each d ∈ Dk that is a leaf.

Because ak ≡∨
i∈I γi

bk, there exist tuples c0, . . . , cq such that

ak = c0 ≡γi0 c1 . . . cq−2 ≡γq−1 cq = bk

Evaluating zk at each of the cs gives the sequence of matrices shown in Figure 3.7, where each

consecutive pair of matrices corresponding to the tuples cs, cs+1 forms a Tis-matrix which we call
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hs.

Now, take d ∈ Dk to be a leaf. Notice that d ∈ Dk+1 and that d is a predecessor of a leaf in

this tree. For each his in the above sequence, consider the Tis-matrix (his)
d. This gives the final

sequence of matrices shown in Figure 3.7. By Lemma 3.2.1, every (k− 1)-supporting line that does

not belong to a (k − 1, k)-pivot square is a constant pair. These are drawn in bold. The sequence

of (k − 1, k)-pivot squares is drawn underneath the constant supporting lines.

As in the 3-dimensional example, we observe that C(Ti;α) holds. It follows from induction

that the (k − 1)-pivot line of (η1)
d is an α-pair. Consequently, the (0)-pivot line of h is an α-pair,

as desired.

Let f : A→ B be a surjective homomorphism with kernel π. Abusing notation, we denote by

T ∨π the sequence of congruences (θ1∨π, . . . , θk∨π) of A, and by f(T ) the sequence of congruences

(f(θ1), . . . , f(θk)) of B. We then have the following

Theorem 3.3.2. Let V be a congruence modular variety, and take A,B ∈ V. Let f : A → B

be a surjective homomorphism with kernel π. Let (θ0, . . . , θk−1) ∈ Con(A)k. Then [T ] ∨ π =

f−1([f(T ∨ π)]).

Proof. We argue by generators again. By Proposition 3.3.1 and monotonicity, we have that [T ]∨π =

[T ∨π]∨π. So, we assume without loss that θi ≥ π for 1 ≤ i ≤ k. Notice that [T ]∨π = Cg(X(T )∪π)

and that f(X(T ) ∪ π) = X(f(T )). But [f(T )] = Cg(X(f(T )), so f carries a set of generators for

[T ] ∨ π onto a set of generators for [f(T )]. Therefore f([T ] ∨ π) = [f(T )] as desired.



Chapter 4

Two Term Commutator

4.1 Two Term Commutator

Kiss showed in [13] that the term condition definition of the binary commutator is equivalent

to a commutator defined with a two term condition. The method of proof uses a difference term.

We begin this section be examining the binary case. The equivalence of the commutator defined

with the term condition to the commutator defined with a two term condition can be shown using

Day terms. This approach easily generalizes to the higher commutator. Recall that for a matrix

h ∈M(θ0, . . . , θk−1) and f ∈ 2k we denote by hf the vertex of h that is indexed by f .

Definition 4.1.1. (Binary Two Term Centralization) Let V be a congruence modular variety and

take A ∈ V. For α, β, δ ∈ Con(A) we say that α two term centralizes β modulo δ if the

following condition holds for all h, g ∈M(α, β), where we assume h and g are respectively labeled

by (t(z0, z1), ((a0,b0), (a1,b1))) and (s(x0,x1), ((c0,d0), (c1,d1))) :

〈s(c0, c1), t(a0,a1)〉 ∈ δ,

〈s(c0,d1), t(a0,b1)〉 ∈ δ,

〈s(d0, c1), t(b0,a1)〉 ∈ δ imply

〈s(d0,d1), t(b0,b1)〉 ∈ δ.

This condition is abbreviated as Ctt(α, β).
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Figure 4.1 depicts the condition Ctt(α, β). Curved lines represent δ-pairs. The top matrix is

labeled by

(s(z0, z1), ((a0,b0), (a1,b1)))

and the bottom matrix is labeled by

(t(x0,x1), ((c0,d0), (c1,d1)))

α

β

t(c0, c1) t(c0,d1)

t(d0, c1)
t(d0,d1)

s(a0,a1) s(a0,b1)

s(b0,a1)
s(b0,b1)δ

Figure 4.1: Binary Two Term Condition

Proposition 4.1.2 (Proposition 3.10 of [13]). C(α, β; δ) holds if and only if Ctt(α, β; δ) holds.

Proof. Suppose Ctt(α, β; δ) holds. To show that C(α, β; δ) holds we take



a b

c d


 ∈M(α, β) such

that 〈a, c〉 ∈ δ. Figure 4.2 demonstrates that if Ctt(α, β) holds then 〈b, d〉 ∈ δ.

Suppose now that C(α, β; δ) holds. Let g, h ∈M(α, β) be labeled by

(s(z0, z1), ((a0,b0), (a1,b1))) and (t(x0,x1), ((c0,d0), (c1,d1))) respectively. Suppose that

(1) 〈s(a0,a1), t(c0, c1)〉 = 〈a, e〉 ∈ δ

(2) 〈s(b0,a1), t(d0, c1)〉 = 〈c, g〉 ∈ δ
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α

β

α

β

δ

a b

c
d

a b

a b

Figure 4.2: Ctt(α, β; δ) implies C(α, β; δ)

(3) 〈s(a0,b1), t(c0,d1)〉 = 〈b, f〉 ∈ δ

We need to show that 〈s(b0,b1), t(d0,d1)〉 = 〈d, h〉 ∈ δ.

We construct a matrix that is similar to a shift rotation. For each e ∈ n + 1 consider the

polynomial

pe(y0,y1) = me(s(y
0
0,y

0
1), s(y

0
0,y

1
1), t(y

1
0,y

2
1), t(y

1
0,y

3
1))

where y0 = (y0
0,y

1
0) and y1 = (y0

1,y
1
1,y

2
1,y

3
1).

Set

(1) u0 = (a0, c0)

(2) v0 = (b0,d0)

(3) u1 = (b1,b1,d1,d1)

(4) v1 = (b1,a1, c1,d1)

Let qe ∈ M(α, β) be labeled by (pe, ((u0,v0), (u1,v1))). The relationship between h, g and

qe is shown in Figure 4.3.
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a b

c d

e f

g h

me(b, a, e, f)me(b, b, f, f)

me(d, d, h, h) me(d, c, g, h)

g ∈M(α, β)

h ∈M(α, β)

qe ∈M(α, β)

∀e ∈ n+ 1

Figure 4.3: C(α, β; δ) implies Ctt(α, β; δ)

Indeed, we compute

qe =



pe(u0,u1) pe(u0,v1)

pe(v0,u1) pe(v0,v1)




=




me(s(a0,b1), s(a0,b1), t(c0,d1), t(c0,d1)) me(s(a0,b1), s(a0,a1), t(c0, c1), t(c0,d1))

me(s(b0,b1), s(b0,b1), t(d0,d1), t(d0,d1)) me(s(b0,b1), s(b0,a1), t(d0, c1), t(d0,d1))




=



me(b, b, f, f) me(b, a, e, f)

me(d, d, h, h) me(d, c, g, h)




Proposition 2.1.4 show that 〈me(b, a, e, f),me(b, b, f, f)〉 ∈ δ because 〈a, e〉 and 〈b, f〉 are δ-

pairs. We assume that C(α, β; δ) holds, so 〈me(d, c, g, h),me(d, d, g, h)〉 ∈ δ. This holds for all

e ∈ n+ 1 so applying Proposition 2.1.4 again shows that 〈d, h〉 ∈ δ.

We now generalize this notion to the higher commutator.

Definition 4.1.3 (Two Term Centralization). Let V be a congruence modular variety and take
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A ∈ V. For T = (θ0, . . . , θk−1) ∈ Con(A)k and δ ∈ Con(A) we say that T is two term centralized

modulo δ if the following condition holds for all h, g ∈M(T ):

(1) If hf ≡δ gf for all f ∈ 2k except the function that takes constant value 1 then hf ≡ gf for

all f ∈ 2k

This condition is abbreviated as Ctt(T ; δ).

Proposition 4.1.4. C(T ; δ) holds if and only if Ctt(T ; δ) holds.

Proof. Suppose Ctt(T ; δ) holds. To show that C(T ; δ) holds, take h ∈ M(T ) with 0-supporting

lines 〈ai, bi〉 for i ∈ 2k−1 − 1 and 0-pivot line 〈c, d〉. Suppose that each 0-supporting line 〈ai, bi〉

is a δ-pair. There is a g ∈ M(T ) with 0-supporting lines 〈ai, ai〉 for i ∈ 2k−1 − 1 and 0-pivot line

〈c, c〉. We have that hf ≡δ gf for all f ∈ 2k except possibly the constant function with value 1.

The assumption that Ctt(T ; δ) implies that hf ≡δ gf for all f ∈ 2k. In particular, 〈c, d〉 ∈ δ. This

is shown in Figure 4.4.

a0

b0

c

d

a2k−1−1

b2k−1−1

a0 ca2k−1−1

a0 ca2k−1−1

h ∈ M(T ) g ∈ M(T )

Figure 4.4: Ctt(T ; δ) implies C(T ; δ)

Suppose now that C(T ; δ) holds. Take h, g ∈M(T ) such that hf ≡δ gf for all f ∈ 2k except

the function that takes constant value 1. We want to show that hf ≡ gf for all f ∈ 2k.

Suppose that h and g are labeled by

(t(z0, . . . , zk−1), ((a0,b0), . . . , (ak−1,bk−1))) and
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(s(x0, . . . ,xk−1), ((c0,d0), . . . (ck−1,dk−1)))

respectively. Choose i ∈ k. Figure 4.5 shows the i-cross-section lines of h and g, with vertices that

are δ-pairs connected by curved lines.

h ∈M(T ) g ∈M(T )

δ

i-pivot line of h i-pivot line of g

i-supporting line of gi-supporting line of h

a b

c d

af
bf

cf df

Figure 4.5: C(T ; δ) implies Ctt(T ; δ)

i-supporting lines

δ

i-pivot line

me(c, a, b, d)

me(c, c, d, d)

me(cf , af , bf , df )

me(cf , cf , df , df )

Figure 4.6: Supporting and Pivot Lines

We label the i-pivot line of h as the pair 〈a, c〉 and the i-pivot line of g as the pair 〈b, d〉.

For a function f ∈ 2k\{i} the supporting lines hf and gf are named 〈af , cf 〉 and 〈bf , df 〉 re-
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spectively. We want to show that 〈c, d〉 ∈ δ. By Proposition 2.1.4, it suffices to show that

〈me(c, a, b, d),me(c, c, d, d)〉 ∈ δ for all e ∈ n + 1. This will follow from the assumption that

C(T ; δ) holds and the existence of a T -matrix qe with the i-cross-section lines shown in Figure 4.6.

Indeed, for each e ∈ n+ 1 consider the polynomial pe(y0, . . . ,yk−1) =

me

(
t(y0

0, . . . ,y
0
i , . . .y

0
k−1), t(y

0
0, . . . ,y

1
i , . . .y

0
k−1),

s(y1
0, . . . ,y

2
i , . . .y

1
k−1), s(y

1
0, . . . ,y

3
i , . . .y

1
k−1)

)

where yi = y0
i
a y1

i
a y2

i
a y3

i and yj = y0
j
a y1

j for j 6= i.

Set

ui = bi
a bi

a di
a di

vi = bi
a ai

a ci
a di

and for j 6= i

uj = aj
a cj

vj = bj
a dj

Let qe ∈ M(T ) be labeled by (pe, ((u0,v0), . . . , (uk−1,vk−1))). By Proposition 2.1.4, every

i-supporting line of qe is a δ-pair. We assume that C(T ; δ) holds, so the i-pivot line of qe is a δ-pair.

This holds for all e ∈ n+ 1, so 〈c, d〉 ∈ δ as desired.
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