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Future particle accelerator cavities may use dielectric photonic crystals to reduce harmful

wakefields and increase the accelerating electric field (or gradient). Reduced wakefields are pre-

dicted based on the bandgap property of some photonic crystals (i.e. frequency-selective reflec-

tion/transmission). Larger accelerating gradients are predicted based on certain dielectrics’ strong

resistance to electrical breakdown. Using computation, this thesis investigated a hybrid design of a

2D sapphire photonic crystal and traditional copper conducting cavity. The goals were to test the

claim of reduced wakefields and, in general, judge the effectiveness of such structures as practical

accelerating cavities. In the process, we discovered the following: (1) resonant cavities in truncated

photonic crystals may confine radiation weakly compared to conducting cavities (depending on the

level of truncation); however, confinement can be dramatically increased through optimizations

that break lattice symmetry (but retain certain rotational symmetries); (2) photonic crystal cav-

ities do not ideally reduce wakefields; using band structure calculations, we found that wakefields

are increased by flat portions of the frequency dispersion (where the waves have vanishing group

velocities).

A complete comparison was drawn between the proposed photonic crystal cavities and the

copper cavities for the Compact Linear Collider (CLIC); CLIC is one of the candidates for a

future high-energy electron-positron collider that will study in greater detail the physics learned

at the Large Hadron Collider. We found that the photonic crystal cavity, when compared to the

CLIC cavity: (1) can lower maximum surface magnetic fields on conductors (growing evidence

suggests this limits accelerating gradients by inducing electrical breakdown); (2) shows increased

transverse dipole wakefields but decreased longitudinal monopole wakefields; and (3) exhibits lower

accelerating efficiencies (unless a large photonic crystal is used).



iv

We have also developed a new electromagnetics algorithm for simulating dielectric objects

using the finite difference technique. We explicitly tackled the issue of numerical accuracy and

produced an algorithm that converges to exact electromagnetic eigenfrequencies with second-order

error in the size of a grid cell. Although the algorithm is unstable in the time-domain, it remains

useful as an eigensolver.
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Chapter 1

Introduction: particle accelerators for high-energy physics

A particle accelerator accelerates (go figure) and guides charged particles using electromag-

netic fields. In high-energy particle physics research, accelerators collide common particles such as

electrons, positrons, protons, and ions to create heavier uncommon particles. The existence and

properties of these uncommon particles shed light on the underlying laws of nature. The energies

of the colliding particles are so large, they require accelerators tens of kilometers in length (and

billions of dollars in cost). However, the enormity of these machines belies their level of precision;

point-like particles traveling at the speed of light must collide head-on. The following traits are

demanded of any collider: (1) the accelerating electric field must be maximized to minimize the

length and cost of the machine; and (2) accelerated particles must be controlled with exquisite

accuracy to maximize the probability of collisions. The dominant barriers to each goal are (1)

electrical breakdown and (2) wakefields.

The subject of this thesis is a particle-accelerating structure (see Fig. 1.1) that may increase

electric fields and collision probabilities above those offered by more traditional structures. The

structure attempts (1) to increase the breakdown limit by using dielectric materials in place of

conducting materials and (2) to reduce wakefields using the exotic electromagnetic properties of

photonic crystals (PhCs). The remainder of this chapter fills in some details of the above arguments

and concludes with an overview of the findings in this thesis. Enjoy.
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1.1 Discovery and precision

Historically, hadron colliders like the LHC (proton-proton collisions) have been discovery

instruments, uncovering new physics in ever higher-energy regimes. Electron-positron colliders on

the other hand have been primarily precision instruments, built to scrutinize the discoveries of the

hadron machines at slightly lower energies with “cleaner” collisions. This is because electrons and

positrons are fundamental particles whereas hadrons are composite—made of quarks and gluons.

However, it is also possible for discovery to arise from precision. For example, while the top quark

was officially discovered by the Tevatron which collided protons and anti-protons at 1.8 TeV, its

existence was also suggested by measurements in the Large Electron Positron (LEP) collider at

energies of ≈ 100 GeV by examining the perturbative effects of virtual top quarks in common LEP

collision events. In the end, the two techniques complement each other in pinning down the details

of any new physics.

If the Higgs boson exists, the LHC will soon discover it; however, precision measurements of

the Higgs’ properties will be needed to build on the Standard Model. An electron-positron collider

would enable Higgs production mechanisms that are not available to the LHC for such measure-

ments. As a result, a linear e+e− collider would be able to measure directly the couplings between

Standard Model particles and the Higgs, whereas the LHC can make accurate measurements of

coupling ratios. Of course, there are questions beyond the existence of the Higgs, such as whether

each Standard Model particle has a supersymmetric partner. A TeV e+e− collider would provide

tests of this theory [14].

1.2 Linear vs circular

An e+e− collider at TeV energies demands a linear geometry for the following reasons. Accel-

erating charged particles emit radiation. In a circular collider like the LHC, the relativistic protons

constantly undergo centripetal acceleration, inducing what is termed synchrotron radiation. The

total power radiated from a highly-relativistic particle of mass m, energy E, and charge q moving
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CLIC ILC

Energy (TeV) 3 0.5–1

Eacc (MV/m) 100 32

Frequency (GHz) 12 1.3

Length (km) 48 31

Wall-plug Power (MW) 560 300

Table 1.1: Parameters of the two most likely candidates for a new linear e+e− collider.

in a circular path of radius R goes like [37]

P ∝ q2E4

R2m4
. (1.1)

For the same radius and particle energy, an electron loses approximately 1012 times more power to

synchrotron radiation than a proton does. Thus, the circular collider geometry becomes prohibitive

at lower energies for the lighter electrons and positrons.

Because a TeV e+e− collider requires a linear geometry, the maximization of the accelerating

electric field Eacc is a high priority (to reduce the length, and thus cost, of the machine). Su-

perconductors make great accelerating structures because of their low electromagnetic losses, but

the quenching of superconductivity at high surface magnetic fields fundamentally limits the maxi-

mum Eacc. Very pure copper structures can withstand more intense electromagnetic fields, giving

sustainable accelerating electric fields of ≈ 100 MV/m, but exhibit much higher electromagnetic

losses compared to superconducting cavities. For any material, losses and high-Eacc limits also

depend on the frequency of the electromagnetic fields (especially true for electromagnetic losses in

conductors); therefore, along with material type, one of the first choices to be made in accelerator

design is the frequency of the accelerating electromagnetic wave.

The two most likely candidates for a future linear collider are the Compact Linear Collider

(CLIC) and the International Linear Collider (ILC). The CLIC design is based on copper accel-

erating cavities while the ILC uses superconductors. The basic parameters are given in Table

1.1.
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1.3 Luminosity

Oscillating electromagnetic fields accelerate the particles in a collider; therefore, particles are

accelerated in clusters (or bunches). A train of bunches is called a beam. Luminosity is basically the

particle collision rate. Higher luminosity means better statistics and a greater chance of observing

interesting rare collision events. It is defined by

L =
nbN

2frep

A
Hb (1.2)

where N is the number of particles in a bunch, nb is the number of bunches in the beam, frep is

the repetition rate of the machine (beams per second), A is the transverse cross-sectional area of

a bunch, and Hb is called the beam enhancement factor. The rep rate of linear colliders is much

less than that of circular colliders (because circular colliders reuse bunches). However, the bunch

cross-sections in a linear collider can be much smaller since each bunch is used in only a single

collision (denser bunches disrupt each other more during a collision). Therefore, in the next linear

collider, minimization of bunch cross-section is a high priority (this is related to minimization of

the bunch emittance—loosely, the bunch phase-space volume). Minimized cross-sections bring up

the issue of particle control. Denser bunches demand higher precision from the accelerator and,

therefore, lower wakefields.

1.4 Wakefields

Wakefields are the electromagnetic fields created by and left behind a relativistic bunch as it

interacts with various accelerator components along the beam path. Because the particle bunches

are small, electromagnetic pulses are emitted, which consist of many electromagnetic frequencies.

These fields are generally unwanted, since they tend to disrupt (i.e. increase the emittance of) both

the bunch that creates them and any trailing bunches in the beam. The level of the wakefields

behind a bunch are determined largely by the charge of the bunch, misalignments of the bunch,

and the geometry of the accelerating structure (higher bunch charges, larger bunch displacements,

and more dramatic changes in accelerator-component cross-sections lead to higher wakefields).
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The majority of wakefields in a linear accelerator are caused by the beam’s interaction with the

accelerating cavities (mostly because the accelerating cavities are the most numerous component).

Therefore, minimizing wakefields is a major goal of accelerator cavity design.

Wakefields are inevitable; in cavity design, one tries to minimize their excitation (usually

at the expense of accelerating efficiency) and/or damp them quickly. Because superconducting

cavities have such low losses, the high efficiency of acceleration can be somewhat sacrificed for

lower wakefield excitation. Normal conducting structures (that allow higher Eacc) have much

greater losses, and therefore require heavy damping of wakefields. The goal in wakefield damping

is to couple all wakefields out of the accelerating structure while keeping the accelerating fields

strongly confined to the beam path.

1.5 Photonic crystal accelerator cavities

In principle, PhC accelerator cavities made of dielectric materials could increase Eacc and

reduce wakefields compared to more traditional conducting cavity designs. Empirical evidence sug-

gests that dielectrics such as sapphire or silicon could withstand larger surface electromagnetic fields

than conductors; and, PhCs can selectively scatter electromagnetic fields based on their oscillation

frequency. Dielectric PhC cavities can thus confine the accelerating fields (which oscillate at a sin-

gle frequency) efficiently and at a high strength while letting harmful wakefields propagate away.

Additionally, while not as efficient as superconductors, dielectrics may incur lower electromagnetic

losses than normal conductors, potentially increasing beam acceleration efficiency. Such structures

are the topic of this thesis.

1.6 Overview of this thesis

This thesis analyzes a special class of PhC-based accelerating cavity that incorporates tradi-

tional conducting cavity elements. Specifically, a sapphire PhC is used to confine the accelerating

fields in the transverse direction (perpendicular to the beam axis), while normally-conducting plates

confine in the beam direction. The essential structure is displayed in Fig. 1.1. This design shows
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promise as a method of testing the proposed advantages of PhC-based cavities while still being

somewhat reasonable to fabricate.

The first major result of this thesis is the optimization of the cavity shown in Fig. 1.1 to

improve accelerating mode confinement using fewer sapphire elements. We found that by relaxing

the lattice symmetry (but retaining the six-fold rotational symmetry) of a truncated version of

Fig. 1.1, the radiative losses of the accelerating mode could be reduced by two orders of magnitude.

In addition, this optimization reduced wakefields when compared to the lattice-based structure.

Two potential disadvantages accompanied the optimizations: (1) conducting-surface magnetic fields

were increased where the inner rods touch the plate and (2) radiative losses became very sensitive to

rod positions. The optimizations were performed in 2D; simulation in 3D showed that the beam tube

perturbation (absent in 2D) was enough to increase radiation losses significantly. Optimizations in

3D will be required to realize a practical design.

The next major result arises from a comparison between the PhC-based cavities (optimized

and lattice) and the highly-optimized conducting cavities designed for CLIC. In this study, we

sought to form a complete comparison of all relevant accelerator cavity figures of merit: maximum

surface fields, accelerating efficiency, and wakefields. To summarize, we found that:

(1) Accelerating efficiencies are lower in PhC-based cavities than in the CLIC cavity (except

in the lattice structure where the number of layers is large).

(2) Maximum conducting-surface magnetic fields (that likely limit Eacc) are reduced in the

lattice structure but increased in the optimized structures as compared to CLIC.

(3) Transverse wakefields are higher in all PhC-based cavities.

(4) Longitudinal wakefields are lower in all PhC-based cavities.

The increased wakefields in the lattice PhC-based cavity are explained by the presence of low-

group-velocity PhC modes, which provides some suggestions for improvement.

The final chapter includes an investigation into numerical algorithms for the more accurate
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Figure 1.1: The PhC-based accelerating structure of interest to this thesis. The circular plate with
the beam hole is copper while the cylinders are sapphire. A multicell accelerating cavity is formed
by stacking the above structure and capping with a final conducting plate. The particle beam moves
along the z-axis, which is parallel to the rod axes and located at the center of the structure.
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simulation of dielectric materials in the finite-difference method. This work describes the first

implementation of a finite-difference dielectric boundary algorithm to obtain reliable second-order

error in resonant frequencies.



Chapter 2

Introduction to accelerator cavities

This chapter gives some background on the important characteristics of an accelerator cavity.

In the ideal case, these are: unlimited Eacc, zero electromagnetic losses (that is, all input electro-

magnetic energy goes into increasing the beam momentum), and the support of only one mode (the

accelerating mode) that couples strongly to a particle beam. The practical cavity necessarily falls

short in each of these categories; the goal in cavity design is to minimize each of these shortcomings.

We will begin with a description of the simplest of all accelerator cavities, the perfectly-conducting

cylindrical pillbox. Next, we generically discuss high-Eacc limitations, power losses, and wakefields.

The introduction to wakefields will have the most relevance to the results in this thesis. Finally,

the physics of multicell cavities is discussed, so that comparisons with the CLIC accelerator cavities

can be made in later chapters. Throughout this chapter, many figures of merit will be introduced

that help determine the usefulness of a given cavity design; these measures are used throughout

the thesis.

2.1 Pillbox cavity

The cylindrical pillbox is the canonical example of an accelerating cavity, with which most

cavities in modern accelerators share a strong resemblance. Thus, in discussing the figures of merit

that determine the efficacy of a given accelerator cavity, it is useful to provide the corresponding

values for the pillbox cavity as a reference. Just the basic characteristics of the pillbox cavity will

be presented in this section; some examples of important figures of merit using the pillbox geometry
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will be postponed until they are discussed in greater detail in later sections.

Figure 2.1: Pillbox cavities. Cavity radius R, cavity length L, and beam tube radius a.

2.1.1 Resonant modes

A pillbox cavity of radius R and length L is shown in Fig. 2.1. For perfectly-conducting walls,

the resonant modes of the pillbox cavity are described in terms of their polarization and azimuthal,

radial, and longitudinal wavenumbers (integers m, n, and p, respectively). The polarization is

either transverse electric (TE) or transverse magnetic (TM); TE (TM) modes are identified by

a lack of longitudinal electric (magnetic) field component (the z-direction in Fig. 2.1)—Ez = 0

(Bz = 0) for TE (TM) modes. The spatial dependence of pillbox resonant modes is sinusoidal

in the azimuthal and longitudinal directions (wavenumbers m and p, respectively) and goes as a

Bessel-function in the radial direction (radial wavenumber n). In accelerator cavities, the modes of

interest are TM-polarized, since these are the modes that can accelerate (or be excited by) a bunch

traveling parallel to the z-axis. In cylindrical coordinates (ρ, φ, z), a generic TMmnp mode has the
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following spatial dependence [64]

Ez = E0 cos
(pπz

L

)
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where xmn is the nth root of the mth-order Bessel function (Jm(xmn) = 0), J ′
m is the derivative of

the Bessel function with respect to its complete argument, and the resonant frequencies are

ωmnp = c

√

(xmn

R

)2
+

(πp

L

)2
(2.7)

Throughout this thesis, we treat resonant modes with a complex time-varying part. Thus,

for a resonant mode n, the fields are

En(x, t) = En(x)e−iωnt Hn(x, t) = Hn(x)e−iωnt (2.8)

The time-averaged energy of a resonant mode is then

Un =
1

4

∫

[En(x) · D∗(x) + Hn(x) · B∗(x)] d3x. (2.9)

In the case of lossless materials, one obtains [37]

Un =
1

2

∫

ε(x)|En(x)|2 d3x (2.10)

=
1

2

∫

µ(x)|Hn(x)|2 d3x. (2.11)

The above is also a useful approximation when dealing with very low loss materials.

The TM010 mode is the accelerating mode, since, for the proper cavity length, it has the

strongest coupling to a particle bunch traversing the cavity on axis. The length is chosen based on
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the frequency of the TM010 mode; the bunch energy gain is maximized when it spends exactly one

half-period of the TM010 mode oscillation in the cavity. In the case of a highly relativistic bunch

traveling at speed c, the length of the pillbox cavity is thus set to L = πc/ω010 where ω010 is from

Eq. 2.7. The spatial dependence of the TM010 accelerating mode is

Ez,010(ρ, φ, z) = E0J0(k01ρ) (2.12)

Bφ,010(ρ, φ, z) = −E0

c
J1(k01ρ) (2.13)

where k01 = 2.405/R.

2.1.2 Eacc and Surface fields

The accelerating electric field (or accelerating gradient) Eacc is defined as the average on-axis

longitudinal electric field a relativistic particle feels over the length of the cavity

Eacc =
1

L

∫ L

0
Ez(ρ = 0, z, t = z/c) dz. (2.14)

Two important figures of merit for accelerating cavities are the ratios of the maximum cavity

surface fields to the above accelerating gradient; namely, Esurf,max/Eacc and cBsurf,max/Eacc. This

ratio determines the maximum particle energy gain based on the high-field limitations of the cavity

materials. The peak surface electric field identifies regions that are most vulnerable to electrical

breakdown and the peak surface magnetic field identifies regions of intense surface heating. In the

case of the pillbox TM010 mode (where Esurf,max is at ρ = 0),

Esurf,max

Eacc
= L

/∫ L

0
sin

(ω010z

c

)

dz (2.15)

= L

/∫ L

0
sin

(πz

L

)

dz (2.16)

=
π

2
≈ 1.57. (2.17)

Similarly, for the TM010 mode, cBsurf,max/Eacc ≈ 0.91.
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2.1.3 Beam tubes

To grant a particle bunch passage through a cavity, a hole or beam tube must be cut through

each of the endplates (see Fig. 2.1b). The beam tube is most often a short cylindrical waveguide

of radius a which transports the bunch to the next accelerator component. The fields at the beam

tubes differ from those of the closed pillbox; the larger the beam tube radius, the less the mode

resembles its closed pillbox counterpart. The beam tube radius affects acceleration in the following

ways. As a increases, the accelerating gradient Eacc generally diminishes (as measured relative

to other important cavity properties such as power losses to the cavity walls, the energy in the

cavity, or the peak surface fields). This reduces accelerating efficiency and raises surface field to

Eacc ratios. However, to the benefit of beam stability, an increasing a is accompanied by decreasing

wakefields—the fields left behind by a particle bunch traversing the cavity (discussed at length in

Sec. 2.4). This decreases bunch emittance, potentially leading to higher luminosities. The resulting

trade-off makes the beam tube radius a critical parameter in cavity optimization.

2.2 High-Eacc limitations

The walls of an accelerator cavity are subject to tremendous electric and magnetic fields.

At high enough strengths, the fields will melt, ionize, and generally destroy the surface. This

field limit determines the minimum length of linac required to reach a target particle energy;

and since cost is proportional to length, shorter is usually better. A theoretical upper bound

can be provided based simply on the electric field strength binding an outer-shell electron to a

nucleus, ∼ 10 GV/m (or ∼1 Volt per Angstrom) [11]. In practice, the limiting field is much

lower, ∼ 100 MV/m. At these field strengths, materials begin to emit charged particles, the

subsequent motion of which sucks the energy from the cavity fields, limiting their peak values.

The record for peak surface fields is continually increasing, however, as new materials are tested

and well-known materials are manufactured with higher purities and fabricated into structures

with increased precision. Complicated (and mostly empirical) dependencies on electromagnetic
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frequency or pulse length are also exploited to gain higher peak surface fields. In the end, cavity

geometries can also be optimized to reduce the ratio of surface fields to accelerating fields.

In this section, we briefly overview the physical mechanisms (or the current understanding of

them) that contribute to high-gradient limitations in accelerator cavities. We begin with the high-

gradient limit in superconductors (Eacc ≈ 50 MV/m) because it is the lowest and because the reason

for the limit (the quenching of the superconducting state) is the most straightforward (despite the

nontrivial theoretical underpinnings). Next, more general mechanisms are discussed that can apply

to a variety of wall materials; however, the focus is on normal conductors. The CLIC project

anticipates that their copper cavities will withstand surface electric fields of approximately 250

MV/m at GHz frequencies (putting Eacc ≈ 100 MV/m for typical cavity designs) [26]. Finally, the

poorly-known high-gradient limits of dielectrics (still in their infancy as a material for accelerator

cavities) are discussed. Recent studies at GHz frequencies have shown a resistance to breakdown

in dielectric-lined metallic cavities up to surface electric fields of tens of MV/m.

2.2.1 Bc and superconductors

Although superconducting cavities suffer the same barriers to high gradients as normal con-

ducting cavities (detailed in the following sections), there is a theoretical limit specific to supercon-

ducting cavities that tends to occur at lower fields. This limit is the critical surface magnetic field,

beyond which the superconducting state is quenched and the advantages are lost. Niobium is the

material of choice in modern superconducting cavities with a critical temperature of 9.2 Kelvin and

a critical magnetic field of 0.2 Tesla (this is the magnetostatic value—the critical field for oscillating

magnetic fields can be slightly higher) [44, 64]. For the pillbox TM010 mode with maximum surface

magnetic field at ρ = 0.765R, the limiting on-axis electric field is (using Eq. 2.13)

E0,max = cBc/J1(1.841) (2.18)

where Bc is the superconductor’s critical magnetic field. In the case of Niobium, E0,max ≈ 100

MV/m; thus, in principle, the accelerating gradient is limited to Eacc ≈ 64 MV/m. Of course,
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optimizations to the cavity shape can decrease the peak surface magnetic field for a given on-axis

electric field, making the ratio cBsurf,max/Eacc an important figure of merit for superconducting

cavities.

2.2.2 Volume currents

More generally, accelerating gradients in accelerator cavities are limited by anomalous elec-

trical currents within the cavity volume. These stray volume currents often occur as breakdown

events, where a violent release of current from an isolated region of the cavity wall rapidly depletes

the cavity field energy. Other mechanisms are subtler, evidenced by a threshold electromagnetic

input power past which the field levels in the cavity do not increase (an increase in input power

past the threshold proportionately increases the volume current densities). In all cases, the unde-

sirable volume currents result from the emission of electrons/ions from the cavity surface and the

subsequent acceleration of the charges by the cavity fields.

Pushing to higher Eacc requires an understanding of the physical mechanisms that produce

these free charges. Arguably, the most harmful candidate is field emission—the tunneling of elec-

trons out of a material in the presence of strong surface electric fields. Field emission is usually

attributed to the onset of several debilitating volume current effects—most notably, breakdown.

Secondary emission is another charge-producing mechanism, where an accelerated charge that bom-

bards a cavity surface produces more free charges on impact (of course, secondary emission often

requires some other form of surface emission to get started, like field emission). When resonant,

this effect is called multipacting, and leads to the more subtle field limit. Finally, heating of the

walls due to large surface magnetic fields can cause structural damage, which in turn increases

losses and can encourage breakdown at lower cavity fields. In the following subsections, we discuss

these precursors to electric field limits in greater detail.
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2.2.3 Field emission

For large electric fields perpendicular to a material surface, electrons can tunnel out of a

solid. This is called field emission and is often a precursor to (and therefore a likely cause of)

breakdown events in accelerator cavities. It can also limit Eacc through the “dark current” effect,

where field-emitted electrons are caught and accelerated down the beam line, sucking energy from

the accelerating mode [76].

The Fowler-Nordheim theory is an oft-quoted explanation of field emission in conducting

cavities [23]. In short, it treats the electrons in a metal as a Fermi gas, and the metallic surface (in

the presence of a static electric field) as a quantum potential barrier (the barrier lowers and thins

as the surface electric field is increased). The tunneling probability of the electrons through the

barrier is used to calculate an emitted current density; at room temperature, a greatly simplified

form for this current density is

J ∝ f(φ)E2 exp

(

−6.53 × 109φ1.5

E

)

(2.19)

where φ is the work-function of the metal, E is the surface electric field, and f(φ) is a function of

φ omitted for simplicity [76]. The general dependence of the current density on the surface field

in Eq. 2.19 is verified experimentally; however, the magnitudes of J and E often disagree. This

discrepancy is usually accounted for with the simple replacement, E → βE, where β is referred to

as the enhancement factor.

For perfectly smooth surfaces, the maximum electric field anywhere on a cavity surface is

on the order of the accelerating gradient. However, true surfaces may be riddled with protrusions,

which tend to enhance the local electric field. The enhancement factor, β is a quantitative measure

of this effect, and can be loosely defined as the ratio of the electric field on the surface of a

protrusion to the background electric field (i.e. the electric field in the limit of perfectly smooth

surface). Experimentally, the enhancement factor can be estimated using the Fowler-Nordheim

relation with knowledge of the surface-emitted current, macroscopic cavity electric field, and work-

function of the wall material. Breakdown events are most likely to occur at protrusions due to
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the enhanced field emission; thus, an important stage of accelerator cavity construction involves

“smoothing” these bumps out. The most effective way to eliminate troublesome protrusions has

been to condition the cavity using high-power electromagnetic pulses. The highest-β protrusions

are self-selectively ablated by the enhanced local electric fields, leaving (one hopes) a smoother

surface behind. In practice, the point at which electromagnetic conditioning ceases to improve the

maximum sustainable gradient in copper cavities tends to correspond to a β between 40 and 100,

even though scanning electron microscope images show protrusions with β ≈ 10 or lower [76]. For

cavity fields of ≈ 200 MV/m, these experimental values of β put the actual limiting surface field on

a protrusion nearer the theoretical limit. The explanation of these inflated values of β is currently

under investigation in the accelerator community.

2.2.4 Multipacting

Multipacting is a resonant process leading to the buildup of free electrons above a cavity

surface. The effect is produced by an interplay between the oscillating cavity fields and a surface

phenomenon called secondary electron emission, whereby an electron incident on a material surface

produces more free electrons (or secondary electrons) upon impact. When an electron is emitted

from a cavity surface, the cavity fields can accelerate and steer the electron such that it collides

with the surface (possibly at a different location). If the collision produces one or more secondary

electrons, the process can continue, and a cloud of free electrons can quickly form. The buildup of

electron current drains the field energy. However, for the process to be resonant and deleterious,

the path of the cascading multipacting electrons should be somewhat localized. Otherwise, the

cascading electrons can drift to a region where their trajectories do not produce an emitting surface

impact, and multipacting ceases. This instability of the process is usually exploited to eliminate

multipacting in a given cavity; when multipacting is observed and located, the geometry of that

area can be finely adjusted to remove the multipacting resonance. Experimentally, multipacting

is observed when an increase in electromagnetic power input to the cavity is not accompanied by

an increase in cavity field levels (in superconducting cavities, thermal maps of the cavity during
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operation can help pinpoint the multipacting region [64]).

The secondary emission coefficient (material dependent), δ(K), determines the average num-

ber of secondary free electrons produced by an incident electron with kinetic energy, K. The

dependence of the coefficient on incident electron energy for a given material generally behaves like

the curve shown in Fig. 2.2. The shape of the curve (namely that δ(K → 0,∞) → 0) is easily

explained: at low incident energies, the collisions are too weak to produce secondaries; at high

energies, the incident electron is more likely to penetrate deep into the material before losing a

significant amount of its energy in a collision, thus confining scattered electrons to the solid. For

most materials, the curve is above δ = 1 somewhere between incident electron energies of ∼ 100

eV and ∼ 1000 eV [64]. Thus, raising the field levels in an accelerator cavity is a potential defense

against multipacting (of course, this might just relocate the multipacting region to a surface closer

to an electric field node). Unfortunately, δmax can be high for dielectrics like sapphire, which are

of interest to this work.

Figure 2.2: Generic dependence of the secondary emission coefficient (SEC) on impacting particle
kinetic energy. Figure based on Fig. 10.4 of [64].
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2.2.5 Heating

Heating of conducting cavity walls due to finite resistivity is another barrier to high-gradients.

In this case, Eacc is limited by the surface magnetic fields, which rapidly heat the cavity walls by

inducing currents. The rapid (and repetitive in pulsed operation) heating can cause microscopic

structural damage due to thermal stresses. The microscopic damage (in the form of dislocations or

cracking) increases losses by effectively increasing the surface resistance [68, 69]. Regions of intense

heating are also more prone to breakdown as observed in a recent study of a copper photonic

bandgap structure [55]; in that study, it was postulated that intense ohmic heating resulted in

surface protrusions, which then enhanced the local electric field and caused arcing. The results of

Ref. [19] also indicate that peak surface magnetic fields (and their duration) correlate more strongly

with breakdown levels than do peak surface electric fields in copper pillbox cavities.

2.2.6 Strong fields in dielectrics

Dielectrics comprise an alternate diverse class of material currently being considered in the

pursuit of high gradients. They have seen simple use as linings of traditional conducting cavities (to

decrease the field at the conductor) or in more complicated configurations where they are the only

material confining the accelerating mode (e.g. photonic bandgap cavities). Unfortunately, since

the free-electron gas model is inapplicable to insulators, a theory for field emission from dielectrics

is much more complicated and remains an active area of research; to date, speculations on the

high-gradient limits for dielectrics come primarily from experiment.

Some experimental evidence suggests that at higher frequencies (relative to GHz), dielectrics

may be able to support accelerating gradients at the few GV/m level. This is certainly suggested

by the prevalence of dielectric optics over metal mirrors in high-power laser research. Explicit tests

of breakdown that impinge high-power laser pulses on insulators have a long history. Nearly 40

years ago, a maximum breakdown field of ∼ 1 GV/m was established for 10 ps laser pulses at a

wavelength of 10.6 µm incident on alkali-halides such as NaCl, KCl, KF, etc. [7]. More recent laser
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breakdown studies at wavelengths of 800 nm give similar breakdown thresholds at pulse lengths of

∼ 100 ps in SiO2 [21, 75].

At lower frequencies, only a handful of breakdown experiments have been performed using

more accelerator-related designs; therefore, knowledge of breakdown limits in dielectric accelerating

structures at GHz frequencies (of most interest to this thesis) is limited. In the THz frequency

range, breakdown events were recently observed in hollow-core SiO2 cylindrical waveguides where

the fields were excited by a high-energy electron bunch [74]. The study reported wakefields of

∼ 1-10 GV/m before witnessing breakdown events, but did not fully diagnose the pulse shape (100

ps pulse lengths were surmised). A related design (termed a dielectric loaded accelerator or DLA)

was recently used to study dielectric breakdown in the GHz frequency range [66]. In this case,

a klystron delivered ∼ 100 ns pulses of electromagnetic power into a waveguide consisting of an

alumina-lined copper cylinder. Field levels reached ∼ 10 MV/m without breaking down; however,

they were limited by multipacting—nearly half of the input power was absorbed by multipacting

electrons at the highest power level. A later study showed that multipacting could be significantly

reduced by coating the inner surface of the dielectric with a thin layer of TiN [38].

2.2.7 Summary

Currently, the highest sustained Eacc have been demonstrated in copper accelerator cavities

at GHz frequencies. Therefore, this class of cavity underlies the CLIC project. Experiments with

dielectrics have found an even greater resistance to electrical breakdown, but only at THz/optical

frequencies and with short pulses; breakdown limits at GHz frequencies are still uncharacterized

due to multipacting issues. The design explored in this thesis offers another testbed (unique from

those mentioned in Sec. 2.2.6) for dielectric breakdown experiments at GHz frequencies.

2.3 Electromagnetic power losses in accelerator cavities

Power loss is another important consideration in cavity design, for reasons of both feasibility

and economics. Cost obviously rises with power consumption and heat dissipation is power that
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cannot be reclaimed. Also, the heating of accelerator components can seriously degrade their

performance (e.g. by increasing material resistivities, and thus compounding the losses problem).

RF power (usually generated by a klystron) enters an accelerator cavity and begins filling the

TM010 mode with energy. Because the walls of the cavity are lossy, they begin to heat and drain

energy from the TM010 mode. When a particle bunch passes through the cavity, it gains energy

from the TM010 mode, but also loses energy by radiating wakefields. In this section, we define the

accelerator cavity figures of merit (namely, the quality factor and the shunt impedance) relating to

the power lost to the cavity materials. Discussions on the calculation of power losses for different

materials will also be presented along with examples using the pillbox geometry.

2.3.1 Quality factor

The quality factor, Q, is a measure of the lifetime of an electromagnetic mode in a lossy

resonant cavity. It is defined for the nth resonant mode of a cavity by

Qn =
ωnUn

Pn
(2.20)

where ωn is the resonant frequency of the nth mode, Un is the stored energy, and Pn is the power

loss. Since the power loss Pn = −dUn/dt, then Un(t) = Un,0 exp(−ωnt/Qn), so that the quantity,

Qn/2π, is the number of oscillation periods before the energy of that mode in the cavity falls to 1/e

of its original value. A higher Q reduces the input power required to sustain a given electromagnetic

energy in the cavity (for the accelerating mode). The Q-factor is also an important indicator of

troublesome non-TM010 resonant modes (called higher-order modes or HOMs) that contribute to

the wakefields; HOMs with high Qs are likely to cause problems as long-range wakefields (wakefields

that affect later bunches in a bunch train) because of their longevity.
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2.3.2 Shunt impedance

The shunt impedance, Rshunt, for the accelerating mode is a measure of the power required

to produce a given accelerating voltage. It is defined by

Rshunt =
V 2

acc

P
(2.21)

where P is the power lost to the cavity materials and Vacc, the accelerating voltage, is

Vacc ≡
∫ L

0
Ez(ρ = 0, z, t = z/c) dz = EaccL. (2.22)

Obviously, a larger shunt impedance is desirable. The much higher losses in copper cavities (as

opposed to superconducting) demand shape optimizations to maximize the shunt impedance. For

example, increasing the beam tube radius generally reduces the shunt impedance, which explains

why it is usually smaller in normal conducting cavities than in superconducting cavities (also, a

larger beam tube can help suppress wakefields—superconducting cavities can afford the associated

decrease in shunt impedance).

2.3.3 Electromagnetic power loss in conducting walls

For conducting cavities, the Q-factor of the accelerating mode is determined by the ohmic

losses in the walls, which depend on the surface magnetic fields. The differential loss per area at a

conducting surface (for “good” conductors such as copper) can be estimated by

dP

da
=

1

2σδ
|Hs|2 =

Rs

2
|Hs|2 (2.23)

where σ is the conductivity, δ is the skin depth (the depth over which the fields inside the conductor

are appreciable), Hs is the magnetic field at the surface, and Rs = 1/δσ is called the surface

resistance [37, 64]. For good conductors, where the fields do not differ much from the perfectly

conducting case, Hs is usually taken to be the surface field for the perfect conductor. This technique

is used extensively in computer codes, since perfectly conducting boundary conditions are much

easier to simulate. The total ohmic losses for a cavity are then given by the integral of Eq. 2.23
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over the entire cavity surface. By Eq. 2.20, the Q-factor is then

Qn =
ωnUn

Pn
=

µ0ωn

∫

V |H|2 dv

Rs

∫

A |Hs|2 da
(2.24)

where A is the cavity surface and V is the cavity volume. Since the ratio of the integrals scales as

1/ωn, Eq. 2.24 is often written as

Qn =
Gn

Rs
(2.25)

where Gn is the “geometry” factor for mode n (the form of which can be inferred from Eqs. 2.24 and

2.25. As its name indicates, the quantity Gn is independent of the cavity size (that is, a proportional

scaling of the entire cavity). The geometry factor for the TM010 mode in the pillbox is 257 Ω.

Thus, for a surface resistance of 0.028 Ω (copper at 12 GHz), Q010 = 9300. A superconducting

pillbox cavity with a surface resistance of 20 nΩ would have a Q010 of 1.3 × 1010 [64]. Similarly,

integrating Eq. 2.23 using the analytic TM010 surface fields, the shunt impedances for the copper

and superconducting pillboxes are R010 = 1.8 × 106 Ω (copper at 12 GHz) and R010 = 2.5 × 1012

Ω (Rs = 20 nΩ), respectively.

2.3.4 Electromagnetic power loss in dielectrics

Dielectrics also incur losses, quantified by the loss tangent, or imaginary part of the permit-

tivity. If we define an isotropic complex permittivity as ε(x) = εr(x) + iεi(x), then the power lost

to the heating of dielectrics for mode n is calculated from

Pdiel =
1

2
ωn

∫

V
εi(x)|En(x)|2 d3x (2.26)

where V is the cavity volume and εi(x) = 0 outside the dielectric [37]. Using Eq. 2.20, Eq. 2.26,

and the low-loss approximation to the stored energy, Eq. 2.10, the Q-factor due purely to dielectric

heating is

Qdiel ≈
∫

V εr(x)|En(x)|2 d3x
∫

V εi(x)|En(x)|2 d3x
(2.27)

≈ 1

tan δ

Un

Un,diel
(2.28)
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Temperature (K) 300 77 4.2

tan(δ)|| 4.8 × 10−6 2.7 × 10−8 5.0 × 10−9

tan(δ)⊥ 9.1 × 10−6 5.9 × 10−8 5.0 × 10−9

Table 2.1: Loss tangents of single-crystal sapphire for different temperatures near 10 GHz resonant
frequency. Subscripts (||) and (⊥) refer to responses in the direction of the c-axis of the crystal and
transverse to the c-axis, respectively [48].

where Un,diel is the energy in the dielectric volume and tan δ ≡ εi/εr is called the loss tangent, the

inverse of which is seen to be a lower limit on the Qdiel of the cavity (if the dielectric completely

fills the cavity or if the electric fields for mode n are confined to the dielectric volume, then

Qn → 1/ tan(δ)). An example of a very low-loss dielectric is sapphire with loss tangents near

10−5 for GHz frequencies at room temperature—decreasing with temperature (see Table 2.1). In

principle, if a TM010 mode can be confined with sapphire as efficiently as it can be confined with

copper, Q-factors and shunt impedances 100 times larger are feasible.

2.3.5 Section summary

Wall losses in superconducting cavities are miniscule; thus, the acceleration efficiencies (shunt

impedances) are enormous. Unfortunately, the critical magnetic field enforces a strict limit on the

maximum accelerating gradient, and thus the length of a superconducting accelerator. Low-loss

dielectrics like sapphire may be the next best bet, since their losses can be orders of magnitude

lower than those of conductors and their Eacc-limit could be larger (especially under the right

conditions—high frequency, short electromagnetic pulses). Confining radiation with conductors,

however, is much easier than confining radition solely with dielectrics. Photonic crystals may

alleviate this problem and are discussed in great detail in the next chapter.

2.4 High-order modes and wakefields

The fields due to a constant-velocity, highly relativistic particle bunch in vacuum are strongly

concentrated in the plane perpendicular to the direction of motion (see Fig. 2.3a) [37]. For a bunch

moving parallel to the axis of a cylindrical waveguide, the fields are modified slightly to satisfy the
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boundary conditions (Fig. 2.3b). When the waveguide is perfectly-conducting, these fields travel

self-consistently with the bunch; i.e., there is no scattering of the fields and the momentum of the

bunch remains constant [84]. Thus, a uniform perfectly-conducting waveguide empty of electro-

magnetic fields remains empty after the passage of a bunch. However, when a bunch encounters a

change in cross-section of the waveguide, the fields are scattered, and the otherwise empty waveg-

uide fills with radiation behind the bunch (finite wall conductivity can also induce radiation from

the bunch). These scattered fields are called the wakefield of the bunch and are of great concern in

accelerator design since they tend to disrupt both the exciting bunch itself and any trailing bunches.

The wakefield thus constrains important accelerator parameters such as inter-bunch spacing and

bunch emittance (ultimately limiting luminosity).

Figure 2.3: The electromagnetic fields due to a relativistic bunch of positive charges in (a) vacuum
and (b) a conducting cylindrical waveguide.

An accelerator cavity is a dramatic change in waveguide cross-section for a bunch and thus

induces significant wakefields. Specifically, at the cavity’s beam entry and exit ports, a bunch

generates pulses of radiation that continue to resonate in the cavity after its passage. These pulses

contain a broad selection of frequencies. The higher-frequency fields quickly exit the cavity through

side-couplers or down the beam tubes but can still disturb the tail of the exciting bunch. Lower
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frequencies corresponding to trapped cavity eigenmodes can resonate for many oscillations after

the bunch has exited, posing a potential problem for trailing bunches. These modes are often

called high-order modes and are specifically and sometimes individually targeted for suppression in

accelerator cavities.

Wakefields are categorized by their region of influence relative to the exciting bunch (short-

range vs. long-range) and by their effect on witness charges (longitudinal vs. transverse). A bunch of

finite length can interact with its own wakefield (the tail of the bunch feels the wakefield of the head

of the bunch); this region is referred to as the short-range wakefield. Minimizing the short-range

wakefield improves single-bunch stability and can thus lead to higher luminosities. The long-range

wakefield describes the region of trailing bunches, which is usually several cavity lengths behind

the exciting bunch. Lowering the long-range wakefield can increase beam current and efficiency

by reducing the inter-bunch spacing. For each region, the wakefield is further classified by the

direction of the force it imparts on a trailing charge. Very simply, the longitudinal wakefield imparts

momentum along the beam axis (z-direction) whereas the transverse wakefield acts perpendicularly.

The integrated effect of the wakefield on a trailing particle is called the wake potential and is related

to the total change in momentum of the charge due to the wakefield. In this section, we detail

the above concepts and review some common methods of calculating the wakefields for a given

structure. Since long-range wakefield suppression is the main subject of this thesis, many of the

ideas presented here will be used throughout.

2.4.1 Longitudinal and transverse wakefields

The longitudinal wake potential at transverse position (r, φ) due to an ultrarelativistic excit-

ing point charge (v = cẑ) at transverse position (r′, φ′), is defined as

Wz(r, φ, s; r′, φ′) =
1

q′

∫

Ez

(

r, φ, z′, t = (z′ + s)/c; r′, φ′
)

dz′ (2.29)

where z′ is the location of the exciting bunch, s > 0 is the distance behind the exciting bunch at

which the wakefield is sampled, and q′ is the charge of the exciting bunch (Wz = 0 for s < 0 by
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causality). The change in momentum of a trailing particle with charge q at relative position s is

then simply

∆pz(r, φ, s; r′, φ′) =
qq′

c
Wz(r, φ, s; r′, φ′). (2.30)

High-frequency (compared to TM010) longitudinal wakefields can cause energy spread in particle

bunches, which as mentioned in the introduction, lowers luminosity.

Wakefields generated by off-axis exciting charges can give a transverse kick to trailing off-axis

particle bunches, thus increasing the emittance of the bunch and likely leading to stronger transverse

kicks in subsequent accelerator components. The integrated transverse momentum change of an

off-axis bunch is directly proportional to the transverse wake potential (a la Eq. 2.30) which is

defined as

W⊥(r, φ, s; r′, φ′) =
1

q

∫

(E⊥ + cẑ × B)
(

r, φ, z′, t = (z′ + s)/c; r′, φ′
)

dz′ (2.31)

where ⊥ indicates restriction to the transverse plane. Of course, Eq. 2.31 assumes that the trans-

verse position of the trailing bunch (the bunch that feels the wakefield) remains constant as the

bunch traverses the cavity; this is usually a good approximation near the axis for high-quality

bunches. Transverse wakefields are almost never calculated directly. Instead, the Panofsky-Wenzel

Theorem is used, which quite generally states:

∇⊥Wz = ∂sW⊥ (2.32)

where the derivatives act on the unprimed variables.

Because of the cylindrical symmetry of most accelerator cavities, wakefields are often de-

composed into azimuthal harmonics (e.g. monopole, dipole, and quadrupole modes with azimuthal

wavenumbers m = 0, 1, and 2, respectively). Monopole modes (which have a nonzero Ez along

the cavity axis) dominate the wakefield spectrum since a high-quality beam is by definition tightly

confined to the cavity axis and is highly cylindrically symmetric. Modes with m > 0 (which have

an Ez node on axis) can be weakly excited by beam asymmetries or off-axis trajectories. In the

theoretical case of a cylindrically symmetric cavity with infinitely long beam tubes, the radial de-
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pendence of the mth-order wake potential is separable and simply rm (for r less than the radius of

the beam tubes) [59], allowing for the following general form of the wakefields:

Wz,m(r, r′, φ, s) = ∂sXm(s)rmr′
m

cos mφ (2.33)

W⊥,m(r, r′, φ, s) = Xm(s)rm−1r′
m

(

cos mφ r̂ − sinmφ φ̂
)

(2.34)

where φ′ has been set to zero in the above (since only the difference in azimuth matters for cylindrical

symmetry) and m > 0 for Eq. 2.34. The transverse wake potential is zero when m = 0; only modes

with m > 0 mediate transverse kicks in this case [59]. The longitudinal and transverse wake

potentials are dominated by monopole and dipole wakefields, respectively. The expressions for

these contributions are particularly simple:

Wz,0 = ∂sX0(s) (2.35)

W⊥,1 = r′X1(s). (2.36)

Notice that both expressions are uniform throughout the beam tube region and that the dipole

transverse wake potential is in the direction of the drive beam transverse offset.

Because of the scaling in Eqs. 2.33 and 2.34, wake potentials are often expressed in r-

normalized units (for example, the strength of the dipole transverse wake potential is usually

expressed in units of V/pC/mm). The fact that X(s) is shared between longitudinal and transverse

wakefields is a direct result of the Panofsky-Wenzel Theorem (Eq. 2.32). The forms of Eqs. 2.33 and

2.34 can be good approximations of the wake potentials in cavities that slightly break cylindrical

symmetry (especially for wake potentials near the axis) and simplify wake potential simulations

since the wakefields need only be sampled at a single radius.

2.4.2 Short- and long-range wakefields

Short-range refers to the wakefields within the exciting bunch (i.e. for s . σz where σz

is the exciting bunch length). This section of the wake potential is characterized by a broad

frequency spectrum, since, in this short time, high frequencies have not yet been damped or escaped
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down beam tubes or side-couplers. The time-domain picture is more straightforward—short-range

wakefields are essentially the “reflection” of the bunch field pulse off the beam tube port. This

implies that the short-range wakefields depend largely on the beam tube port geometry. In fact, for

a beam tube aperture radius a, the amplitude of the short-range wake potential is approximately

proportional to 1/a2 for monopole modes and 1/a3 for dipole modes [84, 64]. Enlarging the beam

tube radius is therefore one of the first steps taken toward reducing short-range wakefields. However,

there is a trade-off, since larger beam tubes tend to decrease the shunt impedance of the accelerating

mode, thereby reducing acceleration efficiency.

Long-range refers to the wakefields that act on trailing bunches (i.e. where s > c/ω010). In

contrast to short-range, long-range wakefields are a narrow-band effect; that is, they are essentially

the collective oscillation of all cavity-bound modes (i.e. modes with frequencies below the cutoff

frequencies of the beam tubes and any side-couplers) that have been excited by the bunch. Fre-

quencies above cutoff disperse quickly (within a few fundamental periods) and can be considered

negligible after several fundamental oscillations. The amplitude at which a cavity mode is excited

by a bunch depends on 3 properties of the bunch/cavity system: 1) the frequency content of the

bunch, 2) the mode field pattern (TM-like modes are excited much more strongly than TE-like

modes, and monopole TM modes more strongly than higher-order multipole TM modes), and 3)

the transverse position of the bunch. The details of these ingredients are discussed in the following

section. Once excited, each mode in the long-range wakefield resonates sinusoidally and decays

according to its Q-factor. Therefore, to reduce long-range wakefields given a bunch shape and

maximum transverse bunch offset, the goal in cavity design is first to minimize the excitation levels

of HOMs and second to damp quickly those HOMs that cannot be avoided.

For a closed conducting or superconducting cavity, the losses due to wall heating are insuffi-

cient for the damping of HOMs. Therefore, couplers must be included in the cavity design. HOM

couplers are basically waveguides (terminated by electromagnetic absorbers) built in to the cavity

walls or attached to the beam tubes just off the ends of cavity. They are designed to couple strongly

to unwanted HOMs while minimally perturbing the fundamental accelerating mode. This effect is
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usually achieved by selecting the cutoff frequency of the coupler just above the fundamental and

placing the coupler in a position where the ratio of troublesome HOM to fundamental field strength

is highest. Couplers can introduce problems due to the increased complexity of the cavity geome-

try. For example, joints that arise from the construction of HOM couplers can have high-curvature

features that may enhance electromagnetic fields and promote electrical breakdown.

2.4.3 Fundamental theorem of beam loading

The fundamental theorem of beam loading gives the energy left behind in (or the amplitude

of) a given cavity mode by an exciting bunch. A well-known trick simplifies the derivation by

considering two identical charges passing through the same resonant cavity. In short, the wakefield

of the first charge is cancelled by the wakefield of the second charge; conservation of energy gives

the energy transferred between charges, and therefore the energy left in the wakefield by the first

charge. The details of the argument follow.

Imagine a lossless cavity empty of electromagnetic energy and two identical point charges

each with charge q and energy Uq (both charges are highly relativistic, so that their speeds are

unchanged by cavity interaction). Suppose that the first charge enters the cavity at time t = 0 and

induces an on-axis voltage of Vn,1(t) = Vn,qe
−iωnt in the nth cavity mode (Vn,q can be complex).

Since electromagnetic power loss is given by

∫

E · J d3x, (2.37)

the energy loss of the first charge is expected to be proportional to its charge and the self-induced

voltage, i.e.

∆Uq,1 = −f |q||Vn,q| (2.38)

where f is the unknown fraction of the self-induced voltage felt by the first bunch.

We choose the second charge to traverse the cavity exactly one half-period (π/ωn) after the

first charge, such that it sees an accelerating voltage Vn,1(π/ωn) = −Vn,q due to the first charge.
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By superposition with its own induced voltage, the energy gain of the second charge is

∆Uq,2 = (1 − f)|q||Vn,q|. (2.39)

The voltage induced by the second charge is Vn,2(t) = Vn,qe
−iωn(t−π/ωn) = −Vn,1(t). There-

fore, the total voltage after the passage of the second charge is Vn,1(t) + Vn,2(t) = 0 and the

nth cavity mode is annihilated. By conservation of energy, ∆Uq,1 + ∆Uq,2 = 0, and we find that

f = 1/2. Thus, the fundamental theorem of beam loading says that an exciting particle bunch feels

a decelerating voltage at 1/2 the magnitude of the voltage it induces in the cavity.

Regardless of amplitude, the energy of the cavity mode is related to the square of the voltage

by a constant, αn, which is determined purely by the mode pattern (i.e. Un = αn|Vn|2). If a charge

leaves energy q|Vn,q|/2 in mode n, then the voltage magnitude can be expressed as

|Vn,q| =
1

2αn
q = 2knq (2.40)

where we have defined the mode loss factor kn given explicitly by

kn =
1

4

|Vn|2
Un

. (2.41)

The mode energy left by the charge is then simply

Un,q = knq2. (2.42)

Out of convenience, the loss factor is often expressed in terms of the shunt impedance and the

quality factor of mode n using the relation

kn =
ωnRn,shunt

4Qn
. (2.43)

Given Eq. 2.40, the total wake potential can be expressed as a sum on modes. Including the

phase and losses for each mode, the on-axis longitudinal wake potential due to an ultrarelativistic

on-axis point charge (called the impulse wake potential) can be written

Ŵz(s) = 2
∑

n

kne−αns/c cos
ωns

c
(2.44)
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where αn = ωn/2Qn. For a line charge distribution rather than a point charge, Eq. 2.44 can be

used as a kernel, or Green’s function, to find the total wake potential via

Wz(s) =

∫ s
−∞ Ŵ (s − s′)λ(s′) ds′

∫ ∞
−∞ λ(s′) ds′

(2.45)

where λ is the line charge density.

As an example, consider an on-axis line Gaussian bunch, i.e.

λ(s) =
q√
πσz

e−s2/2σ2
z (2.46)

Combining Eqs. 2.44, 2.45, and 2.46 and integrating to a value of s that is several σz behind the

bunch (so that the upper integration limit can be approximated as ∞), we get

Wz(s) = 2
∑

n

kne−(ω2
n−α2

n)σ2
z/2c2e−αns/c cos

ωns

c
(2.47)

=
∑

n

Ŵn,z(s)e
−(ω2

n−α2
n)σ2

z/2c2 (2.48)

which shows how the contribution to the wake potential falls off rapidly with increasing frequency

above the bunch “cutoff” frequency, ∼ c/σz (the damping factor αn is usually only a fraction of

ωn). The contribution increases with damping because the spectral response of a mode widens as

damping increases, allowing more frequency components of the bunch to help excite the mode.

Under certain geometric circumstances, Eq. 2.44 can be generalized to off-axis transverse

excitation and witness positions [84]. In these cases, the expressions for the longitudinal and

transverse impulse wake potentials become

Ŵz(r
′, r, s) = 2Re

∑

n

kn(r′, r)e(iωn−αn)s/c (2.49)

Ŵ⊥(r′, r, s) = 2Re
∑

n

κn(r′, r)e(iωn−αn)s/c (2.50)

where

kn(r′, r) =
V ∗

n (r′)Vn(r)

4Un
(2.51)

κn(r′, r) =
cV ∗

n (r′)∇⊥Vn(r)

4(iωn − αn)Un
(2.52)
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and the voltages in the above are complex, i.e.

Vn(r) =

∫

En,z(r, z)e−iωnz/cdz. (2.53)

2.4.4 Wakefield calculations

For all but the simplest cavity geometries, the wakefields must be determined through com-

putation. The two most common approaches are: 1) the Condon method (a frequency domain

method) and 2) time-domain simulation. Any computational approach is of course limited by the

resolution of the simulation, which in the case of wakefield calculations places a lower bound on

the bunch length that can be approximated. The cutoff frequency of the bunch must be selected

below those electromagnetic frequencies (i.e. wavelengths) that cannot be simulated or are poorly

approximated on the computational grid. Fortunately, for long-range wakefields (which are of most

interest in this thesis), higher frequencies are less of a concern.

In the Condon method, the wake potential is pieced together using the sum-on-modes ap-

proach as written in Eqs. 2.49 and 2.50. Modes are found via an electromagnetic eigensolver code,

which finds eigenmodes and eigenfrequencies of the electromagnetic wave equation

∇× (ε−1, µ−1)∇× (H,E) =
ω2

c2
(µH, εE). (2.54)

An advantage of the Condon method is that, once a resonant mode is found, the impulse wake

potential for that single mode can be easily calculated at arbitrary transverse drive and witness

offsets. The impulse wake potential can then be used to determine the mode contribution to a

wake for an arbitrary bunch profile. A disadvantage is that the number of modes required to

approximate the full wakefield spectrum grows quickly with frequency; in 3D resonant cavities,

the electromagnetic mode density is proportional to ω2. This presents a significant challenge to

numerical eigensolvers, which must store each mode in memory for the duration of the calculation.

However, when most HOMs are effectively damped by the structure, the first few decades of modes

can well-approximate the long-range wake.
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Time-domain simulations are commonly used to determine wakefields (especially short-range

wakefields), since they intrinsically treat the cumulative effect of all cavity modes. In a time-

domain wakefield simulation (see Fig. 2.4), a drive bunch is injected into the cavity and followed by

regularly-spaced extremely low-charge test particles (test particles retain the charge-to-mass ratio

of the particles of interest—electrons). Low charge ensures that the test particles do not create

wakefields of their own. The net momentum change of each test particle gives the wake potential as

a function of trailing distance, s. In general, time-domain simulations are specific to a single bunch

profile and transverse offset (however, for cylindrically symmetric systems, a single simulation can

provide the wake potentials at arbitrary transverse offsets for identical bunch profiles based on the

form of Eqs. 2.33 and 2.34).

How should the simulation resolution be chosen for a given driving bunch profile? The answer

depends mostly on the bunch cutoff frequency. In the standard finite-difference method, frequencies

are approximated with second-order error in the grid cell size. Thus, to second order, the simulation

frequency of mode n, ω̃n, is

ω̃n ≈ ωn

(

1 + A
∆z2

λ2
n

)

(2.55)

where ωn is the true frequency, λn = 2πc/ωn, and A is of order unity (in fact, let A = 1 for our

purposes). One simple choice of resolution arises from a desired accuracy for the highest frequency

simulated. For a Gaussian bunch of half-width σz, ∆z is set to

∆z ≈ σz

√
ǫ (2.56)

where σz = λcutoff and ǫ = (ωcutoff − ω0,cutoff)/ω0,cutoff is the desired relative error at the cutoff

frequency of the bunch (c.f. Eq. 2.48).

A more careful resolution is chosen by considering not only the error in frequency, but how

that error affects the accuracy of any point along the wake potential. For a cavity of length L

and a maximum wake potential position smax, the time of interest T that the cavity rings with
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Figure 2.4: A time-domain wakefield simulation. Excitation bunch (in red) is at transverse
position r′. Test particles with the electron charge to mass ratio but with greatly reduced absolute
charge trail the excitation bunch. The test particles are arranged in rings about the cavity axis in
order to extract the azimuthal multipole contributions to the wake potential.
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electromagnetic waves is T = (L + smax)/c. Thus, phase error for frequency ω after time T is

∆φ = (ω − ω0)T (2.57)

≈ 2π(L + smax)∆z2

λ3
0

. (2.58)

To simulate the wake potential accurately up to smax, the phase error should be small for all

frequencies (i.e. ∆φ ≪ 2π for wavelengths λ0 ≤ σz). As a very rough upper bound, one can enforce

∆φ ≤ 2π for σz ≤ λ0; thus, from Eq. 2.58

∆z ≤
√

σ3
z

L + smax
. (2.59)

The above result ensures that the phase of the wake potential is correct out to smax (note that

Ref. [9] does not include smax in their recommendation, only L). This accuracy is essential for the

analysis of accelerator cavities that rely on detuning to quell wakefields (discussed in the upcoming

section on multicell cavities). However, Eq. 2.56 should suffice for determining the damping of

higher-order modes.

Figure 2.5 shows a comparison between simulated and analytic wake potentials in a closed

pillbox cavity [80]. The wake potentials were driven by a Gaussian bunch. The analytic wake

potentials were calculated by the Condon method; i.e. for each pillbox mode, the impulse wake

potential was convoluted with the Gaussian bunch profile via Eq. 2.45. For the short-range wake

(s < 8.5σz), the sum was truncated at ω ∼ 300c/σz and for the long-range wake, at ω ∼ 10c/σz .

The upper plots show that for Eq. 2.59 treated as an equality with smax = 0, the phase error grows

to near unity by the end of the calculation (here L = 15mm and smax = 250mm, the sum of which

represents ≈7 TM010 oscillations). Doubling the resolution (lower plots) gets closer to the strict

enforcement of Eq. 2.59 and shows much improvement in phase error.

2.4.5 HOM/Wakefield mitigation strategies: waveguide damping

In general, two approaches to eliminating HOMs/wakefields arise in accelerator cavity design:

damping and detuning. The first is straightforward; couple all HOMs out of the structure and into
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Figure 2.5: Analytic (green) and simulated (blue circles) wake potentials and their difference
(magenta) for a closed pillbox cavity of dimensions R = 11.5mm and L = 15.0mm due to a bunch
of length σz = 2L/25 = 1.2mm at a radial offset of 0.7mm. Subfigures: the monopole and dipole
wake potentials are shown in the left- and right-hand columns, respectively (dipole wake potentials
are divided by the test particle radius); the upper and lower plots show simulations at ∆z = 0.33mm
(the value suggested by Eq. 2.59) and ∆z = 0.17mm, respectively.
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absorbers. In the recent CLIC cavity designs, wakefields are strongly damped by waveguides which

are coupled directly to the radial cavity walls (see Fig. 2.6). Each waveguide is designed such that its

cutoff frequency lies between the accelerating mode frequency and the first dipole HOM frequency.

Wakefields in the CLIC cavities will be shown in Chapter 4 where comparisons are drawn with the

photonic-crystal-based cavities designed in this thesis. Detuning is the canceling of the effect of one

HOM with another (by destructive interference), and is usually an option restricted to multicell

cavities. Detuning can lead to dramatic decreases in the wake potential close behind the exciting

bunch; however, the recoherence of the wake at larger s can be a problem unless damping is also

employed. Also, detuning is most effective when the wake potential is dominated by only a few

HOMs, which is generally not the case. Very recent redesigns of the CLIC cavities are attempting

to strike an optimal balance between damping and detuning [43].

Since comparisons with the CLIC cavity will eventually be drawn, we focus on the characteris-

tics of waveguide damping (in fact, the concepts presented here will also aid in discussing wakefields

within PhC-based cavities). Consider a rectangular waveguide with its axis in the x-direction (per-

pendicular to the beam axis) and side lengths Ly and Lz (we choose this unconventional coordinate

system because the beam axis has already been assigned to the z-direction—c.f. Fig. 2.6). Just as

in the pillbox resonant cavity, waveguide modes fall into the TE/TM classification; in the coupled

cavity/waveguide system of Fig. 2.6, cavity TM modes couple strongly to waveguide TE modes

(more specifically, to those TE waveguide modes with dominant Ez component).

The frequencies of the TE waveguide modes (i.e. Ex = 0) are given by

ωmn(kx) = c

√

k2
x +

π2m2

Ly
+

π2n2

Lz
(2.60)

where kx is the wavenumber along the waveguide axis (all modes are proportional to eikxx) and

m = 0, 1, 2, . . . and n = 1, 2, . . . (or vice versa) [37]. The waveguide mode of most interest is the

TE10 mode with Ez uniform in the z-direction; this is the waveguide mode that couples strongest

to the cavity TM dipole mode, which is the most troublesome HOM in the transverse wakefield.

TE-mode cutoff frequencies are given by ωmn(kx → 0). For each mn pair, the associated 2D
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Figure 2.6: Half (in the z-direction) of an accelerating cell from the CLIC design [27]. The four
radial waveguides, which are terminated by electromagnetic absorbers, strongly damp HOMs; the
cutoff frequency of each waveguide is just above the accelerating mode frequency.
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field pattern (in the y-z plane) cannot propagate in the waveguide below this frequency. The lowest

cutoff frequency in the rectangular waveguide is the TE10 cutoff frequency, given by ω10,cutoff =

πc/Ly. No propagating modes exist in the waveguide below this frequency. In the CLIC cavity,

Ly is chosen such that the accelerating mode remains confined to the cavity (because its frequency

is below ω10,cutoff) while maximizing coupling to the lowest dipole mode. For the cavity tested

in Chapter 4, Ly = 11mm, giving f10,cutoff = 13.6 GHz. Without damping waveguides, the TM

dipole resonant frequency for an average CLIC cell is approximately 21 GHz, placing it well above

f10,cutoff ; therefore, the added waveguides damp this mode effectively. The accelerating mode has

a frequency of 12 GHz which is less than f10,cutoff , meaning it must remain confined to the center

of the cavity (because it cannot propagate within the waveguides).

Waveguide damping was investigated theoretically using a simple circuit model in Refs. [47,

52] (basically an LC resonator circuit coupled to a transmission line). The relevant parameters

in the model are the undamped resonant frequency ω0 (e.g. the undamped TM cavity dipole fre-

quency) and the waveguide cutoff frequency ωc (e.g. ω10,cutoff for the rectangular waveguide). The

response of the model to a delta-function voltage pulse is shown in Fig. 2.7 along with the response

of an undamped resonator and a uniformly damped resonator (e.g. an RLC circuit); the responses

in Fig. 2.7 can be likened to the impulse wake potential of a given mode in a true cavity-waveguide

system. The shape of the resonance in Fig. 2.7a is intuitively expected; below cutoff, the waveguide

provides no damping, thus the resonance matches the undamped resonance. Above cutoff, the

waveguide provides damping which increases in effectiveness as the drive frequency is increased.

Just above cutoff, the damping is ineffective; this is because the waveguide modes at these frequen-

cies have vanishing group velocities, and thus slowly transport energy down the waveguide, away

from the cavity. As the gap between ωc and ω0 is widened, damping improves. Figure 2.7b shows

the amplitude of the time-domain signal (or wake potential); the lingering oscillations are due to

the resonance peak at cutoff. This characteristic tail is consistently observed in the wakefield results

of this thesis.
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|Ṽ(
ω
)|/

V
0

Undamped
Uniform damping
Waveguide damping

(a)

0 50 100 150 200
ω0 t/2π

10-14
10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

V
(t
)/
V
0

Undamped
Uniform damping
Waveguide damping

(b)

Figure 2.7: The simplified (a) Fourier transform and (b) amplitude of the impulse wake potential
for a mode with different damping mechanisms (from the circuit models described in the text).
The vertical dashed line in (a) shows the location of the cutoff frequency, ωc/ω0, below which the
waveguide does not provide any damping. The tail of the time-domain waveguide-damped curve in
(b) is given by t−3/2 decay. The Q of the uniformly damped oscillator was chosen to match the
initial exponential decay of the waveguide-damped system in (b).
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2.4.6 Summary

Wakefields should always be minimized in accelerator cavity design since smaller wakefields

increase luminosity. Wakefields are reduced by selectively damping HOMs and/or using interference

of HOMs to lower their effect at target distances behind a bunch.

2.5 Multicell cavities

In linacs, accelerating cavities like the pillbox discussed above are chained together into

multicell structures (or multicell cavities) (see Fig. 2.8). This increases the average acceleration

per length of the structure as well as reduces the number of input/output coupling ports required.

In multicell cavities, each pillbox-like cell is connected to the next by a very short beam tube,

usually termed an iris. The size of the iris determines how strongly the individual cells interact or

couple; the stronger the coupling, the less each acts like an isolated pillbox. As the number of cells

increases, the terminology used in the study of electromagnetic waveguides becomes more relevant.

In fact, another way to think of multicell cavities starts with the cylindrical waveguide. Since all

traveling wave modes of a cylindrical waveguide have a phase velocity greater than c, a beam would

continually slip between accelerating and decelerating phases of each wave and would therefore gain

no net energy. To slow a cylindrical waveguide mode, one can introduce periodically-spaced metallic

disks with holes bored through their centers (irises) [77].

This section reviews some of the theory of multicell accelerator cavities. First, we discuss

the periodic single cell (i.e. infinite chain of identical cells) which introduces important concepts

such as Bloch eigenmodes and particle synchronicity. Then, we review some properties of more

general multicell cavities that are allowed to change their cell-to-cell geometries. Figures of merit

for multicell cavities will be introduced.
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Figure 2.8: Generic multicell accelerating cavities; (a) traveling-wave cavity and (b) standing-wave
cavity. (Figure based on Ref. [83] Fig. 5.9).
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2.5.1 Modes in a periodic single cell

In the simplest case, a multicell cavity consists of an infinite chain of identical cells. This case

is simple because discrete translational symmetry reduces the analysis of the entire structure to a

single cell. For a periodic single cell of length L, the electromagnetic eigenmodes take the following

form by the Bloch-Floquet theorem,

En(k,x, t) = En(k, r, z)ei(kz−ωn(k)t) (2.61)

where −π/L < k < π/L is a continuous parameter related to (but not equal to) the wavenumber

in the z direction, n is called the band index, and En(k, r, z) is a complex function that is periodic

in z, i.e.

En(k, r, z + L) = En(k, r, z). (2.62)

(A more complete treatment of Bloch theory is presented in Section 3.1.2 in which photonic crystals

are introduced.)

The parameter k is rarely used in accelerator literature; it is more common to speak of the

phase advance (per cell), which is simply

φ = kL (2.63)

and runs from −π to π (since accelerating cells are usually mirror symmetric in z, φ is further

restricted to [0, π] to eliminate redundancies). The name “phase advance per cell” is evident given

that

E(φ, r, z = L, t) = eiφE(φ, r, z = 0, t). (2.64)

We will henceforth prefer φ in place of k.

The dispersion of these eigenmodes is described by ω(φ). The phase velocity is vph = ω(φ)L/φ

and the group velocity is

vg(φ) = L
∂ω(φ)

∂φ
. (2.65)

For typical cavity cells of interest in this work (e.g. CLIC cells), the group velocities are low:

vg/c ∼ 1 % (that is, for the accelerating mode); this is an indication of weak intercell coupling. In
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this case, the field pattern in any given cell is similar for all possible phase advances.

For a finite chain of identical cells (with closed end cells), the standing-wave solutions resemble

the linear combinations of forward- and backward-traveling periodic modes. Roughly, they can be

described by an amplitude (of a fixed field pattern; e.g. TM010-like for the accelerating mode) in

each cell Ap,q where p is the mode number (applying to a particular phase advance), and q is the

cell number. The modes then take the form

Ap,q ∼ cos

(

pqπ

N − 1

)

(2.66)

where 0 ≤ p, q ≤ N [77].

2.5.2 Voltage gain in a periodic cell

Before detailing eigenmodes in periodic structures any further, a general analysis of the

interaction between a relativistic particle and an eigenmode of a periodic cell can be performed

based on the general Bloch solutions. The results (which follow) show that, on average, a relativistic

particle interacts with only those modes that have a phase velocity equal to the speed of light. This

seems intuitive, since, given enough time, any other phase velocity would cause a relativistic particle

to experience both accelerating and decelerating phases of the wave.

In the context of accelerators, it can be useful to Fourier-expand the periodic part in Eq. 2.61,

giving

En(φ,x, t) =

∞
∑

l=−∞

En,l(φ, r)ei[2πlz/L+φz/L−ωn(φ)t]. (2.67)

The field associated with each index l is called a space harmonic. This construction is useful because

speed-of-light particles tend to interact with only one space harmonic, as we now demonstrate.

The voltage gain of a speed-of-light charged particle interacting with a Bloch eigenmode

(Eq. 2.61) at a transverse position r is

Vn(φ, r) =

∫ ∞

−∞
En,z (φ,x, t = z/c) dz. (2.68)

Recall that the above is a complex quantity, where only the real part is physical; the phase position

of the particle is crucial, i.e., the maximum voltage gain occurs when ReVn(φ, r) = |Vn(φ, r)|. Using
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the space harmonic decomposition of Eq. 2.67 in the above

Vn(φ, r) =
∞

∑

l=−∞

En,l,z(φ, r)

∫ ∞

−∞
ei[2πl+φ−ωn(k)L/c]z/L dz (2.69)

= En,l,z(φ, r)Lδ [2πl + φ − ωn(φ)L/c] (2.70)

and we see that the only nonzero contribution to the voltage is due to the synchronous mode;

i.e. when 2πl + φ − ωn(φ)L/c = 0 for some integer l.

2.5.3 Figures of merit

Figures of merit in multicell cavities are normalized to the cell length when appropriate. For

instance, the shunt impedance Rshunt, scales with the number of cells (since the voltage gain V and

the power loss P scale with length NL); thus, a shunt impedance per unit length is defined as

rshunt =
Rshunt

L
(2.71)

where Rshunt in the above is the shunt impedance for a single cell calculated in the usual way.

Similarly, the loss factor (and wake potential) scale with length. The loss factor per unit length

will be defined as

k̂ = k/L. (2.72)

2.5.4 Multicell cavity design basics

To further detail the properties of modes in periodic single cells, we turn to the periodic

pillbox example. Though simple, the periodic pillbox can still be used to describe the essential

features of most modern-day cavities (in fact, the accelerating cavities of the SLAC linac, still in

operation, are multicell pillbox structures). Figure 2.9 shows two cells of a periodic pillbox cavity.

The geometry is parameterized by: the iris radius a, the iris thickness d, the cavity radius R, and

the cell length L. In general, the free parameters in the design of the periodic pillbox are the above

geometry descriptors and the phase advance of the accelerating mode φ.
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Figure 2.9: Dimensions of a general periodic pillbox cavity. The structure is cylindrically sym-
metric about the dotted line.
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φ L Q rshunt rshunt/Q

π/2 6.2 mm 5300 8.9 × 107 Ω/m 1.7 × 104 Ω/m

2π/3 8.3 mm 6800 1.1 × 108 Ω/m 1.6 × 104 Ω/m

π 12.5 mm 8800 9.8 × 107 Ω/m 1.1 × 104 Ω/m

Table 2.2: Figures of merit for the periodic pillbox cavity at three different phase advances. For
each phase advance, the cavity length was adjusted to ensure synchronicity with a speed of light
particle. The frequency in each case was 12 GHz.

The first constraint (in no particular order) on the pillbox parameters is that the phase

velocity of the accelerating mode must be synchronous with a particle moving at the speed of light;

i.e. from the previous section, the following condition must be satisfied

2πl + φ − ωL/c = 0 (2.73)

for some integer l (usually zero). Since the accelerating mode frequency is fixed by the overall accel-

erator design, the cell length L and phase advance φ are therefore linked by the above synchronicity

condition. Figure 2.10 shows the z-component of the electric field of the accelerating mode for three

different values of the phase advance; in each case, the cell length is adjusted to satisfy Eq. 2.73.

Figures of merit for the periodic pillbox at these different phase advances are shown in Table 2.2.

Differences in the shunt impedance are minor, yet maximized for a phase advance of 2π/3; this is

the phase advance most commonly chosen in current designs for CLIC.

The next constraint is the operating frequency. The frequency of the accelerating mode in

the periodic pillbox is strongly affected by the cavity radius and only slightly affected by the iris

dimensions, phase advance, and cell length. When changing any of these parameters, the others

must be adjusted such that the operating frequency is maintained. The following perturbation

theory provides an approximate picture of the effects of these parameters.

For small iris radii, the accelerating mode of the periodic pillbox can be treated as a per-

turbation of the closed pillbox cavity TM010 mode (actually, this approximation works well for

practical iris radii as well). Based on Bethe’s theory of small apertures in conducting walls (where

small means the radius of the aperture is less than the wavelength of the mode), the perturbation
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Figure 2.10: Accelerating mode Ez for three different phase advances (from top to bottom: φ =
π/2, 2π/3, and π). The frequency of each mode is 12 GHz. The lengths of the individual cells were
adjusted to satisfy the synchronicity condition. The arrows indicate the on-axis field direction in
each cell. The field patterns move to the right with time.
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of the pillbox TM010 resonant frequency due to the iris is [6, 12, 24]

ω − ωp

ωp
≈ 1

3

a3ε0E
2
0

U

(

1 − e−αd cos φ
)

. (2.74)

where ω is the new frequency, ωp = 2.405c/R is the unperturbed pillbox frequency, U is the stored

energy of the unperturbed mode, E0 is the on-axis unperturbed electric field, and α is defined as

α =

√

2.4052

a2
−

ω2
p

c2
. (2.75)

The above decay factor is based on the cutoff frequency of the TM01 cylindrical waveguide mode for

a waveguide of radius a (i.e. the iris). Some details leading to the above perturbation expressions

are found in Appendix A.

A more useful form of Eq. 2.74 is achieved by noting that the energy of the unperturbed

TM010 mode scales as U ∼ λ2
pL = c2L/ω2

p. Thus, we can rewrite Eq. 2.74 as

ω − ωp

ωp
=

1

3

ω2
pa

3

c2L
Γ

(

1 − e−αd cos φ
)

. (2.76)

where Γ =
c2Lε0E2

0

ω2U
is a dimensionless constant (related to the loss factor) that is determined purely

by the TM010 field pattern. Furthermore, since the TM010 fields in the pillbox are independent of

z, Γ can be written

Γ =
4c2ε0E

2
0

ω2
∫

(ε|E|2 + µ|H|2) dx dy
. (2.77)

The above expression is now general for any 2D cavity (or 3D waveguide) with a TM010-like mode

(since any waveguide becomes a resonant cavity by adding conducting planes with normals along

the waveguide axis); thus, the above perturbation theory can be applied to more complex transverse

geometries, such as 2D photonic crystal cavities.

Given that ω is fixed, Eq. 2.74 represents (approximately) the second constraint on the

periodic pillbox parameters. Since the cavity radius is mostly inconsequential (in terms of the

usual figures of merit—shunt impedance, wakefields, etc.) and has the greatest effect on ω, it is

usually considered the parameter set by the choice of operating frequency. Equation 2.74 also shows

that the opening of the irises introduces a dispersion relation of the form

ω(φ) ≈ ω(π/2) − vg(π/2)

L
cos φ (2.78)
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with group velocity

vg(φ) = L
∂ω

∂φ
≈ vg(π/2) sin φ. (2.79)

Relating Eq. 2.79 to the φ-derivative of 2.76 shows that the group velocity is very sensitive to both

the iris radius and the iris thickness.

Figure 2.11 shows the dispersion of the accelerating mode for two different periodic pillbox

iris radii: a = 3.15 mm and a = 6.3 mm (iris thickness was 1 mm). The target TM010 frequency was

11.994 GHz and the target phase advance was φ = 2π/3 (CLIC cavity values). First, L was set by

the synchronicity condition, Eq. 2.73. Then, the cavity radius R was calculated using perturbation

theory (Eq. 2.76) to achieve the target frequency; i.e. ω(φ = 2π/3) = 2π11.994 GHz. For the

smaller iris, perturbation theory produced the target frequency to ∼1%. For the larger radius,

perturbation theory failed considerably. Even so, the solid lines of Fig. 2.11 show that the cosine

dependence of the dispersion is still quite accurate. Therefore, once synchronicity and the target

frequency are achieved for the target phase advance, the dispersion curve (and therefore the group

velocity, bandwidth, etc.) can be calculated with confidence from only one additional simulation

(at a different phase advance). This is how we calculate group velocities in the analysis of Chapter

4.

The remaining free parameters are the iris geometry and the phase advance. These are the

parameters that can be varied to optimize certain figures of merit. For example, the iris radius can

be increased for the purpose of reducing short-range wakefields, but only at the expense of shunt

impedance (accelerating efficiency). The iris thickness can also be adjusted for the desired group

velocity. These parameters will become more relevant in the following.

2.5.5 Cell-to-cell variations

As discussed in the following sections, real multicell cavities are rarely an array of identical

cells; for example, the iris radius is often tapered to increase acceleration efficiency. Without trans-

lational symmetry, a periodic single-cell cannot accurately characterize the entire structure. In the

latest designs of the CLIC cavities, the number of cells per structure is 26. While the simulation
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Figure 2.11: These dispersion curves were generated from simulations of two pillbox cavities;
for each, the cavity radius R was determined by perturbation theory given the iris radius a and
target frequency f(φ = 2π/3) = 11.994GHz. Symbols are frequencies calculated from simulations,
the overlaid curves are best-fit cosine functions, and the light line represents the synchronicity
condition (modes that lie on the light line accelerate relativistic particles, since their phase velocity
equals c). The plot illustrates several concepts: (1) for a = 6.3mm, perturbation theory failed, i.e.,
f(φ = 2π/3) 6= 11.994GHz; (2) even though perturbation theory failed for the large iris radius, the
cosine dependence was well-preserved; (3) as the iris radius increases, coupling increases, and the
frequency range widens (increasing vg).
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of a single 26-cell cavity is computationally feasible, an optimization study requiring the simula-

tion of many different 26-cell structures becomes computationally prohibitive. Wakefield/HOM

simulations make this especially difficult due to mesh resolution constraints (c.f. Section 2.4.4).

Fortunately, for the class of accelerating cell considered in this thesis (that is, cells separated by

conducting irises), the coupling between cells is weak, and many quantities of interest can be

approximated using uncoupled techniques.

Uncoupled methods do not treat a multicell cavity in its entirety, but rather approximate the

cavity as a chain of single cells whose properties are determined by periodic single-cell calculations

(at the synchronous phase advance for the mode in question). This is expected to be a good

approximation because (1) for slowly varying geometries along the multicell cavity, the fields in

neighboring irises are well-approximated by a periodic single cell at the average of the iris geometries

and (2) coupling introduces frequency shifts that are on the order of the frequency variation in the

mode’s band, which is small relative to the center-band frequency. The next section describes an

uncoupled calculation important to characterizing the accelerating mode in a multicell cavity.

2.5.6 Power flow in traveling-wave multicell cavities

In the following, all quantities are assumed to apply to the accelerating mode in the steady

state. For cell number j, define an incoming power Pj,in (power from cell j − 1) and an outgoing

power Pj,out (power to cell j + 1). The difference is the power lost in that cell due to heating of the

cavity walls and the acceleration of a particle beam, i.e.

Pj,in − Pj,out = Pj,wall + Pj,beam (2.80)

=
ωUj

Qj
+ IVj (2.81)

=
ωUj

Qj
+ 2I

√

kjUj (2.82)

where Uj is the energy, Vj is the accelerating voltage, Qj is the quality factor, and kj is the loss

factor in cell j (Eq. 2.41 was used to obtain the final expression). Since beams come in bunches,

the beam current looks like: I = νq where ν is the bunch frequency (i.e. number of bunches passing
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a given point per second) and q is the charge of a single bunch.

Dividing Eq. 2.82 by the cell length L and taking the limit N ≫ 1, we get the following

differential equation for the power flow along the cavity as a function of cell number (or simply

position z):

dP (z)

dz
= −ωu(z)

Q(z)
− 2I

√

k(z)u(z) (2.83)

where we have defined a spatially-dependent energy per unit length u(z) ≈ Uj/L, loss factor per

unit length k(z) ≈ kj/L, and quality factor Q(z) ≈ Qj. The linear energy density can be expressed

in terms of the power flow via

u(z) =
P (z)

vg(z)
(2.84)

where vg(z) is the group velocity. Equation 2.83 becomes

dP (z)

dz
= − ω

vg(z)Q(z)
P (z) − 2I

√

k(z)

vg(z)

√

P (z). (2.85)

The cavity parameters k(z), vg(z), and Q(z) are determined by periodic single-cell simulations at

frequency ω and the target phase advance for cell geometries equal to those at position z in the

multicell cavity.

For multicell cavities of identical cells (usually termed constant impedance cavities) it is

well-known that (for small beam currents) the power decays exponentially along the structure (as

is evident from the form of Eq. 2.85 for small enough I). In this case, the accelerating gradient

E(z) = 2
√

kP (z)/vg also decays exponentially, which means that the constant impedance structure

is a poor use of linac real estate. Ideally, the accelerating gradient would be constant along the

cavity, at a level slightly below the breakdown threshold of each cell; indeed, this is the type of

cavity used in high-energy accelerators today (called a constant gradient cavity).

A constant gradient is achieved by decreasing the group velocity along the length of the

cavity, so that electromagnetic energy has more time to build up in later cells (where the power

flow is weaker) before “leaking” into subsequent cells. Assuming a constant Q-factor and loss

factor per unit length, (approximately true in most cases), the following is an extremely simple,
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constant-gradient solution to Eq. 2.85:

P (z) = Pin − Pin − Pout

NL
z (2.86)

vg(z) = vg,in −
vg,in − vg,out

NL
z (2.87)

where Pin is the power put into the first cell of the cavity, Pout is the power removed from the

last cell, and vg,in and vg,out are the group velocities of the first and last cells, respectively. The

constant electric field is given by

E = 2
√

kP (z)/vg(z) (2.88)

which gives the constraint

Pin

vg,in
=

Pout

vg,out
=

P (z)

vg(z)
. (2.89)

Plugging the solution into Eq. 2.85 gives

IV = ηcgPin (2.90)

where V = NLE (ultimately a function of Pin and vg,in) and ηcg is the constant-gradient steady-

state efficiency:

ηcg =
∆vg

vg,in
− φN

Q

c

vg,in
(2.91)

where ∆vg = vg,in − vg,out and φ is the phase advance per cell. The first term describes a baseline

efficiency due to the power exiting the cavity at its final cell; obviously, this is wasted power (it is

sent to an absorbing load). However, it is necessary, since reducing the group velocity anywhere

along the structure increases the fill time of the cavity (that is, the time between the input of RF

energy and the injection of the beam)—the fill time is unaccounted for in the above steady-state

analysis. The second term is the hit in efficiency given by the cavity material losses.

The above constant gradient solution gives only a rough idea of the behavior of a more

realistic cavity. Two major complications arise. First, the constant gradient structure described

above assumed a steady-state with beam loading; however, during the filling of the cavity, a beam

is not present. Thus, the fields in the structure will be higher than predicted by the above, and the
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cavity will be more likely to break down. Knowledge of both the loaded (with beam) and unloaded

(without beam) gradient as a function of cell number for a given structure is required. Second,

the loss factor per unit length and the Q-factor change with cell geometry. These complications

necessitate the direct numerical solution of Eq. 2.85. Regardless, it is clear that a multicell cavity

should be designed with a tapering group velocity.

2.5.7 Wakefields

Wakefield simulations require the calculation of frequencies up to the bunch cutoff frequency,

which can be several times that of the fundamental. For these HOMs, weak coupling may no

longer apply. Even so, an uncoupled calculation can be performed to give a rough idea of the wake

potential for a chain of slowly varying cells. It was shown in [3] that for the lowest dipole modes of

a multicell pillbox cavity, the uncoupled calculation can be accurate for many accelerating mode

periods behind an exciting bunch. Examining the highest group velocity in the wakefield frequency

range of interest can give an estimate of a trailing distance smax below which the wake potential

should be accurate in an uncoupled calculation. For a HOM excited in one cell, the time it takes

for the next cell to feel its effects is on the order of L/vg where vg is the group velocity of the HOM;

thus smax ∼ Lc/vg,max where vg,max is the highest group velocity within the HOMs of interest (in

fact, to the advantage of the method, Ref. [3] showed this to be a large underestimate).

In the uncoupled wakefield calculation, the net wake potential is determined by an average

over the wake potentials in each cell, where each cell is treated as periodic. The net wake potential

per unit length is

Wz(s, r, r
′) =

1

N

N
∑

i

W (i)
z (s, r, r′) (2.92)

where W
(i)
z (s, r, r′) is the wake potential per unit length for a periodic single cell with the geometry

of cell i. The above method is commonly used to characterize new multicell cavity designs since the

periodic single cell calculations need be performed only once (also, results can often be interpolated

between very similar geometries).



57

To calculate the wake potential for a periodic single cell W
(i)
z (s, r, r′) to be used in Eq. 2.92,

either the Condon method or time-domain method can be used. In the Condon method, the loss

factors of all synchronous modes need to be calculated up to the bunch cutoff frequency. Then,

W
(i)
z (s, r, r′) for cell i is reconstructed from the impulse wake potentials. In the time-domain

method, with sufficient computational resources, a multicell cavity of identical cells (with the

geometry of cell i) can be simulated to approximate the wake potential in the periodic case. As

the number of cells increases, the effect of the end cells diminishes [31]. Figure 2.12 shows the

asymptotic effect on the wake potential of increasing the number of simulated cells in the case of

the pillbox. In all simulations, particles are emitted from and absorbed by conducting plates in the

beam tubes of the end cells.

2.6 Chapter segue

In the next two chapters, we introduce PhC accelerator cavities and compare our designs

against the latest CLIC copper cavity. The following concepts from this chapter guide the anal-

ysis. With normal conductors, the surface magnetic field seems to be the primary indicator of

Eacc breakdown limits (based on recent empirical evidence); since the PhC-based cavity designs

use conductors, the ratio cBsurf,metal/Eacc will be an important point of comparison. The shunt

impedance is the major indicator of accelerating efficiency; by using dielectrics, electromagnetic

losses to conducting surfaces may be reduced, which could raise the shunt impedance. We will

also directly calculate the steady-state accelerating efficiency in constant-gradient multicell PhC

cavities by solving the power-flow equation numerically (Eq. 2.85). Finally, wakefields will be cal-

culated for a representative periodic single cell using time-domain simulation (c.f. Section 2.5.7,

third paragraph). The theory of waveguide damping (Section 2.4.5) will aid the explanation of the

unexpected higher wakefields in the PhC-based cavities. Onward!
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Figure 2.12: A comparison between the monopole wake potentials in several N -cell pillbox cavities
where each cell is identical. WN indicates the wake potential per unit length for a structure consisting
of N pillbox cells. Cell geometry was: a = 3.15mm, d = 1.67mm, L = 8.33mm, and R = 9.98mm.
The Gaussian excitation bunch length was σz = 1.0mm located at a transverse offset of 1mm.



Chapter 3

Photonic crystal accelerating structures

In traditional pillbox-based (super)conducting accelerator cavity design, unwanted HOMs

are removed by strategically-coupled waveguides. Photonic crystals (PhCs) offer an alternative ap-

proach. PhCs can act as frequency-selective reflectors; and by “selecting” the accelerating mode fre-

quency, a PhC-based resonant cavity can confine the accelerating mode while allowing other modes

to propagate out of the structure. In addition, this property of PhCs enables mode-confinement

using only dielectric materials, which, as discussed in the previous chapter, may sustain higher

surface fields and suffer lower electromagnetic losses.

This Chapter begins by introducing the generic properties of PhCs, shifting focus quickly

to frequency-selection and accelerator cavity design. After presenting the well-known defect-based

PhC resonant cavity, we discuss alternatives based on liberal structure optimizations. Specifically,

using an optimization process that ignored lattice symmetry (but retained certain rotational sym-

metries), we have discovered that dramatic improvements (orders of magnitude) in the radiative

Q-factor of the accelerating mode are possible. This work has resulted in three different PhC-based

cavity designs that are the subject of numerical scrutiny in the following Chapter (one lattice-based

PhC cavity and two PhC-based optimized cavities). We finish this Chapter with some theoretical

predictions of the overall performance of these cavities.
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3.1 Photonic crystals background

In general, photonic crystals (PhCs) are periodic arrays of electromagnetic wave scatterers.

Under this slightly redundant definition, most PhCs are rather uninteresting; however, a subset

of them has attracted interest in recent years due to the discovery of photonic bandgaps (or just

bandgaps). A photonic bandgap is, in general, a range of frequencies over which no propagating

electromagnetic waves can exist. Thus, for a PhC with a bandgap, no electromagnetic waves

oscillating at frequencies within that bandgap can propagate through the structure (from this

point on, a “PhC” will be assumed to have a bandgap unless explicitly stated otherwise). This

property is most often exploited in the form of a frequency-selective reflector; for example, a semi-

infinite PhC will necessarily reflect impinging electromagnetic waves whose frequencies lie within

the bandgap (since they cannot propagate inside the crystal), but will transmit all others (lossless

materials are assumed).

3.1.1 Dielectric mirror

The canonical example of a PhC is the dielectric mirror, which is simply a stack of plates

of alternating dielectric constant. To reflect a wave with frequency ω (and vacuum wavelength

λ), each plate is given the thickness d = λ/4
√

ε, where ε is the relative dielectric constant of the

plate. This thickness causes destructive interference between the transmitted and reflected parts

of the wave at each interface (adjacent plates must have different dielectric constants to produce

such partial reflections). By this argument, one would expect that only a single frequency would

be reflected off of the stack when, in fact, a bandgap forms and reflects a range of frequencies

(of course, this is only true in the semi-infinite case—a finite-sized stack will indeed reflect the

targetted frequency best, but not perfectly).

The dielectric mirror is an example of a 1D PhC because there is only one dimension of

periodicity. A 1D PhC does not reflect frequency ω over all electromagnetic wave propagation

directions (no variation in material properties along the direction of propagation means no wave
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reflection). The dependence of the reflection on propagation direction is determined by examining

the band diagram for the PhC. The most interesting case is that of a complete bandgap—one

which exists for all electromagnetic wave propagation directions (and polarizations in the case of

electromagnetism).

3.1.2 Band diagrams and bandgaps

[2] In a periodic medium, translation by a lattice vector R leaves the equations of motion

unchanged (e.g. if a periodic dielectric medium has the property ε(x + R) = ε(x), then Maxwell’s

wave equation is unchanged after translation by a lattice vector). Bloch’s Theorem (applied to

electromagnetism) says that the solutions to Maxwell’s wave equation in a periodic medium can be

written as

E(x,k) = Ẽ(x,k)eik·x (3.1)

where Ẽ has the periodicity of the medium (i.e. Ẽ(x + R,k) = Ẽ(x,k) for any lattice vector R).

There exists a unique reciprocal lattice vector, Ki, such that Ki · Rj = 2πδij . The wave vector, k

in Eq. 3.1, can be rewritten in terms of reciprocal lattice vectors in the following way

k =

3
∑

i=1

niKi + k′ (3.2)

where the ni are integers and k′ is restricted to a closed region in k-space about the origin, called

the first Brillouin zone. Eq. 3.1 can now be written as

E(x,k) = Ẽ(x,k)ei
P

niKi·xeik′·x (3.3)

Like Ẽ, the exponential involving the reciprocal lattice vectors has the periodicity of the medium

(because Ki ·Rj = 2πδij), we can combine it with Ẽ to write

En(x,k′) = Ẽn(x,k′)eik′·x (3.4)

where, again, k′ is restricted to the first Brillouin zone. The solutions are now indexed by the

reduced k′ and the integers ni. In the above, the ni have been grouped by a single index n,
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commonly referred to as the band index. For each k′, then, there is an infinite discrete set of

solutions indexed by n. This “folding” of the solutions onto the first Brillouin zone is extremely

useful for the analysis of periodic structures, especially when seeking a bandgap.

As an example, consider the 2D case of TM electromagnetic waves propagating through a

triangular lattice of dielectric disks (see Fig. 3.1a; TM means Ex = Ey = Bz = 0). This particular

structure is the basis for the work in this thesis. The center-to-center distance between nearest-

neighbor disks is a and each disk has radius r. As shown in Fig. 3.1a, the lattice vectors are

R1 = (a, 0) and R2 = (a/2,
√

3a/2). The first Brillouin zone for this lattice is the hexagon shown

in Fig. 3.1b. However, using additional symmetries of the lattice (namely rotational and reflection

symmetries), the essential region of k-space can be reduced further to the shaded wedge in Fig. 3.1b.

All of k-space is “folded” into this wedge, yielding the band diagram in Fig. 3.1c (with the further

simplification that only solutions along the bounding box of the zone are calculated; this is usually

sufficient to determine the existence of a bandgap). Figure 3.1c shows that the TM spectrum for

this 2D medium has a prominent complete (irrespective of propagation direction) bandgap between

the first and second bands. In the parlance of the dielectric mirror, all waves with frequencies in

this range are reflected perfectly off of a semi-infinite triangular lattice of sapphire disks.

3.1.3 PhC resonant cavities

Research into PhC resonant cavities has proceeded for decades and is gilded by the following

list of highly-cited references [86, 65, 62, 1]. Largely driven by telecommunication applications and

cavity quantum electrodynamics experiments, this research has concentrated mostly on the optical-

frequency regime; however, the concepts and results apply equally well to the microwave and radio

frequencies used in today’s accelerators. Given a PhC with a complete bandgap, a resonant cavity

is commonly formed by simply removing a single element from the PhC lattice. This can allow a

mode to exist which oscillates at a frequency within the bandgap and is spatially confined to the

crystal defect (since the bandgap prohibits propagation through the surrounding PhC). An example

of such a cavity mode is displayed in Fig. 3.2 using the same triangular lattice of sapphire disks
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Figure 3.1: TM characteristics of a 2D triangular lattice of sapphire discs. Propagation in the
lattice (a) is forbidden for electromagnetic waves with frequencies near 0.4c/a because of the bandgap
(c). Lattice vectors R1 and R2, inter-disc spacing a, and disc radius r are defined in (a). The
first Brillouin zone of the reciprocal lattice is identified in (b) by the hexagon. The midpoints of
the hexagon sides bisect the segments connecting the origin and the nearest reciprocal lattice points;
thus, Γ = (0, 0), M = (π/a, π/

√
3a), and K = (4π/3a, 0). The irreducible Brillouin zone is shaded

and represents the entire Brillouin zone by symmetry. The dispersion curves for the first 4 bands
along the path outlining the shaded region in (b) are shown in (c) for r = 0.17a. Calculations were
performed using the MIT Photonic Bands simulation code [39].
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introduced in the previous section. The mode of Fig. 3.2 resonates at a frequency of f = 0.41c/a

which is at the center of the bandgap shown in Fig. 3.1c.

The simulated structure in Fig. 3.2 is actually a truncated lattice surrounded by absorbing

boundaries. Nevertheless, it illustrates the PhC resonant cavity effect quite well. The difference

between Fig. 3.2 and a defect cavity in an infinite lattice is that the mode in the infinite case oscil-

lates indefinitely (assuming lossless dielectric) whereas the mode in Fig. 3.2 has a finite lifetime—it

“leaks” electromagnetic energy through the surrounding layers of lattice. This is because, unlike a

perfectly conducting cavity which confines all electromagnetic energy, the fields of trapped modes

in PhC cavities penetrate into the surrounding lattice with an exponential falloff. A comparison of

the field amplitudes inside the cavity to those just outside the last layer of lattice is a good measure

of how quickly the mode decays in time. To quantify the losses due to radiation leakage from PhC

cavities, we introduce the radiative quality factor Qrad (from Eq. 2.20, Qrad = ωU/Prad where Prad

is the “leaking” electromagnetic power). In the case of Fig. 3.2, Qrad = 24, 000, which says that

after 24, 000/2π oscillations, the energy in the cavity is about 1/3 its original level. Because of the

exponential falloff of the fields in the PhC, Qrad increases exponentially with the number of layers

of lattice surrounding the cavity.

3.2 Photonic crystal accelerators

The selective reflection property of PhCs is of particular interest to accelerator cavity de-

signers because it suppresses HOMs. A PhC accelerator cavity should trap a TM010-like mode

(by bandgap frequency exclusion) but allow all other modes to propagate freely out of the struc-

ture. Photonic crystals (hence PhC resonant cavities) are easier theorized than fabricated. For

this reason, only a handful of fundamentally different PhC accelerating structures have been (and

are being) considered in the community. This Section seeks to review the most common design

strategies employed over the last decade.
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Figure 3.2: Resonant TM defect cavity mode in a triangular lattice of lossless sapphire disks (r =
0.17a). The lattice is truncated at 4 layers (60 disks), giving a radiative Q-factor of Qrad = 24000.
Qrad increases exponentially with the number of layers.
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3.2.1 HOM mitigation

To protect against HOMs in PhC accelerator cavity design, one should choose a structure

that has only a single bandgap at low frequencies (to trap a TM010 mode) so that higher frequencies

propagate out. Figure 3.3 shows the location of 2D TM bandgaps as a function of the disc radius

to lattice spacing ratio in the triangular lattice of sapphire discs. Highlighted by the vertical line is

the ratio chosen for the cavity considered in this thesis. It is strategically located in a region where

the bandgap which traps the accelerating mode is wide (ensuring good confinement for a truncated

lattice) and there are few significant bandgaps at higher frequencies.

As detailed in Sec. 2.4.5, one should also be mindful of low-vg modes, since energy transport

in these modes is slow. Unfortunately, in a PhC with a bandgap, there will necessarily exist flat

regions in the band diagram at the gap edges (for example, see Fig. 3.1c). Modes in this region

of the dispersion will have low group velocities and thus could give rise to troublesome wakefields.

In fact, a main result of this thesis shows that these are indeed troublesome for the cavity based

on the triangular lattice of Fig. 3.2. The details are left to the comparison between PhC-based

accelerator cavities and the CLIC cavity discussed in the next Chapter.

3.2.2 Hybrid PhC accelerator cavities

In (arguably) the simplest approach to 3D PhC cavity design (and the associated fabrication

difficulties), a hybrid technique is used that combines a 2D PhC cavity (c.f. Fig. 3.2) with a standard

conducting cavity [46, 73]. In this scheme, a 2D PhC cavity confines the accelerating mode in the

transverse (to the beam axis) plane while conducting walls confine the mode longitudinally. The

conducting walls are necessary for trapping a mode that resembles the pillbox TM010, since they

can terminate perpendicular electric fields (recall that TMmn0 modes have no variation in the z-

direction). This scheme is sufficiently mature that a few designs have been built and tested in

recent years; the work in this thesis is based on this concept.

Pioneering work was recently done on the design, construction, and testing of all-metal hy-
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Figure 3.3: Complete 2D TM bandgaps as a function of the disc radius to lattice spacing ratio in
the triangular lattice of sapphire discs. The vertical line shows the ratio for the cavity considered
in this thesis (this ratio defines the structure in Fig. 3.2). Calculations were performed using the
MIT Photonic Bands simulation code [39]. Some of the very thin gaps are due to numerical error.
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brid PhC cavities (endplates and rods are metal) [72, 54, 55]. A transverse cross-section of the

structure and the electric field patterns for the accelerating and lowest dipole modes are shown in

Fig. 3.4. In the first experiment, acceleration of an electron beam at a gradient of Eacc = 35 MV/m

was demonstrated in a 6-cell structure where each cell was a hybrid PhC cavity connected to its

neighboring cavities by a circular beam port [72]. In the next experiment, the structure was tested

for HOM wakefields under excitation by a beam from the MIT linac [54, 55]. Wakefields were

measured by frequency-analyzing the power escaping the structure after passage of the exciting

beam. Theoretical predictions and simulations were validated for beam losses into the fundamental

accelerating mode. Only monopole HOMs were observed in the power spectrum. Finally, high-

gradient limitations were explored in high-RF-power tests at SLAC [54, 55]. These tests showed

that gradients in these types of structures are limited by intense Ohmic heating of the inner ring

of rods due to high surface magnetic fields. This is in contrast to the more common case of high

surface electric field limits in other copper cavity geometries.

Figure 3.4: Magnitude of the electric field for the (a) TM010 (fundamental accelerating) mode and
the (b) TM110 (lowest dipole) mode in the metal-rod hybrid PhC accelerating cavity built and tested
by MIT (plots taken from [54]).

Another collaboration has been investigating hybrid dielectric/metal PhC cavities (dielec-

tric rods sandwiched between copper plates) both theoretically and experimentally (see Fig. 3.5)
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[56]. Their experiments have validated the predicted fundamental mode existence and Q-factor.

Theoretical work found that some cavities formed from photonic quasi-crystals (rotationally sym-

metric arrangements of rods without translational symmetry) can give higher Qrad values than

lattice structures with similar extent [17]. Also, replacing outer dielectric rods with metal rods

could substantially increase Qrad without increasing losses in the rods (since the high fields are

still concentrated on the inner ring of dielectric rods) [25]. However, the effect of this on HOMs is

unknown.

3.2.3 All-dielectric PhC waveguide accelerators

A distinct effort is also being made in the accelerator community to explore particle accelera-

tion at optical frequencies in purely dielectric PhCs. These schemes would have several advantages:

(1) accelerating gradients could be much higher than those in metallic and superconducting struc-

tures because of the increased breakdown thresholds in dielectrics at optical frequencies, (2) high-

power optical frequency lasers are a reliable and widely-available power source, and (3) lithographic

techniques for micron-sized silicon structures are advancing rapidly. One scheme uses hollow-core

photonic crystal fibers to guide a speed-of-light mode [51], whereas the other more complicated un-

dertaking involves the lithographic construction of a PhC with a complete 3D bandgap, called the

woodpile structure [13]. The above techniques are theoretically attractive; however, experiments

have yet to verify the predictions.

3.3 Optimized high-Qrad HDPhC cavities

Power losses determine important figures of merit in accelerator cavities (namely Q and

rshunt). The losses due to radiation leakage in finite PhC cavities (referred to via Qrad from here

on) introduce a method of power dissipation not found in traditional metallic accelerator cavities

and must be minimized. One natural approach to this problem is to add more layers of lattice

to the PhC cavity, guaranteeing an exponential increase in confinement with structure extent.

Unfortunately, the number of layers can become impractically large, especially for weak scatterers
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Figure 3.5: Hybrid PhC cavity using dielectric rods constructed and tested at the University of
Naples Federico II [56].
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(even sapphire, with a fairly large dielectric constant of 11.4ε0 takes 4 layers—60 rods—to give

a Qrad of 24,000, as seen in the previous Sections) or difficult fabrication techniques (such as

nanolithography in the optical regime). An alternative method was suggested in Ref. [25], where

outer-layer dielectric rods are replaced by metal rods. It was shown that this can greatly increase

Qrad while avoiding the issues associated with high surface fields on metal rods. This Section

discusses yet another solution (introduced by us) to the Qrad problem: the optimization of finite

PhC cavities into arbitrary structures with improved mode confinement. We have shown that this

technique works well for 2D dielectric cavities (and thus HDPhC cavities), exhibiting orders-of-

magnitude increases in Qrad without adding rods to the structure [4]. This Section comprises the

details of our findings.

3.3.1 Model for optimization

Fig. 3.6 shows the TM010 mode trapped by a truncated triangular lattice of 18 rods with

ε = 10ε0 (alumina) in vacuum. By varying the ratio r/a, where r is the rod radius and a the lattice

constant, we have found that maximum confinement occurs when r/a = 0.18, where Qrad = 130.

The resonant frequency of the mode lies near the center of the bandgap of the infinite triangular

lattice for the same r/a (see Fig. 3.1). Because the optimizations in this study produce irregular

structures, we express length scales in units of c/ω0 where ω0 is the resonant frequency of the

TM010 mode. In these units, the rod radius in Fig. 3.6 is r = 0.47c/ω0 and the radial position

of the innermost ring of rods is, R = a = 2.6c/ω0. Thus, for a target frequency of 12GHz, the

dimensions are: r = 1.9mm and R = 10.3mm.

3.3.2 Optimization techniques

To maximize Qrad, an optimization routine explored alternative configurations by gradually

moving rods away from their original lattice positions of Fig. 3.6. Each new configuration in the

optimization was tested by FDTD simulation of the decaying mode. From each simulation, the

resonant frequency was extracted and used with the decaying cavity field data to calculate Qrad.
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Figure 3.6: Normalized electric field of the accelerating mode in a truncated triangular-lattice
PhC cavity (initial stage of optimization). Cylinders have a dielectric constant εr = 10 and a
radius r = 0.47c/ω0, where ω0 is the resonant angular frequency. The quality factor is Qrad = 130
and the lattice spacing is a = 5.59r. The radial position of the innermost ring is R = a = 2.61c/ω0.
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Simulations of each configuration in the optimization were performed with the FDTD elec-

tromagnetics code, vorpal [60]. Dielectric cylinders were resolved to 10 grid cells per diameter,

and fields were absorbed at the edges of the simulations using perfectly matched layers (PMLs) [5].

In grid cells only partially filled with dielectric, the dielectric constant was averaged according to

ε = fεalumina + (1 − f)εvacuum, (3.5)

where f is the fraction of the grid cell filled with dielectric. This averaging is important for detecting

continuous cylinder displacements (i.e. displacements smaller than a grid cell). The above averaging

is accurate only for electric fields parallel to the dielectric-vacuum interface [40].

A gaussian-modulated (in time) sinusoidal current excited each configuration at a single point

near the cavity center. The excitation was truncated at four standard deviations on both sides of

the gaussian, and, afterward, the excited modes were left to resonate undisturbed for a few hundred

oscillations to rid the simulation of transients. The width of the corresponding spectral gaussian

was ∆ω/ω = 6.4% and was centered at the best guess for the TM010 frequency to be calculated.

The timestep, ∆t, was set to 0.99∆tCFL,2D, where ∆tCFL,2D is the 2D Courant-Friedrichs-Lewy

time step.

The complex resonant frequencies (oscillation and decay constant) were extracted using the

modified filter diagonalization method of Ref. [82]. The method requires sufficient isolation of

mode frequencies through appropriate spectral filtering. For our gaussian-modulated excitations

truncated at four standard deviations, this method was consistently able to extract ω0 to a relative

error of 10−4.

The quality factor, Qrad, was calculated from the time decay of the freely-oscillating electric

field sampled at the center of the cavity. In all simulations, ω0 was the dominant frequency in the

time series and therefore the electric field at the cavity center had the form (from Eq. 2.20)

Ez(t) = Ez,0e
−iω0te−ω0t/2Qrad . (3.6)

The damping rate was obtained by a linear fit to ln(|Ez(t)|2), and Qrad calculated using the ex-

tracted ω0.
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Incorporating the methods described above, the optimization routine used a Nelder-Mead

simplex minimization algorithm that manipulated the rod positions to increase Qrad [67]. The cost

function to be minimized was simply

g(p) = g(x1, . . . , xN , y1, . . . , yN ) = −Qrad, (3.7)

where p is a vector describing one configuration of cylinders. Initially, the optimization built a

simplex of configurations,

S = {p1, . . . ,p2N+2}, (3.8)

each a small deviation from Fig. 3.6. At each iteration, a new configuration was constructed,

excited, left to resonate, and analyzed. If the new configuration was an improvement, it replaced

the worst configuration in S and the extracted ω0 was used as the excitation frequency for the next

trial configuration.

This feedback mechanism kept the excitation near resonance with the cavity and resisted the

excitation of nearby (in frequency) modes. A restriction returned g = 0 if other mode frequencies

were present, but was never encountered in any of the optimizations. Optimization terminated

when the configurations stored in the last iteration returned

|g(pi) − g(pj)| < 10 ∀(pi,pj) ∈ S. (3.9)

The Nelder-Mead routine will not guarantee a global minimum, although it has the ability to

skip over shallow local minima by storing several configurations at each iteration. The simplicity of

the routine slows convergence, but can be tolerated in this case because of rapid FDTD simulation

and Qrad calculation. The routine may also be highly dependent on the initial configuration;

however, the results for the triangular lattice are sufficiently dramatic and so other possibilities are

neglected here.

3.3.3 Results

Figure 3.7 shows the result of a sixfold rotationally symmetric optimization (N = 3 in

Eq. 3.7) for non-overlapping cylinders. From Fig. 3.6 to Fig. 3.7, Qrad went from 130 to 11000 and
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Figure 3.7: Normalized electric field of the confined mode in the 18-rod sixfold rotationally sym-
metric, optimized accelerating cavity. Qrad = 11, 000, r = 0.51c/ω0, and R = 2.71c/ω0. Rods do
not overlap.



76

Figure 3.8: Normalized electric field of the confined mode in the 24-rod sixfold rotationally sym-
metric, optimized accelerating cavity. Qrad = 11000, r = 0.51c/ω0, and R = 2.71c/ω0. Rods do not
overlap.
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required 350 Nelder-Mead iterations (500 cost-function calls, or configuration simulations). For the

triangular lattice to attain the same Qrad, 4 layers (60 cylinders) are required. Enforcing symmetry

on the optimization not only decreased the computation time significantly, but also yielded a higher

Qrad as compared to an asymmetric optimization (N = 18) which converged to a local minimum

with a smaller Qrad. An 18-rod pattern very similar to Fig. 3.7 was also found using sapphire rods

(ε = 11.4ε0) and resulted in Qrad = 25, 000.

An optimization of a 24-rod sapphire structure (N = 4 in Eq. 3.7) was also performed using

the optimized 18-rod sapphire configuration as a guide for a favorable initial condition. The first

configuration in this optimization was constructed by placing one rod in each of the azimuthal

vacancies of the outer ring of the 18-rod optimized pattern. The addition of these rods destroyed

the previously high Qrad, but it was quickly regained through optimization—the ultimate Qrad was

192,000 and the associated rod pattern is shown in Fig. 3.8.

Symmetry breaking of various forms appears to be a consequence of these optimizations.

First, the final configurations lack any resemblence to the original truncated lattice. Second, as

the optimization proceeds, modest Q-factors were found until parity symmetry was broken. Then

much higher Q-factors were obtained. Simulation confirmed that the mirror image configurations

also have the same Qrad.

The following additional observations were made. Because of the increased concentration of

dielectric material in high-field regions, power loss to dielectric heating doubled. For an optimization

allowing rod overlap, the inner rods partially merged in pairs, but without significant change in

Qrad compared to the nonoverlapping case. Grid effects proved to be insignificant—a high-resolution

simulation of the optimized structure showed no change in Qrad.

3.3.4 Sensitivity analysis

To test the sensitivity of the optimized structure, we computed the frequency and Q-factor

for configurations with small random displacements from the optimized structure. Unlike the

optimized structure, the displaced configurations were not necessarily sixfold symmetric, but used
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the full configuration vector (except for the rod radius, which we kept constant), popt, with N = 18

in Eq. (3.7), which is a 36-dimensional vector. For each test, we formed a displacement vector, ∆p,

where each ∆pi was normally distributed with mean 0 and standard deviation σ.

One thousand configurations (popt + ∆p) were tested for three different σ (0.02r, 0.05r, and

0.10r). One thousand different directions in the function space of g(p) for 36 dimensions is sufficient

for exploring along each dimension individually plus all diagonals spanning two dimensions at a

time. (However, a restriction that prohibited rods from overlapping limited exploration in some

directions of the 36-dimensional space.) Figure 3.9 shows Qrad and ω0 as a function of the total

combined displacement of the inner 12 rods,

|∆pinner12| =

√

√

√

√

24
∑

i=1

∆p2
i =

√

√

√

√

12
∑

i=1

(∆x2
i + ∆y2

i ). (3.10)

Displacements of the outer 6 rods showed comparatively insignificant effects, decreasing Qrad by

less than 3% for individual cylinder displacements ∼ 0.10r.

Figure 3.9: Sensitivity of the structure as a function of the total combined displacement of the
inner 12 rods, |∆pinner12|. From left to right in each plot, the groups of points are from the ensembles
with σ = 0.02r, 0.05r, and 0.10r, respectively.
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3.3.5 Conclusion

For high dielectric constant scatterers, optimization through FDTD simulation has yielded

dramatic improvements in mode confinement for PhC-based cavities, increasing the Qrad of a con-

fined mode by 2 orders of magnitude. This increase in Q-factor benefits PhC accelerating structures

by reducing the structure size and material requirements while retaining confinement properties

that trap the desired mode but not unwanted HOMs.

The breaking of lattice symmetry in the optimized structures suggests an investigation of

other types of discrete rotational symmetries besides the six-fold performed here. Additional studies

of fully asymmetric optimizations are also warranted.

3.4 Expectations of a hybrid dielectric PhC cavity

The work in this thesis is based on the hybrid dielectric PhC (HDPhC) cavity (lattice-based

and optimized) mentioned in the previous sections. Before turning to simulation results in the next

Chapter, we first summarize some expectations of the performance of these novel structures.

3.4.1 Accelerating mode Q-factor

Losses (excluding those due to an accelerated beam) in HDPhC cavities have three main

constituents: (1) radiative losses, (2) heating losses in metal endplates, and (3) heating losses in

dielectric PhC elements.

The only conductors in a HDPhC cavity are the endplates (or irises in a multicell cavity).

In the absense of beam tubes (closed cavity), the calculation of Qmetal for the accelerating mode

becomes trivial since
∫

|H(x)|2dv = L

∫

|H(x)|2da (3.11)
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and Eq. 2.24 gives the following for Qmetal:

Qmetal =
µ0ωL

2Rs
(3.12)

=
µ0cπ

2Rs
(3.13)

where the second expression is obtained by setting the cavity length to L = c/2f (to maximize

particle energy gain). For copper at 12 GHz, the surface resistance is Rs = 0.028 Ohms; therefore,

Qmetal ≈ 2.1 × 104. The pillbox cavity suffers a lower Qmetal because of the high surface magnetic

fields on the cylindrical wall; using the same Rs, the pillbox cavity gives Qmetal = 9.2 × 103. The

elimination of the copper walls reduces the heating losses by about a factor of 2.

It is hoped that most of the accelerating mode energy will be contained in the vacuum region

of the PhC (based on Fig. 3.2). Nevertheless, an upper bound on the losses incurred by heating of

the dielectric rods is given simply by the inverse of the dielectric loss tangent (i.e. as if all electric

field energy were inside the dielectric). For the case of sapphire at room temperature, this puts

a lower bound on the dielectric Q-factor of Qdiel ≥ 105. Practically, the dielectric rods will heat

under high RF power, which will likely increase the loss tangent (based on the trend in Table

2.1); therefore, when calculating figures of merit for the structures of interest in this thesis, a more

conservative value of tan δ = 10−4 is chosen for sapphire.

Finally, a significant fraction of the total losses in HDPhC cavities can come from radiation

leakage through the PhC. Several counteractions are possible, including lattice extension (not always

a practical option), replacement of weak scatterers with strong scatterers (e.g. replacing dielectric

rods with metal rods), or high-Qrad optimization as discussed in the previous Section.

The total Q-factor is calculated via

1

Qtot
=

1

Qmetal
+

1

Qdiel
+

1

Qrad
(3.14)

In the best-case scenario, Qdiel and Qrad dominate over Qtot; thus the total Q-factor is bounded by

the losses to the metal—i.e. Qtot ≈ Qmetal. Therefore, the highest Q-factor one can expect from a

HDPhC is about twice that of the pillbox.
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3.4.2 Shunt impedance, loss factor

The shunt impedance of a HDPhC accelerating mode is, of course, related to the previous

discussion on power losses. Recall that the Q-factor measures the ratio of the energy to the power

loss, the shunt impedance measures the ratio of the accelerating gradient to the power loss, and

the loss factor connects the two. If the power losses are roughly halved going from a pillbox to a

HDPhC, the shunt impedance has the potential to double. This depends on the spatial distribution

of the mode energy. In an HDPhC, the energy is not confined in the transverse plane as tightly as

in the pillbox; thus the loss factor is likely to be lower. If the loss factor in an HDPhC can be kept

above half of the pillbox loss factor, gains in shunt impedance can be expected.

3.4.3 Wakefields

Short-range wakefields are dominated by the interaction between a bunch and the beam

tubes. Therefore, the short-range wakes in a HDPhC cavity should mirror those in a standard

pillbox cavity for identical beam tube geometries. Loss factors (∝ V 2/U) of HOMs may decrease in

general due to the more open nature of a HDPhC cavity compared to the CLIC cavities (because

of diluted energy densities). However, mode densities may increase for the very same reason.

The following Sections address more detailed attributes of wakefields in HDPhC cavities; namely,

parallel-plate vs. rectangular waveguide damping and guided modes in dielectric rods.

3.4.4 Parallel-plate waveguide damping

Somewhat like the CLIC cavities, HDPhC cavities are waveguide-damped, where the waveg-

uide in this case consists simply of two (infinite) conducting plates (we will refer to this geometry

as a parallel-plate waveguide). Recall that in a rectangular cross-section waveguide with the x-axis

along the waveguide axis and side lengths Ly and Lz, the frequencies of the TE modes (i.e. Ex = 0)

are

ωmn(kx) = c

√

k2
x +

π2m2

Ly
+

π2n2

Lz
(3.15)
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where, m = 0, 1, 2, . . . and n = 1, 2, . . . (or vice versa) [37]. In the CLIC cavity, Ly = 11mm, giving

a TE10 cutoff frequency of 13.6 GHz. The undamped TM dipole resonant frequency for an average

CLIC cell is approximately 21 GHz, placing it well above cutoff and encouraging strong damping

based on the analysis of Section 2.4.5.

In a parallel-plate waveguide of gap Lz, the frequencies of modes with nonzero Ez are

ωm(kx, ky) = c

√

π2m2

Lz
+ k2

x + k2
y (3.16)

where m = 0, 1, 2, . . .. In contrast with the rectangular waveguide, modes with uniform Ez (i.e. m =

0) in the parallel plate waveguide have no cutoff frequency. Thus, the potential for stronger damping

of the lowest dipole mode (when compared to rectangular waveguide damping) exists in HDPhC

cavities. Modes with z-variation do have cutoff frequencies in the parallel-plate waveguide; the

wakefields due to these modes will exhibit the persistent behavior discussed in Section 2.4.5 but will

occur at higher frequencies (the rectangular waveguide also suffers from higher cutoff frequencies).

3.4.5 Dielectric-guided modes

HDPhC cavities have the potential to trap HOMs in the dielectric rods by total internal

reflection. These modes would have high Q-factors (set by tan−1 δ) and thus a negative impact on

wakefields. For this reason, we have calculated the analytic modes in sapphire rods (see Appendix

B). The model considered here is of a single sapphire cylinder of radius r spanning a gap of length

ℓ between two infinite perfectly-conducting plates (cylinder axis and conducting plate normals

are along z, as in the HDPhC cavities). The modes of concern (because of their significant Ez

component) are labeled by HEmnp and TM0np where m, n, and p are the azimuthal, radial, and

longitudinal mode numbers, respectively (relative to the rod-centered coordinate system). HE

modes have both Ez and Hz components and m > 0; TM modes have Hz = 0. The lowest-

frequency modes of this group are HE111, HE112, TM011, and HE212 (see Figs. 3.10 and 3.11).

Frequencies for rod radius r = 1.8mm and two common values of ℓ are given in Table 3.1.

Given the analytic mode solutions, we were able to calculate loss factors for each. The loss
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ℓ (mm) HE111 (GHz) HE112 (GHz) TM011 (GHz) HE212 (GHz)

6.66 17.4 22.2 22.0 31.6
7.33 16.9 21.3 20.4 31.0

Table 3.1: Frequencies of guided modes in sapphire rods of length ℓ and radius r = 1.8mm where
each rod end abuts an infinite conducting plate.
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Figure 3.10: Guided mode electric fields for ℓ = 6.66mm and r = 1.8mm. Color shows Ez while
arrows show E⊥.
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Figure 3.11: Guided mode electric fields for ℓ = 6.66mm and r = 1.8mm along the y = 0 line.
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factors shown in Fig. 3.12 were calculated assuming a speed-of-light charge moving parallel to the

rod axis. The vertical line shown in the figure represents the distance to the beam axis from an

inner rod in the triangular-lattice-based HDPhC cavity. At this distance, only the HE111 and

TM011 modes are of concern; their loss factors are near unity (the accelerating mode loss factor is

∼ 102). Their high Q-factors, however, could lead to problems in the long-range wakefield. Coupling

between rod-guided modes in a HDPhC cavity will change the results presented here, especially

in the optimized HDPhC cavities where inner rods almost touch. One consequence could be the

lowering of guided-mode frequencies due to the increased fraction of dielectric (i.e. two rods could

act like one bigger rod). In the next Chapter, we will see that PhC modes—unguided—present a

larger problem than these weakly-excited guided modes. Therefore, we ignore the contribution of

the guided modes in the calculated wakefields.
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Figure 3.12: Loss factors of the lowest-frequency guided modes for a charge traveling parallel to a
sapphire rod sandwiched between two infinite conducting plates, where ℓ = 6.66mm and r = 1.8mm.
The horizontal axis is the radial distance from the rod-center to charge. The vertical line indicates
the distance to the beam axis relative to an inner rod in an HDPhC cavity.



Chapter 4

Cavity performance analysis and comparison

This chapter presents and discusses simulation results for several different cavity types, in-

cluding: the pillbox cavity (closed and with beam tubes), the triangular lattice and optimized

HDPhC cavities (closed and with beam tubes), and the latest iteration of the CLIC cavity (beam

tubes only). For each, we detail the figures of merit of the accelerating mode and the properties

of the wakefields due to a σz ≈ 1mm Gaussian electron bunch. The results show that there is

a small loss in accelerating efficiency in HDPhC cavities as compared to the conducting cavities

tested (given tan δ = 10−4 for sapphire). However, this may be overcome by increasing Qrad (by

adding rods) and/or taking a more optimistic sapphire loss tangent. Wakefields are strongly sup-

pressed in both the CLIC cavity and the HDPhC cavities. The CLIC cavity suppresses transverse

wakefields more effectively than the HDPhC cavities, whereas HDPhC cavities damp longitudinal

HOMs more strongly. The larger transverse wakes in the lattice-based HDPhC cavity are explained

by examining the 2D TM band diagram.

The cavity geometries compared in this Chapter have all been mentioned previously and

are shown together in 3D in Fig. 4.1. Proxies for each cavity type will be given as CLIC, Tri-

X-Sapphire (meaning triangular lattice with X layers of sapphire rods—Fig.4.1 shows the Tri-4-

Sapphire cavity), Opt-18-Sapphire, and Opt-24-Sapphire. A fifth cavity, the empty cavity, will also

be analyzed. The empty cavity shares the same geometry as the HDPhC cavities, but, as its name

suggests, does not contain any rods. The empty cavity will be referenced in Sections on wakefields,

since its behavior in that regard is ideal for the classes of cavity considered in this thesis. The
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undamped pillbox will also be referenced when discussing the properties of the accelerating mode

since it tends to have the highest shunt impedance for conducting cavities of the same material.

4.1 Simulation difficulties

Before presenting the results of the simulations, we first discuss some primarily numerical

issues that have somewhat dictated the simulation and analysis methods employed. First, we found

it difficult (if not impossible) to perform a complete modal analysis of the wakefields because of the

increased mode density in HDPhC cavities; the computational requirements involved in extracting

the entire spectrum of interest are unreasonable. Second, the most effective electromagnetic ab-

sorbers were found to be numerically unstable in the CLIC cavity, forcing the simulations used in

the comparison analysis to employ more physical conducting absorbers instead (at the expense of

ideal absorption). These issues are described below in greater detail.

4.1.1 Mode-finding

Individual modes (such as the accelerating mode or troublesome HOMs) are usually calculated

in one of two ways: frequency-domain eigensolvers or time-domain mode extraction. Frequency-

domain eigensolvers are very efficient at finding low-frequency modes, but, to remain efficient, must

calculate all modes up to the frequency of interest (once a set of the lowest-frequency modes are

found, orthogonalization against them helps to find the next higher-frequency mode). This can

pose a problem when the modes of interest are HOMs with frequencies much higher than the

fundamental. In conducting cavities such as the pillbox, the spectrum is sparse for the modes of

interest (the dipole mode has the second lowest frequency); thus, eigensolvers work well.

Simulated volumes in HDPhC cavities are much larger than those in conducting cavities; this

increases the mode density at lower frequencies. Furthermore, in the case of HDPhCs, dielectrics

tend to lower resonant frequencies, thus exacerbating the mode density problem. For example,

in the pillbox, the accelerating mode is the lowest frequency mode whereas for the 2D Tri-4-

Sapphire cavity, an eigensolver found hundreds of modes (resembling the lowest modes of an empty
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(a) (b)

(c) (d)

Figure 4.1: Geometries of the cavities analyzed and compared in this Chapter (shown with beam
tubes where a = 3.15mm and d = 1.67mm). Shorthand for each of the cavities will be (a) CLIC, (b)
Tri-4-Sapphire (triangular lattice, 4 layers of sapphire rods), (c) Opt-18-Sapphire (18-sapphire-rod
optimized structure), and (d) Opt-24-Sapphire (24-sapphire-rod optimized structure). Also analyzed
in this Chapter is the empty cavity; i.e. the geometry of (a), (b), and (c) without any rods. Multicell
cavities are formed by layering the above structures and adding one iris plate to the final layer.
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simulation box of similar dimensions) below the trapped accelerating mode (these modes are heavily

damped). There are eigensolver methods that, in theory, allow the calculation of interior eigenvalues

without calculating the lowest frequency modes; however, in our experience, the convergence of

these methods is lousy and/or inconsistent for the problems of interest.

The time-domain mode extraction technique has been the most useful for our simulations.

In this method, electromagnetic fields are excited by a current source in a time-domain simulation.

The spatial and frequency contents of the current source decide which modes in the simulation

are excited to what amplitudes. The excited subset of eigenmodes can be extracted by analyzing

the resulting oscillating fields in the simulation. This technique is well-suited to searching for

interior-frequency eigenmodes through the use of current-source frequency filters (e.g. a Gaussian-

modulated sinusoidal current excitation excludes frequencies that are several standard deviations

from the central frequency). The accelerating mode for HDPhC cavities is found very effectively

by this method. Of course this technique also has its drawbacks. For example, when searching

for HOMs with low Q-factors, the mode density problem requires a narrow frequency filter; this in

turn requires a long (in time) current excitation. In the time that it takes for the current source to

finish, the mode of interest has decayed significantly and is difficult to extract.

4.1.2 Wakefield calculations

In practice, wakefield damping techniques require some kind of electromagnetically absorbing

material; these materials should be simulated directly in order to characterize the wakefield for a

given structure accurately. However, in most damping schemes (e.g. waveguide damping and PhC

damping) the absorbers are far from the beam axis (and the extent of the accelerating mode), and

thus should ideally absorb all radiation they encounter. Therefore, in simulation, a realistic absorber

can be replaced by a more ideal (and less computationally costly) absorber and the question of

experimental absorption can be left as a separate problem.

Unfortunately, our studies have shown that the most widely-used (and arguably best) ab-

sorber, the perfectly matched layer (PML), is subject to an insidious numerical instability. The



91

instability seems to manifest in problems that involve resonant cavities coupled to waveguides that

are terminated by PMLs; i.e. the problems of interest to this thesis. The cause of this instability

is still being debated in the literature. In some cases, the instability becomes a problem only at

late simulation times, allowing the extraction of useful information up to the time that the fields

from the instability dominate the physical fields. This has been the case in most HDPhC cavity

simulations; therefore, PMLs were used in the closed cavity study presented next. Unfortunately,

the PML instability in the CLIC cavity grows much faster, and so other techniques were devised

to draw comparisons in the multicell cavity setting.

4.2 Closed cavity

We recently performed a study that compared the HDPhC designs with the conducting

pillbox in the closed cavity case (i.e. without beam tubes) [81]. As a proof-of-principle, it showed

that HDPhC cavities do provide significant damping for HOMs existing in the pillbox, resulting

in greatly reduced wakefields. The results also suggested that the high-Qrad optimized HDPhC

cavities can suppress wakefields more than the triangular-lattice-based HDPhC structure.

4.2.1 Accelerating mode properties

Table 4.1 summarizes the properties of the accelerating mode in both closed HDPhC cavities

and the closed pillbox. All data has been calculated from 2D simulations with a 10 GHz accelerating

mode frequency. The Qmetal of each of the structures is as predicted from the analytic pillbox fields

and Eq. 3.13 for the HDPhC cavities. For the HDPhC examples given, power losses generally

increase compared to the pillbox (lowering the shunt impedance, hence accelerating efficiency);

Qtotal values remain similar because the stored energy in the HDPhC structures has also increased

(based on Rshunt/Qtotal values, which we recall are proportional to V 2
acc/U).

A 2D study showed that adding layers to the triangular lattice past 3 does not increase

Rshunt/Qtotal (the Qrad rises exponentially as expected—see Table 4.2); thus, for very large Qrad,

the triangular lattice wins out (in terms of accelerating efficiency) over the current optimized
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Table 4.1: Figures of merit for the accelerating mode in relevant closed cavities (no beam tubes)
at 12 GHz. Sapphire loss tangent was set to 10−4. All values were calculated from 2D simulations.

Pillbox Tri-4-Sapphire Tri-X-Sapphire Opt-18-Sapphire Opt-24-Sapphire

Qmetal 9,000 21,000 21,000 21,000 21,000

Qrad ∞ 24,000 ∞ 25,000 193,000

Qdiel ∞ 34,000 34,000 19,000 24,000

Qtotal 9,000 8,000 13,000 7,000 11,000

Rshunt (MΩ) 1.8 1.1 1.6 0.6 1.1

Rshunt/Qtotal (Ω) 195 125 125 82 105

cBsurf,max/Eacc 0.91 1.32 1.32 1.60 1.53

structures. Data for this case is given by the Tri-X-Sapphire column in Table 4.1. The optimized

structures have a larger energy density within the dielectric rods, lowering Qdiel; this becomes a

problem for loss tangents near 10−4. Also, the HDPhC structures tend to enhance the magnetic field

in the vicinity of the inner rods (and thus on the metal endplates). This could be a disadvantage

considering the growing evidence linking maximum surface magnetic fields to Eacc limits.

4.2.2 Wake potentials

A Gaussian bunch of σz = 1.2mm was used to excite the cavities at a transverse offset

r′ = 1.2mm, φ′ = 0. Rings of test charges followed the bunch (a la Fig. 2.4) in order to analyze the

multipole contributions. It should be noted that for the closed cavities, the azimuthal multipole

wake potential forms of Eqs. 2.33 and 2.34 do not apply [59, 80]. For example, in the closed cavity,

even the accelerating mode gives a transverse kick to particles with some transverse offset. Practi-

cally, we care about beam tubes, in which case the transverse kick due to monopole modes becomes

negligible. Therefore, in the following, we analyze only the monopole and dipole contributions to

the longitudinal and transverse wake potentials, respectively.

Table 4.2: The (exponential) dependence of Qrad on the number of layers X for the 2D Tri-X-
Sapphire cavity.

Layers 3 4 5 6

Qrad 2,300 24,000 250,000 2.6 × 106
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The monopole wake potential is dominated by the accelerating mode; therefore, to analyze

the harmful part (in the time domain), its contribution was subtracted. The subtractions were

performed by fitting a decaying sinusoid (oscillating at the fundamental frequency) to the total

monopole wake potential such that the difference was minimized. The resulting amplitudes and

decay parameters of the sinusoids (for all simulated cavities) matched well with the figures in Table

4.1. Details and the effectiveness of the subtraction are shown in Fig. 4.2 for the Tri-4-Sapphire

closed cavity. A value of Rshunt/Q = 125 for the Tri-4-Sapphire accelerating mode at 10 GHz gives

a loss factor per unit length of k = 130 V/pC/m which matches well with the amplitude of the

sinusoid shown in Fig. 4.2a (recall that the wake potential goes as 2k).

Figure 4.3 compares the monopole longitudinal wake potentials in the pillbox and HDPhC

closed cavities and Fig. 4.4 shows the impedance of each curve in Fig. 4.3. Figure 4.5 compares

the transverse dipole wake potentials. Strong damping of HOMs in HDPhC cavities is evident

when compared with the pillbox. Furthermore, the Opt-(18,24)-Sapphire structures show greater

suppression of monopole HOMs than the Tri-4-Sapphire structure. Between the HDPhC closed

cavities, there is not much difference in the damping of dipole transverse wakefields (this changes

significantly when beam tubes are added). At large s, all HDPhC wakes show the characteristic

flattening due to the persistent component (arising from waveguide cutoff frequencies).

For the triangular-lattice-based structure, the dependence of the wake potential on the num-

ber of lattice layers is shown in Fig. 4.6. For each wake in Fig. 4.6, the associated frequency

spectrum (or wake impedance) differs only by the widths of the peaks. This implies that the Qrad

of HOMs are increasing (along with the Qrad of the accelerating mode). Consider the first HOM

seen in the longitudinal monopole impedance of the Tri-4-Sapphire cavity (Fig. 4.2b). The time-

domain mode extraction technique isolated the mode associated with this peak. The mode looks

very much like the accelerating mode in the transverse direction, but with a nonzero kz = π/L

(Ez changes sign once across the cavity). Examining the band structure of a triangular lattice of

infinite-length rods in 3D showed that the accelerating mode bandgap persists to the above value of

kz (although the magnitude of the gap decreases). Therefore, increasing the layer count increases
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(a)

(b)

(c)

Figure 4.2: The monopole wake potential in the Tri-4-Sapphire closed cavity is dominated by
the accelerating mode. (a) The total monopole wake potential, the contribution of the fundamental
(accelerating) mode, and the difference between the two. (b) The monopole longitudinal impedance
(Fourier transform of (a))—total and with fundamental removed; the Gaussian frequency spectrum
of the excitation bunch (arbitrary amplitude) is also shown. (c) Amplitude (absolute value of the
zero-derivative points) of the difference wake potential.
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Figure 4.3: Amplitude of the longitudinal monopole wake potential in the closed pillbox and the
closed HDPhC cavities.
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(a) Pillbox (b) Tri-4-Sapphire

(c) Opt-24-Sapphire (d) Opt-18-Sapphire

Figure 4.4: The monopole longitudinal impedances in the different closed cavities.
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Figure 4.5: Amplitude of the transverse dipole wake potential in the closed pillbox and the closed
HDPhC cavities. A low-level late-time numerical instability can be seen affecting the Opt-24-
Sapphire simulation.
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the confinement of this mode, which increases the wake potential. Other modes were too difficult

to extract by the time-domain method for the reasons described previously.

4.3 With beam tubes/comparison with CLIC

The previous section showed that wakefields are greatly reduced in closed HDPhC cavities

when compared with the cylindrical pillbox. However, a more useful comparison would test HDPhC

wakefield damping against other damping mechanisms used in state-of-the-art metallic cavity de-

sign. To this end we have recently acquired the CAD geometry specifications for the baseline CLIC

cavity design [28]. Comparison with the CLIC structure has forced us to examine the properties of

HDPhC cavities in a more practical multicell setting where the effects of beam tubes and coupled

cavities must be addressed. The results in this section are the main results of this thesis. In short,

with reference to the CLIC cavity, we find that in HDPhC cavities: (1) accelerating efficiencies are

lower (except in the lattice structure where the number of layers is large), (2) maximum surface

magnetic fields are higher for the optimized structures but lower in the lattice structure, (3) dipole

transverse wakefields are higher, and (4) monopole longitudinal wakes are lower.

4.3.1 CLIC cavity overview

The full 26-cell CLIC cavity including input/output power coupling cells and beam tubes

is shown in Fig. 4.8. This structure is the result of a complex optimization process which tries

to minimize surface fields, short- and long-range wakefields, and power input requirements while

maximizing accelerating efficiency and beam current. It is a constant-gradient cavity where the iris

geometry tapers linearly from a = 3.15mm and d = 1.67mm in the first cell to a = 2.35mm and

d = 1.0mm in the final cell. As a result, the group velocity tapers nearly linearly from 1.65% to

0.83% c. Each cell is equipped with four identical (in cross-section) HOM damping waveguides, the

cutoff frequency of which has been chosen to maximize the damping of the lowest dipole HOM and

the loss factor (or shunt impedance) of the accelerating mode. Table 4.3 summarizes the relevant

properties of the CLIC design and nominal electron beam it would accelerate [27].
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Figure 4.6: Amplitude of the longitudinal monopole wake potential (accelerating mode has been
subtracted out as in Fig. 4.2) in the triangular lattice structure (of sapphire rods) for different
numbers of layers.

Table 4.3: Properties of the CLIC accelerating structure and beam [27].

Frequency (GHz) 11.994

Phase advance 2π/3

Cell length (mm) 8.33

Cells 26

Average Eacc (MV/m) 100

Bunch population 3.72 × 109

Bunch spacing (RF periods) 6

Beam current (A) 1.19

Input power (MW) 61.3
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Figure 4.7: Amplitude of the transverse dipole wake potential in the triangular lattice structure
(of sapphire rods) for different numbers of layers.
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Figure 4.8: The full CLIC accelerating cavity including power coupling end-cells and beam tubes.
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Table 4.4: Figures of merit for the accelerating mode in relevant periodic single cell cavities.
a = 3.15mm, d = 1.67mm, φ = 2π/3. All simulations performed at ∆z/d = 8. Used loss tangent
of 10−4.

Pillbox CLIC Tri-4-Sapphire Opt-18-Sapphire Opt-24-Sapphire

vg/c (%) 1.83 1.65 1.16 0.78 0.95
Qmetal 6,700 5,900 11,400 11,400 11,400
Qrad ∞ ∞ 26,600 3,800 16,600
Qdiel ∞ ∞ 67,000 39,000 45,500
Qtotal 6,700 5,900 7,100 2,700 5,900
rshunt (MΩ/m) 106 82 70 18 47
k (V/pC/m) 298 260 187 125 151
Esurf,metal,max/Eacc 1.93 1.96 1.93 1.93 1.93
cBsurf,metal,max/Eacc 1.0 1.54 1.49 1.73 1.76
Esurf,diel,max/Eacc — — 0.54 0.64 0.62
cBsurf,diel,max/Eacc — — 1.26 1.79 1.34
Ediel,max/Eacc — — 0.60 0.79 0.72

4.3.2 Accelerating mode comparison

Figures of merit for the accelerating mode were first compared for a periodic single cell with

iris geometry a = 3.15mm and d = 1.67mm and are summarized in Table 4.4. This geometry

applies to the first cell of the CLIC 26-cell structure. Figures 4.9 and 4.10 show the absolute values

of Ez and B⊥ on the z-midplane of the relevant periodic single cell cavities. The z-dependences

of the fields are very similar amongst the different cavity types, as expected based on the common

iris geometry in each structure (refer to the pillbox fields shown in Fig. 2.10).

The maximum surface magnetic field occurs on the innermost radial walls of the CLIC cavity;

the elliptic curvature of this feature was carefully chosen to minimize cBsurf/Eacc. In the HDPhC

cavities, just as in the closed case, Bmetal,surf,max occurs where the innermost rods abut the con-

ducting endplates. This surface field is higher in the HDPhC cavities for a given Eacc. Since the

maximum occurs at the interface between dielectric and conductor, the method used to hold the

rods in place will require careful consideration. For example, a brazing material could melt due to

endplate heating, allowing the rods to shift; this could pose a problem for the optimized cavities

which are very sensitive to inner rod displacements (one possible solution would be to secure the

rods simply by endplate pressure, as in [56]). On the other hand, covering the region of conductor
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suffering the maximum magnetic field with dielectric could suppress the breakdown mechanism.

All of this remains to be seen in experiment. The maximum surface electric field occurs on the iris

in all cases, explaining the uniformity of Emetal,surf,max/Eacc across all cavity types.

The addition of beam tubes is seen to decrease the Qrad of the optimized structures by a

significant amount while the Qrad of the 60-rod lattice is unaffected. For example (compare Tables

4.1 and 4.4), at a phase advance of 2π/3, the 18-rod sapphire Qrad drops from 24,000 to 3,800

(varying with φ from 7,300 at φ = 0 to 3,200 at φ = π). This is not such a surprise considering the

sensitivity analysis summarized in Fig. 3.9. It remains to be seen whether further optimization in

3D can regain the original 2D Qrad. Optimizations in the presence of beam tubes will be difficult

because, for a fixed beam tube geometry, the target resonant frequency must be maintained at each

iteration—this restriction is not easily incorporated into a cost function. If the target frequency is

not maintained throughout, then a post-optimization transverse scaling will be required, resulting

in a different beam tube radius.

Assuming that 3D HDPhC optimizations could be performed successfully, the majority of the

power losses would then occur in the conducting iris plates. Replacing the Qrad values in Table 4.4

with the original 2D optimized values and assuming that the changes in loss factors are negligible

results in shunt impedances of rshunt = 43 MΩ/m and rshunt = 70 MΩ/m for the Opt-18-Sapphire

and Opt-24-Sapphire cavities, respectively (see Table 4.5). Also included is the hypothetical shunt

impedance for Tri-X-Sapphire cavity, where X is large enough such that the radiation losses of the

accelerating mode are insignificant (i.e. Qrad → ∞). Of the cavities with wakefield damping, this

gives the Tri-X-Sapphire cavity the largest shunt impedance; however, as seen in the closed cavity

results of the previous section (and in the HOM discussion at the end of this chapter), increasing

the number of lattice layers could increase long-range wakefields.

Figures of merit for the different cavity types as multicell structures were also calculated

using the hypothetical Qrad. The predictions shown in Table 4.6 and Figs. 4.11 and 4.12 were

made using the power-flow analysis of Section 2.5.6 and the CLIC beam parameters given in Table

4.3. A 26-cell constant-gradient structure was approximated for each cavity type based on a linear
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(a) CLIC (b) Tri-4-Sapphire

(c) Opt-24-Sapphire (d) Opt-18-Sapphire

Figure 4.9: Absolute value of Ez on the midplane (in z) of periodic single cell cavities.
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(a) CLIC (b) Tri-4-Sapphire

(c) Opt-24-Sapphire (d) Opt-18-Sapphire

Figure 4.10: Absolute value of B⊥ on the midplane (in z) of periodic single cell cavities.
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Table 4.5: Hypothetical figures of merit for the accelerating mode given that X (for the Tri-X-
Sapphire cavity) is large enough such that radiation losses are insignificant and that 3D optimiza-
tions reproduce 2D Qrad values for the optimized cavities.

Pillbox CLIC Tri-X-Sapphire Opt-18-Sapphire Opt-24-Sapphire

Qmetal 6,700 5,900 11,400 11,400 11,400
Qrad ∞ ∞ ∞ 25,000 193,000
Qdiel ∞ ∞ 67,000 39,000 45,500
Qtotal 6,700 5,900 9,700 6,500 8,700
rshunt (MΩ/m) 106 82 97 43 70
k (V/pC/m) 298 260 187 125 151

interpolation of iris parameters and individual cell figures of merit between the first and last cell

(the first and last cells for each cavity type were simulated). The iris parameters for the first and

last cells matched those of the CLIC cavity. The power flow along each cavity was determined by

a Runge-Kutta integration of Eq. 2.85 and is shown in Fig. 4.11; Eacc as a function of cell number

was then derived from Eacc = 2
√

kP/vg and is shown in Fig. 4.12 (the CLIC curves agree well with

results in Ref. [27]). The steady-state accelerating efficiency η was determined from

η =
26
∑

i=1

IEi,accL

Pin
(4.1)

where Ei,acc is the accelerating gradient in cell i.

The energy of the accelerating mode in the HDPhC cavities is more dispersed transversely

than in the pillbox or CLIC cells, lowering the group velocity and loss factor (for the same iris

geometry). The lower group velocities add significantly to the cavity fill time. While the steady-

state efficiencies for the Tri-(4,X)-Sapphire and Opt-24-Sapphire cavities listed in Table 4.6 are near

and above the CLIC efficiency, the increased fill time will make the HDPhC cavities less efficient

in a practical accelerating scheme that must use a pulse of RF input power. Pulse durations for

recent CLIC designs are approximately 240 ns; after accounting for fill time and pulse rise and

fall times, the CLIC study quotes a total RF-to-beam efficiency of ≈ 28% [28]. This suggests that

a more optimal multicell HDPhC cavity design would have a larger average beam tube radius to

raise group velocities; this is beneficial for short-range wakefields but would decrease the shunt

impedance (and thus the steady-state efficiency) and increase the power input requirement.
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Table 4.6: Figures of merit for constant-gradient 26-cell versions of each cavity type. Tri-X-
Sapphire and optimized structure results use the hypothetical Qrad values from Table 4.5.

Pillbox CLIC Tri-X-Sapphire Tri-4-Sapphire Opt-18-Sapphire Opt-24-Sapphire

η (%) 45 43 44 41 37 42
tfill (ns) 52 58 83 83 123 101

Figure 4.11: Beam-loaded power flow along a 26-cell version of each cavity type, where iris
geometries are identical to those in the CLIC cavity.
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Figure 4.12: Beam-loaded accelerating gradient (for the same input power) along a 26-cell version
of each cavity type, where iris geometries are identical to those in the CLIC cavity.
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4.3.3 Wakefield simulations

Time-domain wakefield simulations were performed to approximate the wake potentials in

a periodic single cell and were set up as follows. A Gaussian line excitation bunch of length

σz = 1mm at transverse position r′ = 1mm, φ = 0 was sent through an 8-cell cavity where each cell

was identical. In all cases the beam tube geometry was d = 1.67mm and a = 3.15mm (this beam

tube geometry corresponds to the first cell of the CLIC constant-gradient baseline structure). In all

simulations, grid cells were cubic with ∆z = 0.3mm so that the excitation bunch cutoff frequency

was simulated with ≈ 10% accuracy according to Eq. 2.56.

Two different absorbing techniques were used in the wakefield simulations. The first was to

extend the transverse simulation domain boundaries (as far as computational resources would allow)

in order to emulate ideal “absorption” using the causality of the outwardly-propagating wakefields.

The transverse boundaries (perfectly-conducting) were placed at a distance 125mm from the beam

axis so that the wake potential in the range 0 < s < 250mm was unaffected by simulation-edge

reflections; this distance is equivalent to approximately 10 accelerating mode oscillations (the CLIC

cavity was designed to space bunches every 6 RF periods).

As mentioned previously in this Chapter, the CLIC cavity exhibited an overwhelming numer-

ical instability when PMLs were placed in the damping waveguides. Thus, to examine longer-range

wakefields (as compared to those acheivable using the extended domain technique), we employed

numerically stable normal conductors. The ends of each damping waveguide (or the transverse

edges of the HDPhC simulations) were filled with a block of conducting material with a special

conductivity profile aimed at minimizing reflections off of the cavity-facing surface. The profile is

given by

σ(w) = σmax

( w

W

)2
(4.2)

where w is the perpendicular distance from the inside surface within the conductor and W is

the depth of the conducting block. The quadratic form resembles damping techniques used in

practice [53], where a cone of absorbing material is placed at the end of a damping waveguide. Our
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calculations used W = 25mm and σmax/ε0 = 4.7ωacc.

4.3.4 Extended-domain wakefield results

We first present the results from the extended-domain wakefield simulations. Total longi-

tudinal wakes are shown in Figs. 4.13 and 4.14 (amplitudes); these plots represent the sum of all

multipole contributions. Figure 4.13 details the subtraction of the accelerating mode contribution

in each cavity type. For the mid-range longitudinal wake, the HDPhC cavities do not show a clear

advantage.

Figure 4.15 shows the total radial wake potential directly behind the bunch (i.e. the total

radial momentum kick normalized to the bunch charge and cavity length). While the HDPhC wakes

are generally higher than those in the CLIC cavity, there are some interference effects between

HOMs in the HDPhC cavities that decrease the transverse wake below that of the CLIC cavity

very close to the excitation bunch. This raises an interesting question whether the greater mode-

density in PhC cavities would benefit a detuning strategy for minimizing the wake potential at

closely spaced multiples of an RF period behind an excitation bunch.

Finally, Figure 4.16 shows that (up to 10 RF periods), the dipole wakefields dominate the

total radial kick behind the excitation bunch in all cavity types.

4.3.5 The effect of conducting absorbers

Conducting absorbers were placed at the ends of the damping waveguides in the CLIC cavity

and at the transverse domain boundaries of the HDPhC simulations (see Fig. 4.17). The distance

from cavity center to absorber edge was 40mm in the CLIC cavity. In each HDPhC simulation, a

minimum distance of 4 rod radii was placed between the outermost rods and the absorber edges.

Conducting absorbers allow the wake potentials to be calculated out to large trailing distances

(because of their numerical stability), but provide worse absorption when compared to the extended-

domain technique. As a result, we have noticed that the wakefields in the CLIC structure change

more dramatically than those in the HDPhC structures, indicating a greater sensitivity to the
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Figure 4.13: In each plot, the blue short-dashed curve is the total longitudinal wake potential
where r = r′ = 1mm, φ = φ′ = 0, and σz = 1mm; the green long-dashed curve is the best fit to the
accelerating mode contribution; and the solid black line is the difference (i.e. the unwelcome portion
of the longitudinal wake).
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Figure 4.14: A comparison of the amplitudes (zero-derivative points) of the subtracted longitudinal
wake potentials from Fig. 4.13. Also included is the total longitudinal wake potential from the empty
structure.
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(a) Tri-4-Sapphire (b) Tri-4-Sapphire

(c) Opt-24-Sapphire (d) Opt-24-Sapphire

(e) Opt-18-Sapphire (f) Opt-18-Sapphire

Figure 4.15: Total radial wake potential in extended-domain 8-cell cavities.
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(a) CLIC (b) Tri-4-Sapphire

(c) Opt-24-Sapphire (d) Opt-18-Sapphire

Figure 4.16: Total radial vs. transverse dipole wake potentials in 8-cell extended-domain cavities
showing the dominance of the dipole wakes in the first 10 RF periods behind the bunch.
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Figure 4.17: Conducting absorber locations in (a) the CLIC cavity and (b) the HDPhC cavity
simulations. Absorbers are shaded. There are 40mm between the CLIC cavity center and the inside
absorber edges and at least 4 rod radii between the outermost rods and the absorber edges.

properties of absorber.

Figure 4.18 shows the difference between the dipole transverse wake potentials in the extended

domain cavities and the cavities equipped with conducting absorbers. The difference is quite small

in all HDPhC cavities, whereas significant reflection is observed in the CLIC cavity. This reflection

is reduced as the absorber depth W is increased, as expected, since the impedance mismatch along

the absorber is decreased (assuming unchanging profile and σmax). The difference is likely due to

the following.

The 1mm bunch strongly excites cavity TM modes that are uniform in the z-direction. In the

CLIC structure, cavity TM modes are damped by coupling to rectangular waveguide TE modes.

All rectangular waveguide modes have a cutoff frequency; near cutoff, these modes are reflected

strongly by small changes in waveguide impedance (due to the flattening of the dispersion), and are

therefore susceptible to large reflections off of the absorbers. Alternatively, in the HDPhC cavities,

TM modes that are uniform in z have no cutoff frequency (the dispersion is plane-wave-like);

thus, they penetrate farther into the absorbers and undergo weaker reflections (shorter bunches

will excite modes with z-variation more strongly—these modes do have cutoff frequencies in the

HDPhC cavities and would be more sensitive to absorber properties). Additionally, reflections off
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(a) CLIC (b) Tri-4-Sapphire

(c) Opt-24-Sapphire (d) Opt-18-Sapphire

Figure 4.18: Reflections off of the conducting absorbers cause differences in the wake potentials
between the two vertical lines. Beyond the second line, reflections from the extended domain bound-
aries reach the beam axis. The absorbers work well in the HDPhC cavities, but produce significant
reflection in the CLIC cavity. Reflections can be reduced in the CLIC cavity by increasing the depth
of the conductors while retaining the original conductivity profile (thus reducing the impedance
mismatch of the absorber).
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of the absorbers in the HDPhC cavities have the opportunity to encounter other absorbers without

passing through the beam axis; in the CLIC structure, all absorber reflections are funneled back

into the cavity.

Based on Fig. 4.18, reducing the impedance mismatch of the absorbers in the CLIC cavity

will have a significant (beneficial) effect on the mid-range transverse wake, whereas such measures

applied to the HDPhC cavities will have a relatively negligible effect.

4.3.6 Conducting absorbers wakefield results

Longitudinal monopole wake potentials are shown in Fig. 4.19 with the corresponding impedances

shown in Fig. 4.20. These longer wakefield simulations reveal advantages for the HDPhC cavities.

Because the accelerating mode in 8-cell cavities has an eight-fold near-degeneracy, we could not

subtract its contribution from the monopole wake with enough accuracy. The “cleanliness” of the

wake potentials in Fig. 4.19 can be qualitatively assumed from the smoothness of the envelopes.

Alternatively, the impedances in Fig. 4.20 can be used to make a more quantitative assessment.

The suppressed peaks above 12 GHz indicate stronger monopole HOM damping in HDPhC cavities,

although the monopole mode density is significantly higher.

As the extended-domain results showed, the CLIC cavity (as it was designed to do) rapidly

suppresses the transverse wake before the arrival of the first trailing bunch, and does so more

effectively than the HDPhC cavities (where interference effects do not play a major role). This is

because the lowest dipole mode is dominant in this region of the transverse wake, and the CLIC

cavity was specifically designed to suppress it. As Fig. 4.21 shows, the CLIC cavity continues to

damp effectively the dipole wakefields out to large trailing distances. Of the HDPhC structures,

the Opt-18-Sapphire cavity damps dipole wakes the best, but (for the majority of the calculated

wake region) still falls short of the CLIC cavity (recall that the CLIC damping can be improved

further by reducing reflections off of the absorbers, whereas HDPhC damping cannot). The dipole

wake impedances shown in Fig. 4.22 reveal the troublesome parts of the spectrum in the HDPhC

cavities. The Tri-4-Sapphire cavity has the largest transverse wake which is due to a cluster of
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(a) CLIC (b) Tri-4-Sapphire

(c) Opt-24-Sapphire (d) Opt-18-Sapphire

Figure 4.19: Longitudinal monopole wake potentials in 8-cell cavities using conducting absorbers.
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(a) CLIC (b) Tri-4-Sapphire

(c) Opt-24-Sapphire (d) Opt-18-Sapphire

Figure 4.20: Longitudinal monopole impedance in 8-cell cavities using conducting absorbers.
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high-Q dipole modes around 15 GHz.

4.4 Discussion: PhC HOMs

The transverse wake potential in the Tri-4-Sapphire cavity is surprisingly higher than in the

CLIC cavity (we were also surprised to see relatively higher transverse wakes in the optimized

structures, but are somewhat reassured by the longitudinal wakefield results). The transverse

impedance shows that this is due to a cluster of high-Q modes near 15 GHz. In this section,

we explain the presence of high-Q HOMs in the Tri-4-Sapphire cavity using the properties of

the triangular-lattice band structure outside of any bandgaps—namely, that flat regions of the

dispersion diagram imply low-group-velocity modes which sluggishly carry their energy through

the lattice and thus can be considered “trapped.” This issue was addressed briefly in Ref. [50]

within a study of a square-lattice-based metal-rod accelerating structure.

We have seen in Section 2.4.5 on HOM mitigation strategies how waveguide damping is

effective for coupling out frequencies only above cutoff (the further above cutoff the better). This

is because waveguide modes with frequencies near cutoff have vanishing group velocities (because

of the flattened dispersion at cutoff) and thus propagate slowly down the waveguide—effectively,

they are trapped. In PhCs, the dispersion tends to flatten where the spatial variation of the modes

matches the spatial variation of the dielectric. This flattening, while beneficial for the formation

of bandgaps (and thus trapped accelerating modes), introduces PhC modes with vanishing group

velocities.

Figure 4.23 shows the transverse dipole impedance of the Tri-4-Sapphire cavity in the fre-

quency range 0-25 GHz (a zoom view of Fig. 4.22b) and matches it with the 2D TM band diagram

for the triangular lattice of sapphire discs. The two most prominent peaks in the impedance clearly

line up with the flat portions of the second band (the third peak can be matched with another

flat band in the fully 3D band diagram). The annotated impedance peak (second largest) was

investigated further using the time-domain mode extraction technique. Figure 4.24 shows the field

pattern of the extracted mode (from a periodic single-cell simulation at phase advance φ ≈ 3π/4)
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(a) CLIC (b) Tri-4-Sapphire

(c) Opt-24-Sapphire (d) Opt-18-Sapphire

Figure 4.21: Transverse dipole wake potentials in 8-cell cavities using conducting absorbers.
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(a) CLIC (b) Tri-4-Sapphire

(c) Opt-24-Sapphire (d) Opt-18-Sapphire

Figure 4.22: Transverse dipole impedance in 8-cell cavities using conducting absorbers.
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and compares it with the 2D PhC lattice mode at the M-point of the second band. The field

patterns clearly match.

Both the damping waveguides and the triangular PhC suffer from low-group-velocity modes.

Why then is the damping worse in the Tri-4-Sapphire cavity? The answer lies in the combined

characteristics of the damping structure and the central cavity region. Consider the lowest dipole

mode in the CLIC cavity. Section 2.4.5 showed that waveguide damping is more effective when the

undamped resonant frequency is further above the cutoff frequency. The central cavity dimensions

in the CLIC cavity determine a dipole resonant frequency; thus, the waveguide dimensions are

selected such that cutoff is as far below that frequency as possible (without affecting the accelerating

mode too much). The gap between the accelerating frequency and the dipole frequency is large

enough such that this scheme results in effective dipole damping.

In contrast, the defect region of the Tri-4-Sapphire cavity is (by definition) highly commen-

surate with the geometry of the surrounding lattice. Also, the mode patterns shown in Fig. 4.24

have field nodes that pass through the dielectric, indicating that the removal of the central rod has

a small effect on the mode (as compared to modes at the top of the first band, which have most

of their field energy concentrated in dielectric). Thus, in the parlance of waveguide damping, the

defect resonance is at the same frequency as the low-group-velocity lattice mode (or the “cutoff”

mode), thus damping is ineffective. Put another way: the creation of the defect weakly affects

the lattice mode; thus, the lattice mode retains a strong presence in the defect. This argument

suggests pushing the inner layer of rods closer to the beam axis, which is likely to increase the

dipole resonance frequency in the defect above the flat portion of the lattice band and thus increase

coupling to higher-group-velocity lattice modes.

The situation may be exacerbated by the impedance mismatch at the outer layer of rods.

Because of its low-group-velocity, the lattice mode shown in Fig. 4.24 may be highly susceptible

to reflections off of the transition between lattice and vacuum, effectively increasing its Qrad. This

transition could be made smoother by slowly decreasing the radii of the rods in outer layers, but

would add significantly to the transverse size of the structure.
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Unfortunately, this analysis loses meaning in the optimized structures. A frequency-targeted

mode search would characterize the less-than-ideal transverse wakefields in these cavities. It is

worth recalling, however, that the accelerating mode Qrad in the optimized structures is highly

sensitive to rod displacements, indicating that a perturbative fix is an unlikely solution. Rather,

transverse wakefield minimization should be an integral component of future PhC-based cavity

optimizations.

4.5 Conclusion

Low wakefields require that the energy in HOMs be dissipated as quickly as possible. Thus, a

damping mechanism (or structure) should have a mode spectrum without any low group velocities.

In principle, the CLIC cavity suffers from low-vg HOMs near the cutoff frequency of its damping

waveguides; however, the sparse mode density of the conducting cavity allowed the placement of

the cutoff frequency within an empty region of the spectrum, producing effective damping. We

have found that lattice-based HDPhC cavities also suffer from low-vg HOMs due to the flattening

of bands near k-points of strong lattice symmetry. For the Tri-X-Sapphire design, the defect-based

central cavity supported low-vg dipole modes and thus showed large transverse wakes compared

to the CLIC structure. Longitudinal wakes were lower in all HDPhC cavities when compared to

CLIC.

Future work should focus on reducing wakefields in lattice-based HDPhC cavities. Because

the lattice structure has the potential to reduce surface magnetic fields and increase accelerating

efficiencies and PhC band theory provides an explanation for the existence of HOMs, it should

take precedence over the optimized structures presented in this thesis in future designs. Possible

routes to reducing wakes in Tri-X-Sapphire cavities include perturbing the central defect region to

eliminate low-vg resonances and/or reducing the impedance mismatch of all HOMs at the truncation

of the lattice.
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Fig. 4.24a Fig. 4.24b

Figure 4.23: The left plot shows a zoomed-in view of the troublesome part of the transverse dipole
impedance (from Fig. 4.22b). The right plot is the 2D TM band diagram for the triangular lattice
of sapphire discs. The annotated peak in the impedance is at the same frequency as the M-point of
the second band (also see the mode patterns in Fig. 4.24). This correlation supports the idea that
low-vg modes pose a problem for wakefields.
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(a) Tri-4-Sapphire mode

(b) Infinite PhC mode

Figure 4.24: Analagous modes in an infinite 2D PhC and the Tri-4-Sapphire periodic single-
cell cavity (the mode pattern in (b) is uniform in z). The PhC mode in (a) has a vanishing group
velocity; thus, its counterpart in (b) is “trapped” and contributes significantly to the dipole wakefield.
Computations used (a) vorpal [60] and (b) MIT Photonic Bands [39].



Chapter 5

A second-order 3D electromagnetics algorithm for curved interfaces between

anisotropic dielectrics on a Yee mesh

A new frequency-domain electromagnetics algorithm is developed for simulating curved inter-

faces between anisotropic dielectrics embedded in a Yee mesh with second-order error in resonant

frequencies. The algorithm is systematically derived using the finite integration formulation of

Maxwell’s equations on the Yee mesh. Second-order convergence of the error in resonant frequen-

cies is achieved by guaranteeing first-order error on dielectric boundaries and second-order error

in bulk (possibly anisotropic) regions. Convergence studies, conducted for an analytically solvable

problem and for a photonic crystal of ellipsoids with anisotropic dielectric constant, both show

second-order convergence of frequency error; the convergence is sufficiently smooth that Richard-

son extrapolation yields roughly third-order convergence. The convergence of electric fields near

the dielectric interface for the analytic problem is also presented.

5.1 Introduction

The manipulation of light with dielectric structures (e.g. photonic crystal cavities and waveg-

uides, dielectric accelerating cavities, fiber-optics, etc.) is a rapidly growing field of research requir-

ing the accurate simulation of electromagnetic fields in the presence of dielectric boundaries. In

finite-difference simulations, the Yee algorithm is often used because of its accuracy in homogeneous

media (in this case, resonant frequencies converge with error that is second-order in the size of a

grid cell ∆x), its good dispersion characteristics, and the simplicity of its implementation [87, 30].
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However, dielectric boundaries introduce discontinuities in the electric field and electric displace-

ment (i.e. D = ε(x)E where ε(x) contains discontinuities) and significantly reduce the accuracy of

the standard Yee algorithm (resonant frequencies tend to converge with only first-order error). To

retain accuracy, the Yee scheme must be modified at dielectric boundaries.

An alternative to finite difference algorithms is the finite element approach, which can treat

material boundaries using arbitrary meshes that conform to surfaces. Because of the many funda-

mental differences between finite element and finite difference algorithms, a comparison is difficult

to draw. However, one compelling reason to continue improving finite difference algorithms is the

advantage of short setup times; mesh generation in finite element codes can be a time-consuming

and resource-intensive process, whereas the finite difference grid is simply implied at no computa-

tional cost.

Numerous papers have been written on second- and higher-order finite-difference dielectric

boundary algorithms. The problem has proven to be an extremely difficult task of balancing

accuracy, time-domain stability, generality, and ease of implementation. Many recent works have

made significant advances in some of these areas, but most tend to focus on just one or two at a

time. The following paragraphs offer a cursory overview.

Finite difference dielectric boundary algorithms tend to fall into two categories: those that use

nonstandard approximations of the differential operators of Maxwell’s equations at boundaries, and

those that use standard finite differences but modify the constitutive material relations. The former

often use one-sided finite differences or extrapolations, where all grid field values used to calculate

a derivative are located within the same material. These types of algorithms could in principle

achieve very high orders of accuracy while preserving Cn discontinuities at material interfaces,

but they have been demonstrated only for very simple cases, such as 1D interface simulations, or

planar geometries in 2D where the material interfaces are aligned with grid directions [90, 85, 88].

Second-order convergence has been achieved for 2D curved dielectric interfaces, but only for TM

polarizations where all the fields are C0 continuous across the interface [18, 8]. The applicability

of these methods to general curved 3D geometries remains unknown.
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The second category of algorithm approximates the constitutive material relations while

using standard finite difference stencils to approximate derivatives. These methods often proceed

by approximating the materials themselves. For example, “stair-stepping” (which generally gives

first-order convergence) is the approximation of a curved object as a set of cubes (3D) or squares

(2D) [35].

Effective dielectric methods, which use cell-averaged dielectric constants, can compensate

for the poor accuracy of stair-stepping. In these methods, cells that are cut by the interface are

replaced by cells filled with a new uniform dielectric. The new dielectric constant is calculated by

averaging the true dielectric constants over the cut cell. Several algorithms using heuristic cell-

averaging techniques show improved accuracy compared to stair-stepping, but do not achieve or

show conclusively second-order convergence when simulating complex curved geometries [41, 42,

16, 49, 89, 36, 57, 70]. Some other schemes do show second-order or higher convergence, but only

for very special-case geometries, such as grid-parallel interfaces in 1D or 2D, or for only TM fields,

where the electric field is continuous across dielectric boundaries [20, 33]. A very recent paper has

shown second-order convergence for 2D TE fields in the presence of a straight oblique dielectric

interface [34]; unfortunately, the algorithm only applies to two specific interface angles with respect

to the grid. A major advantage of these methods is their time-domain stability; because these

algorithms are a kind of stair-stepping, they naturally preserve the symmetries that guarantee a

stable algorithm [79].

Unfortunately, the ultimate order of convergence of effective dielectric algorithms is hard to

determine theoretically. Two sources of error must be addressed: the error due to the approxima-

tion of the surface by the effective dielectric, and the error due to the discretization of the effective

dielectric. A more rigorous treatment of the former is found in Ref. [45] where first-order pertur-

bation theory is used to calculate the resonant frequency shift induced by a “smoothing” of the

dielectric interface (i.e. making the transition from one dielectric constant to another continuous).

With an appropriate smoothing, the frequency shift will be at most second-order in the volume of

the smoothing region.
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The algorithm of Ref. [63] combines the smoothed interface algorithm of Ref. [45] with the fi-

nite difference discretization scheme of Ref. [79]; however the errors introduced by the discretization

are not discussed theoretically. A smoothly varying dielectric can be simulated with second-order

error as long as the dielectric variation (hence field variation) across a single cell vanishes in the

limit ∆x → 0 where ∆x is the grid cell size [79]. For a given ∆x, the algorithm of Ref. [63] creates

a smoothed interface (a second-order approximation to a sharp interface) of approximate thickness

∆x; thus, the dielectric variation across a grid cell at a boundary remains constant in the limit

∆x → 0. This would seem to incur a resolution-independent error for boundary cells, which would

show up as first-order error in resonant frequencies [29]. Nevertheless, the results of Ref. [63] show

second-order convergence for the cases presented. However, because their algorithm does not ad-

here to the strict criterion (put forth by this paper) of exactness of the surface electric fields in the

infinite wavelength limit, we believe that ultimately the algorithm of Ref. [63] has first-order error

(possibly obscured up to high resolutions or high dielectric constrasts).

The finite integration interpretation of the Yee scheme (which is the basis for our algorithm)

also reduces the dielectric boundary problem to a modification of only the constitutive relations

[78, 10]. This approach is exemplified by Ref. [15] which achieves second-order convergence for

metallic boundaries embedded in the Yee mesh. For dielectric boundaries, the algorithm of Ref. [58]

follows this approach, but (as we will discuss in Section 5.3.1) does not guarantee second-order

convergence. Furthermore, it is unclear how to extract an order of convergence from the numerical

results.

Our algorithm extends Ref. [58], focusing exclusively on accuracy for 3D curved interfaces

between anisotropic dielectric materials (at the expense of time-domain stability); the algorithm

shows unambiguous second-order convergence of resonant frequencies in the grid cell size. Under-

lying our derivation is the following principle: in the infinite wavelength limit (the limit of spatially

constant fields), electromagnetic fields should be exactly simulated at planar dielectric boundaries.

This basic principle, when consistently addressed in the finite integration formalism, it systemat-

ically leads to an algorithm with at most first-order error in the fields on a dielectric interface.
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To achieve second-order convergence of resonant frequencies, we guarantee that in homogeneous

regions, the algorithm has local second-order error [29].

We begin in the next section by reviewing the use of finite integrals to describe the Yee

electromagnetic scheme and defining most of the notation convenient for our dielectric algorithm.

Section 5.3.1 discusses a prescription for determining/ensuring accuracy for the discrete permit-

tivity operator. Section 5.3.2 develops the algorithm that guarantees first-order error on dielectric

boundaries and in anisotropic bulk dielectric regions. Section 5.3.3 describes a modification to

the first-order algorithm to achieve second-order error in bulk anisotropic regions. Our numerical

examples are presented in Sec. 5.4. We conclude the paper with an Appendix, which provides

a severely condensed description of our algorithm in the form of a list of steps necessary for its

implementation.

5.2 Background

Our algorithm is based on the finite integration technique (FIT), which, for Cartesian meshes

in homogeneous isotropic materials, reduces to the standard Yee scheme [87, 78, 10]. Maxwell’s

equations in integral form are

∂

∂t

∫

A
D(x) · dA =

∮

C
H(x) · dl (5.1)

∂

∂t

∫

A
B(x) · dA = −

∮

C
E(x) · dl (5.2)

where D(x) = ε(x) ·E(x) and B(x) = µ(x) ·H(x) and ε(x) and µ(x) are in general 3×3 symmetric

tensors. The FIT associates finite areas with the Cartesian components of D and B, and finite

lengths with the Cartesian components of E and H (see Fig. 5.1). To define these finite regions,

space is discretized into two overlapping Cartesian grids: the regular grid and the dual grid. In

this paper, regular grid nodes will be defined as the points, Nijk ≡ [i∆x, j∆y, k∆z] and dual grid

nodes will be defined as the points, Ñijk ≡ [(i + 0.5)∆x, (j + 0.5)∆y, (k + 0.5)∆z], where i, j, k are

integers, ∆x,∆y,∆z are the dimensions of a grid cell, and the tilde indicates association with the

dual grid.
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Finite lengths will be labeled as Lα|ijk and L̃α|ijk where α is one of x, y, or z. The regular line

segment, Lα|ijk, connects the regular grid node, Nijk to the next regular grid node in the positive

α-direction. For example, Lx|ijk joins Nijk and Ni+1,jk. The dual line segment, L̃α|ijk, connects

the dual grid node, Ñijk to the next dual grid node in the negative α-direction. For example, L̃x|ijk

joins Ñijk and Ñi−1,jk. Some examples of these lengths are shown in Fig. 5.1.

Finite areas will be labeled by Aα|ijk and Ãα|ijk where α now corresponds to the direction

normal to the area. These are best described by examples, a few of which are shown in Fig. 5.1.

Regular areas are defined by regular grid nodes. For example, Ax|ijk is the rectangular area with

corners at Nijk, Nij+1,k, Nijk+1, and Nij+1,k+1. Dual areas are similarly described by dual grid

nodes, but in the negative sense, analogous to the dual length segments described above. For exam-

ple, Ãx|ijk is the rectangular area with corners at Ñijk, Ñij−1,k, Ñijk−1, and Ñij−1,k−1. The finite

areas are positioned such that the regular (dual) lengths Lα|ijk (L̃α|ijk) pierce the dual (regular)

areas Ãα|ijk (Aα|ijk) at their midpoints.

The FIT then defines the following electromagnetic field quantities to be represented on the

Yee mesh:

ex|ijk ≡ 1

∆x

∫

Lx|ijk

Ex(x) dl (5.3)

dx|ijk ≡ 1

∆y∆z

∫

Ãx|ijk

Dx(x) da (5.4)

hx|ijk ≡ 1

∆x

∫

L̃x|ijk

Hx(x) dl (5.5)

bx|ijk ≡ 1

∆y∆z

∫

Ax|ijk

Bx(x) da (5.6)

where the integrands are the unknown analytic electromagnetic fields (the corresponding definitions

for the y and z components can be inferred from the above). This defines the association between

grid field quantities and finite regions. The FIT has the convenient property that Maxwell’s dy-

namical equations (Eqs. (5.1) and (5.2)) are represented exactly by the discretization [10]. As a

result, we can isolate the dominant source of error in dielectric boundary problems to the discrete

dielectric constitutive relation.
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Figure 5.1: Color online. The solid-line cube is the regular grid cell ijk and the dotted-line cube is
the dual grid cell ijk. Field components are distributed by the usual Yee method. The figure shows
how E (D implied) field components (red) are associated with regular cell edges (dual cell faces)
and how B (H implied) components (blue) are associated with regular cell faces (dual cell edges).
Examples of the finite integral Ampere and Faraday Laws are highlighted.
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Letting e, d, h, and b be vectors of all eα|ijk, dα|ijk, hα|ijk, and bα|ijk components on the Yee

mesh, respectively, we can write the temporally-continuous, spatially-discretized Maxwell equations

in the following matrix-vector form,

∂

∂t
d = Ch (5.7)

− ∂

∂t
b = C

Te (5.8)

d = Mεe (5.9)

b = Mµh (5.10)

where C is the usual Yee backward finite difference curl operator and Mε and Mµ are the discrete

permittivity and permeability operators, respectively. The layout of the Yee mesh ensures that

the curl operator of the electric field is the transpose of C (for a more detailed explanation see

Ref. [79]).

In the next section, we show how to form an inverse permittivity matrix, M
−1
ε , that has

local first-order error on dielectric boundaries and second-order error everywhere else, such that

resonant frequencies converge to the correct values with second-order error. Throughout the rest of

the paper, the magnetic permeability will be set to the constant permeability of free space (Mµ =

µ0I). However, our algorithm applies equally well to simulating interfaces between anisotropic

permeabilities by the symmetry of Maxwell’s equations and the finite integration technique (one

simply replaces E, D, and ε by H, B, and µ in all that follows).

5.3 Method

Our technique for simulating curved dielectric boundaries is described in two steps. First,

we develop a dielectric algorithm that has local first-order error everywhere in the simulation

(in the bulk and on arbitrary dielectric boundaries). Second, we describe how trivial variants of

this algorithm can be combined such that second-order error is achieved in bulk regions (both

isotropic and anisotropic), while first-order error remains on dielectric boundaries only. Since the

dimensionality of the boundary is one less than that of the simulation volume, resonant frequencies
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exhibit second-order convergence [29]. Reference [29] proved this for 1D, but common experience

suggests this phenomenon holds in higher dimensions. For example, stair-stepping is known to

incur zeroth-order error on dielectric boundaries, but shows first-order convergence of resonant

frequencies.

5.3.1 Achieving the desired accuracy

The discrete dynamical equations in the FIT (Eqs. (5.7) and (5.8) with the grid field values

as defined in Eqs. (5.3)–(5.6)) exactly represent Maxwell’s equations; this is shown graphically

in Fig. 5.1. The discretization error occurs in the constitutive relations, Eqs. (5.9) and (5.10),

when converting from area-integrated quantities to line-integrated quantities. The accuracy of the

discrete Maxwell equations as a whole is therefore determined by the accuracy of Eqs. (5.9) and

(5.10). For µ(x) = µ0 everywhere, Mµ = µ0I gives second-order error in homogeneous regions but

only first-order error on dielectric boundaries because of the slope discontinuity in B(x). Again, as

suggested by Ref. [29], this should only contribute second-order error to the calculation of resonant

frequencies. It therefore suffices to focus exclusively on the error in Mε.

The following diagram illustrates the relationship between the discrete constitutive relation,

Eq. (5.9), and the continuous one, D(x) = ε(x) ·E(x),

D
ε−1

//

Ã
��

E

L
��

d
M

−1
ε

// e

(5.11)

where D(x) and E(x) are solutions to Eqs. (5.1) and (5.2) (i.e., boundary conditions are satisfied

and ∇ · D(x) = 0) and we have introduced the discretization operators, L and Ã which represent

the integrations in Eqs. (5.3) and (5.4), respectively (the inverse permittivity is stressed because d

is known from the discrete Ampere update, Eq. (5.7)).

The point of a dielectric algorithm is to build the operator, M
−1
ε , such that Diagram 5.11

commutes. Formally, one can write

M
−1
ε = L ◦ ε̂−1 ◦ Ã−1; (5.12)
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however, in practice, it is not clear what is meant by Ã−1, since a given discrete field d does not

contain enough information to reconstruct D perfectly. Instead, one must form an approximate

inverse, Ã−1
≈ , which maps a discrete field d to an approximation of D. The discrete permittivity

operator is then

M
−1
ε = L ◦ ε−1 ◦ Ã−1

≈ . (5.13)

Once M
−1
ε is formed, the error can be determined by comparing the following two calculations of

the discrete electric field (the two paths in Diagram 5.11) for arbitrary physical fields, D:

e′ ≡ L ◦ ε−1 ◦D (5.14)

e = M
−1
ε ◦ Ã ◦ D. (5.15)

The former is the reference calculation and the latter is the approximation. The error is then

error =
∥

∥e′ − e
∥

∥ . (5.16)

To illustrate the above concepts in a simple case, we show how the Yee algorithm gives local

second-order error for homogeneous isotropic dielectric (ε(x) = ε where ε is a scalar). To build

M
−1
ε , we start by defining Ã−1

≈ to yield a piecewise constant field DP(x), where, for the case of

the x-component, the value everywhere inside a grid cell box centered at [(i + 0.5)∆x, j∆y, k∆z]

is equal to dx|ijk (similar definitions are made for the y and z components, with boxes centered on

the grid field values). Equation (5.13) then gives

(

M
−1
ε ◦ d

)

x|ijk
=

(

L ◦ ε−1 ◦ Ã−1
≈ ◦ d

)

x|ijk

=
1

ε∆x

∫ (i+1)∆x

i∆x
DP

x (x) dx

=
1

ε
dx|ijk (5.17)

which, when applied to all vector components, gives M
−1
ε = ε−1

I where I is the identity matrix.

This is the discrete permittivity operator used by the Yee algorithm.

The error introduced by Eq. (5.17) is now determined using Eq. (5.16). An arbitrary D

field will be represented as a Taylor expansion about the point x0 = [(i + 0.5)∆x, j∆y, k∆z]. We
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concentrate on the error in the calculation of a single component ex|ijk from D. To first order in

(x − x0), Eq. (5.14) for a single component becomes

e′x|ijk ≡
(

L ◦ ε−1 ◦ D
)

x|ijk

=
1

ε∆x

∫

Lx|ijk

[

Dx

∣

∣

x0
+ ∇Dx

∣

∣

x0
· (x − x0) + · · ·

]

dx

=
1

ε
Dx

∣

∣

x0
+ O(∆x2) (5.18)

where the integration over the first-order term vanishes because x0 is at the midpoint of Lx|ijk.

Similarly, for Eq. (5.15),

ex|ijk =
(

M
−1
ε ◦ Ã ◦D

)

x|ijk

=
1

ε∆y∆z

∫

Ãx|ijk

[

Dx

∣

∣

x0
+ ∇Dx

∣

∣

x0
· (x − x0) + · · ·

]

dy dz

=
1

ε
Dx

∣

∣

x0
+ O(∆y2,∆z2) (5.19)

where this integration over the first-order term vanishes because x0 is also the midpoint of the area

Ãx|ijk. The error is clearly second-order since, for every component,

e′x|ijk − ex|ijk = O(∆x2,∆y2,∆z2). (5.20)

This second-order error is quite fortuitous, since the piecewise constant field we have defined by

Ã−1
≈ has first-order error at any given point (except for the midpoints of the integration regions

where the error would be second-order). The cooperation of the operators L and Ã is responsible

for this result; the collocation of the midpoints of the line and area integration regions ensures that

any first-order terms vanish in the above error analysis.

In the Introduction, we claimed that the algorithm of Ref. [58] (which is similar to our

algorithm) does not ensure second-order error in resonant frequencies; the above method shows

that the algorithm of Ref. [58] incurs resolution-independent error at dielectric boundaries, and

thus should give (at best) first-order error in resonant frequencies. A key step in the algorithm

of Ref. [58] involves an equally-weighted interpolation of dα|ijk, even across dielectric boundaries
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(where the goal is to find the integral of Dα(x) over some nonstandard finite area). While the

interpolation gives second-order error for continuous fields, it gives zeroth-order error at dielectric

boundaries because the fields are discontinuous. To see this, one can analyze the commutativity of

the following diagram,

D //

Ã
��

D

ÃI
��

d I
// dI

(5.21)

where I is the interpolation operator and the subscript I indicates discretization on nonstandard

finite integration areas (dI is the result of a translated version of Eq. (5.4)). To determine the error,

the reference calculation is, d′
I ≡ ÃI ◦D, whereas the interpolation algorithm gives, dI = I ◦Ã◦D.

If one uses the equally-weighted interpolation of Ref. [58] as I, then one finds that d′
I −dI = O(1)

for field values at dielectric boundaries, because of the discontinuity in D.

In this paper, our first goal is to find a permittivity operator that gives first-order error,

even at boundaries between tensor dielectric constants. Although our first attempt will yield an

operator with first-order error in homogeneous regions (as well as at boundaries), we will later

modify it to ensure second-order error in homogeneous regions while retaining first-order error on

boundaries. The work of Ref. [29] suggests that this will give second-order error in the calculation

of resonant frequencies since the first-order error is restricted to a dimension one less than that of

the simulation volume (the ratio of boundary grid cells to total simulation grid cells is O(∆x)).

5.3.2 A boundary algorithm for anisotropic dielectrics with first-order error

We will derive a first-order algorithm following the method described in Sec. 5.3.1 for ho-

mogeneous isotropic dielectric. First, we reformulate the problem to simplify the treatment of

dielectric boundary conditions. Second, we find an approximate inverse operator that will map a

given discrete field d to an approximation of a physical field that satisfies the dielectric boundary

conditions to first-order error. Finally, after the operator M
−1
ε is formed, the first-order error of

the algorithm is verified using Eq. (5.16).
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Reformulation

To simplify the treatment of the fields near a boundary, we use a coordinate system that

conforms to the dielectric interface. At each point on the surface, the local basis vectors are n̂

(the normal to the surface), t̂, and τ̂ (two orthogonal unit vectors tangent to the surface). In

this coordinate system, the field components, Dn, Et, and Eτ are continuous across a dielectric

boundary, since

n̂ · D
∣

∣

S+ = n̂ · D
∣

∣

S− (5.22)

n̂× E
∣

∣

S+ = n̂× E
∣

∣

S− (5.23)

where S is the interface and the +/− signs indicate one-sided limits. The missing components,

En, Dt, and Dτ are discontinuous across the boundary, but are completely determined from the

continuous components through D(x) = ε(x) · E(x). It will be easier to work with Dn, Et, and

Eτ whenever possible. To this end, as in Ref. [45], we define the pseudo-field, F ≡ [Dn, Et, Eτ ]
T,

which we can write in a coordinate-independent way without using t̂ or τ̂ (which are arbitrary for

smooth interfaces):

F ≡ n̂n̂ · D + (1 − n̂n̂) ·E = (n̂n̂ · ε + 1 − n̂n̂) ·E (5.24)

where n̂n̂ is the 3 × 3 projection matrix onto the normal.

The quantity F is especially useful for performing Taylor expansions at dielectric boundaries.

For example, consider a planar dielectric boundary with normal n̂. We can expand F about a point

x0 on the boundary to first order:

F(x) = F
∣

∣

x0
+ ∆xS · ∇SF

∣

∣

x0
+ ∆xn

(

Θ(∆xn)
∂F

∂n

∣

∣

∣

x
+
0

+ Θ(−∆xn)
∂F

∂n

∣

∣

∣

x
−
0

)

+ . . . (5.25)

where ∆xS is the tangential displacement from x0, ∆xn is the displacement in the normal direction

and Θ is the Heaviside step function. The above expansion naturally incorporates the proper

boundary conditions, Eqs. (5.22) and (5.23).
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We can include the F field in Diagram (5.11) in the following way,

D
ε−1

//

Ã

��

E

L

��

F
Γ

??�������Π

``@@@@@@@

d
M

−1
ε

// e

(5.26)

where Π and Γ are 3×3 matrices that give D(x) = Π(x) ·F(x) and E(x) = Γ(x) ·F(x), respectively,

and can be written as

Γ =
(

n̂n̂ · ε + (1 − n̂n̂)
)−1

(5.27)

= 1 + n̂n̂ · 1 − ε

n̂ · ε · n̂ (5.28)

Π = ε ·
(

n̂n̂ · ε + (1 − n̂n̂)
)−1

(5.29)

= ε ·
(

1 + n̂n̂ · 1 − ε

n̂ · ε · n̂

)

. (5.30)

where we have kept the expressions coordinate-independent. Clearly, Π · Γ−1 = ε, as required.

In analogy with Eq. (5.13), the discrete permittivity operator is constructed by,

M
−1
ε = L ◦ ε−1 ◦ Ã−1

≈ = L ◦ Γ ◦
(

Ã ◦ Π
)−1

≈
. (5.31)

The problem is reformulated in this way to simplify the calculations in the following sections,

because L ◦ Γ and Ã ◦ Π operate on F which is continuous across dielectric boundaries. Whereas

in the Yee example, the essential step was finding Ã−1
≈ , now the essential step is finding (Ã ◦Π)−1

≈ ,

which we describe in the following section.

Constructing an approximate F from d

Following the Yee example, we define an approximate inverse operator (Ã ◦Π)−1
≈ , that maps

d to a piecewise constant field, FP(x). This field is constant on each “subdomain,” Pijk; that is,

FP(x) = Fijk for x ∈ Pijk. Because the subdomains we eventually employ are not simple cubes,

the precise definition of the subdomains will be left until later in the derivation (for now, it can be

said that the volume of each subdomain is that of a usual grid cell).
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For dielectric objects with curved interfaces (no corners or edges), FP(x) will be a first-order

(in the size of the subdomains) approximation to the physical F(x) at any given point. This is

obvious for subdomains that lie within regions of uniform dielectric constant, where the electric

and displacement fields are continuous. More important, FP(x) is a first-order approximation to

F(x) within subdomains that are intersected by a dielectric boundary. For smooth boundaries,

the portion of the surface that intersects subdomain Pijk becomes exactly planar as the size of the

subdomain vanishes. Since a constant F (e.g. Fijk in Pijk) at a planar boundary is the zeroth order

term in the Taylor expansion of F(x), it follows that FP(x) approximates F(x) with first-order

error in the size of the subdomains.

The operator (Ã ◦ Π)−1
≈ acts on a given d to produce FP(x). As a first step in constructing

this operator, we look at the simpler calculation, d = Ã ◦Π ◦FP(x) for a single component, dx|ijk,

dx|ijk =
1

∆y∆z

∫

Ãx|ijk

x̂ · Π(x) ·FP(x) dy dz. (5.32)

If we assume that the integration region Ãx|ijk lies entirely within a single subdomain, say Pijk,

then the above becomes

dx|ijk = x̂ · Πx|ijk · Fijk (5.33)

where we have made the definition,

Πx|ijk ≡ 1

∆y∆z

∫

Ãx|ijk

Π(x) da. (5.34)

We now have a linear relationship between the single component dx|ijk and Fijk. However, we still

cannot form an inverse because the three vector components in Fijk to be determined are matched

by only one known dx|ijk. To invert, we will need to relate Fijk to two more knowns, dy|i′j′k′ and

dz|i′′j′′k′′ , preferably adjacent to dx|ijk.

At this point, it is helpful to define a “triplet” of grid values (see Fig. 5.2). A triplet will

always contain all three Cartesian vector components and will be defined relative to a regular grid

node. For example, d±±±
ijk will refer to a triplet of dα|ijk values adjacent to the node, Nijk, where

the first, second, and third ‘±’ signs indicate the relative positions (in the component directions)
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of the x, y, and z components, respectively. There are eight possible triplets for any given ijk. As

an explicit example, d+−+
ijk = dx|ijkx̂ + dy|ij−1kŷ + dz|ijkẑ.

Figure 5.2: Color online. Shown above are several examples of “triplets” of grid components. The
one grid component common to each of the above triplets is dx|ijk.

We would now like to associate Fijk with a triplet of dα|ijk values. As a representative

example, we will choose the triplet, d+++
ijk (the choice of ‘±±±’ is arbitrary). The one requirement

we must make before linking Fijk to the triplet d+++
ijk , is that all integration regions, Ã(x,y,z)|ijk

must lie within the subdomain Pijk. Then, Eq. (5.33) can be applied to each dα|ijk in d+++
ijk , and

the resulting system of equations can be written in matrix form,

d+++
ijk = Π+++

ijk ·Fijk (5.35)

where the 3 × 3 matrix Π+++
ijk is

Π+++
ijk = x̂x̂ · Πx|ijk + ŷŷ · Πy|ijk + ẑẑ · Πz|ijk. (5.36)

Our goal is to find FP(x) from d, so we really want the inverse of Eq. (5.35); this can now be

accomplished by inverting the 3 × 3 matrix, Π+++
ijk . In our tests of the algorithm, Π+++

ijk has never

been singular. Invertibility can be proven for interfaces between isotropic dielectrics, in which case

the determinant has the following analytical form,

∣

∣

∣
Π+++

ijk

∣

∣

∣
= n2

xε̄y|ijkε̄z|ijk + n2
yε̄z|ijkε̄x|ijk + n2

z ε̄x|ijkε̄y|ijk (5.37)
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where ε̄x|ijk ≡
∫

Ãx|ijk
ε(x)da/∆y∆z and nx = n̂ · x̂, etc. This determinant is nonzero and positive

since n2
x + n2

y + n2
z = 1 and ε̄α|ijk > 0.

We can now form the entire approximate inverse, (Ã ◦Π)−1
≈ , by inverting Eq. (5.35) for every

triplet of the discrete field:

FP(x) =
∑

ijk











Π+++
ijk

−1 · d+++
ijk if x ∈ Pijk

0 otherwise.

(5.38)

The above is just one of several approximate inverses, since the choice of triplet is arbitrary (as long

as the subdomains are defined appropriately). In fact, an inverse could be formed from a weighted

linear combination of all eight ‘±±±’ specifications for each ijk.

Constructing e from the approximate F

With the approximate inverse defined in the last section, we now complete the formation

of M
−1
ε via Eq. (5.31). We start by considering the calculation e = L ◦ Γ ◦ FP(x) for the single

component, ex|ijk,

ex|ijk =
1

∆x

∫

Lx|ijk

x̂ · Γ(x) · FP(x) dx. (5.39)

Just as in the previous section, we will assume that the integration region Lx|ijk lies within the

subdomain Pijk, so that the above becomes

ex|ijk = x̂ · Γx|ijk ·Fijk (5.40)

where

Γx|ijk ≡ 1

∆x

∫

Lx|ijk

Γ(x) dx. (5.41)

We would now like to associate the same triplet of eα|ijk values with Fijk as we did for dα|ijk

values in the last section (i.e. if d+++
ijk was linked with Fijk, then we should also link e+++

ijk with

Fijk). This requires that the integration regions L(x,y,z)|ijk all lie within subdomain Pijk. We can

then write (similar to Eq. (5.35)),

e+++
ijk = Γ+++

ijk ·Fijk (5.42)
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where Γ+++
ijk is

Γ+++
ijk = x̂x̂ · Γx|ijk + ŷŷ · Γy|ijk + ẑẑ · Γz|ijk. (5.43)

This completes the requirements for the subdomains; in summary, subdomain Pijk must contain,

(1) Ãx|ijk, Ãy|ijk, and Ãz|ijk so that Eq. (5.35) follows from Eq. (5.32), and

(2) Lx|ijk, Ly|ijk, and Lz|ijk so that Eq. (5.42) follows from Eq. (5.39).

An illustration of these subdomains in 2D is shown in Fig. 5.3.

Figure 5.3: Color online. When e+++
ijk , d+++

ijk , and Fijk are linked, the subdomains Pijk in 2D take
the shape shown in the above illustration. Notice that the subdomain Pijk contains all integration
regions associated with e+++

ijk and d+++
ijk .

Using Eqs. (5.35) and (5.42), we can eliminate Fijk altogether to find the operator Ξ+++
ijk

that calculates e+++
ijk from d+++

ijk :

e+++
ijk = Ξ+++

ijk · d+++
ijk ≡ Γ+++

ijk · Π+++
ijk

−1 · d+++
ijk . (5.44)

The action of the operator Ξ+++
ijk is illustrated in Fig. 5.4, which highlights the importance of the

finite integral representation (in which Ξ+++
ijk takes area-integrated quantities into line-integrated

quantities). When subdomain Pijk lies entirely within the same region of uniform tensor dielectric
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constant ε, we have Ξ+++
ijk = ε−1, which continues to give first-order error when ε is nondiagonal

because of the asymmetric distribution of the triplet components. When ε (and ε−1) is diagonal,

the usual Yee operation with second-order error is recovered (e.g. when the dielectric is isotropic

or has its principal axes aligned with the grid directions).

Figure 5.4: Color online. An illustration of the operator Ξ+++
ijk in 3D, which computes a triplet of

line-integrated electric field values from the same triplet of area-integrated displacement field values,
even in the presence of dielectric boundaries.

Finally, the discrete permittivity operator can be written as the 3× 3 block-diagonal matrix,

M
−1
ε = M

+++
ε

−1 ≡















. . .

Ξ+++
ijk

. . .















(5.45)

where each block is for a unique set of indices ijk. Again, the choice of ‘±±±’ is arbitrary; M
±±±
ε

−1

are all discrete permittivity matrices with first-order error (in practice, for the matrix to appear in

block-diagonal form as in Eq. (5.45), a very specific ordering of the components in the vectors e

and d is required).

In Sec. 5.3.1 we discussed how the only approximation in discretizing Maxwell’s equations

using the FIT is in the constitutive relations (that is, in finding e, h from d, b). Equation (5.45)

describes that relationship; its accuracy determines the accuracy of the entire algorithm. The
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formation of the Ξ+++
ijk operator so that Eq. (5.45) has O(∆x) error (instead of O(1) error)—even

on dielectric boundaries—is the most important advance of this work.

Error

We now demonstrate the first-order error of the algorithm, Eq. (5.45), by calculating a single

component of e at a dielectric boundary for an arbitrary field, F(x) (as in Sec. 5.3.1). We first take

the limit ∆x → 0, so that the local surface is a plane and the Taylor expansion (by Eq. (5.25)) to

zeroth-order is simply F(x) = F|x0
+ O(x − x0), where the expansion point is some point on the

boundary near the component, ex|ijk. Then, we perform the reference calculation, which gives

e′x|ijk ≡ (L ◦ Γ ◦ F(x))x|ijk (5.46)

= x̂ · Γx|ijk ·F
∣

∣

x0
+ O(∆x,∆y,∆z) (5.47)

The algorithm calculates

ex|ijk =
(

M
−1
ε ◦ Ã ◦ Π ◦ F(x)

)

x|ijk
(5.48)

=
(

Γ+++
ijk · Π+++

ijk
−1 · Π+++

ijk ·F
∣

∣

x0

)

x|ijk
+ O(∆x,∆y,∆z) (5.49)

= x̂ · Γx|ijk · F
∣

∣

x0
+ O(∆x,∆y,∆z) (5.50)

so that

e′x|ijk − ex|ijk = O(∆x,∆y,∆z) (5.51)

since the first-order parts do not necessarily cancel in this case. Therefore, our algorithm has

ensured the perfect calculation of the zeroth-order parts of the fields in the limit ∆x → 0, as

expected (i.e., in the limit of infinite wavelength and planar boundary, the algorithm is exact).

5.3.3 Restoring second-order error in bulk anisotropic dielectric regions

The algorithm described thus far has second-order error in bulk isotropic dielectric regions,

and first-order error in bulk anisotropic dielectric regions and on dielectric boundaries. However, we

have actually found eight different algorithms (each with a different ‘±±±’) with first-order error.
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We now show that a superposition of all eight algorithms can give second-order error in regions of

homogeneous anisotropic dielectric, while retaining first-order error on dielectric boundaries.

A second-order method for simulating bulk anisotropic dielectrics is

ex|ijk = ξxxdx|ijk+

1

4
ξxy

(

dy|ijk + dy|i+1,jk + dy|ij−1,k + dy|i+1,j−1,k

)

+ (5.52)

1

4
ξxz

(

dz|ijk + dz|i+1,jk + dz|ijk−1 + dz|i+1,jk−1

)

where ξ ≡ ε−1. The above is a centered interpolation of the nearest-neighbor components (Fig. 5.2

shows all components involved in the above) [79].

As mentioned in Sec. , the operators Ξ±±±
ijk reduce to ξ in regions of uniform dielectric con-

stant. Therefore, we can recover Eq. (5.52) for these regions using the following linear combination

of M
±±±
ε

−1
matrices:

M
−1
ε =

1

8

(

M
+++
ε

−1
+ M

++−
ε

−1
+ M

+−+
ε

−1
+ M

+−−
ε

−1
+ (5.53)

M
−++
ε

−1
+ M

−+−
ε

−1
+ M

−−+
ε

−1
+ M

−−−
ε

−1
)

.

The above now has second-order error in regions of uniform (possibly anisotropic) dielectric (where

it is the same as Eq. (5.52)), and retains first-order error on dielectric boundaries. The error

analysis of Sec. is still valid for the above, which simply describes a superposition of different

FP(x) fields, each guaranteeing first-order error in the electric and displacement fields at any given

point. Equation (5.53) is the permittivity operator we test in the next section. For a succinct

description of our algorithm, and the steps required to implement it, see the Appendix.

5.4 Numerical verification

We examined the second-order convergence of resonant frequencies for the above algorithm

in two different situations. First, we simulated a dielectric sphere inside of and concentric with a

spherical metal cavity. The dielectric sphere had an isotropic dielectric constant, admitting analytic

solutions for the comparison of cavity mode frequencies and surface fields. Next we simulated a
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photonic crystal of dielectric ellipsoids with anisotropic dielectric constant. The principal axes of

the ellipsoids and the dielectric tensor were oblique to the grid directions. Mode frequencies were

calculated by eigensolving the wave equation for the magnetic field,

C
T
M

−1
ε CM

−1
µ b = ω2b. (5.54)

where ω is the angular frequency and M−1
µ = µ−1

0 I. We used the trilinos software libraries for all

sparse matrix computations in these problems [32].

5.4.1 Convergence of resonant frequencies: dielectric in spherical cavity

The dielectric sphere had a radius a = 0.37m and the spherical metal cavity had a radius of

b = 0.49m. The isotropic dielectric constant of the dielectric sphere was ε = 10ε0 and the rest of

the cavity was at the vacuum permittivity ε0. To reduce any beneficial effects of grid symmetries,

the coincident centers of the spheres were offset from any grid nodes and the grid cells were given

length ratios ∆y/∆x = 5/4 and ∆z/∆x = 6/4.

Analytic mode frequencies for this cavity can be found by expressing the fields in terms of

vector spherical harmonics. The solutions come in two classes, transverse electric (TEnlm) and

transverse magnetic (TMnlm) where n is the radial wavenumber and l and m are the polar and

azimuthal wavenumbers, respectively. The mode frequencies are determined by the radial and polar

wavenumbers only, giving each frequency a (2l + 1)-fold degeneracy [37].

To simulate the curved metallic boundary, we implemented the Dey-Mittra algorithm which

also exhibits second-order convergence for resonant frequencies [15, 61]. As a side-note, the Dey-

Mittra algorithm introduces several complications to standard numerical eigensolving routines. The

methods we eventually employed to circumvent these difficulties are beyond the scope of this paper.

However, we will be detailing these methods in a forthcoming publication.

Figure 5.5 shows the second-order convergence of the lowest five cavity mode frequencies as

a function of the number of cells (in the z-direction) that resolve one vacuum wavelength (the

vacuum wavelength is λvac = c/f where f is the reference eigenfrequency). Since ∆z > ∆x,∆y,
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Figure 5.5: Color online. Second-order convergence of cavity eigenmode frequencies for isotropic
dielectric sphere inside and concentric with a perfectly conducting spherical metal cavity. λvac is
the wavelength of each mode in vacuum (λvac = c/f where f is the eigenfrequency).
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Figure 5.6: Color online. Richardson extrapolation of cavity eigenfrequencies found with second-
order algorithm leads to roughly third-order convergence. λvac is the wavelength of each mode in
vacuum (λvac = c/f where f is the eigenfrequency). The resolution of each datapoint refers to the
finer of the two resolutions used to Richardson extrapolate.
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the resolution in the z direction should be the dominant source of error. Because of the smooth

convergence, we can also use Richardson extrapolation on neighboring frequency values to achieve

roughly third-order convergence as shown in Fig. 5.6.

5.4.2 Convergence of surface fields: dielectric in spherical cavity

Electric fields near the surface of the dielectric sphere were calculated and compared against

analytic solutions. For these simulations, parity symmetry was used to reduce the simulation do-

main to the positive x, y, and z octant (the spheres were centered at the origin). Grid cells were

cubic (∆x = ∆y = ∆z). To compare simulations of different resolutions against the analytic solu-

tion, we compared field values interpolated to a number of points distributed throughout the region

of interest. Since interpolation near the dielectric interface is equivocal and nontrivial (requiring a

method based on the principles outlined in section 3.1 or one-sided extrapolation from the bulk),

we defined the region of interest to be at least ±3∆x from the interface. This ensured that, using

a trilinear interpolation scheme, none of the integration regions associated with grid field values

used in the interpolation were cut by the dielectric boundary.

The relative ℓp errors of the computed eigenmodes are,

‖∆E‖p/‖E‖p =

(

∑

i

∑3
α=1

∣

∣Eα(xi) −
∑

m cmE′
m,α(xi)

∣

∣

p
)1/p

(

∑

i

∑3
α=1

∣

∣Eα(xi)
∣

∣

p
)1/p

(5.55)

where the xi are some set of test points, α is the vector component, Eα(x) is a component of an

analytic eigenmode evaluated at x, and E′
m,α(x) is a component of the mth computed eigenmode

interpolated to the point x. For each analytic eigenmode, we chose cm to minimize the ℓ2 error of

the bulk electric fields, where the bulk is defined by the volume

Vbulk = {x : 0 < |x| < (a − 3∆x), (a + 3∆x) < |x| < (b − 3∆x)} (5.56)

(as before, a = 0.37m is the dielectric radius and b = 0.49m is the metal radius). For l2,bulk,

then, the test points xi were all contained in Vbulk (we used approximately 105 bulk test points,
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equally spaced, for each eigenmode and resolution). The cm were found by a linear least squares

minimization.

The cm that minimize the bulk errors were then used to calculate the error of the surface

electric fields for the ℓ1, ℓ2, and ℓ∞ norms. Figure 5.7 shows the convergence for electric fields

evaluated on two shells a distance ±3∆x from the boundary (note that these shells get physically

closer to the boundary as the resolution increases). The same (approximately 5000) surface test

points were used at each resolution. The nearly second-order convergence of the surface fields is

unexpected since our dielectric update incurs first-order error on dielectric boundaries. It is possible

that first-order behavior occurs at resolutions higher than those shown here.

5.4.3 Convergence of resonant frequencies for photonic crystal of anisotropic

dielectric ellipsoids

The photonic crystal was a simple orthorhombic structure with lattice vectors a1 = (1.2, 0, 0)m,

a2 = (0, 1.5, 0)m, and a3 = (0, 0, 1.8)m. The computational domain was the unit cell fitted with

periodic boundary conditions. For these simulations, Nx = Ny = Nz, and so the grid cell length

ratios were again ∆y/∆x = 5/4 and ∆z/∆x = 6/4. The center of the ellipsoid was again offset

from any grid nodes. The semimajor axes of the ellipsoid were aell = 0.45m, bell = 0.60m, and

cell = 0.75m. The ellipsoid axes aell, bell, and cell were first aligned with a1, a2, and a3, respectively,

then the ellipsoid was rotated first about the x-axis by π/8 then about the y-axis by π/9 and finally

about the z-axis by π/10. The tensor dielectric inside the ellipsoids was,

εin = R ·















8ε0

10ε0

12ε0















· RT (5.57)

where R = Rz(−π/6) ·Ry(−π/5) ·Rx(−π/4) and Rα(θ) is the transformation matrix for a rotation

about the α-axis by an angle θ in the right-handed sense. The dielectric everywhere else was set

to vacuum permittivity, ε0.

Figure 5.8 shows the second-order convergence of our algorithm in this more general case.



153

Figure 5.7: Color online. Convergence of surface electric fields at a distance of ±3∆x from the
dielectric boundary for the concentric spheres problem. λvac is the wavelength of each mode in
vacuum (λvac = c/f where f is the eigenfrequency).
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Figure 5.8: Color online. Convergence of the lowest 9 band frequencies for the photonic crystal
of ellipsoids with anisotropic dielectric constant. λvac is the wavelength of each mode in vacuum
(λvac = c/f where f is the eigenfrequency).
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Band Frequency (units of c/|a1|)

1 0.32300245

2 0.35626134

3 0.37826015

4 0.38601562

5 0.40978571

6 0.42944672

7 0.44031804

8 0.47125309

9 0.48171559

Table 5.1: Normalized reference frequencies used for the photonic crystal convergence plot in
Fig. 5.8. These are the Richardson extrapolated frequencies from simulations at resolutions of
N = 96 and N = 128 and should be accurate up to the 6th decimal place. (c is the speed of light in
vacuum).

Because no analytic solution exists for this problem, the reference frequencies were calculated by

Richardson extrapolating our own results at N = 96 and N = 128, which, based on the isotropic

results shown above, would give relative errors of ∼ 10−6 (these frequencies are given in Table 5.1).

5.5 Conclusions and future work

We have described in this paper an algorithm for simulating discontinuous anisotropic di-

electrics with second-order error in resonant frequencies. The algorithm is local, can be used

everywhere in a simulation, and reduces to the second-order error algorithms ([87] and [79]) away

from the boundaries. The algorithm relies on the extra order of accuracy gained by restricting a

local update that is less accurate by one order to a (d−1)-dimensional surface in the d-dimensional

simulation [29]. While we did not prove that this phenomenon is always true, the second-order

convergence shown in our results convincingly supports it. The main advance of this work is the

systematic approach to accuracy. Using the FIT, the important errors were condensed into a single

step: the discrete permittivity relation. Then, to guarantee at most first-order error on dielec-

tric boundaries, the discrete permittivity operator was forced to be exact in the limit of infinite

wavelength; previous finite-difference algorithms have failed to guarantee this first-order error.

Dielectric corners/edges were not discussed in this paper, but are an important aspect of
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photonics computation and present a significant challenge to finite-difference algorithms. Because

our algorithm is designed to simulate finite field discontinuities, not singularities (electric fields

diverge at dielectric corners), the results of simulating dielectric corners with our algorithm would

likely suffer the same inaccuracies as detailed in Ref. [22]. However, the principles of Section 5.3.1

(specifically Diagram 5.11), should provide the necessary framework for attacking these inaccura-

cies. First, the asymptotic forms of the fields at the corner need to be determined. Second, a

discretization scheme is chosen, e.g. the FIT. Finally, Eq. (5.13) is used to determine the dielectric

corner update based on an approximate inverse of the discretization operator (e.g. Ã for the FIT);

the approximate inverse is required to give the exact asymptotic form for the electric field at the

corner in the limit ∆x → 0. We leave the details to further investigations.

For stability of a time-domain scheme, the matrix C
T

M
−1
ε CM

−1
µ must have all real eigenvalues

and be positive semi-definite. Since Mµ = µ0I, a symmetric M
−1
ε would ensure real eigenvalues. Un-

fortunately, the proposed algorithm does not guarantee symmetry of M
−1
ε . Indeed, we have found

complex eigenfrequencies upon solving Eq. (5.54); they occur mostly in the high-frequency spec-

trum (complex eigenfrequencies may also occur lower in the spectrum if degenerate or very nearly

degenerate modes exist, but the imaginary part of these eigenfrequencies tends to be insignificant).

As a consequence, this algorithm cannot be used in the time domain with stability guaranteed.

Nevertheless, the algorithm is still very useful as an eigensolver for finding accurate, well-resolved

modes. Work is currently underway to reformulate the method for time-domain stability without

sacrificing our robust treatment of accuracy.
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Appendix A

Iris perturbation theory

Slater perturbation theory [71, 24, 77] relates the change in resonant frequency to the change

in electromagnetic energy; specifically

ω̃ − ω

ω
=

1

U
(∆UB − ∆UE) (A.1)

where ω̃ is the perturbed frequency, ω is the unperturbed frequency, U is the stored energy of the

unperturbed mode, and ∆UB and ∆UE are the changes in the time-averaged magnetic and electric

energies. The quantities ω and U are known; the energy differences are calculated as follows using

the theory of Bethe [6].

Bethe’s theory says that the perturbing effects of apertures (with dimensions smaller than

the wavelength in question) in cavity walls can be approximated by placing electric and magnetic

dipoles at the centers of these apertures [6, 12, 24], where the strengths and directions of the dipoles

are determined by the unperturbed cavity fields. For the special case of the TM010 mode in the

periodic pillbox of Fig. 2.9, this technique amounts to placing an electric dipole at each end of the

iris equal to [12]

P(1,2) = −2

3
a3ε0E

(1,2)(ρ = 0) (A.2)

where the superscripts 1 and 2 refer to the cavities on the left and right of the iris, respectively,

and we let E(1,2)(ρ = 0) = E
(1,2)
0 ẑ be the on-axis unperturbed electric field in each cavity.

The perturbative effect of the dipoles is determined by their interaction with the field differ-

ences. To understand this, consider an infinitesimally thin conducting wall dividing two identical
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cavities. If an aperture is opened in the divider, the symmetric coupled mode satisfies the same

boundary conditions enforced by the aperture-less divider; thus, the resonant frequency is un-

changed. The antisymmetric mode, however, will have a shifted frequency since the fields must

reverse sign (without discontinuity) through the aperture. The time-averaged electric energy change

is then given by [24]

∆UE =
1

4

(

P(1) −P(2)
)

·
(

E(1) − E(2)
)

(A.3)

= −1

3
a3ε0E

2
0

(

1 − e−αd cos φ
)

(A.4)

where the exponential factor comes from the cross terms since the fields decay exponentially through

the iris (the iris can be considered as a waveguide with a cutoff frequency; the TM010 frequency

falls well below this cutoff) and the cosine factor is due to the phase advance between cavities. The

decay factor in the exponential is derived based on the cutoff frequency of the TM01 cylindrical

waveguide mode, and is

α =

√

2.4052

a
− ω̃2

c2
. (A.5)

Since the on-axis magnetic field for the unperturbed TM010 mode is zero, we have ∆UB = 0.

The frequency perturbation is now

ω̃ − ω

ω
=

1

3

a3ε0E
2
0

U

(

1 − e−αd cos φ
)

. (A.6)

The goal is to predict ω given a target frequency ω̃ (in our case, this is usually ω̃/2π = 12 GHz).

For the unperturbed TM010 mode, the energy scales as U ∼ λ2L = c2L/ω2. Thus, we rewrite the

above equation as

ω̃ − ω

ω
= ω2 1

3

a3

c2L
Γ

(

1 − e−αd cos φ
)

. (A.7)

where Γ =
c2Lε0E2

0

ω2U
is a dimensionless constant purely determined by the TM010 field pattern.

Furthermore, since the TM010 fields are independent of z, Γ can be written

Γ =
2c2ε0E

2
0

ω2
∫

ε|E|2 dx dy
. (A.8)
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Equation A.7 is a cubic equation that can be solved for ω. The result will determine the transverse

scaling of the unperturbed cavity needed to produce the target TM010 frequency, ω̃, after the

addition of the irises (Γ will be used to transversely scale our 3D photonic crystal structures based

on 2D calculations).



Appendix B

Sapphire guided modes

With an anisotropic and spatially-dependent dielectric constant, Maxwell’s equations read

ε0ε · ∂tE = ∇× H (B.1)

−µ0∂tH = ∇× E (B.2)

where ε is the relative permittivity tensor. We restrict ε to have the form

ε =















ε⊥

ε⊥

εzz















(B.3)

where the scalars ε⊥ and εzz vary in the x and y (transverse) directions only. In this case, the

solutions take the form,

E(x, t) = E(x⊥)eikz−iωt (B.4)

H(x, t) = H(x⊥)eikz−iωt (B.5)

Assuming the above forms and splitting each field into its z and transverse component,

Ampere’s equation becomes

−iωε0εzzEz ẑ = ∇⊥ × H⊥ (B.6)

−iωε0ε⊥E⊥ = ikẑ × H⊥ − ẑ ×∇⊥Hz (B.7)



168

and Faraday’s equation becomes

iωµ0Hzẑ = ∇⊥ × E⊥ (B.8)

iωµ0H⊥ = ikẑ × E⊥ − ẑ ×∇⊥Ez (B.9)

where E,Hz, E,H⊥ depend on only x⊥.

Applying the transverse curl to B.7 and using ∇ ·H = 0 gives

−iωε0∇⊥ × E⊥ = ik∇⊥ × 1

ε⊥
ẑ ×H⊥ (B.10)

=

(

∇⊥
1

ε⊥

)

· (ikH⊥ −∇⊥Hz) −
1

ε⊥
(∇2

⊥ − k2)Hz (B.11)

Substituion into B.8 yields

(

∇2
⊥ +

ω2

c2
ε⊥ − k2

)

Hz = ε⊥

(

∇⊥
1

ε⊥

)

· (ikH⊥ −∇⊥Hz) (B.12)

The same is done for Ez, only that the divergence condition is slightly complicated by the

spatially-varying dielectric; it reads

∇⊥ ·E⊥ = −ik
εzz

ε⊥
Ez −

1

ε⊥
(∇⊥ε⊥) ·E⊥. (B.13)

The analogue to B.12 for Ez using the above is then

(

∇2
⊥ +

ω2

c2
εzz − k2 εzz

ε⊥

)

Ez = −ik
1

ε⊥
(∇⊥ε⊥) ·E⊥ (B.14)

Further substitutions can eliminate E⊥ and H⊥ in terms of both Ez and Hz; that is, the

transverse components are determined entirely by the z-components. These relationships read

E⊥ =
i

ε⊥ω2/c2 − k2
(k∇⊥Ez − ωµ0ẑ ×∇⊥Hz) (B.15)

H⊥ =
i

ε⊥ω2/c2 − k2
(k∇⊥Hz + ωε0ε⊥ẑ ×∇⊥Ez) (B.16)

We now further restrict the problem to that of an infinite dielectric cylinder of radius a with

its axis along z centered transversely at x = y = 0. Cylindrical coordinates are used, where ρ is
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the distance from the origin and φ is the azimuth. The dielectric inside (outside) will be given by

εin (εout). Let

γ2
e =

ω2

c2
εzz − k2 εzz

ε⊥
(B.17)

γ2
h =

ω2

c2
ε⊥ − k2 (B.18)

and notice that both have the same root at k = ε⊥ω/c. The sign of γe,h determines whether the

solutions oscillate or decay in space. We are interested in modes trapped within the dielectric

cylinder; thus, γe,h > 0 when ρ < a and γe,h < 0 when ρ > a. Let β2
e,h = −γ2

e,h outside the cylinder.

Inside and outside the cylinder, the right-hand sides of B.12 and B.14 are zero. For guided

modes, the solutions inside are oscillatory and the take the form

Ez = Ae,mJm(γeρ)eimφ (B.19)

Hz = Ah,mJm(γhρ)eimφ (B.20)

while the solutions outside are purely decaying (with increasing ρ):

Ez = Be,mKm(βeρ)eimφ (B.21)

Hz = Bh,mKm(βhρ)eimφ. (B.22)

When m = 0, the solutions decouple into TM and TE modes; when m > 0, both Ez and Hz are

nonzero.

Matching fields at the interface at ρ = a gives an eigenvalue equation to be solved for the

frequency as a function of the wave vector k. Four matching conditions are required to determine

the constants Ae,m, Ah,m, Be,m, and Bh,m. The simplest matching conditions enforce the continuity

of Ez and Hz:

Ae,mJm(γea) = Be,mKm(βea) (B.23)

Ah,mJm(γha) = Bh,mKm(βha). (B.24)
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Next, we enforce the continuity of Dρ. Using B.15, one obtains for both regions:

Din
ρ =

iε0ε
in
⊥

γ2
h

(

Ae,mkγeJ
′
m(γea) + Ah,m

imωµ0

a
Jm(γha)

)

(B.25)

Dout
ρ = − iε0ε

out
⊥

β2
h

(

Be,mkβeK
′
m(βea) + Bh,m

imωµ0

a
Km(βha)

)

. (B.26)

Finally, the continuity of Eφ is enough to solve for the coefficients. The expressions for Eφ are:

Ein
φ =

i

γ2
h

(

Ae,m
imk

a
Jm(γea) − Ah,mωµ0γhJ ′

m(γha)

)

(B.27)

Eout
φ = − i

β2
h

(

Be,m
imk

a
Km(βea) − Bh,mωµ0βhK ′

m(βha)

)

(B.28)

Combining B.23–B.28, one obtains the eigenvalue equation:

(

εin
⊥xe

x2
h

J ′
m(xe)

Jm(xe)
+

εout
⊥ ye

y2
h

K ′
m(ye)

Km(ye)

)(

1

xh

J ′
m(xh)

Jm(xh)
+

1

yh

K ′
m(yh)

Km(yh)

)

= m2

(

εin
⊥

x2
h

+
εout
⊥

y2
h

)(

1

x2
h

+
1

y2
h

)

(B.29)

where, for brevity, we have introduced

x2
e = γ2

ea2 =
ω2a2

c2
εin
zz − k2a2 εin

zz

εin
⊥

(B.30)

x2
h = γ2

ha2 =
ω2a2

c2
εin
⊥ − k2a2 (B.31)

y2
e = β2

ea2 = k2a2 εout
zz

εout
⊥

− ω2a2

c2
εout
zz (B.32)

y2
h = β2

ha2 = k2a2 − ω2a2

c2
εout
⊥ . (B.33)

The right-hand side of B.29 is always positive; therefore, the quantities in parentheses on the left-

hand side are either both positive or both negative. When both are negative (positive), the modes

are called HEmn (EHmn) and are characterized by a dominant Ez (Hz) component.

In the case of m = 0, Ez and Hz decouple and the eigenvalue equation is simplified greatly.

For TM modes it is

εin
⊥xe

x2
h

J ′
0(xe)

J0(xe)
+

εout
⊥ ye

y2
h

K ′
0(ye)

K0(ye)
= 0. (B.34)

Cutoff frequencies for the various modes are determined by solving the eigenvalue equation

in the limit βe,h → 0, which indicates weak confinement (as βe,h goes through zero, the fields
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outside the cylinder go from decaying to radiating). For example, from B.34, the lowest TM cutoff

frequency is given by the smallest root of the equation

J0(xe) = 0, (B.35)

i.e., xe = 2.405. Using ye = 0, the cutoff frequency is

ω01,cutoff =
2.405c

a

√

εin
zz −

εout
⊥ εin

zz

εin
⊥

. (B.36)

For m = 1, similar analysis reveals that the HE11 has no cutoff frequency [37].



Appendix C

Prescription for algorithm

To ease the implementation of our algorithm, the following is an outline of the steps necessary

to form the discrete permittivity matrix, M
−1
ε .

For every grid node, Nijk, one needs to calculate the eight 3× 3 matrices, Ξ±±±
ijk , in order to

form M
−1
ε according to Eqs. (5.45) and (5.53). As a representative example, consider building the

matrix, Ξ+++
ijk :

(1) Determine if any of the integration regions associated with the triplets of grid values e+++
ijk

and d+++
ijk (see Sec. and Fig. 5.2) are cut by a dielectric boundary (in this case, these

integration regions are: Lx|ijk, Ly|ijk, Lz|ijk, Ãx|ijk, Ãy|ijk, and Ãz|ijk. See Sec. 5.2 and

Fig. 5.1).

(2) If no integration regions are cut by a boundary, use the local value of ε−1 as Ξ+++
ijk and

begin the calculation of the next Ξ±±±
ijk matrix.

(3) Else, if any of the above integration regions are cut by a boundary, form Ξ+++
ijk according

to Eq. (5.44):

(a) Find the local normal to the interface, n̂.

(b) Calculate the matrices Π and Γ for both sides of the interface using n̂ and Eqs. (5.29)

and (5.27) (use Cartesian coordinates: x̂ = [1, 0, 0]T, etc.).

(c) Calculate the averages, Πx|ijk, Πy|ijk, and Πz|ijk according to Eq. (5.34). (For sharp
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interfaces between homogeneous dielectrics, this is simply, fΠ(1) + (1 − f)Π(2) where

f is the fraction of an integration region inside dielectric ε(1).)

(d) Construct and invert the 3 × 3 matrix, Π+++
ijk , using Eq. (5.36).

(e) Calculate the averages, Γx|ijk, Γy|ijk, and Γz|ijk according to Eq. (5.41).

(f) Construct Γ+++
ijk according to Eq. (5.43).

(g) Multiply to get Ξ+++
ijk = Γ+++

ijk Π+++
ijk

−1
.


