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Efficient nonlinear optical devices are designed and demonstrated in “photonic molecule”-

like coupled-cavity resonator systems on a semiconductor chip. A coupled-cavity resonator may

be designed to support distributed supermodes, and to allow independent control of the resonant

frequency and linewidth of each supermode. Such control allows reduction of dispersion without

compromising effective nonlinearity in the resonator, as well as the design of anisotropic output

coupling or radiation that allows optimized nonlinear functions. Therefore this resonator manifests

itself as a favorable platform for building nonlinear devices including optical parametric wavelength

converters and oscillators based on four-wave mixing that call for different couplings to the signal,

pump and idler modes. A physical model based on coupled-mode theory describes all relevant linear

and nonlinear processes in triply-resonant microcavities, and a generalization of the usual nonlinear

figure of merit is proposed to evaluate the effects of distributed supermodes on nonlinear conver-

sion efficiency in such devices. Experimental work is presented that demonstrates coupled cavity

devices for wavelength conversion in crystalline silicon, where two-photon absorption sets conver-

sion efficiency limitations. In addition, an investigation of deposition conditions of hydrogenated

amorphous silicon is described where amorphous silicon allows for a higher nonlinear figure of merit

than crystalline silicon, promising increased performance in such devices. More generally, mode

interference and coupling in coupled-cavity resonators, as a unique degree of freedom in integrated

optics, is explored through designs of linear devices including efficient optical filters, wavelength

converters, and modulators.
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Chapter 1

Introduction

1.1 Overview of integrated photonics

Integrated photonics is the study of constructing integrated micro-scale optical devices to

fulfil various photonic functionalities. It wins over the conventional bulk optics in a few aspects.

First of all, on-chip optical devices have small footprint, and thousands of them can be densely

integrated to realize complex optical functionalities. In addition, devices fabricated on a solid chip

have stable performance with less sensitivity to environmental vibrations compared to free optics.

There are also unique degrees of freedom in designing optical devices on a chip [3, 4, 5]. For example,

microresonators have large free spectral range and wavelength-dependent coupling to external ports,

which are useful properties in designing single-mode lasers [6] and optical parametric oscillators

[1], respectively. Another inherent advantage of building optical devices on a semiconductor chip is

the capability of integration with the mature advanced CMOS electronics [7, 8]. Complex electric

circuits can be easily fabricated next to the photonic devices, and utilized to control photonic

devices with high speed and low energy cost.

Integrated photonics, especially silicon photonics, has undergone rapid advances in recent

years, and an abundance of linear optical devices have been developed. Such devices include

grating couplers for fiber-to-chip optical coupling, low-loss optical waveguides for routing of light,

beam splitter and combiners, polarization rotating devices, optical filters for selecting optical signals

according to their wavelengths, optical modulators for encoding information to light carriers, optical

detectors based on linear absorption for decoding optical signals and thermal heaters for post-
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fabrication tuning, wavelength-selective switches and optical buffers based on delay lines and so on.

Most importantly, in addition to on-chip optical signal processing, integrated optics can also be

employed as a platform for cross-discipline research, such as RF signal processing, optical sensors,

optical microfluidics, opto-mechanics taking advantage of the mature MEMS technology.

However, as one important building element of integrated photonics, an integrated light

source is still missing in silicon photonics. Although on-chip light sources can be built from III-

V materials with optical gain at telecom bands, and then heterogeneously integrated onto silicon

chips where optical signals are processed, it is desirable to have light sources on the silicon chip

for reduced fabrication complexity and cost, enhanced signal processing speed and in cases when

chip bonding and deposition of exotic gain materials are not feasible. Although on-chip lasers

have been directly built on silicon using Raman gain [9], the demonstrated lasing wavelength range

was limited. One alternative feasible approach for generating coherent light on chip is to make

use of optical parametric gain which is characterized with broad gain bandwidth. Moreover, on-

chip optical parametric oscillators can produce new wavelengths from a single wavelength of input

pump light, and even optical pulses of coherent comb light from a CW pump, for the applications

of e.g. sensing[10], photonic A/D conversion etc. In addition, all-optical control is desired in many

ultrafast optical devices such as switches [11] and logic gates for optical computing [12]. All these

applications motivate the study of integrated nonlinear optics.

1.2 Overview of integrated nonlinear optics

A broad definition of material optical nonlinearity is the change of the optical property of the

material due to the optical field itself. Since the optical property of a material, characterized by the

complex refractive index, is affected by factors such as temperature, material density and vibration

of constituent molecules, an optical field can indirectly change the refractive index. For example,

photons can be absorbed resulting in material temperature change (called thermal nonlinearity).

And in stimulated Brillouin scattering and stimulated Raman scattering, photons are scattered by

acoustic and optical phonons, respectively, with the phonon density amplified by optical intensity.
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In this thesis, focus is put on the direct optical nonlinearity characterized by the susceptibility due

to bound electrons, χ.

Specifically, the direct reaction of a material to the light field is conveniently described by

the polarization, P(t), which is a function of the vector optical field, E(t):

P(t) = ε0

[
χ

(1)
E(t) + χ

(2)
E2(t) + χ

(3)
E3(t) + · · ·

]
(1.1)

where ε0 is the permittivity of free space, χ
(1)

is the linear optical susceptibility, χ
(2)

and χ
(3)

are

the second- and third-order nonlinear optical susceptibility. For most centrosymmetric crystals and

amorphous materials used in CMOS chip fabrication, χ
(2)

is 0 due to the existence of inversion

symmetry. Therefore the lowest-order, dominant nonlinear susceptibility is χ
(3)

. Its real part is

related to nonlinear phase shift (φNL), which is the origin of new optical frequency components

generation. Its imaginary part denotes two-photon absorption rate, and is detrimental in most

nonlinear optical devices (except in photo-detectors based on two-photon absorption [13]). Usually

a large ratio of real versus imaginary part of χ
(3)

is preferred. Notably, the absolute value of χ
(3)

is relevant in some nonlinear processes such as four-wave mixing (see Appendix A.1).

The strength of third-order optical nonlinearity in an optical device is usually characterized by

the beneficial nonlinear phase shift φNL ≡ ∆nkoLeff , where the nonlinear index change is intensity

dependent, ∆n = n2I. The Kerr coefficient, n2, is related to the real part of χ
(3)

(see Eq. A.19).

The optical nonlinearity is greatly enhanced in nanowaveguides thanks to the enhanced optical

intensity of strongly confined modes. Common semiconductor materials such as silicon and silicon

nitride also have greater Kerr coefficients than that of silicon oxide in optical fiber.

The optical nonlinearity can be further enhanced in optical microcavities due to further

resonant enhancement of optical intensity [14]. Thus it is desirable to build nonlinear devices

based on microresonators where the interacting waves are resonant. For devices based on four-wave

mixing (FWM), a minimum of three resonant modes are needed if two of the wave frequencies are

chosen to be degenerate. This thesis focuses on degenerate-pump FWM in triply-resonant cavities.

Efficient optical nonlinear interaction also demands phase matching among interacting waves.
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Phase mismatch is mainly dependent on mode dispersion, which is dominated by the waveguiding

effect in micro-structures. Unfortunately mode dispersion is substantial in optical waveguides and

microcavities due to the strong field confinement. To minimize mode dispersion, the dimensions of

waveguide cross sections have to be carefully chosen [15], putting constraint on fabrication accuracy.

However, mode dispersion can be easily controlled in coupled-cavity resonators as explained in

Chapter 2.

A coupled-cavity resonator system can also have different linewidth for its compound reso-

nant modes based on different coupling rates to bus waveguides, and therefore manifest itself as

a favorable platform for building several nonlinear devices including optical parametric oscillators,

wavelength converters, correlated photo pair quantum light sources and so on. For example, opti-

cal parametric wavelength converters prefer a weak critical coupling to the pump resonance and a

strong coupling to the signal resonance, in order to simultaneously provide maximum parametric

gain and allow for a large signal bandwidth. In addition, the generated weak signal can be separated

from the strong pump light by design in triple-cavity resonators.

Optical nonlinearity in optical waveguides and single microcavities has enabled on-chip, coher-

ent light generation for many classical photonics applications, including light sources at wavelengths

where gain media are underdeveloped, optical frequency comb generation [16, 17], and optical data

stream wavelength conversion [14]. It has also enabled ultrafast all-optical switching [11] for optical

communication as well as optical logic gates for optical computing [12]. Moreover, on-chip optical

nonlinearity has been employed to study quantum optics, including for heralded single photon [18]

and correlated photon pair generation [19, 20]. It is of interest to build these nonlinear devices on

coupled-cavity resonator systems to take advantage of their unique mode structures.

1.3 Outline of the thesis

In this thesis a few nonlinear optical devices based on coupled-cavity resonator systems are

designed and demonstrated. Chapter 2 describes the coupled-cavity resonator systems which have

unique compound mode structures for efficient on-chip nonlinear interactions. The design of the
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constituent microcavity is summarized, with emphasis on the commonly used microring cavities

and photonic crystal beam cavities. Low-loss directional couplers are critical for both cavity-cavity

coupling and cavity-waveguide coupling, and a few design guidelines are provided. The complex

resonance modes of both dual-cavity and triple-cavity resonators are examined, and their special

properties for controlling dispersion and tailoring nonlinear interaction processes are explained.

One essential building block of all integrated nonlinear optical devices is nonlinear materials,

and Chapter 3 is devoted to describing the fabrication and characterization of a common nonlinear

material, hydrogenated amorphous silicon (a-Si:H). Specifically, the conditions for growing a-Si:H

films are optimized to reduce linear and nonlinear loss. The linear refractive index, linear loss, Kerr

coefficient and nonlinear absorption rate of a-Si:H samples are measured, and a nonlinear two-state

absorption model is utilized to explain the observed non-instantaneous nonlinear absorption.

In Chapter 4, a general physical model for integrated nonlinear optics is built based on the

coupled-mode theory. This model uses degenerate four-wave mixing in triply-resonant cavities as an

example, and includes all linear and nonlinear processes relevant for the design of efficient optical

devices. Such processes include the parasitic two-photon absorption and free carrier absorption

relevant in low-bandgap materials like crystalline silicon. In the model, a vector of effective figures

of merit are also introduced to take into account the distributed mode profile of coupled-cavity

resonators.

Chapter 5 presents both theoretical and experimental studies on optical parametric wave-

length conversion (OPWC) based on stimulated four-wave mixing. The theoretical investigation

summarizes the design for efficient OPWC by controlling resonance detuning, phase mismatch and

coupling rates. The experiment demonstration shows OPWC in silicon triple-ring resonators, where

the pump and signal light can be separately excited, and the generated output light can be isolated

from the strong pump light in a separate bus waveguide. The energy cost for data bit conversion

using OPWC is also estimated.

Chapter 6 explores the design of optical parametric oscillators (OPO) based on triply-resonant

systems, and shows a triple-cavity resonator can be used to realize an efficient OPO by taking
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advantage of its unique resonance modes with mode-dependent linewidth. The effects of nonlinear

two-photon absorption and free carrier absorption are considered, and expressions of maximum

achievable efficiency, oscillation threshold and optimum coupling rates are presented for OPOs

built in some example nonlinear materials.



Chapter 2

Coupled-cavity resonator systems for nonlinear optics

This chapter describes the compound mode structures of coupled-cavity resonator systems,

with an emphasis on their unique advantages for on-chip nonlinear optical interactions. First,

design of the constituent microcavity is described, using microring and photonic crystal cavities as

examples. Next, the effects of cavity-bus and cavity-cavity coupling losses on optical nonlinearity

is presented, and several low-loss coupler designs are summarized. Finally, the compound modes

of coupled-cavity resonator systems are examined in detail, including mode frequency splitting,

dispersion engineering and mode-selective coupling.

2.1 Microcavity

In an optical resonator, light of certain wavelengths is enhanced due to constructive inter-

ference, while light of other wavelengths is prohibited due to destructive interference. As a result,

a resonator has enhanced density of optical states at discrete photon energies, and can be used

to build lasers, filters and interferometers. A microcavity usually refers to a dielectric cavity with

size smaller than 1 mm, and thus has a larger free spectral range (FSR) compared to macroscopic

cavities, which is useful, say, for building a continuous-wave laser with single-mode operation and

a pulsed laser with a high repetition rate. In addition, the resonant modes of a microcavity can

couple to external bus waveguides with wavelength-dependent coupling rates [21, 22], which, to-

gether with loss mechanisms, determines a mode’s linewidth. Therefore, the small volume, large

FSR and degree of freedom in controlling external coupling, together make a microcavity an ad-
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vantageous geometry for building nonlinear optical devices. Even though dispersion in a small

microcavity affects the phase matching condition for optical nonlinearity, it can be well controlled

in coupled-cavity resonators by engineering their compound modes (see Sec. 2.3).

A microcavity can have travelling-wave resonance modes as in a disk, toroid, and ring cavity,

and standing-wave resonance modes in photonic crystal (PhC) cavities of one-, two- and three

dimensions, while in the former case a standing-wave field in the coupling waveguide can excite

a combination of two degenerate travelling-wave resonance modes. In this section, designs for

microring and one-dimensional PhC cavities are summarized.

2.1.1 Microring cavity

A microring cavity, as shown in Fig. 2.1 (a), is basically a waveguide connected in a loop. Its

resonant condition is satisfied with a total phase change of multiple 2π in one round-trip propaga-

tion, i.e.,
2π∫
0

γdθ = m · 2π. The integer number, m, is called the longitudinal order. The angular

propagation constant, γ, is roughly equal to βR, where β is the linear propagation constant, and

R is the mean radius of local mode fields. For a perfect circular ring with azimuthal symmetry,

γ is equal to m. It should be noted that the intrinsic eigenvalue of a ring mode is not the linear

propagation constant, β, but rather the angular propagation constant, γ.

An optimum ring radius should be chosen to maximize the nonlinear effect in a microring

cavity. For example, the third-order nonlinear effect scales with the quantity Q2/Veff , where Q is

the cavity quality factor, and Veff is the nonlinear mode volume which is linearly proportional to

the ring radius (see Appendix A). In a circular microring cavity, the optical fields shift outwards

in the radial direction, resulting in a radiation loss that increases exponentially with its curvature.

Such bending loss, together with other linear loss due to material absorption, surface scattering

and coupler loss, determines the cavity’s intrinsic quality factor. Therefore an optimum radius is

chosen that minimize Veff without compromising Q2. For a single ring cavity, this design problem

is non-trivial because the cavity mode dispersion also varies with the radius (i.e., the difference in

FSR usually increases with ring curvature), however, a coupled-ring resonator as shown in Fig. 2.1
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(a) (b) (c) (d)

Figure 2.1: SEM pictures of single and triple microring and one-dimensional single and triple
photonic crystal cavities designed in the course of this thesis work.

(b) can resolve the problem as shown in Sec. 2.3.

2.1.2 Photonic crystal nanobeam cavity

A photonic crystal (PhC) nanobeam cavity is a standing-wave cavity consisting of quasi-

periodic unit cells [23, 8] (see Fig. 2.1 (c)). Its resonant modes are confined by index contrast in

the transverse directions and by energy bandgap in the longitudinal direction. The energy bandgap

is formed by shifting the band structures of central unit cell relative to those of surrounding unit

cells. A one-dimensional (1D) PhC cavity is endowed with a small mode volume since its mode

field decays exponentially across unit cells. It can also be designed to have large quality factors by

minimizing the spatial Fourier harmonics of the cavity mode inside the lightcone [23]. Since the

resonant modes of a 1D PhC cavity extend in a straight nanobeam both along and via evanescent

field to the sides of the structure, it can couple efficiently to a straight waveguide or another 1D PhC

cavity. With these properties, PhC cavities can be used to build efficient filters despite the fact

that they have standing-wave modes which cause difficulties with separating input and through

ports without a circulator[24, 25], and can be used for opto-mechanical applications after being

suspended [26].

Photonic crystal nanobeam cavities can also be employed to build efficient nonlinear devices.

It is difficult to build a triple-resonant single-PhC cavity for four-wave mixing (FWM) since its

resonance modes of different longitudinal orders have unevenly-spaced frequencies. Alternatively, a
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coupled-PhC resonator where identical PhC cavities are coupled side-by-side (see Fig. 2.1 (d)) can

be used to enhance both spontaneous and stimulated four-wave mixing [27], where their compound

modes resonantly enhance the signal, pump and idler light.

However, there is a compromise between reducing mode volume and increasing quality factor

in 1D PhC cavities. Specifically, when a mode extends over fewer unit cells, it is wider in momentum

space, and some spatial frequency components of the mode field cross over into the lightzone. In

addition, PhC cavity modes are sensitive to dimensional errors in fabrication and require fine feature

sizes that push the compatibilities of lithography.

2.2 Low-loss directional couplers

Directional couplers are ubiquitous within photonic circuits and are used wherever light

travels between waveguides or/and cavities. When two waveguides are close to each other, the

evanescent field of an optical mode in one waveguide generates a polarization current in the other

waveguide, and this polarization current can excite a number of optical modes in itself. The

amplitude of each excited mode depends on the overlap between the polarization current and the

eigenmode profile. A good coupler is characterized with large coupling rates to desired modes.

Couplings to all other modes, whether bounded modes or radiation modes, are effectively optical

loss. In fact, it is worse to couple to other bounded modes of the second waveguides as it introduces

crosstalk in the optical signal (unless it is appropriately converted back to the desired mode).

Coupler loss contributes directly to insertion loss in optical devices (filters, modulators etc.) and

should be minimized.

Reducing coupler loss is especially important in designing nonlinear optical devices based on

coupled cavities. Unlike optical filters based on coupled cavities where the cavity-cavity coupling is

usually weak and coupling-induced frequency splitting is smaller than the linewidth of individual

cavity mode (so that a flat top in the filter response is achieved), nonlinear optical devices based

on coupled cavities need strong cavity-cavity coupling to enable distinctive compound modes with

narrow linewidth than the mode frequency spacing. Thus it is vital to design a coupler with large
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ratio of desired coupling versus loss.

The effect of coupler loss on a cavity resonance mode is quantified by a loss-limited quality

factor, QCL. In a microcavity coupled with a bus waveguide, as well as in a dual-cavity resonator,

the power loss at the coupler is l2Po, and thus QCL = ωoPo

l2Po·FSR
= ωo

l2·FSR
, where l2 is the percentage

of power lost at one pass through the coupler.

There are a few guidelines for designing low-loss directional couplers. A general directional

coupler consists of two waveguides with arbitrary shapes. The total coupling rate from one mode in

one waveguide (m1i) to another mode (m2j) in the other waveguide, depends on the accumulative

field in mode m2j excited by distributed polarization current at the second waveguide. Large

coupling from mode m1i to mode m2j occurs when the fields in mode m2j excited by the polarization

current add up constructively. This is essentially a phase matching requirement, similar to that in

nonlinear optical interaction.

For a given coupling rate per distance, it is more advantageous to use a combination of

smaller waveguide width and larger gaps in order to achieve larger coupling-to-loss ratio. This can

be understood from the compound modes picture of the two coupled waveguides. An optical mode in

one waveguide can be approximately represented as a combination of a pair of symmetric and anti-

symmetric compound modes of the two-waveguide system. Such approximation is more accurate

with a large gap between the two waveguides. Thus optical coupling occurs as an interference

effect of the two supermodes with unequal propagation constants. Since coupler loss results from

excitation of other compound modes, it is thus desirable to use a larger gap in the directional

coupler.

For a given total power coupling to a desired mode, one can use a directional coupler with

either a large coupling rate per distance and a small coupler region length, or a small coupling rate

per distance and a large coupler region length. The latter design usually has larger coupling-to-loss

ratio if the two waveguides have similar propagation constants. This is because phase mismatch

between modes of different propagation constants increases with propagation length, resulting in

cancelling of coupling to undesired modes. Besides, a weaker coupler means weaker perturbation
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Figure 2.2: Low-loss cavity-bus couplers with: (a) a curved bus with equal curvature as the ring
cavity; (b) a straight bus coupled to a straight section of a racetrack cavity; (c) a bus interferomet-
rically coupled to a cavity via two coupling region; and (d) a combination of techniques used in (a)
and (c). In all couplers, a combination of large coupler gap and large coupling length is used.
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Figure 2.3: Low-loss cavity-cavity couplers with: (a) straight waveguides in the coupling region
between two racetrack cavities; (b) curved waveguides with similar curvature at the coupling region
between racetrack and ring cavities; (c) curved waveguides with similar curvature at the coupling
region between ring cavities, where each individual cavity is accessible by external waveguides; and
(d) indirect coupling between two ring cavities via connecting buses taking advantage of low-loss
cavity-bus couplers. In all couplers, the ring cavity is designed to have low loss, and a combination
of large coupler gap and large coupling length is used.

to the original waveguide mode.

Based on the above design principles, a few geometries that may permit low-loss directional

couplers are presented for cavity-bus coupling in Fig. 2.2 and cavity-cavity coupling in Fig. 2.3,

respectively.

2.3 Coupled-cavity resonators

This section describes coupled-cavity resonator systems with desired resonance mode struc-

tures for applications in nonlinear optics. When individual microcavities, as shown in Sec. 2.1,

couple to each other either directly or indirectly, their resonance modes split and form compound

resonance modes with distributed energy in each constituent cavity. The compound modes of

coupled-cavity resonators are equivalent to molecules’ electron states which result from orbital
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hybridization of the electron states of their constituent atoms.

The compound states of a coupled-cavity resonator can be engineered for efficient nonlin-

ear interaction by resonantly enhancing interacting light mode excitations with controlled mode

dispersion, as well as providing independent control of cavity photon lifetime for each mode. For

example in a dual-cavity resonator, the large cavity mode dispersion in a single cavity can be ef-

fectively reduced by selectively shifting the resonance frequency of one longitudinal mode upon

coupling to a second cavity. The primary and secondary cavities are designed to have unequal free

spectral ranges, and therefore the resonance frequencies of other longitudinal modes of the primary

cavity are unaffected. As a result, efficient degenerate four-wave mixing can happen in such a

coupled-cavity resonator [28].

2.3.1 Triple-cavity resonators

A triple-cavity resonator system is a promising platform for building integrated nonlinear

devices based on third-order nonlinearity. Such a resonator consists of three microcavities coupled

to each other (see Fig. 2.4(a)). It has three compound modes for each single-cavity mode due to

cavity-cavity coupling. The frequency spacings of these three compound modes are determined by

the strength of cavity-cavity couplings and differences in resonance frequencies of each constituent

cavity. When each individual cavity has equal resonance frequency either by design or active

tuning, the three compound modes are evenly spaced in frequency. In addition, they have the

same longitudinal order, and thus automatically satisfy the phase matching condition required

by degenerate-pump four-wave mixing. Moreover, the linewidth of each compound mode can be

separately controlled by independent coupling to external bus waveguides, making triple-cavity

resonators a good platform for third-order nonlinear interactions.

In this section we use a travelling-wave triple-ring resonator to explain the above concept

in detail. For simplicity, we assume the three microrings are connected in series, and there is no

direct optical coupling between the first and the third microrings, otherwise the two travelling-

wave modes of opposite propagation directions in each ring would couple to each other and form
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Figure 2.4: (a) Schematic of proposed triple-cavity resonator system. It has three microrings
coupled in series and two access bus waveguides. One bus couples to the outer two cavities, and
the other bus couples only to the middle cavity; (b) Density of states (DoS) versus frequency (with
arbitrary unit) in the proposed triple-cavity resonator. Due to cavity-cavity coupling, there are
three supermodes at each longitudinal order.

standing-wave modes. Also, we only consider the case where all three cavities are identical, and

the direct cavity-cavity couplings are equal.

2.3.1.1 Dispersion engineering

To study the eigenmodes of a triple-ring resonator, we ignore the bus waveguides in Fig. 2.4(a)

for now and treat the triple-ring resonator as a closed system. According to the coupled-mode theory

[29], the three individual cavity modes evolve as

d~a

dt
= jM · ~a (2.1)

where the mode amplitude ~a and the coupling matrix M are given by

~a =


a1

a2

a3

 , M =


ω0 µ12 0

µ21 ω0 µ23

0 µ32 ω0

 (2.2)

where ak, k ∈ {1, 2, 3} is the mode amplitude in each constituent cavity, and |ak|2 denotes the

total energy in cavity k, ω0 is the resonance frequency of each cavity, and µmn, m,n ∈ {1, 2, 3}

is the cavity-cavity coupling rate set by the geometric gap between adjacent cavities. In a closed

system energy is conserved, and thus the coupling matrix M is Hermitian. Therefore µ21 = µ∗12,
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and µ32 = µ∗23. The resonance frequencies and mode profile of the “supermodes” of the triple-cavity

resonator are given by the eigenvalues and eigenvector of coupling matrix M , respectively

ω̃1 = ω0 −
√

2µ, ã1 = [
1

2
,

1√
2
,
1

2
] · ~a (2.3)

ω̃2 = ω0, ã2 = [
1√
2
, 0,− 1√

2
] · ~a (2.4)

ω̃3 = ω0 +
√

2µ, ã3 = [
1

2
,− 1√

2
,
1

2
] · ~a (2.5)

where µ ≡ |µ12| = |µ23|. The “supermodes” have equal frequency spacings as expected. Therefore

when used to enhance signal (ωs = ωo −
√

2µ), pump (ωp = ωo) and idler (ωi = ωo +
√

2µ)

wavelengths in a degenerate FWM process, these three supermodes automatically satisfy both

photon energy conservation (2ωp = ωs +ωi) and phase matching (2kp = ks + ki) conditions. Unlike

a single-ring resonator, a triple-ring resonator does not require careful design of waveguide cross

section dimensions to minimize dispersion for phase matching — the three supermodes of the same

longitudinal order in triple cavities automatically satisfy the phase matching condition as long

as the constituent rings are identical and the couplings between rings are small. One benefit of

employing the triple-cavity resonator for FWM is that, even if the microring cavity is dispersive

and has non-constant FSR, the coupling-induced frequency splitting can be designed to provide

equally spaced resonances to enable FWM. As a result, the individual microring cavity can be

optimized for parametric gain, without a competing requirement to produce zero dispersion, while

the coupling provides the choice of output signal/idler wavelengths. In contrast, in a single-ring

microcavity, the choice of wavelengths is directly coupled to the size, as is parametric gain. In other

words, minimizing the mode volume for higher gain also requires one to use signal/idler wavelengths

that are spaced far apart due to the large FSR. Therefore there is a limit on how small an optical

cavity can be made before the dispersion begins to work against the increase in parametric gain.

However, since the three compound modes in a triple-cavity resonator have different mode profiles,

their effective overlap volume for FWM is four times as large as that of a single microring [1].

This efficiency reduction may serve as a necessary trade off for the additional flexibility in design.

Besides, the fact of different resonance mode profiles leads to different effective mode volumes for
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Figure 2.5: Simulated supermode field profile of triple-ring resonator with resonance frequency of:
(a) ω0−∆ω, (b) ω0 and (c) ω0 +∆ω. showing suppressed coupling of signal bus to pump resonance
and pump bus to signal/idler resonances.

different set of four waves in third-order nonlinear interaction (see a detailed explanation in the

discussion on a generalization of nonlinear figure of merit in Sec. 4.2).

2.3.1.2 Mode-selective coupling

The compound modes of a triple-cavity resonator can also be designed to have different

linewidth by independent couplings to external bus waveguides. As solved from the CMT model

in the previous section, the field of each supermode is distributed across the cavities [see Fig. 2.5]

with field amplitudes in each cavity akin to a discrete version of the (1-, 2- and 3-half-wavelength)

wavefunctions of a particle-in-a-box-potential in the three lowest–energy eigenstates.

We next engineer the couplings of two waveguides to the compound resonator to be mode-

selective. As Fig. 2.5 shows, the pump resonance has nearly zero energy in the middle cavity, and

thus barely couples to the bottom bus which is only coupled to the middle cavity. However, the

signal and idler resonances have significant energies in the middle cavity and couple to the bottom

bus (which we shall call the “signal bus”). Next, the top bus (we shall call it the “pump bus”)
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Figure 2.6: (a) Schematic illustrating mode-selective coupling to ports; (b) effect of choices of the
“pump bus” and “signal bus” gaps, in the proposed orthogonal supermode linewidth engineering
scheme.

couples equally to the two outer cavities via two coupling points (see point A and B in Fig.2.4(a)).

The phase difference of the pump mode field at these two coupling points are shifted by π relative

to that of the signal/idler mode (∆φp
AB−∆φ

s/i
AB = π). Then the length of the section of “pump bus”

between these two coupling points can be designed so that the “pump bus” couples destructively

to the signal and idler resonances, while coupling optimally to the pump resonance. As a result,

the external couplings for the pump and signal/idler resonances are entirely isolated to separate

waveguides, with a “pump bus” waveguide solely for pump resonance excitation and a “signal bus”

waveguide solely for signal/idler resonance coupling. The device in the linear regime is an all-pass

filter on each bus – the only source of power transfer from the pump bus to the signal/idler bus is

the nonlinear (FWM) coupling. This allows control of geometric gaps to independently control the

pump and signal/idler linewidths (see Fig. 2.6(b)), while intrinsically filtering the pump from the

signal/idler bus in principle.



Chapter 3

Development of amorphous silicon as an efficient nonlinear material

In order to make efficient integrated nonlinear optical devices, one essential element is still

missing, that is, a good nonlinear waveguide material that is compatible in the nanofabrication

process. Desired properties of good nonlinear materials include large refractive index (when used

as light-guiding material), large nonlinearity, and small linear and nonlinear loss. A large refractive

index enables tight confinement of optical energy, thus enhancing optical intensity for large optical

nonlinear effects. The combination of large nonlinearity and small loss mitigates the requirement

for large on-chip optical power. Most low-cost materials used to fabricate on-chip waveguides, and

for which fabrication techniques have been developed that support very low optical propagation

losses, have no second-order optical nonlinearity due to centrosymmetry. Thus their lowest optical

nonlinearity is third-order nonlinearity, which is often characterized by a nonlinear figure of merit

(FOM) defined as FOM ≡ n2
λβTPA

, where λ is the optical wavelength, n2 is the Kerr coefficient with

units of m2/W and βTPA is the two-photon absorption (TPA) coefficient with units of m/W. A

larger FOM means smaller nonlinear absorption for a given nonlinear phase shift.

Common nonlinear materials based on Kerr nonlinearity in integrated optics include crys-

talline silicon, silicon nitride, chalcogenide glass and amorphous silicon. Although crystalline silicon

is a native CMOS process material used in the transistor device layers, and has a large refractive

index and Kerr coefficient, it suffers a large nonlinear loss at the telecom wavelength range due to

TPA, as well as dispersion and loss due to free carriers generated by TPA. Both silicon nitride and

chalcogenide materials have no TPA in the telecom wavelength range, however, they both have
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small Kerr coefficients by comparison with silicon. In addition, they both have smaller refractive

index contrast and thus require a larger waveguide cross-section to confine optical mode (on the

order of 2x1µm for SiN for telecom wavelengths, similar for chalcogenide). As a result, thick films

need to be deposited to form waveguides which might suffer from strain-induced film cracking [30].

Larger device size also means smaller integration density on chip. The optical intensity is also

reduced due to larger mode area.

Amorphous silicon has large linear index and nonlinear Kerr coefficient, however, it suffers

from large optical absorption associated with dangling bonds. Incorporation of hydrogen into

amorphous silicon can passivate dangling bonds, and the resulting hydrogenated amorphous silicon

(a-Si:H) is one promising nonlinear waveguide material. By engineering its growth conditions, its

linear refractive index and Kerr coefficient can both be greater than those of crystalline silicon. Most

importantly, it has a quasi-bandgap energy of approximately 1.7 eV, thus it should have negligible

two-photon absorption at telecom wavelength around 1550 nm whose photon energy is smaller than

half of the bandgap energy of a-Si:H. However, unlike crystalline silicon which has sharp band edges

and no electronic states in the bandgap, hydrogenated amorphous silicon has electronic states in

its bandgap. These states include Urbach tail states starting from the band edges associated with

disorders and defect states deep in the bandgap associated with unsaturated silicon dangling bonds

(see Fig. 3.1). In fact, the bandgap of an amorphous material (called “mobility gap”) only separates

extended states in the valence and conduction bands. Two-photon absorption in a-Si:H that involves

electronic transitions from or/and to local states can still occur, although the probabilities of such

transitions are greatly reduced. By optimizing the deposition process TPA in a-Si:H can even be

eliminated [31]. Therefore a-Si:H materials usually have values of FOM in the range 0.32–4.9 [32]

near 1550 nm by comparison with the range 0.34–0.69 for crystalline silicon [33, 32].

However, one should note that the FOM defined above is related only to the instantaneous

nonlinear properties. Although some work observed zero non-instantaneous nonlinear absorption

and refraction in a-Si:H samples [32], there have been various reports on the delayed nonlinear-

ity of a-Si:H [31, 34]. Non-instantaneous nonlinearity can significantly impair the performance
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Figure 3.1: A schematic illustration of the electronic density of states in hydrogenated amorphous
silicon. VB: valence band; CB: conduction band. The red dashed line denotes the mobility edges.

of a nonlinear device, especially when CW light or high duty cycle, high repetition rate pulsed

light is used. However, the findings and interpretations of the non-instantaneous nonlinearity of

hydrogenated amorphous silicon vary significantly in the literature [31]. Some studies attributed

non-instantaneous nonlinear absorption to free carriers generated by two-photon absorption as in

crystalline silicon [35], whereas some studies found no instantaneous two-photon absorption in some

wide-bandgap a-Si:H samples [36], and others argued that free carriers could also be generated at an

enhanced rate via two-state absorption (TSA) where sequential one-photon absorptions events are

facilitated by mid-gap electronic states [34]. In addition, recent pump-probe measurements by Wa-

then et.al [31] found in their samples a non-instantaneous absorption rate that scales in proportion

to the applied pump power, and a non-instantaneous nonlinear refraction with the same sign as the

instantaneous Kerr effect but opposite to the dispersive effect of free carriers, therefore concluding

the delayed nonlinearity can be treated as an effective third-order nonlinearity rather than TPA

combined with FCA. Nevertheless, it is generally accepted that the nonlinear characteristics of a

given sample of a-Si:H depend strongly on the fabrication conditions. Therefore it is important

to understand the origin of the delayed nonlinear absorption in a-Si:H, and improve the material

fabrication recipe to reduce the nonlinear absorption.

In this chapter, the fabrication of a-Si:H film and characterization of both their linear and

nonlinear optical properties are described. The work presented in this chapter was done at Hewlett

Packard Laboratories during the course of a summer internship under the supervision of Dr. Jason

Pelc..
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3.1 Growth of hydrogenated amorphous silicon material

Low-loss hydrogenated amorphous silicon can be deposited using plasma enhanced chem-

ical vapour deposition (PECVD). In the PECVD chamber, a plasma causes the precursor gas

silane (SiH4) to dissociate. The resulting reactive species then react and deposit on a heated sub-

strate. Compared with other deposition methods such as sputtering and evaporation, one main

advantage of growing amorphous silicon in PECVD is its low substrate temperature (i.e., can be

less than 300 ◦C), which enables back-end-of-line electronic-photonics integration in the standard

complementary-metal-oxide-semiconductor (CMOS) fabrication process. Another advantage of a-

Si:H growth in PECVD is the introduction of hydrogen atoms dissociated from the precursor gas

into the amorphous film [37], because hydrogen plays a few key roles in improving the quality

of amorphous silicon film. First, hydrogen can passivate dangling silicon bonds and thus reduce

electronic states in the bandgap, which mitigates both linear and nonlinear absorption. Also, the

extent of disorder in the amorphous silicon is reduced as hydrogen diffuses into the silicon network

to break and remove weak Si-Si bonds, thus lowering the top edge of the valence band formed by

those weak Si-Si bonds. As a result, the bandgap of a-Si:H is widened and optical absorption is

further reduced. However, inclusion of too many hydrogen atoms in amorphous silicon can intro-

duce extra scattering loss by forming poly-hydride bonds. Thus it is crucial to control both the

concentration and diffusion dynamics of hydrogen atoms in the film during growth. The hydrogen

quantity and dynamics in a-Si:H is affected by a few growth conditions, such as substrate tem-

perature. At much lower temperatures, the diffusion coefficient of hydrogen in the silicon network

is too small to allow structural equilibration, whereas at much higher temperatures, the chemical

potential is lower and it is harder for hydrogen to remain in the film.

In summary, both linear and nonlinear optical properties of hydrogenated amorphous silicon

depend on its microstructure and dynamics during growth such as the quantity and diffusion speed

of incorporated hydrogen, which are controlled by growth conditions in the PECVD chamber.

Therefore, it is critical to tune the deposition conditions for the best growth recipe. We investigated
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Table 3.1: Growth conditions of a-Si:H in PECVD

Parameter Range Nominal setting

Temperature (◦C) {250, 300, 350} 250

RF power (W) {10, 20, 50} 10

Pressure (Torr) {1.0, 1.5, 1.9} 1.5

Silane flow (sccm) {10, 20, 25} 20

Helium flow (sccm) {50, 100, 275, 475} 100

effects of temperature of substrate wafer, power of RF source that excites plasma, flow rates of

precursor and dilution gases and chamber pressure on the film quality, and arrived at a recipe

for growing a-Si:H with good nonlinear figure of merit. Table 3.1 summarizes the experimental

conditions of the deposition process used in our experiments.

Additional benefits of growing a-Si:H in PECVD: It is feasible to deposit multiple

layers of a-Si:H sandwiched with silicon oxide using PECVD. When the cladding layer thickness is

large, there is little coupling between adjacent amorphous silicon layer, enabling three-dimensional

high-density integrated optics platform. On the other hand when the cladding layer thickness is

small, one can design multilayer photonic devices; for example, in a two-layer such device comprising

a pair of microring resonators [38], strong coupling occurs between microrings on adjacent layers

with reduced coupler loss (i.e., radiation loss due to coupling), whereas adjacent microrings on the

same layer have comparatively weak coupling for a similar coupling gap but large loss due to short

coupling length and propagation constant mismatch. As described in previous sections, strongly

coupled microrings can enable efficient nonlinear devices. In addition, by selectively etching away

cladding material, micro-structures on one layer can move relative to its adjacent layers, leading to

large opto-mechanical coefficients due to strong optical coupling [38].
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3.2 Characterization of a-Si:H

We performed a series of characterizations on the hydrogenated amorphous silicon films de-

posited in PECVD, as shown in the flow chart in Fig. 3.2. First the complex refractive index and

thickness of deposited films are measured with a spectroscopic ellipsometer. Then the microstruc-

ture of the films are investigated by measuring wavelength-dependent absorption using Fourier

transform infrared spectroscopy (FTIR). After these two steps, films with large bandgap (fitted

from ellipsometry data) and good microstructure are patterned and etched to form optical waveg-

uides, where material Kerr coefficients are calculated from optical pulse linewidth broadening due

to self-phase modulation, and material nonlinear absorption coefficients are derived from transient

absorption in pump-probe measurements. In the end the relative magnitudes of Kerr nonlinearity

and nonlinear absorption is compared using an effective nonlinear figure of merit.

3.2.1 Linear refractive index, absorption and microstructure

Ellipsometry is a common tool for measuring thin film refractive index and thickness. Because

it measures the change of polarization of light upon reflection or transmission from a stack of

thin films, it is insensitive to incident light intensity and polarization and thus gives accurate

measurement. From the measured film thickness and wavelength-dependent complex refractive

index, a Tauc-Lorentz physical model [39] was constructed to fit the bandgap energy of the deposited

a-Si:H material. Fig. 3.3 (a) shows measured complex refractive index of an a-Si:H sample. At

1550 nm, a-Si:H has an index of approximately 3.56, greater than that of crystalline silicon. The

a-Si:H film fabrication
(PECVD)

FOM

Refractive index, 
thickness, bandgap

(Ellipsometry)

Microstructure
(FTIR)

Optical waveguide 
fabrication

(e-beam lithography)

Kerr effect
(pulse linewidth 

broadening)

Nonlinear absorption
(pump-probe 
measurement)

Figure 3.2: Hydrogenated amorphous silicon fabrication and characterization procedure.
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extinction coefficient vanishes at approximately 710 nm, consistent with the fitted bandgap energy

of 1.69 eV.

Fourier transform infrared spectroscopy is an effective way to study the microstructure of

thin films. Atomic bonds have characteristic vibrational and rotational modes which have distinc-

tive resonance frequencies, corresponding to characteristic absorption peaks. For example, Si-H

and H-Si-H bonds have stretching vibration modes at 2000 cm−1 and 2090 cm−1, respectively. By

measuring the relative absorption strength at these two frequencies, the hydrogen content and

hydrogen bonding information in the samples can be inferred. In the experiment, the sample is

mounted against a germanium prism which has higher refractive index than amorphous silicon.

When light passes the germanium prism with a total internal reflection at the interface between

Ge and a-Si:H, the evanescent filed is partially absorbed by the a-Si:H film, causing a dip in the

spectrum of transmitted light at the characteristic frequencies. Fig. 3.3 (b) shows a typical ab-

sorption spectrum in a FTIR measurement, where the a-Si:H sample has a much larger absorption

at 2000 cm−1 due to Si-H bonds than that at 2090 cm−1 due to H-Si-H bonds. A frequently used

parameter called microstructure R, defined as the relative magnitude of the integrated intensities

(I) at the two peaks, R ≡
∫

I2090∫
I2000+

∫
I2090

, is calculated to be only 0.12. This value is smaller than

the typical range of 0.15–0.42 [37], showing that excessive hydrogen in the sample is reduced.

Summary of a-Si:H films properties with varying deposition conditions: first, as

the RF power increases, the deposition rate increases as the precursor gas dissociates fast, but the

microstructure ratio R increases as a result of large amount of -SiH2 radicals in the chamber. The

substrate temperature affects the kinetics of radicals on the amorphous network, and an optimum

temperature around 250 ◦C exists. We did not observe a large effect of gas pressure and flow rates

in the range of values explored in Table 3.1 on the bandgap and microstructure R of the deposited

films, although these parameters have been reported to affect the film qualities[37]. We also find

that the film parameters, such as the fitted bandgap energy and microstructure ratio, depend on

the film thickness, as reported in [40]. We argue that this dependence comes from the difference

in absorption of bulk and surface states in the amorphous silicon films. Finally we arrive at a few
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good recipes that lead to a-Si:H films with a combination of large bandgap of approximately 1.7 eV

and small microstructure ratio R around 0.1. Their optical refractive indexes are in the range of

3.55–3.59. Then we proceed to fabricate optical devices on these films using e-beam lithography

followed by dry etching. In the next section, we study the linear optical loss, Kerr effect and

nonlinear absorption in these waveguides, and find out the recipe that gives the best a-Si:H films

with the highest nonlinear figure of merit.

3.2.1.1 Linear optical loss

The linear optical loss in a optical waveguide includes loss due to material absorption, field

scattering, and radiation. Waveguides of different lengths are laid out on the same chip, and power

transmission losses through them at an optical wavelength of 1550 nm are plot versus their length.

Fig. 3.3(c) shows measurement in one sample, where the total linear optical loss in the waveguides

is fitted to be approximately 2.1 dB/cm, although the measurement error is not negligible due to

large sensitivity of grating coupler efficiency on fiber position. Over all fabricated waveguides, a

large range of 2.1–7.5 dB/cm is measured for the linear absorption at 1550nm.
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Figure 3.3: Linear optical properties of hydrogenated amorphous silicon (a-Si:H). (a) Real (n)
and imaginary (k) parts of the complex refractive index of an a-Si:H film measured by spectral
ellipsometry; (b) Absorption spectrum of an a-Si:H film characterized by Fourier transform infrared
spectroscopy. The relative absorption strength at different characteristic frequencies reveals the
microstructure of a-Si:H films; (c) Linear optical loss versus lengths of a-Si:H waveguides.



26

3.2.2 Kerr coefficient

In this section the measurement of the Kerr coefficient, n2 of the deposited a-Si:H is described.

Despite the fact that many approaches can be employed to measure n2 of a nonlinear material,

including the most frequently used Z-scan technique [41], four-wave mixing(see Appendix A), and

nonlinear interferometry [42], in a micro-scale cross-section waveguide it is convenient to utilize the

spectral broadening of an optical pulse associated with self-phase modulation (SPM). Specifically,

a short pulse has time-varying intensity. Due to the Kerr effect, the pulse obtains a time-varying

nonlinear phase (φ(t)) proportional to the instantaneous intensity. The instantaneous optical fre-

quency is given by ω = dφ(t)
dt , and thus new optical frequency components are generated. Especially

for an ultra short pulse with duration down to a few picoseconds, the optical spectrum broadening

due to SPM can be substantial.

According to Agrawal[43], the spectral broadening factor for a Gaussian pulse is

∆ωrms

∆ω0
=

(
1 +

4

3
√

3
φ2

max

)1/2

(3.1)

where ∆ω0 and ∆ωrms are the initial and final RMS spectral width of the pulse, and φmax is the

maximum nonlinear phase change

φmax = γPp0Leff . (3.2)

where γ is a nonlinear parameter proportional to n2 as γ = ωn2
cAeff

(see Appendix A), Pp0 is the peak

power, and Leff ≡ (1 − e−αL)/α is the effective waveguide length with the effect of optical power

decay due to linear absorption included.

We measured the spectrum broadening of Gaussian pulses in optical waveguides using a

setup shown in Fig. 3.4. Short optical pulses are generated from a mode-locked laser, and then

go through a tunable bandpass filter (TBPF) to obtain the right Gaussian shape and narrow its

spectral width. Then an erbium-doped fiber amplifier (EDFA) amplifies the narrowed pump pulse

since large optical power is needed to investigate nonlinear optical effects. The actual pulse power

is adjusted by a variable attenuator, and the amplified spontaneous emission (ASE) from the EDFA
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Figure 3.4: Experimental setup for measuring Kerr coefficient based on picosecond pulse linewidth
broadening in an a-Si:H waveguide. Abbreviations: MLL, mode-locked laser; TBPF, tunable band-
pass filter; EDFA, erbium-doped fiber amplifier; VATT, variable optical attenuator; PC, polariza-
tion controller; OSA, optical spectrum analyzer.
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Figure 3.5: Pulse spectrum broadening due to self-phase modulation. (a) Power spectral density
at different pulse peak power as measured by OSA; (b) Root-mean-square (RMS) of the angular
frequency components of the pulse (∆ωrms) versus on-chip peak power. The slope of the fitted line
is proportional to the Kerr coefficient n2.

is filtered out by a second TBPF. The light polarization is also adjusted to maximize its coupling

to the fundamental transverse electric (TE) mode of the optical waveguides. At this stage, the

optical field can be modelled by a Gaussian pulse with time-dependent electrical field amplitude

Ep(t) =
√
Pp0e

− t2

2τ2
p , where τp is the pulse duration defined at 1/e power radius. The optical pulses

are then coupled to the chip via grating couplers. Their spectral linewidth are broaden due to Kerr

nonlinearity in the optical waveguides, and then measured by an optical spectrum analyzer (OSA).

Fig. 3.5 (a) shows a typical measured pulse spectrum broadening in an a-Si:H waveguide.

As the peak power of the pulse increases, the maximum phase change (φmax) due to self-phase

modulation also increases, and the pulse spectrum broadens with increased number of peaks as
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shown in the OSA spectrum. Fig. 3.5 (b) shows the root-mean-square (RMS) value of the angular

frequency components of the pulse (∆ωrms) scales linearly with on-chip peak power of the pulse

when φmax is much greater than 1, and converges to the initial pulse bandwidth when the peak

power is small, matching well with the theoretical formula Eq. 3.1 for a Gaussian pulse. The slope

of the fitted line is directly proportional to the value of the material Kerr coefficient n2 as shown

in Eq. 3.1 and Eq. 3.2. The values of τp can be derived from the measured pulse spectral width

∆ω0 as τp = 1√
2∆ω0

by assuming a Fourier transform-limited Gaussian pulse and, together with

measured average power (Pavg) and pulse repetition rate (rrp), can be used to calculate the peak

power as Pp0 =
Pavg√
πrrpτp

. The mode area Aeff is solved using the fundamental TE mode fields.

Finally the Kerr coefficient n2 is calculated to be in the range of [1.5–2.5] ·10−17 m2

W in measured

a-Si:H samples.

3.2.3 Nonlinear absorption

Next we study nonlinear absorption in optical waveguides fabricated on the a-Si:H films. As

described earlier in this section, there could be instantaneous two-photon absorption, as well as

delayed free carrier absorption and two-state absorption in a-Si:H, and their magnitudes depend

on the specific material micro structures which are affected by the fabrication conditions. To find

out the time-dependent nonlinear absorption in the fabricated samples, we performed pump-probe

experiments to measure the transient absorption of a continuous-wave (CW) probe light upon the

incidence of a pico-second pump pulse.

Fig. 3.6 shows the experimental setup for measuring the transient absorption in an a-Si:H

waveguide. The strong pump pulse is generated by a mode-locked laser and goes through a similar

path as that in the experiment for measuring Kerr nonlinearity (see Fig. 3.4). In fact, the pump

pulse spectrum broadening can be simultaneously measured while the nonlinear loss rate is charac-

terized in the pump-probe setup. Therefore the measured ratios of Kerr coefficients and nonlinear

loss coefficients are independent on the pump power used, leading to higher accuracy in calcu-

lating FOM. The CW probe light comes from an external-cavity diode laser, and its wavelength
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Figure 3.6: Experimental setup for pump-probe measurements of transient nonlinear absorption
in an a-Si:H waveguide. Abbreviations: MLL, mode-locked laser; TBPF, tunable band-pass filter;
EDFA, erbium-doped fiber amplifier; VATT, variable optical attenuator; PC, polarization con-
troller; WDM, wavelength-division multiplexer; OSA, optical spectrum analyzer. The pump light
and probe light travel in different channels of WDM.

is shifted outside of the spectral range of the pump light. The probe light is combined with the

pump light via a WDM before being coupled to an optical waveguide through the grating coupler.

The polarization of pump and probe light can be separately adjusted to maximize coupling to the

fundamental transverse electric (TE) mode of the optical waveguides. After going through various

linear and nonlinear optical processes in the waveguide, the transmitted light is coupled out of the

chip to a single-mode fiber via an output grating coupler. Another WDM splits the output light

again, and the transmitted probe light is amplified by a second EDFA and filtered to clean ASE

noise, before it is detected by a fast sampling oscilloscope that is triggered by the pump laser.

A typical transient absorption data is shown in Fig. 3.7(a), where the fractional absorption

of the probe normalized to their average value prior to the arrival of the pump (i.e., 1−Ps(t)/Ps(0)

where Ps(t) is detected probe power), is plot versus time at a few pump pulse peak power levels.

When the pump pulse arrives at approximately t = 200 ps, a sudden increase of absorption of the

probe light occurs within a few picoseconds (limited by the pump pulse width and oscilloscope

bandwidth). Such a large instantaneous absorption is probably due to two-photon absorption.

Then the fractional absorption of the probe light undergoes a few oscillations for approximately

200 ps, the reason of which is still unclear. Next the absorption rate decay exponentially with

a fitted lifetime of approximately 3 ps. Besides, both the instantaneous and non-instantaneous

absorption rate increase with the pump pulse peak power, showing the parametric gain (if any)

is weaker than the nonlinear loss. Most importantly, it seems that the delayed absorption scales
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Figure 3.7: Transient absorption of the probe light in the pump-probe experiment. (a) Fractional
absorption of the probe light versus time at different pump pulse peak power. The fitted τe is about
3.0 ps.; (b) Absorption coefficient at pump-probe delay (∆t) of a third of fitted decay time (τe) of
the in-gap states, versus pump pulse peak intensity.

linearly with the pump pulse power (see detailed discussion on Fig. 3.7(b) later), demonstrating

that the non-instantaneous absorption is not induced by free carriers absorption which scales with

the square of pump pulse power.

The linear dependence of delayed absorption of the probe light on the pump pulse power

might be explained by a two-state absorption model[34, 31]. Upon incidence of strong pump pulse,

many electrons transit from the top of valence band to the mid-gap states by absorbing one pump

photon. Electrons in these metastable mid-gap states then act as stronger absorber to the probe

light. Due to the large bandgap (i.e., mobility gap) in a-Si:H, electrons fail to absorb enough photon

energy to reach extended states in the conduction band, resulting in no free carriers for further

absorption. This is in contrast with the original TSA model proposed in [34]. Instead electrons

can transition to the localized Urbach tail states in the conduction band, from which electrons can

decay back to the metastable mid-gap states and further back to the valence band. Therefore the

mid-gap states not only cause linear absorption but also bridge two-state nonlinear absorption.

Apparently it’s favorable to further improve the a-Si:H film growth conditions to eliminate mid-gap

states.

Next, a nonlinear TSA coefficient is described according to the TSA model above. When the
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pump pulse travels through the waveguide, the density of in-gap electronic states evolve as

∂N(~r, t)

∂t
= −N

τe
+ c1

Ip

vg
(3.3)

where τe is the average lifetime of in-gap states, c1 is the in-gap states generation rate versus optical

energy density and Ip is pump light intensity, Ip = Ip0e
−αpz−(t−z/vg)2/τ2

p . The decay rate for the

pump, αp includes all linear loss terms. Since the pump pulse lifetime is much shorter than the

in-gap electronic states lifetime, i.e., τp � τe, the equation above can be solved by integrating the

generation term first, thus

N(~r, t) =

√
πc1τpIp0

vg
e−αpz− t

τe (3.4)

One should note that if a continuous-wave pump is used, the steady-state density of in-gap electronic

states is

Ncw(~r) =
c1τeIp,cw

vg
e−αpz (3.5)

where τe is the lifetime of in-gap states and Ip,cw is the CW pump power. Electrons in the in-gap

states then act as absorber for the probe light, and the probe light power, noted as Ps, evolves as

dPs

dz
= −αsPs −

∫ NL

c2NIsdxdy (3.6)

where αs is the linear absorption of probe light when the pump light is absent, c2 is the linear

absorption rate of the probe light versus the density of the in-gap electronic states, and the in-

tegration is performed over the nonlinear material region. Combining Eq. 3.4 and Eq. 3.6 leads

to

dPs

dz
= −(αs +

√
πc1c2τpPp0e

−αpz− t
τe

vgAeff
)Ps (3.7)

where the effective area is defined as

Aeff =
PsPp∫ NL
IsIpdxdy

(3.8)
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The total power transmission of the probe light in the nonlinear waveguide is given by

Ts = e
−
L∫
0

αs+
√
πc1c2τpPp0e

−αpz− t
τe

vgAeff

dz
= e−αsLe

−
√
πc1c2τpPp0Leff,p

vgAeff
e
− t
τe

(3.9)

and the fractional absorption of the probe light due to the pump pulse is

FA(t) = 1− Ts

Ts(Pp0 = 0)
≈
√
πc1c2τpPp0Lp,eff

vgAeff
e−

t
τe (3.10)

where Lp,eff = 1−e−αpL

αp
. Notably the nonlinear loss associated with TSA is proportional to the

pump pulse energy (
√
πτpPp0) rather than its peak power only. This is because the total number

of electrons in the in-gap electronic states is dependent on the total pump pulse energy. Similarly,

the fractional absorption of the probe light due to a CW pump light can be derived using Eq. 3.5

instead of Eq. 3.4

FA ≈ c1c2τePcw,pLp,eff

vgAeff
. (3.11)

An effective TSA coefficient βTSA can be defined by analogy with the two-photon absorption

coefficient (dI/dz = −αI− βTPAI2):

dIs/dz = −αsIs − 2βTSAIpIs (3.12)

where Ip(Is) is the pump (probe) light intensity. Note that there is a factor of 2 before the TSA

coefficient βTSA by analogy with cross TPA since the pump and probe are two different light. Thus

the fractional absorption of the probe light defined in Eq. 3.10 is also given by

FA ≈ 2βTSA
PpLp,eff

Aeff
(3.13)

By comparing Eq. 3.10, Eq. 3.11 and Eq. 3.13, the TSA coefficient, βTSA is given by

βTSA =


FA/Lp,eff

2Pp/Aeff
=
(
c1c2τe

2vg

)
(CW pump)

FA(t=0)/Lp,eff

2Pp0/Aeff
=
(
c1c2τe

2vg

)
·
(√

πτp
τe

)
(pulsed pump)

(3.14)

Fig. 3.7 (b) shows the fractional absorption rate (FA(t=τe/3)
Lp,eff

) at a pump-probe delay of τe/3,

i.e., a third of the lifetime of in-gap electronic states, versus the on-chip peak intensity of the
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pump pulse (
Pp0

Aeff
). All data points can be fitted very well with a straight line, proving that the

non-instantaneous loss of the probe light is dominant by TSA, rather than free-carrier absorption

that scales quadratically with the pump power. The slope of the fitting curve is used to calculate

the TSA coefficient βTSA based on Eq. 3.14. For the a-Si:H sample shown in Fig. 3.7, a TSA

coefficient of 0.05 cm/GW is obtained for the case of pulsed pump with full-width-half-maximum

(FWHM) bandwidth of 0.5 nm. Such a small nonlinear loss demonstrates the potential of employing

a-Si:H for nonlinear devices where strong but short optical pulses are used, for example fast optical

switching[11]. In addition, because the two-state absorption is proportional to the total pulse

energy, the effective TSA coefficient decreases with pulse duration. However, a TSA coefficient of

20 cm/GW is obtained when CW pump light is used. Such a large TSA coefficient puts severe

constraints on using it in nonlinear optical devices employing continuous wave light or long pulses

with large repetition rates. Because TSA increases with the lifetime and density of states of the

in-gap electronic states, it is critical to further improve the fabrication conditions to eliminate

unsaturated dangling bonds in a-Si:H.

Photon detector based on TSA: an efficient photon detector can be designed taking ad-

vantage of nonlinear TSA in hydrogenated amorphous silicon. By modifying the growth conditions

of a-Si:H, electronic states in the bandgap can be intentionally constructed. These mid-gap states

can be possibly engineered to be closer to the top of the valence band than to the bottom of the con-

duction band. An assistant long-wavelength CW pump light is applied, which has enough energy to

excite electrons from the valence band to mid-gap states, but not enough energy to excite electrons

further up to the conduction band. Therefore the dark current due to pump light is negligible.

When short-wavelength signal light is coincident at the detector, it has enough energy to excite

electrons from in-gap states up to extended states in the conduction band, resulting in electric

current to be amplified and detected. For example, when the bandgap energy is 1.7–1.8 eV, the

pump and signal light can be chosen at 1550 nm and 1180 nm, respectively. Since electronic states

in amorphous material have no definite momentum due to the absence of long-range periodicity,

no phonons are required in the electronic transitions. Therefore the nonlinear two-state absorption
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rate in a-Si:H in CW pump mode is larger than that of two-photon absorption in crystalline silicon.

3.2.3.1 Nonlinear figure of merit

In summary, our investigation on hydrogenated amorphous silicon showed that there is sub-

stantial non-instantaneous absorption in our samples [44]. Its magnitude scales linearly with the

applied pump light power in accordance with [31], which implies that free carriers generated by

two-photon absorption are not the main reason of the delayed nonlinear absorption. Instead we

argue that an improved model with two-sate absorption via metastable intermediate electronic

states in the bandgap can explain the observed delayed absorption in a-Si:H. Because TSA involves

mid-gap states that are mainly induced by defects in the amorphous material, the TSA in a-Si:H

can possible by reduced by further improving its fabrication conditions to eliminate defects.

Since the delayed two-state absorption involves two photons and thus is effectively a third-

order nonlinear effect like two-photon absorption, an equivalent nonlinear figure of merit can be

defined as FOM = n2
λβTSA

. For the a-Si:H sample shown in Fig. 3.7, we obtained a nonlinear FOM

of approximately 0.05 if CW pump is used, and a FOM of approximately 20 if a pump pulse

with 0.5 nm FWHM bandwidth is used. Since the Kerr coefficients and the TSA coefficients are

measured simultaneously using the same experiment setup, and only the relative absorption of the

probe light is used, any uncertainty in power measurement does not affect the calculation of the

nonlinear FOM.



Chapter 4

Theory of coupled-cavity four-wave mixing and a generalized nonlinear figure

of merit

4.1 A nonlinear optics model based on coupled-mode theory

The temporal coupled-mode theory (CMT) [45, 29] has been used to describe the dynamics

of an optical resonance mode when perturbation to the original cavity is small (quantitatively,

the relative change of resonance frequency due to the perturbation is much smaller than 1, i.e,

δω/ω � 1). Such perturbations include the existence of a bus waveguide or another cavity next to

the original cavity where the resonance mode has decayed exponentially, as well as optical loss due

to small absorption in the guiding or/and cladding material or scattering due to waveguide sidewall

roughness. The CMT model also applies to nonlinear optical cavity with strong optical field in

it, as long as the perturbation introduced by the optical nonlinearity is small, for example, the

relative change of refractive index due to Kerr nonlinearity is small, i.e., ∆n = n2 · I� no. A lot of

nonlinear optical devices work in this weak-nonlinearity regime, especially when continuous-wave

light with moderate optical power is used [46].

In this section we describe the equations from CMT model that govern the dynamics of

optical modes in a micro-resonator with linear and nonlinear optical processes included, and use

them as basis for designing nonlinear devices in coupled-cavity resonators. Specifically, we consider

only three resonantly-enhanced modes interacting via third-order nonlinearity, χ
(3)

. This is because

most nonlinear material have centrosymmetry and thus no second-order nonlinearity, and third-

order effect is therefore the strongest nonlinear optical effect. Also, many optical devices rely on
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Figure 4.1: (a) Cartoon of a general triply-resonant resonator system with third-order nonlinearity.

It has three resonance modes interacting via χ
(3)

-based effect, including four-wave mixing, cross-
phase modulation and cross two-photon absorption. Each resonance mode also couples to an
external waveguide mode, represented by an excitation field Sk,+ (k ∈ {p, s, i}) and field decay
rate of rk,ext (k ∈ {p, s, i}). Besides, all resonance modes decay due to a combination of linear and
nonlinear loss; (b) An example triply-resonant resonator system has a microring cavity with three
travelling-wave resonance modes and a single bus waveguide coupled to the ring cavity.

four-wave mixing for generating light of new frequencies, where a minimum of three modes (one

signal, a degenerate pump and one idler light)1 are involved. It applies to any resonator with

three interacting resonance modes, including but not limit to a single microring cavity with three

longitudinal modes and a triple-ring resonator with three supermodes with the same longitudinal

order. This three-mode formalism described here can be readily extended to cases such as ultrafast

optical switches[11] where only two optical modes are involved, and cases such as optical combs[47]

that involve many modes. The model also applies easily to other nonlinear optical processes such

as second-order nonlinearity [46] and acousto-optics [48].

For a general three-resonance system illustrated in Fig. 4.1, each resonant mode evolves over

1 There is some ambiguity on the definitions of signal, pump and idler light in four-wave mixing. In this thesis,
signal, pump, and idler light are defined to have the lowest, middle and largest frequency, respectively.
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time according to the CMT model as

dAs
dt

= (jωso + jδωs − jωs − rs,tot)As − jωsβfwm,sA
2
pA
∗
i − j

√
2rs,ext Ss,+

dAp
dt

= (jωpo + jδωp − jωp − rp,tot)Ap − 2jωpβfwm,pA
∗
pAsAi − j

√
2rp,ext Sp,+

dAi
dt

= (jωio + jδωi − jωi − ri,tot)Ai − jωiβfwm,iA
2
pA
∗
s − j

√
2ri,ext Si,+

Sk,− = Sk,+ − j
√

2rk,extAk, (k ∈ {s, p, i}). (4.1)

where Ak(t), k ∈ {s, p, i}, are the cavity energy-amplitude envelopes for light at signal, pump

and idler frequencies; Sk,+ (Sk,−) is the power-amplitude envelope in the input (output) port for

each resonant mode. By “envelope”, we mean that Ak(t) is related to the usual CMT amplitude

[29] ak(t) by ak(t) ≡ Ak(t)e
jωkt. For simplicity, we normalize mode field patterns to unity energy

or power, such that |Ak|2 is the energy of resonant mode k and |Sk,+|2 (|Sk,−|2) is the inbound

(outbound) power in guided mode k.

Next, ωko are the “cold-cavity” resonance frequencies when no light is present in the cavity;

δωko are the resonance frequency shift due to self- and cross- phase modulation from third-order

nonlinearity; ωk are the angular frequencies of the interacting modes, and they are determined from

the input light frequencies and energy conservation condition ωs +ωi = 2ωp. The field enhancement

in the cavity, thus the nonlinear effect, is maximized when all three light (signal, pump and idler)

are resonant, that is,

ωk = ωko + δωk, (k ∈ {s, p, i}). (4.2)

One should note that the nonlinear frequency shift δωk is power-dependent

δωs = −ωso(βpm,ss|As|2 + 2βpm,sp|Ap|2 + 2βpm,si|Ai|2) + δωs,FC

δωp = −ωpo(2βpm,ps|As|2 + βpm,pp|Ap|2 + 2βpm,pi|Ai|2) + δωp,FC

δωi = −ωio(2βpm,is|As|2 + 2βpm,ip|Ap|2 + βpm,ii|Ai|2) + δωi,FC (4.3)

where βpm,mn, (m,n) ∈ {s, p, i} are phase modulation coefficients (see Appendix A.1), δωk,FC,

k ∈ {s, p, i} are resonance frequency blue shift due to free carrier dispersion. In general, the
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frequency shift of the three light are different. For example, when the pump light is dominant,

δωs and δωi are twice as large as δωp because of the factor of two between cross phase modulation

and self phase modulation coefficients. In cases when the in-cavity light energy is small and thus

δωk is negligible, the resonant condition Eq. 4.2 demands the frequency mismatch (defined as

∆ωo = ωso + ωio − 2ωpo) to be 0. However, this is generally not true for a cavity with dispersion.

Various dispersion engineering methods have been used to bring down ∆ωo, including engineering

waveguide cross section dimensions to find optimal spots with close-to-zero group velocity dispersion

[15], alternatively optimizing waveguide cross section dimensions to reduce resonance frequency

mismatch across discrete resonant modes in a microcavity and allow for all-order dispersions [49],

and cavity resonance frequency splitting based on mode-selective coupling to an assistant cavity

[28]. Notably, the triple coupled cavity resonator proposed in Chapter 2 automatically have reduced

∆ωo induced by cavity dispersion (see Sec. 2.3.1.1 for more details).

βfwm,k are the four-wave mixing coefficients (see Appendix A.1). From Eqs. 4.1 one can derive

the energy conservation law 2ωpβ
∗
fwm,p = ωsβfwm,s + ωiβfwm,i. As discussed in Appendix A.1, the

coefficients βfwm,s, β
∗
fwm,p, and βfwm,i are identical except for the tensor element of χ

(3)
that they

contain. Under the assumption of full permutation symmetry [50], these tensor elements and hence

the foregoing coefficients, are equal. Thus we define a single βfwm as

βfwm,s = β∗fwm,p = βfwm,i ≡ βfwm. (4.4)

Decay rate rk,tot is the total energy amplitude decay rate for mode k (due to both loss and

coupling to external ports), where [51]

rs,tot = rs,o + rs,ext + rFC + ωso

(
βtpa,ss|As|2 + 2βtpa,sp|Ap|2 + 2βtpa,si|Ai|2

)
rp,tot = rp,o + rp,ext + rFC + ωpo

(
2βtpa,sp|As|2 + βtpa,pp|Ap|2 + 2βtpa,ip|Ai|2

)
ri,tot = ri,o + ri,ext + rFC + ωio

(
2βtpa,si|As|2 + 2βtpa,ip|Ap|2 + βtpa,ii|Ai|2

)
. (4.5)

Here, rk,o, k ∈ {s, p, i} is the linear loss rate of mode k due to linear absorption, scattering and

radiation, rk,ext is the coupling rate to an external port (e.g. waveguide, see Fig. 4.1) and βtpa,mn
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is the two-photon absorption coefficient due to absorption of a photon each from modes m and n

(m,n ∈ {s, p, i}). βtpa,mn should not be confused with the coefficient βTPA typically used in the

nonlinear optics literature, which is a bulk (plane wave) value, is defined through dI/dz = −βTPAI
2

and represents ‘nonlinear loss’ per unit length; βtpa,mn here has units of ‘nonlinear loss’ per unit

time (for a resonant mode), and includes a spatial mode overlap integral (similar to βpm,mn and

βfwm,k) to account for the spatial inhomogeneity of the field and lump it into a single effective factor

(defined in Appendix A.1). Note that three photon absorption is not included in the CMT model

since it is usually negligible in many materials.

Finally, the decay rate includes a contribution due to free-carrier absorption (FCA). The

FCA loss rate, rFC, is not a constant like the other rates and coefficients rk,o, rk,ext and βtpa,mn

in Eq. (4.5), but depends on intensities. It is important in cavities with nonlinear loss such as

silicon-core resonators, and is given by (see Appendix A.5)

rFC =
τFCσavg
2~Veff

(
βtpa,ss|As|4 + βtpa,pp|Ap|4 + βtpa,ii|Ai|4

+4βtpa,sp|As|2|Ap|2 + 4βtpa,ip|Ai|2|Ap|2 + 4βtpa,si|As|2|Ai|2
)

(4.6)

where τFC is the free carrier lifetime, σa is the free carrier absorption cross section area per electron-

hole pair, and vg is group velocity. Veff is an effective volume of the resonant mode, as defined in

Appendix A.1.

Without loss of generality, we have assumed that there is only one S− (output) and one S+

(input) port in the system in Fig. 4.1, and the above Sk,± are respective parts of the spectrum of

S±. We are making the approximation, relevant to four-wave mixing analysis, that the wavelength

spacing of the pump, signal and idler resonances is larger than their linewidth, and that we have

continuous-wave (CW) operation or nearly so, so that e.g. the signal input wave, Ss,+, affects

only the signal resonance, and does not excite the other two directly, etc. Then, the three spectral

components can be treated as separate ports. In the general case, there could be multiple ports

coupled to each resonance mode, and a coupling matrix would replace −j√2rk,ext in Eqs. 4.1.
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4.2 Cavity mode topology and effective nonlinear figure of merit

As Sec. 4.1 shows, the third-order nonlinear interaction coefficients in a microcavity (βpm,mn,

βtpa,mn and βfwm,k defined in Eqs. 4.1) all depend on the χ
(3)

tensor and modal field overlap

(see Appendix A.1). In general, the resonance modes interacting in four-wave mixing can have very

different intensity distribution in the cavity, and the overlap of four interacting waves varies from one

set to another. Besides, the signal, pump and idler resonance modes can have different polarizations,

leading to different contributions in the nonlinear interaction coefficients by various tensor elements

of χ
(3)

. As a result, there are usually 6 different nonlinear phase modulation coefficients βtpa,mn and

6 different two-photon absorption coefficients βtpa,mn (e.g. absorption of two pump photons differs

with absorption of a signal and an idler photon), and the relative magnitudes of the four-wave

mixing and two-photon absorption coefficients, can no longer be sufficiently represented by the

single conventional material nonlinear figure of merit (defined as NFOM = n2
λβTPA

= <[χ
(3)

]

4π=[χ
(3)
s]

) that

works well for plane wave nonlinear interaction in bulk materials. Instead, a vector of coefficients

is required to characterize the third-order nonlinearity in a microcavity. We call this effect as

“cavity mode topology”, and it calls for a generalization of the concept of material NFOM to

a mode-dependent NFOM vector as a metric for performance in integrated nonlinear photonic

systems. Using the generalized NFOM, we compare single cavity to multicavity geometries, as well

as traveling wave to standing wave mode excitation. The latter are both possible excitations in

a traveling wave cavity like a microring resonator, while only standing wave excitation is possible

in a standing-wave single-mode cavity like a photonic crystal microcavity. It should also be noted

that when both waveguide core and cladding materials have comparable nonlinearity, even if all

interacting modes have similar field profile, the effective nonlinear FOM in a micro waveguide or

micro cavity, is still an averaged material NFOM weighted by field energy in all nonlinear materials.

In this section, we assume a dominant nonlinear material in the micro waveguide, and focus on the

dependence of NFOM vector on the cavity mode topology.

First we take a look at the most common case of a microring cavity with travelling-wave
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excitations. The resonance mode has uniform intensity along the cavity length, and its field in

the cavity can be represented by E = Ae0(ω, x, y)e−j(γθ−ωt), which consists of field amplitude A,

transverse waveguide mode e0(ω, x, y) and longitudinal and temporal dependence e−j(γθ−ωt). We

assume the interacting waves have small differences in frequencies ( ωp ≈ ωs ≈ ωi) and similar

transverse waveguide confinement. Thus the difference in e0(ω, x, y) between the signal, pump

and idler can be neglected. The remaining part in the mode field, e−j(γθ−ωt), differs in ω and

angular propagation constant γ. However, the product of any 4 such factors of fields that come

out of the set of signal, pump and idler fields and interact via χ
(3)

, with the energy conservation

(ω1 + ω2 = ω3 + ω4) and phase matching (γ1 + γ2 = γ3 + γ4) conditions satisfied, unanimously

reduces to 1

e−j(γ1θ−ω1t) · e−j(γ2θ−ω2t) · ej(γ3θ−ω3t) · ej(γ4θ−ω4t) = 1 (4.7)

for Ek ∈ {Es,Ep,Ei}, k ∈ {1, 2, 3, 4}. As a result, all third-order nonlinear interaction coefficients

(βpm,mn, βtpa,mn and βfwm,k have the same overlap integral (see Appendix A.1). All 6 two-photon

absorption coefficients (βtpa,mn) and all 6 phase modulation coefficients (βpm,mn) converge to the

same value, respectively. Furthermore, they all have fixed relative magnitudes compared to the

four-wave mixing coefficient (βfwm) independent on the actual mode profile

βtpa

βfwm
=
=[χ

(3)
eff ]

|χ(3)
eff |

(4.8)

βpm

βfwm
=
<[χ

(3)
eff ]

|χ(3)
eff |

(4.9)

βpm

βtpa
=
<[χ

(3)
eff ]

=[χ
(3)
eff ]

= 4π(FOM) (4.10)

where χ
(3)
eff takes into account of the polarization effect. Note that the integrated nonlinear FOM

in a microring cavity with traveling-wave mode is unchanged from the conventional bulk material

value, because all nonlinear coefficients have the same dependence on mode field overlap.

For devices based on nonlinear phase modulation such as nonlinear optical switching, it is

convenient to use the conventional nonlinear FOM. However, in the context of nonlinear four-wave
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Table 4.1: Third-order nonlinear properties of some common on-chip nonlinear material

Material λ(µm) n2(10−5 cm2

GW )a βTPA( cm
GW )a NFOM σ3

c-Si 1.55 [33] 2.41 0.48 0.34 0.23

c-Si 2.3 [33] 1.0 ≈ 0 ∞ ≈ 0

a-Si:H 1.55 [35] 16.6b 0.49b 2.2 0.036

Si3N4 1.55 [52] 0.24 ≈ 0 ∞ ≈ 0
a The Kerr coefficient n2 and TPA coefficient βTPA are related to the third-order susceptibilities of the nonlinear

material χ
(3)

(see [53]): ω
c
n2 + i

2
βTPA = 3ω

4ε0c2n
2
nl
χ

(3)
1111.

b For amorphous silicon (a-Si:H), n2 and βTPA are calculated from [35]. βTPA = 2AeffγI , n2 = AeffγR/k0, where
Aeff is mode overlap area, and the nonlinearity parameter in waveguide γ = 770− j28W−1m−1.

mixing, we find it easier to work with a different nonlinear loss parameter, σ3, that represents the

relative magnitudes of four-wave mixing and two-photon absorption. We call σ3 the nonlinear

loss sine (drawing analogy to the linear loss tangent in electromagnetics) and define it as

σ3 ≡
=[χ

(3)
eff ]

|χ(3)
eff |

(4.11)

We note that σ3 depends only on material parameters and is inversely related to the conventional

FOM by FOM =
√

1− σ2
3/(4πσ3), and βtpa is related to βfwm by

βtpa = σ3βfwm (4.12)

In Table 4.1, we show third-order optical nonlinearity parameters for some nonlinear materials

commonly used in integrated photonics.

Next, we discuss the effective nonlinear FOM in a general cavity where the signal, pump and

idler resonance have different field profiles, and introduce a ~d-vector to describe the topological

mode structure aspects that give rise to differences in, say, the six TPA coefficients. The material

NFOM together with the vector ~d can then be thought of as a generalized NFOM in integrated

nonlinear devices. To be specific, we generalize the relationship between two-photon absorption
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and four-wave mixing coefficients from Eq. 4.12 to

βtpa,mn = dmnσ3βfwm (4.13)

where m,n ∈ {s, p, i}. The nonlinear loss sine σ3 depends only on material parameters, and

the topological ~d-vector accounts for mode overlap. Different nonlinear resonators based on the

same nonlinear material could have different effective nonlinearity due to their difference in ~d. As

an example, in Fig. 4.2 we show resonators consisting of a single ring cavity or triple coupled

ring cavities, each with either traveling-wave mode or standing-wave mode excitation. The three

resonance modes interacting via χ
(3)

in these resonators are shown in Fig. 4.3 accordingly. Fig. 4.4

shows different parametric gain due to FWM and loss due to TPA in these resonators. While all

three resonance modes with different longitudinal orders in a travelling-wave microring resonator

have azimuthally uniform field intensity, their counterparts in a standing-wave microring resonator

have nonuniform intensity and offset peaks and valleys. Therefore a standing-wave mode has larger

overlap with itself and with other modes, leading to larger dii than dij (i 6= j). Also, a triple-cavity

microresonator has distributed modes with non-equal energies in each constituent cavity. It turns

out that, for example, the ratio of signal-idler TPA to parametric gain (i.e. σ3dsi) is larger in a

triple-ring resonator than in a single-ring resonator, with a traveling-wave mode excitation. This

means that the effective figure of merit of the triple-ring resonator is smaller than that of the single-

ring cavity. A complete summary of various FWM coefficients and ~d-vectors is shown in Table 4.2

and detailed calculations are given in Sec. A.4.

(c)(a) (b) (d)

ωs

ωp
ωp

ωp
ωs

ωs

ωs

ωi

ωi
ωi

ωp
ωi

Figure 4.2: Example microring cavity topology for illustration of effective figure of merit: (a) single-

ring cavity with traveling-wave mode; (b)single-ring cavity with standing-wave mode; (c) triple-ring

cavity with traveling-wave mode; (d)triple-ring cavity with standing-wave mode.



44

(a)

(b)

(c)

(d)

Pump IdlerSignal

Figure 4.3: Mode fields of the pump, signal and idler resonances for the configurations (a)–(d) in

Fig. 4.2 (color–coded intensity scales are different in single and triple-cavity cases in order to show

the mode features clearly).

TPAss TPAsi TPAsp TPAppFWM
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(b)

(c)

(d)

Figure 4.4: Mode overlap integrand for the FWM and various TPA coefficients for configurations

(a)–(d) in Fig. 4.2. It shows that a vector of FOM is needed to account for the ratio of FWM relative

to various TPA terms. Besides, different cavity topologies have different FOM (see Table 4.2).

An important conclusion from the study on effective nonlinear FOM is that the resonator

mode envelope matters, i.e. the distribution of the field across parts of the compound resonator,

as well as standing-wave vs. traveling-wave excitation. Specifically, standing-wave excitation is

very “efficient” for self-TPA loss terms, such as absorption of two signal photons or two pump

photons. On the other hand, because of differences in longitudinal mode order, the parametric gain

is a bit suppressed. Thus, standing wave excitation in general loses to traveling-wave excitation in

the presence of TPA. Likewise, the single-ring configuration is more efficient than triple ring with

traveling-wave excitation. However, with standing-wave excitation, the single-ring resonator has a

larger FWM coefficient but at the same time larger TPA loss (~d coefficients). It should be kept in



45

Table 4.2: Comparison of FWM and TPA coefficients in various cavity topologies

Cavity Typea βfwm
βfwm(1-ring,TW)

b dss dii dpp dsp dip dsi

1-ring (TWc) 1 1 1 1 1 1 1

3-ring (TWc) 1
4

3
2

3
2 2 1 1 3

2

1-ring (SWc) 1
2 3 3 3 2 2 2

3-ring (SWc) 3
8

3
2

3
2 2 1 1 3

2
a Each constituent ring of the triple-ring cavity is identical to the single-ring cavity.

b Four wave mixing coefficients are normalized to that of a single-ring cavity with traveling-wave modes.

c TW: traveling-wave, SW: standing-wave.

mind that this comparison is for microring cavities with equal sizes. The triple ring design may

be able to use much smaller ring cavities than a single ring design, however, as it is not limited by

dispersion. Therefore, either a single-ring or a triple-ring cavity might be more efficient, depending

on specific implementation and target wavelengths.



Chapter 5

Optical parametric wavelength conversion

This chapter describes both theoretical and experimental studies on optical parametric wave-

length conversion (OPWC) based on degenerate four-wave mixing (FWM) in triply-resonant cav-

ities. Efficient parametric wavelength conversion occurs with stimulated FWM, where two pump

photons are converted to a pair of signal and idler photons under the excitation of a seeding sig-

nal light. The generated signal and idler light further act as seeding light, leading to enhanced

wavelength conversion efficiency. Parametric wavelength conversion facilitates many useful on-chip

optical functionalities. First, since parametric optical processes do not rely on atomic transitions,

the OPWC is broadband and can be used to generate coherent light at wavelengths where con-

ventional laser gain media are underdeveloped. For example, with the assistance of well-developed

semiconductor lasers at wavelengths in the visible and telecom bands, OPWC enables on-chip light

sources of wavelength at mid-IR where many interesting gas absorption lines exist [10]. Besides,

OPWC increases the number of oscillating lines in optical frequency comb generation by allowing

the interaction of any set of four lines with frequency and momentum matching [16, 17]. In fact,

OPWC in the main process in an optical parametric oscillator once significant seeding light is gen-

erated. In addition, OPWC provides direct gain for all-optical data stream wavelength conversion

and amplification in optical communication [14]. Furthermore, an optical parametric amplifier is

essentially an OPWC device with large parametric gain, and thus the study on OPWC can shed

light on the design of optical parametric amplifiers. Last but not least, a quantum device with

spontaneous FWM can be understood as a classical device with stimulated FWM fed by an un-
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depleted pump and a classical seed light with effective power that is dependent on the photon

energy and density of states. Therefore the same optical devices with good classical stimulated

FWM efficiency can also work as efficient sources for generating quantum photons using sponta-

neous four-wave mixing[54], because both spontaneous FWM and stimulated FWM have the same

Hamiltonian operator. The linear relationship between spontaneous FWM and stimulated FWM

coefficients is analogous to the linear relationship between the Einstein coefficients for spontaneous

emission (absorption) and stimulated emission.

5.1 Theoretical efficiency and optimum designs

This section presents the conversion efficiency of OPWC based on degenerate FWM. Em-

phasis is put on microresonators where all the three interacting light modes (signal, pump and

idler) can be simultaneously resonantly enhanced. The nonlinear interaction in such resonators is

enhanced as a result of enhanced optical power or interaction length compared to that in waveg-

uides. In general, no simple analytical expression for the OPWC efficiency can be derived, except

in the simplest case of negligible nonlinear loss and undepleted input light. However, numerical

solutions can always be achieved using a coupled-mode theory for nonlinear interaction summa-

rized in Sec. 4.1. In the end, optimum designs of optical resonators for various nonlinear optical

applications are described.

The parametric wavelength conversion efficiency by degenerate four-wave mixing, defined as

the ratio of converted light power and input seed light power, η =
Pi,out

Ps,in
, can be calculated using the

coupled-mode theory equations 4.1 presented in Sec. 4.1, with no input light at the idler frequency

(i.e., Si,+ = 0)

dAs
dt

= (jωso + jδωs − jωs − rs,tot)As − jωsβfwm,sA
2
pA
∗
i − j

√
2rs,ext Ss,+

dAp
dt

= (jωpo + jδωp − jωp − rp,tot)Ap − 2jωpβfwm,pA
∗
pAsAi − j

√
2rp,ext Sp,+

dAi
dt

= (jωio + jδωi − jωi − ri,tot)Ai − jωiβfwm,iA
2
pA
∗
s − j

√
2ri,ext Si,+

Sk,− = Sk,+ − j
√

2rk,extAk, (k ∈ {s, p, i}). (5.1)
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In general, these nonlinear equations don’t have simple solutions. However, at certain circumstances

there equations can be simplified. For example, when the nonlinear loss is negligible, nonlinear

conversion is small and thus both the pump and seed light are undepleted in the resonator, the

steady-state in-cavity energies of the pump and seed light, |Ak|2, are given by

|Ak|2 =
2rk,in

∆ω2
k + r2

k,tot

Pk,in (5.2)

where k ∈ {s, p}, rk,tot = rk,o + rk,in + rk,out is the total linear loss, ∆ωk = ωko + δωk − ωk is the

resonance frequency detuning, Pk,in = |Sk,+|2 is the on-chip light power in the input waveguide.

Then the conversion efficiency is obtained by inserting Eq. 5.2 to Eqs. 5.1

η =
Pi,out

Ps,in
= |ωβfwmPp,in|2

2ri,out

∆ω2
i + r2

i,tot

2rs,in

∆ω2
s + r2

s,tot

(
2rp,in

∆ω2
p + r2

p,tot

)2

(5.3)

The above expression for FWM conversion efficiency is consistent with that obtained using

wave propagation method [55]

η =
Pi,out

Ps,in
= |γPp,inLeff |2FE 4

pFE
2
sFE

2
i e
−αLcav (5.4)

where the third-order nonlinear coefficient in the waveguide, γ, is related to βfwm as γ =
ωβfwmn

2
nlLeff

c2

(see Eq. A.19), Leff = | e−(α−j∆β)Lcav−1
α−j∆β | is the effective nonlinear interaction length in the cavity

with the effects of linear loss and phase mismatch included, Lcav is the propagation length in the

microcavity, α is linear loss rate of optical power due to absorption, scattering and radiation in

the cavity, ∆β = 2βp − βs − βi is the propagation constant mismatch, and FEk, k∈ {s, p, i}, is the

field enhancement factor in the cavity, and is given by FEk = −jκ
1−te(−α/2+jβ)Lcav

≈ (
2rk,extFSR

∆ω2
k+r2

k,tot
)1/2. In

addition, note that the expression for FWM efficiency, Eq. 5.4 also works for compound resonators

with resonance modes of longitudinally nonuniform intensity, such as the triple-ring resonator

presented in Sec. 2.3.1, where Lcav is the sum of the circumferences of the two outer ring cavities.

Therefore the resonant enhancement of nonlinear interaction in a resonator can be interpreted in

two different ways – it results from either enhanced optical power for all four interacting light with

the interaction length equal to the optical propagation length of the cavity, or largely extended

nonlinear interaction length with the same optical power and quasi-phase matching (such that the
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phase mismatch term contains Lcav rather than an extended length). However, it’s not valid to

claim that there is simultaneous enhancement of optical power and interaction length.

Eqs. 5.3 and 5.4 show that the OPWC efficiency increases with reduced frequency detuning

∆ωk = ωko + δωk−ωk, k ∈ {s, p, i}. Because the frequency shift (δωk) depends on a combination of

thermal optical effect, phase modulation and free-carrier dispersion with different shifting directions,

and varies with optical power, it is critical to pre-shift the “cold-cavity” resonance frequencies (ωko)

in design according to an estimate of frequency shift at work. Besides, electrical heaters can be

employed to tune a resonator after fabrication.

In addition, if the resonance frequencies of the three light modes (signal, pump and idler) do

not satisfy the energy conservation condition, i.e., ωso + δωs + ωio + δωi − 2(ωpo + δωp) = 0, the

frequency detuning cannot be simultaneously reduced to 0. Although device temperature change

often results in equal shift of the resonance frequencies of the three interacting light in four-wave

mixing (excluding cases of nonuniform temperature change in a resonator with nonuniform mode

intensity), nonlinear optical effects such as Kerr effect and free carrier dispersion always lead to

unequal changes of resonance frequencies. For example, when a strong pump light is dominant in

the resonator, the frequency shifts due to cross phase modulation at the signal and idler resonances

are twice as large as that at the pump resonance due to self-phase modulation. Therefore in the case

of negligible free carrier dispersion, a slight anomaly dispersive resonator (i.e., ωso +ωio−2ωpo > 0)

is required to per-compensate resonance shift due to phase modulation.

Besides, Eq. 5.4 shows that the OPWC efficiency decreases with phase mismatch ∆βLcav,

because idler light generated at different locations in the resonator does not add up with the same

phase. However, this dependence is missing in Eq. 5.3 derived from coupled-mode theory (CMT).

This is because CMT intrinsically uses lumped mode energy and ignores the field propagation aspect

in the resonator. However, the effect of phase mismatch on the OPWC efficiency in a resonator is

much weaker than that of resonance frequency detuning, and thus Eq. 5.3 is still valid in practice.

It should also be noted that when calculating the field enhancement factor for the interacting

light, the input port is relevant to the signal and pump light while the output port is relevant
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to the generated idler light, and each light can have different field enhancement factor in the

same resonator due to different external couplings. This fact is important in cases where multiple

waveguides couple to the resonator with different coupling rates at different resonant modes (for

mode-dependent coupling, see Sec. 2.3.1.2), and in fact can be employed for optimum design of

various nonlinear devices. For example, in order to maximize the OPWC efficiency, critical coupling

is desired for all three light. However, for parametric data bit conversion, the external coupling rates

of the signal and idler resonances need to accommodate the data bandwidth, while the pump light

is critically coupled to maximize the parametric gain. Another example is laser linewidth narrowing

based on optical parametric processes [56, 57], where the signal resonance has large bandwidth to

allow more low-coherence input light to be loaded into the resonator, and the coupling for the idler

light is reduced to force a high coherence in the converted light.

5.1.0.1 “Eigenmode” picture of four-wave mixing:

It should be noted that the evolution of the energies of the three interacting light via FWM

in the resonator (|Ak|2, k ∈ {s, p, i}) depends on the relative phases among them. Specifically,

four-wave mixing is an reversible process —while two pump photons are converted to a pair of

signal and idler photon, the latter are also annihilated to generate pump photons simultaneously.

Before arriving at an equilibrium state where the two opposite interactions cancel each other, the

net energy flow depends on not only the relative magnitudes of the three light, but also their

relative phases. In fact, the coupled-mode theory equations 5.1 can be transformed onto the basis

of “eigenmodes” of four-wave mixing

dA±
dt

= (j∆ωs − rs,tot)As ± ωs|βfwmA
2
p|A± − j

√
rs,ext Ss,+ (5.5)

dAp

dt
= (j∆ωp − rp,tot)Ap + ωpβ

∗
fwmA

∗
p

(
−|A+|2 + |A−|2 +A+A

∗
− −A∗+A−

)
− j
√

2rp,in Sp,+ (5.6)

where A± = 1√
2
(As∓ jA∗i ), and A+ (A−) represents a pair of signal and idler light with parametric

gain (loss) in degenerate-pump four wave mixing. Also the pump light loses (gains) energy by

interacting with A− (A+). Note that a few assumptions have been made in writing down Eqs. 5.5 for
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simplicity. First, the signal and idler light are assumed to have equal resonance frequency detuning

(∆ωs = ∆ωi), loss rates (rs,tot = ri,tot) and external coupling rates (rs,in = ri,in, rs,out = ri,out).

Otherwise the “eigenmodes” would be A± ∝ [(∆ωi + jri,tot)As∓ j(∆ωs + jrs,tot)A
∗
i ]. Besides, there

are in total three degrees of freedom in the phases of the three light, and their common phase is

fixed by setting the phase of the product βfwmA
2
p to be 0. Also the differences between ωs and ωi is

neglected. These assumption don’t affect the generality of the “eigenmodes” picture of four-wave

mixing.

The two eigenmodes A± evolves together with Ap and the steady-state solutions are

A± =
−j√rs,extSs,+

−j∆ωs + rs,tot ∓ ωs|βfwmA2
p|

(5.7)

|Ap|2 =
2rp,inPp,in

(∆ωp + 2=[A+A∗−])2 + [rp,tot + ωp|βfwm|(|A+|2 − |A−|2)]2
(5.8)

where rg ≡ ωs|βfwmA
2
p| is the parametric gain (loss) coefficient for A+(A−). Because of the para-

metric gain (loss), the effective critical coupling conditions for A± are different from those of As

and Ai. For example, to maximize |A+|2 the optimum input coupling rs,in should decrease by

rg. In general, the two equations above need to be solved together to find out the OPWC effi-

ciency in steady-state. When the pump light is undepleted from the four-wave mixing process, the

eigenmodes A± evolves separately, and the in-cavity pump light energy is given by

|Ap|2 =
2rp,inPp,in

∆ω2
p + r2

p,tot

. (5.9)

The generated idler light Ai and amplified signal light As are obtained as a combination of

A±

As =
1√
2

(A+ +A−) =
−j
√

2rs,extSs,+(−j∆ωs + rs,tot)

(−j∆ωs + rs,tot)2 − (ωs|βfwmA2
p|)2

(5.10)

Ai =
j√
2

(A∗− −A∗+) =
−j
√

2rs,extSs,+ωs|βfwmA
2
p|

(j∆ωs + rs,tot)2 − (ωs|βfwmA2
p|)2

. (5.11)

Therefore the expression for OPWC efficiency is

η =
2ri,ext|Ai|2

Ps,in
=

(2rs,inω|βfwmA
2
p|)2

|(j∆ωs + rs,tot)2 − (ωs|βfwmA2
p|)2|2 (5.12)
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The above expression for OPWC efficiency reduces to Eq. 5.3 when the parametric gain rg is

small compared to linear loss and coupling rates and thus signal light in also undepleted in the

resonator. In this scenario, the phases of the pump and signal light are determined by their input

light phases, and not affected by the nonlinear interaction. The phase of the converted idler light

is unambiguously determined by the phases of the pump and signal light in the resonator and

corresponds to only parametric gain.

5.2 Experiment demonstration: four-wave mixing in silicon coupled-cavity

resonators with port-selective, orthogonal supermode excitation

In this section1 , we propose coupled-cavity triply-resonant systems for degenerate-pump four-

wave mixing (FWM) applications that support strong nonlinear interaction between distributed

pump, signal and idler modes, and allow independent coupling of the pump mode and signal/idler

modes to separate ports based on non-uniform supermode profile. We demonstrate seeded FWM

with wavelength conversion efficiency of −54 dB at input pump power of 3.5 dBm, and discuss

applications of such orthogonal supermode coupling.

Nonlinear optical interaction can be resonantly enhanced in microcavities with small mode

volumes and high field enhancements. Degenerate-pump four-wave mixing (FWM), for example,

favors triply-resonant cavities [59]. A single microring cavity used for FWM, with three interacting

waves at different longitudinal order resonances, has a trade-off between mitigating dispersion by

using a large ring and enhancing nonlinear interaction with small mode volume [28]. The design

also constrains the choice of pump, signal and idler wavelengths.

Since the minimum number of modes required for FWM is three, one can avoid the con-

straints imposed by using multiple longitudinal modes of a single cavity by, instead, coupling three

cavities together where the interacting signal, pump and idler wavelengths each excite a compound

resonance of the coupled-cavity resonator. Both stimulated and spontaneous FWM have been

demonstrated in a triple-cavity resonator [60, 27]. In these devices, however, the external ports

1 This section is reproduced nearly verbatim from my paper[58]
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(bus waveguides) couple to all resonance modes with fixed ratio of coupling rates, leading to un-

desirable crosstalk or reduced efficiency. The use of more than three coupled resonators has also

been investigated in coupled-resonator optical waveguides (CROW) [61, 62, 63] taking advantage

of reduced group velocity and broad passband.

A desirable quality of a resonant four-wave mixing device is separate and independent waveg-

uide coupling to the three interacting modes in order to both engineer the linewidths/decay rates

(and therefore field enhancement) of each resonant mode along with intrinsic isolation between the

input pump and generated signal/idler light. Optimum design of an optical parametric oscillator

calls for unequal coupling of the waveguide(s) to the three resonances that interact via FWM [2, 1].

Also, in parametric wavelength conversion and/or amplification of an optical data stream, to max-

imally utilize a CW pump, we suggest that a narrow-linewidth pump resonance should be used to

minimize the needed pump power, while high bit-rate data streams require wide-linewidth signal

and idler resonances to accommodate the modulated signals. It is also advantageous in a photon

pair generator to critically couple the pump mode while the signal/idler mode are over-coupled to

promote both efficiency and photon time correlation. While controllable mode-selective coupling

was recently proposed [2] and partially demonstrated [27], the latter work still couples two modes to

one port and all three to another port resulting in the generated correlated photons being randomly

and uncontrollably routed to two different output ports.

In this section we demonstrate orthogonal coupling of supermodes in a triple-cavity resonator

to two separate bus waveguides, show stimulated FWM in such a device and propose broad appli-

cations based on it. In general, independent orthogonal excitation of all three resonances would

require three separate bus waveguides, with each coupled exclusively to one of the three reso-

nances. Here we present a more restricted design where the pump is independently controlled from

the signal and idler. This design is suitable to degenerate FWM because signal and idler physics

are symmetric. The device enables breaking the trade-off between increasing parametric gain (by

reducing volume) and mitigating dispersion, as well as the choice of wavelengths by design, with

independently designable coupling to the resonances. We demonstrate four-wave mixing for the
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first time in such a device, and discuss potential applications.

To demonstrate the concept, triple-ring resonators were fabricated on SOI wafers with a

220 nm device layer through the ePIXfab foundry service[64]. A ring radius of 3.5µm was chosen

to minimize mode volume without compromising the quality factor (Q) through bending loss. Due

to lithographic and device layer thickness variations, the three rings can have different resonance

frequencies, resulting in unequal frequency spacing between the supermodes (2ωp 6= ωs + ωi). In

addition, coupling-induced frequency shifts can also cause unequal frequency spacing when the

coupling gaps are small since light in the middle ring sees a different environment than that in

the outer rings [65]. To compensate for any frequency mismatch, resistive metal microheaters were

fabricated on top of the oxide top cladding to thermally tune the compound resonator elements.

Each ring was tuned independently to restore the designed supermode, and the interferometric

phase in the “pump bus” was tuned to control its coupling to each supermode. Fabricated triple-

ring cavities with microheaters are shown in Fig. 5.1(a). The heaters were fabricated in a two-

step procedure involving scanning electron-beam lithography to enable fine features, and contact

photolithography for the larger pads.

Fig. 5.1(b) shows passive spectra of a triple-ring resonator, where the insertion loss is plotted

against swept laser wavelength. The notation “ps” denotes the case when the input fiber is coupled

to the “pump bus” and the output fiber is coupled to the “signal bus”, etc. The free spectral range

(FSR) is non-uniform due to dispersion. However, the compound resonator has three modes with

nearly equal frequency spacing within one FSR, enabling degenerate-pump FWM near 1550 nm.

The spectra verified the port-selective coupling of the three supermodes. In the through port

transmission of the “pump bus” (i.e. the “pp” curve), there are no substantial transmission dips

at the signal/idler resonance frequency (see “A” and “C” in Fig. 5.1(b)), showing that coupling

of the “pump bus” to the signal/idler resonance of the triple-ring cavity is frustrated, per design.

Similarly the “signal bus” couples weakly to the pump resonance as indicated by the little dip at

“B”. Therefore, the linewidth of the signal/idler (pump) resonance is controlled entirely via its

coupling to the “signal (pump) bus” and intrinsic cavity loss, and can be engineered independently
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through the respective ring-bus coupling gap. The “pump bus”(“signal bus”) was designed to

be critically coupled to the pump (signal/idler) resonance assuming an unloaded Q (loss Q) of

around 150, 000 . However, we extracted an unloaded Q of only 50, 000 from the passive spectrum

(as evidenced by the small dips “D”, “F” (“B”) at signal/idler (pump) wavelength in the “signal

(pump) bus” through port transmission), showing that all three resonances are under-coupled.
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Figure 5.1: (a) Micrographs of device under test with heaters; (b) optical transmission spectra

of four port combinations (legend: “ps”=“pump bus” input, “signal bus” output). The little

transmission dips E (A,C) show that “signal (pump) bus” couples weakly to pump (signal/idler)

resonance.

In the experiment, we thermally tuned the individual rings and interferometric bus to enable

equally-spaced supermodes, and coupled the pump and seed light resonant with the compound

cavity both via the “pump” bus (the seed should enter via the signal bus and this non-ideal

excitation was governed by experimental constraints). Parametric wavelength conversion via FWM

was observed at an input pump power of 3.5 dBm and seed power of −7.3 dBm in the input “pump

bus”. Fig. 5.2(a) shows the power spectrum of output light at drop port in “signal bus” measured

with an optical spectrum analyzer (OSA); the apparent wide linewidths are due to the filter response
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of the OSA. The generated idler light power exiting in the “signal bus” at the device was estimated

to be −61.3 dBm after taking into consideration the insertion loss of fiber-chip couplers. Thus

the measured FWM conversion efficiency from signal light at input “pump bus” to generated idler

light at the “signal bus” is approximately −54 dB at in-waveguide pump power of 3.5dBm. Since

the pump light coupling from the triple-ring cavity to the “signal bus” is frustrated by design [see

Fig. 5.1(b), with a rejection of 13 dB], the demonstrated device works as an effective filter for the

strong pump light when detecting generated signal at the “signal bus”.

To understand the limitations, efficiency scaling and potential of this device, we study the

theoretical FWM conversion efficiency taking into account the two-photon absorption (TPA) and

free-carrier absorption (FCA). We assume resonant excitation of pump and seed light, as well as

perfect phase matching and critical coupling for the three modes. In Fig. 5.2(b) we show the

simulated wavelength conversion efficiency (from signal to idler light) in silicon microresonator

based on degenerate-pump FWM as a function of normalized pump power [1], which is the in-bus

pump power normalized to the oscillation threshold power with optimum coupling when nonlinear

loss can be neglected. This oscillation threshold power scales quadratically with intrinsic cavity loss

rate and linearly with nonlinear interaction mode volume. The parametric wavelength conversion

efficiency decreases with the ratio of free-carrier lifetime and intrinsic cavity photon lifetime (defined

as τph ≡ 1/ro, where ro is intrinsic cavity loss). The under-coupled configuration in our fabricated

device leads to lower cavity enhancement lowering both parametric conversion and free carrier

generation via TPA. With normalized pump power of only −12.3 dB (i.e. 3.5 dBm actual power in

bus) and assuming free carrier lifetime of 1 ns, we can therefore predict that the nonlinear loss only

slightly decreases the FWM efficiency in our device.

When the TPA can be neglected and conversion efficiency is small, the pump and seed are

not depleted and the FWM efficiency has a simple expression [1, 28]:

η = (ωβfwmPp,in)2 2ri,out

∆ω2
i + r2

i,t

2rs,in

∆ω2
s + r2

s,t

(
2rp,in

∆ω2
p + r2

p,t

)2

(5.13)

where βfwm is the FWM coefficient in the resonator which is inversely proportional to the nonlinear
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Figure 5.2: (a) Seeded FWM in silicon triple-ring resonator with conversion efficiency of −54 dB.
(b) Degenerate-pump FWM wavelength conversion efficiency vs. normalized pump power [1] in a
silicon microcavity with nonlinear loss included. Critical coupling and perfect phase matching are
assumed. A few ratios of free carrier and photon lifetime are used.

interaction mode volumes, Pp,in is the input pump power in the “pump bus”, rk,t(k∈ {s, p, i}) is

total loss rate for resonance ωk, and ∆ωk is the frequency detuning of the excitation from the

corresponding resonance. rp,in and rs,in are coupling rates from the “pump bus” to the resonator at

the pump and signal frequencies, and ri,out is the coupling rate from the resonator to the “signal bus”

at the idler frequency. Maximum efficiency is achieved with critical coupling at the input bus for

the pump and seed light, and at the output bus for the idler light. However, as Fig. 5.1(b) shows our

device is under-coupled, with measured unloaded Q of 50, 000 and external Q of 120, 000-170, 000.

Furthermore, the signal light was inserted via the “pump bus” due to experimental constraints

(using the same input fiber as the pump), not in the “signal bus” as is optimal. Therefore, the signal

light is very poorly coupled into the resonator. With the actual weak external couplings, the theory

predicts a conversion efficiency of −47.3 dB, which is 6.7 dB higher than the measured −54 dB. The

remaining difference, we believe, is due to excitation of non-ideal supermodes, resonance splitting

due to the coupling of two counter-propagating travelling-wave in the rings, FCA, phase mismatch

and inaccuracy in the estimating external couplings.

When the nonlinear loss can be neglected, the stimulated FWM conversion efficiency from

signal light to idler light is proportional to the square of pump power, and the ratio η/P 2
p , pump-

normalized conversion efficiency (PNCE), should be used as a figure of merit for wavelength conver-
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sion efficiency of a nonlinear mixer based on degenerate-pump FWM. This ratio was measured to

be 8×10−7 (mW)−2 in our triple-ring device. Although the presently demonstrated FWM efficiency

in our triple-ring device is smaller than those of the coupled resonator [60] and microring resonator

with active carrier removal [66], we have demonstrated here the feasibility of performing FWM in

a triple-ring resonator with separate bus waveguides coupling to the pump and signal/idler modes,

enabling different linewidths for these modes. By launching the pump and seed light into separate

input ports as intended, and ensuring critical coupling, we expect the efficiency in this device to

increase by 20 dB to around −34 dB. This can be accomplished by providing separate grating cou-

plers into the pump bus and signal bus input ports, in a geometry accessible by two separate input

fibers carrying the pump and seed signal. Alternatively a 2D grating coupler could take the pump

and signal from orthogonal polarizations in the input fiber into the two bus waveguides. Last, a

co-polarized pump and signal in a single fiber can be separated into the pump and signal bus by a

wavelength filter on chip. By increasing the unloaded quality factor from 50, 000 to 500, 000 , and

sweeping out free carriers, net gain could be within reach. The unloaded Q in the present devices

is limited by larger than expected sidewall roughness on the ring cavities, and coupler radiation

loss [67]. These factors are being currently addressed in revised designs and pose no fundamental

limitation.

In summary, we have proposed and demonstrated coupled-cavity structures for resonantly

enhanced four-wave mixing that enable independent coupling of pump, signal and idler resonances

to separate ports. We expect it to enable an array of applications including optimum designs for

parametric amplifiers, oscillators, squeezing, and photon pair generation including engineering of

the biphoton joint spectral distribution.

5.3 Estimate of energy cost for data bit conversion based on four-wave

mixing

In this section, the cost of optical energy per data bit in parametric wavelength conversion

based on four-wave mixing in triple-cavity resonator systems is discussed. We take advantage of
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the wavelength-dependent coupling of triple-cavity resonator, and choose a weak, critical coupling

for pump resonance to maximize parametric gain (rp,ext = r0), and a strong, equal coupling for the

signal and idler light (rs,ext = ri,ext � r0). The incoming data rate is chosen at the half-width-half-

maximum of the signal resonance frequency of the resonator. Assuming amplitude-modulated data

signal with equal probabilities of 0s and 1s. A continuous-wave pump light is used to maintain a

constant parametric gain for the incoming data signal in the resonator. For simplicity, we assume

the in-cavity light energy is undepleted from nonlinear interaction loss. According to Eq. 5.9 and

Eq. 5.12, the OPWC efficiency is maximized when all light (data signal, pump and generated idler)

are resonant in the cavity

η =

(
2rs,inω|βfwm| Pp

2r0

r2
s,tot − (ωs|βfwm| Pp

2r0
)2

)2

. (5.14)

In practise, an OPWC efficiency of 0 dB (i.e., η = 1, no power loss from original data to converted

data) is desired. According to Eq. 5.14, the pump light power and data rate is related

Pp =
2r0

ω|βfwm|
(√

r2
s,tot + (rs,tot − r0)2 − rs,tot + r0

)
(5.15)

Since the data signal power is usually much smaller than the pump light power, the data signal

energy is neglected in calculating the total optical energy per bit (EPB)

EPB =
Pp

rs,tot
=

1

Q0|βfwm|

(√
1 + (1− r0

rs,tot
)2 − 1 +

r0

rs,tot

)
(5.16)

where Q0 = ω
2r0

is the intrinsic cavity quality factor, βfwm is the four-wave mixing coefficient in the

resonator. For a chosen data rate (rs,tot), the optical energy cost per data bit in OPWC decreases

with intrinsic cavity loss (r0). And for a given intrinsic cavity quality factor (Q0), EPB decreases

as the incoming data rate goes up. In reality, the intrinsic cavity quality factor is limited by light

absorption, scattering and radiation, and the data rate is limited by the modulation speed.

Next we use some practical parameters to estimate the energy cost per data bit. Assuming

an intrinsic cavity quality factor of 105 at the wavelength of 1550 nm (r0 ≈ 6.1x109 Hz) and a data

rate of 10 Gbps, Eq. 5.16 gives EPB of 950 fJ/bit and 150 fJ/bit for the crystalline silicon and a-Si:H

triple-ring resonators shown in Table. 6.2 near 1550 nm, respectively.



Chapter 6

Optimum design of optical parametric oscillators

6.1 Introduction

This chapter1 focuses on a theoretical study on triply-resonant optical parametric oscillators

(OPOs) based on degenerate four-wave mixing (FWM) that includes physics and degrees of free-

dom relevant to microphotonic (on-chip) device implementations. As previous chapters show, the

third-order optical nonlinearity (χ
(3)

) is strong in semiconductors like silicon as well as a number

of nonlinear glasses, and can be greatly enhanced in a microcavity due to strong transverse spatial

confinement and large effective interaction length [14]. With high enough parametric gain, OPO is

possible, where a single input pump wavelength enables oscillation at two other wavelengths reso-

nant in the microcavity, with substantial energy conversion. OPO enables coherent light generation

for many classical photonics applications, including light sources at wavelengths where gain media

are underdeveloped, and optical frequency comb generation [16, 17].

Previous demonstrations include optical parametric oscillation based on four-wave mixing

in silica microtoroids [68], silica [69] and silicon nitride (Si3N4) microring resonators [52], where

nonlinear loss due to two-photon-absorption (TPA) is negligible. It is of interest to investigate

the fundamental limits of micro-OPO performance, and find designs that achieve the best possible

performance for given material parameters. This is important because on-chip microphotonic cavity

geometries have access to greater degrees of freedom in design than either bulk optics or thin film

optics [70], as previously shown in optimal filters [71, 72], modulators [73, 74], light trapping [75, 76].

1 This chapter is reproduced nearly verbatim from my paper [1].



61

Also, a first-principles look is important because on-chip implementations in semiconductors may

have substantial nonlinear losses in addition to linear loss, including two-photon absorption (TPA),

and TPA-induced free-carrier absorption [77, 9]. Finally, even the typical scaling of resonator

quality factor due to the linear losses – the linear unloaded or loss Q – is different in e.g. tabletop

cavities, where it is normally limited by lumped mirror loss, and integrated microring or photonic

crystal cavities, where it is normally dominated by a distributed loss (per unit length) that may be

due to waveguide surface roughness, material absorption, or bulk scattering. This has an impact

on scaling of designs.

In this chapter, we present a general design approach for optical parametric oscillators based

on degenerate-pump FWM to achieve the maximum possible conversion efficiency. Previously,

temporal coupled-mode theory (CMT) has been used successfully to analyze resonant nonlinear

systems [29], including ones with four-wave mixing [59]. We develop a temporal coupled mode

theory (CMT) model of the parametric oscillator in Fig. 6.1, and normalize it with respect to linear

losses, giving a very general representation of the OPO design problem, in terms of normalized

pump power and the material nonlinear figure of merit (NFOM). We also address free carrier

losses by a normalized parameter. The optimum design solutions to this model are thus broadly

applicable across a wide parameter space, and we are able to draw general conclusions about

oscillation thresholds, conversion efficiency, and optimum coupling independent of the particular

device geometry.

Our model bears out some fundamental limitations of conventional (including integrated pho-

tonic) OPO implementations, and suggests the synthetic “photonic molecule”-like, coupled-cavity

systems proposed in Chapter 2 are capable of realizing these optimum OPO designs. In particu-

lar, different external-coupling linewidths are desirable for the pump, signal and idler wavelength

resonances. Besides, dispersion engineering is separated from control of resonant wavelengths, and

can be accomplished in part using interferometric cavity and coupled-cavity configurations in ad-

dition to design of the waveguide cross-section. These amount to resonant “photonic molecules”

that allow effective engineering of both resonance frequencies (states) and linewidths (lifetimes)
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independently.

The study also leads to a couple of general conclusions. First, we find that the maximum

achievable conversion efficiency is bound to an upper limit by nonlinear and free-carrier losses

independent of pump power, while linear losses only increase the pump power required to achieve

a certain conversion efficiency. Specifically, we show that there is a critical value of the nonlinear

figure of merit in materials beyond which parametric oscillation is not possible in a certain cavity

mode structure. On the other hand, we show, for example, that crystalline silicon structures can

oscillate in principle, even in the telecom band where nonlinear losses are present. Second, we

provide a general oscillation threshold formula for OPOs that includes both two-photon absorption

(TPA) and free-carrier absorption (FCA) losses in a normalized way.

We also provide some practical examples of experimental relevance, to give the reader some

orientation. For example, 0.21 mW of pump light at 1.55µm in silicon microrings (R=3µm) with

intrinsic quality factor (Qo) of 106 and a free-carrier-lifetime of 60 ps can produce parametric oscil-

lation with about 0.1% conversion efficiency (free-carrier-lifetime of 12.2 ps has been demonstrated

[78]), and the efficiency can reach 2% as free-carrier-lifetime approaches zero (e.g. via active car-

(a)
input/output ports

rp,ext

ri,ext

rs,ext

ro+ rtpa+ r
FC

Sp,+ Sp,-

Si,-

Ss,-

(b)

Sp,+

Si,-

Ss,-
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(c)

rs,ext=ri,ext

rp,ext
Sp,+

Si,-

Sp,-

Ss,-

Figure 6.1: (a) Illustration of the micro-OPO model including a multimode resonator; (b) a
traveling-wave resonant structure enables separated input and output ports; (c) example proposed
multimode resonator based on 3 coupled microring cavities, showing an approach to unequal pump
and signal/idler external coupling [2].
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rier sweepout [77, 9, 19]). In general, an OPO based on silicon as the source of parametric gain

cannot produce oscillation with conversion efficiencies on the order of 1 at 1550 nm due to TPA,

but we show that they can achieve oscillation at up to a few percent conversion in principle. At

wavelengths above around 2.2µm (i.e. below the half bandgap energy of silicon), efficiency close to

17% is achievable in a microring (R=7µm) with a pump power of 1 mW and a cavity intrinsic Q

of 106. In Si3N4 microrings (R=15µm), a weaker nonlinearity but absence of TPA in the telecom

band enables conversion efficiencies approaching 10% at about 9 mW pump power with a Qo of

106, where the maximum possible is 50% to each of the signal and idler (details in Section 6.3.2.1).

This chapter is organized as follows. In Section 6.2, we provide our CMT model of the

general parametric oscillator, and discuss approximations and assumptions. In Section 6.2.1, we

normalize the model with respect to linear and nonlinear loss, so that the results of computations are

universally applicable across various microcavity systems. In Section 6.3, we explain the approach

for finding the optimum design, and in Sections 6.3.1–6.3.3 we solve the problem of optimum OPO

design approximately and exactly, and provide universal design curves for situations with and

without TPA and FCA losses.

6.2 Physical model of a parametric oscillator

We begin with the coupled mode theory in time (CMT) model summarized in Chapter 4 to

describe the dynamics of linear and nonlinear phenomena in microcavities for optical parametric

oscillation. We focus on a triple-resonant cavity that can resonantly enhance one single, a degenerate

pump and one idler light. This three-mode model is a valid assumption if the optical resonator

is dispersion engineered to allow phase matching to the pump for only one pair of output signal

and idler wavelengths. This is unlike a periodic comb generator [68] which produces many output

wavelengths, but can be accomplished with appropriate resonator and dispersion engineering [79]

and, we expect, is the optimal way to use the parametric gain when the objective is efficient

generation of a single pair of signal/idler output wavelengths. We focus on this case here because

it is the simplest, but much of the intuition provided by our conclusions will apply more broadly.
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The CMT model for the three-resonance system illustrated in Fig. 6.1 is

dAs
dt

= −rs,totAs − jωsβfwm,sA
2
pA
∗
i (6.1a)

dAp
dt

= −rp,totAp − 2jωpβfwm,pA
∗
pAsAi − j

√
2rp,ext Sp,+ (6.1b)

dAi
dt

= −ri,totAi − jωiβfwm,iA
2
pA
∗
s (6.1c)

Ss,− = −j
√

2rs,extAs (6.1d)

Sp,− = Sp,+ − j
√

2rp,extAp (6.1e)

Si,− = −j
√

2ri,extAi (6.1f)

where the definitions of Ak(t), Sk,+ (Sk,−), ωk, βfwm,k, rk,ext and rk,ext (k ∈ {p, s, i}) are the same

as those in Chapter 4.

Approximations and assumptions: Without loss of generality, we make a few simplifying

approximations and assumptions, as follows. First of all, we assume the resonant condition Eq. 4.2

is satisfied. In other words, we assume that the wavelengths of pump input, Sp,+, and signal/idler

output match the “hot cavity” resonances after all resonance frequency shift is included. This is the

most efficient case for OPO operation, and is a reasonable assumption because any frequency mis-

match induced by self- and cross-phase modulation as well as free-carrier induced index change, can

be compensated in principle by pre-shifting the “cold cavity” (no excitation) resonance frequencies

by dispersion engineering of the cavity modes, or by actively tuning (e.g. thermally) the cavities

during operation [80]. We also consider here unseeded operation of an OPO, i.e. free oscillation.

In this case, there is no input power at the signal and idler frequencies beyond noise that is needed

to start the FWM process.

Next, Sec. 4.2 shows there are six unique βtpa,mn coefficients. To simplify the analysis and

arrive at a single TPA coefficient, βtpa,mn ≡ βtpa, we assume the transverse field profile dispersion

is negligible (valid when ωp ≈ ωs ≈ ωi), and assume a single, traveling-wave cavity configuration,

with traveling wave excitation. In this case, the TPA coefficient βtpa also contains the same field

overlap integral as βfwm (see Sec. 4.2), and their ratio is given by the nonlinear loss sine σ3,
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defined as =[χ
(3)
eff ]/|χ(3)

eff | of the dominating nonlinear material (see Sec. 4.2). The scalar χ
(3)
eff takes

into account of the tensor character of χ
(3)

and polarization of light. In the case where multiple

nonlinear materials are present in the cavity, or the three light interacting in FWM have very

different mode profile, the general expressions with mode overlap integrals are needed to represent

βtpa,mn and βfwm. We analyze the simplest case in this chapter to find out qualitative behaviour of

on-chip optical parametric oscillators.

We also assume that each resonance has the same linear loss, rk,o = ro. Last, due to the

symmetry of our model in the regime of ∆ω/ωp � 1, where ∆ω = ωp − ωs = ωi − ωp (sufficiently

that the signal, idler and pump mode fields confinement is similar), we assume that ωs ≈ ωi ≡ ω,

and equal external coupling for the signal and idler resonances, rs,ext = ri,ext.

6.2.1 Normalized model of a parametric oscillator

To enable an analysis with more general conclusions, we can rewrite the CMT model in a

normalized form:

dBs
dτ

= −ρs,totBs − j2B2
pB
∗
i (6.2a)

dBp
dτ

= −ρp,totBp − j4B∗pBsBi − j
√

2ρp,ext Tp,+ (6.2b)

dBi
dτ

= −ρi,totBi − j2B2
pB
∗
s (6.2c)

Ts,− = −j
√

2ρs,extBs (6.2d)

Tp,− = Tp,+ − j
√

2ρp,extBp (6.2e)

Ti,− = −j
√

2ρi,extBi. (6.2f)
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The normalized variables are defined by

τ ≡ rot (6.3a)

Bk ≡
Ak
Ao

, with Ao ≡
√

2ro
ωβfwm

(6.3b)

Tk,± ≡
Sk,±
So

, with So ≡
√

2r2
o

ωβfwm
(6.3c)

ρs,tot ≡ 1 + ρs,ext + 2σ3

(
dss|Bs|2 + 2dsp|Bp|2 + 2dsi|Bi|2

)
+ ρFC (6.3d)

ρp,tot ≡ 1 + ρp,ext + 2σ3

(
2dsp|Bs|2 + dpp|Bp|2 + 2dip|Bi|2

)
+ ρFC (6.3e)

ρi,tot ≡ 1 + ρi,ext + 2σ3

(
2dsi|Bs|2 + 2dip|Bp|2 + dii|Bi|2

)
+ ρFC. (6.3f)

We arrive at normalized energy amplitudes Bk and wave amplitudes Tk,+, Tk,− by normalizing out

the linear loss rate ro, parametric coupling βfwm and nonlinear loss βtpa from the problem. Note in

Eq. (6.3c) that the input/output wave power, |Sk,±|2, is normalized to |So|2 which is the linear-loss

oscillation threshold, i.e. the oscillation threshold in the absence of nonlinear losses, as shown later.

The terms ρk,tot ≡ rk,tot

ro
and ρk,ext ≡ rk,ext

ro
, k ∈ {s, p, i} are normalized decay rates. In order

to arrive at an economical formalism to account fully for nonlinear loss, we use the nonlinear figure

of merit (NFOM), or, more precisely our nonlinear loss sine σ3. In order to preserve the generality

required by the six independent βtpa,mn terms, we have introduced In Section 4.2 the coefficients

dmn, defined as

dmn ≡
βtpa,mn

σ3βfwm
(6.4)

which serve as prefactors to the overlap integral (βtpa = σ3βfwm) of the reference case (i.e. single-

cavity with traveling-wave mode). These six coefficients are a property of the particular resonator

topology, and excitation (standing vs. traveling wave), and they together with the NFOM (or σ3)

completely characterize a device’s nonlinear performance merits related to TPA.

With the model reduced to a minimum number of coefficients, we last look at the normalized
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free-carrier absorption rate, given by

ρFC ≡
rFC

ro
= σ3ρ

′
FC

(
dss|Bs|4 + dpp|Bp|4 + dii|Bi|4 + 4dsp|Bs|2|Bp|2 + 4dip|Bi|2|Bp|2 + 4dsi|Bs|2|Bi|2

)
(6.5)

where we define a normalized FCA coefficient

ρ′FC ≡
τFCσavg
Veff

βfwm

2~
4ro

(ωβfwm)2
=

(
σan

2
nl

~ωngn2

)
τFC

Qo
.

The normalized FCA rate, ρFC, depends on nonlinear loss sine σ3 (i.e. conventional NFOM), the

topological d coefficients, the normalized mode energies (|Bk|2), and a remaining set of parameters

lumped into ρ′FC. From the last expression, we can see that the FCA effect can be characterized

by only one parameter, ρ′FC, dependent on material nonlinearity, cavity properties and the ratio

of free carrier lifetime, τFC, and linear loss Q, Qo. The last conclusion is interesting even if not

entirely surprising – that free carrier loss depends only on the ratio of free carrier lifetime to the

cavity photon lifetime, τo, where Qo ≡ ωoτo/2. The larger τFC/Qo, i.e., τFC/τo, the higher the FCA

losses.

The simplifications introduced by this normalized model permit us to numerically solve the

optimal synthesis problem for an OPO, which does not have a simple analytical solution, and to

arrive at solutions that are universal in the sense that they apply across an array of possible de-

signs. The model also provides a simple approach to solving similar problems, if certain restrictions

we have applied here are removed. Examples include frequency-mismatched OPO, optical para-

metric amplifiers and wavelength conversion driven by CW or modulated sources, and parametric

spontaneous emission and photon-pair generation.

6.3 Approach to finding the optimum OPO design

Now, we are ready to tackle the “synthesis” problem, i.e. the problem of finding the optimum

OPO design given certain material parameters. We define the optimum design of an OPO as the

one that, for a given input pump power, provides the maximum output signal (idler) power that
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can be generated through FWM, i.e. has maximum conversion efficiency. We define the power

conversion efficiency η as

η ≡ |Ss,−|2
|Sp,+|2

. (6.6)

For similar photon energies, the maximum efficiency is 50% to each of the signal and idler wave-

lengths, as two pump photons are converted to one signal and idler photon each (i.e. the maximum

photon conversion efficiency is 50%).

To find the optimum design, the first step is to design resonances for the pump, signal and idler

wavelengths that have substantial field overlap and satisfy the energy (frequency) and momentum

(propagation constant) conservation conditions (the latter automatically holds for resonances with

appropriate choices of resonant orders [68]). This has been done successfully in previous work

[69, 52]. However, the optimum choice of external coupling and coupled cavity architectures has

not been investigated. We address it here, and show that in general unequal waveguide coupling to

the pump and signal/idler resonances is the optimum choice, whereas traditional tabletop OPOs

typically have equal couplings, as they result from broadband mirrors (unique exceptions include

optical parametric chirped pulse amplification which explicitly demands mirrors designed for very

different coupling at pump and signal wavelengths [81]).

For continuous-wave operation, we begin by finding the steady state conditions of the system.

At steady state (dBkdt = 0) we have

Bs = −2jρ−1
s,totB

2
pB
∗
i (6.7)

Bi = −2jρ−1
i,totB

2
pB
∗
s (6.8)

Tp,+ = j
ρp,totBp + 4jB∗pBsBi√

2ρp,ext
(6.9)

In the following sections, these conditions will lead to the oscillation threshold, efficiency, opti-

mum couplings and other results. Once the OPO device topology is selected, fixing the topo-

logical d-vector, the conversion efficiency in Eq. (6.6) depends only on 5 normalized parameters,

η = η(σ3, |Tp,+|2, ρ′FC, ρs,ext, ρp,ext). We proceed to find the design (ρs,ext, ρp,ext) with the maximum
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efficiency ηmax for a given normalized input pump power |Tp,+|2, nonlinear loss sine σ3, and normal-

ized free carrier lifetime ρ′FC. The conversion efficiency as a function of external coupling is solved

at different levels of simplification below, and optimum couplings are chosen for the maximum

efficiency designs.

6.3.1 Traveling-wave single-cavity model with pump-assisted TPA only and no

FCA

As announced in Section 6.2, throughout Sections 6.3.1–6.3.3 we assume a single, traveling-

wave cavity with a traveling-wave excitation. In practice, this means three resonant modes with

nearly identical time-average spatial intensity patterns (and this is the case in traveling-wave res-

onators under our assumption of nearby resonance frequencies, which ensure similar transverse

waveguide confinement). In this case, the topological d-vector is (see Section 4.2).

dss = dpp = dii = dsp = dsi = dip = 1. (6.10)

First, we solve a simplified version of our model. We set the nonlinear loss to be dominated by

pump-assisted TPA for all three frequencies, and ignore TPA contributions that are much weaker.

That is, we drop the dss, dii and dsi terms from Eqs. (6.3d) and (6.3f), and drop the dsp and dip

terms from Eq. (6.3e). This is valid in the weak conversion regime, relevant to many practical

situations, where the generated signal and idler light is much weaker than pump light in the cavity.

In our analysis in this section, we solve this model in all regimes including strong conversion and

up to full conversion, even though its physics are valid in the weak conversion regime only. For one,

this analysis provides a useful bound on conversion efficiency. Then, we also indicate the region

of validity for numerical accuracy of the model. In this section we also ignore the loss due to free

carrier absorption because it may be effectively reduced by carrier sweep-out using, for example, a

reverse biased p-i-n diode [9, 77, 78]. It is revisited later in this chapter.
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Thus, the loss rates in Eqs. (6.3d–6.3f) have the simpler form

ρs,tot = 1 + ρs,ext + 4σ3|Bp|2

ρp,tot = 1 + ρp,ext + 2σ3|Bp|2

ρi,tot = 1 + ρs,ext + 4σ3|Bp|2 (6.11)

where signal and idler external coupling are equal, as already discussed. We can find the steady

state operating point from Eqs. (6.7) and (6.8), which gives


|Bs|2 = |Bi|2 = 0 (below threshold)

|Bp|2 =
(1 + ρs,ext)

2(1− 2σ3)
(above threshold). (6.12)

These two are the classical steady-state solutions to below-threshold and above-threshold operation

of the oscillator, respectively. Note that, at least in the present model that considers pump-assisted

TPA only, the steady-state pump resonator-mode energy |Bp|2 is independent of both the input

pump power |Tp,+|2 and the pump external coupling ρp,ext. This can be interpreted as clamping of

the parametric gain. By combining Eq. (6.2a) and Eq. (6.8) we have the lasing equation for signal

light

dBs
dτ

= −ρs,totBs + 4ρ−1
i,tot|Bp|4Bs ≡ −ρlossBs + ρgainBs (6.13)

Both the loss and gain for the signal light depend on the in-cavity pump light energy. When the

loss and gain term are equal, we arrive at the expression for |Bp|2 in oscillation [see Eq. (6.12)]. At

the same time, the parametric gain also depends on in-cavity signal light energy, which results in

gain clamping

dBp
dτ

= −ρp,totBp − 8ρ−1
i,tot|Bp|2|Bs|2Bp − j

√
2ρp,extTp,+. (6.14)

This is analogous to gain clamping in a laser where, during lasing, the gain saturates to equal

the round trip loss. Since the total loss rate (field decay rate) of the freely oscillating mode (sig-

nal/idler) includes the external (output) coupling and absorption/radiation losses of the signal/idler
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resonances only, not those of the pump resonance, it is not surprising that the loss and external

coupling of the pump play no role. The parametric gain is proportional to the cavity pump energy,

hence it must stay related to the signal/idler decay rates only, i.e. unchanged when the signal/idler

rates are fixed. In spite of this result, we will show later in this section that the optimum choice

of external coupling (both pump and signal/idler) for maximum conversion efficiency does depend

on the input pump power, |Tp,+|2, i.e. |Sp,+|2.

We next investigate the oscillation threshold. In general, the oscillation threshold will depend

on the choice of external couplings ρp,ext and ρs,ext. For now, to provide a useful metric for our model

normalization, we will study the threshold when we choose the external couplings that minimize

the oscillation threshold, i.e. give the minimum (optimum) threshold. This provides a useful and

simpler metric that does not depend on couplings. This minimum threshold pump power, Pth,min,

is derived in Sec. 6.3.3.1. It occurs for an external signal coupling of zero, and an external pump

coupling set to the nonlinear equivalent of the critical coupling condition. In the context of the

model in this section (without FCA), the minimum threshold is given by

Pth,min =
1− σ3

(1− 2σ3)2

2r2
o

ωβfwm
=

1− σ3

(1− 2σ3)2
Pth,lin,min (6.15)

where Pth,lin,min ≡ 2r2
o/(ωβfwm) = |So|2 [see Eq. (6.3c)] is the minimum threshold pump power

when nonlinear loss is negligible (σ3 = 0), and which we’ll call the linear minimum threshold.

The threshold scales as Veff/Q
2
o [compare Eq. (6.15) with Eq. (A.10)], where Qo is the linear loss

Q (unloaded quality factor), and Veff is the effective nonlinear mode interaction volume defined

in Sec. A.1. The σ3-dependent prefactor in (6.15) shows spoiling of the threshold with nonlinear

loss, and defines the nonlinear oscillation threshold curve in Fig. 6.2. Note that for each NFOM, or

nonlinear loss sine σ3, which is largely independent of the geometry, the minimum threshold is fixed

by a combination of the loss Q and nonlinear interaction volume. Note also that for σ3 > 0.5, the

threshold is infinite. This makes sense – the two-photon absorption is larger than the parametric

gain at all pump powers.

Now that the minimum (optimum) threshold is established for all σ3, we proceed to find the



72

optimum design at all points above threshold. Our goal is to express the efficiency only in terms of

the input pump power, σ3, and the external couplings, which we have control over; then to select

the optimum couplings. This will produce an optimum design for any point in the two-dimensional

space of all possible pump powers, and nonlinear loss sine σ3 of the material used.

In the steady state, the FWM conversion (pump input to signal output) efficiency η in

Eq. (6.6) can be expressed as

η ≡ |Ss,−|2
|Sp,+|2

=
2rs,ext|As|2
|Sp,+|2

=
2ρs,ext|Bs|2
|Tp,+|2

. (6.16)

In this expression, |Bs|2 can be replaced with an expression that depends on |Bp|2 and |Tp,+|2 using

Eqs. (6.8)–(6.9). Then, using Eq. (6.12) we can express η as a function only of the input pump

power (|Tp,+|2), external couplings (ρp,ext and ρs,ext) and the nonlinear loss sine σ3.

Next, the maximum efficiency design is found in two steps, first by maximizing efficiency

with respect to pump external coupling, and then with respect to signal external coupling. From

∂η
∂ρp,ext

= 0 we find optimum solution

ρp,ext,opt =
1− 2σ3

1 + ρs,ext
|Tp,+|2. (6.17)

It is straightforward to verify that this choice of pump coupling ρp,ext corresponds to a maximum

of η for a given input pump power |Tp,+|2 and signal/idler coupling ρs,ext. We can remove the

dependence of η on ρp,ext by inserting (6.17) into (6.16). Next, setting the derivative of this new η

with respect to ρs,ext (for a given |Tp,+|2) to zero, we arrive at a cubic equation in ρs,ext:

(1 + ρs,ext)
2(2σ3ρs,ext + 1− σ3)− (1− 2σ3)2|Tp,+|2 = 0.

Since the coefficients of this cubic equation are all real, it always has a real root, given by

ρs,ext,opt =
1

6σ3
(−1− 3σ3 + (D − E)1/3 + (D + E)1/3)

D ≡ (3σ3 − 1)3 + 54σ2
3(1− 2σ3)2|Tp,+|2

E ≡ 3σ3(1− 2σ3)
√

6|Tp,+|2[(3σ3 − 1)3 +D] (6.18)
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The above solution is only valid when the input pump power, Sp,+|2, is above the minimum threshold

power Pth,min, which corresponds to the signal coupling ρs,ext,opt in Eq. (6.18) (and the efficiency

η) taking on positive real values. Again, it can be verified that this solution corresponds to the

maximum of η in ρs,ext,opt for a given input pump power.

Thus, in Eqs. (6.18) and (6.17) we have found a unique optimum design for a paramet-

ric oscillator, in closed form, that achieves maximum efficiency η for a given “lossiness” of the

3rd-order nonlinearity being used, described by material-dependent nonlinear loss sine σ3, and a

given input pump power, |Sp,+|2. The design constitutes a particular choice of pump and sig-

nal resonance external coupling, providing an optimum conversion efficiency ηmax(|Tp,+|2, σ3) ≡

η(|Tp,+|2, σ3, ρp,ext,opt, ρs,ext,opt). All other parameters that are included in the normalizations (ro,

So and Ao), such as the linear losses, four-wave mixing coefficient, confinement of the optical field,

etc., simply scale the solution.

We assume that we can choose couplings freely without affecting other cavity parameters

(resonance frequency, loss Q, nonlinear effective volume, etc.) – thereby separating/decoupling the

“architecture” (choice of coupled-cavity topology, and coupling between cavities and to waveguide

ports) and the building-block “single cavity design” (to optimize parametric gain vs. linear radia-

tion loss, sidewall roughness scattering, etc.). Coupling can introduce coupling-strength-dependent

parasitic loss [82, 83], leading to the need to jointly optimize the architecture and cavity design.

These higher-order considerations will be visited in future work.

It is noteworthy that the optimum pump and signal/idler resonance coupling values are

different, whereas in practice in table-top parametric oscillators they are typically equal when

broadband mirrors are used to set external coupling, e.g. in a Fabry-Perot resonator.

We next study this optimum solution in some detail, starting with a few limiting cases.

6.3.1.1 Optimum designs: lossless χ
(3)

(σ3 = 0)

First, we will discuss the limit with no nonlinear loss (σ3 → 0), and then we will examine the

full solution just obtained from the pump-assisted-only TPA model.
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For σ3 = 0, we find that the optimum couplings are

ρs,ext,opt =
√
|Tp,+|2 − 1 (6.19)

ρp,ext,opt =
√
|Tp,+|2. (6.20)

This result is consistent with simple physical intuition. If the pump power is near the threshold

(but above it), i.e. |Tp,+|2 = 1 + ε, ε� 1, then the amount of signal/idler light generated is small,

and we are in the undepleted pump scenario. In this case, the optimum solution is ρp,ext,opt = 1,

i.e. rp,ext,opt = ro, which means that the pump resonance is critically coupled. Critical coupling

maximizes the intra-cavity pump intensity, and hence the parametric gain seen by the signal and

idler light. In the case where the pump power is well above threshold, the generated signal/idler

light carries significant energy away from the pump resonance (which acts as a virtual gain medium

to the signal/idler light). As a result, the pump resonance sees an additional loss mechanism. The

pump coupling is then larger to match the linear and nonlinear loss combined to achieve “effective

critical coupling”, in which case ρp,ext,opt > 1 (i.e. rp,ext,opt > ro). For the signal/idler output

coupling, near threshold ρs,ext,opt ≈ 0 � 1. Since gain just above threshold exceeds loss by a

small amount, the output coupling cannot be large as it would add to the cavity loss and suppress

oscillation – hence, the optimal rs,ext is between zero and a small value there.

In the case of far-above-threshold operation,
√
|Tp,+|2 � 1, and thus ρs,ext,opt ≈ ρp,ext,opt =√

|Tp,+|2. This also means that rs,ext,opt ≈ rp,ext,opt � ro, i.e. the output coupling rate is far above

the linear-loss rate. In the high-power scenario, the optimum design is then equal coupling. This

can be understood by analogy to a linear, 2-resonance (second-order) filter [84]. In our analogy,

one resonance is the pump and one the signal resonance, coupled by a nonlinearity. If the pumping

is strong, and thus the resonance-resonance coupling is large, there is an effective splitting in the

modes beyond the intrinsic linewidth ro (before the gain is included). With well-resolved resonances,

for maximum power transfer from the pump input to signal output, symmetric coupling is optimum

[85].

In the lossless nonlinearity regime, the optimum design’s efficiency (i.e. maximum achievable
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efficiency) is

ηmax(|Tp,+|2, σ3 = 0) =
(
√
|Tp,+|2 − 1)2

2|Tp,+|2
(6.21)

for |Tp,+|2 > 1 (above threshold). The optimum efficiency together with the corresponding normal-

ized coupling, Eqs. (6.19)–(6.20) provide all of the information needed to design optimum OPOs

employing a lossless χ
(3)

nonlinearity.

The forced equal-coupling case (ρp,ext = ρs,ext ≡ ρext): For device geometries where

different external coupling for different resonances are not easily implemented, we can constrain

the pump and signal/idler coupling to all be equal, and can still search for the optimum design

in this context. For each input pump power, |T (ec)
p,+ |2, there is an optimum choice of coupling,

ρext = ρext,opt. Above threshold, this coupling maximizes conversion efficiency. Near threshold, it

equivalently minimizes the threshold power. The optimum coupling, ρext,opt, is directly related to

the pump power by

|T (ec)
p,+ |2 =

(1 + ρext,opt)
3 (1 + 2ρext,opt)

2

ρext,opt (3 + 2ρext,opt)
2 . (6.22)

The normalized oscillation threshold is
[
|T (ec)

p,+ |2
]

th
= Pth,min/Pth,lin,min = 27

16 (see derivation in

Sec. 6.3.3.1), and the corresponding normalized external coupling is given by (6.22) as ρext,opt = 1
2 at

threshold. This result matches the minimum oscillation threshold expression in [68]. The optimum

coupling is exactly half way between the optimum values of ρp,ext,opt = 1 and ρs,ext,opt = 0 at

threshold in the unconstrained couplings case, described earlier in this section. At large pump

power, |T (ec)
p,+ |2 � 1, Eq. (6.22) has an asymptotic form for ρext,opt ∼ |T (ec)

p,+ | − 1
2 , which is just

the mean value of the optimum couplings in the unconstrained, unequal-couplings case, ρext,opt =

(ρp,ext,opt + ρs,ext,opt)/2.

6.3.1.2 Optimum designs: with nonlinear loss

Next, we consider the case with non-zero nonlinear loss, σ3 > 0. In Fig. 6.2 we plot the

maximum efficiency ηmax, and corresponding optimum external coupling rates for the pump and
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signal/idler, Eqs. (6.17) and (6.18), as a function of the nonlinear loss sine σ3 and normalized

input pump power |Tp,+|2. The plots show a few interesting features. First, the linear losses do

not limit the maximum conversion efficiency, but rather merely scale the required pump power
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Figure 6.2: Normalized design curves for optimum OPO (using a “partial-TPA” model with pump-
assisted TPA terms only and no FCA included): (a) maximum pump-to-signal/idler conversion
efficiency versus pump power (normalized by oscillation threshold when loss due to TPA is ignored)
and nonlinear loss sine [defined in Eq. (4.11)]; (b) corresponding optimum pump resonance coupling
normalized by cavity intrinsic loss; (c) corresponding optimum ratio of signal/idler relative to pump
resonance coupling.
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and optimum choice of external coupling coefficients. In the lossless nonlinearity case (σ3 = 0),

100% conversion (η = 0.5 to each of the signal and idler) can always be approached with proper

design. Second, nonlinear loss σ3 places an upper limit on the maximum conversion efficiency,

increases the threshold, and increases power requirements. Furthermore, oscillation is only possible

using nonlinear materials that have σ3 < 1/2. Above this value, the two-photon absorption loss

always dominates over the parametric gain, making oscillation impossible. Even for σ3 < 1/2, the

two-photon absorption losses set an upper bound on the maximum achievable conversion efficiency,

given as (full derivation in Sec. 6.3.2.2)

η <
1

2
− σ3. (6.23)

Note that this is not a tight bound because it results from consideration of pump-assisted

TPA only, and an analysis using all TPA contributions will further reduce the maximum conversion

and can produce a tighter bound. Third, a few qualitative characteristics of optimum designs can be

seen from the plots. The optimum pump external coupling is largely independent of the nonlinear

loss [see Fig. 6.2(b)]. On the other hand, the ratio of the optimal signal external coupling to the

optimal pump external coupling is largely independent of pump power, and scales primarily with

the nonlinear loss [see Fig. 6.2(c)].

This model provides useful insight but is numerically accurate for design only for small η or

for small σ3, as discussed later in Section 6.3.2. For appreciable output powers (and cavity energies

of signal and idler light) or a high nonlinear loss material (large σ3), an accurate model of OPO

operation requires accounting of all TPA, including that due to resonant signal and idler light. We

consider this more complex model in the next section.

The forced equal-coupling case (ρp,ext = ρs,ext): With nonlinear loss included, the equal-

coupling design is again suboptimal. There is a simple expression for the minimum normalized

oscillation threshold power, for the optimum choice of equal couplings (see Sec. 6.3.3.1)

P
(ec)
th,min =

27(1− σ3)2

16(1− 2σ3)3
Pth,lin,min. (6.24)



78

This expression for threshold power is valid in the σ3 = 0 case with equal coupling, described in

Section 6.3.1.1. The optimum choice of coupling at threshold is still ρp,ext = ρs,ext ≡ ρext,opt = 1
2 .

To further support that the approach presented here gives the largest conversion efficiency

for given input pump power, in Fig. 6.3 we compare the FWM conversion efficiency of the optimal

design to one with all three resonances at the usual critical coupling condition, ρs,ext = ρp,ext =

ρi,ext = 1. We also include the case where the couplings are all equal, but are optimized at each value

of input power, as calculated above. The plots show that an unequal coupling design indeed always

outperforms one with equal couplings. Furthermore, it is clear that the critical coupling condition,

though it maximizes intracavity pump power and is reasonably close to the optimum design at low

powers, is far from optimal for above threshold, and cannot reach maximum conversion efficiency.

6.3.2 Model with full TPA but no FCA

In this section we generalize the single-cavity, traveling wave model to include full TPA,

including that involving only resonant signal/idler light photons. This is the complete TPA model

needed for systems in the regime of a lossy χ
(3)

nonlinearity, with the exception of treatment of

FCA, which is deferred to the following section (it is assumed here that the free carrier lifetime can

M
ax

im
um

 c
on

ve
rs

io
n 

ef
fic

ie
nc

y,
 η

m
ax

 0.08

0.06

0.04

0.02

0

with optimum (unequal) couplings
with critical (equal) couplings

with best equal couplings

(a)

Performance comparison of OPO designs with different coupling (for Si @ 1550nm, σ3=0.23)

 

 

Normalized pump power, Ppump/Pth,lin,min Normalized pump power, Ppump/Pth,lin,min 
1 10 1001 10 100

10

1

0.1

0.01

Optimum signal/idler coupling

Optimum pump coupling

Best equal coupling

Critical (equal) coupling

(b)N
or

m
al

iz
ed

 c
ou

pl
in

g,
 r

{p
,s

},
ex

t,o
pt

 /
r o

 

Figure 6.3: Performance comparison of OPO designs with optimum unequal pump and signal/idler
couplings and with optimized equal couplings (assuming no FCA): (a) power conversion efficiency;
(b) optimum coupling values.
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be low enough to not be the limiting loss). The loss rates in Eq. (4.5) have the form

ρs,tot = 1 + ρs,ext + 2σ3

(
|Bs|2 + 2|Bp|2 + 2|Bi|2

)
ρp,tot = 1 + ρp,ext + 2σ3

(
2|Bs|2 + |Bp|2 + 2|Bi|2

)
ρi,tot = 1 + ρs,ext + 2σ3

(
2|Bs|2 + 2|Bp|2 + |Bi|2

)
(6.25)

There is no longer a simple closed-form expression for the in-cavity steady-state pump light energy

as we had in Eq. (6.12) for the partial (pump-assisted-only) TPA model. Instead we have

|Bp|2 =

(
1 + ρs,ext + 6σ3|Bs|2

)
2 (1− 2σ3)

(6.26)

which depends on the in-cavity steady state signal/idler light energy, |Bs|2. It turns out that we

need to solve the following cubic equation to find steady-state |Bs|2:

4(1− 2σ3)3ρp,ext|Tp,+|2 =(6σ3|Bs|2 + 1 + ρs,ext)

×
[
(1− 2σ3)(1 + ρp,ext) + σ3(1 + ρs,ext) + 2(2− 5σ2

3)|Bs|2
]2

(6.27)

and can only then proceed to find the optimum coupling to maximize conversion efficiency. While

it is possible to find an analytical solution for Bs (e.g. with the help of symbolic mathematics

software packages [86]), there is no sufficiently simple analytic expression for it, and we have not

succeeded in finding manageable closed form expressions for the optimum couplings themselves

in this case. Nevertheless, we can numerically sweep across values of the parameters ρp,ext and

ρs,ext to find the maximum conversion efficiency. This is a worthwhile exercise because it is not

computationally expensive, yet the problem is normalized, so a single solution set covers the entire

design space. In Fig. 6.4(I), we show the normalized design curves for optimum OPO design when

all TPA terms are included (but no FCA). We also show a comparison of these two cases – with

partial (pump-assisted-only) TPA and full TPA included, separately – in Fig. 6.4(II), to show the

region of validity of the simpler partial-TPA model. There is agreement between the partial and

full TPA models in efficiency for σ3 < 0.1, while the couplings are correct for either pump powers

below about 100 times the minimum nonlinear threshold Pth,min, or for σ3 < 0.02 or so, consistent

with our comments in the previous section.
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Figure 6.4: Normalized design curves for optimum OPO (I) using a “full-TPA” model (with all

TPA terms but no FCA included) and (II) comparison of “partial-TPA” and “full-TPA” models

(assuming no FCA): (a) maximum efficiency versus pump power and nonlinear loss sine, and

corresponding (b) pump resonance coupling and (c) ratio of signal/idler relative to pump resonance

coupling in (I) and signal/idler resonance coupling in (II). See Fig. 6.2 for parameter definitions.
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Table 6.1: Predicted performance of optical parametric oscillators based on some common on-chip
nonlinear material in a single-ring cavity with traveling-wave mode

Materiala λ(µm) W(nm)×H(nm)×Rout(µm)b Qo
c Veff (µm3)d βfwm(106J−1) Pth(mW)e

c-Si 1.55 460× 220× 3 106 2.1 29 0.055

c-Si 2.3 700× 250× 7 106 10 2.5 0.16

a-Si:H 1.55 460× 220× 3 106 2.1 186 0.004

Si3N4 1.55 1600× 700× 15 106 84 0.22 2.8
a These materials define waveguide core medium only; all devices use silica cladding (n = 1.45) surrounding the

waveguide core. Nonlinear parameters from Table 4.1 are used in simulation.

b The cavity dimensions in this table are not for actual designs (say, dispersion engineering). We just pick some
cavity dimensions to estimate the order of magnitude of threshold power. Here W, H, and Rout are waveguide core
width, height and ring outer radius.

c Qo is cavity quality factor due to linear loss only. We assume that Qo = 106 for all example designs here.

d Veff is effective overlap volume of the signal, pump and idler modes, which are three consecutive longitudinal
modes of a microring. Here we ignore waveguide dispersion (in propagation constant), which can be designed
against, as well as “mode shape dispersion”, i.e. we assume these three modes have nearly identical mode profiles
in the transverse direction (a more accurate approximation when the three wavelengths are nearby).

e Assuming no FCA; for the case with FCA, see Section 6.3.3.

Note that the plots in Figs. 2–6.5 imply a different optimum device design for each pump

power in the sense that the optimum pump and signal/idler coupling are chosen for each value of

input power. In general, for a fixed design, there is an input power which has maximum conversion

efficiency, and it is lower at both lower (incomplete conversion) and higher (back-conversion) powers.

Hence, the optimum designs provided are in that sense pump-power specific.

6.3.2.1 Example designs and scaling

We next illustrate use of these design curves. We use the normalized optimum solution to

derive the optimum performance limitations of a few experimentally relevant systems, including

OPOs based on silicon and silicon nitride microcavities. The Kerr (related to parametric gain) and

TPA coefficients for crystalline Si and Si3N4 are given in Table 6.1. In the telecom band at 1.55µm

wavelength, Si has a large nonlinear loss due to TPA (σ3 ≈ 0.23 [53]), while Si3N4 has negligible

TPA (σ3 ≈ 0) but an order of magnitude smaller Kerr coefficient. Another promising scenario,
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Figure 6.5: Optimum OPO design curves for nonlinear media with and without TPA loss (assuming
no FCA), representative of, e.g., of silicon nitride at 1550 nm and Si at 2.3µm (linear), and Si at
1550 nm (σ3 = 0.23).

pumping silicon above λ ∼ 2.2µm (i.e. photon energy below half the bandgap in silicon), offers

both high Kerr coefficient and near zero TPA [33]. Also, hydrogenated amorphous silicon [35] has

been shown to have a comparably high NFOM of 2.2 at λ =1.55µm (σ3 ≈ 0.036).

In Fig. 6.5, we show slices through Fig. 6.2 and Fig. 6.4(I) showing the still normalized

conversion efficiency and corresponding external coupling for optimum designs versus pump power

for the 1550 nm silicon design. Comparing the partial and full TPA models here again shows

agreement at low powers as expected.

To estimate the conversion efficiency and threshold pump power for these reference designs,

and to provide some unnormalized example numbers, we assume some typical microring cavity

design parameters, given in Table 6.1, and stick to a single ring cavity design. For example, for a

silicon (n = 3.48) microring resonant near λ = 1550 nm with an outer radius of 3µm, a 460×220

nm2 waveguide core cross-section, surrounded by silica (n = 1.45), the quality factor of the lowest

TE mode due to bending loss is 1.7×107. Considering other linear losses (e.g. sidewall roughness

loss), we can assume a total linear loss Q of 106. The effective volume is 2.1µm3, the FWM

coefficient is βfwm ≈ 2.9×107 J−1, and the minimum linear threshold power, Pth,lin,min, is 21µW,

while the full minimum nonlinear threshold, with no FCA, is 55µW (Table 6.1), and Fig. 6.6,
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discussed later, shows the OPO oscillation threshold when FCA is present. Operating below half

bandgap allows elimination of two-photon losses, but also requires a larger cavity to control linear

radiation loss, leading to a similar order threshold in this comparison. While amorphous silicon

[35], due to its higher figure of merit, suggests a much lower threshold in this table, in reality

achieving linear loss Q’s of 106 may not be practical in this material (with measured linear loss of

3.6 dB/cm). And, a:Si-H has been found to degrade over time [35]. Due to its weaker nonlinearity

and lower index that leads to weaker confinement, silicon nitride suggests thresholds a couple of

orders of magnitude higher than silicon. However, this comparison does not include free carrier

losses, discussed in the next section.

6.3.2.2 Upper bound of FWM conversion efficiency

When TPA is the major nonlinear optical loss and FCA is negligible, there is an upper bound

of FWM conversion efficiency. From Eqs. (6.8)–(6.9):

Tp,+ = j
(√

2ρp,ext

)−1
(
ρp,tot + 8ρ−1

i,tot|Bs|2|Bp|2
)
Bp = A+B|Bs|2 (6.28)

Where A ≡ j
(√

2ρp,ext

)−1
ρp,totBp, B ≡ j

(√
2ρp,ext

)−1
8ρ−1

i,tot|Bp|2Bp. For the case of pump-only

TPA and no FCA, the in-cavity pump light energy has a simple form [see Eq. (6.12)], and thus A

and B are independent on the input pump power. The conversion efficiency is

η =
2ρs,ext|Bs|2
|Tp,+|2

=

(
2ρs,ext

B

)
Tp,+ −A
|Tp,+|2

(6.29)

Since the phases of A, B, Tp,+ are the same, thus

η =

(
2ρs,ext

|B|

) |Tp,+| − |A|
|Tp,+|2

(6.30)

It’s easy to see that η is a function only of the input pump power (|Tp,+|2), external coupling

(ρk,ext) and the nonlinear loss sine σ3. Now we calculate the maximum conversion efficiency at

fixed external coupling from ∂η
∂|Tp,+| = 0. Then,

|Tp,+|2 = 4A2 =
2ρ2

p,tot

ρp,ext
|Bp|2
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and substituting back into (6.30), the maximum efficiency is

ηmax =
ρs,ext

2AB
=

(1− 2σ3)2

2

ρs,extρp,extρi,tot

ρp,tot(1 + ρs,ext)2
=

(
1

2
− σ3

)
ρp,ext

ρp,tot

ρs,ext(1 + ρi,ext)

(1 + ρs,ext)2
<

1

2
− σ3. (6.31)

This puts an upper bound on the achievable conversion efficiency (to each of the signal and idler),

as a function of the nonlinear loss sine σ3.

6.3.3 Model with full TPA and FCA

In a number of χ
(3)

materials, including silicon, free carrier absorption (FCA) can be a

substantial contributor to optical nonlinear losses. Hence our results in Section 6.3.2 that analyze

nonlinear (TPA) loss are numerically valid only when FCA can be neglected, which can occur with

sufficient carrier sweepout though this requires strong applied electric fields. In general, with no

or incomplete carrier sweepout FCA is present, and must be accounted for. In this section, we

consider solutions to our complete model, including FCA.

To solve for the steady-state in-cavity signal light energy and therefore calculate and maximize

conversion efficiency, one needs to first solve for Bs a system of two coupled equations, cubic in |Bs|2

and |Bp|2, respectively. These are derived from the model in Eqs. (6.2a)–(6.5). The steady-state

solution for Bs satisfies

σ3ρ
′
FCB

4
p +

(
8σ3ρ

′
FCB

2
s + 4σ3 − 2

)
B2
p =−

(
6σ3ρ

′
FCB

4
s + 6σ3B

2
s + 1 + ρs,ext

)
(6.32)[

(2− 2σ3)B2
p + (4 + 2σ3)B2

s + ρp,ext − ρs,ext

]2
B2
p =2ρp,ext,optT

2
p,+ (6.33)

We have found no simple closed-form analytical expression for Bs. In this case, still, one can

numerically solve for each Bs and find the optimum coupling for maximum conversion efficiency

by sweeping the parameter space. Because the problem is normalized this is still useful to do,

computationally inexpensive and provides a great deal of information. As can be noted from

Eq. (6.5), the loss due to free carrier absorption (FCA), which affects the efficiency η, scales only

with the ratio τFC
Qo

, i.e. the ratio of free carrier lifetime to cavity photon lifetime. This again

simplifies exploration of the design space.
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Figure 6.6: Performance of silicon microcavity at 1550 nm resonance with various free-carrier
lifetime and intrinsic cavity quality factors.

In Fig. 6.6, we show simulation results for the silicon microcavity at 1550 nm in Table 6.1

with an example set of free carrier lifetimes and cavity loss Q values. The plot shows that, with

FCA present, the optimum design’s conversion efficiency, ηmax, does not monotonically increase

with input pump power, as was the case with all of the models in the previous sections (a simple

explanation is provided in Sec. 6.3.3.2). This is because a stronger pump produces a larger steady-

state carrier concentration generated by TPA and, as a result, the overall FCA and total cavity loss

is higher at higher pump power. In fact, the free carrier loss increases faster (quadratically with

pump power) than the parametric gain (linearly with pump power), leading to falling conversion

efficiency with increasing pump power. Figure 6.6 also shows, however, that even silicon OPOs

at 1550 nm, where TPA and FCA work against the nonlinear conversion process, can achieve

conversion efficiencies of 0.1% with a pump power of 0.21 mW and free carrier lifetime of 60 ps,

which is well within the achievable using carrier sweepout via e.g. a reverse biased p-i-n diode

integrated in the optical microcavity [78]. These results and model provide some guidance for

future work on efficient implementations of silicon OPOs at 1550 nm, where TPA and FCA are

important.
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6.3.3.1 Oscillation threshold

Although the optimum design is not provided in closed form for the model that includes full

TPA and FCA, we can derive a closed form expression for the minimum oscillation threshold, which

is now different, while it was the same in all previous sections (see Eq. (6.15)). From Eqs. (6.8)–

(6.9):

Tp,+ = j
(√

2ρp,ext

)−1
(
ρp,tot + 8ρ−1

i,tot|Bs|2|Bp|2
)
Bp. (6.34)

When the input pump power is just above threshold, the OPO starts lasing, |Bs|2 ≈ 0, and thus

|Tp,+|2 =
ρ2

p,tot

2ρp,ext
|Bp|2 (6.35)

The threshold pump power is the smallest pump power that can make the OPO oscillate. To

minimize threshold, we can choose external coupling for pump, signal and idler to minimize the

expression for pump power above [see Eq. (6.35)]. The pump power is minimized at

ρp,ext = 1 + 2σ3|Bp|2 + σ3ρ
′
FC|Bp|4 (6.36)

and

Pth =
(
2(1 + 2σ3|Bp|2 + σ3ρ

′
FC|Bp|4)|Bp|2

)
min

(6.37)

So we need to minimize |Bp|2. From Eqs. (6.7) and (6.8)

2|Bp|2 = ρs,tot = 1 + ρs,ext + 4σ3|Bp|2 + σ3ρ
′
FC|Bp|4 (6.38)

By solving this quadratic equation, we have the smaller root:

|Bp|2 =
(1− 2σ3)−

√
(1− 2σ3)2 − σ3ρ′FC(1 + ρs,ext)

σ3ρ′FC

(6.39)

To minimize |Bp|2, we have ρs,ext = 0. And there is an upper limit of normalized FCA loss for

OPO to oscillate:

ρ′FC ≤
(1− 2σ3)2

σ3
(6.40)
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Figure 6.7: The OPO threshold vs (a) normalized free carrier lifetime and σ3; (b) free carrier
lifetime for silicon cavity resonant near 1550 nm with linear unloaded Q of 106 and effective volume
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By putting Eq. (6.39) into Eq. (6.37) we have the threshold pump

Pth =
4(1− σ3)(

(1− 2σ3) +
√

(1− 2σ3)2 − σ3ρ′FC

)2 (6.41)

which is normalized to Pth,lin,min. It is easy to prove that in the no FCA loss limit (ρ′FC → 0),

the threshold pump power simplifies to Eq. (6.15). The minimum threshold pump power depends

on only the nonlinear loss sine σ3, and normalized free-carrier-lifetime, ρ′FC [see Eq. (6.5)]. It is

consistent with the simulation results in Fig. 6.6. This choice of external coupling makes sense,

as it corresponds to maximum parametric gain (the largest in-cavity pump light energy for given

input pump power) and the smallest loss rate for the signal and idler light.

In Fig. 6.7(a), we plot the minimum OPO threshold versus the nonlinear loss sine σ3 and

normalized free-carrier lifetime ρ′FC. We also plot the minimum OPO threshold for a silicon cavity

near 1550 nm versus actual free carrier lifetime in Fig. 6.7(b), showing that there is a free-carrier

lifetime above which oscillation is not possible at any pump power. We expect this general result

for oscillation threshold to also be a useful tool for efficient design of integrated photonic OPOs.

For the case of equal pump and signal/idler coupling (ρp,ext = ρs,ext = ρext), Eqs. (6.35) and
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(6.38) can be combined to give:

|Tp,+|2 =
ρ3

p,tot

4(1− σ3)ρext
(6.42)

where ρext = ρp,tot − 1− 2σ3|Bp|2 − ρ′FC|Bp|4, |Bp|2 =
ρs,tot

2 =
ρp,tot

2−2σ3
and then the threshold pump

power can be represented by a function of ρext. This expression is complex, but can be simplified

when FCA is negligible:

P ′th =
(1− σ3)2

4(1− 2σ3)3

(1 + ρext)
3

ρext
|min =

27(1− σ3)2

16(1− 2σ3)3
(6.43)

with ρext = 1/2 at threshold.

6.3.3.2 Understanding of oscillation threshold

Here we provide a physical interpretation of the oscillation threshold when both linear and

nonlinear loss are present. Figure 6.8 shows the various terms of small-signal gain and loss for the

signal resonance in an optical parametric oscillator based on degenerate four wave mixing. The

linear loss rate, including material absorption, scattering loss, radiation loss and external coupling

etc., is independent of the in-cavity pump energy, which roughly scales with input pump power.

The parametric gain from four wave mixing, and loss due to two-photon absorption, are both

proportional to pump energy. However, their scaling factors vary by a factor of 2σ3, thus it is only

possible to achieve oscillation for a nonlinear material with σ3 < 0.5.

The loss due to free carrier absorption scales with the square of the pump energy, shown as

parabolic curve in Fig. 6.8. When the loss due to free carrier absorption is negligible, the total net

gain is greater than 0 in region 1. As the effective free carrier lifetime increases, the parabolic curve

becomes steeper, and the region of positive net gain shrinks to region 2 and region 3. When the

free carrier lifetime is above a certain limit, the total net gain is always negative, no matter how

large the pump light energy is. This is consistent with the plot of oscillation threshold in Fig. 6.7.
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6.4 Extension of analysis to coupled-cavity systems with distributed reso-

nance modes

In the introduction, coupled-mode theory model and general approach for optimum OPO

design (Sections 6.1–6.3), we allowed for general mode and excitation configurations. However, in

our quantitative analysis thus far, in Sections 6.3.1–6.3.3, for simplicity we chose a single-cavity

traveling-wave resonant mode system, e.g. a microring resonator excited in traveling-wave mode.

That analysis is strictly valid if dispersion is such that conversion to resonances adjacent to the

pump resonance dominates, i.e. if the system is effectively a three resonance system, but the primary

purpose is to illustrate the major parameters that influence the efficiency, optimal choices in design,

and performance scaling. In this section, we address more general resonator configurations, such

as that proposed in Fig. 6.1(c), and the degrees of freedom made available through engineering of

coupled-cavity compound resonators and of wavelength or mode selective coupling.

First, a triple-cavity resonator such as that in Fig. 6.1(c) is one example of a resonator

that explicitly provides only 3 resonant modes near each longitudinal resonance of the constituent
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microring cavities (see Sec. 2.3.1). The wavelength spacing of these resonances is determined

by ring-ring coupling strength, via the coupling gap [79, 2]. If the dispersion in the building-

block microring cavity is sufficiently large, adjacent longitudinal resonances that are spaced 1 free

spectral range (FSR) from the utilized resonance will not have proper frequency matching and will

not exhibit substantial FWM as a result. Thus, the nonlinear optics can be confined to the “local”

three resonances formed by ring coupling at one longitudinal order.

Next, optimum design of OPO demands different external coupling to the signal (idler) and

pump resonances. Compound resonator designs can also provide substantial freedom in engineering

of mode-selective coupling to the bus waveguide(s), as exemplified by the triple-cavity resonator

in Sec. 2.3.1. A single-ring cavity can have wavelength-selective coupling, e.g. using a Mach-

Zehnder, two-point coupler [87]. However, mode interferometry and orthogonal excitation can

provide substantial control of coupling in compound resonators, such as that in Fig. 6.1(c). As

Fig. 2.5 shows, the triple-cavity resonator can be engineered so that the pump resonance is coupled

to only the top waveguide, and the signal/idler resonances only to the bottom waveguide. The

waveguide-resonator coupling gap in each case determines the corresponding linewidth, allowing

different pump and signal/idler couplings to be implemented, as is required (as shown in earlier

sections) to achieve an optimal design. Besides, in the linear regime, the top and bottom waveguides

are entirely uncoupled, and the only energy coupling from the top to the bottom waveguide can

come from nonlinear interaction. One useful feature is that this design automatically filters the

pump. In practice, with fabrication variations and loss, we would expect 10-20 dB rejection of the

pump to be readily achievable, instead of complete decoupling, but this can still provide a useful

function in parametric oscillators.

Last, we show how these geometries can be simply included in our analysis formalism, through

the topological d-vector defined in Eq. 6.4 as the relative magnitudes of two-photon absorption

and four-wave mixing. Specifically, the simple d-vector given in Eq. 6.10 for a travelling-wave

single-cavity resonator is replaced with a general d-vector unique to a given cavity geometry. For

example, the topological d-vectors for a triple-ring resonator with travelling-wave and standing-
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Table 6.2: Predicted performance of optical parametric oscillators based on 3-ring photonic molecule
with traveling-wave mode

Material λ(µm) Veff(µm3)a βfwm(106J−1) Pth(mW)

c-Si 1.55 8.3 7.2 0.29

c-Si 2.3 40 0.63 0.65

a-Si:H 1.55 8.3 46 0.015

Si3N4 1.55 337 0.05 11
a Each constituent ring of the triple-ring cavity is identical to the single-ring cavity in Table 6.1.

wave excitations are summarized in Table. 4.2. Then one can follow the same analysis procedure

in Sections 6.3.1–6.3.3, to find out the optimum couplings, maximum efficiency and oscillation

threshold for OPO in an arbitrary microcavity. This allows a generalized approach to design, that

produces a normalized optimal solution for each unique geometry subspace with a given d-vector

and material NFOM. Table 6.2 shows the results of Table 6.1 evaluated for a triply-coupled cavity

“photonic molecule” OPO with traveling-wave excitation, based on the same ring cavity design in

each case.

To summarize this section, higher-order resonator designs can provide both unique function-

ality, and access to degrees of freedom needed to produce an optimum design. The model presented

provides a normalized solution vs. normalized pump power (that includes linear losses), nonlinear

FOM σ3 and a normalized FCA, for each resonator “topology” with a unique d-vector. This should

provide a basis for exploring efficient device designs and novel applications.

6.5 Future work and conclusion

The purpose of this chapter was to lay the theoretical foundation for designing efficient

parametric oscillators, and for considering the degrees of freedom made available in design by

complex photonic structures such as coupled-cavity resonators. A number of details will play an

important role in determining the practical utility of these designs. For example, we have here
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assumed that ring-ring coupling is lossless. In practice, couplers exhibit radiation loss [82, 83] and

will limit the performance of coupled-cavity designs for FWM. Design details such as this will be

specific to particular implementations, and are left for future study.

Furthermore, we considered the optimal case here with perfect frequency matching. In an

experimental situation, a frequency mismatch must be admitted, and this requires only a simple

modification of the presented model.

More generally, the degrees of freedom available in coupled resonant structures on chip suggest

that complex synthesis and designs will enable either optimal designs or ones with unique capability

for other applications, such as parametric amplifiers and entangled photon sources, including design

of joint spectral and temporal distribution of the bi-photons, their coincidence properties, etc.

To conclude, the results in this chapter show that efficient micro-OPOs can be designed in

the presence of only linear losses, and even with limited nonlinear losses, as well as free carrier

absorption. Notably, while devices without TPA call for equal optimum external coupling to all

three resonances when the pump is far above threshold, we show that both in the case closer to the

threshold, and in the case with substantial nonlinear losses, it is necessary to design substantially

different signal/idler, and pump resonance external coupling for optimum performance. In the

case where nonlinear losses are present, we have shown that a large set of practical cases can be

solved by considering only pump-induced TPA. In this case, we provide an analytical solution to

the design. With full (pump and signal/idler induced) TPA, and with FCA loss included, more

complex models do not admit simple closed-form solutions. However, we provide a normalized set

of design equations, based on which we can numerically solve for the optimum design, and provide

a single set of normalized design plots relevant for design using all nonlinear materials, linear cavity

losses, and pump powers.

These results have also motivated our proposal of both spatial mode and Q engineered mul-

timode resonators, based on multiple coupled cavities, for nonlinear FWM applications [2]. The

requirements of an optimum OPO design presented here, primarily the different external coupling

for pump and signal/idler resonances suggested by the results, do not fit well with a simple linear
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cavity such as a Fabry-Perot resonator, or a microring cavity, with broadband coupling to an ex-

ternal excitation port (via a mirror, or directional coupler, respectively). Yet, such designs have

been common in tabletop OPOs [50] as well as on-chip OPOs in silicon and silicon nitride [52, 68].

We believe this analysis suggests further work on more advanced geometries (such as Fig. 6.1(c))

may enable more efficient designs, and may enable one to reach the performance bounds found in

this chapter.

This work also suggests that complex photonic circuits may provide useful solutions not only

for OPOs but also for other devices including parametric amplifiers and entangled photon sources.

A large amount of research was done in the early to mid 1900’s in electrical circuit linear filter

synthesis using resistors, capacitors and inductors, leading to a body of sophisticated linear filter

design techniques. Development of synthesis of nonlinear circuits based on resonators as building

block components may yield a similarly rich array of solutions to nonlinear optics design on chip.



Chapter 7

Conclusion

7.1 Summary of major achievements

In the past decade there has been an expedited development in the field of silicon photon-

ics. Linear integrated optical elements, such as optical filters, modulators, detectors, fiber-to-chip

grating couplers, waveguide crossing and splitting structures, have been extensively studied and

are being implemented in mass production. Integrated nonlinear devices, which would enable on-

chip coherent light source, optical signal amplification and regeneration, all-optical logic circuits

as well as quantum light sources and circuits, have been demonstrated in optical waveguides and

single-cavity resonators. The work in this thesis focuses on improving the efficiency and function-

ality of integrated nonlinear devices, by utilizing the complex mode structures in coupled-cavity

resonators, improving the effective nonlinear figure of merit of integrated waveguiding materials

with fabrication optimization, and studying the fundamental nonlinear efficiency limit from first

principles. It also includes experimental demonstration of optical parametric wavelength conver-

sion in proposed novel coupled-cavity resonators, and shows optimum design of optical parametric

oscillators (OPOs) with mode-dependent couplings.

Triple-cavity resonators were proposed for building efficient integrated nonlinear devices based

on degenerate four-wave mixing. The three coupled resonance modes can be readily engineered to

have equal frequency spacing, allowing for arbitrary choices of resonance frequencies and enhanced

nonlinear efficiency (by reducing cavity size) without constraint of dispersion in microresonators.

The linewidth of these three coupled modes can also be independently controlled by selective
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coupling to external bus waveguides, enabling optimum design of many nonlinear devices including

optical parametric oscillators and wavelength converters with easy filtering of stronger pump light

out of the generated weaker output light.

The applicability of using hydrogenated amorphous silicon (a-Si:H) in integrated nonlinear

optical devices was investigated. A maximum effective nonlinear figure of merit (FOM) of only 0.05

was measured in fabricated a-Si:H samples as a result of substantial non-instantaneous, nonlinear

absorption. Such a small FOM in a-Si:H limits its usage in nonlinear devices employing continuous-

wave pump light. However, a-Si:H is a promising nonlinear waveguiding material for integrated

nonlinear applications where short pump light pulse is used (e.g., ultrafast all-optical switching).

An effective nonlinear FOM of approximately 20 was measured for a pump pulse with 0.5 nm

FWHM bandwidth.

Besides the nonlinear material, the mode structure of a microscopic device also affects its

overall nonlinearity. The nonlinear interaction coefficients in microresonators were derived based

on coupled-mode theory, and their relative magnitudes were shown to depend on the spatial overlap

of interacting modes. Therefore, a FOM vector was introduced to fully calibrate the third-order

optical nonlinearity in a microcavity where the signal, pump and idler resonance have distinct

spatial modes. As an example, the nonlinear FOM in a microring resonator with standing-wave

excitation is generally smaller than that in the same cavity with travelling-wave excitation.

Parametric wavelength conversion in silicon triple-ring resonators was experimentally demon-

strated, with a measured pump-normalized conversion efficiency (i.e., ratio of conversion rate versus

the square of on-chip pump light power) of 8×10−7 (mW)−2 without removing free carriers. The

compound mode structures with equal frequency spacing and selective couplings to external waveg-

uides were also confirmed experimentally. These results paved the road to more advanced nonlinear

devices in coupled-cavity resonators.

The efficiency in an integrated optical parametric oscillator based on degenerate four-wave

mixing is maximized by choosing different external coupling rates for the pump and signal/idler res-

onances, which can be readily achieved in triple-cavity resonators. Specifically, the pump resonance
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demands effective critical coupling to maximize in-cavity parametric gain, while the signal/idler

resonance prefers under coupling to reduce round-trip loss for efficient oscillation. Universal design

curves of optimum couplings for maximum oscillation efficiency were presented, and the results are

applicable to integrated OPOs built on arbitrary nonlinear material and resonator mode structures.

Analytical expression of the oscillation threshold was also derived with the nonlinear two-photon

absorption and free-carrier absorption effects included. For example, parametric oscillation is in-

principle possible in micro-resonators made of crystalline silicon, provided that the free carrier

lifetime is much smaller than the cavity photon lifetime.

7.2 Remaining challenges and future work

There are still a few challenges that can be done to further improve the performances of

integrated nonlinear devices based on coupled-cavity resonator systems. These include better con-

trol of the complex mode structure of triple-cavity resonators, further enhancing the stimulated

four-wave mixing wavelength conversion efficiency, demonstration of optical parametric oscillators

in triple-cavity resonators made of nonlinear materials with large nonlinear figure of merit (such as

silicon nitride), and employing this novel resonator system in other classical and quantum optical

applications.

Coupled-cavity resonators consisting of three identical cavities in series have equally-spaced

resonance frequencies in theory, however, fabricated devices tend to have non-ideal, asymmetric

compound modes, as a result of fabrication imperfection and coupling-induced-frequency-splitting.

To overcome this limitation, one can shift the resonance frequency of the middle cavity in design,

or/and thermally tune the individual cavities post-fabrication. In either case, a systematic way of

control is desired. And in general, the middle cavity can have different shape/size from the outer

two cavities, as long as the three coupled cavities are simultaneously resonant at the interested

wavelength. This new structure can not only make it easier to individually address each constituent

cavity, but also allow for extra degree of freedom in designing low-loss cavity-cavity couplers which

can dominate cavity loss when strong cavity-cavity coupling (for large resonance frequency splitting)
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is required. The two outer resonant modes can be engineered to couple differently to external bus

waveguides, by introducing a third bus waveguide coupled directly to two of the three cavities.

Although the non-instantaneous absorption in hydrogenated amorphous silicon samples were

experimentally observed, the physical origin of this delayed nonlinear absorption has not been well

understood. In addition, different research groups have reported different nonlinear properties

in their a-Si:H samples fabricated in different conditions. It is therefore worthwhile to further

investigate the underlying mechanism of optical nonlinearity in a-Si:H as well as its dependence on

fabrication conditions.

The efficiency of parametric wavelength conversion in triple-cavity resonators can be greatly

enhanced by exciting the pump and signal resonances from their preferred coupling buses rather

than a common bus as demonstrated in the experiment in Chapter 5. This can be done by coupling

the pump and signal light onto the two bus waveguides via two separate grating couplers. With

a better fabrication process, the linear cavity loss can be reduced and the efficiency increases for

given pump power. By varying the geometric gaps between the cavities and bus waveguides, critical

coupling for all three interacting light (i.e., pump, signal and idler) can be realized to maximize

cavity enhancement effect.

Once there is enough parametric gain in the resonator, it is then interesting to find optimum

designs of optical parametric amplifiers (OPAs) for maximum amplification factor at a certain

signal light bandwidth. As the pump light gets depleted and the signal light gets amplified, the

optimum external coupling rates to them would be different from the intrinsic cavity loss rate, and

favor an effective critical coupling state where the parametric gain and loss rate is considered (by

analogy with optimum design of optical parametric oscillators). These optimum couplings would

be different for the pump and signal light. Therefore it is advantageous to implement such OPAs in

triple-cavity resonators compared to single-cavity resonators with equal linewidth for all resonance

modes. Moreover, since large optical power is circulating in the resonators of OPAs, active free-

carrier sweepout circuits [9, 78] need to be implemented in devices made of absorptive nonlinear

materials .



98

To enable integrated coherent light source, optical parametric oscillators based on triple-

cavity resonators can be fabricated on-chip using the optimum design approach presented in Chap-

ter 6. It is also interesting to extend the theory to cases of different external couplings of the signal

and idler resonances. And it can be generalized to cases of multiple oscillating modes where the

parametric gain (originally provided by the pump light) is passed to other resonances in a cascaded

way. Such oscillators of many oscillating modes can be designed for integrated optical combs with

much higher repetition rate than those built on macroscopic resonators. One way to implement

OPOs with multiple equally-spaced resonances is to use multiple-coupled cavities with carefully

designed individual cavity resonance frequencies and inter-cavity couplings [88].

More integrated nonlinear devices can be built on the triple-cavity resonator systems made

of nonlinear waveguide materials. For example, when operated under oscillation threshold, they

can be employed to generate quantum photon pairs with strong input pump light and weak gen-

erated photons in separate bus waveguides, enabling a multitude of integrated quantum optical

applications [7]. The separation of strong pump and weak signal also mitigates the requirement

of on-chip filters in other nonlinear optical devices such as all-optical switches and logic gates. In

addition, with the capability of independent linewidth control of the three compound resonances in

triple-cavity resonators, incoherent light of large bandwidth near one resonance frequency can be

parametrically converted to another resonant mode with much narrow linewidth (i.e., longer time

coherence) [56].



Bibliography
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Johnson, “Degenerate four-wave mixing in triply resonant Kerr cavities,” Physical Review A,
vol. 83, no. 3, p. 033834, 2011.

[60] A. H. Atabaki and A. Adibi, “Demonstration of wavelength conversion in a reconfigurable
coupled resonator in silicon,” IEEE Photonics Conference, pp. 399–400, 2011.

[61] F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-
wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength
conversion.,” Nature communications, vol. 2, no. May, p. 296, 2011.

[62] J. R. Ong, M. L. Cooper, G. Gupta, W. M. J. Green, S. Assefa, F. Xia, and S. Mookher-
jea, “Low-power continuous-wave four-wave mixing in silicon coupled-resonator optical waveg-
uides.,” Optics Letters, vol. 36, no. 15, pp. 2964–2966, 2011.

[63] R. Kumar, J. R. Ong, J. Recchio, K. Srinivasan, and S. Mookherjea, “Spectrally multiplexed
and tunable-wavelength photon pairs at 1.55 µ m from a silicon coupled-resonator optical
waveguide,” Optics Letters, vol. 38, no. 16, pp. 2969–2971, 2013.

[64] ePIXfab Multi-Project Wafer Service for Silicon Photonics. www.epixfab.eu.

[65] M. Popovic, C. Manolatou, and M. Watts, “Coupling-induced resonance frequency shifts in
coupled dielectric multi-cavity filters.,” Optics Express, vol. 14, no. 3, pp. 1208–1222, 2006.

www.epixfab.eu


104

[66] J. R. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, “Efficient CW Four-Wave Mixing in
Silicon-on- Insulator Micro-Rings With Active Carrier Removal,” IEEE Photonics Technology
Letters, vol. 25, no. 17, pp. 1699–1702, 2013.
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Appendix A

Nonlinear coupling coefficients

In this chapter, expressions for the various nonlinear coupling coefficients defined in the

coupled-mode theory for degenerate-pump four-wave mixing (see Eqs. 4.1) are derived. The for-

malism explained here can be readily extended to coupling coefficients in other nonlinear optical

processes. Further, the approach of combining coupled-mode theory and perturbation theory also

applies to linear optics, acousto-optics and electro-optics whenever the index perturbation is small.

We start with an introduction of notations used here. An optical field is usually characterized

by its real electrical field component, E(r, t). It is convenient to represent the real field with a

complex vector, E(r,t), even though only its real part, E(r, t) = <[E(r,t)], has a physical meaning.

In a microcavity, the electrical field consists of a summation of modes

E(r,t) =
∑
k

E(ωk)e
jωkt =

∑
k

ak(t)ek0(ωk, r) (A.1)

where k is mode number. ek0(ωk, r) is the spatial profile of resonance mode k with a resonance

frequency of ωk, and it is usually chosen to have unit energy in the cavity so that |ak|2 is the energy

in mode k. As an example, in a microring resonator it has a factor of ej(−γθ+φ) for a travelling-wave

mode, and cos(γθ+φ) for a standing-wave mode, respectively. The complex mode amplitude ak(t)

has a fast time dependence of ejωkt and slow amplitude evolution Ak(t), i.e., ak(t) = Ak(t)e
jωkt.

The third-order optical nonlinearity manifests itself by a nonlinear polarization

PNL
i (ω1 + ω2 + ω3) =

1

4
ε0
∑
jkl

∑
(ω1,ω2,ω3)

χ
(3)

(ω1 + ω2 + ω3, ω1, ω2, ω3)Ej(ω1)Ek(ω2)El(ω3) (A.2)
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where χ
(3)

is the nonlinear susceptibility 1 , Ej(ω1) denotes the j-th Cartesian component of the

electric field at frequency ω1.

A.1 Nonlinear coupling coefficients and effective mode volume in microres-

onators

For linear unperturbed cavities, the coupled-mode equations take the form [29]:

dak

dt
= jωk − rk,totak − j

√
2rk,extsk,+ (A.3)

where ak is the complex amplitude of the kth resonance mode. This mode has a complex frequency

of ωk + jrk,tot, where the imaginary part corresponds to cavity field decay rate. When there

is optical nonlinearity in the resonator, its complex resonance frequency changes as a result of

change of complex refractive index characterized by nonlinear polarization[46]. According to the

perturbation theory, δω can be written as

δωk

ωk
=

∫
d3x

(
−1

4δε|Ek|2
)∫

d3x
(

1
2ε|Ek|2

) =

∫
d3x

(
−1

4Ek
∗ ·PNL

k

)
|ak|2

(A.4)

where Ek ≡ E(ωk) (see Eq. A.1) is the unperturbed complex electric field profile of mode k, and

PNL is the nonlinear polarization at frequency ωk. We then replace ωk in Eq. A.3 with ωk + δωk,

and compare Eq. A.3 with Eqs. 4.1 to solve for the nonlinear coupling coefficients. For example,

the nonlinear complex polarization at the signal frequency ωs is given by

PNL
s =

3

4
ε0

(
χ

(3)
(ωs;−ωi, ωp, ωp) : E∗iEpEp + χ

(3)
(ωs;−ωs, ωs, ωs) : E∗sEsEs

+2χ
(3)

(ωs;−ωp, ωp, ωs) : E∗pEpEs + 2χ
(3)

(ωs;−ωi, ωi, ωs) : E∗iEiEs

)
. (A.5)

1 Note we have chosen a definition of χ
(3)

that is consistent with Boyd’s book (see Eq. 1.3.20 in [50]), even though
Boyd chooses E(r, t) = 2<[E(r,t)].
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And the nonlinear coupling coefficients at ωs are [46, 53]

βfwm,s =

3
16ε0

∫
d3x

(
E∗s · χ

(3)
: E∗iEpEp

)
a∗sa
∗
i a

2
p

=
3ε0
∫
d3x

(
E∗s · χ

(3)
: E∗iEpEp

)
16
√∫

d3x
(

1
2ε|Es|2

)√∫
d3x

(
1
2ε|Ei|2

) ∫
d3x

(
1
2ε|Ep|2

)e−j(φs+φi−2φp) (A.6)

βpm,ss + jβtpa,ss =
3ε0
∫
d3x

(
E∗s · χ

(3)
: E∗sEsEs

)
16(
∫
d3x

(
1
2ε|Es|2

)
)2

(A.7)

βpm,sp + jβtpa,sp =
3ε0
∫
d3x

(
E∗s · χ

(3)
: EpE

∗
pEs

)
8
∫
d3x

(
1
2ε|Es|2

) ∫
d3x

(
1
2ε|Ep|2

) (A.8)

βpm,si + jβtpa,si =
3ε0
∫
d3x

(
E∗s · χ

(3)
: E∗iEiEs

)
8
∫
d3x

(
1
2ε|Es|2

) ∫
d3x

(
1
2ε|Ei|2

) (A.9)

The phase of βfwm,s relies on the choices of phase reference planes for ak (with ak = |ak|ej(ωkt−φ),

k ∈ {s, i, p}), and we can set (φs + φi − 2φp) = 0 in the CMT model without loss of generality.

With the full permutation symmetry of χ
(3)

, we have βfwm,s = βfwm,i = β∗fwm,p (the Manley-

Rowe relations). The nonlinear coupling coefficients for the idler and pump light can be derived

using a similar procedure. Notably all these coefficients depend on field overlap integral between

interacting modes, and their relative magnitudes depend not only on the material nonlinearity

parameter χ
(3)

but also the resonator mode structures (see Sec. 4.2 for detailed discussion on this

cavity mode topology). Besides, because χ
(3)

is a tensor, the effective nonlinear coefficients depend

on the polarizations of interacting optical fields. For example in a microring resonator based on

anisotropic material such as crystalline silicon, the direction of the main electrical field component

of the fundamental TE mode, varies azimuthally relative to the crystalline directions.

We then proceed to define an effective mode volume, Veff , for four-wave mixing. For plane

wave propagating in bulk nonlinear medium, the FWM coefficient, βfwm, is directly related to the

third-order susceptibility of the nonlinear material, χ
(3)

as

βfwm,s =
3χ

(3)
1111

4n4
nlε0Vnl

(A.10)

where nnl is the refractive index of nonlinear material, ε0 is vacuum permittivity, Vnl is the optical

mode volume. In a microphotonic structure, the optical fields are tightly confined and the FWM
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coefficient also depends on an overlap integral of the interacting mode fields. An effective mode

volume in a microcavity, Veff , cab be defined as the equivalent bulk volume of nonlinear medium with

the same χ
(3)

, in which uniform optical fields with the same energy would have equal nonlinearity

(βfwm). Thus we have

Veff ≡
χ

(3)
1111

√∫
d3x (ε|Es|2)

∫
d3x (ε|Ei|2)

∫
d3x

(
ε|Ep|2

)
ε20n

4
nl

∫
d3x

(
E∗s · χ

(3)
: EpEpE∗i

) . (A.11)

A.2 Nonlinear coupling coefficients and effective mode area in waveguides

It is straightforward to derive the nonlinear interaction coefficients in an optical waveguide

using the same approach as in a microcavity. For example for the signal light,

∂as
∂z

= jβs
[
1 + (βpm,ss + jβtpa,ss)|as|2 + (βpm,sp + jβtpa,sp)|ap|2

+ (βpm,sp + jβtpa,sp)|ai|2
]
as + jβsβfwm,sa

∗
i a

2
p (A.12)

where as is the complex amplitude of the signal light with linear propagation constant βs, normalized

so that |as|2 is the time-averaged optical power. All nonlinear coefficients (βpm,mn, βtpa,pm, and

βfwm,m, m,n ∈ {s, p, i}) in a waveguide have the unit of [ 1
Watt ] in contrast to [ 1

Joule ] in a resonator,

and are given by

βfwm,s =
3ε0ωs

∫
d2x

(
E∗s · χ

(3)
: E∗iEpEp

)
16βs

√∫
d2x1

2< (E∗s ×Hs · ez)
√∫

d2x1
2< (E∗i ×Hi · ez)

∫
d2x1

2<
(
E∗p ×Hp · ez

)
(A.13)

βpm,ss + jβtpa,ss =
3ε0ωs

∫
d2x

(
E∗s · χ

(3)
: E∗sEsEs

)
16βs|

∫
d2x1

2< (E∗s ×Hs · ez)|2
(A.14)

βpm,sp + jβtpa,sp =
3ε0ωs

∫
d2x

(
E∗s · χ

(3)
: E∗pEpEs

)
8βs

∫
d2x1

2< (E∗s ×Hs · ez)
∫
d2x1

2<
(
E∗p ×Hp · ez

) (A.15)

βpm,si + jβtpa,si =
3ε0ωs

∫
d2x

(
E∗s · χ

(3)
: E∗iEiEs

)
8βs

∫
d2x1

2< (E∗s ×Hs · ez)
∫
d2x1

2< (E∗i ×Hi · ez)
(A.16)

It should be noted that χ
(3)

is a tensor and thus the field overlap integral in nonlinear coefficients

(say βfwm) depend on the orientation of optical waveguide made of anisotropic material such as
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crystalline silicon. Next, an effective nonlinear mode area, Aeff , can be defined in a waveguide as

the equivalent bulk area of nonlinear medium with the same χ
(3)

, in which uniform optical fields

with the same power would have equal nonlinearity (βfwm)

βfwm ≡
3ωsχ

3
1111

4βsε0c2n2
nl

1

Aeff
(A.17)

The nonlinear mode area, Aeff , is different from the conventional linear mode area defined as the

ratio of power and peak intensity.

A.3 Conversion formulas for nonlinear parameters

We summarize the relationship between the microscopic χ
(3)

and some nonlinear parameters

common in the literature. The Kerr coefficient n2 is defined by the ratio of index change versus

intensity, ∆n = n2I, and the two-photon absorption coefficient in a bulk medium is defined by the

ratio of TPA loss versus intensity, dI/dz = −αI−βTPAI2, where I is light intensity in bulk medium

given by I = 1
2ε0nnlc|E|2, c is speed of light. Besides the nonlinear parameter γ in a waveguide is

defined via da/dz = jγ|a|2a, where |a|2 is the optical power. Using Eq. A.2 for a plane wave in

uniform bulk nonlinear medium, we have the nonlinear refractive index change expressed in three

ways

∆ε =
3

4
ε0χ

(3)|E|2

= 2ε0nnl(∆n+ j∆κ) = 2ε0nnl(n2I + j
cβTPA

2ω
I)

= 2ε0nnl(∆n+ j∆κ) = 2ε0nnl(
cIAeff

ω
)γ (A.18)

where Aeff is the effective mode area (see Eq. A.17). Thus the nonlinear parameters are related as

follows

ω

c
n2 +

i

2
βTPA =

3ω

4ε0c2n2
nl

χ
(3)
1111 = γAeff =

ωβfwmn
2
nlVeff

c2
(A.19)
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A.4 Comparison of nonlinear coupling coefficients in single- and triple-cavity

resonators with travelling-wave and standing-wave excitations

In this section we use the general expressions for nonlinear coupling coefficients derived in A.1

to compare third-order nonlinearity in single- and triple-cavity resonator with travelling-wave and

standing-wave excitations, respectively. Without loss of generality we assume that resonance modes

of these resonators have the same transverse field profile, and they only differ in the longitudinal

(propagation) direction. We also assume each constituent cavity of the triple-cavity resonator is

the same as the single-cavity resonator. As an example, we compare the longitudinal field profiles

of these resonators illustrated in Fig. 4.3 and summarized in Table. A.1.

The travelling-wave resonance modes of both single- and triple-ring resonators have az-

imuthally uniform intensity in each ring, while the standing-wave modes have sinusoidally varying

intensity around the ring. Besides, the triple-ring resonator supermodes all have unequal energy in

each constituent cavity. However, all supermodes (signal, pump and idler) have the same longitu-

dinal order (i.e., angular propagation constant m), in contrast to the single-ring resonator where

the three waves interacting in FWM have different longitudinal order (m − n, m and m + n). As

a result of differences in their mode structures, these resonators have different nonlinear coupling

coefficients (see Table. 4.2). We address such mode-dependent effective nonlinearity in Sec. 4.2.

The nonlinear coupling coefficients in different resonators can be compared using Eqs. A.6–

A.9. As an example, we compare four-wave mixing coefficients in the singe- and triple-ring res-

onators with travelling-wave excitations

βSR,TW
fwm

βTR,TW
fwm

=
V TR,TW

eff

V SR,TW
eff

=

2π∫
0

dθ1
1
2e
jmθ1 · ( 1√

2
e−jmθ1)2 · 1

2e
jmθ1 +

2π∫
0

dθ3
1
2e
jmθ3 · (− 1√

2
e−jmθ3)2 · 1

2e
jmθ3

2π∫
0

dθej(m−n)θ · e−2jmθ · ej(m+n)θ

= 4 (A.20)

The effective mode volume for degenerate-pump FWM in travelling-wave triple-ring resonators

increases to four, rather than three, times that in a single constituent ring resonator due to non-
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Table A.1: Comparison of longitudinal field profiles of single- and triple-ring resonator with travelling-
wave and standing-wave excitations. Each constituent ring of the triple-ring cavity is identical to the
single-ring cavity. The amplitude of each field has been chosen to have equal energy in all resonator.

Resonator Signal field Pump field Idler field

1-ring, TW e−j(m−n)θ e−jmθ e−j(m+n)θ

3-ring, TW ( 1
2
e−jmθ1 , 1√

2
e−jmθ2 , 1

2
e−jmθ3 ) ( 1√

2
e−jmθ1 , 0,− 1√

2
e−jmθ3 ) ( 1

2
e−jmθ1 ,− 1√

2
e−jmθ2 , 1

2
e−jmθ3 )

1-ring, SW
√

2cos[(m− n)θ]
√

2cos[mθ]
√

2cos[(m+ n)θ]

3-ring, SW (
√

2
2

cos[mθ1], cos[mθ2],
√

2
2

cos[mθ3]) (cos[mθ1], 0,−cos[mθ3]) (
√

2
2

cos[mθ1],−cos[mθ2],
√

2
2

cos[mθ3])

uniform energy distribution. In spite of larger nonlinear mode volume, a triple-cavity resonator wins

over a single-cavity resonator with automatic phase matching and frequency matching (allowing for

smaller constituent cavity), freedom in choice of resonance wavelength, resonance mode linewidth

engineering, separation of strong pump light and weak signal and so on (see Sec. 2.3.1).

A.5 Free carrier absorption coefficients

Here we derive the loss rate of cavity mode amplitude envelop (Ak in the CMT model, for

k ∈ s, p, i) due to free carrier absorption induced by two-photon absorption [see Eq. (4.6)]. On the

one hand, free carriers are created through TPA with equal densities. In general, the dynamics of

free carrier density, Nν , is governed by the continuity equation [89]

∂Nν

∂t
= G− Nν

τν
+Dν∇2Nν − sνµν∇ · (NνEdc) ≡ G−

Nν

τν,eff
(A.21)

where ν = e for electrons, ν = h for holes, sh = 1, se = −1, Dν is the diffusion coefficient, µν is the

mobility, Edc is applied dc electric field, τν is the carrier lifetime, and τν,eff is the effective carrier

lifetime that includes all the effects of recombination, diffusion and drift. G is the free carrier

generation rate per volume due to TPA, where one pair of electron and hole is generated for every

two photons absorbed

G =
1

2~ω
∆E

∆t ·∆V =
1

4~ω
<[E∗tot · J] =

1

4~ω
<[jωε0E

∗
tot · χ

(3)
: E3

tot] (A.22)
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where Etot is total electric field (Etot = Es + Ep + Ei). Thus the steady-state free carrier density

is given by

Nν = Gτν,eff . (A.23)

On the other hand, these free carriers contribute to optical loss. The free carrier absorption

coefficient of optical power (absorption rate per distance) is

αν = σνNν (A.24)

where σν is free carrier absorption cross section area. Note that both τν,eff and G are position-

dependent, and therefore the free carrier absorption coefficient αν is non-uniform across the waveg-

uide cross section. Besides, the optical field intensity is also non-uniform. As a result, the interplay

between free carriers and optical field needs to be studied carefully. If the field decay rate due to

free carrier loss is much smaller than the cavity resonance frequency, we can include the FCA loss

into the perturbation theory of CMT model, with the free carrier loss rate of mode k (for k ∈ s, p, i)

due to free carrier ν as

rνk,FC =− jω

4

∫
d3x

(
E∗k · δP

(FCA,ν)
k

)
∫
d3x

(
1
2ε|Ek|2

) =
ω

4

∫
d3x

(
ε0nnl

αν
k0
|Ek|2

)
∫
d3x

(
1
2ε|Ek|2

)
=
ε0nnlωσν

4k0

∫
d3x

(
Gτν,eff |Ek|2

)∫
d3x

(
1
2ε|Ek|2

) =
cε20nnlσν

16~

∫
d3x

(
τν,eff(E∗tot · =[χ

(3)
] : E3

tot)|Ek|2
)

∫
d3x

(
1
2ε|Ek|2

) .

(A.25)

This expression for free carrier absorption rate is true, but very complex to solve. We make

some assumptions to simplify the expression above. First, we assume the effective free carrier

lifetime, τν,eff , is the same for electrons and holes. Second, we assume the steady-state free carrier

density generated by TPA is uniform (invariant with respect to position) in the cavity. This

assumption is valid when the carrier density equilibrates due to a diffusion that is much faster

than recombination [90], or a fast drift due to an applied field for carrier sweepout. With these

assumptions, we use the effective volume of nonlinear interaction, Veff (defined in Sec. A.1), to
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average out the free carrier density, Nν . From Eqs. (6.1a)-(6.1c), using ∂Nν
dt = −Nν

τeff
+ 1

2~ωVeff

d|Ak|2
dt =

0, we have

Nν =
τeff

~Veff

(
βtpa,ss|As|4 + βtpa,pp|Ap|4 + βtpa,ii|Ai|4

+4βtpa,sp|As|2|Ap|2 + 4βtpa,ip|Ai|2|Ap|2 + 4βtpa,si|As|2|Ai|2
)
. (A.26)

The optical field decay rate due to FCA is given by

rFC =
αFCvg

2
=
σaNνvg

2
=
τeffσavg
2~Veff

(
βtpa,ss|As|4 + βtpa,pp|Ap|4

+ βtpa,ii|Ai|4 + 4βtpa,sp|As|2|Ap|2 +4βtpa,ip|Ai|2|Ap|2 + 4βtpa,si|As|2|Ai|2
)

(A.27)

where σa is the free carrier absorption cross section area, including contributions from both free

electrons and holes, vg is group velocity of optical modes. σa and vg both only have a meaning in

the context of resonators formed from a waveguide, such as microring or waveguide Fabry-Perot

resonators. The expression is still valid for 3D standing wave cavities such as photonic crystal

microcavities, where only the product σavg as a whole has a unique physical meaning.

One should note that in Eq. A.27 there is a factor of 4 for the term due to cross-TPA compared

to that for self-TPA. The enhanced two-photon absorption rate when two different photons are

absorbed results from quantum interference. As Fig. A.1 shows, there are two atomic transition

paths (1− 2− 3 and 1− 2′ − 3) between a pair of initial and final state in cross-TPA, in contrast

to a single path in self-TPA. Since the intermediate state |2 > and |2′ > are virtual states, the two

paths have the same magnitude. As a result, the total transition amplitude from |1 > to |3 > gains

a factor of 2, leading to the factor of 4 in free carrier generation rate due to cross-TPA compared

to self-TPA.
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|3>

|2’>
|2>

|1>

|3>

|2>

|1>

cross-TPA (two paths) self-TPA (one path)(b)(a)

Figure A.1: Illustration of the atomic transition processes in cross two-photon absorption (cross
TPA) and self two-photon absorption (self TPA). For the atomic transition from electronic state
|1 > to |3 >, there are two transition paths in cross TPA compared to a single transition path in
self TPA. As a result of the quantum interference between the two transition paths, cross TPA has
a factor of 4 in generating free carriers compared to self TPA.


