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Reeger, Jonah A. (Ph.D., Applied Mathematics)

A Computational Study of the Fourth Painlevé Equation and a Discussion of Adams Predictor-

Corrector Methods

Thesis directed by Prof. Bengt Fornberg

This thesis explores two unrelated research topics. The first is a numerical study of the

fourth Painlevé equation, while the second is a characterization of the stability domains of Adams

predictor-corrector methods.

First, the six Painlevé equations were introduced over a century ago, motivated by theoretical

considerations. Over the last several decades these equations and their solutions have been found

to play an increasingly central role in numerous areas of mathematical physics. Due to extensive

dense pole fields in the complex plane, their numerical evaluation remained challenging until the

recent introduction of a fast ‘pole field solver’ (Fornberg and Weideman, J. Comp. Phys. 230

(2011), 5957-5973). This study adapts this numerical method to allow for either extended precision

or faster numerical solutions to explore the solution space of the fourth Painlevé (PIV ) equation.

This equation has two free parameters in its coefficients, as well as two free initial conditions. After

summarizing key analytical results for PIV , the present study applies this new computational tool

to the the fundamental domain and a surrounding region of the parameter space. We confirm

existing analytic and asymptotic knowledge about the equation, and also explore solution regimes

which have not been described in the previous literature. In particular, solutions with the special

characteristic of having adjacent pole-free sectors, but with no closed form, are identified.

Second, the extent that the stability domain of a numerical method reaches along the imag-

inary axis indicates the utility of the method for approximating solutions to certain differential

equations. This maximum value is called the imaginary stability boundary (ISB). It has previously

been shown that exactly half of Adams-Bashforth (AB), Adams-Moulton (AM), and staggered

Adams-Bashforth methods have nonzero stability ordinates. In the last chapter of this thesis,



v

two categories of Adams predictor-corrector methods are considered, and it is shown that they

have a nonzero ISB when (for a method of order p) p = 1, 2, 5, 6, 9, 10, . . . for ABp-AMp and

p = 3, 4, 7, 8, 11, 12, . . . in the case of and AB(p-1)-AMp.
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Chapter 1

Introduction

This thesis contains two very different research topics. First, a fairly new numerical method

is applied to the fourth Painlevé equation to explore the vast regions of the solution space that

have not been considered in the literature. Second, the utility of Adams Bashforth predictor-Adams

Moulton corrector methods for first order ordinary differential equations with imaginary spectra is

considered. We begin with the study of the fourth Painlevé equation.

1.1 History of the Painlevé Equations

At the turn of the twentieth century Paul Painlevé sought all second order ordinary differential

equations (ODEs) of the form

d2

dz2w(z) = F

(
z, w(z),

d

dz
w(z)

)

with F a rational function of w(z) and d
dzw(z), and w(z) locally analytic in z satisfying a special

property. This property, now known as the Painlevé property, is characterized by solutions of

the ODEs free from movable branch points, but with the possibility of movable poles or movable

isolated essential singularities.

Roughly fifty equations featuring the Painlevé property have been found since the initial

investigation, forty-four of which can be reduced to linear equations or PI to PV I or solved in
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terms of elliptic functions. The remaining six equations dubbed PI through PV I are

d2

dz2u(z) =6u(z)2 + z (PI)

d2

dz2u(z) =2u(z)3 + zu(z) + α (PII)

d2

dz2u(z) =
1

u(z)

(
d

dz
u(z)

)2

− 1

z

d

dz
u(z) +

αu(z)2 + β

z
+ γu(z)3 +

δ

u(z)
(PIII)

d2

dz2u(z) =
1

2u(z)

(
d

dz
u(z)

)2

+
3

2
u(z)3 + 4zu(z)2 + 2(z2 − α)u(z) +

β

u(z)
(PIV )

d2

dz2u(z) =

(
1

2u(z)
+

1

u(z)− 1

)(
d

dz
u(z)

)2

− 1

z

d

dz
u(z) +

(u(z)− 1)2

z2

(
αu(z) +

β

u(z)

)
+

γu(z)

z
+
δu(z)(u(z) + 1)

u(z)− 1
(PV )

d2

dz2u(z) =
1

2

(
1

u(z)
+

1

u(z)− 1
+

1

u(z)− z

)(
d

dz
u(z)

)2

−
(

1

z
+

1

z − 1
+

1

u(z)− z

)
d

dz
u(z)+

u(z)(u(z)− 1)(u(z)− z)
z2(z − 1)2

(
α+

βz

u(z)2
+

γ(z − 1)

(u(z)− 1)2
+

δz(z − 1)

(u(z)− z)2

)
(PV I)

where α, β, γ, and δ are arbitrary parameters in C.

When these equations are considered as boundary value problems (BVPs), their solution

space is as large as the number of arbitrary parameters in the equation, and the two boundary

conditions (BCs). Similarly, when cast as an initial value problem (IVP), the solution space is

defined, again, by the number of arbitrary parameters, but also by two initial conditions (ICs).

For PII through PV I , very special parameter choices lead to solutions in terms of either

rational or special functions. Table 1.1 and figure 1.1 highlight some of these special choices for

PI , PII and PIV . Note that in figure 1.1 the black lines indicate solutions expressible in terms

of special functions while the dark (blue) and light (yellow) hexagrams indicate rational solutions.

The shaded grey region is the fundamental domain, which will be further explained in section 3.3.

The triangular regions in the left frame of figure 1.1 are known as the Weyl chambers [26].
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Parameters Number of Dimension of Space of Closed Form Solutions

IC/BCs Solution Space

PI 2 2 None

PII α 2 3
α = 1, 2, 3, 4, . . . Single Rational
α = 1

2 ,
3
2 ,

5
2 , . . . 1-Parameter Airy

PIV α, β 2 4 See Figure 1.1

Table 1.1: A description of the solution spaces of PI , PII and PIV .

-5 -4 -3 -2 -1 0 1 2 3 4 5
α

-2
-1

0
1

2
3

4
5

6
7

8
9

1
0

√

−
2
β

-5 -4 -3 -2 -1 0 1 2 3 4 5
α

-2
0

-1
6

-1
2

-8
-4

0
4

β

Figure 1.1: A view of the Weyl Chambers. The shaded region indicates the fundamental domain
given in (3.7).

Aside from these special parameter choices, solutions of the Painlevé equations generally

have an infinity of poles and cannot be written explicitly in terms of rational or special func-

tions. Therefore, these solutions are typically dubbed Painlevé transcendants. To avoid confusion

with those elementary functions that are typically dubbed transcendental, we will drop the phrase

transcendent and instead refer to these solutions as having no closed form.

Some solutions with no closed form have been found that are pole free across the entire real

axis or even an entire half-plane. For instance, PI has the tritronqueé solution [12] that is smooth

for an entire half-plane and PII has the Hastings-McLeod [27] and Ablowitz-Segur [1] solutions,

which are both at least bounded over the entire real axis. Later in this thesis, evidence will show

that PIV also has classes of solutions that have vast smooth regions in the complex plane.

Alternative forms of PI through PV I are considered elsewhere. For instance, each of the

equations can be represented as a Hamiltonian system or as the compatibility condition of a linear
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system [14]. Likewise, PIV has a representation known as the symmetric PIV or sPIV system

[14]. Further, PIV can be cast as a Riemann-Hilbert problem for limited choices of α and β and

numerically solved using a software package discussed in [39]. The method discussed later in this

thesis is several orders of magnitude faster, is not limited to specific choices of α and β, and makes

it unnecessary to consider any of these other forms when exploring the solution space. We present

theory and perform computation only on the second order ODE form of PIV presented earlier in

this section.

1.2 Organization of the thesis

As stated previously, this thesis covers two very different topics. First, existing theory of PIV

applicable to any α and β is covered in chapter 2.

This is followed by a discussion of the rational and elementary special function solutions

described in the literature. Those that are discussed were confirmed numerically, and a sampling

of them is given in chapter 3.

Third, in chapter 4 the known asymptotic approximations are presented with computational

solutions that explore beyond those that have been previously presented. The asymptotic approx-

imations available in the literature are provided along with a discussion of dominant asymptotic

behavior for solutions that are asymptotically smooth.

Chapter 5 supplies a description of the fairly new numerical method that made this research

possible. Various adaptations of the numerical method are presented to overcome difficulties in-

volving computational precision and time. Further, the methodology used to visualize individual

solutions of PIV in the complex plane and the approach for examining possible solution types for

a fixed choice of α and β are presented (including solutions with a pole at the origin).

The methods of chapter 5 provide for the many numerical explorations in chapter 6. These

numerical explorations have led to the identification of two types of solutions that are common to

all α and β with the notable property of having at least two pole-free sectors in the complex plane.

Conclusions about this study of the fourth Painlevé equation are finally presented in chapter
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7.

With discussions of the first topic complete, we continue with the second topic. Chapter 8

discusses the stability theory of general and predictor-corrector multistep methods. Two assertions

are made and proved that allow for the selection of a predictor-corrector method of any order to

solve a first order ODE with an imaginary spectrum.



Chapter 2

Analytic Theory of PIV

This chapter provides some of the general analytical information available pertaining to all

solutions of PIV (i.e. regardless of α and β). This information includes the series expansion about

a pole, symmetries in the ODE, and solution transformations.

2.1 Series Expansion

In a neighborhood of a pole z0 we can determine the coefficients of the Laurent expansion of

PIV by substituting a truncated expansion into PIV (as was done for PII in [20]). For instance,

substituting

u(z) =
a−1

z − z0
+ a0 + a1(z − z0) + a2(z − z0)2 + a3(z − z0)3 + a4(z − z0)4 +O((z − z0)5), (2.1)

we are left with the nontrivial choices

a−1 = ±1

a0 = −z0

a1 =
1

3
(−4± z2

0 ± 2α)

a2 = c

a3 =
1

45
(±26∓ 36cz0 + 20z2

0 ∓ z4
0 − 32α∓ 4z2

0α± 14α2 ± 9β)

a4 =
1

9
(∓9c+ 5z0 + 3cz2

0 ∓ 2z3
0 + 6cα∓ 4z0α).
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This leaves the choice of +1 or −1 for a−1 and only one further free parameter c (first appearing in

a2). In agreement with this, all poles in the solutions to PIV are simple and have residue of either

+1 or −1.

2.2 Symmetry in the PIV Equation

The notation PIV (α, β) is used in, for instance, [26] to indicate the set of all solutions of PIV

for the particular α and β. Direct inspection of PIV shows that if u(z) ∈ PIV (α, β), then [26]

−u(−z) ∈ PIV (α, β), (2.2)

−iu(−iz) ∈ PIV (−α, β), and (2.3)

iu(iz) ∈ PIV (−α, β). (2.4)

These symmetries provide at least one counterpart to any solution presented in this thesis for the

same choice of α and β. Similar inspection of the other Painlevé equations shows that the first of

these symmetries holds for any parameter choice in the equation PIII , but it does not hold for PI ,

PII , PV , or PV I [43].
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2.3 Solution Transformations

The equations PII through PV I have collections of transformations relating solutions for

given parameters to those of different choices. For instance, the equations ([14], [32])

u±1,µ(u(z), z) =± 1

2µu(z)

(
d

dz
u(z)∓ µ(u(z)2 + 2zu(z))− µ

√
−2β

)
(2.5)

u±2,µ(u(z), z) =

(
d
dzu(z)± µ√−2β

)2
+ (4α+ 4µ∓ 2

√−2β)u(z)2

2u(z)
(
u(z)2 + 2zu(z)− µ d

dzu(z)∓√−2β
) −

u(z)2(u(z) + 2z)2

2u(z)
(
u(z)2 + 2zu(z)− µ d

dzu(z)∓√−2β
) (2.6)

u±3,µ(u(z), z) =u(z) +
2
(
1− µα∓ 1

2µ
√−2β

)
u(z)

d
dzu(z)± µ√−2β + µ(2zu(z) + u(z)2)

(2.7)

u±4 (u(z), z) =±
(
d
dzu(z)∓ (u(z)2 + 2zu(z))

)2
+ 2β

2u(z)
(
d
dzu(z)∓ (u(z)2 + 2zu(z))± 2α+ 2

) (2.8)

u±5 (u(z), z) =u(z) +
(2 + 2α±√−2β)u(z)

d
dzu(z)− 2zu(z)− u(z)2 ∓√−2β

+
2±√−2β

M± (u(z), z)
+

(2α− 2∓√−2β)u(z)M± (u(z), z)

u(z)(4± 2
√−2β)−

(
d
dzu(z)− 2zu(z)− u(z)2 ∓√−2β

)
M± (u(z), z)

(2.9)

relate u(z) ∈PIV (α, β) to u±k,µ(z) ∈PIV (α±k,µ, β
±
k,µ), k = 1, 2, . . . , 5. In these equations µ = ±1 and

M± (u(z), z) =
1

2
u(z) + z +

(2 + 2α±√−2β)u(z)
d
dzu(z)− 2zu(z)− u(z)2 ∓√−2β

+
d
dzu(z)∓√−2β

2u(z)
.

Confining this study to solutions that are real on the real axis limits these transformations to β ≤ 0.

The transformed solutions u±k,µ, k = 1, 2, 3, and u±k , k = 4, 5 occur for the parameter choices

α±1,µ =
1

4
(±2µ− 2α± 3

√
−2β) and β±1,µ = −1

2

(
1± αµ+

1

2
µ
√
−2β

)2

(2.10)

α±2,µ = α+ µ and β±2,µ = −1

2
(2∓ µ

√
−2β)2 (2.11)

α±3,µ =
3

2
µ− 1

2
α∓ 3

4

√
−2β and β±3,µ = −1

2

(
µ− α± 1

2

√
−2β

)2

(2.12)

α±4 = α± 2 and β±4 = β (2.13)

α±5 = α and β±5 = −1

2
(4±

√
−2β)2. (2.14)

The composite transformations u±4 = u+
2,±(u−2,±(u(z), z), z) and u±5 = u+

2,∓(u−2,±(u(z), z), z)

are discussed in [14], [18], [34]. Equations (2.5) through (2.7) are given explicitly here because u−2,+1
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has the incorrect sign following the first term in the numerator and u−4 is missing a minus sign at

the beginning of the entire expression when presented in [14].

These transformations generate hierarchies of solutions beginning with a simple rational or

special function solution as a seed. Such hierarchies are discussed in further detail in, for instance,

[13], [14], [26], and [35]. The rational and special function solutions that are included in these

hierarchies are discussed in chapter 3.



Chapter 3

Closed Form Solutions

This chapter presents the various known closed form solutions to the PIV equation. Unless

otherwise specified, these are here presented in the way of Clarkson [14]. Notice in figure 1.1 that

the parameter choices that lead to such solutions are a very small subset, leaving vast unexplored

expanses in the α versus β space. Interestingly, these closed form solutions only exist for β ≤ 0.

3.1 Rational Solutions

We begin with the simplest rational solutions to the PIV equation. Two of these are nontrivial

entire solutions to the equation, as shown in table 3.1.

α β u(z)

±2 −2 ±1
z

0 −2 −2z

0 −2
9 −2

3z

Table 3.1: Parameter choices and resulting simplest rational solutions to PIV .

These three solutions further describe the simplest members of classes of solutions described

as the ”−1
z”, ”−2z”, and ”−2

3z” hierarchies. More complicated members of the ”−1
z” and ”−2z”

hierarchies of solutions are described by generalized Hermite polynomials. The generalized Hermite

polynomials (see, e.g., [35]) begin with H0,0 = H0,1 = H1,0 = 1 and H1,1 = 2z and continue by

2mHm+1,nHm−1,n = Hm,nH
′′
m,n − (H ′m,n)2 + 2mH2

m,n

2nHm,n+1Hm,n−1 = −Hm,nH
′′
m,n + (H ′m,n)2 + 2nH2

m,n
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for m,n ∈ Z+. With these polynomials defined, PIV has rational solutions, u(z;α, β), defined by

[14]

u[GH;1]
m,n = u(z; 2m+ n+ 1,−2n2) =

d

dz
ln

(
Hm+1,n

Hm,n

)

u[GH;2]
m,n = u(z;−(m+ 2n+ 1),−2m2) =

d

dz
ln

(
Hm,n

Hm,n+1

)

u[GH;3]
m,n = u(z;n−m,−2(m+ n+ 1)2) = −2z +

d

dz
ln

(
Hm,n+1

Hm+1,n

)
.

Notice that for the choices of (m,n) = (0, 1), (m,n) = (1, 0) and (m,n) = (0, 0) we have u
[GH;1]
0,1 =

u(z; 2,−2) = 1
z , u

[GH;2]
1,0 = u(z;−2,−2) = −1

z and u
[GH;3]
0,0 = u(z; 0,−2) = −2z, respectively.

Figure 3.1 contains various examples of the solutions expressible in terms of Generalized Hermite

Polynomials. The images display the pole locations and their corresponding residue with dark

circles for +1 and light circles for −1 (blue and yellow, respectively, where color is available).

u
[GH;3]

2,1 , α = −1, β = −32

-4 -2 0 2 4

Re(z)

u
[GH;2]

2,1 , α = −5, β = −8

-4 -2 0 2 4

Re(z)

u
[GH;1]

2,1 , α = 6, β = −2

-4 -2 0 2 4

Re(z)

-4
-2

0
2

4

I
m
(
z
)

u
[GH;3]

1,2 , α = 1, β = −32u
[GH;2]

1,2 , α = −6, β = −2u
[GH;1]

1,2 , α = 5, β = −8

-4
-2

0
2

4

I
m
(
z
)

Figure 3.1: Examples of the solutions (pole locations can residues are shown) expressible in terms

of Generalized Hermite Polynomials: u
[GH;1]
1,2 (top left), u

[GH;2]
1,2 (top center), u

[GH;3]
1,2 (top right),

u
[GH;1]
2,1 (bottom left), u

[GH;2]
2,1 (bottom center), and u

[GH;3]
2,1 (bottom right).
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The ”−2
3z” hierarchy of solutions is described by an entirely different set of of polynomials.

The Okamoto polynomials (see, e.g., [35]) begin with Q0,0 = Q0,1 = Q1,0 = 1 and Q1,1 =
√

2z and

continue by

Qm+1,nQm−1,n =
9

2

[
Qm,nQ

′′
m,n − (Q′m,n)2

]
+
[
2z2 + 3(2m+ n− 1)

]
Q2
m,n

Qm,n+1Qm,n−1 =
9

2

[
Qm,nQ

′′
m,n − (Q′m,n)2

]
+
[
2z2 + 3(1−m− 2n)

]
Q2
m,n.

Again, with these polynomials defined, PIV has rational solutions, u(z;α, β), defined by [14]

u[OK;1]
m,n = u

(
z; 2m+ n,−2(n− 1

3
)2

)
= −2

3
z +

d

dz
ln

(
Qm+1,n

Qm,n

)

u[OK;2]
m,n = u

(
z;−m− 2n,−2(m− 1

3
)2

)
= −2

3
z +

d

dz
ln

(
Qm,n
Qm,n+1

)

u[OK;3]
m,n = u

(
z;n−m,−2(m+ n+

1

3
)2

)
= −2

3
z +

d

dz
ln

(
Qm,n+1

Qm+1,n

)
.

Similar to the discussion above if we choose (m,n) = (0, 0) we have u
[OK;1]
0,0 = u

[OK;2]
0,0 = u

[OK;3]
0,0 =

u
(
z; 0,−2

9

)
= −2

3z. Interestingly, we can achieve the −2
3z result with any of the three possible

Okamoto type solutions. Figure 3.2 displays examples of the solutions expressible in terms of the

Okamoto Polynomials.
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u
[OK;3]

2,1 , α = −1, β = −22.2222

-4 -2 0 2 4

Re(z)

u
[OK;2]

2,1 , α = −4, β = −5.5556

-4 -2 0 2 4

Re(z)

u
[OK;1]

2,1 , α = 5, β = −0.88889

-4 -2 0 2 4

Re(z)

-4
-2

0
2

4

I
m
(
z
)

u
[OK;3]

1,2 , α = 1, β = −22.2222u
[OK;2]

1,2 , α = −5, β = −0.88889u
[OK;1]

1,2 , α = 4, β = −5.5556

-4
-2

0
2

4

I
m
(
z
)

Figure 3.2: Examples of the solutions (pole locations can residues are shown) expressible in terms

of Generalized Okamoto Polynomials: u
[OK;1]
1,2 (top left) u

[OK;2]
1,2 (top center), u

[OK;3]
1,2 (top right),

u
[OK;1]
2,1 (bottom left), u

[OK;2]
2,1 (bottom center), and u

[OK;3]
2,1 (bottom right).

The table 3.2 summarizes which of these rational solution expressions have been verified

numerically.

Solution Type Verified?

u
[GH;k]
m,n , k = 1, 2, 3 Yes

u
[OK;k]
m,n , k = 1, 2, 3 Yes

Table 3.2: Summary of the rational solution expressions that have been verified.

3.2 Special Function Solutions

In addition to the rational solutions PIV has solutions expressible in terms of parabolic

cylinder functions or, equivalently, Whittaker functions (see, e.g., [38] for descriptions of these

functions and their properties). Let ε = ±1 and ν 6∈ Z and let Dν(ζ) be the parabolic cylinder
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function satisfying

d2

dζ2Dν(ζ) =

(
1

4
ζ2 − ν − 1

2

)
Dν(ζ) (3.1)

with boundary conditions

Dν(ζ) ∼ ζν exp

(
−1

4
ζ2

)
, ζ → +∞. (3.2)

Also, let Wκ,µ(ζ) and Mκ,µ(ζ) be the Whittaker functions, which both satisfy

d2

dζ2
w(ζ) +

(
−1

4
+
κ

ζ
+

1
4 − µ2

ζ2

)
w(ζ) = 0.

PIV has solutions, u(z;α, β), given by [14]

u
[PC;1]
ν,ε,d1,d2

= u(z;−ε(ν + 1),−2ν2) = −ε d
dz

ln (ψν(z; ε)) (3.3)

u
[PC;2]
ν,ε,d1,d2

= u(z;−εν,−2(ν + 1)2) = −2z + ε
d

dz
ln (ψν(z; ε)) (3.4)

with

ψν(z; ε) =
[
d1Dν(

√
2εz) + d2Dν(−

√
2εz)

]
exp

(
1

2
εz2

)

=
[
d̃1M 1

2
ν+ 1

4
, 1
4
(εz2) + d̃2W 1

2
ν+ 1

4
, 1
4
(εz2)

] exp(1
2εz

2)

z
1
2

and d1, d2, d̃1 and d̃2 arbitrary constants related by

d̃1 =

√
π2

1
2
ν+2

ε
1
4 Γ
(
−1

2ν
)d2

d̃2 =
2

1
2
ν

ε
1
4

(d1 + d2).

Substituting ψν(z; ε) into u
[PC;k]
ν,ε,d1,d2

, k = 1, 2, it is easy to see that d1 and d2 (likewise, d̃1 and

d̃2) can be combined into a single parameter D = d2
d1

(D̃ = d̃2
d̃1

). This is helpful in viewing the

various behaviors of these solutions when varying the parameters, therefore such solutions will now

be renamed uPC,kν,ε,D, k = 1, 2. Figures 3.3 through 3.6 exhibit the different types of solutions u
[PC;k]
ν,ε,D

that can be obtained by changing D, ε, ν, and k.
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u
[PC;1]

0.5,−1,10 , α = 1.5, β = −0.5

-4 -2 0 2 4

Re(z)

u
[PC;1]

0.5,−1,1 , α = 1.5, β = −0.5

-4 -2 0 2 4

Re(z)

u
[PC;1]

0.5,−1,0.1 , α = 1.5, β = −0.5

-4 -2 0 2 4

Re(z)

-4
-2

0
2

4

I
m
(
z
)

u
[PC;1]

0.5,−1,−0.1 , α = 1.5, β = −0.5u
[PC;1]

0.5,−1,−1 , α = 1.5, β = −0.5u
[PC;1]

0.5,−1,−10 , α = 1.5, β = −0.5

-4
-2

0
2

4

I
m
(
z
)

Figure 3.3: Examples of the solutions (pole locations can residues are shown) expressible in terms
of the parabolic cylinder function. Here k = 1, ν = 0.5 and ε = −1 for all figures as D is varied.
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u
[PC;1]

0.5,1,10 , α = −1.5, β = −0.5

-4 -2 0 2 4

Re(z)

u
[PC;1]

0.5,1,1 , α = −1.5, β = −0.5

-4 -2 0 2 4

Re(z)

u
[PC;1]

0.5,1,0.1 , α = −1.5, β = −0.5

-4 -2 0 2 4

Re(z)

-4
-2

0
2

4

I
m
(
z
)

u
[PC;1]

0.5,1,−0.1 , α = −1.5, β = −0.5u
[PC;1]

0.5,1,−1 , α = −1.5, β = −0.5u
[PC;1]

0.5,1,−10 , α = −1.5, β = −0.5

-4
-2

0
2

4

I
m
(
z
)

Figure 3.4: Examples of the solutions (pole locations can residues are shown) expressible in terms
of the parabolic cylinder function. Here k = 1, ν = 0.5 and ε = 1 for all figures as D is varied.
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u
[PC;1]

9.5,1,1 , α = −10.5, β = −180.5
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u
[PC;1]

−0.5,1,1 , α = −0.5, β = −0.5u
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−5,1,1 , α = 4, β = −50u
[PC;1]

−9.5,1,1 , α = 8.5, β = −180.5
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)

Figure 3.5: Examples of the solutions (pole locations can residues are shown) expressible in terms
of the parabolic cylinder function. Here k = 1, ε = 1, and D = 1 and ν is varied.
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u
[PC;2]

9.5,1,1 , α = −9.5, β = −220.5
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u
[PC;2]

5,1,1 , α = −5, β = −72
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u
[PC;2]

−0.5,1,1 , α = 0.5, β = −0.5u
[PC;2]

−5,1,1 , α = 5, β = −32u
[PC;2]

−9.5,1,1 , α = 9.5, β = −144.5
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(
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Figure 3.6: Examples of the solutions (pole locations can residues are shown) expressible in terms
of the parabolic cylinder function. Here k = 2, ε = 1 and D = 1 and ν is varied. Notice that when
k = 2, the residue of the poles corresponding to the choice of ε is opposite that resulting from the
choice of ε for k = 1.

Particular choices of ν ∈ R allow the solutions u
[PC;1]
ν,ε,D and u

[PC;2]
ν,ε,D to be expressed in simpler

forms. For instance, if ν ∈ Z+ it is shown that the special function solutions reduce to [14]

u[SH;1]
ν,ε = u(z; ε(ν + 1),−2ν2) = −ε d

dz
ln
(
Hν(
√
εz)
)

(3.5a)

u[SH;2]
ν,ε = u(z;−εν,−2(ν + 1)2) = −2z + ε

d

dz
ln
(
Hν(
√
εz)
)
, (3.5b)

where

Hn(z) = (−1)n exp(z2)
dn

dzn
(
exp(−z2)

)
,

n ∈ Z+, is the standard Hermite polynomial (see, e.g., [38]). For examples of the standard Hermite

polynomial solutions see figure 3.7.
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u
[SH;2]

10,1 , α = −10, β = −242
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Re(z)

u
[SH;2]

3,−1 , α = 3, β = −32
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Re(z)

u
[SH;2]
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u
[SH;1]

10,1 , α = −11, β = −200u
[SH;1]

3,−1 , α = 4, β = −18u
[SH;1]

3,1 , α = −4, β = −18
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0
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Figure 3.7: Examples of the solutions expressible in terms of standard Hermite polynomials: u
[SH;1]
3,1

(top left), u
[SH;1]
3,−1 (top middle), u

[SH;1]
10,1 (top right), u

[SH;2]
3,1 (bottom left), u

[SH;2]
3,−1 (bottom middle),

and u
[SH;2]
10,1 (bottom right) (pole locations can residues are shown).

Also, if ν = 0 then the solutions of PIV can be expressed as [14]

u
[CE;1]
D = u(z; 1, 0) = − 2 exp(−z2)√

π (D + erfc(z))

u
[CE;2]
D = u(z;−1, 0) =

2i exp(z2)√
π (D + erfc(iz))

,

where

erfc(z) = 1− erf(z) =
2√
π

∫ ∞

z
exp(−t2)dt

is the complementary error function (see, e.g., [38]). For examples of the complementary error

function solutions see figure 3.8.

There is also a so-called “half-integer hierarchy” [14] that is expressed in terms of parabolic

cylinder functions and can be found simply by considering u
[PC;k]

− 1
2
,1

, k = 1, 2, as the simplest members.
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u
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−0.1 , α = 1, β = 0u
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−1
, α = 1, β = 0u
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−10
, α = 1, β = 0
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Figure 3.8: Examples of the solutions expressible in terms of the complementary error function:

u
[CE;1]
−10 (top left), u

[CE;1]
−1 (top middle), u

[CE;1]
−0.1 (top right), u

[CE;2]
0.1 (bottom left), u

[CE;2]
1 (bottom

middle), and u
[CE;2]
10 (bottom right) (pole locations can residues are shown).

Now, in [14], [15], [21], and [37] further classes of solutions in terms of the parabolic cylinder

function are presented. Define

τn,ν(z; ε) =W
(
ψν(z; ε),

d

dz
ψν(z; ε), . . . ,

dn−1

dzn−1
ψν(z; ε)

)
,

with n ∈ Z, ψν(z; ε) defined as above, and W the Wronskian determinant, then it is stated in [15]

that solutions of PIV can also be written as

u[WD;1]
ν,ε,n = u(z; ε(2n− ν),−2(ν + 1)2) = −2z + ε

d

dz
ln

(
τn+1,ν(z; ε)

τn,ν(z; ε)

)

u[WD;2]
ν,ε,n = u(z; ε(2ν − n),−2(n+ 1)2) = ε

d

dz
ln

(
τn,ν(z; ε)

τn,ν+1(z; ε)

)

u[WD;3]
ν,ε,n = u(z;−ε(n+ ν),−2(ν − n+ 1)2) = ε

d

dz
ln

(
τn,ν+1(z; ε)

τn+1,ν(z; ε)

)
.

However, consider even n = 1. Then u
[WD;k]
ν,ε,1 , k = 1, 2, 3 can be evaluated easily for an initial

condition at some point z0 ∈ C to start the pole field solver. If these are indeed solutions to PIV ,
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then the solution should not change (for fixed ν, ε, n, d1 and d2) if z0 is changed. However, we do

not find this to be the case when k = 2, 3. For each k = 1, 2, 3 the solutions u
[WD;k]

− 1
2
,1,1

are given in

figures 3.9, 3.10, and 3.11, respectively, for various z0. Notice that no two frames are the same in

figures 3.10 and 3.11 suggesting that the expressions u
[WD;k]
ν,ε,n , k = 2, 3, may be incorrect. On the

other hand, all frames in each row of figure 3.9 are identical, indicating that the expression u
[WD;1]
ν,ε,n

is correct.

u
[WD;1]

−0.5,−1,1 , z0 = 3

-4 -2 0 2 4

Re(z)

u
[WD;1]

−0.5,−1,1 , z0 = 2

-4 -2 0 2 4

Re(z)

u
[WD;1]

−0.5,−1,1 , z0 = 1

-4 -2 0 2 4

Re(z)

-4
-2

0
2

4

I
m
(
z
)

u
[WD;1]

−0.5,1,1 , z0 = 3u
[WD;1]

−0.5,1,1 , z0 = 2u
[WD;1]

−0.5,1,1 , z0 = 1

-4
-2

0
2

4

I
m
(
z
)

Figure 3.9: Examples of the numerical solutions u
[WD;1]

− 1
2
,ε,1

(pole locations can residues are shown)

starting with high precision initial conditions from u
[WD;1]

− 1
2
,ε,1

computed at z = z0. In this case

(α = 5
2 ,β = −1

2) (top) and (α = −5
2 ,β = −1

2) (bottom). In each row the frames are identical

indicating that the expression u
[WD;1]
ν,ε,n is correct.
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u
[WD;2]

−0.5,−1,1 , z0 = 3
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−0.5,−1,1 , z0 = 2
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u
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−0.5,−1,1 , z0 = 1
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Re(z)
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u
[WD;2]

−0.5,1,1 , z0 = 3u
[WD;2]

−0.5,1,1 , z0 = 2u
[WD;2]

−0.5,1,1 , z0 = 1
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4
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Figure 3.10: Examples of the numerical solutions u
[WD;2]

− 1
2
,ε,1

(pole locations can residues are shown)

starting with high precision initial conditions from u
[WD;2]

− 1
2
,ε,1

computed at z = z0. In this case

(α = −2,β = −8) (top) and (α = 2,β = −8) (bottom). In each row no two frames are the same

indicating that we cannot verify the expression u
[WD;2]
ν,ε,n .

Solutions described by confluent hypergeometric functions were recently found [9], [10], and

[11] and the parameter choices leading to these solutions are a subset of those generating u
[WD;1]
ν,ε,n .

Let

v0(z) = e−
1
2
z2
(

1F1

(
−1

2
ν,

1

2
; z2

)
+

2z
Γ
(
−1

2ν + 1
2

)

Γ
(
−1

2ν
) (c1 + ic2) 1F1

(
−1

2
ν +

1

2
,
3

2
; z2

))
,

where n ∈ Z+, ν, c1, c2 ∈ R and 1F1 is the confluent hypergeometric function [38, Chapter 13]. To

make the notation of [11] explicit, we define for j = 1, 2, . . .,

vj(z) =
1√
2

(
d

dz
vj−1(z) + zvj−1(z)

)
.
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u
[WD;3]

−0.5,−1,1 , z0 = 3

-4 -2 0 2 4

Re(z)

u
[WD;3]

−0.5,−1,1 , z0 = 2

-4 -2 0 2 4

Re(z)

u
[WD;3]

−0.5,−1,1 , z0 = 1

-4 -2 0 2 4

Re(z)
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0
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(
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u
[WD;3]

−0.5,1,1 , z0 = 3u
[WD;3]

−0.5,1,1 , z0 = 2u
[WD;3]

−0.5,1,1 , z0 = 1

-4
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0
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4
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Figure 3.11: Examples of the numerical solutions u
[WD;3]

− 1
2
,ε,1

(pole locations can residues are shown)

starting with high precision initial conditions from u
[WD;3]

− 1
2
,ε,1

computed at z = z0. In this case

(α = −1
2 ,β = −1

2) (top) and (α = 1
2 ,β = −1

2) (bottom). In each row no two frames are the same

indicating that we cannot verify the expression u
[WD;2]
ν,ε,n .

Then PIV has solutions [11]

u[CH;1]
ν,n,c1,c2 = u(z; 2n− ν,−2(ν + 1)2) = −z − d

dz
ln

(W(v0(z), v1(z), . . . , vn−1(z))

W(v0(z), v1(z), . . . , vn(z))

)
, (3.6)

n > 0 with W the Wronskian determinant, which can be reduced to [11]

u
[CH;1]
ν,0,c1,c2

= u(z;−ν,−2(ν + 1)2) = −z +
d

dz
ln (v0(z)) ,

in the case of n = 0. Further, if c2 = 0 (chosen to arrive at solutions that are real along the real

axis) a one parameter family of solutions PIV (2n − ν,−2(ν + 1)2) exists for each fixed value of ν

and n. For examples of the confluent hypergeometric function solutions see figures 3.12 through

3.15.
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u
[CH;1]

10,1,0,0 , α = −8, β = −242
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Re(z)

u
[CH;1]

2.1,1,0,0 , α = −0 .1, β = −19 .22
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[CH;1]

0.1,1,0,0 , α = 1 .9, β = −2 .42
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u
[CH;1]

−0.1,1,0,0 , α = 2 .1, β = −1 .62u
[CH;1]

−2.1,1,0,0 , α = 4 .1, β = −2 .42u
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Figure 3.12: Examples of the solutions (pole locations can residues are shown) expressible in terms
of confluent hypergeometric function. This figure shows what happens to the solutions as ν is
varied with n = 1, c1 = 0, and c2 = 0. Only pole locations and residues are shown with dark (blue)
circles indicating residue of +1 and light (yellow) circles residue of -1.
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u
[CH;1]

2.5,2,0,0 , α = 1 .5, β = −24 .5
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u
[CH;1]

0.5,2,0,0 , α = 3 .5, β = −4 .5u
[CH;1]

0.5,1,0,0 , α = 1 .5, β = −4 .5u
[CH;1]

0.5,0,0,0 , α = −0 .5, β = −4 .5
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Figure 3.13: Examples of the solutions expressible in terms of confluent hypergeometric function.
This figure shows what happens to the solutions as n is varied with ν = 0.5, c1 = 0, and c2 = 0.
Only pole locations and residues are shown with dark (blue) circles indicating residue of +1 and
light (yellow) circles residue of -1.
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[CH;1]

0.5,1,−0.25,0u
[CH;1]

0.5,1,−0.5,0

-
4

-
2

0
2

4

I
m
(
z
)

u
[CH;1]

0.5,1,−1,0u
[CH;1]

0.5,1,−10,0u
[CH;1]

0.5,1,−100,0

-
4

-
2

0
2

4

I
m
(
z
)

Figure 3.14: Examples of the solutions (pole locations can residues are shown) expressible in terms
of confluent hypergeometric and gamma functions. All solutions occur for α = 0.5 and β = −12.5.
This figure shows what happens to the solutions as c1 is varied with ν = 0.5, n = 1, and c2 = 0.
Only pole locations and residues are shown with dark (blue) circles indicating residue of +1 and
light (yellow) circles residue of -1.
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Figure 3.15: Examples of the solutions (pole locations can residues are shown) expressible in terms
of confluent hypergeometric and gamma functions. All solutions occur for α = 0.5 and β = −12.5.
This figure shows what happens to the solutions as c2 is varied with ν = 0.5, n = 1, and c1 = 0.
Only pole locations and residues are shown with dark (blue) circles indicating residue of +1 and
light (yellow) circles residue of -1.

We stated earlier that the solutions u
[CH;1]
ν,n,c1,c2 are a subset of u

[WD;1]
ν,ε,n . In fact, when n = 0 and
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ε = 1 we can choose [42]

d1 = 2
√

2− 2
√

2(c1 + ic2)

d2 = 2
√

2 + 2
√

2(c1 + ic2)

to arrive at identical solutions.

The table 3.3 summarizes whether each of the expressions in terms of special functions have

been verified.

Solution Type Verified?

u
[PC;k]
ν,ε,d1,d2

, k = 1, 2 Yes

u
[SH;k]
ν,ε , k = 1, 2 Yes

u
[CE;k]
D , k = 1, 2 Yes

u
[CH;1]
ν,n,c1,c2 Yes

u
[WD;1]
ν,ε,n Yes

u
[WD;k]
ν,ε,n , k = 2, 3 No

Table 3.3: Summary of the special function solution expressions that have been verified.

3.3 The Weyl Chambers

The known symmetries, solution transformations, and closed form solutions provide a key for

describing the parameter space of PIV with β ≤ 0. They allow the (α,β) space to be described by the

so-called Weyl chambers (see e.g., [11], [13, Section II-A], [26, Section 26]), which feature a complete

regularity in the (α,
√−2β)-plane. The right frame of figure 1.1 shows this regularity (i.e. the Weyl

chambers are the regular triangular regions), while both frames show the locations of all of the (α, β)

pairs described in the literature, and repeated in chapter 3, leading to rational and special function

solutions. For instance, the dark (blue)/light (yellow) hexagrams indicate the parameter values that

admit instances of solutions described by Generalized Hermite/Okamoto polynomials. Similarly,

the parameter choices along the black lines admit special function solutions that are described by

combinations of either parabolic cylinder functions or confluent hypergeometric functions. Finally,

along the line
√−2β = 0 (i.e. β = 0), which is not drawn explicitly, the decaying asymptotic

conditions discussed later in section 4.1 occur.
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When extended to complex α and β a single chamber in theory provides all of the necessary

information to construct solutions for every arbitrary (α, β) pair. Gromak, et al, state in [26, Section

25], “To construct the solutions of PIV for arbitrary values of parameters (α, β) it is sufficient to

construct solutions for every (α, β) in the domain

F :=
{

(α, β)|0 ≤ Re(α) ≤ 1, Re(
√
−2β) ≥ 0, Re(

√
−2β + 2α) ≤ 2

}
.” (3.7)

Then it is only a matter of applying the transformations of section 2.3 to the solutions in the

fundamental domain.

The region F (for α, β ∈ R) is indicated by the shaded region in either frame of figure

1.1. Every parameter choice either marking a closed form solution or satisfying the asymptotic

approximation (4.2) occurs for β ≤ 0. Therefore, part of this study will be devoted to the unexplored

region of β > 0.



Chapter 4

Asymptotic Approximations

Much of the early computational work on PIV has been completed to verify its asymptotic

approximations that had no poles on the real axis. This was likely done because of the difficulty

experienced by typical ODE solvers when encountering a pole. For instance, Bassom, et al, [6]

explore solutions with very particular parameter choices using a classical fourth order Runge-Kutta

scheme, a sixth-order scheme, and an Adams Moulton predictor-corrector method, each of which

are rendered useless after encountering a pole. The particular parameter choices will be discussed

in the following subsections.

4.1 Asymptotically Decaying Solutions

We now consider the special case of PIV with only the parameters α ∈ R and β = 0. This

particular form of PIV is presented in [38, Section 32.11] and is in contrast to those presented in

[6] and [14], where the change of variables

u(z) = 2
√

2w(x)2 and z =
1

2

√
2x

is applied. We also impose the boundary conditions

u(z)→ 0, as z → +∞. (4.1)

The NIST handbook [38] suggests that any nontrivial solution of PIV with β = 0 satisfying (4.1)

is asymptotic to

k
[
D 1

2
α− 1

2
(
√

2z)
]2

as z → +∞ and k 6= 0. (4.2)
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Dν(ζ) is as described previously in (3.1) and (3.2).

There is a critical value of k given by [38]

k∗ =
1√

πΓ(1
2α+ 1

2)

such that when 0 ≤ k < k∗ there are no poles on the real axis. We can further distinguish

between two cases for α for this choice of k. First, if α ∈ Z+ and odd, then u(z) is asymptotic

to k2
1
2
α− 1

2 zα−1 exp (−z2) as z → −∞. Otherwise, u(z) is asymptotic to −2
3z + 4

3d
√

3 sin(φ(z) −

θ0) + O(z−1) for z → −∞, where φ(z) = 1
3

√
3z2 − 4

3d
2
√

3 ln(
√

2|z|). Here we define d and θ0 by

the connection formulas given by d2 = −1
4

√
3π−1 ln(1− |µ|2) and θ0 = 1

3d
2
√

3 ln(3) + 1
3πα+ 1

4π +

arg(µ) + arg
(
Γ
(
−2

3 i
√

3d2
))

, where µ = 1 − 2kπ3/2 exp(−iπ
2
α)

Γ(− 1
2
α+ 1

2
)

. Next, for k = k∗, u(z) again has no

poles on the real axis and is asymptotic to −2z for z → −∞. Finally, if k > k∗, then u(z) has poles

on the real axis whose locations are dependent on k.

4.2 General Asymptotic Approximations

Applying the method of dominant balance (see, e.g., [8, Section 3.4]) to PIV , assuming

that d2

dz2
u(z) and 1

2u(z)

(
d
dzu(z)

)2
are small relative to the remaining terms as z → +∞ (likewise,

z → −∞) leads to the quartic equation

3

2
w(z)4 + 4zw(z)3 + 2(z2 − α)w(z)2 + β = 0. (4.3)

with solutions

w±µ (z;α, β) = −2

3
z ± 1

2
f(z) + µ

1

2

√
g(z)∓ 32(3αz + z3)

27f(z)
, (4.4)

where

f(z) =

√
8

9
(α+ z2) +

2
1
3 (72β + 16(α− z2)2)

9a(z)
+

1

9× 2
1
3

a(z),

g(z) =
16

9
(α+ z2)− 2

1
3 (72β + 16(α− z2)2)

9a(z)
− 1

9× 2
1
3

a(z),

a(z) =
(

64b(z) +
√
−4(72β + 16(α− z2)2)3 + 4096b(z)2

) 1
3
,

b(z) =54βz2 + 27β(α− z2)− 2(α− z2)3,
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and µ = ±1. The roots of (4.3) supply asymptotic approximations as z → ±∞, z ∈ R, and any

choice of α and β. Asymptotic expansion as z → +∞ reveals that for all α and β

w+
+1(z;α, β) =

√−2β

2z
+
α
√−2β + 2β

4z3
+O

(
1

z5

)
(4.5)

w+
−1(z;α, β) =−

√−2β

2z
+
−α√−2β + 2β

4z3
+O

(
1

z5

)
(4.6)

w−+1(z;α, β) =− 2

3
z +

α

z
− 2(2α2 + 3β)

8z3
+O

(
1

z5

)
(4.7)

w−−1(z;α, β) =− 2z − α

z
+

6α2 + β

8z3
+O

(
1

z5

)
. (4.8)

Only the latter two roots are available as asymptotic approximations when β > 0 if we wish to

consider only solutions that are real along the real axis. Later in this thesis, ICs leading to solutions

asymptotic to (4.5)-(4.8) will be marked in several figures, described as pole counting diagrams, as

follows: w+
+1 with dark (blue) diamonds, w+

−1 light (yellow) diamonds, w−+1 light (yellow) circles,

and w−−1 dark (blue) circles. For simplicity, these asymptotic behaviors will be presented only as

z → +∞, z ∈ R, although the symmetry (2.2) indicates that there are solutions satisfying analogous

asymptotic behaviors as z → −∞. The expansions (4.5)-(4.8) can be shown to be consistent with

the assumptions made in their derivations. No other smooth behaviors than these were observed

for alpha and beta non-zero. However, in the case of β = 0, parabolic cylinder functions arise from

a dominant balance that keeps the second derivative term.



Chapter 5

Computing solutions to IVPs and BVPs of the Painlevé Equations

5.1 The Pole Field Solver

The extensive pole fields appearing in the solutions of the Painlevé equations have motivated

the development of various solution techniques over the years since their discovery. Many of the

previous methods were limited in the choice of α and β by considering special forms of the equation

(e.g. Riemann Hilbert problems [39]), constrained to the real axis (e.g. [16] or [6]), or restricted to

a small domain around the origin (e.g. [36]). Some of these methods sought to avoid poles by first

employing various techniques to detect the singularities, and then computing the solution along

a path taking an excursion around the singularity (e.g [16]). A survey of many of these existing

numerical methods appears in [40]. The numerical scheme developed by Fornberg and Weideman

[19] is particularly well suited to computing these solutions in the vicinity of poles over vast regions

of the complex plane, while allowing the consideration of arbitrary α and β. This section presents

a description of, implementation considerations for, and improvements in speed and accuracy for

this new method.

5.1.1 A Description of the Pole Field Solver

Consider the test problem d
dzu(z) = z2 + u(z)2, u(0) = 0, featured in [19], with the solution

u(z) = z
J 3

4

(
z2

2

)

J− 1
4

(
z2

2

) .
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Suppose a Taylor series

u(z) ≈
N+M∑

n=0

an(z − zk)n

for u(z) about a point zk is available, with N and M nonnegative integers. The solution of the

ODE at another point zk+1 could then be found approximately by evaluating the series, provided

zk+1 is inside the radius of convergence of the series. A variety of other ODE solvers could also

be applied in an attempt to find the solution at zk+1. Figure 5.1 applies the previously discussed

Taylor series method and MATLAB R©’s [33] built-in function “ode45,” an adaptive Runge-Kutta

method, to the test problem. A pole necessarily lies outside the radius of convergence of the Taylor

series and continuity conditions are not met for the Runge-Kutta method so both methods break

down.

Relative Error

0 1 2 3 4
z

-1
5

-1
0

-5
0

Solution

0 1 2 3 4
z

-5
0

0
5
0

Exact

ode45

Taylor
ode45

Taylor

Figure 5.1: Solution along the real axis (left) to the test problem and order of the error (right)
using the Taylor series method and an adaptive Runge-Kutta method.

Alternatively, the power series can be replaced by a rational approximation (Padé approxi-

mation)

u(z) ≈
∑N

n=0An(z − zk)n∑M
n=0Bn(z − zk)n

,

where B0=̇1 and A0, A1, . . . , An and B1, B2, . . . , BM are chosen so that

N+M∑

n=0

anz
n ≈

∑N
n=0Anz

n

∑M
n=0Bnz

n
.
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It was shown by Willers [44] that this conversion allows the Taylor method to step through a pole.

Figure 5.2 shows that the Padé method applied to the test problem successfully integrates through

the pole; however, some accuracy is lost.
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Figure 5.2: Solution along the real axis (left) to the test problem and order of the error (right)
using the Taylor series method and a Padé method.

The need to overcome the loss in accuracy led to the the numerical scheme introduced in

[19], which features very high orders of accuracy (typically 30 to 50), minimal loss of accuracy in

the vicinity of poles, and a flexible path selection strategy that can efficiently cover large areas of

the complex plane. The computation of the numerical solution of the IVP at a single point used

the following strategy, which will be called pole avoidance:

(1) Choose the location of the initial condition as the first expansion point.

(2) Compute the Padé approximation about the expansion point.

(3) Evaluate the Padé approximation a distance h away in each of five directions in a swath

directed toward the target point and choose as the next expansion point the one with the

smallest solution magnitude.

(4) Unless the target point has been reached, return to step 2.
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The extension of this method that allows for the visualization of the solution over a region of the

complex plane is called the pole field solver.

(1) Set up a coarse grid of target points in the complex plane.

(2) Select the target points in random order.

(3) Apply the pole avoidance strategy to reach a predetermined neighborhood of the current

target point, starting from the closest point that has already been evaluated. In the first

step this is the location of the IC.

(4) Repeat step 3 until all of the coarse grid target points have been accounted for, then set

up a fine grid at the desired evaluation points.

(5) Compute a single last step from each of the coarse grid points to several nearby fine grid

evaluation points.

This approach is most advantageous in regions where poles are present and allows for the

rapid visualization of solutions in the complex plane. Applying the pole field solver to the test

problem in a neighborhood of the real axis results in the paths visualized in figure 5.3. Note that

due to the random ordering in step 2 of the pole field solver, these paths are not unique.

Figure 5.3: Example of the evaluation paths in the complex plane for the test problem using the
pole avoidance strategy.

Taking these evaluation paths to the target point results in the accuracy being maintained

across the entire solution interval.
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Figure 5.4: Solution along the real axis (left) to the test problem and order of the error (right)
using the Taylor series method, a Padé method, and the pole avoidance strategy.

Figure 5.5 provides an example of the paths selected to avoid the poles when computing

the solution u
[CH;1]
4.5,2,0,0 (3.6) over a region of the complex plane starting from a single initial condi-

tion. Evaluation of this solution at 161 × 161 = 25921 points with a step size of 0.25 takes only

approximately 0.35 seconds on a Pentium i7-2600 at 3.40 GHz and 16.0 GB RAM.

Evaluation Paths and Coarse Grid
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Figure 5.5: Example of the evaluation paths in the complex plane for a PIV solution (u
[CH;1]
4.5,2,0,0 (3.6))

using the pole field solver.
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5.1.2 A Brief Discussion on Implementing the Pole Field Solver

Implementation of the steps listed in section 5.1.1 could be done in many different ways.

However, the implementation used in this thesis relies on MATLAB R©’s [33] and LAPACK’s [3]

various robust linear algebra solvers. First, consider the power series

u(z) =
N∑

j=0

cjz
j +O(zN+1). (5.1)

This is computed as in section 2.1.2 of [19] by integrating a truncated Taylor series with known

coefficients c0, c1, . . . , cK to find the next coefficient cK+1. This is done in a subfunction we call

“create taylor P4”.

The rational approximation (or, here, Padé approximation) can be computed for M < N by

equating (5.1) and

u(z) ≈
∑M

j=0 ajz
j

1 +
∑N−M

j=1 bjzj
(5.2)

and solving for aj and bj. This requires the solution of a linear system which is performed easily

in MATLAB R© [33] and LAPACK [3] using “fast” Toeplitz solvers as discussed in section 5.2 of

[19]. We choose N even and require that M = N
2 for simplicity in our implementation. This is

completed in the subfunction “convert to pade”.

Simple evaluation of (5.2) is completed in a subfunction called “evaluate pade”. Beginning

with the initial conditions, a higher level function called “paths eval” loops through the randomly

ordered coarse grid target points computing a path using the pole avoidance strategy from the near-

est point with a value for u(z) and u′(z) available. An even higher level “PIV pole field solver”

computes the last step from the coarse grid target points to the fine grid evaluation points. The

computation of the Taylor coefficients in this last step takes advantage of MATLAB R©’s [33] vec-

torization operations and is done in a function called “create taylor P4v”

5.1.3 An Arbitrary Precision Pole Field Solver

An important aspect of the explorations performed in this thesis is the verification of some

solutions never discussed previously in the literature. For instance, a class of solutions is discussed
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that are characterized by an entire half-plane with only a finite number of poles. These verifications

often require extended precision computations using the pole field solver. Extended precision

computations are also necessitated by the decaying asymptotic conditions discussed frequently in

the literature, and by the verification of the many Bäcklund and Schlesinger transformations that

were already discussed in section 2.3.

These extended precision computations are handled by adapting the pole field solver to

work within the ADVANPIX: Multiprecision Computing Toolbox [2] within MATLAB R© [33]. This

environment allowed the straightforward translation of the pole avoidance strategy and pole-field

solver by simply recasting all inputs and parameters to the multiprecision (“mp”) type. Further

calculations automatically dealt with such “mp” variables in high precision.

As a prototype I considered the solution u
[CH;1]
ν,n,c1,c2 in terms of confluent hypergeometric func-

tions (3.6) with the parameter choices ν = 4.5, n = 2, c1 = 0, and c2 = 0, which was shown

previously in figure 5.5. As a reminder, the parameters ν, n, c1, and c2 are used in the definition

of (3.6), while α and β are parameters in the PIV equation. Figure 5.6 highlights the difference

between solutions computed using the machine precision and extended precision pole field solvers.

In both frames the appropriate pole field solver is started with a extended precision initial condition

at 0.5. Notice that the error patterns in the solutions are similar, but the extended precision solver

maintains greater precision through pole fields and even smooth regions.
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Figure 5.6: Left: Log base 10 of the relative error in the numerical solution of u
[CH;1]
4.5,2,0,0 computed at

machine precision using order 30 Padé approximations and step size of 0.0625. Right: Log base 10

of the relative error in the numerical solution of u
[CH;1]
4.5,2,0,0 computed at 25 digits of accuracy using

order 40 Padé approximations and step size of 0.25. In both cases the pole field solver is started
with a high precision initial condition at 0.5. Notice that the error patterns in the solutions are
the same.

Now, considering various continuation step sizes ranging from 0.005 to 0.5 along with the

selection of orders 10, 16, 20, 26, . . . , 76, 80 (these are the orders of the Taylor series used to generate

the coefficients of the Padé approximations) I computed the numerical solution of the prototype

at z = 5 (again starting at z = −5). The solution was computed using only the pole avoidance

strategy along a single path from z = −5 to z = 5.

Figure 5.7 shows that as the step size is decreased and/or the order is increased the accuracy

improves as expected. However, the right frame of figure 5.7 also shows how impractical the use of

extended precision arithmetic can be, considering how long a solution takes to compute.
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Figure 5.7: Left: Log base 10 of the relative error for various choices of step size and order. Right:
Time to compute the single path from z = 5 to z = −5.

Still, the utility of such an approach is undeniable when confirming certain aspects in the

literature. For instance, figure 1 in [43] shows that when confirming the decaying asymptotic

conditions (4.2) |z| must be chosen large enough to make the asymptotic approximation valid and

small enough to be accurately represented in machine precision (here, 10−16). Likewise, if we

consider the solution in figure 5.8 where (4.2) was used as an initial condition with z = z0 = 4
√

2

(discussions of this choice of z0 can be found in [43]) there are poles in the left half-plane that

should not be there based on the numerical evidence given in [43]. We then assumed that if z0 were

increased, these poles should move further out of the frame since the approximation becomes more

accurate as z → +∞.
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Figure 5.8: Solution to PIV beginning with the initial condition (4.2) where z = z0 = 4
√

2. Notice
the extraneous poles in the left half-plane.

Increasing z0, of course, required computations in extended precision. Employing the high

precision version of the pole field solver, I was easily able to move the poles further to the left as

can be seen in figure 5.9.
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Figure 5.9: Solution to PIV beginning with the initial condition (4.2) where z = z0 = 6, 10, and 14.
Notice the extraneous poles in the left half-plane move further to the left as z0 increases.
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5.1.4 Increasing the Speed of the Solver

Along with the need for an extended precision solver, there were also situations that required

greater speed when a solution could be computed at machine precision. This situation arose the

most when generating what we will refer to as pole (oscillation) counting diagrams.

This need led to the conversion of portions of the code to C mex-files in MATLAB R© [33],

which are compiled C functions that can interface directly with MATLAB R©. Based on the names

of the subfunctions given in section 5.1.2 the image from MATLAB R©’s [33] profiler in figure 5.10

timing shows that the subfunctions “create taylor P4”, “evaluate pade”, “create taylor P4v”, and

“convert to pade” each use a significant amount of computation time.

Figure 5.10: Profiler output for the m-file version of the “PIV pole field solver” function.

Conversion of each of these functions to their C mex-file counterparts “create taylor P4 mex”,

“evaluate pade mex”, “create taylor P4v mex”, and “convert to pade mex zgesv” results in signif-

icant improvements in computation time. This is shown in figure 5.11.
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Figure 5.11: Profiler output for the C mex-file version of the “PIV pole field solver” function.

Now figure 5.11 also shows a subfunction “nearest neighbor mex” which replaces line number

49 in figure 5.12. The improvement is shown in figure 5.13.

Figure 5.12: Profiler output for the m-file version of the “paths eval” function.
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Figure 5.13: Profiler output for the C mex-file version of the “paths eval” function.

Recall the solution in figure 5.5. If we compare the analytical solution (3.6) with the numerical

solutions (computed using the m-file and C mex-file versions of the pole field solver) along the real

axis we find that the relative error from the analytical solution is almost identical for the pole field

solver using the C mex-file versions and the one using only m-files. This can be seen in figure 5.14.
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Figure 5.14: Solutions along the real axis (left) and log base 10 of the relative errors (right) between
the analytical solution (3.6) and numerical solutions using the C mex-file version and original m-file

versions of the pole-field-solver when computing u
[CH;1]
4.5,2,0,0 from a single initial condition using the

pole field solver.



46

A comparison of solution times and relative errors when employing the pole field solver with

various orders and step sizes can also be made for both the m-file and C mex-file versions. This

comparison was made again on the closed form solution u
[CH;1]
4.5,2,0,0 shown in figure 5.5, but now the

comparisons are made when computing a solution over a region of the complex plane. The relative

errors and solution times are shown in figures 5.15 and 5.16. As expected, the C mex-file version

performs better than the m-file version in solution time; however, both versions perform similarly

when considering relative error.
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Figure 5.15: Statistics for computing the solution in figure 5.5 for Re(z) ∈ [−5, 5] and Im(z) ∈
[−5, 5] using only the m-file version of the pole field solver and beginning with initial conditions at
z = −5. Left: Relative error at z = 5 for various choices of step size and order. Right: Time to
compute the solution for various choices of step size and order.



47

-
3

-
2

-
1

0
1

2

Log10(Time) (seconds)

5 10 15 20 25 30

Order

-
1
2
-
1
0

-
8

-
6

-
4

-
2

0
2

Log10(Relative Error)

5 10 15 20 25 30

Order

0
.0
5

0
.2

0
.3

0
.4

0
.5

C
o
n
t
in
u
a
t
io
n
S
t
e
p
S
iz
e

 

 

 

 

Figure 5.16: Statistics for computing the solution in figure 5.5 for Re(z) ∈ [−5, 5] and Im(z) ∈
[−5, 5] using only the C mex-file version of the pole field solver and beginning with initial conditions
at z = −5. Left: Relative error at z = 5 for various choices of step size and order. Right: Time to
compute the solution for various choices of step size and order.

5.2 Solving the BVPs

Consider the inequality constrained BVP

d

dx
w(x) = f(x,w(x)) (5.3)

|w(x0)− w0| ≤ ε (5.4)

|w(xf )− wf | ≤ ε (5.5)

with x ∈ R and w ∈ Rn, n ∈ Z. A BVP of this form is used to enforce the asymptotic conditions

(4.5) through (4.8) when finding solutions of PIV matching these conditions. We define w ∈ Rn

since we consider PIV as a first order system when solving the BVPs.

Collocation methods for the solution of such BVPs approximate the functions w(x) by (piece-

wise) polynomials and require that the differential equations and initial conditions hold at specified

points, called collocation points, in the interval [x0, xf ].

Legendre-Gauss-Lobatto (LGL) Pseudospectral (PS) methods are employed in this thesis.

Here w(x) is approximated by a polynomial of degree N and the collocation points are the roots
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of the derivatives of the Nth order Legendre Polynomial

PN (x) =
1

2NN !

dN

dxN
(x2 − 1)N

with the extra conditions that x0 = −1 and xN = 1 [41, Section 3.1]. For more information on

Legendre polynomials see, e.g., [29]. The description of the Pseudospectral Collocation method ap-

pearing in this thesis will proceed in the same way as [41, Chapter 3]. The piecewise polynomials ap-

proximating w(x) are defined by a given global basis function ψi(x). That is, w(x) ≈∑N
i=0 aiψi(x).

The Lagrange basis is chosen

ψi(x) =

N∏

j=0
j 6=i

(x− xj)
(xi − xj)

.

to take advantage of the useful property

ψi(xj) =





1, if i = j,

0, if i 6= j,

so that w(xi) ≈ ai. Further, the derivative of w can be approximated by d
dxw(x) ≈∑N

i=0 ai
d
dxψi(x).

It is important to note that the roots of the derivatives of the Legendre polynomial of order

N lie in the interval (−1, 1), so that, along with the nodes x0 and xN , the collocation nodes lie

generically in the interval [−1, 1]. To apply LGL PS collocation on an interval [x0, xf ], a change of

variable x(χ) =
(xf−x0)

2 (χ− 1) + xf must be applied to scale the interval appropriately. This leads

to a scaling of the differential equations by

d

dχ
w(x(χ)) =

d

dx
w(x(χ))

d

dχ
x(χ) =

d

dx
w(x(χ))

xf − x0

2
.

The differentiation matrix (that is, Dij = d
dzψj(xi)) for Legendre-Gauss-Lobatto collocation

is defined by

Dij =





PN (xi)
PN (xj)

1
xi−xj , i 6= j;

−N(N+1)
4 , i = j = 0;

N(N+1)
4 , i = j = N ;

0, otherwise,
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[17, Section III]. Applying LGL PS collocation the BVP is transformed into a nonlinear program

in the variables a0, a1, . . . , aN ∈ Rn that can be written in the form

N∑

j=0

Dijaj =
xf − x0

2
f(xi, ai), i = 0, 1, . . . , N

|a0 − w0| ≤ ε,

|aN − wf | ≤ ε.

This nonlinear program is easily solved using MATLAB R©’s [33] optimization toolbox by

applying the “fmincon” function with a trivial objective, where choosing the “active-set” algorithm

has performed the best.

5.3 Visualization of pole locations and residues

Recall the rational solutions of PIV where, for example,

u
[GH;1]
1,2 = u(z; 5,−8) =

16z5 + 16z3 − 12z

8z6 + 4z4 + 6z2 + 3
, (5.6)

with the pole locations and residues shown in figure 5.17.
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Figure 5.17: Pole locations and residues of (5.6).

Of course, the poles in this solution occur at the roots of the denominator and can be easily

computed to arbitrary precision using any number of solvers. These pole locations are shown to

machine precision in table 5.1.

Roots of 8z6 + 4z4 + 6z2 + 3

−0.658037006476246 + 0.658037006476246i
−0.658037006476246− 0.658037006476246i

0.658037006476246 + 0.658037006476246i
0.658037006476246− 0.658037006476246i

0.707106781186547i
−0.707106781186547i

Table 5.1: Pole Locations of u
[GH;1]
1,2 via computing the roots of the denominator of (5.6).

Such a concise visualization of rational solutions is simple; however, moving to even the closed

form special function solutions in terms of parabolic cylinder or confluent hypergeometric functions

eliminates our ability to simply compute roots of the denominator. Instead, consider as an example

a contour plot like the one in figure 5.18 about the pole located at 0.707106781186547i.
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Figure 5.18: Contour plot of |u[GH;1]
1,2 | around the pole at 0.707106781186547i of (5.6).

In the vicinity of a pole z0 a solution of PIV behaves as

u(z) ≈ a−1

z − z0
, (5.7)

where a−1 = ±1. A contour plot like in figure 5.18 can easily provide several points, z1, . . . , zk, at

which (5.7) can be evaluated simultaneously to determine z0 and a−1 by solving the over-determined

system of equations




1 u(z1)

1 u(z2)

...
...

1 u(zk)






a−1

z0


 =




z1u(z1)

z2u(z2)

...

zku(zk)




. (5.8)

For example, by picking the points, z1, . . . , zk along the contours at |u[GH;1]
1,2 | = 30 and solving the

systems (5.8) along each of these contours we are able to find the values in table 5.2.
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Roots of 8z6 + 4z4 + 6z2 + 3 Over-determined Systems

−0.658037006476246 + 0.658037006476246i −0.657990889167198 + 0.657992354272110i
−0.658037006476246− 0.658037006476246i −0.657990889167378− 0.657992354275692i

0.658037006476246 + 0.658037006476246i 0.657990889159593 + 0.657992354271594i
0.658037006476246− 0.658037006476246i 0.657990889158462− 0.657992354276616i

0.707106781186547i −0.000000000003439 + 0.707153836604552i
−0.707106781186547i −0.000000000006202− 0.707153836608534i

Table 5.2: Pole locations via computing the roots of the denominator of (5.6) (left) and via solving

(5.8) with zk along the contours |u[GH;1]
1,2 | = 30 (right). The incorrect digits on the right are

underlined.

These pole locations are certainly not very accurate, and for the sake of comparing these

locations with reasonable accuracy a correction must be made. Two separate methodologies were

considered to make these corrections.

Both methodologies begin by letting u(z) be a solution of PIV and, with j > 0, ũj and ũ′j be

the function and derivative values computed by the pole field solver at the points z̃j . Also, let z0 be

the pole location computed by solving (5.8) with zk the points generated by the contour software

along a contour |u(z)| = U .

5.3.1 Correcting Pole Locations Via Newton’s Method

The first methodology entails applying Newton’s method to 1/u(z). First, we find the value

z̃j nearest z0, call it z̃0
0 . From z̃0

0 we iterate using Newton’s method on the function 1/u(z) until

we find an approximate root, that is. a pole of u(z). The Newton iteration is given simply by

z̃j+1
0 = z̃j0 +

u(z̃j0)

u′(z̃j0)
, j = 1, 2 . . . ,

where u(z̃j0) and u′(z̃j0) can be computed easily from the Padé approximation about zj−1
0 . The

iteration is continued until |1/u(z̃j0)| < ε << 1.

The second column of table 5.3 gives the resulting pole locations using this approach. We

see that in this case the approximations of the pole location are many orders of magnitude more

accurate.
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Roots of 8z6 + 4z4 + 6z2 + 3 Corrected via Newton’s Method

−0.658037006476246 + 0.658037006476246i −0.658037006502404 + 0.658037006452043i
−0.658037006476246− 0.658037006476246i −0.658037006502410− 0.658037006453049i

0.658037006476246 + 0.658037006476246i 0.658037006497747 + 0.658037006452093i
0.658037006476246− 0.658037006476246i 0.658037006497756− 0.658037006453084i

0.707106781186547i −0.000000000002518 + 0.707106781269720i
−0.707106781186547i −0.000000000002512− 0.707106781270804i

Table 5.3: Pole locations via computing the roots of the denominator of (5.6) (left) and via solving

(5.8) with zk along the contours |u[GH;1]
1,2 | = 30 and correcting using Newton’s method (right). The

incorrect digits on the right are underlined.

5.3.2 Correcting Pole Locations Via Roots of the Padé Denominator

The second approach computes the roots of the denominator of the Padé approximation

about z0 using the built in “roots” function of MATLAB R© [33]. Let ∆z0 be the root with the

smallest modulus, and where the numerator of the approximation is not near zero. We update

z1 = z0 + ∆z0 and define z1 to be the pole location.

The second column of table 5.4 gives the resulting pole locations applying this approach.

This time the values are even more accurate than those when generated by corrections via the

Newton’s method.

Roots of 8z6 + 4z4 + 6z2 + 3 Corrected via Roots of Padé Denominator

−0.658037006476246 + 0.658037006476246i −0.658037006476339 + 0.658037006476700i
−0.658037006476246− 0.658037006476246i −0.658037006476272− 0.658037006475570i

0.658037006476246 + 0.658037006476246i 0.658037006475839 + 0.658037006476741i
0.658037006476246− 0.658037006476246i 0.658037006476189− 0.658037006475811i

0.707106781186547i 0.000000000000366 + 0.707106781187221i
−0.707106781186547i 0.000000000000298− 0.707106781186046i

Table 5.4: Pole locations via computing the roots of the denominator of (5.6) (left) and via solving

(5.8) with zk along the contours |u[GH;1]
1,2 | = 30 and correcting using the method of computing the

roots of the Padé denominator (right). The incorrect digits on the right are underlined.

5.4 Pole and Oscillation Counting

We take advantage of the speed and accuracy of the pole field solver to explore the differences

in solution characteristics for each fixed choice of α and β. This is done by varying (u(0), u′(0)) ∈ R2

and examining the number of poles and/or oscillations (i.e., a change in the sign of the derivative)
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on either the positive or negative real axis. For instance, the color bar of figure 5.23 (adapted

from [43]) indicates the number of poles on the negative and positive real axes in the left and right

frames of figure 5.19, respectively, for the parameters α = β = 0. This figure also indicates the ICs

matching the asymptotic behaviors discussed in sections 4.1 and 4.2 by the markers that appear in

the legend in figure 5.23.

Positive Real Axis

-4 -2 0 2 4

u(0)

Negative Real Axis

-4 -2 0 2 4

u(0)

-4
-2

0
2

4

u
′

(
0
)

Figure 5.19: Number of poles on the positive and negative real axes for α = 0 and β = 0 are
indicated by the color bar in 5.23. Solutions satisfying the asymptotic behaviors of the roots of
4.3 as z → +∞ or z → −∞, z ∈ R, are shown by the black lines. The markers in the right frame
indicate which root the solution is asymptotic to as z → +∞, z ∈ R, and these are described in
the legend in figure 5.23.
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Figure 5.20: Sum of the number of oscillations for z ∈ [0, 7] and the number of poles for z ∈ [0, 15]
and α = β = 0. These are shown separately in the left and right frames of figure 5.21.

Arriving at figure 5.19 requires the refinement of an image like 5.20, which is a composition

of the frames in figure 5.21. Figure 5.21 shows raw counts of the oscillations and poles that occur

over a finite interval ([0, 15]) on the positive real axis. These raw counts provide a map for locating

solutions with special characteristics. For instance, regions that are shaded have a finite number

of poles on the positive real axis where darker bands within such a region indicate solutions with

few or no oscillations or poles on the positive real axis. Unshaded regions, then, indicate those ICs

that generate solutions with an infinity of poles on the positive real axis. Investigations performed

by zooming in on these darker bands and edges of the shaded regions indicate that solutions with

these ICs admit the asymptotic behavior given by the roots of (4.3) as z → +∞, z ∈ R.
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Figure 5.21: Left: Number of oscillations on the positive real axis for z ∈ [0, 7] and α = β = 0.
Right: Number of poles on the positive real axis for z ∈ [0, 15] and α = β = 0.

Finding a large number of these initial conditions by manually zooming in on the edges and

darker bands proved very time consuming and the figures 5.20 and 5.21 alone did not locate all of

the ICs with special characteristics. To complete the generation of 5.19 we solved the inequality

constrained BVP (5.3) (see section 5.2 for a discussion) over an interval [z0, zf ], while enforcing as

boundary conditions each of the roots of (4.3) as z → +∞, z ∈ R, in turn. Generation of different

initial conditions for a single root w±µ was accomplished by sliding the interval [z0, zf ] along the

positive real axis in very small increments.
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BVP Generated Asymptotic ICs
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Figure 5.22: Initial conditions for solutions asymptotic to the roots of 4.3 as z → +∞, z ∈ R, for
α = β = 0. These initial conditions are generated by solving the inequality constrained BVP 5.3
over an interval [z0, zf ]. Generation of different initial conditions is accomplished by sliding the
interval [z0, zf ] along the positive real axis.

With the knowledge of how figure 5.19 was made and the symmetry (2.2) we only need to

consider the right frame since the left is completely analogous. As described earlier in this section,

the color bar in figure 5.23 indicates the exact number of poles for a given initial condition located

within a shaded region. Here darker (lighter) regions indicate an odd (even) number of poles in the

solution that IC generates.

“Most of the ICs in the shaded regions generate solutions that oscillate as z → +∞ (note

that an oscillation is simply a change in the sign of the derivative); however, each initial

condition marked by a curve, located at the boundary of a shaded region, or designated by

an isolated marker has no oscillations as z → +∞. These solutions are precisely those that

are asymptotic to the roots of the quartic equation (4.3) as z → +∞. The appropriate root

is indicated by the symbols shown in left frame of figure 5.23. In the case of α = β = 0

(generally, when β = 0) the solutions matching the behaviors w+
µ , µ = ±1, are the solutions

that satisfy the decaying asymptotic condition (4.2). When two markers appear along the

same curve, those ICs generate solutions matching both behaviors (in separate intervals of
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As z → +∞

u(z) ∼

√

−2β

2z

u(z) ∼ −
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u(z) ∼ −2z
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1
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Figure 5.23: Legend and color bar for figures 5.19, 6.16, 6.17, and 6.20. The legend shows the
markers indicating the ICs that generate the dominant asymptotic behaviors (4.5)-(4.8) and closed
form solutions. If a marker occurs on a curve, then the dominant behavior or type of closed form
solution occurs for all of the ICs along that curve. If a marker is emphasized by containing an “×”,
then it indicates an isolated IC matching the dominant behavior or the IC generates an isolated
rational solution. The color bar indicates the number of poles on the positive or negative real axis.

the real axis), as shown in, for example, figures 6.13, 6.14, 6.28, and 6.29 (see section 6.3.5

for further discussion).”[42]

5.5 Exploring Solutions with a Pole at the Origin

The methods of exploration have so far only considered ICs that are finite. However, begin-

ning with a truncated series like (2.1), with z0 = 0, ICs can be generated to also view solutions with

a pole at the origin. Choosing α = 2, β = −2, and c = 0 gives the two solutions (depending on the

residue of the pole at the origin) shown in figure 5.24. In this case the solution with residue +1 is

simply u(z) = 1
z and the one with residue −1 is a solution in terms of the confluent hypergeometric

function.

As discussed in section 5.4, varying u(0) and u′(0) allows the exploration of all solutions apart

from those with a pole at the origin. For instance, consider the right frame of figure 5.19 that shows

the locations of initial conditions with a finite number of poles on the real axis along with the ICs

for solutions asymptotic to the roots of (4.3). If |u(0)| and |u′(0)| were increased and remained in

one of the shaded regions or along any of the lines indicating the asymptotic solutions, then this

would indicate a pole moving through the origin from the negative real axis to the positive real axis.

Once the transition has occurred, the initial conditions fall within a new shaded region or along
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c = 0 and residue= +1
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Figure 5.24: A view of solutions with a pole at the origin in the case of α = 2, β = −2, and c = 0.

a different line. Figure 5.25 (adapted from one in [43]) is a caricature of the transition of the ICs

from one region to another in the case α = β = 0. In this case the two solutions occurring for the

choice c = 0 are shown in figure 5.26. The labels k±j , j = 1, 2, 3, 4, in figure 5.25 correspond to the

same labels in the right frame of figure 5.27. The choice of k here also refers to the same parameter

in (4.2). That is, these indicate the values of the parameter leading to solutions satisfying the

decaying asymptotic condition that also have a pole at the origin. If we followed one of the curves

continued by the dashed lines as |u(0)| → +∞ and |u′(0)| → +∞, then the solution occurring at

this limit could be found by evaluating (2.1) with the appropriate value of c in the right frame of

figure 5.27.
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Figure 5.25: A caricature of the transition of a pole from the negative real axis to the positive real
axis. Here α = β = 0.
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c = 0 and residue= +1
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Figure 5.26: A view of solutions with a pole at the origin in the case of α = 0, β = 0, and c = 0.

When exploring the cases with a pole at the origin the single parameter c can instead be

varied to map out the number of poles and oscillations along the two halves of the real axis. Figure

5.27 (taken from [43]) shows in two ways that certain choices of c lead to solutions with a finite

number of poles on the positive and negative real axes when the residue of the pole at the origin is

+1. On the left the locations of the poles on the real axis are shown, while the right frame mimics

figure 5.19 with lines and dots indicating values of c that generate solutions with a finite number

of poles. The expansion (2.1) demonstrates that the curves in the left frame should be symmetric

around the origin Re(z) = c = 0. Comparison of both frames with 5.19 allows us to deduce that

the colored and black dots indicate the values of c that correspond to solutions generated from PIV

and the condition (4.2) with k > 0 and k < 0, respectively. A comparison of k and c values leading

to the same solutions is given in [43]. Futher, line segments correspond to shaded regions in figure

5.19. The analogous images for a pole with negative residue at the origin are given in [43].
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Figure 5.27: Left Frame: Locations of the poles on the real axis for various c and α = β = 0. Solid
lines indicate poles with residue +1 and dashed lines those with residue −1. Right Frame: Number
of poles includes the pole at the origin. Values of c with no lines or dots indicate solutions with an
infinity of poles on the real axis.

Similar analysis could be completed for any choice of α and β using (2.1); however, our

explorations with regard to solutions with a pole at the origin did not proceed beyond α = β = 0.



Chapter 6

Exploring Solutions of PIV With No Closed Form

This chapter explores some of the solution types that were mostly not considered prior to the

introduction of the method described in section 5.1.1. These explorations rely heavily on the tool

discussed in 5.4. First, however, the high precision adaptation of the pole field solver (see section

5.1.3) is used to confirm the solution transformations (2.5) through (2.9). We then move on to a

survey of general choices of α and β, where a special solution type asymptotic to (4.7) as z → +∞

and z ∈ R is discussed in detail. This solution type provides a single point of comparison among

all α and β choices. These explorations include the mostly unexplored space of β > 0.

6.1 Confirming the Solution Transformations

We verify the solution transformations (2.5) through (2.9) by considering a particular choice

of parameters and ICs. Consider the choice of α = 0.25, β = −0.125, u(0) = −1.5 and u′(0) = −1.5.

Figure 6.1 displays this solution over a region of the complex plane and along the real axis.



64

-4 -2 0 2 4
z

-1
0

-5
0

5
1
0

u
(
z
)

-4 -2 0 2 4

Re(z)

-4
-2

0
2

4

I
m
(
z
)

Figure 6.1: Solution to PIV with α = 0.25, β = −0.125, u(0) = −1.5 and u′(0) = −1.5. The left
frame shows the zero and pole locations, while the right shows the solution along the real axis.

After applying each of the transformations u±k,µ(u(z), z), k = 1, 2, 3 and u±k , k = 4, 5 to each

point of the solution in figure 6.1 we arrive at the solutions in figures 6.2 and 6.3. These solutions

alone, however, do not provide confirmation that the solution transformations are correct. To that

end, we also computed the numerical solution using the pole field solver beginning with an initial

condition from a single transformed point. We then compared the numerically computed solution

to the analytically transformed solution in high precision. The resulting error is shown in figure

6.4, where the solutions agree to very high accuracy.
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Figure 6.2: Zero and pole locations of solutions to PIV resulting from the applications of (2.5)
through (2.9) to the solution figure 6.1.
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Figure 6.3: Solutions to PIV along the real axis resulting from the applications of (2.5) through
(2.9) to the solution figure 6.1.
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Figure 6.4: Relative error between the transformed solutions. Here each solution computed by
applying (2.5) through (2.9) to each point in the high precision numerical solution in figure 6.1,
call it u(z), is compared to a numerical solution generated by applying (2.5) through (2.9) to u(0).
The color bar shows log10 of the relative error.

6.2 Initial Explorations: Zero α and β

The investigations into the solutions of PIV with no closed form began with a survey of the

solutions resulting from changing the initial conditions when α = β = 0. Aside from the knowledge

of the decaying asymptotic condition (4.2) and the resulting connection formulae (see section 4.1),

there was little available in the literature for this choice of parameters.
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Investigations of figure 5.19 and sequences of solutions along several lines with u′(0) fixed

led us to believe that there were further classes of solutions with noteworthy characteristics. For

instance, we witnessed that the poles in the complex plane were bound roughly by the sectors

shown in figure 6.5.

The Eight Sectors of PIV

1

2

4

3

8

7

5

6

Figure 6.5: The eight sectors in the solutions of PIV .

The entire survey is given in [43]. Here we only highlight the solution types that we believed

had notable characteristics.

6.2.1 Sequences of Solutions Along u′(0) = 0, Varying u(0)

Initial investigations of the possible solution types when α = β = 0 involved the computation

of sequences of solutions over a region of the complex plane and along the real axis as we fixed

u′(0) and varied u(0). For instance, we initially fixed u′(0) = 0 and produced the sequence of

solutions for u(0) ∈ [−5, 5] in increments of 0.01. We noticed that subsequences suggested solutions

with adjacent sectors that were free of poles. Figures 6.6 and 6.7 provide two examples of refined

subsequences hinting at the solutions with adjacent pole-free sectors.
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Figure 6.6: Sequence of solutions for α = β = 0 near u0 = 1.987405112326211 . . . along the line
u′(0) = 0. The solution along the real axis is shown in the top row, while pole locations and residues
are shown in the bottom row.
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Figure 6.7: Sequence of solutions for α = β = 0 near u0 = 3.235356086736551 . . . along the line
u′(0) = 0. The solution along the real axis is shown in the top row, while pole locations and residues
are shown in the bottom row.

Comparing the values of u(0) = u0 in these subsequences to figure 5.19, we realized that
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the solutions with adjacent pole free sectors occurred certainly at the boundaries of the regions

with a finite number of poles. The solutions in figures 6.6 and 6.7 occur at the left and right

boundaries, respectively, of the first shaded region in the right half-plane of the right frame in

figure 5.19. In figure 6.6, as u(0) increases to u0 = 1.987405112326211 . . . the poles within the region

arg(z) ∈ [0, π4 ]
⋃

[7π
4 , 2π) move to the right with poles located directly on the real axis. After u(0)

passes through u0 = 1.987405112326211 . . . there is a transition to poles located above and below

the real axis, creating oscillations directly on the axis. This behavior, first noted in the discussions

of PI in [20], suggests that the solution occurring directly at u(0) = u0 = 1.987405112326211 . . . is

completely free of poles in the region arg(z) ∈ [0, π4 ]
⋃

[7π
4 , 2π). Analogous behavior can be observed

in figure 6.7.

We also noticed solutions exhibiting the clearing of poles from adjacent sectors for ICs in the

vicinity of the curves indicating solutions asymptotic to the roots of (4.3). Examples are given in

figures 6.8 and 6.9. There is a marked difference between the solutions occurring at the boundaries

of regions with a finite number of poles and those occurring along these curves. Considering figure

6.8, this sequence begins with a single pole (near z = 0) and oscillations on the positive real axis.

The oscillations are again due to poles located just above and below the positive real axis. As u(0)

increases through u0 = 2.660688155172691 . . . the pole fields in roughly arg(z) ∈ [0, π4 ]
⋃

[7π
4 , 2π)

move to the right and return, but with no reorientation to poles on the real axis in this case. The

behavior in figure 6.9 is completely analogous, only all of the solutions shown have poles on the

real axis with no reorientation to poles above and below the axis. In either case, the behavior is

due to the ICs of the solution with adjacent pole free sectors occurring at a point where we can

find a deleted neighborhood of the ICs contained entirely in a region with a finite number of poles

or with an infinity of poles in figure 5.19. Similar discussions are found throughout [43].
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Figure 6.8: Sequence of solutions for α = β = 0 near u0 = 2.660688155172691 . . . along the line
u′(0) = 0. The solution along the real axis is shown in the top row, while pole locations and residues
are shown in the bottom row.
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Figure 6.9: Sequence of solutions for α = β = 0 near u0 = 3.726596884689709 . . . along the line
u′(0) = 0. The solution along the real axis is shown in the top row, while pole locations and residues
are shown in the bottom row.
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6.2.2 Sequences of Solutions Satisfying the Decaying Asymptotic Condition

Significant effort was also made to look into the solutions of PIV when α = β = 0 satisfying the

decaying asymptotic condition (4.2). Investigations again involved the consideration of sequences

of solutions and the locations of their ICs in the u(0) versus u′(0) plane. Recall from section 4.1

that the decaying asymptotic condition (4.2) depends on a free parameter k with a special value

k∗ (k∗ = 1
π in the case α = β = 0) separating solutions that are at most oscillatory on the real

axis from those with poles on the real axis. This led us to generate sequences of asymptotically

decaying solutions based on the parameter k.

The first example shows a sequence of solutions near k∗. Section 4.1 details connection

formulae in the case of 0 < k ≤ k∗. For instance, when 0 < k < k∗ u(z) is generally oscillatory as

z → −∞ when u(z) satisfies (4.2) as z → +∞. Likewise, if k = k∗ u(z)→ −2z as z → −∞. Both

behaviors can be witnessed in figure 6.10.

-4 -2 0 2 4

Re(z)
-4 -2 0 2 4

Re(z)
-4 -2 0 2 4

Re(z)
-4 -2 0 2 4

Re(z)

-4
-2

0
2

4

I
m
(
z
)

k =
1

π
+ 1× 10

−1

-4 -2 0 2 4
z

k =
1

π
+ 1× 10

−8

-4 -2 0 2 4
z

k =
1

π
− 1× 10

−8

-4 -2 0 2 4
z

k =
1

π
− 1× 10

−1

-4 -2 0 2 4
z

-1
4

-7
0

7
1
4

u
(
z
)

Figure 6.10: Sequence of solutions for α = β = 0 near k = 1
π in k(D 1

2
α− 1

2
(
√

2z))2. The solution

along the real axis is shown in the top row, while pole locations and residues are shown in the
bottom row.

Further explorations by varying k led to the discovery of a previously undiscussed solution
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type with a half-plane entirely free of poles. If k = 1
2k
∗ we find that u(z) → −2

3z as z → −∞.

In the vicinity of k = 1
2k
∗ the pole fields in the region arg(z) ∈ [π2 , π] (likewise, arg(z) ∈ [π, 3π

2 ])

retreat and return along the ray rexp(i3π
4 ) (likewise, rexp(i5π

4 )), r > 0, changing orientation at

k = 1
2k
∗. This complex change in the orientation of the poles in the process of retreating and

returning is indicative of a sector of the complex plane being pole free at the choice of parameter

or IC exactly at the transition from retreat to return. This was first witnessed for PI in [19], and

it can be witnessed for PIV in the second and third frames of figure 6.11.
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Figure 6.11: Sequence of solutions for α = β = 0 near k = 1
2π in k(D 1

2
α− 1

2
(
√

2z))2. The solution

along the real axis is shown in the top row, while pole locations and residues are shown in the
bottom row.

The solution symmetric to the one being approached in figure 6.11 through the symmetry

(2.2) was later found to also match the behavior of the root (4.7). It turns out that for any (α, β)

pair there is a single solution matching (4.7) as z → +∞. For each (α, β) pair the solution is

characterized by much of the right half-plane being pole-free, making this a prime candidate for a

single solution comparison of all (α, β) pairs.

A discussion of the decaying asymptotic solutions for k < 0 and k > k∗ (both with α = β = 0)
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appears in [43].

6.3 Further Explorations: α and β Not Both Zero

Armed with the knowledge of where to seek possible solutions with special characteristics in

the case of α = β = 0 we expanded our search to parameter choices with one or both of α and β

nonzero. These explorations first considered the fundamental domain (3.7), considering multiple

choices of α and β along each boundary and interior to the domain. Then the explorations moved

beyond the fundamental domain, paying particular attention to the choice of β > 0. Solutions with

adjacent pole free sectors and much of a half-plane pole-free were observed in all cases.

6.3.1 An Exploration of the Fundamental Domain

The literature describes solutions in the fundamental domain (3.7) only for the cases α = β =

0 (numerical and asymptotic solutions), (α = 0, β = −2
9) (a rational solution), along the line β = 0

(asymptotically decaying solutions), and along the curve β = −2(α− 1)2 (asymptotic, rational and

special function solutions that occur only for highly limited choices of ICs), all of which occur on

the boundary. Yet, theory states that solutions for all parameter choices in theory can be found by

applying the transformations (2.5) through (2.7) to the solutions in this domain.

Figure 6.12 shows the locations of special solutions, both with and without closed forms, for

the choices (α = 0, β = −2
9), (α = 0, β = −2), and (α = 1, β = 0). The first of these frames

corresponds to the parameter choice producing the rational solution −2
3z (see table 3.1). The

second frame contains the ICs for the rational solution −2z (see table 3.1), while the second and

third frames both show solutions in terms of the parabolic cylinder or confluent hypergeometric

function. Recall from section 5.4 that the circle (blue/yellow) and diamond (blue/yellow) markers

indicate solutions matching the roots of (4.3), while the square (red) markers indicate solutions

that have a closed form. Figure 5.23 contains a far more detailed explanation of the markers.
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Figure 6.12: Number of poles on the positive real axis for (α = 0, β = −2
9), (α = 0, β = −2), and

(α = 1, β = 0). A detailed description of the markers and shading is given in figure 5.23.

Similar to α = β = 0, the cases shown in the second two frames of figure 6.12 also have ICs

that produce solutions matching two or three of the behaviors w+
µ , µ = ±1, or w−−1 in different

segments of the real axis. These solutions feature adjacent pole free sectors and appear at the

boundaries of regions in the u(0) versus u′(0) plane with a finite number of poles. Examples of

sequences approaching these types of solutions appear in figures 6.13 and 6.14.
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Figure 6.13: Solutions with adjacent pole free sectors for α = 0 and β = −2. u′(0) = 0 and
u0 = 3.170110354518507. The solution along the real axis is shown in the top row, while pole
locations and residues are shown in the bottom row.
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Figure 6.14: Solutions with adjacent pole free sectors for α = 1 and β = 0. u′(0) = 0 and
u0 = 2.989670219313871. The solution along the real axis is shown in the top row, while pole
locations and residues are shown in the bottom row.

Away from the vertices and along the boundary β = −2(α− 1)2 of the fundamental domain

PIV also has solutions in terms of the parabolic cylinder function or confluent hypergeometric

function. In the case of α = 0.5 and β = −0.5 the ICs generating these solutions are along the

curve marked by squares (red) in the first frame of figure 6.15. In all three frames we find that PIV

exhibits solutions with adjacent pole free sectors along every boundary of the fundamental domain.
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Figure 6.15: Number of poles on the positive real axis for (α = 0.5, β = −0.5), (α = 0, β = −0.5),
and (α = 0.5, β = 0). A detailed description of the markers and shading is given in figure 5.23.
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Likewise, choices of α and β interior to the fundamental domain feature solutions with adja-

cent pole free sectors as well. The ICs that generate these solutions again appear at the boundaries

of regions with a finite number of poles in figure 6.16.
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Figure 6.16: Number of poles on the positive real axis for parameter choices interior to the funda-
mental domain. A detailed description of the markers and shading is given in figure 5.23.

6.3.2 Parameters Exterior to the Fundamental Domain

Recall that we can in theory produce all possible solutions for parameter choices outside

the fundamental domain through the application of the transformations discussed in section 2.3 to

solutions with α and β within the domain. Still, the complexity of these transformations makes

it difficult to understand the characteristics of the resulting solution. For instance, a first glance

at (2.5) leads us expect a root of u(z) to be a pole of u±1,µ(u(z), z), but comparing the first row

of frames in figure 6.2 to the left frame of figure 6.1 this is not always the case. Therefore we

performed some limited exploration into α and β choices outside of the fundamental domain.

First, studies of PIV with β > 0 are noticeably absent from the literature. For instance,

all known closed form solutions occur only when β is nonpositive and likewise for the solution

transformations (assuming u(z) is real when z is real). However, the knowledge of solutions with

adjacent pole free sectors that appear in the cases of α and β already explored suggests that there

are solutions with β > 0 featuring noteworthy characteristics.

Solutions of PIV that are real along the real axis with β < 0 only match two of the roots of
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(4.3) due to the term
√−2β in (4.5) and (4.6). This makes the figures displaying pole counts (e.g.

figure 6.17) much simpler than their counterparts when β ≤ 0. In these frames a there is single

IC generating the asymptotic behavior of w−1
+1 ∼ −2

3z and the ICs along the boundaries of regions

with finite poles match the behavior of w−−1 ∼ −2z.
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Figure 6.17: Number of poles on the positive real axis for parameter choices where α = 0 and
β > 0. A detailed description of the markers is given at the end of section 5.4.

Beyond the choices of β > 0 we also considered some parameters slightly larger in magnitude.

Increasing |α| and/or |β| to even three or four significantly increases the complexity of the pole

counting diagrams. Still, there are solutions that match each of the roots of (4.3) when β ≤ 0 and

solutions that match only w−1
+1 or w−−1 when β > 0. See figures 6.18 and 6.19 for examples of pole

counts with α and/or β equal to three or four.
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Figure 6.18: Number of poles on the positive real axis for some parameters exterior to the fundamen-
tal domain. The initial conditions for solutions asymptotic to w−+1 in the top middle, bottom left,
and bottom right frames occur outside of the domain shown at (u(0) ≈ −4.6822, u′(0) ≈ 20.7787),
(u(0) ≈ −10.7942, u′(0) ≈ 120.3759), and (u(0) ≈ 49.4606, u′(0) ≈ −2442.3215), respectively.
The locations of these parameters in α vs. β space are shown later in figure 6.22. A detailed
description of the markers and shading is given in figure 5.23.
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Figure 6.19: Number of poles on the positive real axis for some parameters exterior to the fun-
damental domain. The initial conditions for solutions asymptotic to w−+1 in the top left and bot-
tom right frames occur outside of the domain shown at (u(0) ≈ −3.2210, u′(0) ≈ 15.9830) and
(u(0) ≈ −4.3409, u′(0) ≈ −8.5801), respectively. A detailed description of the markers and shading
is given in figure 5.23.

6.3.3 A Note on Connection Formulae

In [42] there is a discussion of the possibility of solutions that are smooth (except, possibly,

for a finite number of poles) along the entire real axis. This discussion arises from the comparison of

the left and right frames of figure 5.19, showing the number of poles along the negative and positive

real axes, respectively. This figure makes it easy to visualize that a segment of the curve extending

from the origin and down to the right in the right frame cuts across the shaded region that extends

from the origin up and to the right in the left frame. In this case, along this segment PIV has

solutions that are smooth in both directions. These, and all other choices of α when β = 0, appear

to be the only examples of solutions that have connection formulae available in the literature (see,

e.g. [7], [14], [38], or [31]).

Similar analysis of the number of poles on the positive and negative real axes in figures 6.12
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and 6.15 (together with the symmetry (2.2)) shows that we can again identify solutions that are

smooth in both directions for regions of ICs in cases of α and β on the boundary of the fundamental

domain. Likewise, figure 6.16 indicates that such regions (sometimes only a curve) will exist for all

parameter choices within the fundamental domain. Further, considering α = 0.25 and β = −0.125

in figure 6.20 we can see this more concretely for an example in the fundamental domain.

Positive Real Axis

-4 -2 0 2 4

u(0)

Entire Real Axis

-4 -2 0 2 4

u(0)

Negative Real Axis

-4 -2 0 2 4

u(0)

-4
-2

0
2

4

u
′

(
0
)

Figure 6.20: Number of poles on the negative real axis (left), entire real axis (center), and positive
real axis (right) for α = 0.25 and β = −0.125. A detailed description of the shading is given in
figure 5.23.

It is easy to see that comparison of the left and right frames indicates that the shaded regions

in the center will have a finite number of poles on the entire real axis.

On the other hand, figure 6.18 shows that similar regions will also occur outside the funda-

mental domain when β < 0, but with the difference that there now may be a finite number of poles

on the real axis in either one or both directions as in the case of α = 3 and β = −3 shown in figure

6.21 where the ICs in the regions in the center frame now generate solutions with 5 poles on the

entire real axis.
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Figure 6.21: Number of poles on the negative real axis (left), entire real axis (center), and positive
real axis (right) for α = 3 and β = −3. The shaded regions in the center frame contain ICs that
generate solutions with 5 poles on the real axis. A detailed description of the shading is given in
figure 5.23.

In contrast, positive choices of β do not seem to produce any such regions of ICs.

6.3.4 Solutions with a Pole-Free Half-Plane

In the case of α = β = 0 it was noted in [43] that PIV has a solution that is pole free over

an entire half-plane. Likewise, numerical observations in [42] suggest that for any choice of α and

β there exists a solution and a z0 ∈ R such that u(z) is pole free for all z with Re(z) > z0. In

all cases these solutions are asymptotic to the root w−+1 ∼ −2
3z as z → +∞ and z ∈ R. Figure

6.22 (adapted from [42]) shows the number of poles on the positive and negative real axes for these

solutions. Since the right half plane is pole-free after some z0 the right frame shows only a finite

number of poles for every α and β pair.

The behavior in the left half-plane can vary significantly depending on α and β. For instance,

there are no cases with β > 0 where the left half-plane has a finite number of poles. On the other

hand, when β ≤ 0 there are both regions of ICs generating solutions with a finite number poles

and subsets leading to an infinity of poles that are bounded by the parabolas β = −2(α − 2n)2,

n ∈ Z, and the lines β = − (2m+1)2

2 , m = 0, 1, 2, . . .. These regions can be seen in the left frame of

figure 6.22 with the parabolas β = −2(α−2n)2, n ∈ Z, and the lines β = − (2m+1)2

2 , m = 0, 1, 2, . . .,

shown as dashed lines. The parabolas β = −2(α − (2n + 1))2 and lines β = −2(m + 1)2, both of
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which make up the boundaries of the fundamental domain (3.7), are also included in the figure as

solid lines.
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Figure 6.22: Number of poles on the positive (right) and negative (left) real axis for solutions
asymptotic to w−+1 ∼ −2

3z as z → +∞ and z ∈ R and each α and β. The solid curves indicate the
boundaries of the Weyl chambers, while the dashed lines show the boundaries of regions of finite
poles on both the positive and negative real axes. Note that in this case β > 0 implies an infinity of
poles along R−. The circles (red) containing an × indicate those parameters shown in figure 6.18.

Along each of the parabolas β = −2(α − 2n)2 the behaviors of these solutions also vary as

α is changed. Likewise, if α and β are moved off of the parabolas, different behaviors in the left

half of the complex plane are observed. The next few sections will discuss the different variations

of these solutions. These discussions are also available in [42].

6.3.4.1 The Tops of the Parabolas

Consider the Okamoto I polynomials described in, for instance, [13]. Note that these are

different than the generalized Okamoto polynomials discussed in section 3.1 and [14]. Figure 6.23

displays the roots of the Okamoto I polynomials for various orders ml and md.
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Figure 6.23: Roots of the Okamoto I polynomials for orders m = ±1,±2,±3,±4. The subscript l
or d indicates whether the polynomial of that order is shown in the frame as light (yellow) or dark
(blue) circles, respectively.

At the tops of the parabolas β = −2(α− 2n)2 (that is, α = 2m, m ∈ Z, and β = 0) the poles

nearest the origin align similar to the roots of the Okamoto I polynomials. Examples for several

different choices of m are shown in figure 6.24. When m < 0 poles of residue +1 align in a structure

similar to the roots with a positive real part of the degree m Okamoto I polynomial, while poles of

residue −1 appear similar to the roots of the degree m− 1 polynomial. On the other hand, when

m > 0 the poles of residue +1 (likewise, −1) align in a structure similar to all of the roots of the

order m+ 1 (likewise, m) polynomials.
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Figure 6.24: Zero and pole locations of solutions to PIV with α = 2m and β = 0 for various values
of m. These solutions match w−+1 ∼ −2

3z as z → +∞ and z ∈ R.

6.3.4.2 Solutions Along the Parabolas

Along the boundaries of the parabolas the solutions asymptotic to −2
3z are nonoscillatory as

z → −∞. This is due to the presence of two adjacent pole free sectors (roughly, arg(z) ∈ [3π
4 ,

5π
4 ]).

Figures 6.25 and 6.26 (adapted from [42]) show solutions normal to the parabola β = −2(α − 2)2

and β = −2(α + 2)2, respectively, with the center frame showing a choice of α and β that falls

directly on the parabola. The left and right frames show that if α or β are varied even slightly

such that the choice of parameters no longer falls on one of the parabolas, these solutions can have

either an infinity of poles or oscillate as z → −∞.
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Figure 6.25: Solutions normal to the parabola β = −2(α − 2)2. All frames depict the solutions
asymptotic to −2

3z as z → +∞. The center frames occur directly along the parabolas where
α = α0 = 1.25 (top) and α = α0 = 2.75 (bottom). The left and right frames in both the top and
bottom then depict the solutions along the line normal to the parabola at α = α0 at α0 ± 10−4.
Pole locations and residues are shown.
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Figure 6.26: Solutions normal to the parabola β = −2(α + 2)2. All frames depict the solutions
asymptotic to −2

3z as z → +∞. The center frames occur directly along the parabolas where
α = α0 = −1.25 (top) and α = α0 = −2.75 (bottom). The left and right frames in both the top
and bottom then depict the solutions along the line normal to the parabola at α = α0 at α0±10−6.
Pole locations and residues are shown.

6.3.4.3 When β is Positive

It is evident in figure 6.22 that all of the solutions asymptotic to w−+1 ∼ −2
3z as z → +∞,

z ∈ R, in the case of β > 0 have an infinity of poles on the negative real axis. These solutions also

do not generally have the entire right (or left) half-plane free of poles, but have a value z0 ∈ R

(possibly positive or negative) such that for all z with Re(z) > z0 the solution has no poles [42].

6.3.4.4 Other Solutions With a Pole Free Half-Plane

There are also rational solutions and solutions expressible in terms of parabolic cylinder or

confluent hypergeometric functions that also feature a mostly pole free half-plane. For instance,

the solutions u
[PC;k]
ν,ε,d1,d2

, k = 1, 2, when either d1 = 0 or d2 = 0 exhibit half-planes that are nearly

pole-free as in figure 6.27 (adapted from [42]). Generally, these other solutions with a nearly pole
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free half-plane match a different root of (4.3) as z → +∞ than w−+1 ∼ −2
3z.
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Figure 6.27: Examples of u
[PC;k]
ν,ε,d1,d2 (see section 3.2), k = 1, 2, for d1 = 0 or d2 = 0. These solutions

feature a half plane that contains only a finite number of poles. Pole locations and residues are
shown.

6.3.5 Solutions With Adjacent Pole-Free Sectors

It was discussed several times earlier in this chapter that aside from the rational and special

function solutions PIV has solutions with no closed form but feature at least two adjacent pole free

sectors. In [43] these are equated to the tronquée solutions of PI . That is, the tronquée solutions

of PI feature two adjacent pole free sectors. In [42] this analogy was dropped to avoid confusion

with the very specific meaning of tronquée as related to PI .

In the case of PIV these solutions were earlier (in this thesis and in [42]) characterized as

appearing at the boundaries of shaded regions or along curves within the pole counting diagrams.

The solutions asymptotic to w−+1 ∼ −2
3z were considered separately in the previous section 6.3.4,

but they would certainly fall into this category. Likewise, the solutions that are asymptotic to w−−1
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and w+
µ , µ = ±1, as z → +∞ and z ∈ R feature adjacent pole free sectors. It was found in [42] that

there are cases when two or three behaviors w±µ , µ = ±1, are present simultaneously in a single

solution. For instance, ICs generating solutions matching w+
+1 and w+

−1 over different segments of

the positive real axis (but within the same solution) occur when β = 0. This is not surprising

considering (4.5) and (4.6) and that these are simply the solutions asymptotic to (4.2). Several

examples are available in [43].

In the following figures, multiple frames will be shown depicting the different types of solutions

with adjacent pole free sectors for each (α,β) pair discussed. These are all repeated from [42]. In

most cases, solutions where two or more behaviors appear at once will be given in at least one

frame. In every case, the solutions shown occur at the boundary of or along the curve located in

the first shaded region extending from u′(0) = 5 to u′(0) = −5 in the right half plane (i.e. u(0) > 0)

of the appropriate pole counting figure. These solutions are all given along the line u′(0) = 0.

Evidence suggests that solutions that match more than one of the roots of (4.3) simultane-

ously (but in different segments of the real axis) will occur for parameter choices along the parabolas

β = −2(α − (2m + 1))2, m ∈ Z, or along the lines β = 2n2, n = 0, 1, 2, 3, . . .. First, figures 6.28

and 6.29 show two types of solutions where the behaviors of w+
µ , µ = ±1, and w−−1 are simulta-

neously present in a solution generated from a single IC. These are shown for (α = 1, β = 0) and

(α = 0, β = −2), which occur at two of the vertices of the fundamental domain.
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Figure 6.28: Solution types with adjacent pole free sectors for α = 1 and β = 0. In all frames
u′(0) = 0. The left and right frames both show that these solutions match the roots w+

µ , µ = ±1,

and w−−1 simultaneously. The solution along the real axis is shown in the top row, while pole
locations and residues are shown in the bottom row.
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Figure 6.29: Solution types with adjacent pole free sectors for α = 0 and β = −2. In all frames
u′(0) = 0. The left and right frames both show that these solutions match the roots w+

µ , µ = ±1,

and w−−1 simultaneously. The solution along the real axis is shown in the top row, while pole
locations and residues are shown in the bottom row.
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Similarly, solutions that match the roots w±−1 concurrently (again, in different segments of

the real axis) were observed along the boundary β = −2(α − 1)2 away from the vertices of the

fundamental domain. An example appears in figure 6.30 for the case α = 0.5 and β = −0.5.
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Figure 6.30: Solution types with adjacent pole free sectors for α = 0.5 and β = −0.5. In all frames
u′(0) = 0. The center frame shows that there are solutions that match the roots w±−1 simultaneously.
The solution along the real axis is shown in the top row, while pole locations and residues are shown
in the bottom row.

Finally, all other parameter choices that do not occur along the parabolas β = −2(α− (2m+

1))2, m ∈ Z, or along the line β = 0 have distinct ICs leading to solutions with adjacent pole free

sectors and matching only one of the roots w+
µ , µ = ±1, or w−−1 as in the figure 6.31.
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Figure 6.31: Solution types with adjacent pole free sectors for α = 0 and β = −0.5. In all frames
u′(0) = 0. In this case, all frames exhibit only one of the asymptotic behaviors w±µ , µ = ±1. The
solution along the real axis is shown in the top row, while pole locations and residues are shown in
the bottom row.



Chapter 7

Conclusions about the Numerical Explorations of PIV

Chapters 2 through 6 have focused entirely on the first research topic of this thesis. First,

existing theory of PIV applicable to any α and β was covered, followed by a discussion and confir-

mation of the rational and elementary special function solutions described in the literature. Known

asymptotic approximations were presented with computational solutions that explored beyond

those that have been previously presented.

The limited numerical explorations performed for this thesis already led to the identification

of two types of solutions that are common to all α and β with the noteworthy property of having

at least two pole-free sectors in the complex plane. This highlights the utility of the numerical

method discussed in chapter 5. Prior to its introduction explorations into regions of the complex

plane containing poles were inhibited and often computationally infeasible.

Since these explorations were nowhere near exhaustive there may be opportunities for the

discovery of other solution types with notable characteristics. Further, these explorations were

almost entirely computational leaving open the analytical consideration of, for instance, the two

new solution types identified here (that is, the solutions with a nearly pole-free half-plane or with

adjacent pole-free sectors). There is also the opportunity to consider solutions that are not always

real on the real axis. The symmetries in section 2.2 certainly provide some information on such

solutions; however, the possibilities for other explorations of this type are endless. Finally, there is

opportunity to consider α and β choices that are much larger in magnitude. The numerical study

here focused on the fundamental domain and a small neighborhood of it.
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The contributions of this thesis include the verification of much of the theory appearing

in the literature, the adaptation of the pole field solver to allow for high precision computations

and also for faster computations, and the exploration of the solution space of PIV to include the

identification of the two new solutions types with notable characteristics.



Chapter 8

Stability Ordinates of the Adams Predictor-Corrector Methods

In this chapter I present an entirely different research topic. This research sought to charac-

terize the stability domains of Adams predictor-corrector methods, particularly for those differential

equations with purely imaginary spectra. We show that for any order p a stable predictor-corrector

method can be found to integrate such a differential equation.

8.1 Introduction and Assertions

Consider the ODE d
dty(t) = f(t, y(t)). In particular, we are considering those first-order

ODE’s that result from translating partial differential equations (PDEs) for wave equations to

first-order systems of ODEs. If the eigenvalues of f(t, y(t)) were available, as in the case of a

spatially discretized wave equation, we could then write f(t, y(t)) = λy(t), for λ ∈ C. For instance,

consider the advection equation in one dimension with zero boundary conditions

∂

∂t
u(x, t) =

∂

∂x
u(x, t), x ∈ [a, b] and t ∈ [0, T ]

u(a, t) = u(b, t) = 0, t ∈ [0, T ]

Given a step size hx the derivative on the right hand side could be approximated by a centered

difference to arrive at

∂

∂t
u(x, t) =

u(x+ hx, t)− u(x− hx, t)
2hx

(8.1)

for each x ∈ [a, b].
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When finding the solution at the points xj = a+ jhx, j = 0, . . . , N and hx = b−a
N this results

in

d

dt
~u(t) =

1

2hx




0 1 0 · · · 0 0 0

−1 0 1 · · · 0 0 0

0 −1 0 · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . 0 1 0

0 0 0 . . . −1 0 1

0 0 0 · · · 0 −1 0




~u(t) (8.2)

where ~u(t) = [u(x0, t)u(x1, t) · · ·u(xN , t)]
T . The eigenvalues of this matrix are zero or purely

imaginary, and when integrating this equation it suffices to consider the behavior of a numerical

integrator on the linear ODE d
dty(t) = λy(t), where λ is purely imaginary. More precisely, in our

example we seek an integrator that is stable for problems with a purely imaginary spectrum.

If we are solving the linear problem d
dty(t) = f(t, y(t)) = λy(t), with the n-step multi-step

method (see, e.g. [30])

n∑

j=0

ajy(t− jht) = ht

n∑

j=0

bjf(t− jht, y(t− jht)) = λht

n∑

j=0

bjy(t− jht)),

the problem is reduced to a linear homogeneous recurrence with constant coefficients. Therefore,

we can apply linear stability theory to determine if this method is stable for the linear problem.

Letting y(t− jht) = r−j , the characteristic equation of the linear recurrence becomes

n∑

j=0

ajr
−j − ξ

n∑

j=0

bjr
−j = 0,

where ξ = λht. Linear stability requires that each root r have magnitude less than 1 or be of

magnitude 1 and single multiplicity [5]. Thus, letting r = exp(iθ), θ ∈ [0, 2π) (i.e. r travels around

the unit circle), we can define the boundary of the region in C that contains all values of ξ for which

the method is stable. This region is known as the stability region or stability domain. A far more

detailed discussion of the stability of general multi-step methods can be found in, for example, [30].



97

There is a distinct difference between the applicability of a stability domain to a scalar ODE or

system of a finite number of ODEs and the relevance of the stability domain for spatially discretized

PDEs. Considering that the exact solution to d
dty(t) = λy(t) is y(t) = c exp(λt) (c a constant), the

stability domain addresses whether a solution grows or decays depending on the value of λ. This

is true for a scalar ODE or a system of a finite number of ODEs. On the other hand, considering a

spatially discretized PDE, where the number of equations increases as the discretization is refined,

the stability domain supplies information similar to von Neumann analysis. That is, the stability

domain now indicates whether a numerical integrator converges to the actual solution of the PDE

or diverge.

In order for such a method to be valid for our example, and for wave equations posed as first

order systems, the stability domain must contain a portion of the imaginary axis. The largest value

SI such that the interval [−iSI , iSI ] is contained in the stability domain is known as the imaginary

stability boundary (ISB) or stability ordinate. Clearly, integrators with SI = 0 are of no use in our

example, and larger ISB’s allow for greater flexibility in the choice of ht when solving the ODE.

Some of the more popular multistep methods are known as the Adams methods, of which we

discuss two types. Adams-Bashforth (AB) methods are explicit multi-step methods that take the

form

y(t) = y(t− ht) + ht

n∑

j=1

b̃jf(t− jht, y(t− jht)) (8.3)

Likewise, Adams-Moulton (AM) methods are implicit methods (the indexing now starts at j = 0

so that f(t, y(t)) is needed) where

y(t) = y(t− ht) + ht

n∑

j=0

bjf(t− jht, y(t− jht)). (8.4)

The methods are well known and reasonably stable, but have lower computational cost per iteration

than equivalent-order Runge-Kutta methods (see, e.g. [30], [4, Ch. 6]). AB methods have order

p = n while AM methods have order p = n + 1. The stability domains for both the AB and

AM methods for orders 1, 2, and 3 are shown in figure 8.1. We will denote an Adams-Bashforth

(Adams-Moulton) method of order p by ABp (AMp).
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Figure 8.1: The stability domains for the AB (left) and AM (right) methods of orders 1, 2, and 3.
The domains are numbered appropriately in the frames. Stable choices of ξ for AM1 occur for any
choice in the left half of the complex plane. The other methods are stable for any choice interior
to the boundary of the domain.

Since AM methods are implicit, we use an AB method to determine (predict) y(t). In this way,

we can avoid the use of costly linear solvers to achieve some of the benefits of an implicit method. We

then substitute our predicted value within the AM method to correct some of the error, producing

an Adams predictor-corrector method. We consider the predictor corrector methods ABp-AMp and

AB(p − 1)-AMp, both of which have order p. When considering the linear ODE d
dty(t) = λy(t),

these methods take the form

y(t) = (1 + λhtb0)y(t− ht) +

p−1∑

j=1

[
(λht)

2b0b̃j + λhtbj

]
y(t− jht) (8.5)

for AB(p− 1)-AMp and

y(t) = (1 + λhtb0)y(t− ht) +

p−1∑

j=1

[
(λht)

2b0b̃j + λhtbj

]
y(t− jht) + λ2h2

t b0b̃py(t− pht) (8.6)

in the case of ABp-AMp.

To provide some examples, we consider AB1-AM2 and AB2-AM2. For the predictor AB1,

we have

y(t) = y(t− ht) + htf (t− ht, y(t− ht)) , (8.7)
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and for the predictor AB2, we have

y(t) = y(t− ht) +
ht
2

(3f (t− ht, y(t− ht))− f (t− 2ht, y(t− 2ht))) . (8.8)

In both cases, the corrector AM2 is given by

y(t) = y(t− ht) +
ht
2

(f (t, y(t)) + f (t− ht, y(t− ht))) . (8.9)

For the linear ODE d
dty(t) = λy(t), substitution of (8.7) and (8.8) for y(t) in the right hand side of

(8.9) leads to

y(t) = (1 + λht +
1

2
(λht)

2)y(t− ht) (AB1-AM2) (8.10)

y(t) = (1 + λht +
3

4
(λht)

2)y(t− ht)−
1

4
(λht)

2y(t− 2ht) (AB2-AM2). (8.11)

We first consider AB1-AM2. Using the expression for AB1-AM2 and letting y(t−jht) = r−j ,

we find that the characteristic equation becomes

r = (1 + ξ +
1

2
ξ2), (8.12)

where ξ = λht. To find the boundary of the stability domain, we can follow the root ξ in (8.12)

where |r| = 1. The stability domain of this method is shown in top left frame of figure 8.2.
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Figure 8.2: The stability domains for the predictor corrector methods of various orders. The
interiors of the dashed loops do not indicate stable values of ξ and should be ignored. This can
be confirmed by substituting a ξ value on the interior of a loop into (8.5) or (8.6) and determining
that the roots r of the corresponding characteristic equations do not all have magnitude less than
1.

Zooming in near the origin we find that the stability boundary swings to the left of the

imaginary axis, resulting in a zero ISB. This can be seen in figure 8.3.
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Figure 8.3: Magnified views of the stability domains for the predictor corrector methods of various
orders near the origin.

Alternatively, we could let r = eiθ and perform a Taylor expansion for ξ(θ) to find that

ξ = iθ +
1

6
(iθ)3 − 1

8
(iθ)4 + · · · . (8.13)

Because the first real term in this expansion is negative, AB1-AM2 has a zero ISB.

We next consider AB2-AM2. The analogous equation to (8.12) is

r2 = (1 + ξ +
3

4
ξ2)r − 1

4
ξ2. (8.14)

The stability domain of this method is shown in the bottom left frame of figure 8.2. We find that

the expansion ξ(θ) for AB2-AM2 is ξ = iθ− 1
12 (iθ)3 + 1

4 (iθ)4 + · · · . Since the first real term in this

expansion is positive, AB2-AM2 has a nonzero ISB which is approximately 1.29. This can also be

seen in figure 8.3 where the stability boundary now swings to the right of the imaginary axis.

To determine whether the stability domains lie on the interior or exterior of the boundaries,

we could easily pick a value of ξ on the interior and solve for the root(s) r (recall, y(t− jht) = r−j)



102

in (8.5) or (8.6). For instance, if ξ = −1 is substituted into (8.14) and the equation is solved for r,

then both roots have magnitude 0.5 < 1, and we know that the interior of the boundary is stable.

On the other hand, for ξ = −3 one of the roots has a magnitude of approximately 4.21 > 1 and

the exterior of the boundary is unstable.

Similar details and discussion on the ISB’s of AB and AM methods of order p as well as AB

and AM methods on a staggered grid are available in, for example, [22], [23], or [24]; however, this

study examines only the predictor-corrector methods ABp-AMp and AB(p−1)-AMp, both of which

have order p, and is discussed further in [25]. Analysis of images like those in figure 8.3 easily led

us to the following two assertions, which will be proven in the following sections.

• ABp-AMp methods have nonzero ISBs only for orders p = 1, 2, 5, 6, 9, 10, . . ..

• AB(p− 1)-AMp methods have nonzero ISBs only for orders p = 3, 4, 7, 8, . . ..

8.2 Proof Methodology

The behavior of the stability domain boundary near the origin (that is, ξ = 0) explains much

about the method as shown in discussions in the previous section for AB1-AM2 and AB2-AM2.

For instance, knowledge of whether the boundary swings initially to the right or the left of the

origin characterizes whether the ISB is nonzero or not, respectively. Considering r ≤ 1 and an

exact method (here this means p→∞) we have from Theorem 2.1 of [30] that

n∑

j=0

ajr
j − ln(r)

n∑

j=0

bjr
j = 0,

and ξ(θ) = iθ because

ξ =

∑n
j=0 ajr

j

∑n
j=0 bjr

j
= ln r = ln

(
eiθ
)

= iθ. (8.15)

On the other hand, a numerical scheme of finite order p instead leads to the expansion

ξ(θ) = iθ + cp(iθ)
p+1 + dp(iθ)

p+2 + · · · . (8.16)

The sign of the first real term in this expansion will dictate whether the stability domain boundary

near the origin swings to the right or to the left of the imaginary axis. In [24] and [25] it was shown
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that AB methods of orders p = 3, 4, 7, 8, 11, 12, . . . and AM methods of orders p = 1, 2, 5, 6, 9, 10, . . .

have nonzero ISBs.

For the rest of this thesis, we will consider a form equivalent to (8.3) and (8.4) when discussing

a standard n-step Adams method. This expression is

y(t) = y(t− ht) +

∫ t

t−ht
q(τ)dτ, (8.17)

where q(t) is the polynomial interpolating f at the points t − jht for 1 ≤ j ≤ n (AB methods) or

0 ≤ j ≤ n (AM methods). Without loss of generality we could just as easily consider the interval

[0, ht] instead of [t−ht, t] (i.e replace t with t+ht, then set t = 0), which leads to the much simpler

y(ht) = y(0) +

∫ ht

0
p(τ)dτ, (8.18)

with p(t) now interpolating f at

0,−ht,−2ht, . . . ,−(n− 1)ht (8.19)

for n-step AB methods and at

ht, 0,−ht,−2ht, . . . ,−(n− 1)ht (8.20)

in the case of n-step AM methods. This will be the form considered throughout the rest of the

chapter.

In order to prove that AB(p−1)-AMpmethods have nonzero ISBs for orders p = 3, 4, 7, 8, 11, 12, . . .

and ABp-AMp methods have nonzero ISB’s for orders p = 1, 2, 5, 6, 9, 10, . . ., we rely on several lem-

mas to determine the coefficients cp and dp. The first lemma, extended by Ghrist from Lemma H.4

in [22], gives a particular form of an expansion of the error in the interpolating polynomial through

a specific set of equally spaced points. The first two terms were proved by Fornberg.

Lemma 8.2.1 Given f(t), let pn(t) be the polynomial of degree n that interpolates f(t) at t =

0,−ht,−2ht, . . . ,−nht. Then,

f(t)− pn(t) = t(t+ ht)(t+ 2ht) . . . (t+ nht)g(t) (8.21)
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where

g(t) =
f (n+1)(0)

(n+ 1)!
+
f (n+2)(0)

(n+ 2)!

(
t− n(n+ 1)

2
ht

)

+
f (n+3)(0)

(n+ 3)!

(
t2 − n(n+ 1)

2
htt+

n(n+ 1)(n+ 2)(3n+ 1)

24
h2
t

)
+ . . . (8.22)

Proof. Pick g(t) such that

f(t)− pn(t) = [t(t+ ht) . . . (t+ nht)] g(t). (8.23)

By Lagrange’s interpolation formula, pn(t) depends linearly on f(t), so (f(t)− pn(t)) must also

depend linearly on f(t). Thus by equation (8.23), g(t) must also depend linearly on f(t). We now

consider various cases for f(t) to obtain the expansion of g(t).

For proof of the first two terms of g(t) see Theorem H.1 of Appendix H in [22].

If f(t) = tn+3, then g(t) = t2 − n(n+1)
2 htt + n(n+1)(n+2)(3n+1)

24 h2
t . To prove this, consider

g(t) = tn+3−pn(t)
t(t+ht)...(t+nht)

. In this case, g(t) is a quadratic polynomial with leading coefficient 1. The

leading coefficient must be a constant since the numerator and denominator have the same degree

and the same roots. The leading coefficients of the numerator and denominator are both 1, so this

constant must be 1. Let g(t) = t2 + αt + β; note that the sum of the roots t1, t2 of g(t) is −α.

Multiplying, we find

tn+3 − pn(t) = (t2 + αt+ β) [t(t+ ht) . . . (t+ nht)] . (8.24)

Since the left-hand side of (8.24) is missing the tn+2 term, the sum of its roots must equal 0. Using

this on the right-hand side of (8.24) gives the result

−α− 0− ht − 2ht − . . .− nht = 0. (8.25)

Thus α = −n(n+1)
2 ht.

The left-hand side of (8.24) is missing the tn+1 term, so the sum of the pairwise products

of its roots must equal 0, where the roots are 0,−ht,−2ht, . . . ,−nht, and the two roots t1, t2 of
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t2 + αt+ β with t1 + t2 = −α and t1t2 = β. Then

−ht (−2ht − 3ht − . . .− nht − α)− 2ht (−3ht − . . .− nht − α) (8.26)

− . . .−mht (−(m+ 1)ht − . . .− nht − α)− . . .− nht (−α) + β = 0.

Thus

β = −htα (1 + 2 + · · ·+ n)− h2
t

n−1∑

i=1




n∑

j=i+1

ij




= −ht
(
−n(n+ 1)

2

)
ht
n(n+ 1)

2
− h2

t

n(n+ 1)(n− 1)(3n+ 2)

24
(8.27)

=
n(n+ 1)(n+ 2)(3n+ 1)

24
h2
t .

We now combine all of the previous results from Theorem H.1 of Appendix H in [22] and this

proof. Let f(t) =
∑∞

j=0 ajx
j , where aj = f (j)(0)

j! by Taylor expansion. Then we have

f(t)− pn(t) =

∞∑

j=0

ajt
j − pn(t) = [(t)(t+ ht) . . . (t+ nht)] g(t). (8.28)

Thus we find that

g(t) =
f (n+1)(0)

(n+ 1)!
+
f (n+2)(0)

(n+ 2)!

(
t− n(n+ 1)

2
ht

)

+
f (n+3)(0)

(n+ 3)!

(
t2 − n(n+ 1)

2
htt+

n(n+ 1)(n+ 2)(3n+ 1)

24
h2
t

)
+ . . . , (8.29)

concluding the proof of Lemma 8.2.1.

The second Lemma provides an expansion of a term common to both of the AB(p− 1)-AMp

and ABp-AMp methods with a proof due to Ghrist. The remaining lemmas will be specific to either

of these methods.

Lemma 8.2.2 The beginning of the series expansion of
∑n

m=−1(−1)m+1



n+ 1

m+ 1


 e−imθ is given

by

(iθ)n+1 +
1− n

2
(iθ)n+2 +

1

24

(
3n2 − 5n+ 4

)
(iθ)n+3 + . . . . (8.30)
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Proof. We apply the Binomial Theorem twice.

n∑

m=−1

(−1)m+1



n+ 1

m+ 1


 e−imθ

= eiθ
n∑

k=0

(−1)k



n+ 1

k


 e−ikθ

= eiθ
(

1− e−iθ
)n+1

(8.31)

=
(
eiθ − 1

)(
1− e−iθ

)n

=

(
iθ +

(iθ)2

2!
+

(iθ)3

3!
+O (θ)4

)(
iθ − (iθ)2

2!
+

(iθ)3

3!
+O (θ)4

)n

= (iθ)n+1

(
1 +

iθ

2
− θ2

6
+O (θ)3

)(
1−

(
iθ

2
+
θ2

6

)
+O (θ)3

)n

= (iθ)n+1

(
1 +

iθ

2
− θ2

6
+O (θ)3

)(
1− niθ

2
−
(
n+ 3n2

) θ2

24
+O (θ)3

)
.

By series multiplication, we find that the right-hand side is equal to (8.30).

8.3 Proof of the Assertions

The proofs in this chapter are alternatives to those in [25]. The proof of Lemma 8.3.4 is

adapted from Lemma 2.1 in [25]. Proofs of the remaining Lemmas 8.3.1 and 8.3.3 are due to me,

while the proofs of the Theorems 8.3.2 and 8.3.5 are due to Ghrist. The alternative proofs in [25]

are more concise through the use of a backward difference representation of the Adams methods

given by Henrici [28] and were motivated by comments by Ernst Hairer.

8.3.1 ABp-AMp methods

We now consider general ABp-AMp methods, which have order p. A general n-step AB

predictor integrates pn(t), which interpolates the data points (−jht, y(jht)) for −n ≤ j ≤ 0; it will

then approximate y(ht) via ỹ(ht) = y(0) +
∫ ht

0 pn(τ)dτ .

The AM corrector then integrates qn(t), which interpolates the data points (ht, ỹ(ht)) and

(jht, y(jht)) for −(n − 1) ≤ j ≤ 0; the final approximation for y(ht) is given by y(ht) = y(0) +
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∫ ht
0 qn(τ)dτ . This combined method has order p = n.

We first prove a lemma that gives an exact form for the general difference between the

interpolating polynomials of the AB predictor and the AM corrector. To simplify notation, let

tj = jht and yj = y(tj) and drop the subscript t so that h = ht.

Lemma 8.3.1

qn(t)− pn(t) =
1

hnn!


ỹ1 +

n∑

m=0

(−1)m+1



n+ 1

m+ 1


 y−m




n−1∏

j=0

(t+ jh) (8.32)

Proof. We create the Lagrange interpolating polynomials for pn(t) and qn(t) and then examine

their difference.

qn(t)− pn(t)

= ỹ1

n−1∏

j=0

(
t+ jh

h(j + 1)

)
− y−n

n−1∏

j=0

(
t+ jh

h(j − n)

)

+
n−1∑

m=0

y−m




n−1∏

j=−1, j 6=m

t+ jh

h(j −m)
−

n∏

j=0, j 6=m

t+ jh

h(j −m)




=
ỹ1 + (−1)n+1y−n

hnn!

n−1∏

j=0

(t+ jh) +
n−1∑

m=0

y−m
hn
−(n+ 1)(t+mh)

(1 +m)(n−m)

n−1∏

j=0, j 6=m

(
t+ jh

j −m

)

=
1

hn

(
ỹ1 + (−1)n+1y−n

n!
+

n−1∑

m=0

(−1)m+1y−m
n+ 1

(m+ 1)!(n−m)!

)
n−1∏

j=0

(t+ jh)

=
1

hnn!


ỹ1 +

n∑

m=0

(−1)m+1



n+ 1

m+ 1


 y−m




n−1∏

j=0

(t+ jh).

Theorem 8.3.2 Predictor-corrector ABp-AMp methods have nonzero ISBs only for orders p =

1, 2, 5, 6, 9, 10, . . ..

Proof. Analogous to (8.18), a general ABp-AMp scheme, when applied to dy
dt = λy (with
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λ = ξ/h), takes the form

y(h) = y(0) +
ξ

h

∫ h

0
(qn(t)) dt

= y(0) +
ξ

h

[∫ h

0
y(t) dt+

∫ h

0
(pn(t)− y(t)) dt+

∫ h

0
(qn(t)− pn(t)) dt

]
. (8.33)

This method will have an order of p = n + 1. Our general proof will require n ≥ 1; one can

separately check that AB1-AM1 has the expansion ξ = iθ − 1
2 (iθ)2 + . . . . Because the first real

term in this expansion is positive, AB1-AM1 does have a nonzero ISB.

We seek an expansion of ξ(θ). We first apply Lemmas 8.2.1 and 8.3.1 to the second and third

terms of (8.33), respectively. This gives

y(h) = y(0) +
ξ

h

∫ h

0
y(t)dt

− ξ
h

∫ h

0

[
y(n+1)(0)

(n+ 1)!
+
y(n+2)(0)

(n+ 2)!

(
t− n(n+ 1)

2
h+ . . .

)] n∏

j=0

(t+ jh) dt(8.34)

+
ξ

hn+1n!

∫ h

0


ỹ1 − y1 +

n∑

m=−1

(−1)m+1



n+ 1

m+ 1


 y−m



n−1∏

j=0

(t+ jh) dt.

We apply the exact solution y(t) = eλt = eiθt/h from (8.39) and define

an =
1

hn+2

∫ h

0
t(t+ h) . . . (t+ nh)dt =

∫ 1

0
s(s+ 1) . . . (s+ n)ds (8.35)

and

bn =
1

hn+3

∫ h

0
t(t+ h) . . . (t+ nh)

(
t− n(n+ 1)

2
h

)
dt (8.36)

=

∫ 1

0
s(s+ 1) . . . (s+ n)

(
s− n(n+ 1)

2

)
ds

to express (8.34) in terms of θ:

eiθ = 1 +
ξ

iθ

(
eiθ − 1

)
− ξ

(
an

(n+ 1)!
(iθ)n+1 +

bn
(n+ 2)!

(iθ)n+2 + . . .

)
(8.37)

+
an−1

n!
ξ


ỹ1 − eiθ +

n∑

m=−1

(−1)m+1



n+ 1

m+ 1


 e−imθ


 .
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We note that ỹ1 is given by the right-hand side of

y(h) =
ξ

h

[∫ h

0
(pn(t)− y(t)) dt+

∫ h

0
y(t)dt

]
+ y(0)

= − ξ
h

∫ h

0

n∏

j=0

(t+ jh)

[
y(n+1)(0)

(n+ 1)!
+
y(n+2)(0)

(n+ 2)!

(
t− n(n+ 1)

2
h

)
+ . . .

]
dt

+
ξ

h

∫ h

0
y(t)dt+ y(0). (8.38)

Substituting the exact solution

y(t) = eλt = eiθt/h, (8.39)

and the expressions for an and bn gives

ỹ1 = 1 +
ξ

iθ

(
eiθ − 1

)
− ξ

(
an

(n+ 1)!
(iθ)n+1 +

bn
(n+ 2)!

(iθ)n+2 + . . .

)
(8.40)

When we substitute this expression into (8.37) the result will contain a term with ξ2 which dis-

tinguishes it from the AB and AM cases. After substituting for ỹ1, applying Lemma 8.2.2, and

factoring, (8.37) becomes

0 =
(
eiθ − 1

)( ξ

iθ
− 1

)
− ξ

(
an

(n+ 1)!
(iθ)n+1 +

bn
(n+ 2)!

(iθ)n+2 + . . .

)

+
an−1

n!
ξ

[(
eiθ − 1

)( ξ

iθ
− 1

)
− ξ

(
an

(n+ 1)!
(iθ)n+1 +

bn
(n+ 2)!

(iθ)n+2 + . . .

)

+ (iθ)n+1 +
1− n

2
(iθ)n+2 + . . .

]
. (8.41)

We can now find the expansion of ξ about iθ = 0 from (8.41):

ξ(θ) ≈ iθ + cn(iθ)n+2 + dn(iθ)n+3 + . . . (8.42)

where

cn =
an

(n+ 1)!
− an−1

n!
=

1

(n+ 1)!

∫ 1

0

n−1∏

j=−1

(s+ j)ds < 0 (8.43)

and

dn =
bn

(n+ 2)!
− cn

(
1

2
+
an−1

n!

)
+ (n− 1)

an−1

2n!
+
an−1

n!

an
(n+ 1)!

(8.44)

=
(an−1

n!

)2
+

bn
(n+ 2)!

+ n
an−1

2n!
− an

2(n+ 1)!

=
(an−1

n!

)2
+

1

2(n+ 2)!

∫ 1

0
(1− s)(n2 − 2s)

n−1∏

j=0

(s+ j)ds.
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The last integrand is nonnegative for n ≥ 2, so dn > 0 for n ≥ 2. We can separately check

that d1 = 1
4 . Substituting p = n + 1 in (8.43) and (8.44) gives the coefficients cp and dp in (8.15)

in terms of the order p. After examining the sign of the first real term in (8.42), we conclude that

ABp-AMp methods have nonzero ISBs only for orders p = 1, 2, 5, 6, 9, 10, . . ., similar to AMp

methods.

8.3.2 AB(p− 1)-AMp methods

We now examine general AB(p−1)-AMp methods, which also have order p. A general AB pre-

dictor integrates pn(t), which interpolates the data points (tk, yk) for −n ≤ k ≤ 0; it approximates

y(h) via ỹ1 = y0 +
∫ h

0 pn(t)dt.

The AM corrector then integrates qn+1(t), which interpolates the data points (t1, ỹ1) and

(tk, yk) for −n ≤ k ≤ 0; the final approximation for y(h) is given by y1 = y0 +
∫ h

0 qn+1(t)dt. This

combined method has order p = n+ 2.

The following lemma is analogous to Lemma 8.3.1. It can be proved similarly, again using

Lagrange basis polynomials.

Lemma 8.3.3

qn+1(t)− pn(t)

=
1

hn+1(n+ 1)!


ỹ1 +

n∑

m=0

(−1)m+1



n+ 1

m+ 1


 y−m




n∏

j=0

(t+ jh) (8.45)

Proof. We create the Lagrange interpolating polynomials for pn(t) and qn+1(t) and then
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examine their difference.

qn+1(t)− pn(t) = ỹ1

n∏

m=0

t+mh

(m+ 1)h
+

n∑

k=0

y−k
n∏

m=−1,m 6=k

t+mh

(m− k)h
−

n∑

k=0

y−k
n∏

m=0,m 6=k

t+mh

(m− k)h

= ỹ1

n∏

m=0

t+mh

(m+ 1)h
+

n∑

k=0

y−k




n∏

m=−1,m 6=k

t+mh

(m− k)h
−

n∏

m=0,m 6=k

t+mh

(m− k)h




= ỹ1

n∏

m=0

t+mh

(m+ 1)h
+

n∑

k=0

y−k

[
t− h

(−1− k)h
− 1

] n∏

m=0,m 6=k

t+mh

(m− k)h

= ỹ1

n∏

m=0

t+mh

(m+ 1)h
+

n∑

k=0

y−k

[−(t+ kh)

(k + 1)h

] n∏

m=0,m 6=k

t+mh

(m− k)h

=
n∏

m=0

(t+mh)


ỹ1

n∏

m=0

1

(m+ 1)h
+

n∑

k=0

y−k
−1

(k + 1)h

n∏

m=0,m 6=k

1

(m− k)h




=

n∏

m=0

(t+mh)
1

hn+1

[
ỹ1

1

(n+ 1)!
+

n∑

k=0

y−k
−1

(k + 1)

(n+ 1)!

(n+ 1)!

(−1)k

k!(n− k)!

]

=

n∏

m=0

(t+mh)
1

hn+1(n+ 1)!

[
ỹ1 +

n∑

k=0

y−k(−1)k+1 (n+ 1)!

(k + 1)!(n− k)!

]

=

n∏

m=0

(t+mh)
1

hn+1(n+ 1)!


ỹ1 +

n∑

k=0

y−k(−1)k+1




n+ 1

k + 1







Lemma 8.3.4 For all n ≥ 2, an > n!.

Proof. We prove this lemma via induction. For n = 2 we can easily compute a2 =
∫ 1

0 s(s +

1)(s+ 2)ds = 9
4 > 2 = 2!. For the inductive step, we assume an > n! for some n ≥ 2.

an+1

(n+ 1)!
=

1

n!

∫ 1

0
s(s+ 1)(s+ 2) · · · (s+ n)

(s+ (n+ 1))

(n+ 1)
ds

>
an
n!

(n+ 1)

(n+ 1)

>
n!

n!
= 1 (8.46)

Therefore, an+1 > (n+ 1)! by induction for all n ≥ 2.

Theorem 8.3.5 Predictor-corrector AB(p − 1)-AMp methods have nonzero ISBs only for orders

p = 3, 4, 7, 8, . . ..
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Proof. A general AB(p−1)-AMp scheme, when applied to dy
dt = λy (with λ = ξ/h), takes the

form

y(h) = y(0) +
ξ

h

∫ h

0
(qn+1(t)) dt

= y(0) +
ξ

h

[∫ h

0
y(t) dt+

∫ h

0
(pn(t)− y(t)) dt+

∫ h

0
(qn+1(t)− pn(t)) dt

]
. (8.47)

Our general proof will require n ≥ 1; we have already established that AB1-AM2 has a zero ISB.

We now proceed with the general case for p ≥ 3. As before, we seek an expansion of ξ(θ).

Because we will need one more term in the expansion given by Lemma 8.2.1, we define

Bn =
1

hn+4

∫ h

0

(
t2 − n(n+ 1)

2
ht+

n(n+ 1)(n+ 2)(3n+ 1)

24
h2

) n∏

j=0

(t+ jh)dt

=

∫ 1

0

(
s2 − n(n+ 1)

2
s+

n(n+ 1)(n+ 2)(3n+ 1)

24

) n∏

j=0

(s+ j)ds. (8.48)

We apply Lemmas 8.2.1 and 8.3.3 to the second and third terms of (8.47), respectively, apply the

exact solution y(t) = eλt = eiθt/h from (8.39), and substitute our expressions for an, bn, and Bn

from (8.35), (8.36), and (8.48) to find the analogous equation to (8.37):

eiθ = −ξ
(

an
(n+ 1)!

(iθ)n+1 +
bn

(n+ 2)!
(iθ)n+2 +

Bn
(n+ 3)!

(iθ)n+3 + . . .

)

+
an

(n+ 1)!
ξ


ỹ1 − eiθ +

n∑

m=−1

(−1)m+1



n+ 1

m+ 1


 e−imθ


+ 1 +

ξ

iθ

(
eiθ − 1

)
.(8.49)

We again note that ỹ1 is given by the right-hand side of (8.38), where we need to keep one

more term in the expansion given by Lemma 8.2.1; substituting the exact solution (8.39) and the

expressions for an, bn, and Bn from (8.35), (8.36), and (8.48) gives

ỹ1 = 1 +
ξ

iθ

(
eiθ − 1

)
(8.50)

−ξ
(

an
(n+ 1)!

(iθ)n+1 +
bn

(n+ 2)!
(iθ)n+2 +

Bn
(n+ 3)!

(iθ)n+3 + . . .

)

After substituting this for ỹ1, applying Lemma 8.2.2 (again keeping one more term in the expansion),
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and factoring, (8.49) becomes

0 =
(
eiθ − 1

)( ξ

iθ
− 1

)
+

an
(n+ 1)!

ξ

[(
eiθ − 1

)( ξ

iθ
− 1

)

−ξ
(

an
(n+ 1)!

(iθ)n+1 +
bn

(n+ 2)!
(iθ)n+2 +

Bn
(n+ 3)!

(iθ)n+3 + . . .

)

+ (iθ)n+1 +
1− n

2
(iθ)n+2 +

3n2 − 5n+ 4

24
(iθ)n+3 + . . .

]
(8.51)

−ξ
(

an
(n+ 1)!

(iθ)n+1 +
bn

(n+ 2)!
(iθ)n+2 +

Bn
(n+ 3)!

(iθ)n+3 + . . .

)
.

We can now find the expansion of ξ about iθ = 0 from (8.51):

ξ(θ) ≈ iθ + cn(iθ)n+3 + dn(iθ)n+4 + . . . (8.52)

where

cn =
bn

(n+ 2)!
+

an
(n+ 1)!

(
n− 1

2
+

an
(n+ 1)!

)
(8.53)

and

dn =
Bn

(n+ 3)!
− cn

(
1

2
+

an
(n+ 1)!

)
− 3n2 − 5n+ 4

24

an
(n+ 1)!

+
an

(n+ 1)!

bn
(n+ 2)!

=
Bn

(n+ 3)!
− bn

2(n+ 2)!
− an(3n2 + n− 2)

24(n+ 1)!
− n

2

(
an

(n+ 1)!

)2

−
(

an
(n+ 1)!

)3

.(8.54)

We claim that cn > 0 and dn < 0 for n ≥ 1. We first check that c1 = 19
144 and d1 = −1243

8640 .

We note that an =
∫ 1

0 s(s+ 1) . . . (s+ n)ds > n! for n ≥ 2 by Lemma 8.3.4. We first use this

to show that cn > 0.

cn =
bn

(n+ 2)!
+

an
(n+ 1)!

(
n− 1

2
+

an
(n+ 1)!

)
(8.55)

>
bn

(n+ 2)!
+

an
(n+ 1)!

(
n− 1

2
+

1

n+ 1

)

=
1

(n+ 2)!(n+ 1)

∫ 1

0
(ns+ s+ 1)

n∏

j=0

(s+ n)ds > 0.

We next show that dn < 0. We first note that the last term in (8.54) is negative. Using
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(8.35), (8.36), and (8.48) in (8.54), we have

dn <
1

24(n+ 3)!(n+ 1)
[24(n+ 1)Bn − 12(n+ 3)(n+ 1)bn

−(n+ 3)(n+ 2)
(
(n+ 1)(3n2 + n− 2) + 12n

)
an
]

(8.56)

=
1

24(n+ 3)!(n+ 1)

∫ 1

0

n∏

j=0

(s+ j)F (n, s)ds

where

F (n, s) = 24(n+ 1)s2 − 12
(
2n2 + 3n− 1

)
− 12

(
n3 + 3n2 + 5n+ 3

)
s (8.57)

< −12(n− 1)(2n+ 3)− 12
(
n3 + 3n2 + 5n+ 3

)
s,

where in the last step we have evaluated the first term at s = 1 to maximize it. Since this last

expression is negative for n ≥ 2, the integrand in (8.56) is also negative, so dn < 0 for AB(p−1)-AMp

methods for n ≥ 2, where p = n+ 2.

Since cn > 0 and dn < 0 for n ≥ 1, after examining the sign of the first real term in (8.52), we

conclude that AB(p−1)-AMp methods have nonzero ISBs only for orders p = 3, 4, 7, 8, . . ., similar

to ABp methods.

8.4 Conclusions

This chapter considered a separate research topic to answer the question of when Adams

predictor-corrector methods of general order p have nonzero stability ordinates, which corresponds

to being stable when applied to discretized wave equations (for small enough stepsize). With

regards to predictor-corrector methods, we have proven that ABp-AMp methods have nonzero

stability ordinate only for p = 1, 2, 5, 6, 9, 10, . . ., which matches AMp methods. We have also shown

that AB(p−1)-AMp methods have nonzero stability ordinates only for p = 3, 4, 7, 8, 11, 12, . . .,

which matches ABp methods. Therefore, regardless of the desired order, an appropriate predictor-

corrector can be found to successfully integrate a spatially discretized wave equation.



Bibliography

[1] M. J. Ablowitz and H. Segur. Exact linearization of a Painlevé transcendent. Phys. Rev. Lett.,
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equation. IMA Journal of Applied Mathematics, 50:167–193, 1993.

[7] A. P. Bassom, P. A. Clarkson, A. C. Hicks, and J. B. McLeod. Integral equations and exact
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Proceedings of the XXXI Workshop on Geometric Methods in Physics, Bialowieza, Poland,
June 2012.

[12] P. Boutroux. Recherches sur les transcendantes de M. Painlevé et l’étude asymptotique des
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Paper 1-“Painlevé IV with Both Parameters Zero: A Numerical Study”



Painlevé IV with both Parameters Zero: A Numerical Study

By Jonah A. Reeger1 and Bengt Fornberg2

The six Painlevé equations were introduced over a century ago, motivated by
rather theoretical considerations. Over the last several decades, these equations
and their solutions, known as the Painlevé transcendents, have been found to
play an increasingly central role in numerous areas of mathematical physics.
Due to extensive dense pole fields in the complex plane, their numerical
evaluation remained challenging until the recent introduction of a fast “pole
field solver” [1]. The fourth Painlevé equation has two free parameters in its
coefficients, as well as two free initial conditions. The present study applies
this new computational tool to the special case when both of its parameters
are zero. We confirm existing analytic and asymptotic knowledge about the
equation, and also explore solution regimes which have not been described in
the previous literature.

1. Introduction

The six Painlevé equations (PI –PVI ) are second-order ordinary differential
equations (ODEs) with solutions that are free from movable branch points, but
with the possibility of movable poles or movable isolated essential singularities
[2, Section 32.2]. The term movable refers to the dependence of their location
on the ODE’s initial data. The second through sixth Painlevé equations also
exhibit dependence on one to four arbitrary parameters. The fourth Painlevé
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equation (PI V ),

d2

dz2
u(z) = 1

2u(z)

(
d

dz
u(z)

)2

+ 3

2
u(z)3 + 4zu(z)2

+ 2(z2 − α)u(z) + β

u(z)
,

(1)

has two such parameters, α and β. Together with two initial conditions (ICs) a
vast array of solutions can arise.

The solutions to the Painlevé equations are often dubbed the Painlevé
transcendents because, except for a very small subset of the possible parameter
choices and ICs, they are not expressible in terms of elementary or traditional
special functions. With regard to PI V , a particularly small portion of the
two-dimensional parameter space leads to solutions expressible as rational
functions or in terms of special functions such as the parabolic cylinder function.
These solutions are well documented; however, nearly all of the parameter and
IC choices are unexplored. For the case α = β = 0, which this study focuses
on, no closed form solution is known (apart from the trivial u(z) = 0).

The growing importance of the Painlevé transcendents in mathematical
physics is reflected in that they, although absent in the classical “Handbook of
Mathematical Functions” [3], have received a full chapter in the NIST handbook
[2]. Numerous applications for the Painlevé equations are given in [2, Sections
32.13–32.16], along with extensive references. These include reductions of
partial differential equations, combinatorics, and many physical applications
including statistical and quantum physics. Some applications specific to the PI V

equation include random matrix theory (see, e.g., [4–7]) and supersymmetric
quantum mechanics (e.g., [8]). Further applications are noted in [9].

The explorations we describe in this paper are mostly computational. Some
early computational work on PI V in [10] focused on the real line with little or
no exploration into the complex plane. The numerical approach introduced
in [1]—combining a Padé based ODE solver [11] with a partly randomized
integration path strategy—allowed for the first time rapid numerical solutions
of the Painlevé equations over extended regions in the complex plane. It was
first used for PI in [1] and later for PI I in [12]. This paper describes similar
computations for PI V .

1.1. Organization of the paper

This paper will first cover some background information about PI V , such as
the series expansion around a pole and a notable symmetry in the differential
equation. The known asymptotic approximations are followed up with a
discussion on computing corresponding ICs. Verifications of these asymptotic
approximations and further numerical explorations are then considered,
including solutions with a pole located at the origin.
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PIV with Both Parameters Zero 3

2. Background observations

2.1. Series expansion

In a neighborhood of a pole z0 the coefficients of the Laurent expansion of
PI V can be determined by substituting a truncated expansion

u(z) =
n∑

k=−1

ak(z − z0)k + O((z − z0)n+1) (2)

into (1) (starting with k = −1 since otherwise ak = 0 for k < −1). For
example, choosing n = 4 and equating coefficients gives

a−1 = ±1,

a0 = −z0,

a1 = 1

3
(−4 ± z2

0 ± 2α),

a2 = c,

a3 = 1

45

(± 26 ∓ 36cz0 + 20z2
0 ∓ z4

0 − 32α ∓ 4z2
0α ± 14α2 ± 9β

)
,

a4 = 1

9

(∓ 9c + 5z0 + 3cz2
0 ∓ 2z3

0 + 6cα ∓ 4z0α
)
.

Hence, all poles in the solutions to PI V are simple and have residue of either
+1 or −1. The only further free parameter is c, first appearing in a2.

2.2. Symmetry in the PIV equation

Let PI V (α, β) be the set of all solutions of (1) for the particular α and β.
Direct inspection of (1) shows that if u(z) ∈ PI V (α, β), then

−u(−z) ∈ PI V (α, β), (3)

−iu(i z) ∈ PI V (−α, β), and (4)

iu(−i z) ∈ PI V (−α, β) [13]. (5)

Incidentally, the first of these symmetries also holds for PI I I (for all parameter
choices), but never for any of the other Painlevé equations. With our current
focus on α = β = 0, we note in particular that if u(z) ∈ PI V (0, 0), then −u(−z),
−iu(i z), and iu(−i z) ∈ PI V (0, 0). This first symmetry simplifies the analysis
of the various computations considered in this paper. For instance, the number
of poles and oscillations over a given interval of the real line is monitored to
determine ICs that give pole- and/or oscillation-free solutions over the entire
real line. When given initial data to the ODE at z = 0 it then suffices to
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consider the solution for an interval along the positive real axis. It is important
to keep this symmetry in mind because any solution presented in this paper
has a counterpart that is the odd reflection about the origin among others.

3. Asymptotic approximations

Much of the previous computational work on PI V was designed to verify
its asymptotic approximations. A contributing factor to this was likely the
difficulty experienced by typical ODE solvers when encountering a pole. For
instance, solutions with very special parameter choices were explored in [10]
using a classical fourth-order Runge–Kutta scheme, a sixth-order scheme, and
an Adams Moulton predictor–corrector method, each of which are rendered
ineffective when encountering a pole. Alternate approaches that are applicable
also when poles are encountered have been proposed in [14] and [15]. A wider
selection of parameter choices will be discussed in the following subsections.

3.1. Parameter choices, an approximation, and connection formulae

Before limiting to the case of α = β = 0, let α = 2ν + 1 ∈ R and β = 0 (with
ν = − 1

2 giving α = 0). Equation (1) then becomes

d2

dz2
u(z) = 1

2u(z)

(
d

dz
u(z)

)2

+ 3

2
u(z)3

+ 4zu(z)2 + 2(z2 − 2ν − 1)u(z). (6)

This particular form of PI V is presented in [2, Section 32.11] and is in contrast
to those presented in [10] and [16], where the change of variables

u(z) = 2
√

2w(x)2 and z = 1

2

√
2x (7)

is applied. For some of the following examples, the boundary condition

u(z) → 0, as z → +∞ and z ∈ R (8)

is also imposed. Based on the symmetry (3) discussed previously, the condition
u(z) → 0, as z → −∞ could likewise be considered, to achieve analogous
results.

It is noted in the NIST handbook [2, Section 32.11(v)] that any nontrivial
solution of (6) satisfying (8) is asymptotic to

k
(
Dν

(√
2z
))2

as z → +∞ and k �= 0, (9)
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where k ∈ R and Dν(ζ ) is the parabolic cylinder function, satisfying

d2

dζ 2
Dν(ζ ) =

(
1

4
ζ 2 − ν − 1

2

)
Dν(ζ )

with boundary conditions

Dν(ζ ) ∼ ζ νe− 1
4 ζ 2

, ζ → +∞.

Previous studies of PI V present only cases where k > 0; however, this study
will also consider k < 0.

There is a critical value of k given by

k∗ = 1√
π�(ν + 1)

(10)

such that when 0 ≤ k < k∗ there are no poles on the real axis. In the case of
ν = − 1

2 , k∗ = 1
π

.
One can further distinguish between two cases for ν when 0 ≤ k < k∗. First,

if ν ∈ Z+, then u(z) is asymptotic to

k2νz2νe−z2
, z → −∞. (11)

Likewise, if 0 �= ν �∈ Z+, which includes the present case of ν = − 1
2 , then

u(z) is asymptotic to

−2

3
z + 4

3
d
√

3 sin(φ(z) − θ0) + O(z−1), z → −∞, (12)

where

φ(z) = 1

3

√
3z2 − 4

3
d2

√
3 ln(

√
2|z|). (13)

Here d and θ0 are given by the connection formulas, derived in [17], as

d2 = −1

4

√
3π−1 ln(1 − |μ|2) (14)

and

θ0 = 1

3
d2

√
3 ln(3) + 2

3
πν + 7

12
π + arg(μ) + arg

(
�

(
−2

3
i
√

3d2

))
, (15)

with

μ = 1 + 2ikπ3/2e−iπν

�(−ν)
. (16)

Note that the connection formulas for d and θ0 were presented incorrectly in
[18] and [19], but corrected in, for example, [10] and [16].

Next, for k = k∗, u(z) again has no poles on the real axis and is asymptotic
to −2z for z → −∞. Finally, if k > k∗ or k < 0, then u(z) has poles on the
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6 J. A. Reeger and B. Fornberg

Figure 1. Left: A plot of (Dν(
√

2z))2 with k = 1. Right: A plot of | u(0)−û(0)
u(0) | for various values

of k and ν = 0. Roundoff begins to dominate the error in û(0) when z0 is slightly more than 5.

Figure 2. Number of poles on the negative (left) and positive (right) real axes. The colored
regions correspond to solutions with a fixed number of poles on the appropriate half of the
real axis; however, these solutions may have oscillations over that half. The black and colored
curves indicate ICs with a fixed number of poles and no oscillations on the corresponding half
of the real axis. White regions correspond to an infinity of poles. The area in the small box at
the bottom of the right figure is enlarged in Figure 3.

real axis whose locations are dependent on k. Previous studies of PI V do not
explicitly describe the behavior of (6) with k < 0. Infinitely, many poles are
found along the negative real axis in these cases.

Applying the method of dominant balance (see, e.g., [20, Section 3.4]) to
(6) leads to the asymptotic relation

u±(z) ∼ −4z ± 2
√

z2 + 6ν + 3

3
as |z| → ∞.

Taking ν = − 1
2 leads to u+(z) ∼ − 2

3 z and u−(z) ∼ −2z, respectively, with
the upper and lower sign choice. The dominance of this relation is apparent
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Figure 3. Zoomed views of the number of poles on the positive real line. The left frame
corresponds to the box outlined in the right frame of Figure 2 and the right frame corresponds
to the box highlighted in the left frame of this figure. Note that the right edge corresponds to
u(0) = −0.02, rather than u(0) = 0, to avoid displaying an infinity of shaded regions.

for 0 < k ≤ k∗; however, this approximation is not meaningful for k > k∗ or
k < 0. It is particularly important in the cases of k = k∗ and k = 1

2 k∗, as we
will show later.

3.2. Computing the ICs for asymptotic approximations

Consider the asymptotic condition (9), shown in the left of Figure 1. The
values of (Dν(

√
2z))2 are less than machine precision for even relatively small

values of z. As it will transpire, z can nevertheless be selected such that it is
large enough to make the approximation useful and small enough so that a
solution of (6) is computable to machine precision.

It is stated in [10] that, for ν = 0, 1, 2, . . ., a closed form solution to (6) for
arbitrary values of k and z ∈ R exists. For instance, for ν = 0 the solution
becomes

u(z) = 2
√

2k exp(−z2)

23/2 − k
√

2πerfc(z)
,

where

erfc(ζ ) = 2√
π

∫ ∞

ζ

exp(−s2)ds

is the complementary error function discussed in [2, Section 7.2]. Knowing
this closed form solution, the exact value of u(0) can be compared to the value
obtained numerically beginning with ICs

k(Dν(
√

2z0))2, (17)
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8 J. A. Reeger and B. Fornberg

Figure 4. A view of how u(0) and u′(0) change as k is varied. The locations of several
values of k are marked. The dashed and solid curves represent values when k > 0 and k < 0,
respectively. The labels k±

j , j = 1, 2, . . . , 8, correspond to different values of c in Figures 15
and 16, which represent the movement of a pole through the origin. Approximate values of k
and c are also shown in table 1. Note that this image is a detailed version of the right frame
of Figure 2, where the horizontal axis indicates the value of u(0) from −7.5 to 7.5 and the
vertical axis indicates the values of u′(0), again from −7.5 to 7.5.
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PIV with Both Parameters Zero 9

Figure 5. Solutions to (6) with ν = − 1
2 . The solid (blue) lines indicate the numerical

solutions. The dashed-dotted (red) and dashed (green) lines show − 2
3 z and −2z, respectively.

The dotted (black) lines in the first and second rows show (12).

z0 ∈ [1, 10]. Call this numerical solution û(0). Comparing the left and right
images in Figure 1 shows that for various k z0 ≈ 5 can be chosen to achieve
an accurate solution with (Dν(

√
2z0))2 large enough. To be in agreement with

the choice of z0 to generate initial data in [10] z0 = 4
√

2 ≈ 5.65 is used
throughout this article, which has been shown to be sufficient.

In the case of the PI I equation,

d2

dz2
u(z) = 2u(z)3 + zu(z) + α,

it was found in [12] that its leading asymptotic term alone was numerically
sufficient when α = 0, but otherwise needed to be supplemented by asymptotic
expansions. We encounter the same situation with PI V in its α = β = 0 case.
The leading term in
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10 J. A. Reeger and B. Fornberg

Figure 6. A view of the solutions that have poles that move to +∞ leaving a near zero
segment behind and then return. In all cases u0 = 1.84810583 and u′(0) = −4.61669536,
which result from integrating (6) (ν = − 1

2 ) starting with (9) (k = 0.75) from z = 4
√

2 to
z = 0. There is no noticeable difference between the top and bottom figure sets, highlighting
that there is no change in pole field orientation as we pass through these special ICs.

u(z) ∼ k
(
D− 1

2

(√
2z
))2

+ k2 e−2z2

z3

[
1

4
− 9

16

1

z2
+ 205

128

1

z4
− + · · ·

]
+ k3 e−3z2

√
2z5

[
1

8
− 31

64

1

z2
+ 1853

1024

1

z4
− + · · ·

]

+ O

(
e−4z2

z7

)
suffices for any choice of z > 4. Further terms are here unnecessary for the
identification of critical k-values.

4. An exploration of the u(0), u′(0)-plane

4.1. Pole and oscillation counting

A particularly useful tool in determining the various types of solutions that
exist for fixed α and β is to count the number of poles and oscillations that
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PIV with Both Parameters Zero 11

Figure 7. A view of the solutions that have oscillations that move to +∞ leaving a near zero
segment behind and then return. In all cases u0 = −0.87721765 and u′(0) = 1.14146647,
which result from integrating (6) (ν = − 1

2 ) starting with (9) (k = −0.75) from z = 4
√

2 to
z = 0. There is no noticeable difference between the top and bottom figure sets, highlighting
that there is no change in pole field orientation as we pass through these special ICs.

occur in a given interval on either the positive or negative real axis. Displays
can then be created that indicate the number of poles appearing on the positive
or negative real axis for different regions of the u(0), u′(0) plane. This is
shown in Figure 2 for the case α = β = 0 (that is, ν = − 1

2 ). The left and right
images were produced by counting the number of poles to the left and right of
the origin, respectively. The symmetry (3) is apparent in these figures.

Consider, for now, only the right frame in Figure 2, since the left is
completely analogous. Each of the ICs marked by a curve or contained within
a shaded region generates a solution with a finite number of poles on the
positive real axis. The color bar indicates the exact number of poles for a
given IC with darker (blues/greens) and lighter (reds/yellows) indicating odd
and even numbers of poles, respectively.

Each of the shaded regions in the right half-plane contains ICs that generate
solutions with an odd number of poles on the positive real axis, while the u(0),
u′(0) values along the colored curves lead to solutions with an even number.
The left half-plane is the opposite.
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12 J. A. Reeger and B. Fornberg

Figure 8. A view of the solutions which result from (6) starting with (9), where ν = − 1
2 and

four different values for k.

Figure 9. Solution to (6) with ν = − 1
2 and k = 0.5k∗. The dashed (black) lines on the left

indicate the rays re±i 3π
4 , r ≥ 0. The dashed-dotted (red) and dashed (green) lines on the right

show − 2
3 z and −2z, respectively.

Most of the ICs in the shaded regions generate solutions that oscillate as
z → +∞; however, each IC marked by a curve or located at the boundary of a
shaded region has no oscillations as z → +∞.

Figure 2 also identifies the ICs of many of the solutions shown in this paper
by marking them with an arrow and the corresponding figure number(s).

Still focusing on the right frame, notice that as u(0) → 0 from the left the
shaded regions become finer. Figure 3 shows two zoomed windows to further
highlight this behavior. In these images it is shown that these regions become
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PIV with Both Parameters Zero 13

Figure 10. Solutions in the complex plane to (6) with ν = − 1
2 for six k-values near k = 1

2 k∗.

The dashed (black) lines indicate the rays re±i 3π
4 , r ≥ 0.

Figure 11. Solutions in the complex plane to (6) with ν = − 1
2 and k = 1

2 k∗. Here, we show
|u(z)|. That is we show pole locations only, without the alternating pattern of residues.

Figure 12. The asymptotic far field sector structures for the PI and PI V equations.
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14 J. A. Reeger and B. Fornberg

Figure 13. Solutions to (1) with α = β = 0 and ICs u0 = −1.59610846592044 and u′(0) = 1.

Figure 14. A view of solutions with a pole at the origin in the case of c = 0.

infinitely narrower as u(z) approaches zero and in each consecutive region the
number of poles increases by two.

4.2. Exploring the known asymptotic solutions

Armed with the pole- and oscillation-counting images, two natural questions
become: “Which initial conditions correspond to varying k?” and “What do
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Figure 15. Left Frame: Locations of the poles on the real axis for various c. Solid lines
indicate poles with residue +1 and dashed lines those with residue −1. Right Frame: Number
of poles includes the pole at the origin. Values of c with no lines or dots indicate solutions
with an infinity of poles on the real axis.

the solutions to these asymptotic approximations look like across the complex
plane?”

To answer the first question k is varied from near zero to |k| � 0. The
dashed and solid curves in Figure 4 indicate the location of u(0) and u′(0)
found by varying k and computing the numerical solution beginning with (17)
at z0 = 4

√
2. The continuation of the curves outside the axes illustrates the

transitions of u(0) and u′(0) to +∞ or −∞ and back as we increase or
decrease k. This is due to the movement of a pole through the origin z = 0.
A following section will show that the continuation of the dashed and solid
curves corresponds to a pole at the origin with positive and negative residue,
respectively.

Next, the second question is answered with examples of the solutions similar
to those presented (along the real axis) for the transformed case of PI V in [2],
[10], and [16]. To this end, a number of solutions are presented in a two frame
format. The left frames display the pole locations and corresponding residues,
dark (blue) for +1 and light (yellow) for −1. The right frames display the
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16 J. A. Reeger and B. Fornberg

Figure 16. Left Frame: Locations of the poles on the real axis for various c. Solid lines
indicate poles with residue +1 and dashed lines those with residue −1. Right Frame: Number
of poles includes the pole at the origin. Values of c with no lines or dots indicate solutions
with an infinity of poles on the real axis.

solution along the real axis, in a style similar to Figure 32.3.6 in [2] (but
without stopping when a pole is encountered); i.e., solutions are displayed for
k = k∗ − 1 × 10−8, k = k∗ and k = k∗ + 1 × 10−8. Notice that for 0 < k ≤ k∗

there are no poles on the real axis and that the asymptotic approximations of
−2z and (12) match well even for z close to the origin.

Generally, the solutions of (6) satisfying (9) with k > 0 occur at critical
initial data where a region of poles has moved out to infinity leaving a pole
free region of the complex plane behind. For simplicity, refer to this type of
solution as a k-positive solution. An example of this appears in Figure 6,
where the ICs for the middle row of frames are generated from (6) and (9)
by choosing k = +0.75. The top and bottom rows show the solutions in a
neighborhood of the generated initial data.

On the other hand, choosing k < 0 leads to another type of solution. As u(0)
and u′(0) generated from (6) and (9) for k < 0 are approached the solutions
have an infinity of oscillations that move toward +∞ while leaving a near zero
solution behind. These solutions will be referred to as k-negative solutions.
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PIV with Both Parameters Zero 17

Figure 17. Solutions corresponding to the values in the −∞ and c columns of k−
1 in Table 1.

Notice that even these low precision values lead to solutions that are very similar. The pole
locations shared by both frames differ by at most O(10−3).

Picking k = −0.75 the solution in the middle row of Figure 7 is found. The
top and bottom rows again highlight the movement of the oscillations for u(0)
and u′(0) in a neighborhood of the generated initial data.

Figures 6 and 7 show another, yet peculiar, behavior of the solutions of the
PI V equation. As u(0) and u′(0) pass through critical ICs for both PI and
PI I there is a distinct change in the location of the poles closest to the real
axis. For instance, let u0 and u′

0 be critical ICs for PI and u(0) = u0 − ε and
u′(0) = u′

0 generate a solution with no poles on the negative real axis. Then
the solution for u(0) = u0 + ε and u′(0) = u′

0 will have an infinity of the poles
on the negative real axis. An example of this is shown for PI in Figure 4.3
of [1], which is also shown only on the real axis in Figure 32.3.3 of [2].
This same behavior has been witnessed for all possible choices of critical ICs
shown in the available literature for PI I .

On the other hand, if u(0) or u′(0) generated from (6) and (9) are fixed and
a small neighborhood of u′(0) or u(0), respectively, is considered, then there is
no change in pole field orientation or residue when passing through the critical
ICs. The action of passing through the critical ICs is the same as passing
through either a solid or dashed line in Figure 4. This is the behavior for
nearly all of the k-positive and k-negative solutions, except those which occur
at the boundary of a shaded region in Figure 4. An example of this appears in
Figure 5.

To complete this section consider extreme values of k. That is, consider
values of k with very large and very small magnitudes. Figure 8 shows some
such solutions.

Notice that values of k that are equal in magnitude but opposite in sign lead
to solutions that are similar, but with the sign of the residue of the pole located
furthest to the right on the real axis equalling the sign of k.
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Figure 18. A view of the solutions with u(0) and u′(0) in a neighborhood of the values
generated by (6) with ICs given by (9) where ν = − 1

2 and k = k∗ shown in Figure 5.
Here u(0) = 0.555491078710868 + ρ cos(φ) and u′(0) = −0.886725480333295 + ρ sin(φ) to
generate the solutions.

4.3. Solution with a pole free half-plane

One of the more interesting cases appears in Figure 9, when k = 0.5k∗. In this
case, the solution follows − 2

3 z, as z → −∞ and z ∈ R, and appears pole and
oscillation free across the entire real axis. In fact, (12) becomes − 2

3 z, and
substitution of u(z) = − 2

3 z into (6) with ν = − 1
2 leads to a residual of 1

3z .

Figure 10 shows a sequence of solutions where k increases to 1
2 k∗ and beyond.

Notice that two regions of poles, nearly symmetric about the rays re±i 3π
4 ,

r ≥ 0, move away from the origin and, after the critical k = 0.5k∗, return with
changed orientation.

Figure 11 displays a sequence of frames of size 1 × 0.5 in the real and
imaginary directions, respectively, depicting |u(z)| adjacent to the imaginary
axis. This frame size was chosen so that the magnitude of u(z) could be clearly
displayed when the density of the poles is so great near Im(z) = 100. The
distance of the nearest row of poles from the imaginary axis appears to be
O( 1

Im(z)
), with the left half-plane pole free.

The pole-free nature of the left half-plane and a large portion of the right
half-plane is reminiscent of a special solution to PI known as the tritronquée
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Figure 19. A view of the solutions with u(0) and u′(0) in a neighborhood of the values
generated by (6) with ICs given by (9) where ν = − 1

2 and k = 1
2 k∗ shown in Figure 9.

Here u(0) = 0.253975473568026 + ρ cos(φ) and u′(0) = −0.367698229229807 + ρ sin(φ) to
generate the solutions.

solution (see, e.g., [21], [1], or [14]). It is well known that the PI equation,

d2

dz2
u(z) = 6u(z)2 + z, (18)

is invariant under the changes u → ω3u, z → ωz when ω5 = 1 (see, e.g., [1]).
This results in solutions with poles aligned in the five distinct sectors shown
the left in Figure 12. The tritronquée solution for PI is pole free except for the
region 1 in the figure, leaving the entire left half-plane pole free. Similarly,
many of the PI V solutions considered here indicate that the poles line up in the
eight sectors shown to the right in Figure 12. This will become even more
apparent in Section 4.6.

4.4. Tronquée-like solutions

In both the k-positive and k-negative cases, behavior different from the tronquée
solutions for PI discussed in, for example, [1] and [14] is encountered.
Concerning PI , transitioning through tronquée initial data leads to a fundamental
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Figure 20. A view of the solutions with u(0) and u′(0) in a neighborhood of the values
generated by (6) with ICs given by (9) where ν = − 1

2 and k = 0.75 shown in Figure 6.
Here u(0) = 1.852476801971173 + ρ cos(φ) and u′(0) = −4.634118664573674 + ρ sin(φ) to
generate the solutions.

change in the location of the poles in the solutions. That is, beginning with
a solution to PI with no poles on the real axis, the ICs on the other side
of the tronquée initial data will have poles on the real axis. The opposite
occurs when beginning with poles on the real axis. Tronquée-like behavior
for PI V occurs at the transition from a shaded region in Figure 2 to a blank
region.

One of the tronquée-like solutions occurs when u(0) ≈ −1.59610846592044
and u′(0) = 1. Figure 13 displays the behavior just described. Notice, also, that
as z → ∞ the solution at the critical initial data is asymptotic to −2z. This is
found to be the case for nearly all tronquée-like solutions. The exception is the
trivial solution when u(0) = u′(0) = 0.

4.5. Solutions with a pole at the origin

Until now solutions have only been considered for which u(0) and u′(0) are
finite. However, beginning with a truncated series like (2), with z0 = 0, ICs
can be generated to also view solutions with a pole at the origin. In the case of
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Figure 21. A view of the solutions with u(0) and u′(0) in a neighborhood of the values
generated by (6) with ICs given by (9) where ν = − 1

2 and k = −0.75 shown in Figure 7.
Here u(0) = −0.878189808443538 + ρ cos(φ) and u′(0) = 1.142924661194064 + ρ sin(φ) to
generate the solutions.

α = β = 0 the expansion becomes

u(z) ≈ ±1

z
− 4

3
z + cz2 ± 26

45
z3 ∓ cz4 + 1

945
(−128 ± 405c2)z5 + 41

90
cz6

+ (±1604 − 12960c2)

28350
z7 + (∓3092 + 1800c2)

12600
cz8

+ (−10240 ± 136512c2)

374220
z9 + (45555 ∓ 77760c2)

340200
cz10

+ (±15846104 − 324788400c2 ± 66156750c4)

1277025750
z11

+ (∓27096717 + 92409660c2)

392931000
cz12 + O(z13).

(19)

Reiterating, the residue at the origin can be either +1 or −1, and the only
remaining free parameter is c. Choosing c = 0 gives the two solutions shown
in Figure 14.
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Figure 22. A view of the solutions in a neighborhood of the origin. Here, u(0) = ρ cos(φ)
and u′(0) = ρ sin(φ) to generate the solutions. Because we cannot compute numerically the
solution when u(0) = 0, except when u′(0) = 0 also, we show only six neighboring solutions
in a neighborhood of the origin to preserve symmetry.

Varying u(0) and u′(0) allows the exploration of all solutions apart from
those with a pole at the origin. In that case, the single parameter c can instead
be varied to explore the number of poles and oscillations along the two
halves of the real axis. Figures 15 and 16 show that certain choices of c
lead to solutions with a finite number of poles on the positive and negative
real axes. This is shown in two ways for both possible choices of the residue
for the pole located at the origin. On the left the locations of the poles on
the real axis are shown, with solid lines indicating +1 residue and dashed
lines indicating −1 residue. Due to (2) and (19) the curves are symmetric
around the origin Re(z) = c = 0. The right images mimic Figure 2. In these
images, lines and dots correspond to values of c that generate solutions with
a finite number of poles. The horizontal axis indicates the exact number of
poles on either the positive or negative real axis. The corresponding half of
the real axis is indicated by the color of the line or dot. Consequently, we
can deduce that the colored and black dots indicate the values of c that
correspond to solutions generated from (6) and (9) with k > 0 and k < 0,
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Figure 23. A view of the solutions in a neighborhood of the tronquée-like solution shown
in 13. Here u(0) = −1.59610846592044 + ρ cos(φ) and u′(0) = 1 + ρ sin(φ) to generate the
solutions.

respectively. Colored line segments, then, correspond to colored regions in
Figure 2.

Table 1 shows the approximate values of k and c corresponding to the k+
j

and k−
j , j = 1, 2, . . . , 8, solutions, respectively, in Figures 4, 15, and 16. The

columns ±7.5 (out) and ±7.5 (in) show the values of k where the dashed
and solid line segments leave and enter the window in Figure 4. The column
labeled ±∞ gives the value of k corresponding to the transition of a pole
through the origin. The c column and ±∞ column lead to the same solution
when substituted into (19) and (9), respectively, to generate ICs.

To see how close the solutions corresponding to the ±∞ and c columns are,
consider those for k−

1 in table 1. If the corresponding solutions are computed,
the pole locations and residues are shown in Figure 17. Notice that even these
low precision values for k and c already lead to solutions that are very similar.
The pole locations shared by both frames differ by at most O(10−3).

4.6. Neighborhoods of solutions

Throughout this paper several special solutions to PI V with α = β = 0 have
been considered along with many of their neighboring solutions. However,
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Table 1
The Approximate Values of k and c Corresponding to the k+ and k−

Solutions, Respectively, in Figures 4, 15, and 16

Pole Located at Origin Has Residue +1

k Corresponding to u′(0) equal to

7.5 (out) ∞ 7.5 (in) c

k+
1 0.87 × 100 1.54 × 100 3.49 × 100 0.5100

k−
2 −6.82 × 101 −2.47 × 102 −1.42 × 103 3.5240

k+
3 1.23 × 104 5.48 × 104 7.13 × 105 8.1000

k−
4 −2.52 × 106 −1.25 × 107 −2.12 × 108 13.8100

k+
5 5.50 × 108 2.85 × 109 5.75 × 1010 20.4520

k−
6 −1.22 × 1011 −6.55 × 1011 −1.45 × 1013 27.9203

k+
7 2.74 × 1013 1.50 × 1014 3.63 × 1015 36.1202

k−
8 −6.22 × 1015 −3.45 × 1016 −8.85 × 1017 44.9203

Pole Located at Origin Has Residue −1

k Corresponding to u′(0) equal to

−7.5 (out) −∞ −7.5 (in) c

k−
1 −2.72 × 100 −6.97 × 100 −1.75 × 101 1.2710

k+
2 2.69 × 102 1.49 × 103 5.34 × 103 4.9020

k−
3 −2.97 × 104 −3.35 × 105 −1.42 × 106 9.8903

k+
4 4.67 × 106 7.61 × 107 3.49 × 108 15.9233

k−
5 −8.75 × 108 −1.75 × 1010 −8.45 × 1010 22.8524

k+
6 1.77 × 1011 4.00 × 1012 2.02 × 1013 30.5710

k−
7 −3.75 × 1013 −9.20 × 1014 −4.77 × 1015 38.3697

k+
8 8.12 × 1015 2.12 × 1017 1.12 × 1018 48.1000

Note: The columns ±7.5 (out) and ±7.5 (in) show the values of k where the
dashed and solid line segments leave and enter the window in Figure 4. The
column labeled ±∞ gives the value of k corresponding to the transition of a
pole through the origin. The c column and ±∞ column lead to the same
solution when substituted into (19) and (9), respectively, to generate ICs.

the neighboring solutions that have been considered only resulted from a
perturbation in the asymptotic parameter k or the single IC u(0). To complete
this study, consider six of the same special solutions, with the difference that now
neighboring solutions that result from varying both u(0) and u′(0) are shown.
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Figures 18, 19, 20, and 21 show solutions in the neighborhood of the middle
row of each of the Figures 5, 9, 6, and 7, respectively. The rays rei jπ

4 , r ≥ 0
and j = 1, 2, . . . , 8, are included to highlight the behavior of the poles when
the ICs are near or equal to those of a special solution. We find that near
these particular ICs the poles fall within the eight distinct sectors discussed
previously and shown in Figure 12.

Solutions with ICs given in a neighborhood of the origin (Figure 22)
and near the tronquée-like solution (Figure 23) shown in Figure 13 are also
displayed. Notice Figures 2–4 show that when u(0) = 0 and u′(0) �= 0 the
solutions have pole fields of infinite density. Therefore, only six neighboring
solutions around u(0) = u′(0) = 0 are given.

5. Conclusions

In this study of the fourth Painlevé equation for the case α = β = 0 (i.e.,
ν = − 1

2 ), existing analytic and asymptotic knowledge about the equation has
been confirmed, and solution regimes which have not been described in the
previous literature were explored. The fast numerical approach introduced in
[1] allowed the location ICs with unique characteristics. Notably, a solution
that has no poles located in the entire left half-plane was discovered. Likewise,
symmetry leads to a solution that is pole free in the entire right half-plane.

This study has highlighted some peculiar behavior in the neighborhood of
some of the known asymptotic solutions. Further, the existence of an entire
family of solutions, like the one in Figure 13, was confirmed that is similar to
the tronquée solutions of PI . Connections were also made between the free
parameter, c, in the Laurent expansion of a pole located at the origin and the
asymptotic parameter k.

The flexibility of the numerical algorithm has left ample opportunities for
further explorations of the solutions of PI V , particularly for nonzero α and β.
A few of these include:

• Confirmation of known rational and special function solutions, and exploration
of solutions with neighboring ICs.

• Finding connections between parameter choices with known asymptotic
and analytic solutions and neighboring parameter choices with no such
information available.

• Locating yet unknown solutions with large pole-free sectors in the complex
plane.
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The six Painlevé equations were introduced over a century ago, motivated by rather

theoretical considerations. Over the last several decades, these equations and their

solutions, known as the Painlevé transcendents, have been found to play an increas-

ingly central role in numerous areas of mathematical physics. Due to extensive dense

pole fields in the complex plane, their numerical evaluation remained challenging

until the recent introduction of a fast ‘pole field solver’ (Fornberg and Weideman,

J. Comp. Phys. 230 (2011), 5957-5973). The fourth Painlevé equation has two free

parameters in its coefficients, as well as two free initial conditions. After summarizing

key analytical results for PIV , the present study applies this new computational tool

to the the fundamental domain and a surrounding region of the parameter space.

We confirm existing analytic and asymptotic knowledge about the equation, and also

explore solution regimes which have not been described in the previous literature.

a)jonah.reeger@colorado.edu; Captain, United States Air Force
b)fornberg@colorado.edu
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I. INTRODUCTION

The solutions of the six Painlevé equations (PI-PV I) are free from movable branch points,

but with the possibility of movable poles or movable isolated essential singularities (Ref.

1, Section 32.2). This Painlevé property inspired the introduction of a novel numerical

approach2–combining a Padé based ODE solver3 with a partly randomized integration path

strategy–and allowed for the first time rapid numerical solutions of the Painlevé equations

over extended regions in the complex plane. It was first used for PI
2 and later for PII

4. It

was then applied to the fourth Painlevé equation

d2

dz2
u(z) =

1

2u(z)

(
d

dz
u(z)

)2

+
3

2
u(z)3 + 4zu(z)2 + 2

(
z2 − α

)
u(z) +

β

u(z)
, (1)

in the special case of α = β = 05. As in these three previous numerical studies, computa-

tional explorations in this paper are limited to solutions u(z) that are real when z is real,

although some of the presented theory includes solutions that are not always real on the

real axis.

For a small portion of the two-dimensional (α,β)-parameter space there exist examples

of solutions expressible as rational functions or in terms of special functions, such as the

parabolic cylinder function. These well documented solutions appear, however, as only iso-

lated points or one-parameter families in the four-dimensional space of parameters and initial

conditions (ICs). Much of the present study is focused on the distribution of singularities

for solutions to (1). These are all first order poles with residue +1 or -1.

A. Organization of the paper

Section 2 recalls some available theory, including symmetries in PIV and different solution

transformations. Section 3 discusses closed form solutions of PIV , in particular solutions

in terms of rational and elementary special functions and also the asymptotic behaviors

presented in the literature. This is followed in section 4 by the numerical approach used

here to explore the much larger space of solutions for which no closed form solutions are

available. Sections 5 and 6 describe such explorations of the parameter and solution spaces,

first highlighting the “fundamental domain” and then extending into inspections of the

previously unexplored region of β > 0, for which no instances of closed form solutions or
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transformations have been reported.

II. SYMMETRIES AND SOLUTION HIERARCHIES

This section describes the known symmetries in the PIV equation and transformations

that relate solutions for different parameter choices.

A. Symmetries in the Equation

Let PIV (α, β) be the set of all solutions of (1) for the particular α and β. Direct inspection

of (1) shows that if u(z) ∈ PIV (α, β), then6

−u(−z) ∈ PIV (α, β), (2)

−iu(−iz) ∈ PIV (−α, β), and (3)

iu(iz) ∈ PIV (−α, β). (4)

Incidentally the first of these symmetries also holds for PIII (for all parameter choices), but

never for any of the other Painlevé equations. It is important to keep these symmetries in

mind since any solution presented in this paper has at least one other counterpart for the

same choice of α and β.

B. The Bäcklund and Schlesinger Transformations

It is known that PII through PV I have collections of transformations relating solutions

for given parameters to those of different choices. For instance, Refs. 7, 8, and others relate

solutions u(z) ∈PIV (α, β) to u±k,µ(z) ∈PIV (α±k,µ, β
±
k,µ), k = 1, 2, 3 through the relationships

(5) through (7). Confining this study to solutions that are real on the real axis limits these

3
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transformations to nonpositive β. These transformations are

u±1,µ(u(z), z) =
1

2µu(z)

(
d

dz
u(z)∓ µ(u(z)2 + 2zu(z))− µ

√
−2β

)
(5)

u±2,µ(u(z), z) =

(
d
dz
u(z)± µ√−2β

)2
+ (4α + 4µ∓ 2

√−2β)u(z)2

2u(z)
(
u(z)2 + 2zu(z)− µ d

dz
u(z)∓√−2β

) −

u(z)2(u(z) + 2z)2

2u(z)
(
u(z)2 + 2zu(z)− µ d

dz
u(z)∓√−2β

) (6)

u±3,µ(u(z), z) =u(z) +
2
(
1− µα∓ 1

2
µ
√−2β

)
u(z)

d
dz
u(z)± µ√−2β + µ(2zu(z) + u(z)2)

(7)

where µ = ±1. The transformed solutions u±k,µ, k = 1, 2, 3 occur for the parameter choices

α±1,µ =
1

4
(±2µ− 2α± 3

√
−2β) and β±1,µ = −1

2

(
1± αµ+

1

2
µ
√
−2β

)2

(8)

α±2,µ = α + µ and β±2,µ = −1

2
(2∓ µ

√
−2β)2 (9)

α±3,µ =
3

2
µ− 1

2
α∓ 3

4

√
−2β and β±3,µ = −1

2

(
µ− α± 1

2

√
−2β

)2

. (10)

There are also composite transformations u±4 = u+2,±(u−2,±(u(z), z), z) and u±5 = u+2,∓(u−2,±(u(z), z), z)

discussed in Refs. 7, 9, 10. As noted in Ref. 11, u−2,+1 was not always presented correctly in

previous literature.

III. CLOSED FORM SOLUTIONS AND ASYMPTOTIC

APPROXIMATIONS

Before discussing the closed form solutions and asymptotic behaviors presented in the

literature, note again that, even for choices of α and β admitting these solutions, little is

known aside from at an isolated location or along one-parameter family of points in the

two-dimensional plane of ICs.

A. Rational Solutions

The fourth Painlevé equation has six different sequences of parameter choices leading to

rational solutions expressible in terms of either Generalized Hermite or Generalized Okamoto
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polynomials (see, e.g., Ref. 7), with two particular choices leading to the nontrivial entire

solutions −2z and −2/3z. Tables I and II state the choices leading to such solutions when

m,n ∈ Z+. These locations in the (α,β)-plane will later be shown in figure 1 as dark

(blue) and light (yellow) hexagrams for Generalized Hermite and Generalized Okamoto

polynomials, respectively.

Generalized Hermite Polynomial Type Solutions, u
[GH;k]
m,n

7

k α β Special Choice Special Solution

1 2m+ n+ 1 −2n2 m = 0, n = 1 1
z

2 −(m+ 2n+ 1) −2m2 m = 1, n = 0 −1
z

3 n−m −2(m+ n+ 1)2 m = 0, n = 0 −2z

TABLE I. Parameter choices leading to solutions of PIV expressible in terms of Generalized Hermite

polynomials.

Generalized Okamoto Polynomial Type Solutions, u
[OK;k]
m,n

7

k α β Special Choice Special Solution

1 2m+ n −2(n− 1
3
)2 m = 0, n = 0 −2

3
z

2 −m− 2n −2(m− 1
3
)2 m = 0, n = 0 −2

3
z

3 n−m −2(m+ n+ 1
3
)2 m = 0, n = 0 −2

3
z

TABLE II. Parameter choices leading to solutions of PIV expressible in terms of generalized

Okamoto polynomials.

B. Special Function Solutions

In addition to the rational solutions, PIV admits solutions that are described by combi-

nations of special functions. In particular, PIV has solutions expressible in terms of combi-

nations of parabolic cylinder functions, Dν(ζ) (Ref. 1, Chapter 12), or confluent hypergeo-

metric functions, 1F1(a, b; ζ) (Ref. 1, Chapter 13).

There are three distinct determinental representations of solutions in terms of the

parabolic cylinder functions available12–14; however, only one of these expressions has been

confirmed numerically.11 There are still other, simpler expressions involving parabolic cylin-

der functions that have been validated with the appropriate parameter choices for these

5
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appearing in table III. Also, figure 1 displays the locations of all of these parameter choices

that have been discussed in the literature as black curves.

Parabolic Cylinder Function Type Solutions, u
[PC;k]
ν,ε,d1,d2

7,12–14

k α β Special Choice Special Solution

1 −ε(ν + 1) −2ν2
ν ∈ Z+

ν = 0

Standard Hermite

Complementary Error

2 −εν −2(ν + 1)2 ν ∈ Z+ Standard Hermite

3 −ε(2n− ν) −2(ν + 1)2 See Ref. 12

TABLE III. Parameter choices leading to solutions of PIV expressible in terms of parabolic cylinder

functions. Notice that there are two parameters d1 and d2 that can one can vary to generate a

family of special function solutions for a given choice of α and β.

It should be noted that when ε = −1 the solutions u
[PC;k]
ν,−1,d1,d2 , k = 1, 2, 3, are no longer

always real along the real axis. Otherwise in this paper, only solutions of PIV that are real

along the real axis will be considered.

Further, in the case of these parabolic cylinder function solutions the parameters d1 and

d2 can be combined into a single parameter d. This combination leads to a one parameter

family of solutions for each fixed α and β satisfying the expressions in table III.

Particular choices of ν ∈ R allow the solutions u
[PC;1]
ν,ε,d1,d2

and u
[PC;2]
ν,ε,d1,d2

to be expressed in

special forms. For instance, if ν ∈ Z+ it is discussed in Ref. 7 that the special function

solutions reduce to standard Hermite polynomials, while if ν = 0 then the solutions of PIV

can be expressed as complementary error functions. A similar extensive explanation of the

determinental solutions is available12.

More recently, it was discovered in the context of supersymmetric quantum mechanics

that PIV has solutions that can be described by confluent hypergeometric functions15–17. The

parameter choices corresponding to these solutions are actually a subset of the larger set of

parameter choices that lead to solutions expressed in terms of parabolic cylinder functions.

Let

v0(z) = e−
1
2
z2
(

1F1

(
−1

2
ν,

1

2
; z2
)

+

2z
Γ
(
−1

2
ν + 1

2

)

Γ
(
−1

2
ν
) (c1 + ic2) 1F1

(
−1

2
ν +

1

2
,
3

2
; z2
))

,

where n ∈ Z+, ν, c1, c2 ∈ R and 1F1 is the confluent hypergeometric function1. Further,
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define for j = 1, 2, . . .,

vj(z) =
1√
2

(
d

dz
vj−1(z) + zvj−1(z)

)
.

PIV has solutions

u[CH;1]
ν,n,c1,c2

= u(z; 2n− ν,−2(ν + 1)2) = −z − d

dz
ln

(W(v0(z), v1(z), . . . , vn−1(z))

W(v0(z), v1(z), . . . , vn(z))

)
,

n > 0 with W the usual Wronskian15. When n = 0 this solution reduces to

u
[CH;1]
ν,0,c1,c2

= u(z;−ν,−2(ν + 1)2) = −z +
d

dz
ln (v0(z)) ,

Notice that the choice of nonzero c2 leads to solutions that are not real along the real axis.

Therefore, PIV (2n− ν,−2(ν + 1)2) has a one parameter family of solutions when c2 = 0 for

each fixed value of ν and n.

If d1 and d2 are chosen to correspond to the choice of c1 and c2, and vice versa, then the

resulting solutions u
[PC;2]
ν,1,d1,d2

and u
[CH;1]
ν,0,c1,c2

are identical. In fact, the relationships are given by

d1 = 2
√

2− 2
√

2(c1 + ic2)

d2 = 2
√

2 + 2
√

2(c1 + ic2).

C. Asymptotic Approximation

Beyond the known closed form solutions, it is noted in Ref. 1, Section 32.11, that when

α ∈ R and β = 0, nontrivial solutions satisfying

u(z)→ 0, as z → +∞ (11)

are asymptotic to

k
(
D 1

2
α− 1

2
(
√

2z)
)2

as z → +∞ and k 6= 0, (12)

where Dν(ζ) is, again, the parabolic cylinder function. A more detailed explanation of

these asymptotics can be found in Ref. 1, Section 32.11, including connection formulae and

behaviors as z → −∞.

7
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When assuming the derivative terms in (1) are neglible, the method of dominant balance

(see, e.g., Ref. 18, Section 3.4) leads to the quartic equation

3

2
w(z)4 + 4zw(z)3 + 2(z2 − α)w(z)2 + β = 0. (13)

The roots of (13) supply asymptotic approximations as z → ±∞, z ∈ R, and any choice of

α and β. Asymptotic expansion as z → +∞ reveals that for all α and β

w+
+1(z;α, β) =

√−2β

2z
+
α
√−2β + 2β

4z3
+O

(
1

z5

)
(14)

w+
−1(z;α, β) =−

√−2β

2z
+
−α√−2β + 2β

4z3
+O

(
1

z5

)
(15)

w−+1(z;α, β) =− 2

3
z +

α

z
− 2(2α2 + 3β)

8z3
+O

(
1

z5

)
(16)

w−−1(z;α, β) =− 2z − α

z
+

6α2 + β

8z3
+O

(
1

z5

)
. (17)

No other smooth asymptotic behaviors were observed in the numerical explorations. With

the assumption u(z) ∈ R for z ∈ R, only the latter two roots are available as asymptotic

approximations when β > 0. Later in this paper, ICs leading to solutions asymptotic to

(14)-(17) will be marked in several figures, described as pole counting diagrams, as shown

in figure 3.

As with the information presented in this section, the rest of this paper will discuss only

the asymptotic behaviors as z → +∞, z ∈ R, since the symmetry (2) makes it clear that

there are analogous solutions with similar asymptotic behaviors as z → −∞. This is seen

by comparing the left and right frames in figure 2.

D. The Parameter Space and the Weyl Chambers

Based on the various symmetries, solution hierarchies and known closed form solutions,

the parameter space of PIV with β ≤ 0 can be described in terms of the so-called Weyl

chambers (see e.g., Refs. 15, 19, Section II-A, 6, Section 26). These chambers feature a

complete regularity in the (α,
√−2β)-plane, where α and β are the two free parameters in

the PIV equation (1).

All of the (α, β) pairs described in the literature leading to rational and special func-
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tion solutions are shown in figure 1. First, the dark (blue)/light (yellow) hexagrams indi-

cate the parameter values that admit instances of solutions described by Generalized Her-

mite/Okamoto polynomials. Next, the parameter choices along the black lines admit special

function solutions that are described by combinations of either parabolic cylinder functions

or confluent hypergeometric and gamma functions. Finally, for parameter choices along the

line
√−2β = 0 (i.e. β = 0) the literature contains asymptotic approximations along the

real axis. Each of these cases is considered in one of the following sections.

The significance of the Weyl Chambers, when extended to complex α and β, is that a

single chamber in theory provides all of the information to construct solutions for every

arbitrary (α, β) pair. Gromak, et al, state in Ref. 6, Section 25, “To construct the solutions

of (1) for arbitrary values of parameters (α, β) it is sufficient to construct solutions for every

(α, β) in the domain

F :=
{

(α, β)|0 ≤ Re(α) ≤ 1, Re(
√
−2β) ≥ 0, Re(

√
−2β + 2α) ≤ 2

}
.” (18)

-5 -4 -3 -2 -1 0 1 2 3 4 5
α

-2
-1

0
1

2
3

4
5

6
7

8
9
1
0

√

−
2
β

-5 -4 -3 -2 -1 0 1 2 3 4 5
α

-2
0

-1
6

-1
2

-8
-4

0
4

β

FIG. 1. Two views of the Weyl Chambers. The shaded region indicates the real part of the

fundamental domain given in (18). Both figures show several of the chambers and locations of

the rational and special function solutions to PIV (dark hexagrams (blue) represent generalized

Hermite type, light hexagrams (yellow) show generalized Okamoto type, and lines (black) show

parabolic cylinder and confluent hypergeometric types).

Returning to α, β ∈ R the region F is indicated by the shaded region in each subplot of

figure 1. Notice that every parameter choice leading to a rational or special function solution

of PIV has β ≤ 0. This is also true for the asymptotic approximation (12). For this reason,

9
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part of this study will be devoted to the mostly unexplored region of β > 0.

IV. THE NUMERICAL METHOD AND EXPLORATION APPROACH

Explorations of the vast space of parameters and ICs require a fast numerical method

and a systematic approach for comparing solutions of different parameter choices. These

techniques are discussed here.

The extensive pole fields appearing in these solutions have motivated the development of

various solution techniques over the years since their discovery. However, many of the pre-

vious methods were limited in the choice of the parameters in the coefficients by considering

special forms of the equation (e.g. Riemann Hilbert problems20), constrained to the real

axis21,22, or restricted to a small domain around the origin23. The presently used method

extends the ‘pole vaulting’ idea21 in three fundamental ways: (i) use of a ‘pole friendly’

ODE integrator3, (ii) not using any rigid choices of diversion paths around a pole, but in-

stead utilizing a freely branching network of paths in the complex plane, and (iii) targeting

paths toward whole regions in the complex plane (rather than only toward other real axis

locations). A survey of many of these existing numerical methods appears in Ref. 24.

A. A Brief Description of the Numerical Method

The numerical scheme introduced in Ref. 2 features very high orders of accuracy (typically

30 to 50), minimal loss of accuracy in the vicinity of poles, and a flexible path selection

strategy that can efficiently cover large areas of the complex plane, while allowing arbitrary

values of α and β. When integrating from one start location to a single end location this

scheme uses the following strategy, which will be called pole avoidance:

1. Choose the location of the initial condition as the first expansion point.

2. Compute the Padé approximation about the expansion point.

3. Evaluate the Padé approximation a distance h away in each of five directions in a

swath directed toward the target point and choose as the next expansion point the

one with the smallest solution magnitude.

4. Unless the target point has been reached, return to step 2.

10
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This pole avoidance strategy is effective when finding the solution to an IVP at a single

point. However, if the solution is desired at many different points (for instance, for the

visualization of the solution over a region in the complex plane) the method is extended to

the pole field solver.

1. Set up a coarse grid of target points in the complex plane.

2. Select the target points in random order.

3. Apply the pole avoidance strategy to reach a predetermined neighborhood of the cur-

rent target point, starting from the closest point that has already been evaluated. In

the first step this is the location of the IC.

4. Once all of the coarse grid target points have been accounted for, set up a fine grid of

the desired evaluation points.

5. Compute a single last step from the end of each of the previous paths to several nearby

fine grid evaluation points.

B. Pole Counting

The pole field solver makes it possible to rapidly view solutions for a variety of initial

conditions. Therefore, to explore the differences in solution characteristics for each fixed

choice of α and β, but for varying (u(0), u′(0)) ∈ R2, the number of poles on either the pos-

itive or negative real axis is examined. This, paired with the asymptotic behavior discussed

in section III C, allows the characterization of the numerous solution possibilities for each

fixed α and β. Figure 2 (adapted from Ref. 5) provides a prototypical example in the case

of α = β = 0. This figure displays the number of poles on the positive and negative real

axes for each choice of initial conditions shown, and each of the frames is dubbed a pole

counting diagram.

Consider, for now, only the right frame in figure 2, since the left is completely analogous

due to the symmetries discussed in section II A. Each of the ICs marked by a curve or

contained within a shaded region generates a solution with a finite number of poles on the

positive real axis. The color bar indicates the exact number of poles for a given initial

condition with darker and lighter indicating odd and even numbers of poles, respectively.

11
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On the other hand, ICs neither contained in a shaded region nor marked by a curve should

generate solutions with an infinity of poles on the corresponding half (positive/negative) of

the real axis.

Positive Real Axis

-4 -2 0 2 4

u(0)

Negative Real Axis

-4 -2 0 2 4

u(0)

-4
-2

0
2

4

u
′

(
0
)

FIG. 2. Number of poles on the positive and negative real axes for α = 0 and β = 0. For a

description of the markers and shading see figure 3. When β = 0 the ICs marked with light and

dark diamonds are precisely those satisfying the decaying asymptotic condition (12).

In this case of α = β = 0, each of the shaded regions in the right half-plane contains

ICs that generate solutions with an odd number of poles on the positive real axis, while the

u(0), u′(0) values along the isolated curves lead to solutions with an even number, with the

opposite holding in the left half-plane.

Most of the ICs in the shaded regions generate solutions that oscillate as z → +∞ (note

that an oscillation is simply a change in the sign of the derivative); however, each initial

condition marked by a curve, located at the boundary of a shaded region, or designated

by an isolated marker has no oscillations as z → +∞. These solutions are precisely those

that are asymptotic to the roots of the quartic equation (13) as z → +∞. The appropriate

root is indicated by the symbols shown in left frame of figure 3. In the case of α = β = 0

(generally, when β = 0) the solutions matching the behaviors w+
µ , µ = ±1, are the solutions

that satisfy the decaying asymptotic condition (12). When two markers appear along the

same curve, those ICs generate solutions matching both behaviors (in separate intervals of

the real axis), as shown in, for example, figures 11, 12, 26, and 27 (see section VI D for
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As z → +∞

u(z) ∼

√

−2β

2z

u(z) ∼ −

√

−2β

2z

u(z) ∼ −2z

u(z) ∼ −

2

3
z

Closed form 9

8

7

6

5

4

3

2

1

0

FIG. 3. Legend and color bar for figures 2, 10, 13, 14, 15, 16, 17, 18, 19, and 20. The legend shows

the markers indicating the ICs that generate the dominant asymptotic behaviors (14)-(17) and

closed form solutions. If a marker occurs on a curve, then the dominant behavior or type of closed

form solution occurs for all of the ICs along that curve. If a marker is emphasized by containing

an “×”, then it indicates an isolated IC matching the dominant behavior or the IC generates an

isolated rational solution. The gray-scale/pattern bar on the right indicates the number of poles

on the positive or negative real axis.

further discussion).

C. Confirmation of Solution Transformations Using the Numerical Method

The numerical explorations in this study begin with confirmation of the transformations

(5)-(7). This confirmation was completed by first computing the exact transformations of a

(numerically obtained) solution using (5)-(7) at each point in the solution. Then, the trans-

formed results were compared to numerical solutions generated using a single transformed

initial condition.

It was noted5 that PIV (0, 0) has a solution with a pole-free half-plane. Figure 4 shows a

counterpart to this solution with α = 0.5 and β = −0.5. The transformations u±k,µ lead to

the solutions of PIV in figures 6 and 7. In the left frame of figure 4 and all of the frames in

figure 6, the zeros are marked with “×” (red) while the poles are marked with circles (blue

and yellow for residues of +1 and -1, respectively). This same convention will be used for

pole locations throughout the rest of the paper, but zeros will not always be shown since

they appear very regularly with the poles. The left frame of figure 4 shows a pole field

in each of the upper- and lower-left quadrants of the complex plane, while the right frame

indicates that this solution approaches roughly −2/3z as z → +∞ and −2z as z → −∞ for

z ∈ R with a zero of order 1 at z ≈ 0.75.
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FIG. 4. Solution with a pole free half-plane for α = 0.5 and β = −0.5. The left frame shows the

zero and pole locations, while the right shows the solution along the real axis.

Parameter Choices of

Transformed Solutions

-5 -4 -3 -2 -1 0 1 2 3 4 5
α

-2
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-1
0
-8
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-4
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0

2
4

β

FIG. 5. Another view of the Weyl chamber. The larger square with an × marks the original choice

of α = 0.5 and β = −0.5. The other squares mark the parameter space locations of the transformed

solutions.

Notice that in figure 6 the general locations of the pole fields in the upper- and lower-

right quadrants are maintained; however, aside from this similarity, it is cumbersome to

characterize how the transformations (5) through (7) alter the locations of these poles and

zeros. Even for a fixed k, the transformations u±k,µ can vary drastically for the choice of µ and

the upper and lower sign. Further, the transformations (5) and (6) suggest at first glance
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FIG. 6. Zero and pole locations of solutions to PIV resulting from the applications of (5) through

(7) to the solution figure 4.

that any zeros of u(z) should be poles of u±k,µ(u(z), z), k = 1, 2, an u±4 (u(z), z); however, this

simple analysis does not tell the whole story, and is certainly not always the case.

Consider the solutions to PIV asymptotic to the roots of the quartic equation (13) as z →
+∞. Table IV contains the resulting asymptotic behaviors. Specifically, if u(z) possesses the

asymptotic behavior in the row marked u(z) as z → +∞ and z ∈ R, then the transformed

solutions possess the asymptotic behavior in the following rows as z → +∞ and z ∈ R. A

further discussion of the asymptotic behaviors w±µ , with µ = ±1, appears in section III C.

V. NUMERICAL ILLUSTRATIONS OF THE FUNDAMENTAL DOMAIN

Solution types occurring for parameter choices in the fundamental domain are discussed

in the following sections. These (and subsequent) sections describe some solutions as having

adjacent pole free sectors. This terminology arises from evidence in the numerical explo-
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FIG. 7. Solutions along the real axis to PIV resulting from the applications of (5) through (7) to

the solution figure 4.

rations that the poles in the solutions of PIV align in the eight sectors shown in figure 8.

Further discussions of these sectors are available5.

The Eight Sectors of PIV

1

2

4

3

8

7

5

6

FIG. 8. The eight sectors of poles in the solutions of PIV .
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Leading Order Asymptotic Behavior of u(z) as z → +∞
u(z) w+

+1 ∼
√−2β
2z

w+
−1 ∼ −

√−2β
2z

w−+1 ∼ −2
3
z w−−1 ∼ −2z

Leading Order Asymptotic Behavior of Transformed Solutions as z → +∞
u+1,µ(u(z), z) -2z −2µ−2α−√−2β

4z
−2

3
z 2µ+2α+

√−2β
4z

u−1,µ(u(z), z) 2µ−2α+√−2β
4z

−2z −2
3
z −2µ+2α+

√−2β
4z

u+2,µ(u(z), z) µ−2α−(2−α)√−2β+βµ
(2+2αµ−µ√−2β)z

2µ−√−2β
2z

−2
3
z −2z

u−2,µ(u(z), z) 2µ+
√−2β
2z

1−2αµ−µ(2+µα)√−2β+β
(2µ+2α+

√−2β)z −2
3
z −2z

u+3,µ(u(z), z) 2µ−2α+√−2β
4z

−2z −2
3
z −4µα+2α2+β

(−4µ+4α+2
√−2β)z

u−3,µ(u(z), z) −2z 2µ−2α−√−2β
4z

−2
3
z 4α−2µα2−µβ

(4−4µα+2µ
√−2β)z

TABLE IV. Asymptotic behaviors of transformed solutions. If u(z) possesses the asymptotic

behavior in the row marked u(z) as z → +∞ and z ∈ R, then the transformed solutions possess

the asymptotic behavior in the following rows as z → +∞ and z ∈ R. With restriction to the

solutions that are real on the real axis, all options in the table are feasible when β ≤ 0. When

β > 0 those that contain the term
√−2β are not.

A. An Exploration of the Fundamental Domain

In section III D the fundamental domain (18) was introduced, and it was noted that

solutions for all parameter choices in theory can be found by applying the transformations

(5) through (7) to the solutions in this domain. However, the literature describes solutions

in this domain only for the cases α = β = 0 (numerical and asymptotic solutions), (α =

0, β = −2/9) (a rational solution), along the line β = 0 (asymptotically decaying solutions),

and along the curve β = −2(α − 1)2 (asymptotic, rational and special function solutions).

All of these occur on the boundaries of the fundamental domain. In particular, the special

solutions described for each of these parameter choices are indicated in figure 9.

1. Parameter Choices with Rational or Special Function Solutions

It should again be noted that, for each of the parameter choices (α = 0, β = −2
9
) and

along the curve β = −2(α−1)2, the closed form or asymptotic solutions only lead to a single

solution or a one parameter family of solutions in the u(0) versus u′(0) plane. To gain some

insight into arbitrary ICs (in the same manner as figure 2) the frames in figure 10 show the

number of poles appearing on the positive real axis for each of the two remaining vertices

of the fundamental domain, as well as the case (α = 0, β = −2/9). A detailed description
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Closed Form and Asymptotic Solution

Types of the Fundamental Domain
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1 ,d

2 , ν
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−
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,
0
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Asymptotic
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3
z

−2z

0
5 11l 11c 11r 10r

13r 14l 14r 12r

13c 14c 12c

13l 12l

10c

10l

FIG. 9. Locations of the closed form and asymptotic solution types appearing in the fundamental

domain. The ×’s mark the parameter choices in the fundamental domain where pole counts will

be shown along with the appropriate figure number (l, c, and r refer to the left, center, and right

frames, respectively).

of the markers and shading is given in figure 3.

Within the frames of figures 2 and 10 it is easy to see that the ICs of solutions asymptotic

to the roots of (13) appear regularly as the boundaries of shaded regions or along curves

generated by the ICs of solutions asymptotic to (12) or those of special function solutions.

To this point, the last two frames show a peculiar behavior of these asymptotic solutions

when the α and β choices occur at the vertex of a Weyl chamber. For these solutions, the

behaviors of w+
µ , µ = ±1, and w−−1 are present in the same solution, but in different segments

of the positive real axis. Take, for instance, the ICs for (α = 0, β = −2) and (α = 1, β = 0)
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FIG. 10. Number of poles on the positive real axis for α = 0 and β = −2/9, α = 0 and β = −2,

and α = 1 and β = 0. A detailed description of the markers and shading is given in figure 3.

indicated by the arrows in the second two frames of figure 10. Along the curves containing

these ICs there are two or three separate markers. The solutions in a neighborhood of these

particular ICs are shown in figures 11 and 12, illustrating that different dominant asymptotic

behaviors can occur in the same solution (but, in different segments of the real axis).
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FIG. 11. Solutions (along the real axis (top) and pole locations and residues (bottom)) with

adjacent pole free sectors for α = 0 and β = −2. u′(0) = 0 and u0 = 3.170110354518507. This

initial condition is marked with an arrow in the center frame of figure 10.
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FIG. 12. Solutions (along the real axis (top) and pole locations and residues (bottom)) with

adjacent pole free sectors for α = 1 and β = 0. u′(0) = 0 and u0 = 2.989670219313871. This initial

condition is marked with an arrow in the right frame of figure 10.

2. Parameter Choices Along the Boundary β = 0

When the boundary β = 0 is considered the literature generally only describes solutions

to PIV that decay asymptotically as z → +∞. Considering the frame in the right of figure

2, all of the frames of figure 13, and the rightmost frame of figure 10, the ICs generating

these solutions appear as curves with the appropriate markers (i.e. those shown in figure 3).

These ICs are precisely the ones that correspond to solutions matching both the roots w+
µ ,

µ = ±1. That is, these trends are both present when β = 0.

3. Parameter Choices Along the Boundary β = −2(α− 1)2

Next, PIV has a one-parameter family of solutions expressible in terms of the parabolic

cylinder function or confluent hypergeometric function for each choice of α and β along

the boundary described by β = −2(α − 1)2. Table III gives two choices of the parameters

leading to these types of solutions. It was noted previously that the choice of ε = −1 leads

to solutions that are not always real along the real axis. Further, the parameter choices

β = −2(α − 1)2 only satisfy the relationships for α and β (excluding ε = −1) leading to
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α = 0.75, β = 0

-4 -2 0 2 4

u(0)

α = 0.5, β = 0

-4 -2 0 2 4

u(0)

α = 0.25, β = 0

-4 -2 0 2 4

u(0)

-4
-2

0
2

4

u
′

(
0
)

FIG. 13. Number of poles on the positive real axis for parameter choices on the boundary of the

fundamental domain where β = 0. A detailed description of the markers and shading is given in

figure 3. Here the light and dark diamonds refer to the solutions that match the behaviors w+
µ ,

µ = ±1. These ICs are precisely those satisfying the decaying asymptotic condition (12).

the solutions u
[PC;k]
ν,1,d1,d2

if k = 2. Therefore, only the initial conditions leading to solutions

u
[PC;2]
ν,1,d1,d2

are explicitly shown in figure 14. For these parameter choices the trends of w±−1 are

present, and these are again u(z)→ O
(
1
z

)
and u(z)→ −2z as z →∞ and z ∈ R.
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FIG. 14. Number of poles on the positive real axis for parameter choices on the boundary of the

fundamental domain where β = −2(α− 1)2. A detailed description of the markers and shading is

given in figure 3.

4. Parameter Choices Along the Boundary α = 0

Finally, along the boundary α = 0 the locations of ICs generating solutions asymptotic

to the roots w+
+1 and w+

−1 become distinct, separating or expanding into regions with a finite
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number of poles. This is easily seen in the sequence of frames in figure 15.

α = 0, β = −0.125
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4
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FIG. 15. Number of poles on the positive real axis for parameter choices on the boundary of the

fundamental domain where α = 0. Note that the initial conditions for the solution asymptotic to

the root w−−1 occur just outside the window shown here at u(0) ≈ 2.429702 and u′(0) ≈ −7.568548

(still within the same shaded region as the other two cases) in the case of β = −1.125. A detailed

description of the markers and shading is given in figure 3.

5. The Interior to the Fundamental Domain

Parameter choices interior to the fundamental domain behave much like those along the

boundary α = 0. In these cases, solutions asymptotic to each of the roots of (13) are

generated from distinct ICs. This can be witnessed in figure 16.
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FIG. 16. Number of poles on the positive real axis for parameter choices interior to the fundamental

domain. A detailed description of the markers and shading is given in figure 3.
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6. A Note on Connection Formulae

Consider the left and right frames of figure 2, showing the number of poles along the

negative and positive real axes, respectively. One finds that a segment of the curve extending

from the origin and down to the right in the right frame cuts across the shaded region that

extends from the origin up and to the right in the left frame. Along this segment PIV

therefore has solutions that are smooth in both directions. A similar analysis of the pole

counting diagrams for any choice of α when β = 0 would result in an analogous family

of solutions that are smooth in both directions. These appear to be the only examples of

solutions that have connection formulae available in the literature (see, e.g. Refs. 1, 7, 25,

or 26).

Examination of figures 10 through 15 (together with the symmetry (2)) shows that similar

comparisons of the number of poles on the positive and negative real axes will again identify

solutions that are smooth in both directions for regions of ICs near u(0) = u′(0) = 0 in cases

where β is negative. For instance, figures 15 and 16 indicate that such regions (sometimes

only a curve) will exist for all parameter choices within the fundamental domain. Figure 17

illustrates this for a choice interior to the fundamental domain (α = 0.25, β = −0.125).

Positive Real Axis

-4 -2 0 2 4
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Entire Real Axis
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u(0)
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2

4

u
′

(
0
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FIG. 17. Number of poles on the negative real axis (left), entire real axis (center), and positive

real axis (right) for α = 0.25 and β = −0.125.

In a following section, figure 20 will show that similar regions will also occur outside the

fundamental domain when β < 0, however, with the difference that there now may be a

finite number of poles on the real axis in either one or both directions. In contrast, positive

choices of β do not seem to produce any such regions of ICs.
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VI. SOLUTION PATTERNS OUTSIDE THE FUNDAMENTAL DOMAIN

The (α,β) space is far too wide to complete an exhaustive survey here. Therefore, the

rest of this paper focuses on the unexplored space of β > 0 and highlights some solution

types that seem to appear for all α and β.

A. The Unexplored Space of Positive Beta

Studies of PIV with β > 0 are noticeably absent from the literature. For instance, all

known closed form solutions occur only when β is nonpositive. Even the Bäcklund and

Schlesinger transformations are only applicable to β-values that are nonpositive (assuming

u(z) is real when z is real). Exploration of such cases and knowledge of the tronqueé like

solutions that appear in the α = β = 0 case suggests that solutions with β > 0 also feature

noteworthy characteristics. For instance, there are further analogues to the solution that is

pole free for a half-plane.

The asymptotic behaviors (14) and (15) no longer occur as solutions that are real along

the real axis, due to the term
√−2β. Therefore, the figures 18 and 19 are much simpler than

their counterparts with a single IC generating the asymptotic behavior of w−1+1 ∼ −2/3z and

ICs along the boundaries of regions with finite poles leading to that of w−−1 ∼ −2z.
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FIG. 18. Number of poles on the positive real axis for parameter choices where α = 0 and β > 0.

A detailed description of the markers and shading is given in figure 3.
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FIG. 19. Number of poles on the positive real axis for parameter choices where β = 2(α− 1)2 and

β > 0. A detailed description of the markers and shading is given in figure 3.

B. Parameters Larger in Magnitude

This section illustrates some α,β choices slightly larger in magnitude. When β > 0 there

is little difference from the choices presented in the earlier figures. However, nonpositive

choices of β become far more complicated without indicating the existence of further types

of solutions with special characteristics. Even parameter choices in adjacent Weyl chambers

generate significantly different behaviors near u(0) = u′(0) = 0.

C. Solutions With a Nearly Pole Free Half Plane

It was noted5 that when u(z) satisfies the decaying asymptotic condition (12) and α =

β = 0 a particular choice of k leads to a solution that is pole free across the entire left

half-plane. A similar solution is shown for α = 0.5 and β = −0.5 in figure 4. Solutions with

a nearly pole free half plane are not confined to only these special choices of α and β.

In fact, evidence suggests that for each α and β there exists at least one such solution,

and very likely only one. The likelihood that there is only one such solution for each α and β

pair makes this solution a prime candidate for comparing and making connections between

all parameter choices.

For each α and β this special solution type is asymptotic to the root w−+1 ∼ −2/3z

as z → +∞ and z ∈ R. Knowing this, computing the initial conditions leading to such a

solution is a simple matter of solving a boundary value problem (BVP). Applying the familiar

25

170



α = 3, β = −3

-4 -2 0 2 4

u(0)

α = 0, β = −3

-4 -2 0 2 4

u(0)

α = −3, β = −3

-4 -2 0 2 4

u(0)

-4
-2

0
2

4

u
′

(
0
)

α = 3, β = 3α = 0, β = 3α = −3, β = 3

-4
-2

0
2

4

u
′

(
0
)

FIG. 20. Number of poles on the positive real axis along the edge of a grid exterior to the fundamen-

tal domain. The initial conditions for solutions asymptotic to w−+1 in the top middle, bottom left,

and bottom right frames occur outside of the domain shown at (u(0) = −4.6822,u′(0) = 20.7787),

(u(0) = −10.7942,u′(0) = 120.3759), and (u(0) = 49.4606,u′(0) = −2442.3215), respectively. The

locations of these parameters in α vs. β space are shown later in figure 21. A detailed description

of the markers and shading is given in figure 3.

methodology of counting poles along the positive, and now negative, real axes allows the

identification of further special characteristics of these solutions.

In figure 21 the pole counts are shown along the negative and and positive real axes (left

and right frames, respectively) overlayed with the Weyl chambers marked by solid curves.

Also in these frames, dashed lines mark the boundaries of regions in the α versus β plane

where these solutions have only a finite number of poles on the negative real axis. Notice

that these dashed curves form a regular structure similar to that of the Weyl chambers, with

the parabolas offset by one unit on the α axis and the horizontal lines occurring at β values

where these new parabolas and those from the Weyl chambers intersect.
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FIG. 21. Number of poles on the positive (right) and negative (left) real axis for solutions asymp-

totic to w−+1 ∼ −2/3z as z → +∞ and z ∈ R and each α and β. The solid curves indicate the

boundaries of the Weyl chambers, while the dashed lines show the boundaries of regions of finite

poles on both the positive and negative real axes. Note that in this case β > 0 implies an infinity

of poles along R−. The circles (red) containing an × indicate those parameters shown in figure 20.

The changes in shading occur simultaneously in the left and right frames corresponding to a pole

moving from one half of the real axis (positive/negative) to the other.

1. The Tops of the Parabolas

To begin, consider the parameter choices at the tops of these new parabolas. These occur

at α = 2m and β = 0, m ∈ Z. In these cases the poles nearest the origin form very regular

patterns. Examples for several different choices of m are shown in figure 22. Notice the

pole structure near the center of these figures. When m < 0 poles of residue +1 align in a

structure similar to the roots with a positive real part of the degree m Okamoto I polynomial,

while poles of residue −1 appear similar to the roots of the degree m−1 polynomial. On the

other hand, when m > 0 the poles of residue +1 (likewise, −1) align in a structure similar

to all of the roots of the order m + 1 (likewise, m) polynomials. Note that the Okamoto

I polynomials in this context are singly indexed as in Ref. 19 while those in the rational

solutions of PIV are doubly indexed generalized Okamoto polynomials as in Ref. 7.
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FIG. 22. Zero and pole locations of solutions to (1) with various values of m. Note that α = 2m

and β = 0. The case α = m = 0 is shown in one of the subplots of figure 5.

2. Solutions Along the Boundaries of the New Weyl-Like Chambers

When α and β are taken along the boundaries of the new chambers the solutions asymp-

totic to −2/3z are nonoscillatory as z → −∞. Examples of this are shown in the center

frames of figures 23 and 24. Now, if α or β are varied slightly such that the choice of param-

eters no longer falls on one of the boundaries, these solutions can have either an infinity of

poles or oscillate as z → −∞. Examples of this are also shown in the left and right frames

of figures 23 and 24.

3. When β is Positive

If β > 0, then figure 21 shows that all of the solutions asymptotic to w−+1 ∼ −2/3z as

z → +∞, z ∈ R, have an infinity of poles on the negative real axis. These solutions also do

not generally have an entire half-plane free of poles. Instead, numerical evidence points to a

value z0 ∈ R (possibly positive or negative) such that for all z with Re(z) > z0 the solution
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FIG. 23. Solutions (pole locations and residues) normal to the parabola β = −2(α − 2)2. All

frames depict the solutions asymptotic to −2/3z as z → +∞. The center frames occur directly

along the parabolas where α = α0 = 1.25 (top) and α = α0 = 2.75 (bottom). The left and right

frames in both the top and bottom then depict the solutions along the line normal to the parabola

at α = α0 at α0 ± 10−4.

has no poles.

4. Other Solutions With a Pole Free Half-Plane

These solutions asymptotic to −2/3z as z → +∞ are not the only solutions that have a

half-plane pole free. There are, of course, the rational solutions. Likewise, there are solutions

expressible in terms of parabolic cylinder or confluent hypergeometric functions that also

feature a pole free half-plane. These solutions arise for u
[PC;k]
ν,ε,d1,d2

, k = 1, 2, when either d1 = 0

or d2 = 0 with examples shown in figure 25. Generally, these other solutions with a pole

free half-plane feature different asymptotics as z → +∞ than −2
3
z.
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FIG. 24. Solutions (pole locations and residues) normal to the parabola β = −2(α + 2)2. All

frames depict the solutions asymptotic to −2/3z as z → +∞. The center frames occur directly

along the parabolas where α = α0 = −1.25 (top) and α = α0 = −2.75 (bottom). The left and

right frames in both the top and bottom then depict the solutions along the line normal to the

parabola at α = α0 at α0 ± 10−6.

D. Solutions With Adjacent Pole Free Sectors

In Ref. 5 it is pointed out that there are solutions for PIV when α = β = 0 that are similar

to the tronquée solutions of PI . For both PI and PIV (with α = β = 0) these solutions are

characterized by at least two adjacent pole free sectors. In the case of PIV these sectors are

shown in figure 8. Also, when α = β = 0, these solutions are characterized as appearing at

the boundaries of shaded regions or along curves within the pole counting diagrams. From

here on, the analogy with the tronqée solutions of PI will be dropped and these solutions

will be referred to only as having adjacent pole free sectors. The solutions asymptotic to

w−+1 ∼ −2/3z were considered separately in section VI C, but they would certainly fall into

this category. Other solutions with adjacent pole free sectors are asymptotic to w−−1 and

w+
µ , µ = ±1, as z → +∞ and z ∈ R. In certain cases there are two or three such trends

present simultaneously in a single solution, but the trends occur along different segments of
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FIG. 25. Examples (pole locations and residues) of u
[PC;k]
ν,ε,d1,d2

, k = 1, 2, for d1 = 0 or d2 = 0. These

solutions feature a half plane that contains only a finite number of poles.

the positive real axis. For instance, ICs generating solutions matching both w+
+1 and w+

−1

occur when β = 0. This is not surprising considering (14) and (15) and that these are simply

the solutions asymptotic to (12). Several examples are available in5.

In the following figures multiple frames will be shown depicting the different types of so-

lutions with adjacent pole free sectors for each (α,β) pair discussed. In most cases, solutions

where two or more behaviors appear in the same solution will be given in at least one frame.

In every case, the solutions shown occur at the boundary of or along the curve located in

the first shaded region extending from u′(0) = 5 to u′(0) = −5 in the right half plane (i.e.

u(0) > 0) of the appropriate pole counting figure. These solutions are all given along the

line u′(0) = 0.

First, figures 26 and 27 show two types of solutions where the asymptotic behaviors

of w+
µ , µ = ±1, and w−−1 are simultaneously present (along different segments of the real

axis) in a solution generated from a single IC. These are shown for (α = 1, β = 0) and

(α = 0, β = −2).

On the other hand, solutions that match both the roots w±−1 (again, in different segments
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FIG. 26. Solution types (along the real axis (top) and pole locations and residues (bottom)) with

adjacent pole free sectors for α = 1 and β = 0. In all frames u′(0) = 0. The left and right frames

both show that these solutions simultaneously match the roots (in different segments of the real

axis) w+
µ , µ = ±1, and w−−1.
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FIG. 27. Solution types (along the real axis (top) and pole locations and residues (bottom)) with

adjacent pole free sectors for α = 0 and β = −2. In all frames u′(0) = 0. The left and right frames

both show that these solutions simultaneously match the roots w+
µ , µ = ±1, and w−−1.
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of the real axis) were observed along the boundary β = −2(α− 1)2. An example appears in

figure 28 for the case α = 0.5 and β = −0.5.
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FIG. 28. Solution types (along the real axis (top) and pole locations and residues (bottom)) with

adjacent pole free sectors for α = 0.5 and β = −0.5. In all frames u′(0) = 0. The center frame

shows that there are solutions simultaneously matching both the roots w±−1.

Finally, all other parameter choices with adjacent pole free sectors have distinct ICs that

generate solutions asymptotic to each of the roots w+
µ , µ = ±1, and w−−1 as in the figure 29.

VII. CONCLUSIONS

This study of the fourth Painlevé equation started by numerically confirming various

previous analytic and asymptotic results. A further exploration of the fundamental domain

then identified solutions for general (α,β)-values with noteworthy characteristics, such as

numerous families of solutions with adjacent pole-free sectors. Also, solutions with a nearly

pole-free half plane were found.

Most of the observations in this study were obtained numerically, leaving analytical con-

siderations of some of the illustrated solution types an open topic. Although the explorations

extended outside of the fundamental domain in the (α,β)-plane, they considered only (α,β)-

values with relatively small magnitude. Further studies could be performed to look at pairs
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FIG. 29. Solution types (along the real axis (top) and pole locations and residues (bottom)) with

adjacent pole free sectors for α = 0 and β = −0.5. In all frames u′(0) = 0. In this case, all frames

exhibit only one of the asymptotic behaviors w±µ , µ = ±1.

with much larger magnitude. Another extension would be to also consider solutions that

are complex-valued along the real axis.
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2 M. Ghrist, J. Reeger, and B. Fornberg

ODEs have stability regions that include an interval of the form [−iSI , iSI ] on the imaginary
axis. We call the largest such value ofSI theimaginary stability boundary (ISB) of the ODE
integrator, which is also known as the stability ordinate. In the context of solving semidis-
crete wave equations, one desires to use a method with a largeISB, which allows larger
stable time steps; methods with zero ISB’s (i.e., no imaginary axis coverage in the stability
domain) will be unconditionally unstable. In this paper, weexplore the question of which
Adams methods have nonzero ISB’s.

Adams-Bashforth (AB), Adams-Moulton (AM), and Adams predictor-corrector meth-
ods are widely used multistep methods for approximating solutions to first-order differen-
tial equations. These methods generally have lower computational cost per iteration than
equivalent-order Runge-Kutta methods (due to requiring only one new function evaluation
per time step) while maintaining reasonably good accuracy and stability properties [1], [6].
A standardm-step Adams method for approximating solutions tody

dt = f (t,y) has the form

y j+1 = y j +
∫ t j+1

t j

p(t)dt, (1)

wheret j = t0+ jh, h is the stepsize, andy0 = y(t0). Here,p(t) is the polynomial interpolating
the points(tk,yk) for j−m+1≤ k≤ j (AB methods) orj−m+1≤ k≤ j+1 (AM methods).
We will henceforth usej = 0 to simplify the notation. AB methods have orderp = m while
AM methods have orderp = m+1.

In [2, Table G.3-1], it was observed (without proof) that AB methods of orderp (ABp)
have nonzero ISB’s only for ordersp= 3,4, 7,8, 11,12, . . . and AMp methods have nonzero
ISB’s only for ordersp = 1,2, 5,6, 9,10, . . .. These results can be deduced from [7] and
were independently shown in [4] and [3]. While [7] is not applicable to staggered meth-
ods, [4] and [3] proved that staggered AB methods of orderp have nonzero ISB’s only for
p = 2,3,4, 7,8, 11,12, . . ., ; none of these articles addressed Adams predictor-corrector
methods. Henceforth, we will only consider nonstaggered methods.

This study revisits our previous results from [4] with a new formulation and then extends
our results to Adams predictor-corrector methods. In particular, we examine the methods
ABp-AM p and AB(p−1)-AMp, both of which have orderp. We are unaware of any other
studies addressing the ISB’s of such methods for general order p. In [2, Table G.3-1], it was
claimed that for such methods, ‘most’ had nonzero ISB’s while ‘some’ had zero ISB’s. We
now proceed with proving that such methods follow very similar patterns to those of AB
and AM methods, with ABp-AM p methods following the same pattern as AMp methods
and AB(p−1)-AMp methods following the same pattern as ABp methods.

2 Preliminaries

When solving the linear problemdy
dt = λy, the edge of a stability domain is described by the

root ξ = λh of ρ(r)− ξ σ(r) = 0 whenr travels around the unit circler = eiθ . Here,ρ(r)
andσ(r) are the generating polynomials of the method (see, e.g., p. 27 of [6]).

To consider whether or not a stability domain has imaginary axis coverage, we wish to
describe the behavior of the stability domain boundary nearξ = 0. For an exact method,
we haveξ (θ) = lnr (see, e.g. Theorem 2.1 of [6], usingξ = ρ(r)

σ(r) .) Thus an exact method
satisfies

ξ = lnr = ln
(

eiθ
)
= iθ . (2)
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Stabilty Ordinates of Adams Predictor-Corrector Methods 3

A numerical scheme of orderp will instead lead to

ξ (θ) = iθ + cp(iθ)p+1+dp(iθ)p+2+O
(
(iθ)p+3

)
(3)

for some constantscp anddp. The sign of the firstreal term in this expansion will dictate
whether the stability domain boundary near the origin swings to the right or to the left of the
imaginary axis. See Figure 1 for an illustration comparing the stability domains of AB2 and
AB3.
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Fig. 1 Shown are portions of the boundaries of the stability regions for (a) AB2 and (b) AB3, with the solid
line marking the presently relevant section of the stabilitydomain boundary near the origin. In both graphs,
we see thatξ ≈ iθ nearθ = 0.. (a) If the first real term in the expansion ofξ (θ) is negative, then the ISB is
0. (b) If the first real term in the expansion ofξ (θ) is positive, then the ISB is nonzero. For AB3, the ISB is

12
5
√

11
≈ 0.724. The intercepts of AB2 and AB3 on the real axis are−1 and− 6

11, respectively.

2.1 Backwards difference forms of AB and AM methods

In [5][pp. 191-195], Henrici gave a backwards difference representation of (1) for AB and
AM methods. When applied tody

dt = λy, anm-step AB method can be represented by

y1 = y0+hλ
m−1

∑
k=0

γk ∇ky0, (4)

where

γk = (−1)k
∫ 1

0

(
−s
k

)
ds. (5)

Similarly, anm-step AM method can be represented by

y1 = y0+hλ
m

∑
k=0

γ∗k ∇ky1, (6)

where

γ∗k = (−1)k
∫ 1

0

(
−s+1

k

)
ds. (7)
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4 M. Ghrist, J. Reeger, and B. Fornberg

Henrici [5][p. 195] also established that

k

∑
j=0

γ∗j = γk (8)

from whichγ∗k = γk − γk−1.

Lemma 2.1 For all integers k ≥ 3, γk >
1
k .

Proof We first note an alternate way to expressγk. From (5),

γk = (−1)k
∫ 1

0

(
−s
k

)
ds =

1
k!

∫ 1

0
s(s+1)(s+2) . . .(s+ k−1) ds. (9)

We now prove this lemma via induction. Evaluating (9) directly givesγ3 =
3
8 > 1

3 , establish-
ing a base case. For the inductive step, we assume thatγ j >

1
j for some j ≥ 3 and seek to

establish thatγ j+1 >
1

j+1 . From (9),

γ j+1 =
∫ 1

0

s(s+1)(s+2) . . .(s+ j−1)
j!

(
s+ j
j+1

)
ds >

(
j

j+1

)
γ j >

(
j

j+1

)
1
j
=

1
j+1

.

Thusγk >
1
k by induction. ⊓⊔

Direct evaluation of (9) givesγ0 = 1, γ1 =
1
2 , andγ2 =

5
12. Thus as a corollary, we also have

thatγk > 0 for all integersk ≥ 0.

Lemma 2.2 For all integers k ≥ 1, γ∗k < 0.

Proof Evaluating (7) directly givesγ∗0 = 1 andγ∗1 = − 1
2 . For the general case, we rewrite

(7) to find

γ∗k =
1
k!

∫ 1

0
(s−1)s(s+1)(s+2) . . .(s+ k−2)ds. (10)

The integrand is negative for 0< s < 1, soγ∗k < 0 for k ≥ 1. ⊓⊔

2.2 Exploring the exact solution

Using ξ = λh, the exact solution tody
dt = λy is y(t) = eλ t = eξ t/h where, without loss of

generality, we have chosent0 = 0 andy(t0) = 1. For an exact method,ξ = iθ from (2), so

yn = y(nh) = einθ . (11)

An alternate way to view this equation is that we are seeking the exact solution to the rele-
vant difference equation when following the rootr that hasr = eiθ , which givesyn = rn =(
eiθ )n

= einθ .

Lemma 2.3 When yn = einθ ,

∇ky0 = (iθ)k
[
1− k

2
(iθ)+O

(
(iθ)2

)]
.
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Proof For yn = einθ , ∇y0 =
(
1− e−iθ ) and∇ky0 =

(
1− e−iθ)k

so that

∇ky0 =

[
1−
(

1+(−iθ)+
1
2!

(−iθ)2+O
(
(iθ)3

))]k

= (iθ)k
[
1− 1

2
(−iθ)+O

(
(iθ)2

)]k

= (iθ)k
[
1− k

2
(iθ)+O

(
(iθ)2

)]
.

⊓⊔

Corollary 2.1 When yn = einθ ,

∇ky1 = (iθ)k
[
1+

2− k
2

(iθ)+O
(
(iθ)2

)]
.

Proof For yn = einθ , ∇ky1 = eiθ ∇ky0, so by Lemma 2.3,

∇ky1 = eiθ (iθ)k
[
1− k

2
(iθ)+O

(
(iθ)2

)]

= (iθ)k
[
1+(iθ)+O

(
(iθ)2

)][
1− k

2
(iθ)+O

(
(iθ)2

)]

= (iθ)k
[
1+

2− k
2

(iθ)+O
(
(iθ)2

)]
.

⊓⊔

Lemma 2.4 When yn = einθ ,

m

∑
k=0

γk ∇ky0 = 1+
1
2
(iθ)+O

(
(iθ)2

)
.

Proof From (9),γ0 = 1 andγ1 =
1
2 . Using Lemma 2.3, we find

m

∑
k=0

γk ∇ky0 =
m

∑
k=0

γk (iθ)k
[
1− k

2
(iθ)+O

(
(iθ)2

)]

= γ0

[
1+O

(
(iθ)2

)]
+ γ1 (iθ) [1+O(iθ)]+O

(
(iθ)2

)

= 1+
1
2

iθ +O
(
(iθ)2

)
.

⊓⊔

Lemma 2.5 When yn = einθ ,

m

∑
k=0

γ∗k ∇ky1 = 1+
1
2
(iθ)+O

(
(iθ)2

)
.
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Proof From (10),γ∗0 = 1 andγ∗1 =− 1
2 . Using Corollary 2.1, we find

m

∑
k=0

γ∗k ∇ky1 =
m

∑
k=0

γ∗k (iθ)
k
[
1+

2− k
2

(iθ)+O
(
(iθ)2

)]

= γ∗0
[
1+ iθ +O

(
(iθ)2

)]
+ γ∗1 (iθ) [1+O(iθ)]+O

(
(iθ)2

)

= 1+
1
2

iθ +O
(
(iθ)2

)
.

⊓⊔

3 Revisiting stability ordinates for AB and AM methods

To obtain the background for deriving the present predictor-corrector results and demon-
strate a simpler proof than [4], we now apply the backwards difference forms of the Adams
methods to rederive the results for ISB’s of general AB and AMmethods.

Theorem 3.1 AB methods have nonzero ISB’s only for orders p = 3,4, 7,8, . . ..

Proof We first note that it is well known that the ISB for AB1 (Euler’smethod) is zero (see,
for example [2]). One can also check the expansion; AB1 has anexpansion ofξ = eiθ −1=
iθ + 1

2 (iθ)
2+ . . . , which has a negative first real term, offering further evidence that the ISB

for AB1 is zero. We now proceed with the general case forp ≥ 2.
For AB methods, we will show thatcp > 0 anddp < 0 for all ordersp, wherecp and

dp are defined by (3). The pattern for which methods have nonzeroISB’s then follows from
the powers of the imaginary unit in (3). For example, forp = 3, the first real term in the
expansion (3) isc3(iθ)4 = c3θ 4 > 0. Thus the boundary of the stability domain of AB3
swings to the right of the imaginary axis, and we have a nonzero ISB for this method, as
seen in Figure 1b. Forp = 6, the first real term in the expansion (3) isd6(iθ)8 = d6(θ)8 < 0;
thus the stability domain boundary of AB6 swings to the left of the imaginary axis, and the
ISB of this method is zero.

We seek to find the values ofcp anddp in the case of a general ABp method. We apply
(11) to (4), usingξ = λh to find

eiθ = 1+ξ
m−1

∑
k=0

γk ∇ky0. (12)

As m → ∞, the AB method (4) reproduces the exact solution. Thus, using (2), we find

eiθ = 1+ iθ
∞

∑
k=0

γk ∇ky0. (13)

Combining (13) and (12) gives

(ξ − iθ)
m−1

∑
k=0

γk ∇ky0 = iθ ∑
k≥m

γk∇ky0.
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We now substitute forξ using (3), where the orderp = m for AB. Using Lemma 2.3 and
Lemma 2.4, we find

[
cm (iθ)m+1+dm (iθ)m+2+O

(
(iθ)m+3

)][
1+

1
2
(iθ)+O

(
(iθ)2

)]

= γm (iθ)m+1
[
1− m

2
(iθ)+O

(
(iθ)2

)]
+ γm+1 (iθ)m+2 [1+O(iθ)]+O

(
(iθ)m+3

)
.

Collecting like powers ofiθ , we find thatcm = γm and

1
2

cm +dm = γm

(
−m

2

)
+ γm+1

so that

dm = γm+1−
m
2

γm − 1
2

cm = γm+1−
(

m+1
2

)
γm. (14)

From Lemma 2.1, we havecm = γm > 0. Using this result and (9) in (14) gives

dm = γm+1−
(

m+1
2

)
γm

=
1

2(m+1)!

∫ 1

0
s(s+1)(s+2) · · ·(s+m−1)

[
2(s+m)− (m+1)2]ds

= − 1
2(m+1)!

∫ 1

0
s(s+1)(s+2) · · ·(s+m−1)

[
m2+1−2s

]
ds.

Becausem2+1−2s > 0 for m ≥ 2 and 0≤ s ≤ 1, we find thatdm < 0 for m ≥ 2. Noting
that p = m for AB methods, examining the sign of the first real term in (3)establishes our
result that AB methods have nonzero ISB’s only for ordersp = 3,4, 7,8, 11,12, . . .. ⊓⊔

Theorem 3.2 AM methods have nonzero ISB’s only for orders p = 1,2, 5,6, 9,10, . . ..

Proof We first note thatp= 1 (Backwards Euler) andp= 2 (AM2) are well-known A-stable
methods and thus have nonzero ISB’s; one can also check theirexpansions. AM1 has an
expansion ofξ = 1−e−iθ = iθ − 1

2 (iθ)
2+ . . . , which has a positive first real term, indicating

that AM1 has a nonzero ISB. The expansion for AM2 contains only purely imaginary terms;
this is to be expected since the stability domain boundary for AM2 consists of the entire
imaginary axis.

We now prove the general result forp ≥ 3. We seek to find the values ofcp anddp in (3)
for a general AMp method. We apply (11) to (6), usingξ = λh to find

eiθ = 1+ξ
m

∑
k=0

γ∗k ∇ky1. (15)

As m → ∞, the AM method (6) reproduces the exact solution. Thus, using (2), we find

eiθ = 1+ iθ
∞

∑
k=0

γ∗k ∇ky1. (16)

Combining (16) and (15) gives

(ξ − iθ)
m

∑
k=0

γ∗k ∇ky1 = iθ ∑
k≥m+1

γ∗k ∇ky1.
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We now substitute forξ using (3), where the orderp = m+1 for AM. Using Corollary
2.1 and Lemma 2.5, we find

[
cm (iθ)m+2+dm (iθ)m+3+O

(
(iθ)m+4

)][
1+

1
2
(iθ)+O

(
(iθ)2

)]

= γ∗m+1 (iθ)
m+2

[
1+

1−m
2

(iθ)+O
(
(iθ)2

)]
+ γ∗m+2 (iθ)

m+3 [1+O(iθ)]+O
(
(iθ)m+4

)
.

Collecting like powers ofiθ , we find thatcm = γ∗m+1 and

1
2

cm +dm = γ∗m+2− γ∗m+1

(
m−1

2

)
. (17)

From Lemma 2.2, we havecm = γ∗m+1 < 0 for m ≥ 1. Using this result and (10) in (17)
and simplifying gives

dm = γ∗m+2−
(m

2

)
γ∗m+1 (18)

=
1

2(m+2)!

∫ 1

0
(s−1)s(s+1)(s+2) · · ·(s+m−1)

(
2s−m2)ds.

Because(s−1) and(2s−m2) are both negative for 0< s< 1 andm≥ 2, we havedm > 0 and
cm < 0 for AM methods, exactly opposite the result for AB methods.After examining the
sign of the first real term in (3) and noting thatp = m+1 for AM methods, we conclude that
Adams-Moulton methods have nonzero ISB’s only for ordersp = 1,2, 5,6, 9,10, . . .. ⊓⊔

4 Stability ordinates of Adams predictor-corrector methods

We now consider two different categories of Adams predictor-corrector methods: ABp-
AM p methods and AB(p−1)-AMp methods.

4.1 Two examples

We first give two examples, AB1-AM2 and AB2-AM2. The predictor AB1 is given by

yP
1 = y0+h f (t0,y0) , (19)

and the predictor AB2 is given by

yP
1 = y0+

h
2
(3 f (t0,y0)− f (t−1,y−1)) . (20)

In both cases, the corrector AM2 is given by

y1 = y0+
h
2

(
f
(
t1,y

P
1

)
+ f (t0,y0)

)
. (21)

We first consider AB1-AM2. Using (19), substitutingf (t,y) = λy = ξ
h y, and letting

yk = rk to solve the resulting difference equation, we find that (21)becomes

r = 1+
1
2

ξ (1+ξ )+
1
2

ξ . (22)
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To find the boundary of the stability domain, we follow the root ξ in (22) where|r|= 1. The
stability domain of this method is shown in Figure 2(a). We can also letr = eiθ and do a
Taylor expansion forξ (θ) in (22) to find that

ξ = iθ +
1
6
(iθ)3− 1

8
(iθ)4+ . . . . (23)

Because the first real term in this expansion is negative, AB1-AM2 has a zero ISB.
We next consider AB2-AM2. Using (20) and (21), we find that theanalogous equation

to (22) is

r2 = r+
1
2

ξ
(

r+
ξ
2
(3r−1)

)
+

1
2

ξ r,

which leads to the expansion

ξ = iθ − 1
12

(iθ)3+
1
4
(iθ)4+ . . . . (24)

Since the first real term in this expansion is positive, AB2-AM2 has a nonzero ISB (approx-
imately 1.29). The stability domain of this method is shown in Figure 2(b).

−2 −1.5 −1 −0.5 0

−1.5

−1

−0.5

0

0.5

1

1.5

Re(ξ )

Im
(ξ

 )

−2 −1.5 −1 −0.5 0

−1.5

−1

−0.5

0

0.5

1

1.5

Re(ξ )

Im
(ξ

 )

(a) (b)

Fig. 2 Shown are the boundaries of the stability regions for (a) AB1-AM2 and (b) AB2-AM2. The stability
regions consist of the inside of these curves. For (b), the ISB is approximately 1.29. The intercept on the real
axis is−2 for both methods.

4.2 The general case

In general, from (4), our AB predictor will take the form

yP
1 = y0+ξ

M

∑
k=0

γk ∇ky0 (25)

whereM = m−1 for AB(p−1)-AMp methods andM = m for ABp-AM p methods; both
methods have orderp = m+1. The general form of the AM corrector method is given by
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(6), where we replace all instances ofy1 on the right-hand side byyP
1 after the backwards

difference operations are done. This leads to

y1 = y0+ξ
m

∑
j=0

γ∗k ∇ky1+ξ (γ∗0 + γ∗1 + · · ·γ∗m)
(
yP

1 − y1
)

(26)

= y0+ξ
m

∑
j=0

γ∗k ∇ky1+ξ γm
(
yP

1 − y1
)
,

where we have used (8).
We use (25) to substitute foryP

1 in (26) and then use the exact solution (11) to find

eiθ = 1+ξ
m

∑
j=0

γ∗k ∇ky1+ξ γm

(
1− eiθ +ξ

M

∑
k=0

γk ∇ky0

)
. (27)

We now use the exact AM and AB expressions (16) and (13) to substitute for the two in-
stances ofeiθ in (27) respectively. Simplifying gives

0 = (ξ − iθ)

(
m

∑
k=0

γ∗k ∇ky1

)
− iθ ∑

k≥m+1

γ∗k ∇ky1

+ ξ γm

[
(ξ − iθ)

(
M

∑
k=0

γk ∇ky0

)
− iθ ∑

k≥M+1

γk ∇ky0

]
,

whereM = m−1 for AB(p−1)-AMp methods andM = m for ABp-AM p methods.
Applying Lemmas 2.3, 2.4, and 2.5 and Corollary 2.1 gives

0 = (ξ − iθ)
(

1+
iθ
2
+O

(
(iθ)2

))
− iθ ∑

k≥m+1

γ∗k

[
(iθ)k

(
1+

2− k
2

(iθ)+ · · ·
)]

(28)

+ξ γm

[
(ξ − iθ)(1+O(iθ))− iθ ∑

k≥M+1

γk (iθ)k
(

1− k
2
(iθ)+O

(
(iθ)2

))]
.

This formula permits us to compute the expansion of the boundary of the stability region
ξ (θ) near the origin for Adams predictor-corrector methods.

We first consider general ABp-AM p methods, which have orderp.

Theorem 4.1 Predictor-corrector ABp-AMp methods have nonzero ISB’s only for orders
p = 1,2, 5,6, 9,10, . . ..

Proof Our general proof will requirep ≥ 3; we have already established that AB2-AM2
has a nonzero ISB in (24); also see Figure 2(b). Forp = 1, we can find that the series
expansion for the combination of forward Euler predictor and backward Euler correction
is ξ = iθ − 1

2 (iθ)
2+ · · · . Because this has a positive first real term, AB1-AM1 also hasa

nonzero ISB.
We letM = m in (28) and substitute (3), usingp = m+1 to find

0 =
(

cm (iθ)m+2+dm (iθ)m+3+ · · ·
)(

1+
iθ
2
+ γm (iθ + · · ·)

)

−iθ ∑
k≥m+1

γ∗k (iθ)
k
(

1− k−2
2

(iθ)+ · · ·
)

(29)

−(iθ)2 γm ∑
k≥m+1

γk (iθ)k
(

1− k
2
(iθ)+ · · ·

)
+ · · · ,
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where we have kept only the terms that are needed to find the dominant terms in this expres-
sion. Examining the coefficients of the(iθ)m+2 and(iθ)m+3 terms in (29) gives:

cm = γ∗m+1 (30)

dm = γ∗m+2− γ∗m+1
m−1

2
+ γmγm+1− cm

(
1
2
+ γm

)
. (31)

From Corollary 2.1, we know thatcm < 0. Simplifying (30) gives

dm = γ∗m+2−
m
2

γ∗m+1+ γ2
m.

From (18), we know thatγ∗m+2− m
2 γ∗m+1 > 0 for m ≥ 2, so we havedm > 0 for m ≥ 2. Thus

cm < 0 anddm > 0 for m ≥ 2 wherep = m+1. After examining the sign of the first real
term in (3) for this case, we conclude that ABp-AM p methods have nonzero ISB’s only for
ordersp = 1,2, 5,6, 9,10, . . ., a result identical to AMp methods. ⊓⊔

We now examine general AB(p−1)-AMp methods, which also have orderp = m+1.

Theorem 4.2 Predictor-corrector AB(p − 1)-AMp methods have nonzero ISB’s only for
orders p = 3,4, 7,8, . . ..

Proof Our general proof will requirep ≥ 3; we have already established that AB1-AM2 has
a zero ISB in (23); also see Figure 2(a).

We now proceed with the general case forp ≥ 3. We letM = m−1 in (28) and substitute
(3), usingp = m+1 to find

0 =
(

cm (iθ)m+2+dm (iθ)m+3+ · · ·
)(

1+
iθ
2
+ γm (iθ + · · ·)

)

−iθ ∑
k≥m+1

γ∗k (iθ)
k
(

1− k−2
2

(iθ)+ · · ·
)

(32)

−(iθ)2 γm ∑
k≥m

γk (iθ)k
(

1− k
2
(iθ)+ · · ·

)
+ · · · ,

where we have kept only the terms that are needed to find the first dominant terms in this
expression. Examining the coefficients of the(iθ)m+2 and(iθ)m+3 terms in (32) gives

cm = γ∗m+1+ γ2
m (33)

and

dm = γ∗m+2−
(

m−1
2

)
γ∗m+1+ γm

(
γm+1−

m
2

γm

)
− cm

(
1
2
+ γm

)
. (34)

We claim thatcm < 0 anddm > 0 for m ≥ 2. We first separately compute from (33) and
(34) thatc2 =

329
2880 andd2 =− 265

1536. From Lemma 2.1, we haveγm > 1
m for m ≥ 3. Applying

this, substituting (9) and (10) in (33), and simplifying gives

cm > γ∗m+1+
1
m

γm =
1

m(m+1)!

∫ 1

0
(ms+1)s(s+1)(s+2) . . .(s+m−1)ds > 0

for m ≥ 3.
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We now consider the expression fordm in (34). We substitute forcm from (33), note that
γm > 0, and apply Lemma 2.1.

dm = γ∗m+2−
m
2

γ∗m+1+

(
1−m

2

)
γ2

m − γ3
m

< γ∗m+2−
m
2

γ∗m+1+

(
1−m

2

)
γm

m

=
1

2m(m+2)!

∫ 1

0
s(s+1) . . .(s+m−1)

[(
2+m−2m2)+ms

(
2s−m2−2

)]
ds

for m ≥ 3, where we have used (9) and (10) and simplified. Note that
(
2+m−2m2

)
and(

2s−m2−2
)

are both negative for 0< s < 1 andm ≥ 3, sodm < 0 for this case. Thus
cm > 0 anddm < 0 for m ≥ 3 wherep = m+1. After examining the sign of the first real
term in (3), we conclude that AB(p−1)-AMp methods have nonzero ISB’s only for orders
p = 3,4, 7,8, . . ., a result identical to ABp methods. ⊓⊔

5 Conclusions

We have considered the question of when Adams methods of general orderp have nonzero
stability ordinates (ISB’s), which corresponds to being stable when applied to discretized
wave equations (for small enough stepsize). By applying thebackwards difference for-
mulation of the AB and AM methods [5], we have proven that ABp-AM p methods have
nonzero stability ordinates only forp = 1,2, 5,6, 9,10, . . ., which matches AMp methods.
We have also shown that AB(p−1)-AMp methods have nonzero stability ordinates only for
p = 3,4, 7,8, 11,12, . . ., which matches ABp methods.
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