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E↵orts are currently being directed towards a fully implicit, electromagnetic, JFNK-based

solver, motivating the necessity of developing a fluid-based, electromagnetic, preconditioning strat-

egy [15]. The two-fluid plasma (TFP) model is an ideal approximation to the kinetic Jacobian. The

TFP model couples both an ion and an electron fluid with Maxwell’s equations. The fluid equations

consist of the conservation of momentum and number density. A Darwin approximation of Maxwell

is used to eliminate light waves from the model in order to facilitate coupling to non-relativistic

particle models. We analyze the TFP-Darwin system in the context of a stand-alone solver with

consideration of preconditioning a kinetic-JFNK approach.

The TFP-Darwin system is addressed numerically by use of nested iteration (NI) and a

First-Order Systems Least Squares (FOSLS) discretization. An important goal of NI is to pro-

duce an approximation that is within the basis of attraction for Newton’s method on a relatively

coarse mesh and, thus, on all subsequent meshes. After scaling and modification, the TFP-Darwin

model yields a nonlinear, first-order system of equations whose Fréchet derivative is shown to be

uniformly H1-elliptic in a neighborhood of the exact solution. H1 ellipticity yields optimal finite

element performance and linear systems amenable to solution with Algebraic Multigrid (AMG).

To e�ciently focus computational resources, an adaptive mesh refinement scheme, based on the

accuracy per computational cost, is leveraged. Numerical tests demonstrate the e�cacy of the

approach, yielding an approximate solution within discretization error in a relatively small number

of computational work units.
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Chapter 1

Introduction

Plasma is a state of matter in which a large number of atoms have dissociated into their

constituent ions and electrons. The availability of this free charge allows the plasma to interact

with electromagnetic fields. The fields dictate the motion of the particles and, simultaneously, the

motion of the particles alter the fields. This strongly coupled, self-consistent interaction is di�cult

to simulate. Many computational techniques have been used to simulate plasma [6,30]. The models

are diverse and span a large range of physical scales (both spatial and temporal). The granularity of

the model depends on the level of physical description required. For micro physics, one uses kinetic

approaches (Vlasov, Boltzmann). When macro physics is under investigation, one must resort

to fluid (moment-based) models. For accurate and predictable macro scale models, the e↵ects of

micro physics must be e↵ectively be included. This leads to the need for e�cient multiscale kinetic

algorithms. Such algorithms demand implicit methods capable of bridging temporal scales.

Kinetic methods, in general, more accurately represent the physics of a plasma by capturing

the e↵ects of the well-known Vlasov-Maxwell system. One commonly used, e�cient discretization is

the particle-in-cell (PIC) method. Traditional PIC implementations employ explicit time stepping

and su↵er from a strict Courant-Friedrichs-Lewy (CFL) condition that limits time steps to be on

the order of the electron plasma frequency (!p,e). Another well-known di�culty is the finite-grid

instability, which requires the computational mesh to be on the order of a Debye length (�D),

making large computational domains infeasible. On the other hand, in the moment-based fluid

(MB) approach, the plasma is treated as a fluid continuum and is coupled to Maxwell’s equations
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via charge density and current density. There are an abundance of flavors of MB methods, each

of which is capable of targeting various levels of physical realism (Ideal MHD, Resistive MHD,

Hall MHD, Extended MHD, Two-Fluid, etc.) [26]. In general, the fluid-like approach is much

less memory intensive than a kinetic PIC simulation and allows for larger temporal and spatial

scales. The MB methodology is traditionally used to explore slower plasma dynamics on larger

computational domains.

Recently, a fully-implicit, electrostatic, one-dimensional, charge- and energy–conserving ki-

netic PIC algorithm was proposed and implemented [18]. The fully implicit nature of the algorithm

is stable against temporal and spatial instabilities. This allows for a relaxed time step and larger

computational domains, and it ameliorates many shortcomings of traditional PIC. Central to the

algorithm is a Jacobian-Free Newton-Krylov [34] iteration that converges the Maxwell system at

each time step, utilizing the particle system to supply charge density and current density to the

Maxwell system. In turn, every evaluation of the residual in the Krylov method requires that

the particle system be implicitly integrated. In this way, the field values and particle states are

converged nonlinearly to a tight tolerance. This enhances the stability and accuracy properties as

compared to prior implicit PIC implementations. The number of Krylov iterations required at each

time step is often large. Even with advances in GPU computing, heterogeneous architectures, and

clever implementations [19], the primary computational cost remains particle movement in each

residual calculation. Thus, it is crucial to design a robust preconditioning method to reduce the

number of Krylov iterations.

The use of physics-based preconditioning (PBP), in conjunction with JFNK, has proved

fruitful in applications where disparate time scales are present [35]. Sti↵ hyperbolic PDE systems

are transformed into a scalar parabolic PDE that targets fast wave behavior. The eigenvalues of the

original system are, thus, e↵ectively clustered, allowing implicit time-integration schemes to step

over the sti↵ time scale while maintaining a reasonable number of Krylov iterations. Moreover, the

scalar parabolic PDE is often amenable to fast multigrid methods [8], adding little to the overall

computational cost.



3

A recent study demonstrates the e↵ectiveness of using an electrostatic MB two-fluid plasma

(TFP) model to accelerate the fore-mentioned JFNK-based kinetic solver [20]. The preconditioning

process draws heavily from PBP, building a reduced PDE for the electron momentum that is

parabolic in nature. In this way, the electrostatic moment model provides an inexpensive and easily

inverted approximation to the electrostatic kinetic Jacobian. This enables the use of large implicit

time steps while e↵ectively bounding the number of Krylov residual evaluations independent of

ion-electron mass ratios. Speedups of approximately three orders of magnitude versus explicit PIC

were demonstrated.

E↵orts are currently being directed towards a fully implicit, electromagnetic, JFNK-based

kinetic solver, motivating the necessity of developing a suitable MB electromagnetic preconditioning

strategy [18]. The introduction of an electromagnetic model makes using a PBP to reduce the

MB system to a scalar elliptic PDE significantly more di�cult. Recent work has been performed

investigating such an approach [16, 17]. Such preconditioners require physical intuition and some

amount of experimentation to construct. Instead, a more mathematically rigorous alternative

is used that requires little to no physics insight, but still generates systems amenable to fast

multigrid methods. We propose the use of First-Order System Least-Squares (FOSLS) and Nested

Iteration (NI) to approximately invert a full electromagnetic (Darwin) two-fluid plasma system as

a preconditioner.

The FOSLS methodology has been successfully applied to a large variety of problems [10].

First-order systems of PDEs are recast as the minimization of a functional. The resulting weak

formulation admits a bilinear form that, if well-posed in the proper Hilbert space, allows the use

of standard finite element spaces to generate a discrete system amenable to multigrid methods

(Spaces for which e↵ective multigrid methods exist include products of H1, H(Div), and H(Curl).

Recently, the FOSLS approach was successfully applied to incompressible, resistive MHD [2]. MHD

models take an average between an electron fluid and ion fluid to track bulk plasma behavior. The

charge density is assumed to be zero throughout the domain (i.e., quasineutral). The model leads

naturally to the addition of a resistive Ohm’s law that, when used to eliminate the electric field in
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the MHD equations, is amenable to the construction of an H1-elliptic system. In the TFP context,

no such Ohm’s law can be supplied; well-posedness is sought via other mechanisms.

One of the main strategies for nonlinearities that result from a FOSLS discretization is

nested iteration (NI). With NI, most of the work is done on coarse grids where nonlinear iteration

is inexpensive. The approximation to the solution on a coarse grid is interpolated to a finer grid

and used as an initial guess. The process is continued to progressively finer grids until a desired

error tolerance or mesh is reached. In the context of a nonlinear system, an important goal of NI

is to produce an approximation that is within the basis of attraction for Newtons method on a

relatively coarse mesh and, thus, on all subsequent meshes. Often, by the time the finest grid is

reached, very few nonlinear iterations are required. (It was shown in [22, 23] that, if the system is

V-elliptic in H1+✏, for a su�ciently fine grid, only one Newton step and a fixed number of multigrid

V-cycles are necessary to achieve an approximation to within discretization error on that grid.) In

resistive MHD applications, it was demonstrated that the additional work performed on the coarse

grids is a very small fraction of the total work on the finest grid, significantly reducing the total

amount of overall work needed [2].

The goal of this thesis is to explore, in-depth, the viability of such an NI-FOSLS approach to

TFP systems. The MB-TFP system is analyzed in the context of a stand-alone FOSLS solver with

consideration of preconditioning a kinetic-JFNK approach. During JFNK iteration, accumulated

moment information from the particle system would normally be used to both linearize and supply

a closure to the moment-based preconditioner. In the stand-alone context we, instead, assume a

simple isothermal closure in the stress tensor. The performance of the nonlinear system as a fully

independent solver is examined. To this end, the linearized approximations in the Newton iteration

are more complex than would be produced in preconditioning a kinetic-JFNK iteration. Thus,

the results presented here strongly imply that the NI-FOSLS approach would be successful as a

preconditioner for PIC-based methods.

The remainder of the thesis is organized as follows: In Chapter 2, an introduction to the ba-

sics of plasma physics is presented to bring the reader up to speed with terminology, notation, and
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assumptions. Various plasma models are introduced in Chapter 3, including the Darwin approxi-

mation that removes light waves from the model, making it possible to couple to non-relativistic

PIC simulations. Chapter 4 presents the FOSLS methodology for nonlinear PDEs, Nested Itera-

tion, and a brief introduction to Algebraic Multigrid (AMG). In Chapter 5, the FOSLS formulation

for TFP is developed and proved to be H1-elliptic. Crucial to this proof are Section 5.2, where the

Darwin approximation is scaled and shown to be H1-elliptic, and Section 5.3, where the momentum

density and number density equations are modified with an additional constraint and scaled to also

provide H1-ellipticity. The main result follows in Section 5.5, where the full nonlinear coupling

between the fluid model and Maxwell is described and the full system is proven to be uniformly

H1-elliptic in a neighborhood of the exact solution. Numerical results for the NI-FOSLS approach

applied to several test problems are presented in Chapter 6. Finally, discussion and future work

appear in Chapter 7.



Chapter 2

Plasma Physics Background

Plasma is a state of mater in which atoms have dissociated into their constituent ions and elec-

trons. The availability of this free charge allows the plasma to interact with electromagnetic fields.

The fields dictate the motion of the particles and, simultaneously, the motion of the particles alter

the fields. Plasma appears in a large variety of applications (e.g., Earth’s magnetosphere, fusion

reactors, propulsion systems, space craft re-entry and, solar weather); it is becoming increasingly

important to be able to model plasma systems quickly and accurately.

This chapter introduces the basic concepts from plasma physics, the underlying assumptions

used for the remainder of this thesis, and the Vlasov-Maxwel/Darwin system, which acts as the

bedrock from which our models will be derived in Chapter 3.

2.1 Distribution Functions

The most complete description of plasma dynamics is in a 6-dimensional phase space, which

consists of position, r = (x, y, z), and velocity, v = (u, v, w). Ideally, one would track every particle

of each species as a point in phase space. Unfortunately, the number of particles, in even a modest

plasma, far exceeds our current computational limits. For example, magnetically confined fusion

plasmas often have densities that can exceed 1020 particlesm3 [6].

Instead, it is more convenient to represent each species, denoted by the subscript ↵, of the

plasma with a distribution function,

f↵(r,v, t) : R6 ⇥ R! R ↵ = 1, . . . , S . (2.1)
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Each distribution function maps a point in phase space, (r,v) 2 R6, at a given time, t 2 R, to

a probability scaled by the total number of particles. To solidify the meaning of f↵, consider a

plasma contained in a spatial region, ⌦r, and a velocity region, ⌦v. Then a distribution is defined

such that

N↵(t) =

Z

⌦v

Z

⌦r

f↵(r,v, t) dr dv , (2.2)

where N↵(t) is the total number of particles of species ↵ in the subset of phase space denoted by

⌦r ⇥ ⌦v. Particles are assumed to be neither created nor destroyed. In other words, N↵(t) = N↵

remains constant through time. It is assumed that, for all species, ↵, f↵(r,v, t) is smooth and

bounded, and has compact support given by supp(f↵) = ⌦r ⇥ ⌦v. The smoothness is justified by

assuming a large number of particles per unit volume, as well as assuming an ensemble-averaged

distribution function [12]. The boundedness follows from a physical limit on the magnitude of

density, and the compact support is due to the finite extent of the plasma volume and the absence

of particles with infinite velocities.

Velocity moments of distribution functions play an important role in plasma theory and the

derivation of the fluid equations. Each velocity moment (henceforth, moment) represents a di↵erent

physical quantity. Denote the m-th moment of species ↵ as

 m
↵ (r, t) = hvm, f↵(r,v, t)i =

Z

⌦v

vmf↵(r,v, t) dv , (2.3)

where vm is a rank m tensor. For example, v2 = vvT is the outer product, producing a 3⇥3 matrix.

See Table 2.1 for a list of the physical meaning of the first three moments. A more convenient

nomenclature is adopted. The first moment, p↵, is referred to as the momentum density, and the

second moment, S↵, is referred to as the stress tensor (or total stress tensor). The moments depend

only on space and time. The velocity variable has been integrated out. The moments are a more

intuitive way to describe a plasma than the 7 dimensional phase space.
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Moment Variable Physical Quantity

 0

↵ n↵(r, t) Number Density

 1

↵ p↵(r, t) Momentum Number Density

 2

↵ S↵(r, t) Momentum Flux Density Tensor

Table 2.1: The first three velocity moments as defined by (2.3): Number Density, Momentum

Number Density, Momentum Flux Density Tensor.

An often-used peripheral variable is the bulk plasma velocity:

u↵(r, t) =
p↵(r, t)

n↵(r, t)
. (2.4)

While not strictly a moment, the bulk velocity is easy to conceptualize and is used in many deriva-

tions. The reader should associate u↵ with the standard fluid velocity observed in classical fluid

mechanics. From here on out, p↵ is used in favor of u↵ when ever possible due to its natural analog

and symmetry with n↵ in Maxwell’s equations (Section 2.3).

2.2 The Vlasov Equation

The force on particle p of charge qp at location rp with velocity vp is given by the well know

Lorentz force,

Fp = qp [E(rp) + vp ⇥B(rp)] , (2.5)

where E is a known electric field and B is a known magnetic field. Assume that all particles of

the same species contained in an infinitesimal volume of phase space, drdv, centered at (rp,vp),

experience the same force as the force on particle p. This observation, coupled with a simple

conservation argument, leads to the realization that df↵
dt = �cf↵

�t [26]. The notation �cf↵
�t represents

the variation in the distribution function due to collisions between particles and is often referred to

as the collisional derivative. By writing the distribution function in component form and expanding

the total time derivative, it is seen that

df↵
dt

=
@f↵
@t

+
@f↵
@x

dx

dt
+
@f↵
@y

dy

dt
+
@f↵
@z

dz

dt
+
@f↵
@u

du

dt
+
@f↵
@v

dv

dt
+
@f↵
@w

dw

dt
. (2.6)
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Collecting derivatives, v =
h

dx
dt ,

dy
dt ,

dz
dt

iT
, a =

⇥

du
dt ,

dv
dt ,

dw
dt

⇤T
, rf↵ =

h

@f↵
@x , @f↵@y , @f↵@z

iT
, and rvf↵ =

h

@f↵
@u , @f↵@v , @f↵@w

iT
, and substituting the relationship F = ma, it easily follows that

@f↵
@t

+ v ·rf↵ +
q↵
m↵

[E+ v ⇥B] ·rvf↵ =
�cf↵
�t

. (2.7)

Equation (2.7) is known as the Boltzmann equation. Only collisionless plasmas are considered

by letting �cf
�t ! 0. The collisionless version of the Boltzmann equation is known as the Vlasov

equation:

@f↵
@t

+ v ·rf↵ +
q↵
m↵

[E+ v ⇥B] ·rvf↵ = 0 . (2.8)

Systems that obey (2.7) or (2.8) are often referred to as having a “kinetic description”. The Vlasov

(Boltzmann) equation describes how electric and magnetic fields alter the state of the distribution

function, and ultimately the charge density and current density. In turn, the electric and magnetic

fields depend upon these densities through Maxwell’s equations.

2.3 Maxwell’s Equations

Crucial to the time evolution of a plasma is the interaction of charged particles with the

electric field, E, and magnetic field, B. The location and velocities of charged particles produces

an electromagnetic field while, simultaneously, the electromagnetic field alters the acceleration of

the particles. Maxwell’s equations describe fields produced in the presence of a known charge

density and current density.

Given a plasma consisting of multiple species, ↵, the charge density, ⇢, and current density,

j, are defined as

⇢(r, t) =
X

↵

q↵n↵(r, t) , (2.9)

j(r, t) =
X

↵

q↵p↵(r, t) . (2.10)

It should be noted that the charge density and current density can both be expanded as moments

of the distribution function defined in Table 2.1:

⇢(r, t) =
X

↵

q↵

Z

⌦v

f↵(r,v, t) dv , (2.11)
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j(r, t) =
X

↵

q↵

Z

⌦v

vf↵(r,v, t) dv . (2.12)

Without derivation, Maxwell’s equations are

r⇥E(r, t) +
@B(r, t)

@t
= 0 , (2.13)

✏
0

r ·E(r, t) = ⇢(r, t) , (2.14)

�✏
0

@E(r, t)

@t
+

1

µ
0

r⇥B(r, t) = j(r, t) , (2.15)

r ·B(r, t) = 0 , (2.16)

where the constants, ✏
0

and µ
0

, are the permittivity of free space and the permeability of free

space, respectively. Equation (2.13) is Faraday’s law, (2.14) is Gauss’ law, (2.15) is Ampère’s law,

and (2.16) is the solenoidal constraint on B. For a particularly accessible derivation and clear

explanation of physical meaning, see [47]. Maxwell’s equations are written in a more convenient

form by defining the di↵erential matrix,

M =

2

6

6

6

6

6

6

6

6

4

r⇥ @t

✏
0

r· 0

�✏
0

@t
1

µ0
r⇥

0 r·

3

7

7

7

7

7

7

7

7

5

, (2.17)

electromagnetic field vector,

Z = [E(r, t),B(r, t)]T ,

and source vector,

S = [0, ⇢(r, t), j(r, t), 0]T .

Maxwell’s equations now simply read

MZ = S . (2.18)

In Section 5.2, the properties of (2.18) are analyzed with respect to a FOSLS formulation under the

Darwin approximation. We now have all the ammunition needed to define the overarching plasma

system that guides both kinetic and and MB methods.
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2.4 Vlasov-Maxwell System

The Vlasov-Maxwell (VM) system is produced by coupling the Vlasov equation (2.8) and

Maxwell’s equations (2.13) - (2.16) by means of the moment expansions of charge and current

densities (2.11) and (2.12). For an S species plasma, this gives

@f↵
@t + v ·rf↵ + q↵

m↵
[E+ v ⇥B] ·rvf↵ = 0 , (↵ = 1, . . . , S) ,

r⇥E+ @B
@t = 0 ,

✏
0

r ·E =
S
P

↵=1

q↵
R

⌦v

f↵ dv ,

�✏
0

@E
@t + 1

µ0
r⇥B =

S
P

↵=1

q↵
R

⌦v

vf↵ dv ,

r ·B = 0 .

(2.19)

This 7-dimensional (i.e., r, v, and t) system of integro-di↵erential equations is the highest-level

model that we consider. The system of integro-di↵erential equations is not computationally tractable

for large spatial or time scales, due to requiring a 7D discretization. The VM system is made more

manageable for larger scales by casting the equations into a purely di↵erential setting. Two common

methods of approaching (2.19) are explored in Chapter 3.

2.5 The Darwin Approximation

The VM system supports a myriad of waves, the fastest being the light wave, which travels

with wave speed c = 1p
✏0µ0

. This is easily demonstrated in a vacuum (⇢ = 0 and j = 0) by taking a

curl of (2.13) and, a time derivative of (2.15), and eliminating the r⇥ @tB. This process results in

1

c2
@ttE��E = 0 , (2.20)

where r⇥r⇥E was reduced to ��E using the fact that, in a vacuum, r·E = 0. Solving Maxwell’s

equations on a discrete grid produces light waves that travel less than c due to the numerical

dispersion relation. Thus, when coupling a discrete Maxwell solver to a particle simulation, it

is possible that the particles can travel faster than the numerical speed of light. This unnatural
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numerical artifact causes an e↵ect known as numerical Cherenkov radiation, whereby computational

particles artificially radiate (i.e., lose energy) [41].

In non-relativistic kinetic simulations, the speed of light is spurious in PIC simulations, and

it may lead to enhanced numerical noise. Overcoming these instabilities can be accomplished by

the injection of artificial dissipation, but only at the expense of energy conservation [20]. These

issues can be circumvented by taking the asymptotic limit, c ! 1, or, alternatively, ✏
0

! 0.

Unfortunately, this limit forces quasineutrality:

⇢ = lim
✏0!0

✏
0

r ·E = 0 . (2.21)

When coupling to a non-relativistic kinetic simulation, this is insu�cient; charge separation e↵ects

are required. For these reasons, a Darwin model is preferred. The model is an approximation that

decomposes fields into their solenoidal and irrotational components in order to analytically project

out light waves while maintaining charge separation in Gauss’ law [32].

The Darwin approximation is rigorously constructed by asymptotic expansion of a Lagrangian

formulation of Maxwell’s equations with v/c⌧ 1 [36]. To more intuitively build the approximation,

consider separating vector fields into their solenoidal (divergence-free) and irrotational (curl-free)

components: E = Er+Es, B = Bs, and j = jr+ js. The subscript s denotes solenoidal components

(i.e., r ·Es = 0) and the subscript r denotes irrotational components (i.e., r⇥Er = 0). It should

be noted that the magnetic field is naturally solenoidal. Expanding equations (2.13) - (2.16) into

these components leads to

✏
0

r ·Er = ⇢ ,

r ·B = 0 ,

� 1

c2
@tEs � µ

0

js +r⇥B = µ
0

jr +
1

c2
@tEr ,

r⇥Es + @tB = 0 .

(2.22)

The third equation contains an entirely solenoidal field on the left-hand side and an entirely ir-

rotational field on the right-hand side. It is clear that the solenoidal component of the electric

field is what supports the propagation of light waves. These waves are projected out of the system
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by taking the asymptotic limit that the speed of light wave propagation is infinite, 1

c2
@tEs ! 0

(see [36, 44] for a detailed discussion). What remains is the Darwin model:

✏
0

r ·Er = ⇢ ,

r ·B = 0 ,

�✏
0

@tEr +
1

µ0
r⇥B = j ,

r⇥Es + @tB = 0 .

(2.23)

Coupling (2.23) with (2.8) via moment equations gives us our final overarching system of equations,

the Vlasov-Darwin model:

@f↵
@t + v ·rf↵ + q↵

m↵
[(Er +Es) + v ⇥B] ·rvf↵ = 0 (↵ = 1, . . . , S) ,

r⇥Er = 0

✏
0

r ·Er =
S
P

↵=1

q↵
R

⌦v

f↵ dv ,

�✏
0

@tEr +
1

µ0
r⇥B =

S
P

↵=1

q↵
R

⌦v

vf↵ dv ,

r ·B = 0

r⇥Es + @tB = 0

r ·Es = 0 .

(2.24)

To reiterate, the final Darwin approximation does not support the propagation of light waves, and

the model is only accurate in non-relativistic regimes. The key property that separates the Darwin

model from a standard, quasineutral Maxwell model with a dropped displacement current is that it

supports charge separation e↵ects in Gauss’ law. This is desirable when coupling to a TFP where

a distinct number densities, for each species, must be tracked independently.
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Plasma Models

There are many levels of physical descriptions of a plasma. Kinetic models address micro

physics e↵ects, while fluid-like models are more convenient for the larger macro physics. Both

of these levels are addressed by considering (1) a kinetic particle-in-cell method, which amounts

to using the method of characteristics in a 6-dimensional phase space to directly approximate

solutions to the Vlasov equation, and (2) a moment-based fluid model that couples self-consistently

to Maxwell’s field equations via linear combinations of the moment variables introduced in Section

2.1.

Each approach stems from the same VM system (2.19) but di↵ers significantly in its ap-

proach to discretization. Described in broad strokes, the methods di↵er in when discretizations

and moment integrals are performed. The PIC method first discretizes the distribution function,

and moment integrals are taken only when coupling to Maxwell through the charge density and

current density. In contrast, the MB fluid method examines moment integrals of the entire Vlasov

equation to produce new primitive fluid-like variables that couple directly to Maxwell without

need for integration; the resulting system of PDEs is then discretized (See Figure 3.1 for a coarse

description).

Recently, a fully implicit, nonlinear, kinetic PIC algorithm was developed in the electrostatic

and electromagnetic limits [17, 18, 20]. The kinetic PIC algorithm is implicitly coupled to a MB

model, e↵ectively marrying the the micro and macro levels to build a true scale-bridging algorithm.

The end of this chapter is dedicated to a brief overview of this new method, with special considera-
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tion as to how inversion of a MB two-fluid plasma model would provide an excellent preconditioner

to these state-of-the-art implicit algorithms.

Vlasov-Maxwell

Z

⌦v

vm{Vlasov} dv = 0

=) {Fluid Model}

{Fluid Model} ! {Maxwell}

f↵ =

Np
X

p=1

fp
↵ =

Np
X

p=1

{Macro Particles}

{Maxwell} �! {M.O.C} for each p

{M.O.C}
R

⌦v

vm... dv

�������! {Maxwell}

Moment MethodParticle-in-Cell

Figure 3.1: The general idea of both the PIC and MB methods. In PIC, the distribution functions

are discretized into macro-particles. The force generated from the electromagnetic fields are used in

the method of characteristics (M.O.C) to integrate the particles forward in time. The results from

the M.O.C are then injected into Maxwell via moments. In MB, moments of the Vlasov equation

generate a fluid model. The fluid model is then coupled self consistently to Maxwell.

3.1 Particle-in-Cell Method

In PIC, the distribution function is assumed to take the form of a linear combination of so-

called macro-particles. Each macro-particle is moved via a simple set of kinematic ODEs, ultimately

approximating the method of characteristics of the Vlasov equation (2.8). The carefully chosen

shape of the macro-particles in phase-space make the moment integrals in (2.19) reduce to a simple

sum that can be rapidly evaluated. The electromagnetic fields can then be interpolated back to the

macro-particle positions in order to compute the Lorentz force. The process is repeated to move

the particles forward in time using either an explicit time step or, more recently, a fully implicitly
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iterative method [18].

Consider a thought experiment where every particle in a plasma is tracked. This, of course, is

not computationally attainable. But, nevertheless, assign to each particle an index p = 1, . . . , NT ,

where NT =
P

↵
N↵ is the total number of particles. The distribution function of species ↵ is

assumed to take the form

f↵(r,v, t) =
X

p2S↵

�(r� rp(t))�(v � vp(t)) , (3.1)

where � is the Dirac delta function and S↵ represents the set of all particle indices belonging to a

species ↵. Observe that (2.8) is formally linear in f↵, motivating the use of method of characteristics

on each particle [38]. That is, given the initial position and velocity of a particle, the particle

trajectory is described by

@rp(t)

@t
= vp(t) ,

@vp(t)

@t
=

qp
mp

[E(rp(t), t) + vp ⇥B(rp(t), t)] .

Unfortunately, as the particles, and thus the distribution functions, evolve forward in time, the elec-

tromagnetic fields dependence on charge and current density must too be considered. Substituting

(3.1) in to (2.14) and (2.15) gives

✏
0

r ·E =
S
X

↵=1

q↵

Z

⌦v

X

p2S↵

�(r� rp)�(v � vp) dv =
NT
X

p=1

qp�(r� rp) , (3.2)

and

�✏
0

@E

@t
+

1

µ
0

r⇥B =
S
X

↵=1

q↵

Z

⌦v

v
X

p2S↵

�(r� rp)�(v � vp) dv =
NT
X

p=1

qpvp�(r� rp) . (3.3)

As a reminder, S is the number of species, whereas S↵ is the set of particle indices for species type

↵. The delta function in velocity space integrates away leaving only a summation of spatial delta

functions in (3.2), and particle velocities multiplied by spatial delta functions in (3.3).

Combining the above models and simplifying, a hypothetical plasma model is assembled, in
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which the behavior of every particle is captured. The particles follow the kinematic equations

@trp(t) = vp(t) , p = 1, . . . , NT ,

@tvp(t) = qp
mp

[E (rp(t), t) + vp(t)⇥B (rp(t), t)] , p = 1, . . . , NT ,
(3.4)

and the fields are updated by

r⇥E (r, t) + @tB (r, t) = 0 ,

✏
0

r ·E (r, t) =
NT
P

p=1

qp�(r� rp(t)) ,

�✏
0

@tE (r, t) + 1

µ0
r⇥B (r, t) =

NT
P

p=1

qpvp(t)�(r� rp(t)) ,

r ·B (r, t) = 0 .

(3.5)

Although verbose, each variable’s dependence on r and t is explicitly stated to make clear how a

discretization would be performed. The above equations are often referred to as a Klimontovich

model. The PIC method is closely related to (3.4) and (3.5). The main di↵erence is that the

measure-zero spatial delta function is replaced with a more smoother shape function, ��(r), with

supp�� 6= 0. This is discussed in detail in the next section.

3.1.1 Shape Functions

In practice (3.4) and (3.5) are impossible to implement due to current constraints on com-

putational resources. The requirement of modeling every particle is relaxed to, instead, modeling

a large number of clusters of particles. The clusters of particles are called macro-particles and are

assumed to move together as a cohesive unit through phase-space. In reality, this should not be the

case: the particles that comprise each macro-particle should experience di↵erent forces and, as the

macro-particles move through the simulation, should experience dispersive e↵ects. For a heuristic

argument as to why this may be neglected, see [6].

Each macro-particle is given a finite spatial shape but remains a Dirac delta function in

velocity space. Redefine p = 1, . . . , Nm as the macro-particle index, where Nm is the number of

macro-particles and Np is the number of particles contained in each macro-particle (NT = NmNp).
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Each distribution function now takes the form

f↵ =
Nm
X

p=1

Np��(r� rp)�(v � vp) .

The shape function, ��(⇠), is often chosen to abide by the following [38]:

(1) The supp(��) is a bounded, simply connected region on the order of the size of the discrete

mesh spacing.

(2) The integral is unity,
1
R

�1
��(⇠) d⇠ = 1

(3) The shape function is radially symmetric, that is, ��(⇠ � ⌘) = ��(⌘ � ⇠)

With some amount of foresight, the shape functions are chosen to be constructed from B-

splines. These functions posses several nice properties that are utilized in [18] to achieve charge

conservation. In 1D, the first few B-splines are defined as follows:

b
0

(⇠) =

8

>

<

>

:

1 : |⇠| < 1

2

,

0 : otherwise .
(3.6)

b
1

(⇠) =

8

>

>

>

>

>

<

>

>

>

>

>

:

1 + ⇠ : �1 < ⇠  0 ,

1� ⇠ : 0 < ⇠  1 ,

0 : otherwise .

(3.7)

b
2

(⇠) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

1

8

(2⇠ + 3)2 : �3

2

< ⇠  �1

2

,

3

4

� ⇠2 : �1

2

< ⇠  1

2

,

1

8

(3� 2⇠)2 : 1

2

< ⇠ < 3

2

,

0 : otherwise .

(3.8)

Define the B-spline induced 1D shape function of order � as

��(x) =
1

�p
b�

✓

x

�p

◆

, (3.9)

where �p denotes the length-scale of the support of the macro-particle in one dimension. In multiple

dimensions, the shape function is simply the tensor product between 1D shape functions:

��(r� rp) =
1

�p,x�p,y�p,z
b�

✓

x� xp
�p,x

◆

b�

✓

y � yp
�p,y

◆

b�

✓

z � zp
�p,z

◆

. (3.10)
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A rigorous definition of shape functions is left for the curious reader to explore (see [6]). The minor

change to the shape function leads to the overlying system of equations that govern PIC methods:

@trp(t) = vp(t), p = 1, . . . , Nm ,

@tvp(t) = qp
mp

[E (rp(t), t) + vp(t)⇥B (rp(t), t)] , p = 1, . . . , Nm ,
(3.11)

and,

r⇥E (r, t) + @tB (r, t) = 0 ,

✏
0

r ·E (r, t) = ⇢(r, t) =
Nm
P

p=1

qp��(r� rp(t)) ,

�✏
0

@tE (r, t) + 1

µ0
r⇥B (r, t) = j(r, t) =

Nm
P

p=1

qpvp(t)��(r� rp(t)) ,

r ·B (r, t) = 0 .

(3.12)

Note that the sums have been transformed into sums over macro-particles. The order of the shape

function and discretization methods dictate the particular flavor of PIC.

3.1.2 Discretization

In PIC, there are two simultaneous discretizations. The first we have already seen; the

distribution function is assumed to take the form for a summation of macro-particles that move

with Lagrangian variables, rp and vp. The second is for Maxwell’s equations, where a discrete mesh

is used. We must be precise in how the particle discretization and field discretization communicate.

Consider a simple finite di↵erence discretization of Maxwell’s equations. While more sophis-

ticated spatial discretization can be used, the arguments that follow do not change significantly.

At a given mesh point, i, and time, t, the charge and current densities are well defined by

⇢i(ri, t) =
Nm
P

p=1

qp��(ri � rp(t)) ,

ji(ri, t) =
Nm
P

p=1

qpvp��(ri � rp(t)) ,
(3.13)

where ri represents the location of mesh point i. In a finite di↵erence setting, the case of defining

a field value at a Lagrangian position, rp, is as not straightforward. To simplify the matter, it

is assumed that the fields “reach” to the particles in a symmetric fashion to how particles are
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interpolated to mesh locations in (3.13). That is, the same symmetric shape function is used to

compute the values of E(rp(t), t) and B(rp(t), t) in the equations of motion. Define

E(rp(t), t) =
P

i2Mp

Ei(t)�̂�(ri � rp(t))�p,x�p,y�p,z, (3.14)

where

Mp = {i | ri 2 supp��(r� rp)}

is the index of all mesh points within the support of macro-particle p. The �p,x�p,y�p,z term is

included to bring the height of �� back to unity. The interpolation of B(rp(t), t) is defined in a

similar way.

All that remains is to choose a time discretization. In classical PIC, a leap-frog method is

used to explicitly time step. Let the superscript k denote a variable at t = k�t. The particles are

updated with

rk+1
p �rkp

�t = v
k+1/2
p

v
k+1/2
p �v

k�1/2
p

�t = qp
mp

P

i

h

E
k+1/2
i ��(ri � rkp) +

1

2

(vk+1/2
p + v

k�1/2
p )⇥B

k+1/2
i ��(ri � rkp)

i

,

(3.15)

and the fields are updated with
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(3.16)

where the superscript h denotes a basic finite di↵erence discretization. This iteration is summarized

in Figure 3.2.
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When PIC is integrated in this way, there a two major conditions required in order to achieve

stability. The time-step, �t, must be on the order of the extremely fast plasma frequency ( 2⇡
!p,e

) and

the mesh spacing, �x, �y, and �z, must be on the order of the relatively small Debye length (�D).

These restrictions make both long time scale and large physical domains very costly to simulate.

Although costly, PIC captures kinetic e↵ects that fluid models are incapable of detecting.

Recent advances in implicit PIC methods have relaxed many of the restrictions of classical

PIC methods, while still capturing relevant kinetic physics [18]. To do justice to these powerful,

new, implicit PIC methods, we must first delve deeper into moment-based methods.

Interpolate

Fields ! Particles

Interpolate

Particles ! Moments

Update Fields

Push Particles
F = q (E+ v ⇥B)

(rp,vp)

⇢, j E, B

Figure 3.2: Classic PIC, where a leap-frop approach is used to first push the particles. The particle

information is then accumulated to into the moments (⇢ and j). The moment information is the

used to update the fields with Maxwell’s equations. Finally, the field data is interpolated back to

the particle positions. The process continues until a desired time-step is reached.

3.2 Moment Method

In the MB method, moments of the Vlasov equation (2.8) are taken to produce a system

of fluid-like equations in number densities, n↵, and momentum densities, p↵. These quantities

then couple directly back into the Maxwell system, (2.13) - (2.16), through charge and current

density. This process eliminates all moment integrals, e↵ectively casting the VM system into a

purely di↵erential fashion.

The reader should keep in mind that, although derivations for an arbitrary number of species
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are provided, later, only two species, ions, i, and electrons, e, are considered. A mass-weighted

averaging of the fluid equations recovers the traditional magnetohydrodynamic (MHD) equations.

Instead, we focus on the system where no such averaging is performed and each species of the

plasma has its own set of fluid-like equations.

3.2.1 The Zeroth Moment

We begin by examining the zeroth moment of (2.8):

Z

⌦v



@f↵
@t

+ v ·rf↵ +
q↵
m↵

[E+ v ⇥B] ·rvf↵

�

dv = 0 . (3.17)

The first term on the left-hand side becomes

Z

⌦v

@f↵
@t

dv =
@

@t

Z

⌦v

f↵ dv =
@n↵

@t
,

where pulling a @t through the integral is justified because the velocity domain, ⌦v, is independent

of time. The second term reduces to

Z

⌦v

v ·rf↵ dv =

Z

⌦v

r · (vf↵) dv = r ·
Z

⌦v

vf↵ dv = r · p↵ ,

where the identity, v · rf↵ = r · (vf↵), is realized by remembering that, in phase-space, v is

considered to be an independent variable. The divergence can be pulled through the velocity

integral for a similar reason.

In the final term, let F = q↵
m↵

[E+ v ⇥B], and let V (⌫) be the volume of a sphere of radius ⌫

in velocity space centered at the origin. Take ⌫ large enough such that ⌦v ⇢ V (⌫). Then it holds

that

Z

⌦v

F ·rvf↵ dv =

Z

V (⌫)
F ·rvf↵ dv =

Z

V (⌫)
rv · (F · f↵) dv =

Z

@V (⌫)
(F · f↵) · d� = 0 ,

where the last integral vanishes due to the velocity support of the distribution function being

contained entirely in V (⌫). The above chain of equalities uses the fact that

rv · (E+ v ⇥B) = rv ·E+B ·rv ⇥ v � v ·rv ⇥B = 0 .
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Collecting the above expansions gives the zeroth moment of (2.7):

@tn↵(r, t) +r · p↵(r, t) = 0, ↵ = 1, . . . , S . (3.18)

This equation is referred to as the continuity equation. It states that the number density of species,

↵, is changing in time can only be due to a flux in the momentum density.

3.2.2 The First Moment

The first moment of (2.7) is

Z

⌦v

v



@f↵
@t

+ v ·rf↵ +
q↵
m↵

[E+ v ⇥B] ·rvf↵

�

dv = 0 . (3.19)

Starting with the first term, we get

Z

⌦v

v
@f↵
@t

dv =
@

@t

Z

⌦v

vf↵ dv =
@p↵

@t
,

where a time derivative was pulled through both v and the integral because neither are time

dependent.

The second term contains the product v2, which should be interpreted as the outer product

vvT , as detailed in Section 2.1. Again, using tricks similar to the second term in the continuity

derivation,
Z

⌦v

vvT ·rf↵ dv =

Z

⌦v

r · (vvT f↵) dv = r ·
Z

⌦v

vvT f↵ dv = r · S↵ .

The last term on the left-hand side is subtle and special care must be taken. The integral reduces

to

q↵
m↵

Z

⌦v

(vFT ) ·rvf↵ dv =
q↵
m↵

Z

V (⌫)

(vFT ) ·rvf↵ dv ,

with F = E+ v ⇥B and V (⌫) as described previously. Rearranging the integrand gives

q↵
m↵

Z

V (⌫)

(vFT ) ·rvf↵ dv =
q↵
m↵

Z

V (⌫)

rv · (vFT f↵) dv � q↵
m↵

Z

V (⌫)

rv · (vFT )f↵ dv .
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Using the divergence theorem and the fact that f↵ vanishes on the boundary of V (⌫), the first term

on the right is zero. To reduce the second term on the right, observe that

vFT =

0

B

B

B

B

B

@

u (�wBy + vBz + Ex) u (wBx � uBz + Ey) u (�vBx + uBy + Ez)

v (�wBy + vBz + Ex) v (wBx � uBz + Ey) v (�vBx + uBy + Ez)

w (�wBy + vBz + Ex) w (wBx � uBz + Ey) w (�vBx + uBy + Ez)

1

C

C

C

C

C

A

,

and take the velocity divergence of each row in order to conclude that

rv · (vTFT ) =

0

B

B

B

B

B

@

(�wBy + vBz + Ex)

(wBx � uBz + Ey)

(�vBx + uBy + Ez)

1

C

C

C

C

C

A

= F .

Using the above identity, the forcing term reduces as follows:

� q↵
m↵

Z

V (⌫)

rv · (vFT )f↵ dv = � q↵
m↵

Z

V (⌫)

Ff↵ dv = � q↵
m↵

n↵E� q↵
m↵

p↵ ⇥B .

Collecting all of the above simplifications gives the conservation of momentum equation:

@tp↵ +r · S↵ �
q↵
m↵

n↵E� q↵
m↵

p↵ ⇥B = 0 ↵ = 1, . . . , S . (3.20)

3.2.3 Closure

The observant reader would notice that, due to the v · rf↵ term in (2.8), each moment

equation produces a variable of the next higher moment of the distribution function. The zeroth

moment produced an expression in n↵ and p↵. The first moment produced an expression in n↵,

p↵, and S↵. The pattern continues in this way: each moment equation adds an additional unknown

variable. At some point, an equation of closure is required. That is, a function, C, that relates the

highest moment to some or all of the lower moments:

 n
↵ = C( 0

↵, . . . , 
n�1

↵ ) . (3.21)

A closure is supplied in the stress tensor, S↵. To do so, it is convenient to expand the stress tensor

into two parts. This is done by defining the pressure tensor as

P↵ =

Z

⌦v

(v � u↵)(v � u↵)
T dv . (3.22)
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The pressure tensor is computed in the same way as the stress tensor, but the velocities are shifted

into the fluid frame of reference. Using this definition, the original stress tensor is expanded as

S↵ = P↵ +
p↵p

T
↵

n↵
. (3.23)

Substituting the expanded definition of the stress tensor into (3.20) gives

@tp↵ +r ·
✓

p↵p
T
↵

n↵

◆

+r ·P↵ �
q↵
m↵

n↵E� q↵
m↵

p↵ ⇥B = 0 ↵ = 1, . . . , S . (3.24)

Closures are often supplied to the pressure tensor instead of to the stress tensor. Many

possible closures exist for the pressure tensor; we provide three simple descriptions (see [26] for a

detailed discussion of each).

Cold Plasma In the cold plasma assumption, the temperature of the plasma is not large

enough for the constituent of particles to produce pressure e↵ects. The cold plasma closure is

simply

P↵ = 0 . (3.25)

Adiabatic Plasma The next level of complexity arises by assuming the plasma pressure

behaves similar to that of an ideal gas, that is, that the pressure e↵ects are isotropic:

P↵ = 1P↵ ,

where 1 is the identity tensor and P↵ is a scalar pressure that obeys

d

dt

✓

P↵

n�
↵

◆

= 0 .

Here, � is well known from thermodynamics to be the heat capacity ratio. The simplest form of

this relation is known as the isothermal (� = 1) approximation,

P↵ =
BT↵

m↵
n↵ =

1

2
v2th↵

n↵ , (3.26)

where B is Boltzmann’s constant and vth↵ is the thermal velocity.
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Chew-Goldberger-Low In the Chew-Goldberger-Low model, di↵erent adiabatic assump-

tions are made in the direction parallel (k) and perpendicular (?) to the magnetic field:

P̂↵ =

2

6

6

6

6

6

4

Ps? 0 0

0 Ps? 0

0 0 Psk

3

7

7

7

7

7

5

,

where P̂↵ is written in a local coordinate system relative to the magnetic field. A local transfor-

mation of coordinates can be used to then find P↵.

3.2.4 Multi-Fluid Plasma Equations

At this point, we pause and collect all of the above moment integral derivations and couple

them to (2.13) - (2.16):

@tp↵ +r ·
⇣

p↵pT
↵

n↵

⌘

+ T↵
m↵
rn↵ � q↵

m↵
n↵E� q↵

m↵
p↵ ⇥B = 0 , ↵ = 1, . . . , S ,

@tn↵ +r · p↵ = 0 , ↵ = 1, . . . , S ,

r⇥E+ @B
@t = 0 ,

✏
0

r ·E�
S
P

↵=1

q↵n↵ = 0 ,

�✏
0

@E
@t + 1

µ0
r⇥B�

S
P

↵=1

q↵p↵ = 0 ,

r ·B = 0 ,

(3.27)

where an isothermal closure was supplied to eliminate P↵ from the system (r ·P↵ = T↵
m↵
rn↵). It

should be noted that Boltzmann’s constant, B, is absorbed into the temperatures, T↵. The system

of equations, (3.27), is labeled as the multi-fluid plasma (MFP) equations.

The VM system, (2.19), has been reformulated into a first-order PDE with unknowns in n↵,

p↵ (for ↵ = 1, . . . , S), E, and B. The phase space velocity dependence has been removed from

the system, making all unknowns functions depend only on r and t. We soon turn focus to the

analysis of the two-fluid plasma (TFP) system with ↵ = i, e (ions and electrons). The main goal of

this thesis is to explore the viability of an NI-FOSLS-based solver applied to the TFP equations.

The above system is considered in an entirely standalone context, but the results have important
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implications towards preconditioning a recently developed implicit PIC method [15]. In the next

section, an overview of this new kinetic-based implicit method is provided, paying special attention

to where the inversion of a discretization of (3.27) is important.

3.3 Implicit Particle-in-Cell

Recent developments towards a fully implicit electromagnetic PIC method have been made

[15, 19, 20]. This new version of PIC has the very desirable property of being fully implicit and

charge- and energy-conserving, and the potential to be GPU accelerated. The nonlinear, fully

implicit nature of the algorithm requires the use of a JFNK solver (described in Appendix A.1)

to converge the macro-particle system and Maxwell model simultaneously. Central to the JFNK

approach is a nonlinear residual calculation. At each time step, the JFNK solver converges the

current field values and particle states to a tight tolerance. This new implicit approach relaxes

many of the restrictions that explicit PIC methods put on mesh spacing and time step size.

In this section, only an overview of the approach is provided to motivate the need for an

MB preconditioner. We are lax in notation, and neglect to rigorously define shape function orders,

discretization schemes, moment accumulation details, and particle sub-stepping, all of which are

important to the success of the method [18]. The reader should come away with a rough idea of

the main components that make a kinetic-JFNK solver tick.

A slight modification is made to (3.15) and (3.16) to make the system fully implicit. We

modify the particle evolution equations to be

rk+1
p �rkp

�t =
vk+1
p +vk

p

2

vk+1
p �vk

p

�t = qp
mp

P

i



Ek
i +Ek+1

i
2

�̂�(ri � rkp+rk+1
p

2

)

�

+ qp
mp

P

i



vk
p+vk+1

p

2

⇥ Bk
i +Bk+1

i
2

�̂�(ri � rkp+rk+1
p

2

)

�

.

(3.28)

Given the vector of particle states, rk =
⇥

rk
1

, . . . , rkNm

⇤

and vk =
⇥

vk
1

, . . . ,vk
Nm

⇤

, the field values Ek

and Bk, and a current approximation of Ek+1 and Bk+1, define the forward solution of (3.28) for
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particle states at k + 1 as

Qk+1 = E
⇣

Zk+1

⌘

= E
⇣

Zk+1 ; Qk,Zk
⌘

, (3.29)

where Qk =
⇥

rk,vk
⇤T

and Zk =
⇥

Ek,Bk
⇤T

. System (3.28) is solved rapidly for each particle via a

simple iterative method, such as Picard. This is where the use of modern computer architectures,

such as GPUs, can be exploited to accelerate the above forward solution.

Equation (3.16) is modified in a similar fashion:
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(3.30)

Consider the case where Qk and Zk are known. Then, for given approximations, Zk+1 and Qk+1,

define the residual of (3.30) as

G
⇣

Zk+1,Qk+1

⌘

, (3.31)

where the dependence upon Qk and Zk is assumed. Observe that the residual can be evaluated

given only the previous values of Zk and Qk and a current guess for Zk+1. That is, Qk+1 can be

acquired via (3.29):

G
⇣

Zk+1

⌘

⌘ G
⇣

Zk+1, E
⇣

Zk+1

⌘⌘

. (3.32)

It should be clearly stated that every call to the residual function, G(Zk+1), implicitly requires a

call to E(Zk+1). The GPU architecture is well tailored to tackle these types of particle integration.

The nature of GPU memory structure allows for both the particle integration and accumu-

lation in (3.30) to be carried out e�ciently [43]. The particle integration step is be carried out by
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all GPU threads simultaneously and further accelerated by storing electromagnetic field data using

the very fast read-only texture memory. The accumulation of particle states onto mesh points is

performed in a hierarchical way, exploiting the local and shared GPU memory spaces to reduce the

thread contention when writing back into the global memory space [21]. But, even with advances in

GPU computing, heterogeneous architectures, and clever implementations [19], the cost of E �Zk+1

�

remains costly.

Nevertheless, the dimension of the problem has been reduced to a more manageable size,

bringing the application of a Newton-type method back into the realm of possibilities. Unfortu-

nately, due to the complicated evolution operator, E , which, within itself, involves an iterative

method to converge, the explicit formation of the Jacobian of G(Zk+1) is nearly impossible. To

bypass this, a Jacobian-Free Newton Krylov (JFNK) technique is employed. In short, the JFNK

approach (see Appendix A.1) forms a Krylov subspace for an approximation of the Jacobian by

successive application of the function G. Applying a preconditioner to the JFNK iteration can

greatly reduce the dimension of the Krylov subspace and, in turn, the number of expensive GPU

function evaluations.

A recent study demonstrates the e↵ectiveness of using an electrostatic MB two-fluid plasma

(TFP) model to precondition a JFNK-based kinetic solver [20]. The electrostatic MB model pro-

vides an inexpensive and easily inverted approximation to the electrostatic kinetic Jacobian. This

enables the use of larger implicit time steps, while bounding the number of Krylov iterations in-

dependent of the ion-to-electron mass ratio. Speedups of approximately three orders of magnitude

versus explicit PIC were demonstrated.

E↵orts are currently being directed towards a fully implicit, electromagnetic, JFNK-based

kinetic solver, motivating the necessity of developing a suitable MB electromagnetic preconditioning

strategy [15]. Currently, the use of a physics-based preconditioners are used to fill this roll [17].

We, instead, explore the more mathematically rigorous alternative of using a First-Order System

Least-Squares (FOSLS) discretization to approximately invert the full electromagnetic (Darwin)

two-fluid plasma system as a preconditioner.
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3.4 Two-Fluid Plasma Model As a Preconditioner

To use the TFP-Darwin system as a preconditioner, defined as P�1, for the kinetic JFNK

solver, we must define the process of applying such a system to the kinetic residual. When a

preconditioned JFNK method is applied to (3.32), a Krylov subspace is built for the linear system

JP�1�W = �G(Zk+1) , (3.33)

where J is the approximate Jacobian of G. In the formulation of the Krylov subspace, P�1 must

be applied to a residual vector, R, and return an update, �Z.

The TFP-Darwin system is

@tpi +r · Si � qi
mi

niE� qi
mi

pi ⇥B = 0 ,

@tni +r · pi = 0 ,

@tpe +r · Se � qe
me

neE� qe
me

pe ⇥B = 0 ,

@tne +r · pe = 0 ,

r⇥Er = 0 ,

�qini � qene + ✏
0

r ·Er = 0 ,

�qipi � qepe � ✏0@tEr +
1

µ0
r⇥B = 0 ,

r ·B = 0 ,

r⇥Es + @tB = 0 ,

r ·Es = 0 ,

(3.34)

where the closures for S↵ are outlined in Section 3.2.3. To see how the TFP system can be used as
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a preconditioner, consider a simple implicit time discretization:

1

�tpi +r · Si � qi
mi

niE� qi
mi

pi ⇥B+ {. . .} = 0 ,

1

�tni +r · pi + {. . .} = 0 ,

1

�tpe +r · Se � qe
me

neE� qe
me

pe ⇥B+ {. . .} = 0 ,

1

�tne +r · pe + {. . .} = 0 ,

r⇥Er = 0 ,

�qini � qene + ✏
0

r ·Er = 0 ,

�qipi � qepe � ✏0 1

�tEr +
1

µ0
r⇥B+ {. . .} = 0 ,

r ·B = 0 ,

r⇥Es +
1

�tB+ {. . .} = 0 ,

r ·Es = 0 ,

(3.35)

where the notation {. . .} contains all previous known time step information, and all unknowns are

taken to be at the current time step. Linearizing the system gives

1

�t�pi +r · �Si � qi
mi

ni,0�E� qi
mi

E
0

�ni � qi
mi

pi,0 ⇥ �B+ qi
mi

B
0

⇥ �pi,0 = �Ri ,

1

�t�ni +r · �pi = �Ri ,

1

�t�pe +r · �Se � qe
me

ne,0�E� qe
me

E
0

�ne � qe
me

pe,0 ⇥ �B� qe
me

B
0

⇥ �pe,0 = �Re ,

1

�t�ne +r · �pe = �Re ,

r⇥ �Er = �REr ,

�qi�ni � qe�ne + ✏
0

r · �Er = �REr ,

�qi�pi � qe�pe � ✏0 1

�t�Er +
1

µ0
r⇥ �B = �RB ,

r · �B = �RB ,

r⇥ �Es +
1

�tB = �REs ,

r · �Es = �REs ,

(3.36)

where subscript 0 denotes the current linearization and the right-hand sides are the negative residual

of (3.35). Observe that the residuals are computable given only a current value of Zk+1. The logic

follows from the same reasoning used in (3.32); moment variables are computable via forward

particle solve. The preconditioning process of applying P�1 is carried out as follows:
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(1) Given the current field values, Zk+1, and particle states, Qk+1, compute the residual of

(3.34).

(2) Solve the system of equations (3.36) for updates.

(3) Return the update to �Z, discarding the fluid variable updates.

(4) Proceed with the JFNK step, calling the particle evolution operator with the preconditioned

values of Zk+1.

The fluid equations included in the TFP system act as a coarse approximation to the particle

system. The solution process adjusts the field values accordingly. This, in turn, greatly reduces

the number of Krylov iterations needed, shifting much of the load onto the MB preconditioner.

3.4.1 Kinetic Stress Tensor Closure

Until now, we have shrugged o↵ the stress tensors that appear in (3.34) for the prconditioning

process. There are several ways to address this. The stress tensor could be expanded into the

convective derivative plus pressure tensor, as was carried out in Section 3.2.3:

r · S↵ = r ·P↵ +r · p↵p
T
↵

n↵
.

Upon linearization, the convective derivative is eliminated and a closure is supplied in pressure. A

second option is to use the particle states to accumulate a density normalized stress tensor [49]:

Ŝ↵ =
S↵

n↵
.

The normalized stress tensor is assumed be known for any given Krylov step, as it is entirely

supplied by the particles. In this way, the particles are used to close the system. This modification

transforms the stress tensor as

r · S↵ = r ·
⇣

Ŝ↵n↵

⌘

, (3.37)

where n↵ is the fluid unknown. Focus is now given to the process of solving such TFP systems in

a stand alone context. All findings that are made can be directly applied to inversion of system

(3.36).
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3.5 Standalone Two-Fluid Plasma

To fully analyze the TFP-Darwin system, the MB fluid method is cast into a standalone

context, independent of a kinetic PIC solver. The final TFP-Darwin system we consider is

@tpi +
Ti
mi
rni � qi

mi
niE� qi

mi
pi ⇥B = �r ·

⇣

pipT
i

ni

⌘

,

@tni +r · pi = 0 ,

@tpe +
Te
me
rne � qe

me
neE� qe

me
pe ⇥B = �r ·

⇣

pipT
e

ne

⌘

,

@tne +r · pe = 0 ,

r⇥Er = 0 ,

� qi
✏0
ni � qe

✏0
ne +r ·Er = 0 ,

�qiµ0

pi � qeµ0

pe � ✏0µ0

@tEr +r⇥B = 0 ,

r ·B = 0 ,

r⇥Es + @tB = 0 ,

r ·Es = 0 ,

(3.38)

where an isothermal closure is used for the pressure tensor, (3.26). The convective derivatives that

appear on the right-hand side are considered optional and, if included, are taken as known source

terms, lagged in either time or mesh. Pure conductive boundary conditions are prescribed:

n̂ ·rn↵ = 0 ,

p↵ = 0 ,

n̂⇥ (Er +Es) = 0 ,

n̂ ·B = 0 ,

(3.39)

where n̂ denotes the outward boundary normal. To make system (3.38) well posed, stronger

boundary conditions are imposed. The additive constraint on electric field is decomposed into

separate constraints for both the irrotational and solenoidal components:

n̂⇥Er = 0 ,

n̂⇥Es = 0 .
(3.40)
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The decomposed boundary condition is justified by realizing that the irrotational electric field must

generated from an electrostatic potential, Er = �r�. The electrostatic potential is constant on

the boundary and, thus, r� ? n̂ on the boundary. It directly follows from (3.39) that n̂⇥Es = 0

on the boundary as well. The problem will be solved on a simple two-dimensional domain and,

thus, di↵erential operators are projected into their two-dimensional counter parts as outlined in

Appendix A.2.

The viability of the system as a standalone, nonlinear fluid solver in the context of NI-FOSLS

is the focus of the remainder of the thesis. When used in the context of a kinetic-JFNK iteration

within a PIC method, a linearization of (3.38) well approximates the kinetic-Jacobian [15, 20]. In

other words, the above TFP system captures the required physics necessary to supply the kinetic

JFNK approach with a robust preconditioner. A direct coupling to a kinetic-based simulation is

out of the scope of this thesis and is reserved for future work. See Chapter 7 for a discussion of

potential pitfalls.



Chapter 4

Numerical Methods

There are four main ingredients that work together to construct a solution technique for the

TFP-Darwrin system: First-Order System Least Squares (FOSLS), Nested-Iteration (NI), Adap-

tive Mesh Refinment (AMR), and Algebraic Multigrid (AMG). The FOSLS methodology guides the

discretization and linearization process, whereby the choice of a finite element basis gives rise to a

discrete linear system. The NI process uses a sequence of nested meshes to reduce the overall com-

putational cost of the nonlinear iterations [1]. An AMR algorithm is used during NI to adaptively

select the next finer mesh. The process works by minimizing the overal accuracy per computational

cost (ACE) [50]. Finally, each linear system that is generated during the solution process is tackled

with a conjugate-gradient-accelerated AMG solver. All of these components working together are

shown in Chapter 6 to solve the TFP-Darwin system using only a handful of work units on the

finest mesh.

4.1 First-Order System Least Squares

The First-Order System Least-Squares (FOSLS) finite element methodology was initially

applied to general convection-di↵usion problems [10]. Since then, the approach has been success-

fully applied to a large variety of problems such as Navier-Stokes, Maxwell’s equations, neutron

transport, and, most relevantly, incompressible resistive MHD [2,11,39,42].

The FOSLS approach boasts many advantages over its Galerkin counterpart. Namely, it

avoids the constraint of choosing finite element spaces that must conform with the well-known
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inf-sup condition of Ladyzhenskaya-Babus̆ka-Brezzi (LBB condition). In many cases, the resulting

weak formulation admits a bilinear form that, if H1 elliptic, can be used with standard finite

element spaces to generate a discrete system amenable to multigrid methods. Moreover, since the

weak form is derived from a minimization, the resulting linear system is symmetric positive definite

(SPD). Finally, the FOSLS functional serves as an excellent local error indicator for adaptive mesh

refinement (AMR).

Of course, nothing comes for free. Unless the system being considered is naturally first-order,

more dependent variables must be introduced into the system to remove higher order operators.

For example, a FOSLS formulation of the convection-di↵usion equation requires four independent

variables, as compared with one for the second-order scalar system. Often, the second-order sys-

tems under consideration are a result of reducing naturally first-order physics systems, and the

application of FOSLS can restore the unknowns to their primitive forms. Solutions to FOSLS for-

mulations do not exactly satisfy conservation equations. Instead, the equations are only minimized

in an L2 sense. Special methods can be used to project the solution back onto a conservative

solution space [28, 29]. For example, if conservation of mass is of more importance to the physics

than the accuracy of other equations, special steps can be taken to enhance conservation of mass.

Last but not least, manipulating a system into an equivalent H1-elliptic formulation (as will be

defined in (4.7)) is challenging.

In the FOSLS methodology, a PDE is first recast (if needed) into a di↵erential first-order

system and the solution is posed as a minimization by taking the L2-norm of each equation. Denote

the nonlinear first-order system as F(u) = f , such that F : V ! �

L2

�q
, and define the minimization

by

u⇤ = argmin
u2V
kF(u)� fk2 , (4.1)

where u⇤ is the exact solution, V is an appropriate Hilbert space, and q represents the number of

equations.

Minimization is achieved either by applying a Newton iteration directly to the nonlinear
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functional, which is called a FOSLS-Newton method, or by linearizing the PDE first, establishing

a Newton iteration, and applying a FOSLS to the linearized system. This latter approach is called

a Newton-FOSLS method and is the approach considered here.

Toward that end, let u` be the current approximation of the solution and consider the Taylor

expansion,

F(u` + �) = F(u`) + F 0(u`)[�] +
1

2
F 00(û`)[�, �] , (4.2)

where F 0(u`)[v] is the first Fréchet derivative at u` in direction v and F 00(û`)[v,w] is the second

Fréchet derivative at u` in directions v and w. Here, û` = u` + ↵� for some ↵ 2 (0, 1). The

first Fréchet derivative, F 0(u`) : V ! L2, is a linear operator on V. To simplify notation, denote

L` = F 0(u`) and the residual by R` = f � F(u`).

A Newton iteration is established by ignoring the second Fréchet derivative and solving for

� by minimizing the L2-norm:

�` = argmin
�2V

kL`� �R`k2, (4.3)

u`+1

= u` + �` . (4.4)

The nonlinear iteration process is illustrated in Figure 4.1. At each step of the Newton iteration,

a quadratic functional is minimized, resulting in an equivalent weak variational form: find �` 2 V

such that, 8v 2 V,

hL`�`,L`vi = hR`,L`vi , (4.5)

where h·, ·i denotes the standard L2 inner product. Define the bilinear form

B`(v,w) = hL`v,L`wi . (4.6)

Assume that B` is continuous and coercive in the V-norm (also called V-elliptic), that is, there

exist constants c
0

, c
1

> 0, dependent only on u`, such that

B`(v,w)  c
1

||v||V ||w||V ,

B`(v,v) � c
2

||v||2V .
(4.7)
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Then B is an inner product on V and the Riesz representation theorem implies that there exists a

unique solution, �` 2 V , that satisfies (4.5). In Section 5.5, it is shown that, for the TFP system

(3.38), such bounds exist uniformly for every u` in a neighborhood of the exact solution, u⇤.

u0 u1 u2 u3u4

Figure 4.1: The dashed black line is a cartoon representation of a nonlinear functional. At each step

of Newton’s method, linearization produces a local quadratic functional, pictured as gray parabolas.

Each quadratic functional is minimized. The nonlinear functional is linearized again around the

found minimum and the process continues until a desired tolerence is reached.

Discretization is accomplished by restricting the minimization in (4.1) to a finite-dimensional

subspace, Vh ⇢ V, resulting in a discrete nonlinear system. This is, in turn, solved by a Newton-

FOSLS iteration by restricting the minimization in (4.3) and weak form in (4.5) to Vh, resulting in

a discrete weak form: given discrete approximation uh
` , find �

h
` 2 Vh such that, 8vh 2 Vh,

hF 0(uh
` )[�

h],F 0(uh
` )[v

h]i = h(f � F(uh
` )),F 0(uh

` )[v
h]i . (4.8)

An important result that follows from (4.7) and (4.9) is that the functional is equivalent to measur-

ing error in the V-norm. This measure is locally computable and can be used e�ciently to influence

refinement strategies. This type of adaptive refinement is discussed further in Section 4.3.
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Bounds (4.7) hold for any finite-dimensional subspace, which implies a unique solution to the

discrete weak form (4.8). Choice of a finite element basis, Vh = span {�i}Ni=1

, in (4.5) admits a

linear system, Ahxh = b, where

⇣

Ah
⌘

i,j
= hF 0(uh

` )[�i],F 0(uh
` )[�j ]i , (b)i = h(f � F(uh

` )),F 0(uh
` )[�i]i. (4.9)

Given bounds (4.7), matrix Ah is symmetric positive definite. In the special case that the operator,

F 0(uh
` ), is continuous and coercive in V = H1, then an optimal multigrid algorithm exists for the

generated linear system [10, 11]. If V is a product space of H1, H(Div), and H(Curl), optimal

multigrid algorithms may also exist [3–5].

Ignoring boundary conditions, the least-squares weak form, (4.5), is equivalent to

hL⇤
`L`�,vi = hL⇤

`R`,vi , (4.10)

where the self-adjoint operator, L⇤
`L`, is known as the formal-normal. It is instructive to examine

the structure of the formal-normal for FOSLS formulations. In many systems, scalings can be

applied to L` such that the formal-normal yields well-behaved, balanced, elliptic operators. The

structure of the formal-normal acts as a litmus test of the e↵ectiveness of using multigrid methods

on the system.

4.2 Nested Iteration

Nested Iteration (NI) is employed as part of our solution technique. The main idea of NI

is that the problem is solved on a sequence of successively finer meshes. The total cost of all the

work performed on the coarse meshes is small, but generates an initial guess for the finest mesh

that is close to the minimum of the nonlinear functional, thus requiring only a few additional

Newton-FOSLS iterations.

To be more precise, let ⌦h represent a mesh with spacing h. Let uh
i be the initial guess for

a Newton-FOSLS iteration on ⌦h and uh
f be the final iterate of the Newton-FOSLS process. An

initial guess, uH
i , is made on a very coarse mesh, where computation is extremely cheap. Some
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nonlinear solver is then employed to resolve the approximate discrete solution, uH
f . Mesh refinement

is performed, and the discrete coarse mesh solution is interpolated into the finer mesh, ⌦
H
2 . The

interpolated solution is taken as the initial guess for the Newton-FOSLS iteration,

PuH
f ! u

H
2
i , (4.11)

where P represents the interpolation operator between meshes. The process is repeated on all

subsequent levels, interpolating each approximate discrete solution into the next finer mesh as an

initial guess. See Figure 4.2 for an illustration of NI. The process is stopped once a specified

tolerance or desired mesh is reached. The goal of all of the work done on the coarse meshes is to

produce an initial guess on the finest mesh that well approximates the minimum. In this way, the

finest mesh Newton-FOSLS process only needs to perform a handful of iterations [22, 23].

Figure 4.2: In the Nested Iteration process, a sequence of increasingly finer meshes is used to reduce

the overall computational cost of a simulation.

To make the NI strategy as e�cient as possible, it is desirable to reduce the amount of work

done on the coarse meshes while still producing a suitable initial guess for the fine mesh problem. It
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is not necessary to solve the discrete coarse problems exactly; the solution only needs to be within

discretization error such that the interpolation into the next finer mesh moves the overall algorithm

closer to the true solution, u⇤ [53].

Let {u2h
0

, u2h
1

, . . .} be a sequence of Newton-FOSLS iterates converging to the true discrete

solution, u2h⇤ , on mesh ⌦2h. At some point during the iteration, interpolating into the finer space,

⌦h, moves the approximate solution closer to the true solution, u⇤, than continuing towards u2h⇤ .

Take u2h` to be the current iterate and consider two strategies:

(a) Interpolate the current approximation, u2h` , into grid ⌦h, Pu2h` ! uh
0

, and perform a Newton-

FOSLS iteration to give uh
1

.

(b) First, take an additional iteration on grid ⌦2h to produce u2h`+1

, interpolate into grid ⌦h,

Pu2h`+1

! ûh
0

, and then perform a Newton-FOSLS iteration to give ûh
1

.

Figure 4.3 gives a geometric representation of a situation where the additional work in strategy

(b) provides no additional benefit, that is, kuh
1

� u⇤k < kûh
1

� u⇤k. The decision must be made

carefully. One one hand, the iterations on mesh ⌦2h are cheaper than on mesh ⌦h but, on the other

hand, the iterations are not heading towards the correct solution. Outlining a rigorous strategy for

minimizing the number of linearization steps and AMG V-Cycles on the coarse meshes is out of

the scope of this thesis, but is covered extensively in [1, 53] and its utility demonstrated in [2].
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Figure 4.3: The black line represents the discrete Hilbert subspace of solutions on mesh ⌦2h and

the gray plane represents the larger (fine mesh) discrete Hilbert subspace is solutions on mesh ⌦h.

The true continuous solution is represented by u⇤. It should be noted that this figure is not to

scale: in reality, u⇤ should be much closer to uh.

4.3 Adaptive Refinement

To further improve the e�ciency of the NI-Newton-FOSLS algorithm, the FOSLS functional

is used as a local error estimator, indicating where mesh refinement should be performed. Define

the FOSLS functional as

G`(�
h; f) = kLh

` �
h �R`k2 , (4.12)

with Lh
` = F 0(uh

` ), the discrete analog of L`. A small touch of algebra gives

G`(�
h; f) = kLh

` �
h �R`k2 = kLh

` �
h � Lh

` �⇤k2 = kLh
` ek2 , (4.13)
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where �⇤ is the true solution to the discrete linear problem and e = �h � �⇤ is the remaining error.

Using the result of V-ellipticity in (4.7) and the chain of equalities in (4.13) leads to the fact that

c
1

kekV  G`(�
h; f)  c

2

kekV . (4.14)

That is, the FOSLS functional is an equivalent measure to the size of the error in the V-norm. The

upper bound implies that the FOSLS functional can be used as an a posteriori error measure. That

is, when G`(�
h
;f)

c2
is large, so is the remaining error. Moreover, the functional is locally computable

in each element, revealing where in the mesh more computational e↵ort should be focused.

On a given mesh, when the NI-Newton-FOSLS strategy indicates that it is time to refine and

move the solution into a finer space, the FOSLS functional is computed locally in each element.

Instead of refining all elements (i.e., uniform refinement), only a fraction of the elements with the

largest error are marked for refinement. The elements that are refined are picked using the Accuracy

per Computational cost E�ciency (ACE) measure [24, 45]. In short, ACE balances the reduction

in the error of refining elements with the induced computational overhead on the next level.

After performing the desired number of Newton-FOSLS iterations on mesh j, consider or-

dering the elements from largest error to smallest error, e
1

� e
2

� e
3

� . . . � eN , where Nj is

the number of elements. The first rN elements are chosen to be refined, where 0 < r  1. Each

refinement generates 2d children elements, where d is the dimension. Thus, the number of elements

on the next mesh, j + 1, can be related to the refinement fraction, r, by

Nj+1

⇡ Nj

⇣

1� r + 2dr
⌘

. (4.15)

The fraction of elements marked for refinement needs to be chosen carefully, being mindful of the

AMG setup cost, C(r), the error reduction factor, �(r), and the convergence factor, ⇢(r), on level

j + 1. Each of these values is estimated as a function of r. After predicting these components, the

total amount of work it takes to solve the problem on the j +1 mesh, W (r), can also be estimated

as a function of r. The optimal ratio, r⇤, is then calculated by minimizing the e↵ective reduction

factor

r⇤ = argmin
r

�(r)
1

W (r) . (4.16)
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The details of this process can be found in [50]. The ACE algorithm can be tuned for aggressive

refinement strategies by allowing elements to be refined multiple times.

As an example of the ACE algorithm in action, consider solving the FOSLS formulation of

the Poisson equation on the domain, ⌦ = [0, 1]⇥ [0, 1]:

u�rp = 0 ,

r · u = f(x, y) ,

r⇥ u = 0 ,

(4.17)

subject to Dirichlet boundary conditions,

p = 0 , @⌦ ,

n̂⇥ u = 0 , @⌦ .
(4.18)

As an experiment, take f(x, y) = exp
�

100(x� 0.25)2
�

exp
�

100(y � 0.25)2
�

as seen in Figure 4.4.

The forcing function has a sharp feature centered at (0.25, 0.25).

Figure 4.4: The source function f(x, y) = exp
�

100(x� 0.25)2
�

exp
�

100(y � 0.25)2
�

used in (4.17)

on domain [0, 1]⇥ [0, 1]
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It is intuitive that during the NI process, very few mesh points are required to capture the

behavior of the solution far from (0.25, 0.25). On the other hand, near the steep gradient, more

elements are required. Using an initial guess of zero for both p and u, ACE refinement produces the

sequence of nested meshes seen in Figure 4.5. An initial mesh with 64 elements was used and refined

3 times, producing a mesh with 2026 elements. Three levels of uniform refinement would produce

a mesh with 4096 elements. Even though the ACE-produced mesh contains approximately half

the number of elements, the computational e↵orts are better focused on the elements where large

errors remain. ACE requires less computational resources to reduce the L2-error to a comparable

level as the same amount of resources used with uniform refinement.
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Figure 4.5: Three levels of ACE refinement used on problem (4.17) with an initial mesh of 8 ⇥ 8.

The gray dots that appear in the left column indicate which finite element degrees of freedom are

selected by ACE for refinement.
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4.4 Multigrid

The linear systems generated by the discrete weak form, (4.9), at each step of the Newton-

FOSLS process must be solved quickly and e�ciently. The fact that the linear systems stem from

a FOSLS discretization makes the use of multigrid (MG) methods promising. As was stated in

Section 4.1, we strive to ensure that the first-order system be H1-elliptic in order to guarantee that

standard finite element spaces generate a linear system amenable to MG methods. As shown later

in Section 5.5, the TFP-Darwin system can be modified to produce a fully H1-elliptic system. In

this section, we describe a standard Algebraic Multigrid (AMG) solver, as applied to the general

linear system

Ax = b , (4.19)

where A 2 RNf⇥Nf and x, b 2 RNf . Two key components of multigrid are a relaxation process (also

called the smoother) and restriction/interpolation operators that transfer vectors between fine and

coarse grids. The components of MG work together in a complimentary way. The relaxation process

quickly removes the high frequency components from the error. The relaxation process stagnates

when all that remains in the error is smooth; continuing to apply the smoother is ine↵ective.

Instead, after only a few smoothing steps, the problem is restricted to a coarser grid, where the

remaining smooth error can be easily approximated. The coarse-grid problem is solved using less

work than its fine grid counterpart. The solution of the coarse-grid problem is interpolated back

to the fine grid, where it is smoothed a few more times and used to correct the fine-grid solution.

Let x⇤ and x represent the true solution and approximate solution on the fine grid, respec-

tively. Define the residual as

r = b�Ax , (4.20)

and observe that the the linear system can also be expressed as

Ae = r , (4.21)

where e = x⇤ � x is the error. It is trivially true that x⇤ = x + e; if the error was known exactly,
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the problem would be solved. Instead, we define a process that constructs the approximate error,

ê, and iterates in order to converge to the true solution:

x x+ ê . (4.22)

Define the action of applying the smoother ⌫ times as ê⌫ = S�1

⌫ r. The smoothing process is often

taken to be a simple Jacobi or Gauss-Seidel sweep. In its current state, convergence of the iteration,

x x+S�1

⌫ r, rapidly slows as all that remains of the error is smooth. The problem must be dealt

with on a coarse-grid.

Let R 2 RNc⇥Nf and P 2 RNf⇥Nc identify the restriction and interpolation operators, re-

spectively, where Nf is the size of the fine grid and Nc is the size of the coarse-grid. The smoothed

residual is restricted to the coarse-grid, rc⌫ = RAê⌫ . The coarse-grid error is then found by solving

Acec⌫ = rc⌫ , (4.23)

where Ac 2 RNc⇥Nc is a coarse-grid representation of A (to be discussed later). The coarse-grid

error is then interpolated back to the fine grid, êf⌫ = P êc⌫ . It is assumed that, once interpolated, the

coarse-grid error well approximates the fine grid error. But because the interpolation from coarse-

grid to fine grid is not exact, an additional µ applications of the smoother are applied, giving us

our final error correction for ê:

ê = S�1

µ Aêf⌫ . (4.24)

Bringing all of these components together gives us the definition of a single coarse-grid correction

scheme with ⌫ pre-smooths and µ post-smooths:

x x+
⇥

S�1

µ AP (Ac)�1RAS�1

⌫

⇤

r . (4.25)

The process is summarized again by reading the entire operator from right to left. First ⌫ smoothing

steps are applied to the current residual, producing relatively smooth error. The application of A

turns the smooth error into a residual. The operator R restricts the residual to the coarse-grid.

Applying (Ac)�1 gives the coarse-grid error, which is then interpolated back into the fine grid via
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P . This new fine grid error is smoothed once more by being converted into a residual and smoothed

µ more times with S�1

µ A. For an algorithmic description of the process, see Algorithm 1:

Input: Matrix, A, right-hand side vector, b, and initial guess xi.
Output: An apporximate solution xf ⇡ A�1b
VCycle(A, b, xi, ⌫, µ):
if grid = coarsest then

xf = A�1b
else

Relax ⌫ times on Axi = b
Construct P and R
Restrict the residual rc = Rr = R(b�Axi)
Form Ac = P TAP
xf = xi +VCycle(Ac, rc, 0, ⌫, µ)
Relax µ times on Axf = b

end
return xf

Algorithm 1: The V(⌫, µ)-Cycle. Note that the relaxation process is taken to mean that the
vector is updated in place.

We have neglected to state how the coarse-grid problem, Acec = rc, is solved. If Jacobi or

Gauss-Seidel was, again, used to solve for ec, we would get bottlenecked by the fact that the solution

stalls after a handful of iterations. To overcome this, a coarse-grid correction to the coarse-grid

can be used again! Coarse-grid corrections are applied recursively to solve each coarse-grid error

equation until the grids become coarse enough that a direct solution is easily attained. Starting from

the coarsest grid, the errors are interpolated back up, correcting the solution on each successively

finer grid. This type of nesting of coarse-grid corrections is known as a multigrid V-Cycle, or often

as a V(⌫, µ)-Cycle, referring to the number of pre- and post-smoothing operations. A very common

form of V-Cycle is the V(2,1)-Cycle, with Gauss-Seidel used for the smoother.

There are several ways to construct the coarse-grid operator, Ac, but for the purposes of this

thesis, only the variational formulation is considered [8]. Assuming the interpolation operator is

known, define the coarse-grid operator as

Ac = RAP , (4.26)

where R = P T . All that remains in order to complete the description of the V-Cycle algorithm is to
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define the interpolation operator from the coarse to fine grid. The choice of P dictates the type of

multigrid method. The process of choosing a good interpolation operator, P , is quite involved and

is explored in depth in [8]. One of the most traditional types of multigrid is Algebraic Multigrid

(AMG). The core idea of interpolation in AMG is to construct P such that algebraically smooth

error is well represented. Define the algebraically smooth error vector, es, such that

S�1Aes ⇡ 0 . (4.27)

That is, the act of relaxation no longer produces a substantial correction to the current iterate,

indicating that the smoother has stalled. Whatever remains is considered “smooth” in the eye of

the matrix. To interpolate a coarse-grid error to a fine grid error, define

(Pec)i =

8

>

<

>

:

eci i 2 C

P

j2Ci
!ijej i 2 F

, (4.28)

where C is the collection of coarse-grid points, F is the collection of fine-grid points with the

coarse-grid points removed, Ci is the set of coarse-grid points that strongly influence the point i,

and !ij are the interpolation weights. The selection of the sets C, F , and Ci and weights, !ij , are

determined by careful analysis of the matrix entries, and is outside the scope of this thesis [51].



Chapter 5

FOSLS Formulation of Two-Fluid Plasma

In this chapter, the TFP-Darwin system is modified in order to produce a system that is

fully H1-elliptic. Each linear diagonal block is scaled to ensure optimal algebraic multigrid (AMG)

performance. In the case of the fluid blocks, the system does not naturally admit H1 ellipticity

and an additional equation must be introduced. Once the block diagonals are investigated, the

o↵ diagonal nonlinearities of the TFP-Darwin model are addressed in Theorem 5.5.1, proving the

H1-ellipticity of the entire system.

5.1 TFP Blocks

Starting from (3.38), a basic implicit time discretization is assumed, resulting in @t ! 1

�t .

All explicit time discretization terms are grouped into the right-hand side, e↵ectively acting as

source terms. The unknowns are interpreted to be at the current implicit time step. Implicit

time discretization exposes the spatial operator that must be e�ciently inverted. The nonlinear

terms n↵Er, p↵ ⇥B, and n↵Es are linearized according to the methods outlined in Chapter 4 (for

example, n↵Er ! n0

↵�Er + E0

r�n↵ + n0

↵E
0

r), and are addressed in Section 5.4. The TFP system,
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(3.38), is written as a di↵erential matrix operator:
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, (5.1)

subject to the pure conductive boundary conditions (3.39) and (3.40)

n̂ ·rn↵ = 0 ,

p↵ = 0 ,

n̂⇥Er = 0 ,

n̂⇥Es = 0 ,

n̂ ·B = 0 ,

(5.2)

where n̂ denotes the outward unit normal to the boundary.

As presented in (5.1), the TFP system does not naturally admit H1-ellipticity. It can be

shown that system (5.1) is instead V
0

-elliptic with p↵ 2 H (Div), n↵ 2 H1, and Er,B,Es 2
�H1

�

3

.

That is,

V
0

= H (Div)⌦H1 ⌦H (Div)⌦H1 ⌦ �H1

�

3 ⌦ �H1

�

3 ⌦ �H1

�

3

. (5.3)

Posed in this space, momentum densities are not in H1. Special care is required to ensure multigrid

algorithms yield optimal convergence. One approach is to use H (Div)-conforming finite elements,

for example, Raviart-Thomas elements, for the momentum densities and a non-standard multigrid
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algorithm that employs distributed relaxation based on the support of the divergence-free basis

elements [3, 4].

The alternative used in this thesis is to directly modify (5.1) by introducing an additional

constraint, pulling p↵ back into (H1)3. The assumption that p↵ 2 (H1)3 is reasonable for most

plasma systems of interest. Denote the di↵erential matrix system in (5.1) by F(u) = f and identify

the block di↵erential matrix systems as

F(u) =

2
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, (5.4)

where the first term is linear and Ui (ui,uD) and Ue (ue,uD) are functions that contain the nonlinear

upper right-hand blocks in (5.1).

In the following sections, the block systems are investigated. First, the Darwin block, D, is

scaled and shown to be H1-elliptic, independent of all physical constants. Then, the fluid blocks,

Ai and Ae, are modified with an additional equation, scaled, and shown to be H1-elliptic. The fluid

blocks are solved with a variety of physical parameters to demonstrate the robustness of the AMG

solver applied to the modified system. Finally, in Section 5.4, the Fréchet derivative of the entire

system is addressed and the linearized system is shown to be uniformly H1-elliptic.

5.2 Darwin Block

The Darwin block, D, is naturally H1-elliptic, but contains scalings that are dependent upon

physical constants and the size of the time step. The isolated (uncoupled) Darwin system is
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The formal-normal of D is

D⇤D =

2
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5

. (5.6)

Depending on the value of the physical constants, the first-order o↵-diagonal curl operators could

potentially dominate the system, leading to poor AMG convergence until the mesh becomes su�-

ciently fine. We remedy this by introducing a general left scaling, RD = diag [r
1

, r
2

, r
3

, r
4

, r
5

, r
6

],

and general right scaling, SD = diag [s
1

, s
2

, s
3

]. Take note that the constants in the diagonal scaling

matrices are expanded by an appropriately sized identity matrix, which should be obvious from the

context of scaling either a vector or scalar quantity. The scaled system takes on the form

RD DSD
�

S�1

D uD

�

= RD fD ,

where fD is the right-hand side of (5.5). Define ûD =
�

S�1

D

�

uD to be the transformed unknown

variables. The formal-normal of the new scaled linear system looks messy at first glance:

(RD DSD)⇤ (RD DSD) =
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.

Setting up a system of nonlinear equations allows us to solve for scalings such that the formal-

normal is as “clean” as possible. We try to remove all rr· terms and make all other operators
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have coe�cients of unity. The nonlinear system to accomplish this is
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(5.7)

The above system can be solved uniquely, up to the value of r
1

, by demanding that all scalings be

positive. For simplicity, select r
1

= 1, which, in turn, defines

RD = diag
h

1, 1, �t
✏0µ0

, �t
✏0µ0

, �t2

✏0µ0
, �t2

✏0µ0

i

,

SD = diag
⇥

1, ✏0µ0
�t , ✏0µ0

�t2

⇤

.
(5.8)

These modifications generate the scaled Darwin system:

bD = RD DSD =

2
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Carrying the same scaling through to the unknowns gives us the transformations: bEr = Er, bB =

�t
✏0µ0

B, and bEs = �t2

✏0µ0
Es. The right-hand side terms are transformed in a similar way. With

standard boundary conditions, it is straightforward to prove that this system is H1-elliptic, as seen

by direct application of the Standard Compactness Argument, Lemma 5.5.1, and the coercivity of
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Div-Curl blocks (see Lemma 5.5.3). The nature of what remains is clearly seen by considering the

formal-normal of bD:

bD⇤
bD =

2
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5

. (5.10)

The system is di↵erentially diagonally dominant, and the diagonal blocks dominate the o↵-diagonal

blocks, leading to a system that, for fine enough mesh, is nearly identical to a decoupled block vector

Laplacian operator.

5.2.1 Darwin Block Numerical Test

To demonstrate how an AMG solver performs on the Darwin subsystem, two tests are per-

formed. In the first, the AMG asymptotic convergence factor is estimated by selecting a zero

right-hand side and using a random initial guess. A tight AMG1 solver tolerance is prescribed in

order to ensure the convergence factors settle into their asymptotic region. In the second test, a

solution is built that is consistent with (5.2). The right-hand side us constructed by applying the

Darwin block operator to the manufactured solution. Again, a random initial guess is used. A much

looser AMG solver tolerance is used as outlined in Section 4.2. We demonstrate the convergence

of the FOSLS functional and L2-norm of the error (L2-error). In both tests, uniform NI is used

through 7 levels of refinement with quadratic elements. The coarsest mesh is solved using linear

finite elements; these rates and results are not included. The linear finite element solution only

serves as a cheap initial guess to bootstrap the NI process.

Let ⇢ denote the asymptotic convergence factor of AMG. The value of ⇢ is computed by

allowing AMG V-cycles, on each level of refinement, to continue until a stable factor is reached.

The asymptotic AMG convergence factors for both D and bD are seen in Table 5.1. The system is

non-dimensionalized by working in Alfvénic units as outlined in Appendix A.3. The domain is set

to [�1, 1] ⇥ [�1, 1]. Two di↵erent cases are considered. For system Da, set �t = 0.1, ✏
0

= 0.32,

1
In the solution techniques employed in this section, it should be noted that the AMG solver is accelerated with

an outer conjugate gradient loop.
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and µ
0

= 1.0 and, for system Db, set �t = 0.01, ✏
0

= 0.32, and µ
0

= 1.0. The scaled system, D, is

independent of physical constants and has the same performance regardless of the values of �t, ✏
0

,

and µ
0

.

Lev. ⇢(Da) ⇢(Db) ⇢(bD)

1 0.64 0.88 0.048

2 0.61 0.96 0.044

3 0.60 0.97 0.052

4 0.60 0.96 0.049

5 0.61 0.96 0.050

6 0.65 0.96 0.077

Table 5.1: The asymptotic AMG convergence factors for (5.5) and (5.9). The first column uses

physical constants �t = 0.1, ✏
0

= 0.12, and µ
0

= 1.0, the second column uses physical constants

�t = 0.01, ✏
0

= 0.12, and µ
0

= 1.0, and the third column is the scaled system and is independent of

physical constants. Level 1 is a 4⇥ 4 quadrilateral mesh and is refined uniformly 5 times using NI.

Without surprise, the scaled Darwin block performs significantly better than its unscaled

counterpart. It should be noted, by examining the formal-normal of the original system (5.6), that

the unscaled Darwin system is relatively well behaved for �t � 1. The value of the permittivity

constant (in Alfvénic units) is quite mild, 0 < ✏
0

< 1, and only appears in the numerator of first-

order o↵-diagonal terms in the formal-normal. It is the time step, �t, that has the potential to

complicate AMG performance. This is seen clearly in the performance di↵erence between ⇢(Da)

and ⇢(Db). As �t ! 0, the o↵-diagonal curl operators dominate. Reasonable AMG factors could

be recovered with enough h-refinement, as the second-order Laplacian operators would begin to

dominate.
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In the next test, a manufactured solution is constructed with a combination of trig functions:

Er,x = cos(2⇡x/Lx) sin(⇡y/Ly),

Er,y = cos(2⇡x/Lx) cos(⇡y/Ly),

Er,z = cos(2⇡x/Lx) sin(⇡y/Ly),

Bx = cos(2⇡y/Ly) sin(2⇡x/Lx),

By = cos(2⇡x/Lx) sin(⇡y/Ly),

Bz = cos(2⇡x/Lx) cos(⇡y/Ly),

Es,x = cos(4⇡x/Lx) sin(⇡y/Ly),

Es,y = cos(4⇡x/Lx) cos(⇡y/Ly),

Es,z = cos(4⇡x/Lx) sin(⇡y/Ly) .

(5.11)

The true solutions, denoted u⇤, are run through the original operator (before scaling) in order to

generate a right-hand side. Figure 5.1 shows that the FOSLS functional for both the scaled, bD,

and unscaled, Db, Darwin systems decreases as O(h2) with mesh refinement. The H1-ellipticity

of the Darwin system yields enhanced L2 convergence using the well-known Aubin-Nitsche duality

argument [40]. That is, the L2-norm of the error converges one order faster than the functional

norm of the error. In this case, the L2-norm of the error decreases as O(h3).
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Figure 5.1: The FOSLS functional against the number of elements for the Darwin system. The

results are normalized by the first value. The linear system for each level was solved with AMG to

a tolerance of 0.5⇥ 10�2. Both the scaled (D̂) and unscaled (Db) functionals decrease with O(h2).
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Figure 5.2: The L2-norm of the error against the number of elements for the Darwin system. The

results are normalized by the first value. The linear system for each level were solved with AMG

to a tolerance of 0.5⇥ 10�2. Both the scaled (D̂) and unscaled (Db) L2 errors decrease with O(h3)

as predicted by theory.

Even though the scaled and unscaled systems converge with the same order, the total amount

of work performed in the two cases di↵ers substantially. Define a Work Unit (WU) to be the cost of

one matrix-vector multiplication on the finest level. The amount of work performed on each level
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of the NI process is recorded in Table 5.2. In both the scaled and unscaled cases, the amount of

work performed on the coarse grids of the NI process accounts for only a small percent of the the

total work. The unscaled system costs approximately 11 times as much.

Lev. NNZ WU(Db) % WU(bD) %

1 3.9⇥ 104 0.07 0.03 0.01 0.05

2 1.4⇥ 105 0.79 0.38 0.06 0.31

3 5.4⇥ 105 2.75 1.35 0.21 1.16

4 2.1⇥ 106 24.70 14.60 0.91 4.99

5 8.2⇥ 106 29.61 12.18 3.21 17.66

6 3.3⇥ 107 144.90 71.44 13.75 75.81

total — 202.82 100 18.15 100

Table 5.2: The number of nonzeros in the linear operator (NNZ) and Work Units (WU) on each

level of the NI process. A WU is defined as the cost of one matrix-vector multiplication on the

finest level. The % column represents the percent of the total work performed on a given level.

Tolerance for the AMG solver is set to 0.5⇥ 10�2.

5.3 Fluid Blocks

The fluid blocks, A↵, are not naturally H1-elliptic. The root cause of this is due to the fact

that there is no curl term associated with the momentum densities, p↵. The general form of a fluid

block, A↵, is examined for arbitrary species ↵. The isolated fluid block is
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where the notation T↵ = 1

2

m↵v2th↵
is adopted for convenience. The system is modified by introducing

the curl of the conservation of momentum equation as an additional equation:
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. (5.13)

Denote the di↵erential matrix above by C↵. The modified system, C↵, can easily be shown to be

fully H1-elliptic with appropriate boundary conditions. This is proven in Lemma 5.5.4 in Section

5.5. The additional curl constraint forces the momentum density into the smoother space, H1.

This is a reasonable requirement to enforce on momentum density. The formal-normal of C↵ is

C⇤C =

2
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Notice that the upper left block diagonal may become dominated by the rr· term, depending on

the size of the physical parameters. A similar approach to that in Section 5.2 is used to scale the

block system. Let R↵ = diag [r
1

, r
2

, r
3

] and S↵ = diag [s
1

, s
2

], where the components of the matrix

are di↵erent from those used in the Darwin block scaling. Again, the constants in the diagonal

scaling matrices are expanded by an appropriately sized identity matrix, which should be obvious

from the context of scaling either a vector or scalar quantity. The scaled system takes on the form

R↵C↵S↵
�

S�1

↵ u↵

�

= R↵f↵,

where f↵ is the right-hand side of (5.13). Define û↵ =
�

S�1

↵

�

u↵ to be the transformed unknown

variables. The formal-normal of the transformed linear system is

(R↵C↵ SD)⇤ (RD CSD) =
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We, again, solve the nonlinear system of equations,

m2
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2
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�t � r23s1s2
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T↵s2
1

s2
2

= 1 ,

(5.16)

in order to produce a clean system. The system above can be solved uniquely up to the value of r
1

by forcing the all constants to be positive. Setting r
1

= 1 produces the left and right scalings

R↵ = diag
h

1, �t
p
T↵p

m↵
,
p
m↵T↵

i

,

S↵ = diag
h

1p
m↵T↵

, 1

T↵

i

.
(5.17)

Applying these scalings to the fluid system balances the Div, Grad, Curl blocks:

bC↵ = R↵C↵ S↵ =

2
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Carrying the same scaling through to the fluid unknowns gives us the transformations p̂↵ =

p
m↵T↵p↵ and n̂↵ = T↵n↵. The right-hand side terms are transformed in a similar way. Con-

sider how the scalings modify the formal-normal of bC↵:

bC⇤
↵
bC↵ =

2
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4

m↵
�tT↵
�� 0

0 m↵
�tT↵
��

3

7

5

. (5.19)

The o↵-diagonal blocks in the formal-normal have been completely eliminated. For a large variety

of standard boundary conditions, it is straightforward to prove that this system is H1 elliptic. That

is, AMG V-Cycles are optimal for (5.18). Using numerical tests, we demonstrate the robustness of

the scaled fluid block to variations in physical constants.

5.3.1 Fluid Block Numerical Test

The performance for the curl-modified fluid block, C↵, and the scaled block, bC↵, are analyzed

in a similar fashion to the Darwin block system in Section 5.2.1. We, again, non-dimensionalize the
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system by working in Alfvénic units as outlined in Appendix A.3. The original fluid blocks, A↵,

are not H1-elliptic and standard AMG performs poorly on their discrete systems. The results for

these original systems are not presented. Here, the relevant physical constants to be varied are �t,

m↵, and T↵. The asymptotic AMG factor, FOSLS functional, and L2 error are computed for both

C↵ and bC↵ over the range of values listed in Table 5.3.

Constant Ca
e Cb

e Ca
i Cb

i

�t 0.01 0.1 0.01 0.1

m↵ 5.44⇥ 10�4 5.44⇥ 10�4 1.0 1.0

T↵ 100.0 10.0 5.0 0.5

Table 5.3: Numerical values for four realistic test cases using Alfvénic units. The values are

characteristic of a typical electron fluid and ion fluid values. In all cases, the domain is set to

[0, 2]⇥ [0, 2].

The AMG convergence factors for electron scales and ion scales can be seen in Table 5.4 and

Table 5.5, respectively. In both cases, the scaled forms show significant improvement over their

unscaled versions. The scalings are robust against variation in the physical constants, achieving a

peak AMG convergence factor of 0.17 for the electron blocks and 0.14 for the ion blocks.
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Lev. ⇢(Ca
e) ⇢(bCa

e) ⇢(Cb
e) ⇢(bCb

e)

1 0.56 0.14 0.77 0.14

2 0.61 0.16 0.89 0.15

3 0.69 0.17 0.91 0.17

4 0.72 0.17 0.94 0.16

5 0.63 0.17 0.96 0.17

6 0.53 0.17 0.96 0.17

Table 5.4: AMG convergence factors for fluid system (5.13) and scaled fluid system (5.18) for

electrons. Level 1 is a 4⇥ 4 quadrilateral mesh refined uniformly 6 times using NI with quadratic

finite elements.

Lev. ⇢(Ca
i ) ⇢(bCa

i ) ⇢(Cb
i) ⇢(bCb

i)

1 0.36 0.06 0.27 0.08

2 0.60 0.06 0.40 0.07

3 0.75 0.10 0.49 0.11

4 0.72 0.12 0.52 0.13

5 0.86 0.14 0.52 0.13

6 0.92 0.14 0.51 0.13

Table 5.5: AMG convergence factors for fluid system (5.13) and scaled fluid system (5.18) for

ions. Level 1 is a 4⇥ 4 quadrilateral mesh refined uniformly 6 times using NI with quadratic finite

elements.

A manufactured solution is used to show the FOSLS functional and L2 convergence properties

of the fluid system. We, again, pick a solution constructed from simple trig functions that comply



65

with the conductive boundary conditions (5.2):

ps,x = cos(2⇡x/Lx) sin(⇡y/ Ly) ,

ps,x = cos(2⇡x/Lx) sin(⇡y/ Ly) ,

ps,x = cos(4⇡x/Lx) sin(⇡y/ Ly) ,

ns = 1 + 1

4

sin(2⇡x/Lx) cos(2⇡y/Ly) .

(5.20)

For the systems Ca
e , Ca

i , and Cb
i , the convergence results closely follow theory. The FOSLS func-

tionals decrease with O(h2) while L2-errors gain an extra power and decrease as O(h3). In the case

for the more di�cult scalings in Cb
e, the results are not as clean. The FOSLS functional is shown

in Figure 5.3, where it is seen that both the scaled and unscaled systems still decrease with O(h2).

But the L2-norm of the error, shown in Figure 5.3, only converges with O(h2) for the unscaled

system.
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Figure 5.3: The FOSLS functional against the number of elements for the fluid system, Cb
e. The

results are normalized by the first value. The linear system for each level was solved with AMG to

a tolerence of 0.5⇥ 10�2. Both the scaled (Ĉb
e) and unscaled (Cb

e) functionals decrease with O(h2).
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Figure 5.4: The L2-norm of the error against the number of elements for the fluid system. The

results are normalized by the first value. The linear system for each level were solved with AMG to

a tolerence of 0.5⇥ 10�2. The L2 error for bD decreases, as predicted by theory, with O(h3), while

the L2 error for the unscaled system, Cb
e, decreases with only O(h2).

The lack of an enhanced L2 convergence can be rationalized by careful examination of the

formal-normal of the unscaled system, (5.14). In the upper diagonal block, the small value of me

and relatively large value of �t cause the ratio m2
e

�t2
⇡ 3 ⇥ 10�5. Until enough h-refinement occurs,

the upper diagonal block will be dominated by rr·, creating a large near null-space component.

Interestingly enough, in our 2D3V description, the divergence operator only acts upon the first

two components of pe. If the L2-error is viewed component-wise, the x and y components of pe

decrease with O(h2) and the z component of pe and ne decrease with O(h3). This is validated by

Figure 5.5, where we see the predicted behavior. After enough h-refinement is performed, the x

and y components of momentum should begin to decrease with O(h3), as theory predicts. This

trend is seen near the end of the simulation. More refinement needs to be performed in order to

pass more concrete judgment. Unfortunately, computer hardware limits were reached before such

trends would be observed. This remains the subject of future work (See Chapter 7).
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Figure 5.5: The L2-error of each component against the number of elements for the fluid system.

This is the same data as seen in Figure 5.4 separated into component form. The results are

normalized by each components first value. The pe,z and ne components decrease, as predicted by

theory, with O(h3), while the pe,z, and pi,z, components only decrease with O(h2).

We compare the amount of work performed during the uniform NI process for each of the

above mentioned cases. The electron blocks are seen in Table 5.6 and the ion blocks are seen in

Table 5.7. The scaled operators perform significantly better. The ratio of total work performed on

the unscaled systems to the total amount of work performed on the scaled systems are 3.56, 35.6,

7.57, and 1.88 for Ca
e , Cb

e, Ca
i , and Cb

i , respectively. The most gain is seen in the electron system,

Cb
e. Scaling the electron systems is crucial.
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Lev. NNZ WU(Ca
e) % WU(bCa

e) % WU(Cb
e) % WU(bCb

e) %

1 1.6⇥ 104 0.01 0.01 0.01 0.04 0.01 0.001 0.01 0.04

2 6.0⇥ 104 0.11 0.20 0.05 0.29 0.10 0.01 0.07 0.29

3 2.3⇥ 105 0.61 1.03 0.19 1.14 0.45 0.05 0.24 1.13

4 8.8⇥ 105 3.80 6.31 0.81 4.80 26.77 3.4 1.07 4.80

5 3.5⇥ 106 12.10 20.11 3.07 18.21 179.0 22.74 4.02 18.20

6 1.4⇥ 107 43.51 72.34 12.73 75.49 580.6 73.77 16.65 75.47

total — 60.14 100 16.87 100 786.9 100 22.06 100

Table 5.6: The number of nonzeros in the linear operator (NNZ) and Work Units (WU) on each

level of the NI process. A WU is defined as the cost of one matrix-vector multiplication on the

finest level. The % column represents the percent of the total work performed on a given level.

Tolerance for the AMG solver is set to 0.5⇥ 10�2.
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Lev. NNZ WU(Ca
i ) % WU(bCa

i ) % WU(Cb
i) % WU(bCb

i) %

1 1.6⇥ 104 0.02 0.01 0.01 0.06 0.02 0.07 0.01 0.05

2 6.0⇥ 104 0.08 0.20 0.03 0.17 0.09 0.27 0.03 0.19

3 2.3⇥ 105 0.49 1.03 0.11 1.68 0.36 1.13 0.15 0.92

4 8.8⇥ 105 1.80 6.31 0.80 4.73 1.10 3.38 0.57 3.30

5 3.5⇥ 106 9.92 20.11 3.07 17.98 7.30 22.46 3.20 18.48

6 1.4⇥ 107 117.1 72.34 13.05 76.34 23.64 72.68 13.31 77.02

total — 129.41 100 17.09 100 32.52 100 17.28 100

Table 5.7: The number of nonzeros in the linear operator (NNZ) and Work Units (WU) on each

level of the NI process. A WU is defined as the cost of one matrix-vector multiplication on the

finest level. The % column represents the percent of the total work performed on a given level.

Tolerance for the AMG solver is set to 0.5⇥ 10�2.

5.4 Full TFP System

Following the scalings and modifications outlined in Section 5.2 and Section 5.3 through the

entire system, (5.1), yields
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where bC↵ and bD are defined previously. As a reminder, ûi = [p̂i, n̂i]
T , ûe = [p̂e, n̂e]

T , and ûD =
h

bEr, bB, bEs

iT
. The scaled linear lower o↵-diagonal blocks are
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and the scaled nonlinear upper o↵-diagonal blocks are
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for ↵ = i, e. The unknowns and right-hand-side functions are also scaled appropriately, as outlined

in previous sections.

The Fréchet derivative used in the Newton step (4.3) becomes

F̂ 0(û)[�] =
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where the action of the linearized terms are
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for ↵ = i, e. The placeholder, �, indicates the input to the operator and is adopted in order to

clearly indicate the order of operations.

5.5 Uniform H1 Ellipticity

An important property of the operator, F̂ 0(û), is that it is uniformly coercive and continuous

in a convenient norm for all û in a neighborhood of the exact solution, û⇤. This guarantees the

existence of each Newton step once the approximation is su�ciently accurate. Below, it is shown

that, under mild hypotheses, F̂ 0(u) is uniformly H1-elliptic in a neighborhood of the exact solution.

Define the following spaces:
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H(Curl,⌦) =
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,

H
0

(Div,⌦) = {v 2 H(Div,⌦) : n̂ · v = 0 on @⌦} ,

H
0

(Curl,⌦) = {v 2 H(Curl,⌦) : n̂⇥ v = 0 on @⌦} ,

(5.25)

where n̂ is the outward unit normal on the boundary. Let the open ball of radius r centered on û⇤

be defined by

Br(û⇤) = {û 2 V : kû� û⇤kH1 < r} . (5.26)

It was shown in Section 5.3 that bCi, bCe, and bD are coercive and continuous in H1. Here, it is

further assumed that the block diagonals, bCi + bU0
ii and

bCe + bU0
ee, of linear system (5.24) are also

H1-elliptic.

We begin by outlining a handful of lemmas that are used for the main coercivity result,

Theorem 5.5.1. Lemmas are stated without proof and the reader is directed to [25] and [11] for
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more rigorous accounts. The following lemma is what allows zeroth-order o↵-diagonal terms to be

overlooked during the coercivity proof.

Lemma 5.5.1. Standard Compactness Argument (SCA)

Take L : V ! W as a one-to-one, bounded, linear operator. Assume further that V and W are

Hilbert spaces such that V is compactly embedded in W. If there exists a constant, C > 0, such that

||u||V  C (||Lu||W + ||u||W) 8 u 2 V ,

then there exists a positive constant, Ĉ, such that

||u||V  Ĉ||Lu||W 8 u 2 V .

To understand how to apply the SCA, let L : V !W be a bounded linear operator, with V and W

as defined above. Consider the case when L is of the form L = L
0

+ E, where E consists entirely

of zeroth-order o↵-diagonal terms and L
0

is coercive in W. By the coercivity of L
0

, there exists a

constant, c, such that

||u||V  c||L
0

u||W .

Using simple inequalities, it is seen that

||u||V  c||Lu� Eu||W  c||Lu||W + c||Eu||W  C (||Lu||W + ||u||W) .

Finally, invoking the SCA guarantees that there exists a constants, Ĉ, such that

||u||V  Ĉ||Lu||W .

That is, the operator, L, that contains the zeroth-order o↵-diagonal elements is coersive in W as

well. This property is what grants us the ability to turn a blind eye to the bL↵ blocks and the first

row of the bU0
↵D blocks during statement of Theorem 5.5.1.

The next three lemmas are the main work horse for proving coercivity. The Poincaré in-

equality is a powerful result that bounds the L2-norm of a function above by a constant, dependent

only upon the domain geometry, and the L2-norm of the function’s gradient. The Div-Curl and
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Div-Grad-Curl coercivity follow from careful application of the Poincaré inequality. They are the

extension of the Poincaré inequality that, given appropriate boundary conditions, grant coercivity

to blocks of the form
2

6

4

r·

r⇥

3

7

5

F (5.27)

and
2

6

6

6

6

6

4

I r

r⇥ 0

r· I

3

7

7

7

7

7

5

2

6

4

F

�

3

7

5

, (5.28)

where F represents a general vector quantity and � represents a general scalar quantity. Notice

that (5.27) is characteristic of a piece of the Darwin system and (5.28) is characteristic of the fluid

blocks.

Lemma 5.5.2. Poincaré Inequality

For each � 2 L2

0

(⌦), there exists a consants, C > 0, such that

k�k
0


p

diam(⌦)kr�k
0

,

where diam(⌦) is the diameter of ⌦.

Lemma 5.5.3. Div-Curl Coercivity

Take ⌦ to be a simply connected, bounded, convex domain (smooth or polyhedron). Then, for any

v 2 H
0

(Div,⌦) \H(Curl,⌦) or v 2 H(Div,⌦) \H
0

(Curl,⌦), there exists a C 2 R+ such that

||v||2
1

 C
�||r · v||2 + ||r⇥ v||2� .

This is equivalent to saying that

H
0

(Div,⌦) \H(Curl,⌦) ✓ H1(⌦)

or

H(Div,⌦) \H
0

(Curl,⌦) ✓ H1(⌦).
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Lemma 5.5.4. Div-Grad-Curl Coercivity

Take ⌦ to be a simply connected, bounded, convex domain (smooth or polyhedron). For any v 2

H
0

(Div,⌦) \H(Curl,⌦) and for ↵ 2 H1

0

(⌦), there exists a C 2 R+ such that

||↵||2
1

+ ||v||2
1

 C
�||v +r↵||2 + ||r⇥ v||2 + ||r · v + ↵||2� .

Proof. Expand the first and last term on the right-hand side of the coercivity inequality:

||v +r↵||2 + ||r · v + ↵||2 = ||v||2 + ||r↵||2 + ||r · v||2 + ||↵||2 + 2 (hv,r↵i+ hr · v,↵i) .

Using integration by parts and applying the boundary conditions on v gives that

hv,r↵i+ hr · v,↵i =
Z

@⌦

(v↵) · n̂ ds = 0 .

Direct application of Lemma 5.5.3 proves the results.

The the following theorem is the main result of this section. It proves that the linearization

of the scaled scaled TFP-Darwin system, (5.1), subject to boundary conditions (5.2), is elliptic in

H1.

Theorem 5.5.1. Let ⌦ be a convex domain with piecewise C1,1 boundary. Assume that there exist

r > 0 and positive constants, c↵(r) and C↵(r), such that, for every û 2 Br(û⇤) and for every

�̂↵ 2 (H1)4,

c↵(r)k�̂↵kH1  k(bC↵ + bU0
↵↵(û))�̂↵k  C↵(r)k�̂↵kH1 , (5.29)

for ↵ = i, e. Further, assume that F̂ 0(û) is injective for every û 2 Br(û⇤). Then there exist positive

constants, c(r) and C(r), such that, for every û 2 Br(û⇤) and for every �̂ 2 (H1)17,

c(r)k�̂kH1  kF̂ 0(û)[�̂]k  C(r)k�̂kH1 . (5.30)

Proof. The upper bound in (5.30) is easily obtained by successive application of the triangle in-

equality and, for the sake of brevity, is not included. The proof of the lower bound requires more

work, leaning heavily on all of the above lemmas.
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Consider, first, the ellipticity of bD (see (5.9)). This is proved by applying the SCA, Lemma

5.5.1, to remove the identity blocks. The coercivity and continuity constants of the remaining

Div-Curl block are then established by direct application of Lemma 5.5.3. Let cD, CD > 0 be the

constants such that

cD||ûD||H1  ||bDûD||  CD||ûD||H1 . (5.31)

Let û 2 Br(u⇤). By assumption (5.29) and (5.31), the operator containing only the block diagonals,

2

6

6

6

6

6

4

bCi + bU0
ii(û) 0 0

0 bCe + bU0
ee(û) 0

0 0 bD

3

7

7

7

7

7

5

,

is H1-elliptic with constants cB = min[c↵(r), cD ], CB = max[C↵, CD ].

It is clear that the upper blocks satisfy

kbU↵D �̂Dk  C↵Dk�̂DkH1  C↵D/cDkbD�̂Dk, (5.32)

for some constants, C↵D(û) > 0, for ↵ = i, e. Now, consider the system with the strictly lower-

triangular blocks removed. It is straightforward to establish that
�
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,

with ⌘ = (1 + max[C↵D ]/cD). This proves the lower bound for the upper block triangular part of

the system. The proof is completed by noting that the bL↵ blocks only contain zeroth-order terms

and by applying the SCA, Lemma 5.5.1.

FullH1ellipticity implies that standard, H1-conforming, finite element spaces can be used and

standard convergence bounds apply. In the linear case, enhanced L2 convergence is also ensured [40].

That is, the L2-norm of the error converges one order faster than the functional norm of the error.

This is observed in the numerical tests that follow.
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Numerical Results

In this chapter, we begin by analyzing the spatial portion of the TFP-Darwin operator,

looking at a fixed implicit time step and manufacturing a solution. The manufactured solutions

are used to validate the theory developed in Chapter 5. Two are tested. The first is constructed

from sine and cosine functions and is used as a baseline test. The second is built with a steep

gradient in current density, simulating a more physically realistic problem. The FOSLS functional

and L2-error are shown for each case.

Next, an implicit time-stepping algorithm (BDF2) is demonstrated. A simple wave is set up

and propagated. As the wave travels, gradients in the number density begin to develop, causing

degraded performance of the unscaled system. The scaled version, however, remains unphased and

the number of WUs per time step remains low.

Finally, the more realistic magnetic reconnection problem is simulated. Two current islands

are placed next to one another. They are perturbed from an equilibrium solution and begin to

attract. Upon collision, a current spike develops that characterizes a magnetic reconnection rate.

The TFP-Darwin model stems from a the collisionless Vlasov equation and is, thus, unable to

capture true reconnection. Needless to say, the performance of the solver under these realistic

conditions is exceptional, requiring an average of approximately 70 WUs per time step.
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6.1 Manufactured Solutions

In this section, performance results for the TFP-Darwin model, solved with NI, are presented.

No time-stepping algorithm is implemented. Instead, focus is given to the system generated for a

fixed implicit time step by manufacturing solutions and analyzing the NI-AMG solver performance

and FOSLS convergence properties. Two di↵erent problems are analyzed. In the first, a simple

smooth solution is constructed from sines and cosines. In the second, a solution is manufactured

with a sharp gradient in the z-component of momentum density and a large circulation in the x

and y components of the magnetic field. Large features in the fluid variables produce substantial

nonlinearities in o↵-diagonal components, as appear in (5.23). It is noted that neither of these

manufactured solutions are physical but, instead, are used to demonstrate how the nonlinear solver,

NI, and AMG perform in an environment where the exact error can be measured.

The problems are solved on the computational domain ⌦ = [�1, 1] ⇥ [�1, 1]. The solution

is taken to be periodic on the east and west boundaries and purely conductive on the north and

south boundaries. The north and south boundaries are the same as in (5.2). The system is non-

dimensionalized against ion mass mi, fundamental charge e, ion inertial length di, ion number

density n
0

, and the ion cyclotron frequency ⌦i. (See Appendix A.3 for details of these Alfvénic

units.) Unless otherwise specified, take me
mi

= 5.44⇥ 10�4, Ti = 1, Te = 20, ✏
0

= 0.32, and µ = 1.0.

In all tests, a time step of �t = 0.1 is used.

The coarsest problem, Level 0, is a 4 ⇥ 4 mesh discretized with bilinear finite elements. A

random initial guess is made and Newton-FOSLS is performed until the desired tolerance is reached.

Using p-refinement, the initial guess for Level 1 is constructed from the approximate solution on

Level 0, and standard NI-Newton-FOSLS, as outlined in Chapter 4, is continued until the finest

level is reached.
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6.1.1 Baseline Test

In this test a simple, smooth solution is constructed from sines and cosines. The number

densities are taken to be small perturbations away from 1 and most of the momentum and field

quantities are taken to be small perturbations away from 0. The exception is the quantities pi,z,

pe,z, Bx, and By, which are O(1). We prescribe the exact solution to be

pi,x,y = 1

10

sin (⇡x) sin (⇡y) ,

pi,z = sin (⇡x) sin (⇡y) ,

ni = 1 + 1

10

cos (2⇡x) cos (2⇡y) ,

pe,x,y = � 1

10

sin (⇡x) sin (⇡y) ,

pe,z = � sin (⇡x) sin (⇡y) ,

ne = 1 + 1

10

cos (2⇡x) cos (2⇡y) ,

Er,x = 1

10

cos (2⇡x) sin (⇡y) ,

Er,y = 1

10

sin (⇡x) cos (2⇡y) ,

Er,z = 1

10

sin (⇡x) sin (⇡y) ,

Bx = sin (⇡x) cos (2⇡y) ,

By = cos (2⇡x) sin (⇡y) ,

Bz = 1

10

cos (2⇡x) cos (2⇡y) ,

Es,x = 1

10

cos (2⇡x) sin (⇡y) ,

Es,y = 1

10

sin (⇡x) cos (2⇡y) ,

Es,z = 1

10

sin (⇡x) sin (⇡y) .

(6.1)

The asymptotic AMG convergence factors, ⇢, for each level are seen in Table 6.1. These factors

are computed by setting the AMG solver tolerance to 10�6, e↵ectively allowing AMG V-cycles to

continue until a stable convergence factor is reached. This is done independently from the NI-

Newton-FOSLS computations. Several Newton iterations are performed on each level, each with

its own asymptotic factor. Denote ⇢i as the asymptotic convergence for each Newton iteration i.

The factors hold between 0.50 - 0.60. A substantial quantity of Newton iterations are performed
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on Level 0, but their cost relative to the rest of the iterations is negligible and, thus, not included

in the table. Averaging over all V-cycles for every Newton iteration on Level 0 gives an average

asymptotic convergence factor of 0.35.

Lev. ⇢
1

(F̂ 0) ⇢
2

(F̂ 0)

1 0.51 0.57

2 0.57 0.62

3 0.49 0.48

4 0.49 0.52

5 0.53 0.59

6 0.59 —

Table 6.1: Asymptotic AMG convergence factors for Problem (6.1) for the final, scaled, nonlinear

TFP-Darwin system. A relative AMG solver tolerance of 10�6 was used. Level 1 is a 4 ⇥ 4

quadrilateral meshed discretized with quadratic elements. ⇢i denotes the AMG convergene factor

produced for Newton iteration i. In this case, the maximum number of Newton steps required on

all levels was 2.

The normalized nonlinear FOSLS functional values of ||F(uh)|| are seen in Figure 6.1, where

uh represents the discrete solution at each level. The values are normalized such that the initial

FOSLS functional on Level 1 has a value of 1. Initially, the functional is decreasing at a rate of

nearly O(h3) but, as refinement continues, it begins to approach O(h2).

The L2-error of the solution after each Newton-FOSLS process is plotted in Figure 6.2. The

values are normalized such that the the initial L2-error on Level 1 has a value of 1. The error is

decreasing at a rate of O(h3). As expected, the rate of L2-convergence is one order higher than

that of the FOSLS functional. This enhanced L2 convergence rate confirms the result of Theorem

5.5.1; the linearized TFP-Darwin system is H1-elliptic.
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Figure 6.1: The nonlinear FOSLS functionals for Problem (6.1) through 6 levels of NI with uniform

refinement. The tolerance of the AMG Solver is 0.5⇥10�1 and the tolerance of the Newton iteration

is 10�1. The value of h is defined as 1p
Ne

, where Ne is the number of elements. The values are

normalized such that the initial, nonlinear FOSLS functional on Level 1 has a value of 1.
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Figure 6.2: The final L2-error on each level, through 6 levels of NI with uniform refinement for

Problem (6.1). The tolerance of the AMG Solver is 0.5 ⇥ 10�1 and the tolerance of the Newton

iteration is 10�1. The solutions are normalized such that the error on the Level 1 is 1. Here, û

represents the interpolant of the exact solution. The value of h is defined as 1p
Ne

, where Ne is the

number of elements.

The benefit of NI is demonstrated in Table 6.2. Define a Work Unit (WU) to be the cost of



81

one matrix-vector multiplication on the finest level. It takes a total of 20.64 WU in order to bring

the solution through the coarser grids and solve the nonlinear problem on Level 6. The 8 Newton

iterations performed on Level 0 amounts to only 0.05% of the total work. Notice that the number

of Newton iterations required on each successive level decreases such that, by the time the finest

grid is reached, only 1 Newton iteration, using 3 AMG V-cycles, is required.

Lev. Newton Iters. Tot. V-Cycles NNZ WU

0 8 39 4.3⇥ 104 0.01

1 3 11 2.8⇥ 105 0.02

2 3 13 1.1⇥ 106 0.13

3 3 12 4.3⇥ 106 0.61

4 3 13 1.7⇥ 107 2.72

5 2 9 6.8⇥ 107 7.83

6 1 3 2.7⇥ 108 9.31

Total — — — 20.64

Table 6.2: The number of Newton Iterations (Newton Iters.), total number of AMG V-cycles (Tot.

V-Cycles), number of nonzeros in the linear operator (NNZ), and Work Units (WU) on each level of

the NI process for Problem (6.1). A WU is defined as the cost of one matrix-vector multiplication

on the finest level. Tolerance for the AMG solver is set to 0.5⇥ 10�1 and tolerance for the Newton

iteration to 10�1.

In this test, the components of the solution are smooth and, in turn, keep the first-order o↵-

diagonal couplings small. The next test problem is used to demonstrate how the Newton-FOSLS-NI

approach performs on problems with sharper features (i.e., steep gradients).
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6.1.2 Sharp Current Density Test

In this test, all components of the solution remain the same as in problem (6.1) except for

pi,z, pe,z, Bx, and By. For these unknowns, define

pi,z = sin(⇡x) sin(⇡y) exp
⇣

� (x�0.5)2

2�2

⌘

exp
⇣

� (y�0.5)2

2�2

⌘

,

pe,z = � sin(⇡x) sin(⇡y) exp
⇣

� (x�0.5)2

2�2

⌘

exp
⇣

� (y�0.5)2

2�2

⌘

,

Bx = �(y � 0.5) sin(⇡x) exp
⇣

� (x�0.5)2

2�2

⌘

exp
⇣

� (y�0.5)2

2�2

⌘

,

By = (x� 0.5) sin(⇡y) exp
⇣

� (x�0.5)2

2�2

⌘

exp
⇣

� (y�0.5)2

2�2

⌘

,

(6.2)

with a value of � = 0.02. The solution contains a current density (jz = qipi,z + qepe,z) in the

z-direction with a steep gradient and a corresponding strong circulation in the (x, y)-components

of magnetic field. A sketch of these components are visualized in Figure 6.3.

jz

HBx By L

Figure 6.3: A sketch of the z-component of current density and (x, y)-components of magnetic field

for Problem (6.2).

The asymptotic convergence factors are found in Table 6.3. The factors remain mostly

unchanged from Problem (6.1), living in the range of 0.5 - 0.6. This is a good illustration of the

robustness of the scalings designed in Chapter 5. Level 0 is not included in Table 6.3 because a

large number of Newton iterations were performed. The average AMG convergence factor over all

V-cycles on Level 0 is 0.45, and it is shown later that the amount of work performed is negligible.
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Lev. ⇢
1

(F̂ 0) ⇢
2

(F̂ 0)

1 0.54 0.55

2 0.59 .60

3 0.45 —

4 0.47 —

5 0.55 —

6 0.54 —

Table 6.3: Asymptotic AMG convergence factors for the final scaled nonlinear TFP-Darwin system

applied to Problem (6.2). A relative AMG solver tolerance of 10�6 was used. Level 1 is a 4 ⇥

4 quadrilateral meshed discretized with quadratic elements. ⇢i denotes the factor produced for

Newton iteration i.

The normalized nonlinear FOSLS functional values, ||F̂(uh)||
0

, are seen in Figure 6.4, with

uh defined previously. For the coarser grids, the FOSLS functional convergence rate is poor. This

is likely due to the fact that the features present in the current density and magnetic fields are

smaller than the resolution of the grid. After 3 levels of h-refinement (1024 elements), the functional

approaches O(h2) behavior as theory predicts.

The L2-error is seen in Figure 6.5. In a similar way to the nonlinear FOSLS functional, the

L2-error does not begin to achieve the predicted O(h3) convergence until 4 levels of h-refinement

are performed.
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Figure 6.4: The nonlinear FOSLS functionals through 6 levels of NI with uniform refinement for

Problem (6.2). Tolerance for the AMG solver is set to 0.5⇥ 10�1 and for the Newton iteration to

10�1. The value of h is defined as 1p
Ne

. The values are normalized such that the initial nonlinear

FOSLS functional on Level 1 has a value of 1.
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Figure 6.5: The final L2-error on each level through 6 levels of NI with uniform refinement applied

to Problem (6.2). Tolerance of the AMG solver is set to 0.5 ⇥ 10�1 and for the Newton iteration

to 10�1. The solutions are normalized such that the error on Level 0 is 1. Here, û represents the

interpolant of the exact solution. The value of h is defined as 1p
Ne

, where Ne is the number of

elements.

A summary of the required WUs can be found in Table 6.4. Again, more nonlinear iterations
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are performed on the coarse grids where V-cycles and Newton linearization are cheap. By the

time that the finest level is reached, only 2 Newton iterations and a total of 9 AMG V-cycles are

required.

Both of the manufactured solutions, (6.1) and (6.2), demonstrate clearly the viability of the

NI-FOSLS solver applied to the nonlinear TFP-Darwin system. We move now to demonstrate the

time-stepping process by setting up a simple wave propagation.

Lev. Newton Iters. Tot. V-Cycles NNZ WU

0 7 34 4.3⇥ 104 0.01

1 3 11 2.8⇥ 105 0.02

2 4 17 1.1⇥ 106 0.17

3 1 3 4.3⇥ 106 0.13

4 2 7 1.7⇥ 107 1.38

5 1 3 6.8⇥ 107 2.21

6 2 9 2.7⇥ 108 31.33

Total — — — 35.27

Table 6.4: The number of Newton Iterations (Newton Iters.), total number of AMG V-cycles (Tot.

V-Cycles), number of nonzeros in the linear operator (NNZ), and Work Units (WU) on each level

of the NI process for Problem (6.2). A WU is defined as the cost of a matrix-vector multiplication

on the finest level. Tolerance for the AMG solver is set to 10�2 and for the Newton iteration to

10�2.

6.2 Time-stepping algorithm

In this section, more realistic problems are simulated. In the first, a simple wave is propagated

through a conductive tube. In the second, the much more di�cult magnetic reconnection problem

is tackled. In both experiments, a second-order, backward-di↵erence formula (BDF2) is used. For
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simple linear problems, BDF2 is unconditionally stable and there is no need to limit the size of a

time step from the standpoint of temporal stability. The time step size does, however, a↵ect the

condition number of the matrices that result from discretization. This, combined with physical

characteristics and scales under investigation, dictates the step sizes. It should be noted that

the stability of BDF2 has been exchanged for well known dissipative behavior. A Crank-Nicolson

scheme would not contain such dissipative e↵ect, but would struggle from stability issues when

applied directly to di↵erential algebraic equations (DAEs).

In the case of the TFP equations, the FOSLS formulation leads to a system of DAEs and

special consideration of the stability of BDF2 must be taken into account. As outlined for the

MHD system in [1], the system is divided into two pieces:

@tu+ L(u,v) = 0 ,

G(u,v) = 0 ,
(6.3)

where the operator L contains all spatial components of time-dependent equations and operator G

contains all time-independent constraint equations. In the context of the unmodified TFP-Darwin

system, we have u = [pi, ni,pe, ne,Er,B]T , v = Es,

L(u,v) =

2
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and

G(u,v) =

2
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While out of the scope of this thesis, it can be shown that the TFP-Darwin system falls into a

specific category of DAEs such that many of the BDF formulas, including BDF2, are stable and

convergent [7, 27].

6.2.1 Simple Wave Test

In this section, a simple wave is launched through the plasma to demonstrate the time-

stepping scheme in a context that is easier to digest than the more complicated magnetic reconnec-

tion problem seen in the next section. This problem is not physical, and is used only as a stepping

stone towards a more realistic problem. The scaled TFP system is highly e↵ective at reducing the

total amount of work over the lifetime of the simulation, producing computational speed ups of

nearly 14 times over the unscaled version.

A small, Gaussian cluster of electrons and ions are centered at the origin and given an initial

x-direction momentum. The initial conditions are

p0i,x = 5 exp
⇣

�x2

�2

⌘

exp
⇣

� y2

�2

⌘

,

n0

i = 2 + exp
⇣
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⌘
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⇣

� y2
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⌘

,

p0e,x = 5 exp
⇣

�x2
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⌘

exp
⇣
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,

n0

e = 2 + exp
⇣

�x2
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⌘

exp
⇣

� y2

�2

⌘

,

(6.6)

and all other unknowns set to zero initially. In this setting, there is no initial charge density or

current density. The parameters used, in Alfénic units, are �t = 0.1, mi = 1.0, me = 1.0/1836.15,

Ti = 0.25, Te = 1.0, ✏
0

= 0.32, and µ
0

= 1.0. A longer computational domain of [�10, 10]⇥ [�5, 5]

is used in order to give the waves ample space to propagate. The simulation is started on a coarse



88

mesh of 8 ⇥ 4, and 7 levels of NI with adaptive ACE refinement is carried out, as outlined in the

previous sections.

The propagation of ni, sampled at every 4�t, is seen in Figure 6.6. Initially, the ion number

density propagates forward, forming a steep gradient on the back side of the wave. At this point,

a secondary backward-propagating wave is set into motion. The electron and ion waves naturally

want to propagate at di↵erent speeds, but deviation from quasineutrality (ni = ne) results in a

charge separation that drives an electric field that pulls the species back together.

The simulation is run for both the unscaled and scaled versions of the TFP system. The total

amount of work performed for each time step is plotted in Figure 6.7. In the unscaled problem,

the number of WUs steadily increases until 20�t. We postulate that this is attributed to the large

gradient that slowly develops until approximately t = 20�t, when the wave shape reaches nearly

steady-state. The scaled problem experiences no such di�culty, and the number of WUs per time

step remain nearly constant and much smaller than the WUs of the unscaled problem.

In both the scaled and unscaled cases, the NI process is crucial in reducing the number of

nonlinear iteration on the finest level, but the scaled version of the operator greatly reduces the

asymptotic AMG factors, resulting in considerably less WUs over the coarse of the simulation.

The average WUs per time step for the unscaled system is 130 and, for the scaled system, is 9.4.

Assuming roughly the same number of nonzero matrix entires on the finest level in both cases, this

amounts to a speed up ratio of roughly 14.
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Figure 6.6: Surface plots of ion number density through time. The plots are sampled every 4�t.

The top left image is at t = 4�t and the bottom right image is at the final time of t = 40�t.

The AMG factors computed during the simulation are not asymptotic, and should not be

considered as the true performance of the solver. A much tighter AMG solver tolerance would

be required in order to compute them, and estimates can be found in Section 6.2.1. Nonetheless,

with the relatively loose solver tolerance of 0.5 ⇥ 10�1, the average AMG factors over all time

steps, levels, and V-Cycles is 0.98 for the unscaled problem and 0.76 for the scaled problem. At
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these AMG factors, heuristically, to reduce the linear residual by the stopping tolerance would take

approximately 148 V-Cycles for the unscaled system and 11 V-Cycles for the scaled system. This

is a ratio of 13.45, very nearly the ratio of speed up seen in Figure 6.7.

The scaled system well outperforms its unscaled counterpart, remaining nearly constant over

all time. The wave problem used above is still relatively simple; the gradient that develops is still

small and constant throughout time. In the next section, the much more di�cult and realistic prob-

lem of magnetic reconnection is addressed in order to truly scrutinize the NI-FOSLS development

of the TFP-Darwin system.
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Figure 6.7: The Work Units (WU) for each time step of the simple wave propagation. The WUs

are shown for both the unscaled (F) and scaled (F̂) TFP system. The relative AMG tolerance is

0.5 ⇥ 10�1 and the relative Newton tolerance is 10�1. The average WUs per time step for each

simulation is plotted atop as dashed lines. The average for the unscaled system is 130.2 WUs, while

the average for the scaled system is 9.4 WUs.

6.2.2 Magnetic Reconnection

In this section, the more realistic and challenging magnetic reconnection (MRC) problem is

examined. Two current islands flow in the z-direction with a consistent magnetic field in the xy-

plane. To balance the magnetic force (p↵ ⇥B), the number density is selected in a way such that
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the pressure (T↵rn↵) balances the momentum equation. This equilibrium is then perturbed and

allowed to develop. The magnetic islands, in theory, should attract one another and produce the

well-known magnetic reconnection e↵ect [13, 46]. This is observed by a large spike in the current

density at the so-called X-point, which lies between the two current density islands (see Figure 6.8).

The initial conditions for the MRC problem are
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(6.7)

where k controls the island width, L is the domain length and all other initial conditions are set to

zero. The initial current density, j = pi � pe, is directed into the page, with a consistent clockwise

circulating magnetic field around each island. The computational domain is ⌦ = [�5, 5]⇥ [�5, 5].

Only a subsection of the domain is visualized in Figure 6.8, as the current density rapidly drops to

zero in the y-direction.

-4 -2 0 2 4
-2

-1

0

1

2

-1.5

-1.0

-0.5

-6-4-20246

Figure 6.8: The magnetic reconnection initial condition for k = 0.2. The contour plot represents

the z-component of the current density, and the stream plot is the x and y components of B.
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The IC (6.7) should satisfy an equilibrium solution. All time derivatives are set to zero in

the TFP equations (3.38) and the IC is run through the remaining spatial operator. The nonzero

residuals that remain are in Gauss’ law and the z-component of Ampére’s law:
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, (6.8)

and
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. (6.9)

Thus, in order for the magnetic islands to sit in equilibrium, the electron and ion temperatures are

required to be balanced, with Te = Ti. The value of µ
0

is naturally 1 by the choice of Alfvénic

units (see Appendix A.3).

A small perturbation is added to (6.7) in order push the islands out of equilibrium and initiate

their attraction toward one another. The perturbations are

�B = ✏
⇥

L
2⇡ cos(2⇡xL ) sin(⇡yL ) , L

4⇡ sin(2⇡xL ) cos(⇡yL ) , 0
⇤T

�pi,z = ✏1
2

cos(2⇡xL ) cos(⇡yL )

�pe,z = �✏1
2

cos(2⇡xL ) cos(⇡yL ) ,

(6.10)

where a value of ✏ = �0.01 is used. The unscaled system performance is too poor to run this more

challenging problem with our available computational resources. Instead, we rely on the results

from the previous section as an indication that the scaled version of the TFP-Darwin system has

superior performance, while still converging to the correct solution. The simulation is run to a

final time of tf = 8 with a time-step size of �t = 0.1. The physical constants used are mi = 1.0,

me = 1/1836.15, Te = Ti = 2.0, ✏
0

= 0.32, and µ
0

= 1.0. The coarsest level is a 4⇥ 4 mesh and is

adaptively refined through 8 levels. The relative AMG solver tolerance is set to 0.5⇥ 10�1 and the

relative nonlinear Newton tolerance is set to 10�1 on each level of nested iteration.

Contour plots of the z-component of the current density are seen at t = 0, t = 0.8, t = 1.3 in

Figure 6.9. As can be seen from the snap shots, the islands begin to attract and collide with one

another, forming a current density spike at the X-point. To see the current spike more clearly, a

zoomed version of the t = 1.3 snapshot is provided in Figure 6.10.
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Figure 6.9: Snapshots of the z-direction current density at t = 0.1, t = 0.8, and t = 1.3. Steep

current density spike forms at the X-point located at (0, 0).
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Figure 6.10: A zoomed in snapshot of the z-direction current density at t = 1.3. On a refined

contour plot, it can be seen that the the peak is nearly symmetric, as theory predicts. Small

deviations can be seen between the left and right plane.

After t = 1.3, the islands bounce back away from one another and, after some time, they

attract again, forming a secondary spike. This process repeats several times. The maximum z-

direction current density evaluated at the X-point is seen in Figure 6.11.
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Figure 6.11: The di↵erence in the z-component of current density evaluated at the X-point relative

to it’s initial value, jz(0). This model does not include resistivity. The heightest initial peak occurs

at t = 1.4, and the last oscillation before dropping back to zero is seen at t = 5.0.

The total number of WUs per time step is plotted in Figure 6.12. The maximum is 127.9

WUs, the minimum is 36.9 WUs, and the average is 69.1 WUs. To make clear just how e�ciently the

FOSLS-NI process is working, consider the meaning of 70 WUs. This says that full resolution of the

entire nonlinear problem at each time step takes the equivalent to 70 matrix-vector multiplication

on the finest level.

Each time step uses a di↵erent adaptively selected mesh, and the number of nonzeros (NNZ)

varies from one time step to the next. The NNZ used in the fine mesh operator, for each time step,

is plotted in Figure 6.13. The maximum, minimum, and average NNZ are 7.8⇥ 108, 2.3⇥ 108, and

4.4⇥ 108, respectively.
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Figure 6.12: The total WUs for each timestep.
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Figure 6.13: The total NNZs on the finest mesh for each timestep.

The above measures of performance are not quite fair; a time step that requires 50 WUs with

8⇥108 NNZ requires more work than a time step that requires 100 WUs with 2⇥108 NNZ. To draw

an unbiased view of “work”, the WUs are scaled on each time step by the value R: the NNZ for

each time step, divided by the maximum NNZ over all time steps. In this way, the scaled WUs more

closely relate to wall-clock time (i.e., how long the each computational time step requires to run in
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real time). A plot of the scaled WUs can be found in Figure 6.14. Once plotted, it is immediately

clear that the shape closely resembles that of the current density at the X-point (Figure 6.11). To

make this more precise, the peak current density was shifted and scaled and placed on top of the

scaled WUs. The correlation is not perfect, but many key features are captured, giving a good

indication that a large amount of the computational work is focused in resolving the physics that

is occurring at the X-point. Most of the work is required near the spikes in current density.
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Figure 6.14: The scaled work units compared to a shifted and scaled z-direction current density

evaluated at the X-point.

For the sake of completeness, we report that the AMG convergence factor, averaged over all time

steps, iterations, and levels is 0.89. The AMG convergence factor averaged over all time steps and

iterations on the finest levels alone is 0.93.



Chapter 7

Discussion

A modification and scaling of the TFP-Darwin model was developed that produces a non-

linear, H1-elliptic, system. When a Newton-FOSLS discretization is applied, the resulting linear

systems are amenable to algebraic multigrid methods with observed convergence factors of, at worst,

0.93. Further, coupling the approach to an adaptively refined NI strategy, which optimizes for the

accuracy per computational cost, results in an algorithm that, for realistic problems, requires on

average 70 WUs per time step. The e↵ectiveness of the approach is demonstrated on a variety of

problems, including the realistic, collisionless, magnetic reconnection simulation.

Of great importance to this research is that the above solution technique should hold in the

case of preconditioning a JFNK-based kinetic model, where the closures to the fluid equations are

supplied by an implicit PIC simulation. The linear systems that result from the Newton-FOSLS

iteration are more complex than the systems produced in preconditioning a kinetic-JFNK iteration.

Thus, the presented results strongly indicate that the NI-FOSLS approach would be an e↵ective

and economical preconditioner for implicit PIC-based methods. It is the intent of the author to

continue to pursue this avenue of research.

Although some work has been performed on PIC with spatial adaptivity [37,52], PIC methods

traditionally use uniform meshes, making adaptive refinement strategies more di�cult to leverage.

The interface between uniform and adaptively refined meshes must be reconciled before such tech-

nology can be easily leveraged. To be readily used as a peconditioner, the FOSLS-NI solution

technique can be used with uniformly refined meshes. Another possibility would be to still allow
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for adaptive ACE refinement, and project the solution back onto an appropriate uniform mesh.

Another limitation that remains a minor roadblock in the use of FOSLS as a preconditioner

is the larger memory footprint of the discretization. In the case of the TFP-Darwin system, the

resulting PDE contains 17 unknowns. This makes working with fine meshes quite memory intensive.

This may be a concern to those who require lightweight, on-node methods to call on existing particle

codes.

Future work includes the extension of the TFP-Darwin model to include more sophisticated

closures. The rn↵ that appears from the simple isothermal closure is of great importance to the

H1-ellipticity of the system. More complex closures, involving energy or temperature equations,

may not naturally fit into the space of H1 and modifications similar to those made in Section 5.3

would be required.

Many of the above algorithms have been employed in parallel for MHD [1]. This investigation

will be extended into the same parallel framework [50], lifting many memory restrictions, and

allowing the use of finer meshes. To resolve the extremely fine peaks produced during resistive

magnetic reconnection problem, a parallel implementation is crucial.
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Appendix A

A.1 Jacobian-Free Newton Krylov

A Jacobian-free Newton-Krylov (JFNK) solver uses a Newton iteration for the solution of

a nonlinear equation, and uses a Krylov subspace method to solve for each Newton update. The

Jacobian matrix is never explicitly formed and instead, only the action of the Jacobian on a vector

is approximated. This is convenient in cases where function evaluation involves a complicated

processes or the inner workings of the function are unknown. Recall that, given a nonlinear equation

of the form F (x) = 0, the Newton iteration is

J(xk)�xk = �F (xk) (A.1)

xk+1 = xk + �xk , (A.2)

where J(xk) is the Jacobian of F evaluated at the current iterate, xk. A Krylov subspace method

is used to solve the linear system for �xk [48]. This class of methods requires the formation of the

Krylov subspace Kj ,

Kj = span
�

r
0

,Jr
0

,J2r
0

, . . . ,Jj�1r
0

 

,

where r
0

is the initial residual. The Jacobian does not need to be explicitly constructed. Instead,

only the approximate action of the Jacobian at u in the direction v is required:

J(u)v ⇡ F (u+ ✏v)� F (u)

✏
.

In this way, approach is dubbed Jacobian-free. The accuracy of the approximation is sensitive to

the choice of ✏. The value of ✏ can be computed using any of a variety of techniques [9, 34].
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At each step of forming the Jacobian-free Krylov subspace, a call to the residual function, F ,

is unavoidable. This becomes problematic when we apply the JFNK method to the implicit PIC

residual (3.32) as each call invokes an expensive implicit particle evaluation (3.29). To reduce the

number of Krylov iterations, a preconditioning method is used. Consider right-preconditioning,

which results in solving the system:

(JP�1)(�w) = �F (xk) ,

xk+1 = xk +P�1(�wk) .

Notice that only the action of P�1 is required. This is plainly seen in the preconditioned Jacobian-

free product

JP�1v ⇡ F (u+ ✏P�1v)� F (u)

✏
.

Subsequently, the preconditioning process is performed once per Krylov iteration. If the precondi-

tioning process (P�1) well approximates the inverse Jacobian, the eigenvalues of the original system

are e↵ectively clustered, greatly reducing the number of iterations required.

In the context of this thesis, we must aim to solve a system that contains physics compatible

with that of the kinetic PIC approach. The MB fluid method, being derived from the same parent

Vlasov-Maxwell system, is a worthy candidate. The use of a two-fluid plasma model is proposed

as the preconditioner for the fully implicit electromagnetic PIC iteration.

A.2 Three-Dimensional Vectors with Two-Dimensional Dependence

All di↵erential operators are specified using standard three-dimensional notation even though

only two-dimensional domains are considered. One must be careful in projecting di↵erential oper-

ators back into two dimensions. This is done by letting all unknown variables be functions of only

(x, y), but still allowing for vector quantities to contain x,y and z components. This space is referred

to as 2D3V (two dimensions with three vector components). Let v = [v
1

(x, y), v
2

(x, y), v
3

(x, y)]T

be an arbitrary 2D3V vector field and s = s(x, y) be an arbitrary scalar valued function. The
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natural extensions of divergence, gradient and curl into 2D3V are:

r · v = @xv1 + @yv2 ,

rs =

2

6

6

6

6

6

4

@xs

@ys

0

3

7

7

7

7

7

5

,

r⇥ v =

2

6

6

6

6

6

4

@yv3

�@xv2
@xv2 � @yv1

3

7

7

7

7

7

5

.

A.3 Alfvénic Units

An Alfvénic normalization of the system is found by non-dimensionalizing in the base units:

Constant Physical Quantity

e fundamental charge

mi mass of proton

di ion inertial length

⌦i ion cyclotron frequency

n
0

characteristic density
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The ion cyclotron frequency is defined as ⌦i =
eB0
mi

, where B
0

is evaluated at the peak magnetic

field strength. Applying these normalizations to the TFP system (3.38) gives:

mi@tpi + Tirni � qiniE� qipi ⇥B = �mir ·
⇣

pipT
i

ni

⌘

,

@tni +r · pi = 0 ,

me@tpe + Terne � qeneE� qepe ⇥B = �mer ·
⇣

pipT
e

ne

⌘

,

@tne +r · pe = 0 ,

r⇥Er = 0 ,

�qini � qene +
B2

0✏0
min0
r ·Er = 0 ,

�qiµ0

pi � qeµ0

pe � B2
0✏0

min0
@tEr +r⇥B = 0 ,

r ·B = 0 ,

r⇥Es + @tB = 0 ,

r ·Es = 0 .

(A.3)

The group of constants,
B2

0✏0
min0

, that appear in Gauss’ and Ampére’s law is the square of the ratio of

ion cyclotron frequency and ion plasma frequency,

⇠2 ⌘
✓

⌦i

!p,i

◆

2

=
✏
0

B2

0

min0

.

Often, magnetic particle simulations take ⇠ = 0.3, and, unless specified otherwise, this value will be

assumed for all simulations. The remaining constants that need to be addressed are the normalized

ion temperature, Ti, and normalized electron temperature, Te. In Alfvénic units the normalized

temperatures represent Ti =
v2thi
v2A

and Te =
me
mi

v2the
v2A

, where vth↵ is the thermal velocity.


