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The classical theoretical framework for communication networks is based on the simplifying

assumption that each message to be sent is known to a single transmitter and intended for a single

receiver. Modern communication protocols reflect this framework by treating the physical layer

as a network of individual links. However, this wireline view of wireless communications fails to

account for the heterogeneous nature of network demands, consisting of both unicast and multicast

services, and can fail to leverage the inherent broadcast advantage of the wireless medium.

This thesis extends the classical framework of a private-message interface to the physical layer

to one with both private and common messages. A key difficulty, in both the description and anal-

ysis of a communication model with general messages sets, is that there are combinatorially many

message possibilities. With order-theoretic language and tools from combinatorial optimization

and graphical models, we develop a general framework for characterizing the fundamental limits of

information transfer over large many-to-one (multiple access) and one-to-many (broadcast) com-

munication channels with general message sets. In particular, achievable regions are proposed for

arbitrary such channels. For the multiple-access channel, the achievable region is optimal, and the

order-theoretic perspective both unifies and extends previous results. For the broadcast channel,

the region is specialized to an inner bound to the Degree of Freedom region, a setting where it is

provably optimal in select cases.

This thesis provides fresh insights into the long-standing random coding technique of super-

position coding to arrive at these results. Governing constraints on reliable communication through

superposition coding are shown to be polymatroidal over a lattice of subsets that may not be the

boolean lattice of all subsets. Permissible input distributions for superposition coding are concisely
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characterized through directed graphical models of conditional dependencies. The two-user inter-

ference channel is also addressed, where the state-of-the art is extended from the case with two

private messages to one with an additional common message.
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Chapter 1

Introduction and Preliminaries

1.1 Motivation

In the modern age, with the abundance of wireless devices offering nearly ubiquitous high-

speed connectivity to the internet and telephony network, it may be hard to imagine a time when

high-speed wireless communication seemed improbable. Yet in the early part of the 20th century,

this was the case: communication over radio waves, which are subject to obstructions, reflections,

and thermal noise at the sending and receiving antennas, appeared to be intrinsically unreliable,

as any transmitted analog signal could not be perfectly reconstructed at the receiver.

In an influential paper in 1948, the Bell Labs mathematician Claude Shannon changed the

discussion by observing that the picture is considerably more optimistic when one considers only

digital signals [95]. In the same way that the outcome of 10,000 fair coin flips can be more

reliably estimated than the outcome of 10 fair coin flips, the corruptions introduced in wireless

communications are entirely predictable when the wireless channel is used repetitively. Moreover,

the mathematics assured that a communication link can be designed in a modular fashion, with

bits serving as a universal interface between modules.

This insight provided the courage and vision for academics and engineers since to construct

high-speed digital and modular communications networks in the 65 years since this publication.

The networks which underlie both the telephony and the internet are layered—as the bit is a

universal interface for the purposes of point-to-point communication, we know that each layer can

be designed independently with the assurance that the separate layers will work together reliably if
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the bit is the interface of choice. In wireless communications, improvements within the physical layer

have allowed the mobile telephony network to grow from a small, low-rate, voice data transmission

network into a large, high-speed, general-purpose data transmission network. Modern channel

codes now approach the fundamental physical limits for a single wireless channel discovered through

Shannon’s work: improvement cannot come by focusing on each communication link individually.

The uncertainty of wireless wave propagation and reception, with little competition for wireless

resources, no longer serves as a rate-limiting factor.

In its place, scarcity of wireless resources and competition for these resources serve as the

principal modern rate-limiting factors. Spectrum is no longer an open frontier and attention must

be paid to efficiently using available spectrum. Though wireless communication is well-understood

at the the level of a single isolated point to point communication link, much less is understood when

viewing communication from a broader perspective—that of a network communication problem.

The modern wireless telephony network breaks the network architecture into modular components

known as cells, where a central base station communicates to and from mobile users in its corre-

sponding cell:

Base Stations

Mobiles

Multiple Access Channel

Broadcast Channel

Interference Channel

Figure 1.1: Centralized communication network
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In each cell, there are two communication directions: the uplink, or multiple access channel

(MAC), where the mobile users communicate simultaneously to the base station, and the downlink,

or the broadcast channel (BC), where the base station communicates simultaneously to the mobile

users. Two mobile users at the fringe of two neighboring cells may have their transmissions to

and from their respective base stations interfere with each other; the mathematical model for this

four-terminal situation (two base stations, two mobiles) is known as the interference channel (IC).

In the tradition of Shannon’s work, the laws of information flow over these channels are

studied with the universal interface of a bit. With multiple terminals, there are multiple interfaces.

A practical and simplifying assumption is to assign an independent interface to each independent

mobile user. In the MAC, this equates to assuming that each mobile user has a private message,

unknown to the other users, to send to the base station. In the BC, it equates to the base station

having distinct messages for distinct mobile users, not to be desired by more than one mobile user.

This private message view has filtered into networking, where the default interface to the physical

layer is one of private messages.

In the language of networking, a messaging service with only one source and one destination

is a unicast service. An alternative, where messaging is one-to-many or many-to-one, is known as

a multicast service. Currently, the task of switching between the two is relegated to higher layers

than the physical layer. However, doing so incurs a loss in optimality. As wireless signals are

broadcasted, the wireless setting offers intrinsic advantages for multicast services; this is known as

the broadcast advantage. There is potentially much to be gained by considering a richer physical

layer interface, with both unicast and multicast services offered natively and simultaneously. For

example,

• Streaming media (such as mobile TV), peer-to-peer services, and large-scale software up-

dates [56] indicate that an interface for the downlink should accommodate multicasting in

addition to the unicasting currently natively offered at the physical layer. While upcoming

specifications, such as MBMS (Multimedia Broadcast Multicast Services) for 3GPP cellular
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networks, provision resources for separate multicasting and unicasting modes, it would be

better yet to have a interface that could accommodate both modes simultaneously.

• Cooperation, or feedback, allows mobile users to infer information about each other’s mes-

sages. Such iterative communication can be constructed as a multi-step procedure, with

the initial step serving to construct common messages and with the final step serving to

transmit the constructed common jointly with what parts of the original messages remain

private. Cooperative schemes allow higher data rates than are achievable without cooper-

ation or feedback.

• If correlated data, as produced with sensor networks, have correlations which take the

special form of common parts, then a transmission scheme which accounts for this common

data performs better than one that does not.

The objective of this thesis is to address such a general interface by considering the classical

K-to-one, one-to-K, and two-to-two models of communication (the MAC, BC and IC, respectively)

from an under-developed perspective: that of general message sets.

1.2 Prior Work

While a great deal of scholarly attention has been directed towards the study of either

multiple-unicast or single multicast, much less work has focused on the consideration of both

unicast and multicast together.

Early work in network information theory took up the task, with hopes for a general theory of

network information flow to be tractable. Perhaps the earliest example is in 1973, when Slepian and

Wolf [99] consider the the two-user MAC where each user has a private message, unknown to the

other user, and both share knowledge of a third common message. They provide matching inner and

outer bounds to the capacity region, and thus establish the capacity region. Achievability is shown

through superposition coding and the analysis of error is provided with Gallager’s error exponent

guarantees [35], an approach too burdensome to permit a generalization to more than two users.
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Though Slepian and Wolf postulate a three-user generalization, this guess was later demonstrated

to be incorrect (by Gel’fand, see Prelov [80]). In 1979, Han [48] focuses on the simpler arguments

afforded by Cover’s weak typicality [22] to correctly deduce a capacity generalization to the K-

user MAC. He is the first to observe that the resultant capacity characterization is expressible

as a union of polymatroids [48], which are polytopes with special properties. Polymatroids

were defined in the 1970’s as a means of unifying, and more deeply understanding, the theory

on why some combinatorial optimization problems permit greedy algorithmic solutions [28]. This

connection between information theory and combinatorial optimization bore fruit immediately with

the introduction in 1981 of Han and Kobayashi’s inner bound to the IC [47], which remains to this

day the largest largest known inner bound to the IC with two unicast services corresponding to

disjoint transmitter-receiver pairs. Despite its early promise, this connection was not to be further

investigated until the mid 1990s and early 2000s, when scholarly work turned to characterizing the

capacity boundary of multiple unicast communication over the Gaussian MAC and BC.

Slepian and Wolf’s results found application as part of a more complex cooperative commu-

nication scheme in the work of Willems’ [119]. There, two users of a MAC are modeled as having

two noiseless, but rate-limited, conferencing links between them, which operate independently of

each other and of the channel. By first sharing data over the conferencing links and collecting

Y

X1

X2

Y

X1

X2

C12C21

Two-user MAC without cooperation. Two-user MAC with cooperation

Figure 1.2: Willems’ conferencing encoders for the two-user MAC

the shared knowledge into a common message, and then transmitting with common and private

data, communication rates strictly higher than those available without cooperation are attained.

Moreover, the channel affords a tight converse argument to provide that the proposed inner bound
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is the capacity region.

In 1980, Gel’fand and Pinsker [36] consider a general message set for the two-user BC. Achiev-

ability is shown at each vertex of their achievable region, where superposition and binning, as in

Marton’s bound for the private message case [69], are used. Though this inner bound remains the

largest inner bound known, there is no general argument for its optimality, a stark contrast to the

situation with the MAC. It took 27 years for the Gaussian specialization of Marton’s bound (for the

multiple unicast case) to be proven to be optimal for the K-user Gaussian BC where each terminal

may have multiple antennas [116]. Moreover, only within the past year did it become known that

two-user Gel’fand-Pinsker inner bound is also optimal for the Gaussian case where each terminal

may have multiple antennas [37]. In both cases, the outer bounds required quite a bit of ingenuity

and used tools specific to the Gaussian case.

For analytical simplicity, scholarly work drifted away from consideration of general message

sets and to a focus on the multiple-unicast, or private message, case. This is in part as the tools

were easily generalizable. Ahlswede and Liao [1] characterize the capacity region for the MAC with

private messages. In the mid 1990s, it was observed that to achieve any maximal weighted sum-

rate (the total capacity) on the boundary of the multiple access channel with private messages,

it suffices to use successive decoding at the decoder [106, 123]. This has practical importance,

as successive decoding can be implemented with much lower complexity, as well as analytical

importance, as the explicit formula for the vertices attainable by successive decoding lead to convex

efficient formulations for the computation of optimal input distributions.

A similar observation can be made for largest known inner bound the broadcast channel

with private messages, Marton’s region. It too is a polymatroid, and its vertices have an explicit

representation. Depending on the choice of input distribution, these vertices may be attainable by

successive Gel’fand Pinkser encoding [123]. The connection between high complexity joint decoding

(or encoding) schemes and low-complexity successive decoding (or encoding) schemes can be more

systematically developed through polymatroids, and the dual notion of contra-polymatroids [123].

Under this umbrella, we may also fit the Berger-Tung inner bound [7, 108] for the lossy source
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coding, which is contra-polymatroidal.

Recent work on Gaussian channel models with multiple antennas at input and output ter-

minals (referred to as Multiple Input Multiple Output, or MIMO) have further exploited the fact

that capacity of the MAC with private messages is expressible as a union of polymatroids. Efficient

optimal resource allocations for the fading MIMO MAC [71] build on the work of Tse and Hanly

[106]. The recent observation of a MAC-BC duality theory [111, 55, 110] in the private message

case has permitted many of these observations to extend to the BC [71].

Recently, there has been work on the multicast situation in isolation for the broadcast chan-

nel. A seminal work is that of Jafar and Zhi-Quan [54], who compare and contrast isotropic,

beamforming, and orthogonal multicast transmission schemes. The latter corresponds to relegat-

ing multicasting to higher network layers, and the authors find this to be strictly suboptimal. The

other choices instead correspond to different strategies for native physical layer multicasting, and

are optimal in certain regimes. Another seminal work is that of Wiesthelier et al [117], who demon-

strate that multi-hop multicast can be done with less transmit power if the protocol takes into

account the broadcast nature of wireless communication.

A lesson from the broadcast channel is that exact capacity characterizations for general multi-

terminal networks are elusive. Despite all the years of progress, there remain two-user broadcast

channels with unknown capacity region. Another similarly simple network which has unknown

capacity region is the two-user interference channel, even though its study dates back to Shannon

in 1961 [96]. For the interference channel, consideration of just two unicast messages with disjoint

transmitter-receiver pairs has proven to be immensely difficult, thus discouraging consideration of

more general message sets.

Recent developments have broken this gridlock by observing that searching for capacity ap-

proximations can be far more fruitful than searching for exact capacity characterizations. While ca-

pacity is unknown for the two-user Gaussian interference channel, a “strong” approximate character-

ization of capacity is known [33, 57], indicating that Han-Kobayashi’s inner bound is at least nearly

equal to capacity, if not equal to it. Moreover, all interference channels of a semi-determinisitic
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character [103] exhibit this “strong” characterization of capacity. With the confidence engendered

by the revelation that capacity approximations can be much more tractable than capacity itself,

scholarly work on interference networks has begun to shift towards more general settings, with

more users (e.g., the K-user interference channel) or with more general message sets. An example

with more general message sets is a setting with a common multicast message, known to both

transmitters and desired by both receivers, in addition to the two unicast messages with disjoint

transmit-receiver pairs. Initially studied in 1980 by Tan [101], Jiang-Xin-Garg [53] strictly im-

proved on Tan’s inner bound by incorporating ideas from Chong et al’s modern treatment [17] of

the classic Han-Kobayashi [47] achievability scheme.

1.3 Organization and Original Contributions

In Chapter 2, we introduce the essentials of our mathematical models of communication as

well as the relevant concepts from order theory, graphical models, and combinatorial optimization.

In Chapter 3, we revisit the classical theoretical technique of superposition coding through

the lens of order theory. Doing so reveals a succinct and useful combinatorial structure in the

resultant conditions for reliable communication: that of a polymatroid. The language and tools

here form the basis for much of the work in this thesis. We apply the order-theoretic perspective

to form an inner bound to the discrete memoryless MAC with an arbitrary number of users, K,

and an arbitrary collection of messages. The formulation allows for a simultaneous treatment of

different capacity formulations and of varied message sets - the full boolean lattice of all possible

messages, or a chain of degraded messages, or an antichain of private messages.

In Chapter 4, we specialize the results from the discrete memoryless case to the Gaussian

setting, of practical interest for wireless communications. The principal technical result therein, a

generalization of the maximum entropy, may be of independent interest to other information theo-

retic problems. Further, we leverage the beneficial polymatroid structure induced by superposition

coding, and the convex properties of the mutual information bounds, to provide a schematic for

efficient numerical methods to calculate the optimal operating covariances.
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In Chapter 5, we study the Broadcast Channel, where the situation is more subtle involving

difficulties in the development of both the inner and outer bounds. To gain insight, attention is

first focused on the approximate measure of capacity known as Degrees of Freedom (DoF). There,

an inner bound based on recursive row selection is proposed, where constraints imposed on the

recursive procedure are polymatroidal. When the recursive selection leads to a matrix factorization

without antenna selection, the proposed inner bound is optimal; but when the inner bound requires

antenna selection, the inner bound can be suboptimal. To improve on this bound, focus is shifted

to the general discrete memoryless channel, where a generalization of the largest known inner

bound for the two-user channel is extended to the K-user case. The prior theory for superposition

coding is leveraged, and the technique of binning is extended allow recursive codeword generation.

This bound is demonstrated to replicate the capacity of the 2 or 3-user deterministic combination

networks, and improves on the prior DoF region.

In Chapter 6, a two-user semi-deterministic IC with two private messages and one common

message is studied. Determining the capacity region of the general discrete memoryless IC and its

Gaussian specialization is a long-standing open problem in information theory. Recent progress has

focused on constant gap results. To work towards a general message interface for the IC, we extend

a constant gap result for the semi-deterministic model with two private messages to one with two

private messages and one common message.



Chapter 2

Mathematical Models and Tools

2.1 Introduction

This chapter introduces the mathematical abstractions of one-to-one, many-to-one, and one-

to-many communication. We introduce communication in a general setting, with the goal of char-

acterizing fundamental limits that cannot be broken no matter how smart the transmitters or

receivers are.

Our framework includes general message sets, containing both private messages (which are

known at a single transmitter and desired at a single receiver) and common messages (which are

either known at many transmitters or desired by many receivers). A well-known strategy for coding

with common and private messages is to code with superposition, as originally introduced by Cover

[21] for the BC. In superposition coding, a common message is viewed as carrying coarse details of

a total message set while a private message carries finer details of that message set. To paraphrase,

the message sources of the total message set are partially ordered according to the level of detail

each source carries about the total message set. Though seemingly simple, this partial order ties

together ideas from graphical models of conditional independence, combinatorial optimization, and

superposition coding to yield insights that to the best of our knowledge have gone unnoticed within

the information theory community.
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2.1.1 Point-to-Point Channel

An abstract model of communication from a single transmitter X ∈ X to a single receiver

Y ∈ Y can be modeled via a probability transition function P (Y = y|X = x), succinctly referred

to with p(y|x). If the output of a single channel use is a corrupted version of the input, then at

best we can have an unreliable estimate of the original input.

To combat this unreliability, consider using the channel repetitively. In this case, the set

of total information to be sent accumulates as a stream of information. For simplicity, take the

unit of information to be a bit, so that our stream is a string of bits 0101110. . .. These bits are

each assumed to carry meaningful information: each new bit carries information which refines the

knowledge to be sent. If there are M bits to send, then the sending the bits sequence b1, . . . , bM

is equivalent to sending an integer within {1, . . . , 2M}. If we can recover any M bit sequence after

n channel uses, then the effective communication rate is R = M/n. Sending information at a

constant rate R implies that the total number of messages grows exponentially in the number of

channel uses. With bit as the unit of measure, there are W = b2nRc messages to send.

To inquire into fundamental limits, we formalize the notion of a arbitrary transmission strat-

egy as a code consisting of mappings that may be arbitrarily complex. Formally, a code of block

length n consists of a mapping from the message set to an input sequence (the encoder) and from

the channel output sequence and a message estimate (decoder) as summarized below.

Point-to-point code

Encoder: en : [1 : W ] 7→ X n mapping messages to inputs
Decoder: dn : Yn 7→ [1 : W ] mapping channel outputs to message estimates

Table 2.1: Interface for the Point-to-Point Channel

Let M be a random variable uniformly distributed over W = [1 : W ]. The figure of merit for

a code will be the average error probability P (M 6= M̂), where M̂ = dn(Y n) when Xn = en(M).

A communication rate R is said to be achievable if, for every ε > 0, there exists a block length n

and corresponding code such that W ≥ 2n(R−ε) and P (M 6= M̂) < ε.



12

Index the channel inputs and outputs of the tth channel use as Xt, Yt. A reasonable assump-

tion is that the channel uses are independent of each other (that is, the channel is memoryless), in

which case the probability transition function is

p(yn|xn) =

n∏
t=1

pY |X(yt|xt).

The classic result of information theory is that the set of non-negative achievable rate satisfy [23]

R ≤ sup
p(x)

I(X;Y ),

where I(X;Y ) is the mutual information between X and Y :

(discrete) I(X;Y ) =
∑
x,y

p(x, y) log

(
p(x, y)

p(x)p(y)

)

(continuous) I(X;Y ) =

∫
x,y
f(x, y) log

(
f(x, y)

f(x)f(y)

)
dxdy ,

where p(x, y) is a probability mass function and f(x, y) is a probability density function.

2.1.2 Random Coding

How do we interpret the above result? From the definition of a code, we see that we have

set the problem into one of high-dimensional geometry (specifically, n-dimensional, where n may

be arbitrarily large). Sending data reliably amounts to picking a set of codewords (the encoder’s

output) within the space of all possible inputs X n so that the high probability images of the received

codewords overlap with low probability. A constructive procedure for choosing such codewords is

not at all obvious: doing so has has been the subject of coding theory for more than a half century.

But an argument for the existence of such codewords can be had relatively easily through random

coding. Picking the encoder randomly leads to an average performance that is good enough, thus

ensuring that at least one choice performs well.

Let’s formalize this in the discrete memoryless (DM) context (where we take the input and

output alphabets to be finite). Fix an input distribution p(x) over the input alphabet X . For each
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message m ∈ [1 : W ], pick codewords independently and identically according to

xn(m) ∼
n∏
i=1

p(xi) .

Though the best decoding rule would be a maximum likelihood decoder, another rule—joint typ-

icality decoding—sufficies to attain capacity. A sequence zn ∈ Zn is typical with respect to a

distribution p(z) if its empirical distribution closely matches it (see Figure 2.1). Formally, zn is

150 100 50 0 50 100
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Figure 2.1: Depiction of the notion of a typical sequence.

ε-typical if

|π(z|Zn)− p(z)| < εp(z) ∀z ∈ Z (2.1)

where π(z|Zn) = 1
n

∑n
i=1 1(Zi = z) is the sample histogram, and where ε > 0 is a small parameter.

Let T (n)
ε (Z) be the set of all sequences zn which satisfy (2.1). An i.i.d. sequence zn ∼∏n

i=1 pZ(zi)

is likely to

• be ε-typical with their generating distribution: P (Zn ∈ T (n)
ε (Z))→ 1, and

• not be ε-typical with a different distribution: P (Zn ∈ T (n)
ε (W )) ≤ 2−nD(W‖Z)(1−ε) → 0

where D(W‖Z) =
∑

z pW (z) log(pW (z)/pZ(z)) is the Kullback-Leilber distance between the gener-

ating distribution on Z and a different distribution on W .

These two facts are the crux of the argument that random codes perform well. In particular,

if the codeword xn(m) is sent over the channel, then the joint distribution of (xn(m), yn) has



14

distribution
∏n
i=1 pX(xi)pY |X(yi|xi). By contrast, for any m′ 6= m, the joint distribution of the

codeword xn(m′) and the output yn is
∏n
i=1 pX(xi)pY (yi). We decode the message by declaring m̂

to be the message sent only if it is the only message m such that (xn(m), Y n) is ε-jointly typical.

Let Em be the event that the codeword xn(m) is ε-jointly typical with the channel output sequence

Y n. Then this decoding rule fails whenever the sent message has a codeword xn(m) is not ε-jointly

typical with the output yn or when a message that was not sent has a codeword xn(m′) which is

ε-jointly typical with the output yn. That is, the error event is

Error = Ecm
⋃(
∪m′ 6=mEm′

)
.

By the properties of typical sequences, it will be highly likely that the desired codeword is jointly

typical with the output,

P (Em)→ 1 ( as n→∞),

while no undesired codeword will be likely to be jointly typical with the output if R < I(X;Y )(1−ε),

where I(X;Y ) = D(p(x, y)‖p(x)p(y)) as

P (∪m′ 6=mEm′) ≤
∑
m′ 6=m

P (Em′) ≤
∑
m′ 6=m

2−nI(X;Y )(1−ε) ≤ 2n(R−I(X;Y )(1−ε)) → 0 ( as n→∞) .

Thus, in expectation, random coding achieves any point R < I(X;Y ). Maximizing over input

distributions then yields the largest achievable rate region. This last point provides an important

guideline that those that design codes have tried to emulate - a good code should have codewords

which have empirical statistics closely matching this maximizing input distribution. In particular,

for the Gaussian point-to-point channel,

y = hx+ z z ∼ N (0, σ2), (2.2)

where the input codeword x1, . . . , xn is constrained to have finite average power ( 1
n

∑n
i=1 |xi|2 ≤ P ),

and where the receiver has knowledge of the multiplicative coefficient h (known as the fading state),

the maximizing distribution is known to be itself Gaussian. As Gaussian channel (2.2) is a good

model for wireless communication, a guiding light for many code designers has been to design codes
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to have Gaussian empirical distributions so that achievable rates approach the channel’s capacity,

given by the well-known formula

C = log(1 + snr) snr = |h|2P/σ2.

2.1.3 Multiple Access-Channel Model with General Message Sets

The above model of communication can be extended easily to many-to-one and one-to-many

models of communication. The former case is the MAC, where K transmitters which wish to

communicate simultaneously to a common receiver. The channel has K finite input alphabets

Xj , j ∈ {1, . . . ,K}, a finite output alphabet Y, and a probability transition function

p(yn|xn1 , . . . , xnK) =
n∏
t=1

pY |X1,...,XK (yt|x1t, . . . , xkt)

where xj,t is the jth user’s input at the tth channel use and yt is the output of the tth channel use.

Classically, this channel has been studied under the assumption that each user only has

knowledge of a private message, in which case the capacity region of the MAC may be characterized

via the set of probability distributions that factorize as the product of the input distributions of the

users [1]. A more general model is to consider not only private messages, each known only to single

user, but also common messages, with each known to potentially many transmitters. A general such

message set would then be a collection of M independent common messages, where each unique

message is revealed to a unique subset of the K users. Though previously studied in [99, 48, 43],

we adopt a slightly different notation than adopted previously: rather than simply enumerating

the available messages, we index each message by the subset of transmitters which is cognizant of

that message. This subtle difference emphasizes the partial order inherent in knowledge of common

messages at the transmitters and provides for a more fluent presentation of the associated capacity

results.

To be precise, we consider a collection E of M distinct non-empty subsets [1 : K],

E = {S1, . . . , SM} = {Sj ⊆ [1 : K] : ∅ 6= Sj 6= Si ∀i, j ∈ [1 : M ]}, (2.3)
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where to each element S ∈ E, we assign an independent message source MS ∈ [1 : WS ], which we

reveal only to the transmitters listed in S. A code for the transmitters and receiver are a collection

of K encoders, with the jth encoder mapping messages known to jth user to a input sequence for

the jth user and a decoder, mapping the observed channel output to an estimate for all of the sent

messages, as summarized in Table 2.2.

Multiple Access code

Encoder 1: e1 :
∏

1∈S∈E [1 : WS ] 7→ X n1
...

...
Encoder K: eK :

∏
K∈S∈E [1 : WS ] 7→ X nK

Decoder: d : Yn 7→∏
S∈E [1 : WS ]

Table 2.2: Interface for the Multiple Access Channel with General Message Sets

For each S ∈ E, let M̂S be the decoder’s estimate for the message MS . Then an error occurs

if MS 6= M̂S for any S ∈ E. With each MS ∼ Uniform([1 : WS ]) independently for all S ∈ E,

define the average probability of error for a given block length n, decoder, and set of encoders to

be P
(n)
e = P (∪S∈E{MS 6= M̂S}). Then, a rate tuple (RS : S ∈ E) is achievable if, for every ε > 0,

there is a block length n, set of encoders, and decoder such that WS ≥ 2n(RS−ε) for all S ∈ E and

P
(n)
e < ε. The capacity region, in turn, is defined as the closure of the set of achievable rate tuples.

2.1.4 Broadcast Channel Model with General Message Sets

As with the MAC, a similar definition can be made for the discrete memoryless BC. It is

defined in terms of a single finite input alphabet X and K finite ouput alphabets Yj , j ∈ {1, . . . ,K},

a finite output alphabet, and a probability transition function

p(yn1 , . . . , y
n
k |xn) =

n∏
t=1

pY1,...,YK |X(y1t, . . . , ykt|xt)

where xt is the input at the tth channel use and yjt is the jth users’ output at the tth channel use.

As in the MAC, we consider a general message set, with both private and common messages.

With E as a set of M distinct non-empty subsets [1 : K], each element S ∈ E is assigned to an

independent message source MS ∈ [1 : WS ] desired only to the transmitters listed in S. A code
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for the transmitters and receiver are a single encoder, mapping the set of all messages to an input

sequence, and a collection of K decoders, with the jth decoder mapping the output sequence

observed by the jth user to a set of message estimates for those messages desired by the jth user.

This is summarized in Table 2.3.

Broadcast code

Encoder: e :
∏
S∈E [1 : WS ] 7→ X n

Decoder 1: d1 : Yn1 7→
∏
S∈E:1∈S [1 : WS ]

...
...

Decoder K: dK : YnK 7→
∏
S∈E:K∈S [1 : WS ]

Table 2.3: Interface for the Broadcast Channel with General Message Sets

2.2 Superposition Coding Preliminaries

For both the MAC and BC, a strategy to prove the achievability of certain rate tuples relies

on superposition coding, where some message codewords are superposed on top of other message

codewords. Intrinsic to this is a notion of order. For example, consider two distinct messages sources

MS ,MS′ with indices ordered by inclusion: S ⊂ S′. In the MAC, wherever MS is known among

the transmitters, so too is MS′ . Hence, one may choose to construct the codeword of MS with the

knowledge of the codeword constructed for MS′ in mind. Analogously, if the context is the BC, then

wherever the message MS is demanded among the receivers, so too is MS′ . Hence, as decoding of

MS always involves decoding MS′ , one may choose to construct the codeword for MS in a manner

such that its correct decoding is dependent on the correct decoding of the codeword for MS′ . In

both cases, the suggestion is that the construction of the codewords for the messages corresponding

to the subset S and S′ could occur in an ordered fashion: the codewords corresponding to S′ could

be constructed before the codewords corresponding to S. Motivated by these observations, we

introduce a framework from the general theory of order [24].
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2.2.1 Order Theory

For a set P , an order on P is a binary relation ≤ on P such that for all x, y, z ∈ P

(i) x ≤ x (ii) x ≤ y and y ≤ x imply x = y (iii) x ≤ y and y ≤ z imply x ≤ z.

A strict order < is the relation defined by x < y iff x ≤ y and x 6= y. When equipped with an

order, we call P an ordered set, and explicitly denote the pair via (P ;≤).

Finite order relations can be visualized through Hasse diagrams, which are defined in terms

of covering relations. For an ordered set P and two elements x, y ∈ P , if x < y and x ≤ z < y

implies that z = x, then x −<y (in words, y covers x ). The Hasse diagram of P is an assignment

of a point p(x) in the plane R2 to each element x within P such that if x −<y, then x is lower than

y. For each covering pair x −<y in P , connect the point p(x) with p(y) so that the connecting line

does not lie over another point p(z).

For the MAC or BC with general message sets, we will treat the message index set as an

ordered set1 , and for superposition coding, two message indices can be comparable only if they

are comparable via set inclusion.

Definition 1 (Superposition Order). An order ≤ on a message index set E satisfying

S ≤ S′ only if S ⊆ S′ (2.4)

for S, S′ ∈ E.

Examples of some message index sets for the three user MAC (or BC), along with the inclusion

order (i.e., S ≤ S′ iff S ⊆ S′) are in Figure 2.2:

While MS′ is available as side information wherever MS is known, if S ⊂ S′, we may or may

not use it in the process of constructing the codeword for the message MS . The superposition

order formally encodes what decision we make per pair {S, S′} ⊆ E with S ⊂ S′. If S < S′,

then we superpose the codeword of MS over the codeword of MS′ . By contrast, if S, S′ are not

comparable with respect to the chosen superposition order, then we do not superpose the codeword

1 Recall that we denote the message index set by E, and that it consists of subsets of [1 : K].
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{1,2,3}

{1,2}

{1}

(a) Degraded Message Sets

{2}{1} {3}

(b) Private Messages

{1} {2} {3}

{1,2} {1,3} {2,3}

{1,2,3}

(c) All possible messages

Figure 2.2: Hasse diagrams for subsets of the set of subsets under the inclusion order ⊆.

of MS over the codeword of MS′ . Both options have benefits: coding with superposition achieves

a larger rate region while coding without superposition reduces the necessary codebook size, and

hence potentially reducing the computational burden on the encoder and decoder. Two options for

superposition orders that play an important role in our development are the following:

(1) The inclusion ⊆ order: put S ≤ S′ iff S ⊆ S′.

(2) The discrete = order: put S ≤ S′ iff S = S′.

The former is leads to “maximally structured” codes while the latter leads to “minimally structured”

codes. An illustration of these two particular choices, for either the two-user MAC or two-user BC,

is depicted in Figure 2.3.

{1,2}

{1} {2}

(a) ⊆: the inclusion order.

{1,2}{1} {2}

(b) =: the discrete order.

Figure 2.3: Inclusion and discrete order for the message index set E = {{1}, {2}, {1, 2}}.

Once we have settled on a choice of superposition order, there are special subsets of the

message index set E which play an important role in superposition coding: the up(or down)- sets:

Definition 2. Let P be an ordered set and let Q ⊆ P .
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(i) Q is a up-set if whenever x ∈ Q, y ∈ P and y ≥ x, then y ∈ Q.

(ii) Dually, Q is a down-set if whenever x ∈ Q, y ∈ P and y ≤ x, then y ∈ Q.

For each x ∈ P , the smallest up- (or down-) set containing x are the principal up- (or down-)

sets. Respectively, these are ↑ x = {y ∈ P : x ≤ y} and ↓ x = {y ∈ P : x ≥ y}. Each up-set

(principal or not) is the union of the principle up-sets of its elements, Q =
⋃
x∈Q ↑ x. Dually, an

arbitrary down-set is the union of the principal down-sets it contains.

Set in the context of the MAC (or BC) with E as the message index set equipped with a

superposition order, the principal up- (or down-) sets are given by

↑ S = {S′ ∈ E : S ≤ S′} , (2.5)

↓ S = {S′ ∈ E : S ≥ S′} . (2.6)

These sets have an important operational meaning for superposition coding. The principal up-

set in (2.5) corresponds to the set of codewords on which the codeword for the message MS will

be superposed. Dually, while decoding, the principal down-set in (2.6) corresponds to the set of

codewords which were superposed over the codeword for the message MS (and hence dependent on

the correct decoding of MS). Moreover the set of all up-sets, F↑(P ;≤), or down-sets, F↓(P ;≤), is

particularly interesting2 , as they are lattices:

Definition 3 (Lattice Set Family). A set of sets F satisfying

A ∩B,A ∪B ∈ F for all A,B ∈ F . (2.7)

Maps which preserve the defining property (2.7) are also of interest:

Definition 4 (Lattice Homomorphism). Let F ′ be a lattice set family and F be a set of sets. Then

an onto map ZF : F ′ 7→ F is said to be a lattice homomorphism if for all A,B ∈ F ′

ZF (A ∩B) = ZF (A) ∩ ZF (B) (2.8)

ZF (A ∪B) = ZF (A) ∪ ZF (B). (2.9)

2 We further abbreviate these to F↑ or F↓ if the set and its order are clear from the context.
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In particular, by (2.8), the map’s range F must be a lattice set family as well.

2.2.2 Up-set Lattice Conditional Independence

Superposition coding is a random coding strategy, and requires a distribution to code with

respect to. A natural choice is to assign one auxiliary random variable per message source with

joint distribution factoring in the same successive manner in which superposition coding proceeds.

That order will be along the up-sets, and random tuples with distributions that factor in this way

under the purview of the up-set lattice conditional independence model:

Definition 5 (Up-set lattice conditional independence model). Contains every random tuple (Ux :

x ∈ P ), indexed by an ordered set P , whose distribution factors as3

p(uP ) =
∏
x∈P

p(ux|u↑x\{x}) =
∏
x∈P

p(ux|ux′ : x′ > x). (2.10)

There are several equivalent characterizations of this model of conditional independence. One

is through the language of graphical models, where the graph is the transitive completion of the

Hasse diagram of the ordered set P , with downward direction on all edges. Another is through the

set of all conditional independence relations implied by the factorization above [2]:

Definition 6 (Lattice conditional independence (LCI) model). Contains every random tuple (Ux :

x ∈ P ), indexed by a finite set P , which obey the Markov (or conditional independence) relations

UB (−− UB∩B′ (−− UB′ ∀B,B′ ∈ F , (2.11)

where F is a sub-lattice of the boolean lattice of all subsets of P containing the empty set and P

itself.

In the case of the up-set lattice conditional independence model, the lattice is the up-set

lattice F↑. While the definition of lattice conditional independence is seemingly more general as it

applies to any lattice set family, rather than only up-set lattice set families, it is not: by Birkhoff’s

3 The notation UL refers to the tuple of random variables (Ux : x ∈ L) indexed by the index set L.
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representation theorem for finite distributive lattices, each lattice set family F is associated with

an order on P whose up-set lattice is equal to F [2],[24]. That the recursive factorization (2.10)

implies the Markov relations (2.11) is easy to see, and the reverse direction follows by Theorem 4.1

in [2].

2.2.3 Polymatroids

For a given choice of order and up-set lattice conditionally independent auxiliary random

tuple, the rate region achieved by superposition coding will turn out to have a special structure:

that of a polymatroid. All capacity regions are convex, and many capacity regions are described

as unions of bounded polyhedra, which are known as polytopes. All polytopes are the convex hull

of a finite set of vertices. But among all possible polytopes, only polymatroids are those for which

all of its vertices can be found explicitly and quickly, a result of a “discete convex” property to be

shortly described. Formally, a polymatroid is

Definition 7 (Polymatroid). Given a finite ground set E with M elements, the polytope 4

P(f) =

{
x ∈ RE+ :

∑
e∈B

xe ≤ f(B) ∀ B ⊆ E
}

(2.12)

is a polymatroid if the set function5 f : 2E 7→ R+ satisifes

f(A ∩B) + f(A ∪B) ≤ f(A) + f(B) (submodular). (2.13a)

f(A) ≤ f(B) if A ⊆ B (nondecreasing) (2.13b)

f(∅) = 0 (normalized) (2.13c)

for any two subsets A,B ⊆ E. 6

4 RE+ = {x ∈ RE : xe ≥ 0 ∀ e ∈ E} is the positive orthant of RE , the real vector space with coordinates indexed
by the elements of E. If E consists of M elements, then RE may be identified with RM .

5 R+ = {x ∈ R : x ≥ 0} refers to the non-negative real numbers.
6 Set functions which satisfy (2.13) go by many names; Edmonds [28] and others [34, 48] refer to them as β-

functions, while Lovasz [66] calls them polymatroid functions, which we adopt. When f is the rank of a matroid
within E [59], then such a set function is known as a rank function; in keeping with this, they may be referred to
as rank functions [106, 123]. The rank of a matroid in turn is a reference to the origins of matroid theory as an
abstraction of linear independence relations among the columns of a matrix [59].
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Together, the submodular and monotonic constraints constitute a “discrete convex” condition

(a short proof can be found in Lemma II.3 of [27]):

f(B ∪ C)− f(B) ≤ f(A ∪ C)− f(A) if A ⊆ B . (2.14)

This is a diminishing returns property, and is a discrete analog to the notion of a concave function

on the real line, which satisfies

g(y + h)− g(y) ≤ g(x+ h)− g(x) if x ≤ y

when h ≥ 0; see Figure 2.4.7

g(x+ h)− g(x)

g(y + h)− g(y)

Figure 2.4: Diminishing returns: concave functions

Concave functions are functions over which maximization is simple - a greedy hill-climbing

procedure will find the global maximum. Submodular function provide an analogous guarantee in a

discrete setting —a greedy hill-climbing procedure attains the maximum of the weighted sum rate

maximize
∑

e∈E
µexe subject to x ∈ Q. (2.15)

Any convex set Q is fully characterized by the set of solutions to the linear programs (2.15),

for all choices of real weights (µe : e ∈ E): it is a dual description of Q. The distinguishing property

of polymatroids, relative to the wider classes of polytopes, is that they are the unique polytopes

for which the following greedy algorithm finds a vertex which attains the maximum weighted linear

sum (2.15) for all choices of weights (µe : e ∈ E) (for a proof, see [59]):

(Step 1) Enumerate E so that µ1 ≥ . . . ≥ µk > 0 ≥ µk+1 ≥ · · · ≥ µM and set x1 = · · · = xM = 0.

7 The reader may ask why (2.14) is labeled as a convex, rather than concave, condition. For many years, researchers
within combinatorial optimization could not decide whether submodularity was closer to concavity or convexity, see
[66]. After further study, consensus has shifted towards thinking of convexity as the more appropriate analogy [73].
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(Step 2) For j = 1, . . . , k, Increase xj until a constraint becomes tight.

The output of this greedy algorithm is

x1 = f({e1})

xi = f({e1, . . . , ei})− f({e1, . . . , ei−1}) for 1 ≤ i ≤ k

xi = 0 for i > k.

Hence, there are at most M ! vertices that are maximal with respect to the ordering y ≤ x↔

(ye ≤ xe : e ∈ E). These M ! dominating vertices needn’t be distinct: some of the defining bounds

(2.12) may be redundant. In fact, we may still define a polymatroid function, and a polymatroid, if

we only require that the definitions (2.13) and the sum-rate bounds (2.12) to hold over a lattice set

family F on E (rather than over the entire power set of E). The resultant polytope is a polymatroid

in the sense of Definition 7 as substantiated by the following lemma. While this appears to be well-

understood within combinatorial optimization, we provide a short proof here for completeness and

clarity.8

Lemma 2.2.1 (Polymatroid over a Lattice Set Family [66][94]). Given a finite ground set E with

M elements and a lattice set family F defined on E, the polytope

PF (f) =

{
x ∈ RE+ :

∑
e∈B

xe ≤ f(B) ∀ B ∈ F
}

is a polymatroid if f : F 7→ R+ is a polymatroid function over F (that is, f is normalized,

nondecreasing, and submodular over the elements of F).

Proof. For each B ⊆ E, define

ZF (B) =
⋂{

B′ ∈ F : B ⊆ B′
}

(2.16)

to be the smallest element of F containing B. It is a lattice homomorphism (recall Definition 4)

with its fixed points on 2E being the elements of F . Extend f to all subsets B of E with 9

f̃(B) = f ◦ ZF (B). (2.17)

8 Jack Edmonds understood this - it is in his original exposition in 1970 [28], but without details.
9 f ◦ g(x) = f(g(x)) is the composition of the functions f and g.
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As the map ZF : 2E 7→ F is a lattice homomorphism, f̃ is again a polymatroid function. Consider

the polymatroid P(f̃) and consider the corresponding inequality
∑

S∈B RS ≤ f̃(B) for each B ⊆ E.

If B 6∈ F , then this inequality is redundant given the corresponding inequality for B′ = ZF (B) as

f̃(B) = f̃(B′) and B ⊂ B′. If B ∈ F , then f̃(B) = f(B) and this inequality is a defining inequality

for the polytope PF (f). Hence, PF (f) = P(f̃).

2.3 Common Notation

We collect all of the previously introduced notation into Table 2.4 so that it may serve as a

quick reference. Through the thesis, we adopt further notation that will be of use.

We refer to random variables in upper case (e.g., A or B) and to specific values they take in

lower case (e.g., a). When demonstrating the distribution we refer to, we provide a subscript (e.g.,

the probability that B = a is pB(a)). If the distribution is clear from the context, as in pA(a), we

further abbreviate to p(a). We use the notation A(−− B (−− C to denote a Markov Chain (which

we can take to be ordered either as A → B → C or as C → B → A). We will refer to vectors

and matrices in bold face (e.g. A), with upper case and lower case again denoting the difference

between the random variable and the specific value it may take. If I indexes a set of variables

(xi : i ∈ I), let xI = (xi : i ∈ I) denote the collection of these variables and let x(I) =
∑

i∈I xi

denote their sum. If we write A � B (A � B), we imply that both matrices are Hermitian and

that A−B is positive semidefinite (positive definite). Blank entries in a matrix are intended to

interpreted as being equal to zero; e.g.

A =

1 0

0 1

 =

1

1

 .
We use | · | for different quantities depending on the argument. If X � 0, then |X| = det(X). If S

is a set, |S| is its cardinality. Finally, if x ∈ C, then |x| is its magnitude.
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Abbreviation Meaning Notes

bMc largest integer N s.t. N ≤M
[1 : M ] {1, . . . , bMc} for any M ≥ 1

2X Set of all subsets of a finite set X

E A subset of 2[1:K]\∅ Represents a message index set
R+ Non-negative real numbers
RE+ Non-negative real numbers indexed by ele-

ments of E

↑ S {S′ ∈ E : S ≤ S′} : Up-set of S Unless otherwise noted, the
order ≤ is the inclusion order ⊆.↓ S {S′ ∈ E : S ≥ S′} : Down-set of S

↑ ′S ↑ S\S
↓ ′S ↓ S\S

F↓(P ;≤) Lattice of all down-sets in a set P w.r.t ≤
F↑(P ;≤) Lattice of all up-sets in a set P w.r.t ≤
F↓ Lattice of all down-sets in E w.r.t ⊆
F↑ Set of all up-sets in E w.r.t ⊆
P(f) Polymatroid defined by submodular set func-

tion f (see (2.12))
Ground set is taken to be E

L(P ;≤) Set of distributions satsifying the lattice con-
ditional independence model over the ordered
set (P ;≤).

Table 2.4: Abbreviations and Notation



Chapter 3

DM Multiple Access Channel with General Message Sets

3.1 Introduction

In this chapter, we use the lens of order theory to provide a fresh perspective on the classical

random coding technique of superposition coding. This perspective unifies and extends prior results

on the K-user DM1 MAC with general message sets, a setting for which a fundamental partial order

exists among the message sources. The approach is general and reproduces all of the following

results with a single argument.

• In 1973 and 1972, Ahlswede [1] and Liao [64] characterized capacity when only private

messages exist, where each message source is available to a single transmitter.

• In 1979, Han [48] characterized the capacity when all possible private and common messages

exist (of which there are 2K − 1). That is, to each subset of users, there is an independent

message source known to those users and unknown to the other users.

• In 1984, Prelov [80] characterized the capacity region for the degraded message setting,

where all message sources are accessible to the first encoder, all sources except the first are

accessible to the second encoder, all sources except the first and second are accessible to

the third encoder, and so forth.

• In 2010, Gündüz and Simeone [43] devised a tailored capacity representation for the settings

1 Recall that DM refers to discrete memoryless, indicating that the channel is memoryless and has finite input
and output alphabets.
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The classical setting, with only private messages E = {{1}, {2}, . . . , {K}}
The degraded message setting E = {{1}, {1, 2}, . . . , {1, 2, . . . ,K}}
All possible messages E = 2[1:K]\∅

Table 3.1: Message Set Possibilities

where some, but not all, of the possible messages exist. Their method extends to the case

with all possible messages, but their development is most beneficial when there the order

of K, rather than 2K , messages.

All of these previous results, in fact, correspond to superposition coding, and differ in the

choice of superposition coding order and of message index set. In general, the coding order can be

any superposition order, per Definition 1, and any message index set E, which consists of distinct

subsets of the set of users, as described in Section 2.1.3. Possible selections of the message index set

E are given in Table 3.1 and possible selections of the superposition order2 , which range between

either always coding without superposition or always coding with superposition, are depicted in

Figure 3.1.

Beyond establishing capacity, the previous results also determine a number of interesting

properties of the capacity region:

• Capacity corner points are achievable through successive decoding [48].

• Capacity is attainable with small auxiliary codebooks [48] per input distribution.3 How-

ever, there are a large number of possible input distributions to search over.

2 Recall that this is defined as an order with S ≤ S′ only if S ⊆ S′
3 Specifically, each message is assigned an auxiliary codeword independently of the other messages and input

codewords are a channel use by channel use deterministic function of these auxiliary codewords.

always code always code

without superposition
sometimes code with superposition←−−−−−−−−−−−−−−−−−−−−→ with superposition

≤:= ≤:⊆

Figure 3.1: Superposition coding strategies, corresponding to different parital orders
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• Capacity can be described by a small number of possible input distributions, at the expense

of higher encoding and decoding complexity per input distribution [43].4

The general superposition coding strategy described herein simply reproduces all of these

properties. The latter two properties follow by the flexibility of choice in the partial order by

which superposition proceeds. The first point follows as, per input distribution, the achievable rate

region afforded by superposition is a polymatroid, regardless of the choice of choice of message

index set or of superposition order. Though this has been known for coding without superposition,

we uncover this polymatroidal structure is also present for coding with superposition. Exploiting

polymatroidal structure and the partial order on the message index set sheds further light onto the

structure of the capacity region:

• Concatenating a no-superposition coding inner code with an outer code consisting of ele-

mentary down-set rate transfer operations achieves the same rate region as can be achieved

through superposition coding; see Figure 3.2.

• Full joint decoding is unnecessary—successive group decoding suffices to attain capacity,

without time-sharing, and the points achievable through successive group decoding are

shared by among all possible superposition coding strategies.

• While the set of admissible distributions differs for different superposition orders, they are

all equivalent in a certain rate-preserving sense.

The rate transfer result is of special mention: it is an example of an efficient projection from

a high-dimensional polytope onto a lower dimensional polytope that proceeds without appeal to

Fourier-Motzkin Elimination, which would be unwieldy to apply directly. Moreover, it highlights

that one partial order, the order corresponding to set inclusion on the message index set, is truly

fundamental to the MAC with general message sets, as it may concatenated to any achievable

scheme to provide a larger achievable rate region.

4 Specifically, each message is assigned an auxiliary codeword partially dependent on the other messages and each
input codewords equal to one of these auxiliary codewords.
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Inner Code

Outer Code

DM-MAC
p(Y |X1, . . . , XK)

Y dec

X1enc1

X2enc2

...

XKencK

M1 M̂1
...

...
MK M̂K

M12 M̂12
...

...

M12K M̂12K
...

...
M[1:K] M̂[1:K]

outer
enc

outer
dec

W1 Ŵ1
...

WK ŴK

W12 Ŵ12
...

W12K Ŵ12K
...

W[1:K] Ŵ[1:K]

Figure 3.2: Code concatenation: Down-set rate splitting can be universally applied over any other
achievable scheme for a MAC with general message sets.

3.2 To Superpose or To Not Superpose

To illustrate that random coding with superposition and random coding without superpo-

sition are two strategies cut from the same cloth, we review two classical results for the two-user

case with two private and one common message (so that the message index set is E = {1, 2, 12}5 ).

In 1973, Slepian and Wolf [99] characterize capacity by coding with superposition, while in 1979,

Han [48] characterizes capacity by coding without superposition. Despite the different means of

attaining capacity, there similarities between the two approaches that have been hitherto unnoticed:

• Both characterizations involve union of polymatroids,6 and the set of admissible input

distributions for each case are equivalent in a certain sense.

• Full joint decoding is unnecessary—successive group decoding suffices, and the points

achievable through successive group decoding are shared by among all possible superposi-

tion coding strategies.

3.2.1 Prior results: Two-user case

In both cases, the distributions which we code with respect to involve an auxiliary tuple

(U1, U2, U12) which are related to the inputs via two deterministic functions Xj = xj(Uj , U12).

5 For brevity, we abbreviate {1, 2} to 12, {1} to 1 and {2} to 2
6 While known for the Han rate region, this fact appears to have been unnoticed for the Slepian-Wolf rate region.
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Each auxiliary random variable is paired with the message source of the same index. Should we

code with or without superposition?

3.2.1.1 Coding without superposition: Han’s strategy

Coding without superposition does not impose any dependence among the codewords, or

auxiliary random variables, of the different message sources. As such, attention is restricted to

auxiliary random variables which are independent and to codebooks where each message is assigned

an auxiliary codebook at random,

unS(mS) ∼
n∏
t=1

p(uS,t) ∀ mS ∈
[
1 : 2nRS

]
,

independently of the other message sources. At the jth input, the codeword to be sent is computed

by applying the deterministic function xj to the auxiliary codewords unj , u
n
12 on a channel-use by

channel-use basis: xj,t(mj ,m12) = xj(uj,t(mj), u12,t(m12)). Decoding with joint typicality, we can

reliably estimate the sent message if

∑
S∈B

RS ≤ I(UB;Y |UE\B) ∀B ∈
{
∅, {1}, {2}, {12}, {1, 2}, {2, 12}, {1, 12}, {1, 2, 12}

}
. (3.1)

Each of these conditions, of which there is one per subset B of E, has a simple interpretation. Sup-

pose that the message tuple (mS : S ∈ E) is the sent message. Then the inequality corresponding

to B assures that the probability of some wrong message tuple (m̂S : S ∈ E) satisfying (3.2) being

jointly typical with the receiver is vanishingly small.

m̂S 6= mS S ∈ B

m̂S = mS S 6∈ B.
(3.2)

The polyhedral condition (3.1) has a special character: the bounds ρ(B) = I(UB;Y |UE\B)

are submodular, monotonic, and increasing 7 . Thus, by the canonical polymatroid definition (7),

which involves an inequality for every element of the boolean lattice of all subsets of E, the region

(3.1) is a polymatroid.

7 As noted by Han [48]
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3.2.1.2 Coding with superposition: Slepian and Wolf’s strategy

Now suppose that we do build in dependence among the codewords of the different message

sources via superposition coding. In particular, we allow the the private message codewords, and

private auxiliary random variables, to depend on their common message counterpart. That is, the

auxiliary random variables may factor recursively as p(U12, U1, U2) = p(U12)p(U1|U12)p(U2|U12),

and we select the auxiliary codewords iteratively and at random as

un12(m12) ∼
n∏
t=1

p(u12,t) ∀ mS ∈
[
1 : 2nR12

]
unj (mj |m12) ∼

n∏
t=1

p(uj,t|u12,t) ∀ mj ,m12 ∈
∏

S∈{j,12}

[
1 : 2nRS

]
.

The input codewords are generated in the same channel use-by-channel use basis as before. Decod-

ing with joint typicality, we can reliably estimate the sent message if

∑
S∈B

RS ≤ I(UB;Y |UE\B) ∀B ∈
{
∅, {1}, {2}, {1, 2}, {1, 2, 12}

}
. (3.3)

As with coding with superposition, each bound corresponds to an error event of the form (3.2), but

in contrast to the previous situation, the conditions corresponding to B ∈ {{12}, {12, 1}, {12, 2}}

aren’t enforced. Because of the dependence among message sources built into the codewords, all

three of these error events are dominated in probability by the error event B = {12, 1, 2}. All

four correspond to the case where the receiver has misdecoded the common message m12. But,

as the private message auxiliary codeword choice depends common message as well, misdecoding

the common message assures that probability of a false message estimate being joint typical with

the output is always as low as it would be when the private messages are miscoded, irrespective of

whether or not the private message estimates are actually correct.

The conditions in (3.3) are similar to those in (3.1), with each of the four bounds matching

one of the seven bounds in (3.1). Coding without superposition lead to reliable communication

conditions that are polymatroidal. Does this continue to be true when we code with superposition?

Yes! As
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• the defining inequalities of (3.3) are over the down-set lattice set family F↓(E;⊆), and

• the defining bounds of (3.3) are submodular, monotonic, and normalized over this lattice

set family (a consequence of Lemma 3.2.1 to be shown shorty),

the Polymatroid over a Lattice Set Family Lemma8 assures that the corresponding set of in-

equalities do define a polymatroid, albeit with redundant inequalities. To the best of the author’s

knowledge, this is an unnoticed fact within information theory literature. The requisite lemma for

this conclusion will be useful for the general case, and we state and prove it in generality here:

Lemma 3.2.1. Equip E with an order and fix a random tuple U ≡ (US : S ∈ E) in the correspond-

ing up-set lattice conditional independence model. Then irrespective of the conditional probability

mass function p(y|uE), the mutual information

ρ(B) = I(UB;Y |UE\B),

viewed as a set function, is a polymatroid function over the down-set lattice of E.

Proof. Recall that ρ is polymatroidal if it is normalized (2.13c), increasing (2.13b), and submodular

(2.13a) with respect to all the down sets of E. Regardless of the distributional assumptions on U ,

the mutual information bound ρ is normalized and increasing, where the latter is a consequence of

the simple fact that conditioning reduces entropy. To show that ρ is submodular, we follow Han

[48] and for any two down-sets A,B we write

ρ(A ∪B) + ρ(A ∩B) = I(UA∪B;Y |UE\(A∪B)) + I(UA∩B;Y |UE\(A∩B))

= H(UE)−H(UAc∩Bc) +H(UE)−H(UAc∪Bc)

−H(UA∪B|UAc∩Bc , Y )−H(UA∩B|UAc∪Bc , Y ), (3.4)

where we write Xc = E\X for any subset X ⊆ E. Now, for any distribution on U we have [48]

H(UA∪B|UAc∪Bc , Y ) = H(UA|UAc , Y ) +H(UA\B|UAc∪Bc , Y )

8 Lemma 2.2.1
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≥ H(UA|UAc , Y ) +H(UA\B|UBc , Y ) (3.5)

H(UA∩B|UAc∪Bc , Y ) = H(UB|UBc , Y )−H(UA\B|UBc , Y ). (3.6)

As A and B are down-sets, their complements, Ac and Bc are up-sets. Hence, if U is in the up-set

lattice conditional independence model, then the implied Markov conditions (2.11) assure that

H(UAc) +H(UBc)−H(UAc∩Bc)−H(UAc∪Bc) = I(UAc ;UBc |UAc∩Bc) = 0. (3.7)

Substituting (3.5), (3.6), and (3.7) into (3.4) provides that ρ satisfies (2.13a) and hence is submod-

ular. Together with the previous assertions that ρ is normalized and increasing, we find that ρ is

a polymatroid function over the down-set lattice of E.

3.2.2 Common Order-theoretic Framework

Despite their differences, the strategies of coding with superposition or coding without su-

perposition share a remarkable fact: they both lead to a polymatroidal inner bound. A unifying

view of both of the strategies which explains this similarity is to view each as an instantiation of

superposition coding that differ in the choice of partial order by which coding proceeds. Equipping

with the message index set with a superposition order, the two strategies are both instantiations

of the following framework:

• Choose an auxiliary random tuple which factors successively along this order:

p(u1, u2, u12) = p(u1|u↑1\1p(u1|u↑1\1)p(u12)

and a pair of functions xj that map the auxiliary codewords to input codewords.

• Construct codewords successively along this order as

un12(m12) ∼
n∏
t=1

p(u12,t) ∀ mS ∈
[
1 : 2nR12

]
unj (mj |m↑j\j) ∼

n∏
t=1

p(uj,t|u↑j\j,t) ∀ m↑j ∈
∏
S∈↑j

[
1 : 2nRS

]
and map these auxiliary codewords to inputs via xj(uj,t(m↑j , u12,t(m12)) for each channel

use t ∈ [1 : n].
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R{1}
R{2}

R
{1

,2
}

Figure 3.3: Comparison of the Slepian-Wolf (light grey) and Han (dark grey) polymatroids for a
fixed input. The edge of the dominant face shared by both polymatroids is highlighted.

• Decode by joint typicality decoding, which reliably estimates the sent message if

∑
S∈B

RS ≤ I(UB;Y |UE\B) ∀ down-sets B ∈ F↓(E;≤) (3.8)

Coding with superposition fits this framework when the partial order is the inclusion order.

Perhaps less clear is that coding without superposition also fits in this framework with the order

as the discrete order. In this case, the inputs must factor as a product distribution. Similarly, the

codebooks corresponding to different message sources are generated independently. Moreover, the

down-set (and up-set) lattice of the discrete order is simply the power-set of E:

F↓(E; =) =

{
∅, {1}, {2}, {12}, {12}, {2, 12}, {1, 12}, {1, 2, 12}

}
= F↑(E; =) = 2E .

For a fixed input distribution permissible to use for both strategies9 , coding with superpo-

sition achieves a larger rate region that does coding without superposition; see Figure 3.3. Yet

despite this, in both cases the union of the achievable polymatroids over all permissible auxiliary

random variables and input functions x1, x2 yields the capacity region [99, 48]. The reason why this

is so has to do with the importance of the inclusion order for the MAC with general message sets,

which leads to a couple of novel conclusions: first, that down-set rate splitting always accounts for

the difference between coding with respect to discrete or inclusion order, and secondly, that the

9 That is, a tuple (U1, U2, U12) of independent random variables and fixed pair of mappings from the auxiliary
random variables to the inputs.
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points achievable through successive group decoding characterize capacity, and are the polymatroid

faces shared by all permissible superposition coding strategies. We further detail these conclusions

in the subsequent section.

The results of Slepian and Wolf include a further specialization: it suffices to only consider

trivial input functions xj(uj , u12) = uj for both j ∈ {1, 2}. The common framework above can

be further extended to accommodate this, by observing that a mapping exists between the various

sets of admissible input distributions. The differences between the admissible input distributions

for coding with, and without, superposition are provided in Table 3.2:

Superposition Order ⊆ =

Auxiliary RV dependencies p(U1|U12)︸ ︷︷ ︸
↑1

p(U2|U12)︸ ︷︷ ︸
↑2

p(U12)︸ ︷︷ ︸
↑12

p(U1)︸ ︷︷ ︸
↑1

p(U2)︸ ︷︷ ︸
↑2

p(U12)︸ ︷︷ ︸
↑12

Functional dependencies Xj = xj(Uj , U12) = Uj Xj = xj(Uj , U12)

Input Dependencies through Markov conditions through Shannon strategies

Table 3.2: Different representation of input dependencies: two-users

Notably the different sets of input distributions represent channel input dependences by dif-

ferent means: either fully through Markov dependences, or fully through the deterministic functions

x1, x2, which we call Shannon strategies, in analogy to the coding with state for the point to point

channel. These sets of input distributions are equivalent in a certain rate-preserving sense: for

the polymatroid (3.8) defined by the inclusion superposition order, we may equivalently express

a correlated input by either of the two means above while preserving all of the defining mutual

information bounds

ρx,U (B) = I(UB;Y |UE\B) B ∈
{
∅, {1}, {2}, {1, 2}, {1, 2, 12}

}
. (3.9)

To see this, we use the following result.

Lemma 3.2.2 (Functional Representation Lemma: Appendix B of [31]). For any tuple (A,B,C),

there exists a random variable D independent of A and B such that we may represent C as a

function of (B,D).
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To map a tuple of the Markov type to a tuple of Shannon strategy type while preserving

the bounds (3.9), consider (A,B,C) = (Xi, U12, Xj) for one of the two configurations (i, j) ∈

{(1, 2), (2, 1)}. Apply the Functional Representation Lemma and label the resultant random vari-

able as U{i} and the resultant deterministic function as xi. By construction, U1 and U2 will be

independent of each other and of U12. Moreover, by the data processing inequality, replacing Xj

by Uj in the bounds (3.9) does not change their values. The reverse direction, of mapping a tuple

of the Shannon strategy type to a tuple of Markov type, is trivial: simply reassign the variables U1

and U2 to be X1 and X2, respectively.

3.2.2.1 Importance of the Inclusion Order

With an abundance of possible capacity descriptions, a natural question to ask is which is

the most fundamental. A partial answer in favor of the inclusion order are the following two points:

• Down-set rate-splitting along the inclusion order accounts the difference in achievable rates

between coding with and without superposition.

• Successive group decoding along the inclusion order suffices to attain capacity, though

encoding may occur with or without superposition.

Rate transfer Per input distribution, coding without superposition achieves a smaller

region that afforded by coding with superposition; see Figure 3.3 for example. A simple strategy

to enlarge any rate region is to relabel parts of the common message as though they were part of

a private message. This corresponds to rate-splitting the common message rate as

R12 = r12→12 + r12→1 + r12→2,

where r12→S denotes the part of the message source m12 that will be re-labeled as belonging to the

message source mS . Thus, after relabeling, one obtains a new set of messages to be transmitted at

the rates

R̃1 = R1 + r12→1 R̃2 = R2 + r12→2 R̃12 = r12→12.
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By restricting these new rates to satisfy the no-superposition conditions (3.1), and un-doing the

relabeling process at the receiver, we can reliably transmit a message at rate R = (R1, R2, R12).

The set of rates thus achievable are of the form (3.3), and can be shown with an argument reliant

on polymatroid properties. A general argument, which accounts for the K-user extension of this

idea, is demonstrated in Appendix B.2.10

Sufficiency of Successive Group Decoding Why are there so many permissible capacity

descriptions? A partial answer to this is that any capacity description which contains a special set

of points suffices. There are a collection of faces that are shared among all possible polymatroids

achieved through superposition: these faces correspond to the set of points achievable through

successive group decoding along the inclusion order: namely the common message is decoded first,

and then successively, the group of the two private messages are jointly decoded conditioned on the

knowledge of the common message.

R{1}R{2}

R
{1

,2
}

(a) ε1 = ε2 = 1

R{1}R{2}

R
{1

,2
}

(b) ε1 = 1/3, ε2 = 1.

R{1}R{2}

R
{1

,2
}

(c) ε1 = 1/12, ε2 = 1.

R{1}R{2}

R
{1

,2
}

(d) ε1 = 0, ε2 = 1.

R{1}R{2}

R
{1

,2
}

(e) ε1 = ε2 = 1/3.

R{1}R{2}

R
{1

,2
}

(f) ε1 = ε2 = 1/12.

Figure 3.4: Each point on dominant face of a Slepian-Wolf polymatroid (light grey) is on the
successive group decoding edge of a Han polymatroid (dark grey) corresponding to a different
input distribution.

10 Han demonstrated this in Han[48], with a hand-crafted argument reliant on submodularity, but without the
larger picture of polymatroidal structure that permits the generalization to K-users.
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To show this, we fix an specific input distribution and corresponding achievable polymatroid.

With the discrete convex properties of defining polymatroid bounds, one can show that every

point on the dominant face of a polymatroid corresponds to the successive group decoding edge

of another poylmatroid achievable by a different input distribution. The relationship between the

two distributions is one of a variable split, to be defined shortly, where randomness is “shifted”

from one variable to another. Figure 3.4 depicts this procedure, by demonstrating that each point

on a Slepian-Wolf polymatroid corresponds to a successive group decoding edge of another Han-

polymatroid for another input distribution, characterized by two parameters ε1, ε2.

A technical tool will be the notion of a variable split, which we borrow from [41]. The idea is

that randomness is “shifted” from one variable to another, and the direction of the shift corresponds

to the partial order on the message index set.

Definition 8 (Split). A split for a random variable U ∈ U is a family of triples (f, pW , pV )

parameterized by a real number ε ∈ [0, 1]. The function f : U × U is called a splitting function and

pW , pV are pmfs, each dependent on ε. Admissible choices for (f, pW , pV ) satisfy

(i) f(W,V ) ∼ pU , where pW,V (w, v) = pW (w)pV (v).

(ii) For fixed values of u and w, the pmf pf(W,V )(u|w) is continuous function of ε. For ε = 0,

pf(W,V )(u|w) = pU (so f(W,V ) is independent of W ) while for ε = 1, pf(W,V )(u|w) puts all

of its mass on one element (so f(W,V ) is completely determined by W ).

As per Example 3 in [41], it is always possible to find such a family of (f, pW , pV ) with the

desired properties for any discrete random variable U ∈ U . The sufficiency of successive group

decoding is provided by the following.

Theorem 3.2.3. Consider the two-user DM MAC with two private messages and one common
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message. Then the capacity region is dominated by the rate points which satisfy

R1 ≤ I(U1;Y |U2, U12)

R2 ≤ I(U2;Y |U1, U12)

R1 +R2 = I(U1, U2;Y |U12)

R1 +R2 +R12 = I(U1, U2, U12;Y )

, (3.10)

where the inputs may be expressible either of the Markov type or of the Shannon strategy type.

Proof. By the Slepian-Wolf description of capacity, every achievable rate tuple is in a polymatroid

(3.8), where the superstition order is the inclusion order, for an input tuple of the Markov type,

which is expressible as an input tuple of the Shannon strategy type. By the greedy algorithm

for maximizing the weighted sum-rate over polymatroids, we know that all rate points in this

polymatroid are dominated by those that satisfy R12 +R1 +R2 = I(U1, U2, U12;Y ). Pick one such

dominating rate tuple R′. To show the desired result, we construct a new tuple (U ′1, U
′
2, U

′
12, x

′
1, x
′
2)

such that the bounds in (3.10) are satisfied with respect to this new input tuple.

Let (f1,W1, V1) be a split of the auxiliary random variable U1, parametrized by ε1 ∈ [0, 1] and

(f2,W2, V2) be a split of the auxiliary random variable U2, parametrized by ε2 ∈ [0, 1]. Consider

the “re-assigned” auxiliary random tuple U ′1 = V1,U ′2 = V2,U ′12 = (W1,W2, U12), whose distribution

is parametrized by ε1, ε2. In this manner, as εi increases, it “shifts” the randomness from U ′{i}

towards U ′12. For every choice of ε1, ε2 define

ρx′,U ′(B) = I(U ′B;Y |U ′E\B) ∀B ⊆ E, (3.11)

which we know to be a polymatroid function over the power set of E (i.e. the down-set lattice set

family with respect to the discrete order =) per Lemma (3.2.1). By assumption,

R′1 ≤ I(U ′1;Y |U ′2, U ′12) (3.12a)

R′2 ≤ I(U ′2;Y |U ′1, U ′12) (3.12b)

R′1 +R′2 ≤ I(U ′1, U
′
2;Y |U ′12) (3.12c)

R′1 +R′2 +R′12 = I(U ′1, U
′
2, U

′
12;Y ) (3.12d)
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for ε1 = ε2 = 0. Let’s focus on the split for U1 initially and note that for all choices ε1 ∈ [0, 1],

the bounds (3.12b) and (3.12d) are unchanged. By contrast, both the bounds (3.12a) and (3.12c)

do change with ε1. As mutual information is a continuous function of its input pmf’s, both of

these bounds are continuous functions of ε1. Moreover, as a function of ε1, the bound (3.12a) is a

continuous function with

ε1 = 1 : I(U ′2;Y |U ′1, U ′12) = 0

ε1 = 0 : I(U ′2;Y |U ′1, U ′12) = I(U1;Y |U2, U12).

Hence, by the intermediate value theorem, as we increase ε1 from zero to one, there is a value at

which one of the two constraints (3.12a) and (3.12c) becomes tight while the other continues to

hold. Let ε∗1 be this value.

If the private sum-rate bound on R′1 +R′2 is tight after the prior step, then we are done. So

suppose instead that the bound on R′1, rather than the private sum-rate bound, is tight. Hereafter,

assume ε1 = ε∗1 and let U∗ be the random tuple U ′ with ε2 = 0. If the private sum-rate bound

holds and the bound on R′1 is tight, then necessarily the bound on R′2 holds:

R2 = (R1 +R2)−R1 ≤ ρx′,U ′({1, 2})− ρx′,U ′({1}) = I(U ′2;Y |U ′12) (3.13)

(i)

≤ ρx′,U ′({2})− ρx′,U ′(∅) = I(U ′2;Y |U ′1, U ′12),

where (i) follows by submodularity. Hence, with the benefit of knowing that the bound on R′1 is

tight, we need only assure that the private sum-rate bound holds to assure that the bound on R′2

continues to hold. Now, I(U ′2;Y |U ′12) is a continuous function of ε2 with

ε2 = 1 : I(U ′2;Y |U ′12) = 0

ε2 = 0 : I(U ′2;Y |U ′12) = I(U∗2 ;Y |U∗12).

Hence, again by the intermediate value theorem, there must be a choice of ε2 such that the bound

(3.13), and consequently private sum-rate bound (3.12c), is tight.

The construction above, with variables being split is analogous to the rate-split argument.

In both cases, the set of feasible rate (or variable) splits is determined by the inclusion order on
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the message set index E. Further, per input distribution, the dominating rate points in (3.10)

are shared by both the Slepian-Wolf and Han achievability schemes. An illustration of the set of

rate points that achieve the rate conditions above with equality in Figure 3.4a. The above result

may also be interpreted as clarifying the relationship between different constituent polymatroids of

different capacity descriptions. In particular, for a fixed distribution with (U1, U2, U12) ∈ L(E; =)

with two deterministic strategies x1, x2, let C(x, U) of tuples (x′, U ′) derivable from (x, U) by the

above procedure through the parameters ε1, ε2 ∈ [0, 1]. Then the above result implies that

PF↓(E;⊆)(ρx,U ) =
⋃

(x,′U ′)∈C(x,U)

P(ρx′,U ′).

That all points on the boundary of the capacity region are attainable by successive group

decoding monotonically along the inclusion order ⊆ on E for the two-user MAC was observed in

the context of the two-user scalar Gaussian channel in [65]. Theorem 3.2.3 generalizes this to the

discrete memoryless case.

3.3 Generalized Superpositon Coding

Our principal contribution is that the polymatroidal structure observed in the two-user case

persists in all of the various K-user capacity regions reported thus far in the literature, and we

provide a common framework which identifies that in fact a class of polymatroidal capacity de-

scriptions, some of which have not yet been reported in the literature, exists. While previously

observed in Han’s characterization of the K-user capacity, such an observation has gone unnoticed

for generalizations of the Slepian-Wolf description to more than two-users.

3.3.1 K-user Capacity Region

Theorem 3.3.1. For the K-user DM MAC with general message sets messages, let E to be the

index set of all messages to be sent (a subset of all non-empty subsets of [1 : K]) and fix some

superposition order ≤ over E. Then the capacity region of this channel is the convex closure of all
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rate tuples that lie in a polytope{
R ∈ RE+ :

∑
S∈B

RS ≤ I
(
UB;Y |UE\B

)
∀ B ∈ F↓(E;≤)

}
(3.14)

for some auxiliary tuple (US : S ∈ E) ∈ L(E;≤) and some set of K deterministic relations

Xj = xj((US : j ∈ S ∈ E))

Proof. The interesting direction is the forward direction, which follows through random coding

and joint typicality decoding [31]: our contribution is an emphasis on partial order to correctly

and efficiently keep track of the combinatorially many error events and of the order by which

superposition proceeds. Each choice of a superposition order corresponds to a unique superposition

coding strategy, where the codeword for the message MS is superposed on the codewords indexed by

(↑ S)\S = {S′ ∈ E : S < S′}. With such a superposition coding scheme, an error in decoding MS

results in all of the codewords that were generated dependently on the codeword for MS (i.e. those

listed in down-set ↓ S) to be independent of the output. Suppose a wrong message tuple estimate

has only those message estimates listed in B ⊆ E differing from the correct message. By the above

dependencies just discussed, its probability of being jointly typical with the output is dependent on

I
(
UZ↓(B);Y |UE\Z↓(B)

)
, where Z↓(B) is the smallest down-set containing B. Removing redundant

inequalities leads to (3.14). Rigorous details of both achievability and of the converse are provided

in Appendices B.1 and B.3, respectively.

Corollary 3.3.2. All capacity descriptions in Theorem 3.3.1 have constituent polytopes which are

polymatroids.

Proof. Each polytope is defined over a lattice set family of inequalities, where the bounds are

submodular, monotonic, and normalized (per Lemma 3.2.1). Thus, by the Polymatroid over a

Lattice Set Family Lemma (i.e. Lemma 2.2.1), each polytope is a polymatroid.

We remark the setting of Theorem 3.3.1 is quite a bit more general than the special case

presented in Section 3.2: not only may the number of users be arbitrary, but the message index

set and “superposition” scheme dictated by superposition order ≤ may be arbitrary. That is, E
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may be any set of subsets of the K-users while the “superposition” scheme may be any valid choice

between that of using all available side information (i.e. coding with respect to the inclusion order)

and that of using none of the available side information (i.e. coding without superposition, or

equivalently, coding with respect to the discrete order). It includes as special cases those listed in

Table 3.1. Our formalism subsumes the K-user capacity description of Han [48] and of Gündüz

and Simeone [43], and reproduces the MAC capacity region provided by Rini and Goldsmith [81].

3.3.2 Relationship to Previous Results

The results of Rini and Goldsmith [81] fits under the purview of Theorem (3.3.1) when the

message index set contains all possible messages is equipped with the inclusion order, the most

structured order possible. Han’s general K-user description of capacity [48] also fits under the

umbrella of Theorem (3.3.1), with the message index set again containing all possible messages,

but with the superposition order taken to be the discrete order, the least structured superposition

order possible. The up- and down-set lattices for the discrete order are both equal to the power

set of E: F↓(=) = F↑(=) = 2E . As the principal down-sets of this order are the singletons in

E, Han’s coding scheme does not permit either the codebooks or the auxiliary random variables

of different message sources to depend on each other. 11 Though we do not provide cardinality

bounds on the auxiliary random variable alphabets, Han [48] was able to determine such bounds.

In particular, US can be bounded as |US | ≤
∏
j∈S |Xj | + |E|. This bounding approach appears to

be easily tractable only for the capacity representation corresponding to the discrete order.

Gündüz and Simeone’s description fits partially the purview of Theorem 3.3.1, with an ad-

ditional caveat: for special message index sets, one may dispense with the deterministic functions

x1, . . . , xK and simply model the inputs as belonging to the collection of auxiliary random variables

(specifically, where each input is either equal to, or part of, a single auxiliary random variable).

This approach is especially advantageous when the number of messages to send is small and it is

11 By definition of the up-set lattice conditional independence model, when the order is the discrete order, the
auxiliary tuple (US : S ∈ E) has a product distribution p(UE) =

∏
S∈E p(US).
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possible to either greatly reduce or obviate the need for auxiliary random variables other than the

inputs in the description of the capacity region.

This can be done whenever the message index set contains all sets of the form

S(j) =
⋃
{S : j ∈ S ∈ E} (3.15)

By appending zero-rate messages if necessary, add all sets of the form (3.15) to E to create a message

index set Ẽ. To describe the form of the auxiliary random variables, consider the message graph

of [43], which is a directed version of the inverted Hasse Diagram for the appended message index

set Ẽ∪∅, where the empty set is included so that all “down-sets” can be thought of as rooted trees;

see Figure 3.5. Adopting the language of [43] for this induced message graph, define a parent of a

{1,3,4,5}

{3,5}

{2,4,5}

{6}

(a) E.

{1,3,4,5}

{3,5} {4,5}

{2,4,5}

{5} {6}

(b) Ẽ

{1,3,4,5}

{3,5} {4,5}

{2,4,5}

{5} {6}

∅

(c) Inverted, directed, Hasse dia-
gram for Ẽ ∪ {∅}.

Figure 3.5: Gündüz and Simeone’s K = 6-user example with the original message index set (a),
the smallest intersection-closed message index set containing E (a), and its rooted version (c).

node S ∈ Ẽ any node S′ ∈ Ẽ such that S′ −<S. Then define M to be the set of vertices S ∈ Ẽ

with more than one parent. Notably, if S 6∈ M, then there must be at least one j ∈ S for which

S(j) = S. For each S ∈ Ẽ, let

US =


(Xj : S(j) = S) S 6∈ M

ŨS , (Xj : S(j) = S) S ∈M
. (3.16)

Then the capacity region of [43] is the one provided by Theorem 3.3.1, with Ẽ equipped with the

inclusion order in place of E, with RS = 0 for S ∈ Ẽ\E, and with up-set lattice conditionally

independent (US : S ∈ Ẽ) that are the form (3.16).
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3.3.3 On the Description Complexity

An advantage of polymatroid structure is that despite the extraordinarily large number of

constraining inequalities on the achievable rate region, the underlying structure of the rate region is

low, as the vertices are attainable through a greedy algorithm. For the moment, consider just how

many bounds there are: if, for example, we code with respect to the discrete order, then there is a

defining bound for each subset of E: this is the boolean lattice (minus the empty set) of subsets of

E, which contains 2|E| − 1 elements. The inclusion order affords much smaller number of defining

bounds; the question is, how much smaller?

In the case that the message set index is as large as possible, where E = 2[1:K]\∅, the number

of bounds for the defining polymatroids, under the inclusion and discrete orders, is tabulated in

Table 3.3. Counting reveals that there are 22K−1−1 bounds for the polymatroid which arise under

K # Sources: |E| # bounds (inclusion order): |F↓| # bounds (discrete order): |2E\∅|
2 3 4 7
3 7 18 127
4 15 166 32,767
5 31 7,579 ≈ 2× 109

6 63 7,828,352 ≈ 8× 1018

Table 3.3: Counting antichains: number of defining polymatroid bounds under the discrete or the
inclusion order.

the discrete order. How many are there for the polymatroid under the inclusion order? Counting

the number of these defining bounds is equivalent to counting the number of anti-chains in the set

E, which happens to be an old problem with a long history dating back to Dedekind (see [13]).

Progressively better bounds have been proposed, and the easiest to state match to first order in the

exponent. In particular, the (base-2) logarithm of the number of anti-chains in E is approximately

N =
(

K
bK/2c

)
, the size of the middle layer {S : |S| = bK/2c}) of E. As there are 2N anti-chains

available by picking only from this middle layer, it is clear that N is a lower bound to the logarithm

of the total number of anti-chains in E. Remarkably, N serves also as an upper bound, with the

first resolution of this provided in 1967 [13], and with a short modern proof provided through
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Pippenger’s information theoretic method [79].

Thus, to compare the number of bounds arising between the different choices of the inclusion

order or the discrete order, we have

log(|F↓|) ∼
(

K

bK/2c

)
(ii)∼
√

2πK(K/e)K

πK(K/(2e))K
=

√
2

π

2K√
K

log(|2E |) ∼ 2K .

where (ii) by follows by Stirling’s approximation. Thus, there are far less defining bounds when

coding with respect to the inclusion order than with respect to the discrete order, but there are

still a super-exponential number of bounds.

3.3.4 On Permissible Input Distributions

To establish a common notation for the different classes of partially correlated input tuples,

for a fixed superposition order ≤ on E, define Q(E;≤) to consist of all pairs x = (x1, . . . , xK) and

U = (US : S ∈ E), where U is a random tuple with distribution that factors according to the up-set

lattice conditional independence model,

∏
S∈E

p(uS |uS′ : S < S′), (3.17)

and where each xj is a deterministic function relating the jth input to the tuple U as

Xj = xj(US : j ∈ S ∈ E) j ∈ [1 : K] . (3.18)

The above characterization of a partially correlated input provides much flexibility - namely,

there are two potential avenues by which to model dependency among the inputs:

(i) Through Markov dependencies: If there are dependencies among the auxiliary random vari-

ables (US : S ∈ E), then the channel inputs are partially correlated.

(ii) Through Shannon strategies: if the deterministic functions x1, . . . , xK have shared function

inputs, then the channel inputs are partially correlated.
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When the message set E includes all sets of the form (3.15) (by adding zero-rate messages, one

can always append such sets to E), then either description is sufficiently general to encompass all

possible input correlations. That is we can either a) subsume the inputs into the set of auxiliary

random variables and represent channel input correlations through Markov dependences in the

auxiliary random variables themselves, or b) have independent auxiliary variables and represent

all channel input correlations through complex Shannon strategies.

To demonstrate this argument concretely, for a given superposition order on E, and input

pair (x, U) ∈ Q(E;≤), define the polymatroid

P≤(x, U) =

{
R ∈ RE+ :

∑
S∈B

RS ≤ I(UB;Y |UE\B), ∀ B ∈ F↓(E;≤)

}
,

where (Y,U) has joint distribution induced by passing the Xj = xj(US : j ∈ S ∈ E) through

the multiple access channel. Then input dependencies can be completely characterized through

Shannon strategies:

Lemma 3.3.3 (Correlation through Shannon strategies). Let ≤ be any superposition order on E.

Take any input (x, U) ∈ Q(E;≤), with correlations possibly present through both Markov depen-

dences and Shannon strategies. Then there is an alternate input (x′, U ′) ∈ Q(E; =), with correla-

tions only present through Shannon strategies that preserves the rate region achievable under the

superposition strategy defined by ≤; that is,

P≤(x, U) = P≤(x′, U ′).

Proof. Let Y,U have joint distribution induced by passing the inputs Xj = xj(US : j ∈ S ∈ E)

through the multiple access channel. We will show that, without affecting the joint distribution on

(Y,U), we may assume

US = gS(U ′↑S) ∀S ∈ E (3.19)

where each gS is a deterministic function and where the random variables (U ′S : S ∈ E) are

independent. Then, as the tuple U has distribution which factors according to a superposition
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order, it follows that

U ′E\B (−− UE\B (−− Y (3.20)

for every down-set B of E and so

I(U ′B;Y |U ′E\B) = H(Y |U ′E\B)−H(Y |X1, . . . , XK)

(i)
=H(Y |UE\B, U ′E\B)−H(Y |X1, . . . , XK)

(ii)
= H(Y |UE\B)−H(Y |X1, . . . , XK) = I(UB;Y |UE\B), (3.21)

where (i) follows as each UE\B is a function of U ′E\B per (3.19) and (ii) follows by the Markov

relation (3.20). As the defining bounds of the achievable rate region are preserved, so too is the

rate region itself.

It remains to substantiate our claim that (3.19) holds without loss of generality for some col-

lection of deterministic functions and independent random variables. To see this, let S1, S2, . . . , SM

be an exhaustive, never-increasing listing of E. By definition, U has distribution which recursively

factors as

p(uS1 , . . . , uSr) =
∏
i≤r

p(uSi |u↑Si\Si). (3.22)

We proceed by induction. For the root case, set U ′S1
= US1 for which (3.19) trivially holds with Si

in place of S. Now let r > 1 and assume there is a secondary tuple (U ′S1
, . . . , U ′Sr−1

) of independent

random variables such that for each i < r, (3.19) holds with Si in place of S. There are two cases.

• If Sr =↑ Sr, set U ′Sr = USr . By the factorization (3.22), U ′Sr is independent of all

(US1 , . . . , USr−1) and trivially (3.19) holds with Sr in place of S.

• Suppose Sr ⊂↑ Sr. Apply the Functional Representation Lemma (Lemma 3.2.2) to yield

that we may represent USr as USr = fr(U
′
Sr
, U↑Sr\Sr) for some function fr and random

variable U ′Sr independent of (U ′S1
, . . . , U ′Sr−1

). Composing fr with the prior functions gSi

for i < r yields a function gSr for which USr = gSr(U
′
↑Sr).

After creating the tuple U ′, compose the K original mappings x1, . . . , xK with the functions gS to

produce K new mappings Xj = x′j(U
′
S : j ∈ S ∈ E) for each j ∈ [1 : K].
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If E contains the sets S(j) defined in (3.15) and we only consider the capacity characteriza-

tions corresponding to the down-set lattice set families, then we may do the reverse: subsume the

input Xj into the auxiliary random variable US(j) and completely characterized input correlations

through Markov dependencies.

Lemma 3.3.4 (Correlation through Markov dependencies). Assume, by appending zero-rate mes-

sages if necessary, that E contains all sets {S(j) : 1 ≤ j ≤ K}. Fix an input distribution

(x, U) ∈ Q(E,⊆), with correlations possibly present through both Markov dependences and Shannon

strategies. Then there is an input distribution (x′′, U ′′) ∈ Q(E,⊆), with correlations only present

through Markov dependencies that preserves the rate region achievable under the superposition strat-

egy defined by the inclusion order ⊆; that is,

P⊆(x, U) = P⊆(x′′, U ′′).

Proof. Let U ′S = (US′ : S ⊆ S′ ∈ E) for each S ∈ E and observe that necessarily U ′S has dis-

tribution that factors recursively as
∏
S∈E p(uS |uS′ : S ⊂ S′). By construction, we may take x′j

to depend only on the single auxiliary random variable US(j) and not on UE\S(j) so that the in-

puts are unchanged. Moreover, for each B ∈ F↓(E;⊆), as UE\B 7→ U ′E\B is a one-to-one map,

I(U ′B;Y |U ′E\B) = I(UB;Y |UE\B). Hence, P⊆(x, U) = P⊆(x′, U ′). With the language of Section ??,

define a new auxiliary random tuple via

U ′′S =


(Xj : S(j) = S) S 6∈ M

U ′S , (Xj : S(j) = S) S ∈M
.

for each S ∈ E. Notably, the inputs are subsumed into the auxiliary random tuple. By construc-

tion, the auxiliary random tuple U ′′ = (U ′′S : S ∈ E) has distribution that recursively factors as∏
S∈E p(u

′′
S |u′′↑S\S); that is, U ′′ ∈ L(E;⊆). Moreover, for every B ∈ F↓(E;⊆), as

U ′E\B (−− U ′′E\B (−− Y

U ′′E\B is a function of U ′E\B,

the applying the same argument leading up to (3.21) provides that P⊆(x′, U ′) = P⊆(x′′, U ′′).
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3.4 Importance of the Inclusion Order

3.4.1 Rate Delegation

As in the two-user case, we can add power to the general K-user case of Han’s coding

scheme by delegating the rate load of the “more common” rate loads among “less common” rate

loads. Specifically, with a fixed input distribution, we can achieve any rate tuple satisfying just the

inequalities corresponding to the down-set lattice F↓(⊆) (but possibly violating some inequalities

in F↓(=)\F↓(⊆)), by delegating “more common” message rate loads as

RS =
∑

S′∈E:S′⊆S
r(S′,S) S ∈ E (3.23)

among “less common” message rate loads to form effective rates

R̃S′ =
∑

S∈E:S′⊆S
r(S′,S) S′ ∈ E (3.24)

which satisfy all of the inequalities corresponding to the power set of E. The technical challenge

of such a result is in eliminating the rate-splits (r(S′,S) : S′, S ∈ E,S′ ⊆ S) to leave only the target

rates RS . While the standard prescription in the literature to eliminating extraneous rates is to use

the Fourier-Motzkin procedure, we find that such an approach is unwieldy in this case. Instead,

we eliminate the rate-splits in an alternative manner: via the properties of polymatroids. While

it requires polymatroidal structure, whenever polymatroidal structure is present, such a method

might provide a much more scalable and tractable approach to projection. The details of this

projective step are relegated to Appendix B.2.

3.4.2 Sufficiency of Successive Group Decoding

As in the two-user case, any point on the boundary of the K-user capacity region are achiev-

able through successive group decoding along the inclusion order on the message index set. For the

general K-user case, successive group decoding process along successive decoding chains:

Definition 9 (Successive Decoding Chain). Any chain ∅ = B1 ⊂ B2 ⊂ · · · ⊂ Bk = E where,

with respect to the inclusion order on E, the Bi are down-sets and their differences Gi = Bi+1\Bi
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contain incomparable elements

S, S′ ∈ Gi =⇒ S 6⊂ S′, S′ 6⊂ S. (3.25)

Successive group decoding proceeds by first jointly decoding the messages in G1, then jointly

decoding the messages in G2, and so forth. Points achievable through successive group decoding

lie on a specific face of the achievable polymatroids. To show that these points are a face of

the achievable polymatroid, we require the following two lemmas, where the latter one depends

critically on the diminishing returns property of the defining polymatroid bounds.

Lemma 3.4.1. For any successive decoding chain, the incomparability condition (3.25) assures

that (B ∩ Bi+1) ∪ Bi is a down-set with respect to the inclusion order for every subset B ⊆ E and

every i ∈ [1 : k].

Lemma 3.4.2. Let f : 2E 7→ R+ be a polymatroid function. Suppose there is a family F of subsets

of E containing the length-k chain

∅ = B1 ⊂ B2 ⊂ · · · ⊂ Bk = E (3.26)

and a point x satisfying 12

x(Bi) = f(Bi) for all i ∈ [1 : k] (3.27a)

x(B′) ≤ f(B′) for all B′ ∈ F satisfying (3.27b)

Bi ⊆ B′ ⊆ Bi+1 for some i ∈ [1 : k − 1] . (3.27c)

Then,

x(B′′) ≤ f(B′′) for all B′′ ⊆ E satisfying (3.27d)

(B′′ ∩Bi+1) ∪Bi ∈ F for i ∈ [1 : k] . (3.27e)

Proof. Suppose B′′ ⊆ E satisfies (3.27e). Let Ti = (B′′ ∩Bi+1)\Bi. Then for each i = 0, 1, . . . , k,

x(Ti) = x(Ti ∪Bi)− x(Bi) = x((B′ ∩Bi+1) ∪Bi)− x(Bi)
(i)

≤ f((B′ ∩Bi+1) ∪Bi)− x(Bi) (3.28)

12 In this section, we adopt the notation x(B) =
∑
S∈B xS .
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where (i) follows by (3.27e) and (3.27c). Hence,

x(B′′) = x(Tk) +
∑k−1

j=0
x(Tj)

(i)

≤ f(Tk ∪Bk)− f(Bk) +
∑k−1

j=0
x(Tj)

(ii)

≤ f(Tk ∪ Tk−1 ∪Bk−1)− f(Tk−1 ∪Bk−1) +
∑k−1

j=0
x(Tj)

(iii)

≤ f(Tk ∪ Tk−1 ∪Bk−1)− f(Bk−2) +
∑k−2

j=0
x(Tj)

...

≤ f(Tk ∪ Tk−1 ∪ · · · ∪ T0) = f(B′′),

where (i), (iii) follow by (3.28) and (ii) follows by the diminishing returns property of submodular

and monotonic functions (i.e. f(A∪B)−f(B) ≥ f(A∪B∪C)−f(A∪B) for any subsets A,B,C).

The remaining steps follow by induction.

An implication of this lemma is that if the F is the down-set lattice set family under the

inclusion order, (3.26) is a Successive Decoding chain, and the point x satisfies the conditions (3.27),

then Lemmas 3.4.1 and 3.4.2 assure that this point is in the polymatroid P(f) = {x ∈ RE+ : x(B) ≤

f(B) ∀ B ⊆ E}. With this implication in hand, we demonstrate that all points in the capacity

region lie on some successive group decoding face and are achievable without superposition coding:

Theorem 3.4.3. Consider the K-user DM MAC with message index set E. Then the capacity

region is dominated by rate points that satisfy

R(Bi) = I(UBi ;Y |UE\Bi) for all i ∈ [1 : K]

R(B′) ≤ I(UB′ ;Y |UE\B′) for all down-sets B′ w.r.t.13 the inclusion order satisfying

Bi ⊆ B′ ⊆ Bi+1 for some i ∈ [1 : k − 1].

for some input distribution (x, U) in the up-set lattice conditional model with respect to the discrete

order and for some Successive Decoding chain {B1, . . . , Bk}.
13 with respect to
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Proof. Equip E with a superposition order. By Theorem 3.3.1, the capacity is given as the union

of all polymatroids P≤(x′′, U ′′) =

{
R ∈ RE+ : R(B) ≤ I

(
U ′′B;Y |U ′′E\B

)
∀ B ∈ F↓(E;≤)

}
, over all

possible input tuples (x′′, U ′′) ∈ Q(E;≤). Take one specific such polymatroid by fixing an input

tuple (x′′, U ′′) ∈ Q(E;≤). By Lemma 3.3.3, there is an input tuple (x, U) ∈ Q(E,=) so that

P≤(ρx′′,U ′′) = P≤(ρx,U ), where we define

ρx,U (B) = I(WB;Y |UE\B). (3.29)

As the auxiliary random variables (US : S ∈ E) are independent, the bound (3.29) is a submodular

and monotonic over the power set of E.14 Now, consider some maximal point R within the above

polymatroid. By the greedy algorithm for maximizing the weighted sum-rate over polymatroids,

this point lies on face given by R(E) = I(UE ;Y ). We will construct by induction a new input

distribution (x′, U ′) such that this maximal rate point is on the successive group decoding face of

the polymatroid corresponding to (x′, U ′).

• Root Case By assumption, the down-set chain ∅ = B1 ⊂ B2 = E has

R(Bi) = ρ(Bi) for all i ∈ {1, 2}

R(B′) ≤ ρ(B′) for all B′ ∈ F satisfying B1 ⊆ B′ ⊆ B2.

• Inductive Step Assume the length-k down-set chain ∅ = B1 ⊂ B2 ⊂ · · · ⊂ Bk = E is not

a successive decoding chain and R′ satisfies

R(Bi) = ρ(Bi) for all i ∈ [1 : k]

R(B′) ≤ ρ(B′) for all B′ ∈ F satisfying Bi ⊆ B′ ⊆ Bi+1 for some i ∈ [1 : k − 1] .

Fix i to be the smallest index such that Gi = Bi+1\Bi has comparable elements under the

inclusion order. Then there is a pair (S, S′) ∈ Gi, ordered as S ⊂ S′, so that S is minimal

with respect to the inclusion order in Gi (that is, no S′′ ∈ Gi has S′′ ⊂ S). For this pair,

let B′1, . . . , B
′
m be the down-sets containing S but not S′, and satisfying Bi ⊂ B′k ⊂ Bi+1.

This list contains at least one element, B′1 = Bi ∪ {S}. There are two cases

14 Per Lemma 3.2.1
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(1) If there is a B′k with R(B′k) = ρx,U (B′k), continue to the next inductive step with the

chain {B1, . . . , Bi, B
′
k, Bi+1, . . . , Bk} in place of {B1, . . . , Bk}.

(2) Suppose R(B′k) < ρx,U (B′k) for all k ∈ [1 : m]. Let (fS,S′ , VS , VS′) be a split as in

Definition 8 with parameter εS,S′ . Set US′′ = US′′ for S′′ ∈ E\{S, S′} and U ′S = VS ,

U ′S′ = (US′ , VS′), Update the functions xj with j ∈ S by composing them with the

function fS,S′ ; call these new composed function x′j . For j 6∈ S, simply set x′j = xj .

Each ρx′,U ′(B
′
k) = I(VS , UB′k\{S};Y |VS′ , UE\(B′k∪{S′})) is a continuous function of εS,S′

with ρx′,U ′(B
′
k) = ρx,U (B′k) for εS,S′ = 1. Moreover, as

RS = R(B′1)−R(Bi)

< ρx,U (Bi ∪ {S})− ρx,U (Bi)

= I(UBi ;Y |UE\Bi)− I(UBi\{S′};Y |UE\(Bi\{S′}))

= I(US ;Y |UE\Bi) (3.30)

and ρx′,U ′(Bi ∪ {S}) − ρx′,U ′(Bi) = I(VS ;Y |UE\Bi) is a continuous function of εS,S′

onto the interval [0, I(US ;Y |UE\Bi)], we know by the intermediate value theorem that

there exists a εS,S′ > 0 such that for some k ∈ [1 : m],

R(B′k) = ρ(B′k)

R(B′j) ≤ ρ(B′j). j 6= k, j ∈ [1 : m]

By Lemma 3.4.2, we are assured that all other which held at the beginning of this step

continue to hold. Continue to the next inductive step with (x′, U ′) in place of (x, U)

and B1, . . . , Bi, B
′
k, Bi+1, . . . , Bk in place of {B1, . . . , Bk}.



Chapter 4

MIMO Multiple Access Channel with General Message Sets

4.1 Introduction

While the discrete memoryless channel permits a clean development of the theory related

to superposition coding, a particular class of channels is of practical importance: linear, additive

Gaussian noise channels, which model the wireless channel. Of particular interest is the scenario

where the transmitters and receiver are equipped with multiple antennas (i.e. the so-called multiple-

input multiple-output (MIMO) setting).

For guidelines into practical design, we seek a characterization of the optimal input and

auxiliary random tuples. Reasonably, we expect such optimal distributions to be Gaussian - for

example, in the non-cooperative Gaussian MAC, the set of optimal inputs are Gaussian as a result of

the principle that, subject to a covariance constraint, the Gaussian distribution maximizes entropy

[20] (and conditional entropy [104]). However demonstrating this rigorously for the MAC with

common messages is more subtle - in addition to covariance constraints on the channel inputs, there

also Markov constraints on the auxiliary random variables that need be satisfied. Simply replacing

the joint ensemble of the channel inputs and auxiliary random variables with a corresponding

Gaussian random variable of the same covariance in general fails to preserve the desired Markov

relations.

As observed in the two- and three-user cases, Bross et al. [10] and Wigger et al. [118],

this difficulty can be circumvented by first replacing the auxiliary tuple with a clever choice of an

intermediate auxiliary tuple and then subsequently replacing this intermediate auxiliary tuple with
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a Gaussian tuple of the same covariance. Our key contribution is to use the formalism of order

and lattice conditional independence to provide a simpler perspective on these prior maximum

entropy methods for the two- and three-user case that generalizes naturally to the K-user case.

In doing so, we find that the K-user capacity region capacity can be simply parameterized as

a union of polymatroids over a convex set of admissible covariance matricies. Moreover, as the

mutual information bounds which define the constituent polymatroids are concave in the admissible

covariance matrices, the computation of the optimal input covariances can now be cast as a convex

optimization problem, which in principle may be solved with efficient computation routines.

4.2 System Model and Preliminaries

4.2.1 Channel and Source Messages

The K-user Gaussian MIMO multiple access channel is defined, for the t-th channel use, to

be

Yt =

[
H1 . . . HK

]
︸ ︷︷ ︸

H


X1,t

...

XK,t

+ Zt,

where the channel output Yt is a r × 1 vector, Hj is a channel gain matrix of size r × tj , the

channel input of the j-th user is Xj,t, and the circularly symmetric Gaussian noise Zt is of size

r × 1 with identity covariance. The channel is assumed to be memoryless so that additive noise

sequence Z1,Z2, . . . has elements that are distributed independently and identically. We adopt an

average total power constraint, where when communicating over a block of n channel uses, the

input sequence must obey

1

n

n∑
t=1

‖Xj,t‖2 ≤ nPj (4.1)

for some Pj > 0 and for each transmitter j ∈ [1 : K].

A code is defined as in (2.1.3). In this setting with a cost constraint on the inputs, we require

an achievable rate tuple to not only have a vanishing average probability of error, but to also satisfy
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the power constraint (4.1) for each n. Define the capacity region CK(P1, . . . , PK) to be the closure

of the set of all such achievable rate tuples.

4.2.2 Interlocking Mulitvariate Gaussian Distributions

As in the discrete memoryless case, capacity will be in terms of auxiliary random tuples, with

one auxiliary variable per message. In the Gaussian case, it will suffice to consider auxiliary random

variables which are jointly Gaussian with each other and the channel inputs. Moreover, it suffices

to represent these Gaussian auxiliary variables in the following specific manner. Throughout this

chapter, we equip the message index set E with the inclusion order so that S ≤ S′ if and only if

S ⊆ S′.

If a vector wS is indexed by a non-empty subset S ⊆ [1 : K], then we take it to have size

(
∑

j∈S tj)×1. We partition this vector in a specific manner: with {j1, . . . , j|S|} = S as an increasing

enumeration of S (that is, j1 < j2 < . . . < j|S|), we partition the vector wS as

wS =


wS,j1

...

wS,j|S|

 wS,j is of size tj × 1. (4.2)

Such a vector could be used to cooperativey beamform across the joint array of antennas offered by

the |S| users listed in S to send a common message MS . To compare the beams of different common

messages to each other, it is useful to interpret wS as a cooperative beam form across the joint array

of antennas offered by all the transmitters through by the vector PSwS of size (t1+t2+· · ·+tK)×1,

where for each S ⊆ [1 : K], PS is the coordinate embedding C
∑
j∈S tj 7→ Ct1+···+tK defined implicitly

by

PSwS =


v1

...

vK

 vj =


wS,j j ∈ S

0 else

for every (
∑

j∈S tj)× 1 complex vector wS (see Figure 4.1).
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1

2

K

...

w[1:K] PSwS

wS

j1

j2

j3

Figure 4.1: Common message beamforming where S = {j1, j2, j3} ⊆ [1 : K] is enumerated in
ascending order: j1 < j2 < j3. The gray regions represent the vector partitions that may be
non-zero.

Henceforth, any random variable WS (with S ⊆ [1 : K]) is tacitly taken to have the dimen-

sions and partitions defined by (4.2). Similarly, if KS = Cov(WS ,WS), let KS,jk = Cov(WS,j ,WS,k)

be the block partition of this covariance corresponding to the covariance among the j-th and k-th

partitions of the vector WS . If WS ∼ CN (0,KS), then a Shur decomposition KS = BSΛSBT
S

where BS has orthonormal columns and ΛS is diagonal, positive definite, and of size rS × rS ,

provides that an equivalent representation is

WS =

rS∑
i=1

b
(i)
S w̃S,i BS =

[
b

(1)
S · · · b

(rS)
S

]
where wS,i ∼ CN (0, (ΛS)ii) for each 1 ≤ i ≤ rS , the w̃S,1, . . . , w̃S,rS are independent, and the ith

column vector b
(i)
S of BS has the dimensions and partitions of (4.2).

Suppose that (WS : S ∈ E) is a tuple of independent zero-mean jointly Gaussian random

variables. Define the auxiliary random tuple (US : S ∈ E) via

US = PT
S

 ∑
S′∈↑S

PS′WS′

 (4.3)

for each S ∈ E. By construction, the distribution for the random tuple (US : S ∈ E) factors as∏
S∈E p(US |U↑S\S) and hence is a member of the up-set lattice conditional independence model

corresponding the inclusion order. When the message index set E is closed under intersections, a

simple pair-wise covariance characterization of lattice conditional independence exists. This follows

as for any pair R,S ∈ E either (↑ R) ∩ (↑ S) = ∅ or (↑ R) ∩ (↑ S) =↑ T where

⋂{
T ′ :∈ (↑ S) ∩ (↑ R)

}
= T ∈ E.
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So, for any two users s, r ∈ [1 : K] with s ∈ S and r ∈ R,

Cov(US,s,UR,r) =
∑

S′∈(↑S)∩(↑R)

Cov(WS′,s,WS′,r)

=


∑

S′∈↑T Cov(WS′,s,WS′,r) (↑ R) ∩ (↑ S) 6= ∅

0 (↑ R) ∩ (↑ S) = ∅

=


Cov(UT,s,UT,r) (↑ R) ∩ (↑ S) 6= ∅

0 (↑ R) ∩ (↑ S) = ∅
. (4.4)

Conversely, if we know that (4.4) holds for all S,R ∈ E and s ∈ S, r ∈ R, E[US ] = 0 for all S ∈ E,

and (US : S ∈ E) is jointly Gaussian, then as the mean and covariance uniquely specify Gaussian

variables, the tuple (US : S ∈ E) must be a member of the up-set lattice conditional independence

model with respect to the inclusion order. Moreover, the tuple must be associated with jointly

Gaussian independent variables (WS : S ∈ E) through (4.3), which are recoverable through Gram-

Schmidt orthogonalization: if S1, . . . , SM is an exhaustive, never-increasing enumeration of the

elements of E, then we successively re-construct, for i = 1, . . . ,M ,

WSi,s = USi,s − E[USi,s|(USj ,s : Sj ∈↑ Si)]

= USi,s − E[US,s|(WSj ,s : Sj ∈↑ Si)]

= USi,s −
∑

Sj∈↑Si
WSj ,s (4.5)

for each s ∈ Si.

4.3 Static Channel: K-User Capacity Region

Assume, without loss of generality, that the message index set E is closed under intersections

(zero-rate messages may always be appended if need be).

Theorem 4.3.1. The capacity region of the K-user MAC with common and private messages
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indexed by E is the set of rate tuples (RS : S ∈ E) satisfying

∑
S∈B

RS ≤ log det

(
I + H

(∑
S∈B

PSKSP∗S

)
H∗
)

for all down-sets B of E with respect to the inclusion order and for some set of covariances satisfying

∑
j∈S∈E

tr(KS,jj) ≤ Pj j ∈ [1 : K] , (4.6)

where the structure of the covariance matrices (KS : S ∈ E) is as specified in Section 4.2.2.

The key technical challenge in in the converse, where we demonstrate that Guassian inputs

suffice, a step is accomplished by a maximum entropy lemma. Details of the proof of this theorem

are provided in Section 4.3.3. The relationship between the admissible covariance matrices in

Theorem 4.3 and the corresponding Gaussian input is precisely that as described in (4.2.2) where

to each S ∈ E we assign an independent WS ∼ CN (0,KS) and the inputs are related to these

auxiliary random variables via
X1

...

XK

 =


∑

1∈S∈E WS,1

...∑
K∈S∈E WS,K

 =
∑
S∈E

PSWS . (4.7)

The Gaussian restriction has an important advantage. The results from the previous chapter

provide that above rate region is a union of polymatroids. While the discrete memoryless channel

is described over a non-convex set of permissible input distributions, the Gaussian channel over the

convex set of permissible jointly Gaussian input tuples. The result is that the calculation of the

optimal input covariances reduces to the maximization of a concave function over a convex set, at

task that is theoretically computationally efficient.

The coding complexity of Theorem is low: as in the discrete memoryless case, joint decoding

is uncesssary, and successive group decoding suffices to attain all points in the capacity region.

This is substantiated by the following counterpart to Theorem 3.4.3 for the DM MAC:
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Theorem 4.3.2. The capacity of the K-user MAC with common and private messages indexed by

E is the set of rate tuples (RS : S ∈ E) satisfying

∑
S∈B′\Bi

RS ≤ log det

I + H

 ∑
S∈B′\Bi

PSKSP∗S

H∗

− log det

I + H

∑
S∈Bi

PSKSP∗S

H∗


for every 1 ≤ i ≤ k and every B′ ⊆ E satisfying Bi ⊂ B′ ⊆ Bi+1 for some Successive Decoding

Chain B1 ⊂ · · · ⊂ Bk and some set of covariances satisfying (4.6).

Proof. Achievability follows simply, and we outline this below. Fix a Successive Decoding Chain

B1 ⊂ · · · ⊂ Bk and a tuple of independent and jointly Gaussian (WS : S ∈ E) where, for each

S ∈ E, WS has covariance KS . Induce a joint distribution between the channel inputs and

auxiliary variables by constructing the channel inputs as sums of the appropriate partitions of the

auxiliary codewords as in (4.7). Such a strategy can be interpreted as treating the MAC as though

each message index S ∈ E corresponds to a distinct user with private message MS , (
∑

j∈S tj)-

dimensional input US , and channel gain matrix HPS effectively yielding the following special case

of the non-cooperative MAC:

Y =
∑
S∈E

(HPS)WS + Z.

Then by standard random coding it is clear that we can achieve any rate tuple satisfying the

hypothesis of the theorem by decoding, successively, the groups of messages in Bi+1\Bi for i ∈

{1, . . . , k − 1}.

To show that these conditions are necessary for reliable communication, we use Theorem 4.3

and mimic the proof of Theorem 3.4.3 for the Gaussian setting. Details are in Appendix C.1.

4.3.1 Single Antenna (SISO) Specialization

In the single-input single-output case (i.e. where t1 = · · · = tK = r = 1), an applica-

tion of Cauchy-Schwartz demonstrates that it suffices to only consider rank-one common message

covariance matrices in the characterization in Theorem 4.3:
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Corollary 4.3.3. The capacity of the SISO MAC with common messages is given by the set of

rate tuples satisfying ∑
S∈B

RS ≤ log

(
1 +

∑
S∈B

pS

)
for all down-sets B of E with respect to the inclusion order for some set of received powers (pS :

S ∈ E) and load-balance vectors (ρS : S ∈ E) satisfying the power constraint∑
j∈S∈E

ρ2
S,jjpS

|hj |2
≤ Pj j ∈ [1 : K] (4.8)

and having ρS =

[
ρS,j1 · · · ρS,j|S|

]
be on the |S|-dimensional simplex for each S ∈ E.

Proof. Consider an admissible set of covariances in Theorem 4.3. In the SISO case, each block

diagonal KS,jj is simply a real, non-negative scalar. For each S ∈ E, define the (maximal) received

power for the signal corresponding to this auxiliary random variable as

pS =
∑
i∈S

∑
j∈S
|hi||hj |

√
KS,(ii)KS,(jj) (4.9a)

ρ2
S,jpS = |hj |2KS,(jj) (4.9b)

for each j ∈ S ∈ E. By (4.9), for each S ∈ E we have
(∑

j∈S ρS,j
)2

= 1
pS

(∑
j∈S |hj |

√
KS,(jj)

)2
= 1

so that ρS =

[
ρS,j1 · · · ρS,j|S|

]
is on the |S|-dimensional simplex. Define, for each S ∈ E, the

unit-rank covariance matrices

K̃S = B̃SB̃∗S B̃S =


ρS,j1
√
pS/hj1
...

ρS,j|S|
√
pS/hj|S|

 . (4.10)

As KS,jj = K̃S,jj for all pairs (j, S) with j ∈ S ∈ E, the covariance matrices K̃S also sat-

isfy the power constraint (4.6) and are thus also admissible. Moreover, by Cauchy-Schwartz,

hPSKSPT
Sh∗ ≤ pS = hPSK̃SPT

Sh∗ for every S ∈ E and

log
(

1 + h
(∑

S∈B
PSKSPT

S

)
h∗
)
≤ log

(
1 +

∑
S∈B

pS

)
= log

(
1 + h

(∑
S∈B

PSK̃SPT
S

)
h∗
)
.

for each down-set B.
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4.3.2 Relationship to Previous Results

Our successive group decoding result was inspired by, and generalizes, an observation for the

two-user SISO MAC with two private and one common message studied by Liu and Ulukus [65].

There, it was shown that the capacity region can be achieved by independent Gaussian codebooks

per message and by first decoding the common message and then jointly decoding the two private

messages.

For the three-user channel, our results reproduce those of Wigger and Kramer [118], and

uncover polymatroid structure in their capacity characterization that they appear to have not

noticed. Succintly, [118] states that the three-user MAC with all possible common and private

messages (that is, with message index set E = {1, 2, 3, 12, 13, 23, 123}1 ), has capacity region given

by the set of rate tuples (R123, R12, R13, R23, R1, R2, R3) which satisfy∑
S∈B

RS ≤ I
(
VB; Y|VE\B

)
for all down-sets B ∈ F↓(E;⊆) (4.11)

for some jointly Gaussian input tuple V1,V2,V3,V12,V13,V23,V123 having Xj = Vj for j ∈ [1 : 3]

and satisfying the Markov and independence constraints

X1 (−− V12,V13,V123 (−− X2,X3,V23 (4.12a)

X2 (−− V12,V23,V123 (−− X1,X3,V13 (4.12b)

X3 (−− V13,V23,V123 (−− X1,X2,V12 (4.12c)

V12,V13,V23,V123 are independent. (4.12d)

Moreover, each auxiliary random random variable VS can be assumed to have (
∑

j∈S tj)-dimensions.

To connect this with our framework, let us reflect on what the jointly Gaussian assumption and the

dependency constraints in (4.12) entail. In particular, we must have that the conditional covariance

Cov




X1

X2

X3

 ,


X1

X2

X3



∣∣∣∣∣∣∣∣∣∣∣
V12,V13,V23,V123

 =


Q1

Q2

Q3


1 For brevity of notation, we append the elements of S in a string rather than in the usual set notation; e.g. 12

rather than {1, 2} so that we write U12 rather than U{1,2}.
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is block-diagonal where Qj is a tj × tj positive semi-definite matrix for each j ∈ {1, 2, 3}. Hence,

we may introduce three independent random vectors (Vj,j ∼ CN (0,Qj) : j ∈ {1, 2, 3}) that are

jointly Gaussian with, and independent of, (VS : S ∈ E, |S| > 1) such that

X1 = V1,1 + A1,12V12 + A1,13V13 + A1,123V123 (4.13a)

X2 = V2,2 + A2,23V23 + A2,21V21 + A2,123V123 (4.13b)

X3 = V3,3 + A3,31V31 + A3,32V32 + A3,123V123 (4.13c)

for some a set of matrices (AjS ∈ Ctj×(
∑
i∈S ti) : j ∈ S ∈ E). By assigning WS = (AjSVS : j ∈ S)

for each S ∈ E, we may interpret these relations as
X1

X2

X3

 =


V1,1

0

0

+


0

V2,2

0

+


0

0

V3,3

+


V12,1

V12,2

0

 +


V13,1

0

V13,3

 +


0

V23,2

V23,3

 +


V123,1

V123,2

V123,3

 (4.14)

Moreover, in this case we may write the bounds in (4.11) as

I(VB; Y|VE\B) = I
(
WB; Y

∣∣WE\B
)

= log det

(
I + H

(∑
S∈B

PSKSP∗S

)
H∗
)
.

In this form, it is easy to see that the bounds are submodular, monotonic, and normalized in subsets

B ⊆ E. By the development in the previous chapter, as the defining inequalities above are over a

lattice set family (the down-set lattice), they constitute a polymatroid.

4.3.3 Achievability and Maximum Entropy

Let’s return to the proof of Theorem 4.3.2. To prove achievability, discretizing the correspond-

ing results for the DM case. To this end, consider auxiliary random tuples UE = (US : S ∈ E)

which satisfy

Xj = xj((US : j ∈ S ∈ E)) for each j ∈ [1 : K] (4.15a)

(US : S ∈ E) ∈ L(E;⊆), (4.15b)

E[‖Xj‖2] ≤ Pj for each j ∈ [1 : K] , (4.15c)
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where Xj is a tj × 1 vector, define RK(X[1:K], UE) to be the polytope 2

{
R ∈ RE+ :

∑
S∈B

RS ≤ I
(
UB; Y

∣∣UE\B) ∀B ∈ F↓(E;⊆)

}
,

where Y =
∑K

j=1 HjXj + Z with Z as a zero-mean circularly symmetric r-dimensional Gaussian

variable with identity covariance and independent of the random tuple (Xj : j ∈ [1 : K]), (US : S ∈

E). Then from previous results for the discrete memoryless case [86], with appropriate modifications

for channels with cost, we know that if we consider a series of increasingly finer and larger finite

quantizations of the complex field C (as in Chapter 3, Section 4.1 of [31]), the capacity of the

K-user MIMO MAC is given by

CK(P1, . . . , PK) =
⋃

X[1:K],UE
satisfying (4.15)

RK(X[1:K], UE).

Left as is, this characterization of capacity provides no insight into what distributions, among

all admissible distributions, are optimal. Theorem 4.3 states that we can restrict without loss of

generality the union above to be over a much smaller set and can be paraphrased as

CK(P1, . . . , PK) =
⋃

X[1:K],UE
satisfying (4.15)

and are jointly Gaussian

RK(X[1:K], UE)

We prove this in Section 4.3.3.1, but before doing so, we demonstrate how the above formulation

matches the formulation in Wigger and Kramer [118] for the three-user MIMO MAC with common

messages. A key simplification in our formulation is a more explicit description of Markov depen-

dencies which characterize the input distributions relevant to the characterization of the capacity

region.

4.3.3.1 Max Entropy Lemma

Assume that the message index set E is closed under intersections, implying that both

S(j) =
⋂
{S : j ∈ S ∈ E} and

⋂
{T ′ ∈ (↑ S) ∩ (↑ S′)}

2 RE+ = {x ∈ RE : xS ≥ 0 ∀ S ∈ E} is the positive orthant of RE , the real vector space with coordinates indexed
by the elements of E. If E consists of M elements, then RE may be identified with RM .
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are elements of E. We remind the reader that within this Chapter, we have equipped E with the

partial order of set inclusion.

Lemma 4.3.4 (Maximum Entropy subject to Lattice Conditional Independence and Covariance

Constraints). Let (US : S ∈ E) be an auxiliary tuple such that

(P1) Xj = xj((US : j ∈ S ∈ E)) for each j ∈ [1 : K]

(P2) (US : S ∈ E) are up-set lattice conditionally independent 3

(P3) Cov(Xj ,Xj) = Kj for each j ∈ [1 : K].

Then there is a jointly Gaussian choice (UG
S : S ∈ E) satisfying (P1)-(P3) with conditional

entropy h(Y |UG
E\B) at least as large as h(Y |UE\B) for every down-set B with respect to the inclusion

order. Moreover, this choice satisfies the more restrictive (Q1)-(Q2) in addition to same covariance

constraint (Q3) as in (P3).

(Q1) XG
j = UG

S(j),j for each j ∈ [1 : K]

(Q2) (UG
S : S ∈ E) are up-set lattice conditionally independent satisfying

UG
S = PT

S

(∑
S′∈↑S

PS′W
G
S′

)
for each S ∈ E

where the WG
S ∼ CN (0,KS) are independent.

(Q3) Cov(XG
j ,X

G
j ) = Kj for each j ∈ [1 : K].

Hence,

I(UB;Y |UE\B) = h
(
Y|UE\B

)
− h(Z) ≤ h

(
YG

∣∣∣∣UG
E\B

)
− h(Z)

= log det

(
I + H

(∑
S∈B

PSKSP∗S

)
H∗
)

(4.16)

for every down-set B.

3 Recall that this implies that the distribution factors as p(UE) =
∏
S∈E p(U↑S).
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Proof. Assume without loss of generality that E[Xj ] = 0. Define, for each j ∈ S ∈ E, US,j =

E[Xj |U↑S ], which is a vector of size tj×1. Let US be the vector obtained by stacking the partitions

US,j as described in Section 4.2.2. We make key three observations:

(1) Each US is a function of the tuple U↑S = (US′ : S ⊆ S′). Consequently, when B is an

element of the up-set lattice, the tuple UB = (US : S ∈ B) is a function of the tuple

UB = (US : S ∈ B).

(2) Xj = E[Xj |U↑S(j)] = US(j),j as each Xj is a function of U↑S(j) = (Uj : j ∈ S ∈ E).

(3) Pick any pair of users s, r ∈ [1 : K] and any pair of message set indices S,R ∈ E such that

s ∈ S and r ∈ R and consider

Cov(US,s,UR,r) = E
[
E[Xs|U↑S ]E[Xr|U↑R]∗

]
.

Suppose that (↑ S) ∩ (↑ R) = ∅. Then by the lattice conditional independence of the tuple

(US : S ∈ E) with respect to the up-set lattice, we have U↑S is independent of U↑R. Hence,

E
[
E[Xs|U↑S ]E[Xr|U↑R]∗

]
= E

[
E[Xs|U↑S ]

]
E
[
E[Xr|U↑R]∗

]
= E[Xs]E[X∗r ] = 0

Suppose instead that (↑ S) ∩ (↑ R) 6= ∅. Then, with T =
⋂{T ′ ∈ (↑ S) ∩ (↑ S′)} (which is

in the message index set E by assumption),

E
[
E[Xs|U↑S ]E[Xr|U↑R]∗

]
= E

[[
E[Xs|U↑S ]E[Xr|U↑R]∗

]∣∣∣∣U↑T]
= E

[[
E[Xs|U↑T ]E[Xr|U↑T ]∗

]
= Cov(UT,s,UT,r),

where the first step follows by the tower property of conditional independence and the

second step by the Markov relation U↑S (−− U↑T (−− U↑R implied by the lattice conditional

independence of the tuple (US : S ∈ E). Hence, the covariance condition (4.4) holds, which

is a sufficient condition for a Gaussian tuple of the same covariance as (US : S ∈ E) to be

lattice conditionally independent over the up-set lattice.
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Let (UG
S : S ∈ E),XG

1 , . . . ,X
G
K ,Y

G be the jointly Gaussian tuple with the same joint covariance

as (US : S ∈ E),X1, . . . ,XK ,Y. By the discussion in Section 4.2.2, if the joint covariance of

(UG
S : S ∈ E) satisfies (4.4) for all (s, r) and (S,R) satisfying s ∈ S ∈ E and r ∈ R ∈ E, then

property (Q1) is satisfied, where the variables (WG
S : S ∈ E) are recoverable through the iterative

Gram-Schmidt orthogonalization provided in (4.5). The inputs are thus related to the independent

(WG
S : S ∈ E) via 

XG
1

...

XG
K

 =


∑

1∈S∈E WG
S,1

...∑
K∈S∈E WG

S,K

 =
∑
S∈E

PSWG
S .

By construction, Cov(Xj ,Xj) = Cov(XG
j ,X

G
j ) and so (Q2) is satisfied. Moreover for any down-set

B, E\B is an up-set and so

h
(
Y|(US : S ∈ E\B)

)
(i)
= h

(
Y

∣∣∣∣(US : S ∈ E\B)

)
(ii)
= h

(
YG

∣∣∣∣(UG
S : S ∈ E\B)

)
= log det

(
(2π)

(
I + H

(∑
S∈B

PSKSP∗S

)
H∗
))

where (i) follows by the data-processing inequality, and (ii) follows as the Gaussian distribution

maximizes conditional entropy subject to a covariance constraint [104].

4.4 Static Channel: Optimal Covariance

A fortuitous property of the capacity characterization in Theorem 4.3 is that the computation

of optimal covariances can be carried out through convex programming. Several key properties

enable this:

(1) The capacity region is a union of polymatroids and hence

(2) The polymatroid bounds are concave in the admissible covariances

(3) The admissible covariances lie in a convex set.
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The former property enables the efficient optimization with respect to multiple criteria: for

the weighted sum-rate capacity, the explicit formula for its vertices leads to a simple convex for-

mulation of the boundary of the capacity region, where the convexity of the formulation follows

by the remaining two properties. An alternative manner in which the polymatroidal property may

be exploited, but for which we have not developed, would be to consider optimality criterion for

“fairness” of users as in [68].

We first present a generic observation of the convex geometry of the capacity region that

applies to any MAC with implicit cooperation (be it Gaussian or discrete memoryless). While this

may be deduced from Theorem 4.3, we find it more enlightening to see that this can be characterized

a priori with only the operational definition of the capacity region.

Lemma 4.4.1 (Dual Characterization of Capacity). The capacity region of the K-user MIMO

MAC with implicit cooperation is convex and given by⋂
µ∈O

{
R ∈ RE+ :

∑
S∈E

µSRS ≤ Vµ
}
, (4.17)

the intersection of all of the supporting hyperplanes defined by the weights in

O = {µ ∈ RE+ : µS > µS′ only if S ⊂ S′}.

Proof. As time-sharing is permissible, the capacity region is convex and expressible as an intersec-

tion of half-planes

C(P1, . . . , PK) =
⋂
µ∈RE+

{
R ∈ RE+ :

∑
S∈E

µSRS ≤ Vµ
}

for some collection of constants {Vµ : µ ∈ RE+}. The key point is that the bounds corresponding

to µ ∈ RE+\O are redundant given those bounds in µ ∈ O in the dual description (4.17). Fix a

µ ∈ RE+\O and consider the bound

Vµ = max
R∈C(P1,...,PK)

∑
S∈E

µSRS .

Take an achievable code with rate R∗ which achieves this maximum. Let V = {S′ ∈ E : µS >

µS′ for some S with S′ ⊂ S ∈ E} index the entries of µ which violate the defining property of the

set O.
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Then for any S′ ∈ V, R∗S′ = 0. Else, were R∗S′ > 0, we could repurpose the codewords for MS

(where S′ ⊂ S ∈ E) to send more common messages for the message index S′ to achieve the rate

tuple R̃ given by

R̃S′ = R∗S +R∗S′ R̃S = 0

R̃S′′ = R∗S′′ for all S′′ ∈ E\{S, S′}

But then R̃ would achieve a larger weighted sum-rate point,
∑

S∈E µSR
∗
S <

∑
S∈E µSR̃S , a contra-

diction.

Hence, R∗ remains a maximizing sum rate point for the weighted sum-rate
∑

S∈E µ̃SR
∗
S for

each µ̃ in the set I(µ) defined byµ̃ ∈ RE+ :
µ̃S = µS for S ∈ E\V

µ̃S′ < µS for each S′ ∈ V with S′ ⊂ S ∈ E

 .

Hence Vµ = Vµ̃ for all µ̃ ∈ I(µ). With the component-wise order over RE+ defined by µ̃ ≤ µ iff

µ̃S ≤ µS for each S ∈ E, there is a unique µ̃∗ = sup I(µ). By continuity, Vµ = Vµ̃∗ . Moreover, as

each rate tuple R in the capacity region satisfies

∑
S∈E

µ̃SRS ≤
∑
S∈E

µ̃∗SRS ≤ Vµ̃∗ = Vµ̃,

the inequalities corresponding to µ̃ ∈ I(µ) are redundant.

Remark For each µ ∈ O, there is an enumeration {S1, . . . , SM} of the message index set

E such that µS1 ≥ µS2 ≥ · · · ≥ µSM and there are k numbers i1 < i2 < · · · < ik such that

Bj = {Sij , Sij+1 . . . , Sij+1}

forms a Successive Decoding chain.

Thus, to compute the maximal weighted-sum rates, it suffices to only consider those weights

belonging to O. Pick one such µ. Enumerate the message index set E = {S1, . . . , SM} so that

µS1 ≥ · · · ≥ µSM . As µ ∈ O we have that Bi = {S1, . . . , Si} ∈ F↓(E;⊆) for each i ∈ [1 : M ]. By
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the capacity characterization in Theorem 4.3, and the explicit characterization of the vertices of a

polymatroid, we know that for each admissible choice of KE (that is, a set of covariances satisfying

(4.1)),

max
R∈PF↓(E;⊆)

M∑
i=1

µSiRSi =

M∑
i=1

µSi(ρ(KE ;Bi)− ρ(KE ;Bi−1)) =

M∑
i=1

(µSi − µSi+1)ρ(KE ;Bi)

where for convenience we wrote B0 = ∅ and µSM+1
= 0. Hence the optimization problem

maximize
M∑
i=1

µSiRSi

such that R ∈ CK(P1, . . . , PK)

is equivalent to maximizing, with δi = µSi − µSi+1 ≥ 0 for i ∈ [1 : M ],

maximize
M∑
i=1

δi log det

(
I + H

(
i∑

k=1

PSkKSkP
∗
Sk

)
H∗
)

such that
∑

j∈S∈E
tr(KS,jj) ≤ Pj j ∈ [1 : K] .

The constraints, given by (4.6), are linear and hence the set of the admissible covariance matrices

is convex. Moreover, as log det(I + X) is a concave function over positive semidefinite matricies

X � 0, the objective is concave. Thus, in principle, the above formulation is efficiently solvable by

standard semi-definite programming techniques [9].

4.5 Fading Channel: K-User Capacity Region

4.5.1 Channel Model

We study the fading MAC where the base station is equipped with r antennas and the

K mobile users are equipped with t1, . . . , tK antennas, respectively. The mobile users transmit

synchronously on a time-block basis, while the fading process is taken to be stationary and ergodic.

Let ν be a random variable representing the stationary distribution of the channel fading state with

cumulative density function F (ν) and support H. Thus, at each state ν ∈ H, the fading MAC can
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be considered as a discrete time channel represented by

Y(ν) =

K∑
j=1

Hj(ν)Xj(ν) + Z(ν), (4.18)

where Y(ν) ∈ Cr×1 denotes the received signal vector. Xj(ν) ∈ Ctj×1 and Hj(ν) ∈ Cr×tj denote,

respectively, the transmitted signal vector and channel matrix of user j, j ∈ [1 : K]. Z(ν) ∈ Cr×1

denotes the additive Gaussian noise at the receiver and it is assumed that Z(ν) ∼ CN (0, I).

We assume that the transmitters have complete channel state information and so may adapt

their transmission strategy to the channel state. In particular, they may dynamically allocate their

available powers to fully exploit the benefitial fading states and avoid the detrimental fading states.

For each state ν ∈ H, let Kj(ν) = E[Xj(ν)Xj(ν)∗], where the expectation is taken over the code-

book. Then under the long term power constraints considered here, any codebook for user j must

satisfy ∫
H

tr(Kj(ν))dF (ν) ≤ Pj ∀j ∈ [1 : K] (4.19)

for some vector P = [P1, . . . , PK ] ∈ RK+ of average-power constraints for all the users.

More precisely, to transmit its known messages, transmitter j may send over n consecutive

uses of the channel (which we index by the channel use t, rather than the channel state ν in (4.18)).

Complete channel state information refers to a non-causal knowledge of the channel state sequence

Hn = {Hj(1), . . . ,Hj(n) : j ∈ [1 : K]} so that to send its message, transmitter j selects which

symbol to send via an encoding mapping Xj(t) ← (MS : j ∈ S ∈ E),Hn, where A ← B denotes

that A is a function of B, for each channel use. To decode these messages, the receiver maps the

output sequence {Y(1), . . . ,Y(n)} = Yn and channel state sequence to an estimate M̂S of each

message MS for S ∈ E. Our metric of reliable communication is that of average probability: with

each MS independently and uniformly distributed over MS =
[
1 : 2nRS

]
, we declare a rate tuple

(RS : S ∈ E) to be achievable if there exists a set of encoder sequences which satisfy the power

constraint (4.19) on average4 and a sequence of decoding functions with the probability of error

4 That is, E
[
1
n

∑n
t=1 ‖Xj(t)‖2

]
≤ Pj for each transmitter j ∈ [1 : K], where the expectation is over all channel

state sequences Hn.
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P (∪S∈E{MS 6= M̂S}) → 0 vanishing as the block length n tends to infinity. The capacity region

C(P ) is the closure of the set of all achievable rate tuples.

4.5.2 Capacity Region Under Dynamic Resource Allocation

Suppose that the transmitters and receiver have complete knowledge of the current state of

the channels of every user. With this knowledge, the codewords and decoding scheme can depend

on the current state of the channels. In particular, for the Gaussian case, the Gaussian inputs can

depend on the channel state ν ∈ H so that the received vector may be written in the form

Y(ν) =
∑
S∈B

HS(ν)US(ν) + Z(ν), (4.20)

where for each state ν ∈ H and message index S ∈ E, US(ν) ∼ CN (0,KS(ν)). We call the set

of covariance choices {KS(µ)}, for each fading state µ and message index S ∈ E, a covariance

allocation. For any given covariance allocation consider the set of rates given by

Cf ({KS(µ)}) =

{
R ∈ RE+ :

∑
S∈B

RS ≤
∫
H

log det

(
I +

∑
S∈B

HS(ν)KS(ν)H∗S(ν)

)
dF (ν) ∀B ∈ F↓

}
. (4.21)

Comparing this with the capacity region given in Theorem 4.3, one can heuristically think of

Cf ({KS(µ)}) as the set of achievable rates when the power and linear signaling strategy are dy-

namically allocated according to the covariance allocation {KS(µ)}. The following theorem sub-

stantiates such an interpretation.

Theorem 4.5.1. The capacity of the ergodic fading MIMO MAC with implicit cooperation and

with complete channel state information at the transmitters and receiver is given by

C(P ) =
⋃

{KS(µ)}∈F
Cf ({KS(µ)})

where F is the set of all feasible covariance allocations satisfying the power constraint

∑
j∈S∈E

∫
H

tr(KS,jj(ν))dF (ν) ≤ Pj j ∈ [1 : K] . (4.22)
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Proof. Achievability follows from an argument mimicking that in [106]. Notably, capacity may be

achieved either with a “multiple-codebook variable-rate”’ [40] or with a “single-codebook constant-

rate” [12] scheme. The converse is provided in Appendix C.2.

The above theorem states that any improvement in capacity due to channel state information

at the transmitter is due solely to the ability to dynamically allocate the power and linear signaling

strategies according to the channel state. In the case where all transmitters and receivers have only

a single antenna (t1 = · · · = tK = r = 1), the above characterization simplifies further, as through

Cauchy-Schwartz, it suffices to only consider rank-one covariance allocations as in (4.10), which are

KS = BSB∗S BS =


ρS,j1(ν)

√
pS(ν)/hj1(ν)

...

ρS,j|S|(ν)

√
pS(ν)/hj|S|(ν)

 ,

where each vector ρS(ν) =

[
ρS,j1(ν) · · · ρS,j|S|(ν)

]
, which we call a load balance vector, is on the

|S|-dimensional simplex for each message index S ∈ E and each fading state ν ∈ H. In this case, the

covariance allocation is simply parameterized by the its received power pS(ν) = HS(ν)KS(ν)H∗S(ν)

and its load-balance vector ρS(ν). Moreover the polytope (4.21) may be simply described as

Cf ({ρS(ν), pS(ν)}) =

{
R ∈ RE+ :

∑
S∈B

RS ≤
∫
H

log

(
1 +

∑
S∈B

pS(ν)

)
dF (ν) ∀B ∈ F↓

}
. (4.23)

This leads to the following corollary

Corollary 4.5.2. The capacity of the ergodic fading SISO MAC with implicit cooperation and with

complete channel state information at the transmitters and receiver is given by

C(P ) =
⋃

{ρS(ν),pS(ν)}∈F
Cf ({ρS(ν), pS})

where F is the set of all feasible received powers and load-balance vectors allocations satisfying the

power constraint ∑
j∈S∈E

∫
H

ρ2
S,jj(ν)pS(ν)

|hj(ν)|2 dF (ν) ≤ Pj j ∈ [1 : K] (4.24)

Proof. A consequence of Cauchy-Schwartz, this may be shown by applying the analogous argument,

mutatis mutandis, from the non-fading case.
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4.6 Fading Channel: Optimal Power Allocations

The boundary points of the capacity region for the fading Gaussian MAC are the set of

rates such that no component can be increased with the other components remaining fixed, while

remaining within the capacity region. In other language, these are known as Pareto-optimal points,

and correspond to optimal operating points: any other operating point in the capacity region is

dominated component-wise by some boundary point.

For convex regions, every boundary point lies on a supporting hyperplane. In particular,

pursuant to the discussion following Theorem 4.5.1, the capacity region C(P ) of the fading MIMO

MAC is convex. As such, we may characterize the boundary surface B(P ) of the capacity region

C(P ) as the closure of all points R∗ such that R∗ is a solution to an optimization problem

max
R∈C(P )

µ ·R (4.25)

for some rate-profile vector µ ∈ RE+. If, for each such rate-profile vector, we denote the set of rate

tuples R∗ which attain the maximum (4.25) by R(µ), then the map R : RE+ 7→ B(P ) from the

space of rate-profile vectors to the boundary surface can be understood as a parameterization of

the boundary surface of the capacity boundary surface. Therefore, to obtain a complete description

of the boundary surface of the capacity region, it suffices to consider any subset S ⊂ RE+ such that

R(S) = B(P ). In fact, this is precisely the case in the multiple access channel with cooperation:

rather than needing to consider all rate-profile choices µ ∈ RE+, it suffices to only consider those in

the subset

O = {µ ∈ RE+ : µS > µS′ only if S ⊂ S′},

as formalized in Lemma 4.4.1.

For such a rate-profile vector in O, any enumeration E = {S1, . . . , SM} which orders the

elements of µ in decreasing order µS1 ≥ · · · ≥ µSM is necessarily a non-decreasing enumeration

of E with respect to the inclusion order: Si ⊂ Sj only if i < j. So, for each i ∈ [1 : M ], the

subset {S1, . . . , Si} is a down-set in the down-set lattice F↓ and is thus a fixed point of the oper-

ator ZF↓ defined in (2.16): ZF↓({S1, . . . , Si}) = {S1, . . . , Si}. Thus, a polymatroid corner point
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corresponding to this rate-profile vector is simply given by xS1 = f({e1}),

xei = f({S1, . . . , Si})− f({S1, . . . , Si−1})

for 2 ≤ i ≤ n.

With this observation, and the knowledge of polymatroid structure, the fading capacity

region is expressible as the weighted sum of the capacity regions of parallel time-invariant Gaussian

channels per channel state ν ∈ H:

Lemma 4.6.1.

Cf ({KS}) =

{(
RS =

∫
H
rS(ν)dF (ν) : S ∈ E

)
: r(ν) ∈ Cg({Hk(ν)}, {KS(ν)}) ∀ν ∈ H

}
.

(4.26)

Proof. Define E to bet the right hand side of (4.26). By definition, E ⊆ Cf ({KS}). But as

Cf ({KS}) is a polymatroid over the down-set lattice F↓, it is the convex hull of its vertices.

For some enumeration on E, these vertices are (non-uniquely) specified by all permutations π :

[1 : M ] 7→ [1 : M ] as

RSπ(1) =

∫
H

log det
(
I + HSπ(1)(ν)KSπ(1)(ν)H∗Sπ(1)(ν)

)
dF (ν)

RSπ(i) =

∫
H

log det

I +
∑
S∈Bi

HS(ν)KS(ν)H∗S(ν)

 dF (ν)

−
∫
H

log det

I +
∑

S∈Bi−1

HS(ν)KS(ν)H∗S(ν)

 dF (ν) 2 ≤ i ≤M

where Bi = ZF↓({Sπ(1), . . . , Sπ(i)}). But each such vertex is the the convex combination of the

corresponding vertices in the collection of polymatroids Cg({Hk(ν)}, {KS(ν)}), indexed by the

states ν ∈ H. Hence, Cf ({KS}) ⊆ E as well.

4.6.1 Langrangian Characterization of the Capacity Region

Let’s focus on the optimization problem (4.25) for each µ ∈ O, which by Lemma 4.6.1 is

simply:
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Problem 4.6.1

Maximize
∑
S∈E

µS

∫
H
rS(ν)dF (ν)

Subject to
∑

j∈S∈E

∫
H

tr(KS,jj(ν))dF (ν) ≤ Pj ∀S ∈ E (4.27a)

KS(ν) � 0 ∀S ∈ E,∀ν ∈ H (4.27b)

r(ν) ∈ Cg({Hk(ν)}, {KS(ν)}). ∀ν ∈ H (4.27c)

The optimization problem is formulated directly in terms of the rate allocations r(ν) = (rS(ν) :

S ∈ E) and covariance allocations. These constraints are convex: this can be seen by noting

the inequalities (4.27a)-(4.27b) are linear and that the concavity of log det (·) implies that the

polymatroid constraint (4.27c) is convex. As the objective is also linear, Problem 4.6.1 is convex

and we may employ standard convex optimization techniques to help solve it.

Let D denote the set of covariance allocations and rate allocations satsifying (4.27b)-(4.27c),

which by the prior observations, is convex. Consider problem 4.6.1 as an optimization problem

over the domain D with an explicit constraint of (4.27a). Then its corresponding Lagrangian, with

a vector of dual variables λ = [λ1, . . . , λK ] ∈ RK+ associated with the power constraints (4.27a), is

defined over domain D as

L({KS(ν)}, {rS(ν)}, λ) =
∑
S∈E

µS

(∫
H
rS(ν)dF (ν)

)

−
K∑
j=1

λj

 ∑
j∈S∈E

∫
H

tr(KS,jj(ν))dF (ν)− Pj

 .

Of interest is the Lagrange dual function, defined to be

g(λ) = max
({KS(ν)},{rS(ν)})∈D

L({KS(ν)}, {rS(ν)}, λ),

as it provides an upper bound to the optimal value, p∗, of Problem 4.6.1: minλ∈RK+ g(λ) ≥ p∗. In

fact, Problem 4.6.1 is sufficiently nice to guarantee that this upper bound is tight: as the feasible

set has non-empty interior5 , Slater’s condition holds and so the duality gap, p∗ − minλ g(λ), is

zero.
5 With sufficiently large powers, the polytopes Cg({KS(ν)}) can be made to contain any rate-tuple.
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This suggests that a strategy to obtain an optimal solution to Problem 4.6.1 is to first obtain

the Lagrange dual function (thereby obtaining candidate optimal covariance and rate allocations,

{K∗(ν)} and r∗(ν), per choice of dual variable λ) and then to minimize the Lagrange dual function

to choose a “best” choice from these candidate covariance and rate allocations. Let λ∗ be any

such minimizer. Since the problem is convex and the duality gap is zero, the Karush-Kuhn-Tucker

(KKT) optimality conditions state that this best choice will solve Problem 3.1; that is, any primal

optimal solution set minimizes L({K∗S(ν)}, {r∗S(ν)}, λ∗) and satisfies the power constraint (4.27a)

simultaneously.

To pursue this strategy efficiently, we need an efficient method for both of the optimization

steps: that of maximizing the Lagrangian and that of minimizing the Lagrange dual function. The

former step may be significantly simplified through the observation that it decomposes into a set

of independent optimizations problems per state ν ∈ H. To see this, re-arrange the Lagrangian as

L({KS(ν)}, r(ν), λ) =

∫
H

(∑
S∈E

µSrS(ν)−
K∑
j=1

λj
∑

j∈S∈E
tr(KS,jj(ν))

)
dF (ν) + λ · P,

and define, for each state ν ∈ H, g′ν(λ) to be the optimal value of the following optimization

problem.

Problem 4.6.1.ν

Maximize
∑
S∈E

µSrS(ν)−
K∑
j=1

λj
∑

j∈S∈E
tr(KS,jj(ν))

Subject to KS(ν) � 0 ∀S ∈ E, (4.28a)

r(ν) ∈ Cg({Hk(ν)}, {KS(ν)}). (4.28b)

Then the Lagrange dual function may be decomposed as

g(λ) =

∫
H
g′ν(λ)dF (ν) + λ · P.

This approach, of decomposing the Lagrange dual function into a series of much smaller and simpler

optimization problems, is known as the dual-decomposition method.
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For each state ν ∈ H, Problem 4.6.1.ν may be simplified further through consideration of the

special polymatroidal structure of the constraint (4.28b). In particular, with the explicit formulae

for its vertices, Problem 4.6.1.ν is equivalently stated in the following simpler form. Recall that we

have restricted attention to a µ ∈ O and so an enumeration E = {S1, . . . , SM} which orders the

elements of the rate-profile vector in descending order (i.e. µS1 ≥ · · · ≥ µSM ) has that each subset

{S1, . . . , Si} is a down-set of E under the inclusion order ⊆. Thus, an the equivalent formulation

of Problem 4.6.1.ν is

Maximize
M∑
i=1

δi log

∣∣∣∣∣∣I +
i∑

j=1

HSj (ν)KSj (ν)H∗Sj (ν)

∣∣∣∣∣∣−
K∑
j=1

λj
∑

j∈S∈E
tr(KS,jj(ν))

Subject to KS(ν) � 0 ∀S ∈ E,

where δ1 = µS1 and δi = µSi − µSi−1 for 2 ≤ i ≤M . This simplified optimization problem is again

concave.

We distinguish between two cases: those for which Problem 4.6.1.ν is solvable exactly and

thereby permitting consideration of infinite fading state spaces H and those for which we require

numerical methods to solve Problem 4.6.1.ν. Below, we show that the SISO case falls under the

former category, while for the case where there are multiple antennas at at least one terminal, we

resort to numerical methods.

4.6.1.1 MIMO case: Numerical Solution

As Problem 4.6.1.ν is convex with a twice differentiable objective we may solve it efficiently

via the Interior-Point method for each ν ∈ H.

4.6.1.2 SISO case: Analytical Solution

In the SISO case, we use Corollary 4.5.2 to re-state Problem 4.6.1.ν in the following form.

Problem 4.6.1.ν.SISO

Maximize

M∑
i=1

δi log

1 +

i∑
j=1

pSj (ν)

− K∑
j=1

λj
∑

j∈S∈E

ρ2
S,jj(ν)pS(ν)

|hj(ν)|2
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Subject to pS(ν) ≥ 0 ∀S ∈ E,

ρS,j(ν) ≥ 0 ∀(S, j) with j ∈ S ∈ E∑
j∈S

ρS,j = 1 ∀S ∈ E

To solve this, we may use the result of Tse, but before we can do this, we need make a simplification.

Observe that the in the problem above the load-balance allocations ρS(ν) are present only in the

negative term in the objective. Hence, to maximize the objective, we are free to minimize this

negative term with respect to the load-balance vector while keeping the received powers pS(ν)

fixed.

This minimum has an explicit solution. Rearranging the summation, the negative term is

lower bounded as

K∑
j=1

λj
|hj(ν)|2

∑
j∈S∈E

ρ2
S,j(ν)pS(ν) =

∑
S∈E

pS(ν)
∑
j∈S

ρ2
S,j(ν)

λi
|hj(ν)|2

≥
∑
S∈E

pS(ν)

∑
j∈S

|hj(ν)|2
λj

−1

, (4.29)

as a consequence of Cauchy-Schwartz:∑
j∈S

ρS,j(ν)

2

≤

∑
j∈S

|hj(ν)|2
λj

∑
j∈S

ρ2
S,j(ν)

λj
|hj(ν)|2

 .

With the minimizing choice ρ∗S,j(ν) =
|hj(ν)|2
λj

ηS(ν), this lower bound is attained, where for each

S ∈ E, we define

ηS(ν) =

∑
j∈S

|hj(ν)|2
λj

−1

. (4.30)

So, Problem 4.6.1.ν.SISO is equivalently stated as

max
pS(ν)≥0 ∀S∈E

M∑
i=1

δi log

1 +

i∑
j=1

pSj (ν)

− ηSi(ν)pS(ν).

A solution to this optimization can be found through the greedy method developed in Tse and
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Hanly [106] for the non-cooperative MAC. Define the marginal utility functions 6

uS(z) =
µS

1 + z
− ηS(ν) ∀S ∈ E

u∗(z) =

[
max
S∈E

uS(z)

]+

,

which provide an upper bound on the achievable rate in Problem 4.6.1.ν.SISO:

M∑
i=1

µi

[
log

(
1 +

i∑
j=1

pSj (ν)

)
− log

(
1 +

i−1∑
j=1

pSj (ν))

)]
− ηSi(ν)pSi(ν)

=
M∑
i=1

∫ ∑i
j=1 pSj (ν)

∑i−1
j=1 pSj (ν)

uSi(z)dz ≤
∫ ∞

0
u∗(z)dz.

Critically, this upper bound can actually be attained. As each utility function uS(z) is monotoni-

cally decreasing in z, they intersect each other in at most one location. Thus, there is a sequence

0 = z0 < z1 < · · · < zJ of J terms where zJ is the smallest z ≥ 0 for which u∗(z) = 0 (if there

is no z, set zJ = ∞) and u∗(z) = uS′k(z) for z ∈ [zk, zk+1] with E = {S′1, . . . , S′M} as a (possibly

different) enumeration than E = {S1, . . . , SM}. Define

p∗S′k(ν) = zk+1 − zk k = 0, . . . , J − 1

p∗S′k(ν) = 0 k ≥ J

r∗S′k(ν) = log(1 + zk+1)− log(1 + zk) k = 0, . . . , J − 1

r∗S′k(ν) = 0 k ≥ J

Then this rate point attains the maximum,∫ ∞
0

u∗(z)dz =
M∑
k=1

µS′kr
∗
S′k

(ν)− ηS′k(ν) · p∗S′k(ν),

and we claim that this rate point is lies on the boundary of the the capacity region. To see this

note that the rate allocation corresponds to a successive decoding scheme whereby the message

indexed by S′i is decoded after decoding the messages S′i+1, . . . , S
′
M . For this rate tuple to lie on the

boundary of the capacity region, the enumeration {S′i} on E must satisfy S′i ⊂ S′j only if i > j so

6 Here, x+ = max(x, 0).
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that “more common” messages are decoded prior to “more private” messages. To see that this is

true, consider a pair i 6= j with S′i ⊂ S′j . As µS′i ≥ µS′j (by assumption µ ∈ O) and ηS′i(µ) ≥ ηS′j (µ)

(by definition), there must be intersection point z∗ > 0 such that

uS(z) ≥ uS′(z) z ≤ z∗

uS(z) ≤ uS′(z) z ≥ z∗.

Hence, necessarily i > j. Thus, {r∗S(ν) : S ∈ E} and {p∗S(ν) : S ∈ E} are the optimal received

power and rate allocations for the state ν ∈ H.

4.6.2 Optimizing the Lagrange Dual Function

To minimize the dual Langrange function, g(λ), we require a method that needn’t rely on

differentiability. As the the dual Lagrange function is convex, an appropriate method is the ellipsoid

method, we converges in polynomial time and only requires knowledge of some subgradient of the

objective function, which is provided with the following:

Lemma 4.6.2. If {KS(ν)} and {r∗S(ν)} maximize the Lagrangian over D at λ, i.e. L({K∗S(ν)}, r∗(ν), λ) =

g(λ), then the vector u defined as

uj = Pj −
∑

j∈S∈E

∫
H

K∗S,jjdF (ν) j ∈ [1 : K] ,

is a subgradient of g at λ.

Proof. For any vector δ ∈ RK+ , we have

g(δ) ≥ L({K∗S(ν)}, r∗(ν), δ) = g(λ) +

K∑
k=1

(δk − λk)

Pj − ∑
j∈S∈E

∫
H

K∗S,jjdF (ν)


so that g(δ)− g(λ) ≥ u · (δ − λ).

This is similar in spirit to the corresponding prescriptions given for the non-cooperative case

in [71] and generalizes an analogous result in [65].
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4.7 Constant Gap Characterization

4.7.1 Constate State

To clarify what gains sending a common message might provide over sending private messages,

we develop a constant gap-to capacity characterization, which in turn leads to a DoF characteriza-

tion of capacity with general message sets:

Theorem 4.7.1. For the K user MIMO fading Gaussian MAC with common information, the set

of rate tuples (RS : S ∈ E) for which

∑
D∈↓S

RD ≤ I(S) , log det
(
I +

∑
j∈S

HjH
∗
jPj/tj

)
(4.31)

for all non-empty S ⊆ [K] is achievable by a simple single coding strategy that does not require

cooperation or channel state information. Moreover, if (RS : S ∈ E) is an achievable rate tuple,

then it must satisfy

∑
D∈↓S

RD ≤ O(S) , log det
(
I + |S|

∑
j∈S

HjH
∗
jPj

)
(4.32)

for all non-empty S ⊆ [K].

Proof. Our inner bound can be arrived at by the general MIMO MAC results with the specific choice

of input distribution: all common-message auxiliary random variables are set to zero (US = 0 for

all S ∈ E with |S| ≥ 2) while the K transmitters are independent with Xj ∼ CN (0, (Pj/tj)I). The

outer bound will follow from from the converse for the fading case in Section 4.7.4

Noteworthy is that this inner bound is achieved with non-cooperative coding and with no

channel state information at the transmitters (no CSIT). Thus the corollaries in the following

section bound the benefit that cooperative coding and CSIT may have.

In the case of the much studied MIMO MAC with private messages only [121, 71] the bounds

of Theorem 4.7.1 (specialized by setting RS = 0 for |S| > 1) imply that the optimization of transmit

covariances [121],[71] to maximize sum-rate results in an expansion of sum rate by no greater than
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the constant gap of Corollary 4.7.2 (when S = [K]) while requiring global CSIT at all transmitters.

In the private message case, we may tighten the outer bound (4.32) to

∑
S∈↑{j}

RS ≤ log det
(
I +

∑
j∈S

HjH
∗
jPj

)
by not having to consider correlated inputs; this bound follows by mimicking the steps in 4.7.4

while omitting the unnecessary block diagonalization bound step provided by Lemma 4.7.6. Thus,

when we only have private messages to send, the gap of Corollary 4.7.2 may be tightened to

min {r, t(S)} log
(
t̂S
)
.

4.7.1.1 Quantifiable gap

A salient feature of this result is that the gap between the inner and outer bounds admits a

convenient characterization:

• The gap can be bounded by a constant independent of both the channel state H and the

signal to noise ratios (P1, . . . , PK).

• If the entries of the channel state H are assumed to have been drawn iid from a distribution

with bounded variance, then the gap may be thought of a random variable whose distri-

bution and expectation can be characterized with random matrix theory. In particular, by

such results, the gap is with high probability very close to its expected value which in turn

has a deterministic characterization.

Corollary 4.7.2 (Constant-Gap). For each S ⊆ [K],

O(S)− I(S) ≤ min {r, t(S)} log
(
|S|t̂S

)
(4.33a)

≤ min{r, t([K])} log(Kt̂[K]), (4.33b)

where t(S) =
∑

j∈S tj and t̂S = maxj∈S tj
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Proof. We can relax the above inner and outer bounds as

I(S) = log det
(
I +

∑
j∈S

HjH
∗
jPj/tj

)
≥ log det

(
I +

∑
j∈S

HjH
∗
jPj

)
−min {r, t(S)} log

(
t̂S
)

O(S) = log det
(
I + |S|

∑
j∈S

HjH
∗
jPj

)
≤ log det

(
|I +

∑
j∈S

HjH
∗
jPj

)
+ min {r, t(S)} log(|S|).

to provide (4.33a). Relaxing (4.33a) to (4.33b) provides a uniform bound on all such gaps.

A special case of interest is in space-division multiple-access (SDMA), where t1 = · · · = tK = 1

and the uniform gap above is min{r,K} log(K).

4.7.2 Time-varying state: Fading Channel

The above results can be extended, via a separable coding scheme, to the fading K-user

MIMO MAC-CM, provided that both the transmitter and receiver have non-causal knowledge of

the channel fading state. As each transmitter need only satisfy the power constraint on average,

it is free to choose a different transmit power per channel fading state, described by the power

allocations ρ(ν) : H → RK+ , whose jth entry ρj(ν) is the jth transmitter’s power allocation. A

power allocation is admissible if
∫
H ρj(ν)dF (ν) ≤ Pj for each j ∈ [K]. An approximate capacity

characterization for the fading case is:

Theorem 4.7.3. For the K user fading MIMO fading Gaussian MAC with common information,

the set of rate tuples (RS : S ∈ E) for which

∑
D∈↓S

RD ≤ Iρ(·)(S) ,
∫
H

log det
(
I +

∑
j∈S

Hj(ν)H∗j (ν)ρj(ν)/tj

)
dF (ν) (4.34)

for all non-empty subsets S ⊆ [K] and some admissible power allocation ρ(·) is achievable by a

simple coding strategy with a single strategy per power allocation. Moreover, if (RS : S ∈ E) is an

achievable rate tuple, then it must satisfy

∑
D∈↓S

RD ≤ Oρ(·)(S) ,
∫
H

log det
(
I + |S|

∑
j∈S

Hj(ν)H∗j (ν)ρj(ν)
)

dF (ν) (4.35)

for all non-empty subsets S ⊆ [K] and some admissible power allocation ρ(·).
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Proof. The achievable rate region for a constant channel state in Theorem 4.7.1 may be extended,

via a separable coding scheme, to the achievable rate region given above for a time-varying channel

fade process. As the proof involves standard arguments (e.g. [40], [31]) that are not specific to the

problem here, we only sketch the proof. The proof involves the multiplexing over a discretization

of the channel fading state space. With a ĥ as a finite discretization of the state space, we rate

split as

RS =
∑
ĥ

p(ĥ)RS,ĥ. (4.36)

At the encoder, multiplex the larger block of n contiguous channel uses into a collection of smaller

sub-blocks over which the discretized channel fading state is constant. Over each sub-block, encode

and decode as in the constant channel state case with the signal-to-noise ratios determined by the

power allocation. The receiver, who also demultiplexes the channel transmission block into the

constant-state channel transmission subblocks, is able to decode each message split (mS,ĥ : S ∈ E)

per state ĥ provided that that for each ĥ,

∑
D∈↓S

RD,ĥ ≤ log det
(
I +

∑
j∈S

ĥjĥ
∗
jρj(ĥ)/tj

)
for all S ⊆ [K]. Hence, per the rate split (4.36), we may achieve any rate tuple which satisfies

∑
D∈↓S

RD ≤ EĤ log det
(
I +

∑
j∈S

ĤjĤ
∗
jρj(Ĥ)/tj

)
for all S ⊆ [K[. Taking a series of increasingly finer quantizations of the state space provides that

(4.34) is achievable. The outer bound is detailed in Section 4.7.4.

Mimicking the proof of Corollary 4.7.2 provides an analogous corollary to the above theorem.

In particular, the gap between the inner and outer bounds is easily bounded with a gap independent

of the power allocation policy.

Corollary 4.7.4. For each S ⊆ [K] and admissible power allocation ρ(·),

Oρ(·)(S)− Iρ(·)(S) ≤ min {r, t(S)} log
(
|S|t̂S

)
.



88

As this gap holds for all power allocations, it holds for those that are optimal in some

sense. For example, it would hold for the choice of ρ(·) that maximizes the weighted sum-rate

objective
∑

S∈E µSRS subject to the constraints (4.35) for some set of non-negative rate-rewards

(µS : S ∈ E). For this power allocation and rate-reward vector, the gap in Corollary 4.7.4 would

represent the gap to capacity.

4.7.3 DoF Region

A simple consequence of the above result is that the Degrees-of-Freedom (DoF) region for

MIMO MAC with general message sets is easily characterized. The degrees of freedom (DoF) region

is, informally, the capacity region in the high signal to noise ratio regime, characterizing the number

of complex symbols which may be allocated towards the transmission of each message. Formally,

it is the set of non-negative tuples (dS : S ∈ E) satisfying∑
S∈E

µSdS ≤ lim sup
P→∞

(
sup

R(P )∈CK(P,...,P )

[∑
S∈E

µSRS(P )

]
1

log(P )

)
for all non-negative weight vectors (µS ≥ 0 : S ∈ E) [51]. By considering successively higher power

budgets, the signal-to-noise ratio can be made arbitrarily high so that the impact of the additive

noise is eliminated and the competition among the various signals to be transmitted is brought to

the forefront.

By considering setting P1 = · · · = PK = P in the constant gap capacity characterizations of

Theorem 4.7.1 and allowing the power budget P to tend to infinity, we find:

Corollary 4.7.5. The DoF region for the MIMO MAC with general message sets is given by∑
S∈∪j∈A↑{j}

dS ≤ rank(HA) (4.37)

where HA is the horizontal concatenation of the matrices (Hj : j ∈ A).

Of particular importance is the observation signaling with a common message provides no

benefit over the private message signaling, whose DoF region is given by∑
j∈A

d{j} ≤ rank(HA). (4.38)
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Further evidence of this is that one can layer down-set rate-splitting over a private-message only

DoF optimal signaling scheme to achieve the DoF region of Corollary 4.7.5. Doing so introduces

rate-splits: projecting away those rate-splits can be done efficiently via the procedure introduced

in 3.4.1.

4.7.4 Outer Bound

Suppose that for the fading K-user MIMO MAC with common messages there exists a se-

quence of codes indexed by block length n which communicate at the rate triple (RS : S ∈ E) and

which achieve a vanishing probability of error P
(n)
e as n tends to infinity. Pick the code correspond-

ing to block length n, and for each S ∈ E, let MS be a uniformly distributed message on [2nRS ].

Let Xn
1 , . . . ,X

n
K and Yn be the random variables be induced by the messages, the encoders, and

the channel.

Let C(X) = log det (I + X) and

M(B) = (MS)S∈B for B ⊆ E

Xt(S) = (Xj,t)j∈S for S ⊆ [K]

H(N) = (H(i))i∈N for N ⊆ [n].

By Fano’s inequality, there is a vanishing non-negative sequence εn → 0 such that for every non-

empty subset S ⊆ [K],

n
(∑

D∈↓S
RD − εn

) (i)

≤ I(M↓S ; Yn)

≤ I(M↓S ; Yn|ME\↓S ,H([n]))

=

n∑
t=1

h(Yt|ME\↓S ,H([n]),Yt−1)− h(Zt)

≤
n∑
t=1

h(Yt|X[K]\S,t,H([n]))− h(Zt)

=
n∑
t=1

EH([n])=h([n])h(Yt|X[K]\S,t,H([n]) = h([n]))

− h(Zt)
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(ii)

≤
n∑
t=1

EH([n])C

(
HS(t)KSt(H([n]))H∗S(t)

)
(iii)

≤
n∑
t=1

EH([n])C

(
|S|
∑
j∈S

Hj(t)Kjj,t(H([n]))H∗j (t)
)

(iv)

≤
n∑
t=1

EH([n])C

(
|S|
∑
j∈S

Hj(t)H
∗
j (t)ρjt(H([n]))

)

=

n∑
t=1

EH(t)EH([n]\{t})C
(
|S|
∑
j∈S

Hj(t)H
∗
j (t)ρjt(H([n]))

)
(v)

≤
n∑
t=1

EH(t)C

(
|S|
∑
j∈S

Hj(t)H
∗
j (t)ρjt(H(t))

)
(vi)
= nEH

 n∑
t=1

1

n
C

(
|S|
∑
j∈S

HjH
∗
jρjt(H)

)
(vii)

≤ nEHC
(∑

j∈S
HjH

∗
jρj(H)

)
.

where EHρj(H) ≤ Pj . The labeled steps above follow by

(i) Fano’s inequality.

(ii) the definitions in (4.39),(4.40) below and the fact that circularly symmetric Gaussian distri-

butions maximize conditional entropy subject to a joint covariance constraint.

(iii) Lemma 4.7.6 below and the fact that C(X) ≤ C(Y) if 0 � X � Y.

(iv) (4.41a) and the fact that for any A � 0, A � tr(A)I.

(v) the concavity of C(X) over X � 0, Jensen’s inequality, and the definitions (4.41).

(vi) the stationarity of the stochastic process H(t).

(vii) the same reasoning as (v) above.

We now explain the covariance notation used above. For each channel state sequence realiza-

tion H([n]) = h([n]), channel use t ∈ [n], and any subset S = {j1, . . . , j|S|} ⊆ [K] where the indices
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are ordered in increasing order, j1 < · · · < j|S|, let

KSt(h([n])) = Cov




Xj1,t

...

Xj|S|,t

 ,


Xj1,t

...

Xj|S|,t



∣∣∣∣∣∣∣∣∣∣∣
H([n]) = h([n])



=


Kj1j1t(h([n])) · · · Kj1j|S|t(h([n]))

...
. . .

...

K∗j1j|S|t(h([n])) · · · Kj|S|j|S|t(h([n]))

 . (4.39)

For the same subset S = {j1, . . . , j|S|}, denote the portion of the channel fading matrix seen by the

inputs listed in S as

HS(t) =

[
Hj1(t) · · · Hj|S|(t)

]
. (4.40)

Our development was specifically interested in the empirical power allocation and certain

averages of this power allocation,

ρjt(H([n]) = tr

(
Kjjt(h([n]))

)
(4.41a)

ρjt(H(t)) = EH([n]\{t})ρjt(H([n]))

ρj(H) =
1

n

n∑
t=1

ρjt(H).

As the code is achievable, its empirical power allocation must satisfy the power constraint, so that

1
n

∑n
t=1EH([n])ρjt(H([n])) ≤ Pj . Hence

∫
H ρj(ν)dF (ν) ≤ Pj as well.

The following lemma was critical in the above outer bound.

Lemma 4.7.6. If K =


K11 · · · K1p

...
. . .

...

K∗1p · · · Kpp

 � 0 where p ≥ 2, then


K11 · · · K1p

...
. . .

...

K∗1p · · · Kpp

 � p


K11

. . .

Kpp

 .
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Proof. This may be shown by induction. The lemma is trivially true for p = 1. Now assume that

the lemma is true for any p − 1 block partition of a positive semi-definite matrix where p ≥ 2.

Consider a K � 0 with a p block partition as stated in the hypothesis. Group the bottom right

(p− 1)× (p− 1) block of blocks to form the following 2× 2 partition of K,

K =



K11 K12 · · · K1p

K∗12 K22 · · · K2p

...
...

. . .
...

K∗1p K∗2p · · · Kpp


.

Then by Lemma C.3.1 in the Appendix, three necessary and sufficient conditions for K to be

positive semi-definite are

K11 � 0 (4.42a)

Null(K11) ⊆ Null

([
K12 · · · K1p

]∗)
(4.42b)

K22 · · · K2p

...
. . .

...

K∗2p · · · Kpp

 �


K∗12

...

K∗1p

K+
11

[
K12 · · · K1p

]
. (4.42c)

Construct

K̃ = p


K11

. . .

Kpp

−


K11 · · · K1p

...
. . .

...

K∗1p · · · Kpp

 =



(p− 1)K11 −K12 · · · −K1p

−K∗12 (p− 1)K22 · · · −K2p

...
...

. . .
...

−K∗1p −K∗2p · · · (p− 1)Kpp


.

We will show that K̃ meets the three conditions (4.42) for its constituent blocks so that (with

Lemma C.3.1) we may conclude K̃ � 0, our desired result. The first two such conditions follow as

direct consequences of (4.42a) and (4.42b),

(p− 1)K11 � 0 (4.43a)

Null((p− 1)K11) ⊆ Null

(
−
[
K12 · · · K1p

]∗)
. (4.43b)
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For the last condition, note that
−K∗12

...

−K∗1p

 ((p− 1)K11)+

[
−K12 · · · −K1p

]
=

1

p− 1


K∗12

...

K∗1p

K+
11

[
K12 · · · K1p

]

(i)

� 1

p− 1


K22 · · · K2p

...
. . .

...

K∗2p · · · Kpp


(ii)

�


K22

. . .

Kpp



(iii)

�


(p− 1)K22 · · · −K2p

...
. . .

...

−K∗2p · · · (p− 1)Kpp

 , (4.44)

where (i) follows by (4.42c) and (ii), (iii) both follow by the inductive assumption. The result

follows by noting (4.43)-(4.44) are sufficient conditions for K̃ to be positive semi-definite.



Chapter 5

Broadcast Channel with General Message Sets

5.1 Motivation

In contrast to the Multiple Access Channel, answers for the Broadcast Channel are hard

to come by, including capacity for the general two-user two-private message discrete memoryless

channel. Even with a focus on only multiple unicast transmission, progress has been made in

specific cases. In the discrete memoryless setting, capacity is known in cases where the outputs can

be ordered in terms of channel quality. In the MIMO setting, capacity was determined recently

[116], and is equal to the Marton’s inner bound with inputs selected according to the dirty-paper

coding rule.

Similarly, progress for the case with simultaneous unicast and multicast sessions has been

limited to special cases [74, 37, 29]:

• The two-user MIMO setting, where capacity and its approximate Degrees-of-freedom char-

acterization require subtle answers.

• A noise-less, but rate-limited broadcast network known as a combination network [75], with

one transmitter and several receivers connected through an intermediate layer of nodes and

connections (a three-user version is depicted in Figure 5.1). When there are three or more

receivers, it is known that network coding is required and for the case where capacity is

known, linear network coding suffices.

• For three-user discrete memoryless channels with two degraded message sets, capacity can
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{w123, w12, w13, w23, w1, w2, w3}

{ŵ123, ŵ12, ŵ13, ŵ1}
{ŵ123, ŵ12, ŵ23, ŵ2}

{ŵ123, ŵ23, ŵ13, ŵ3}

x

y1 y2 y3

v123

c123

v23

c23

v13

c13

v12

c12

v3

c3

v2

c2

v1

c1

Figure 5.1: Three-user combination network, the links between the first and second layer are rate-
limited, while the links between the second and third layer are not.

be found by first constructing a code for a more general message set, and then projecting

away the undesired message set [74]. This demonstrates that a more general understanding

of general message sets may be required for the understanding of simpler message sets.

In more detail; the two-user MIMO capacity was only recently determined in [37] through the

development of novel arguments for the sufficiency of Gaussian inputs in the attainment of capacity.

There, capacity is characterized implicitly, and an explicit characterization with a prescription for

optimal input covariances appears difficult to obtain. An approximately optimal input covariance

is provided in [29], where the choice provided is shown to attain capacity to within a finite gap,

where the gap is independent of the signal to noise ratio, but dependent on the condition number

of the channel matrix.

For the combination network, some partial answers are known. For the three user case, the

capacity region characterized in Grokop and Tse [42]. Tian [105] generalizes this to a symmetric

K-user setting, characterizing capacity not as an explicit polyhedral region but implicitly in terms

of rate-splits. Despite this, a clever converse argument reliant on the submodularity of entropy

demonstrates that the rate region achievable by linear network coding is the capacity region. The

central role of submodularity in the prior works is brought to the forefront with the recent work
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of Salimi et al. [91], who develop a notion of generalized cut-set bounds. With this viewpoint

Salimi et al., simplify the converse arguments of [105, 42] and uncover an explicit polyhedral

representation of the symmetric K-user capacity region.

Motivated by its relevance and the difficulty of the general case, we study the MIMO and

focus on the approximate notion of capacity known as the degress-of-freedom (DoF) region.This

measure characterizes the trade-offs inherent in the transmission of distinct messages across the

same channel medium as the trade-offs in the assignment of the available signal spaces to the

transmission of different messages. We start by observing that the DoF region for the two-user

case can be attained without appeal to dirty paper coding and through the use of simple linear

precoding and rate-transfer operations. More precisely, capacity may be attained by concatenating

two types of codes together: a zero-forcing inner code, and a rate-transfer outer code. Inspired by

this observation, we propose a general inner bound with the same structure: a zero-forcing inner

code, and a linear network coding outer code, as depicted in Figure 5.2.

Channel (with noise ignored)

X

H1 Y1

H2 Y2

HK YK

...

Inner Code - Matrix Factorization

F

C1

C2

CK

Outer Code - Combination Network

(uS : S ∈ E)

(uS : S ∈↑ {1})

(uS : S ∈↑ {2})

(uS : S ∈↑ {K})

Figure 5.2: Schematic of Degrees-of-Freedom inner Bound for the BC as a concatenation of two
codes.

For the zero-forcing inner code, we consider a recursive row-vector selection procedure. The

possibilities of the row-vector selection process are described through polymatroid constraints, with

the bounds being the dimension of the direct sum over various elements of the intersection lattice of

the arrangement of row spaces. The resultant set of achievable DoF can be further enlarged through
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consideration of linear network coding. The development of the rates achievable through linear

network coding relies on prior work on the finite-field broadcast networks with linear input/output

relations [58] to develop a scalable inner bound applicable to all cases. For certain three-user and

symmetric cases, we find a precise polyhedral representation of this inner bound; for the remaining

cases, the inner bound remains implicitly defined through the introduction of rate-splits.

When the recursive process eventually selects all row vectors, it yields a matrix factorization

which enables a converse argument to be applied. In these cases, the proposed DoF region is

optimal, and its governing constraints require not only cut-set bounds, but generalized cut-set

bounds.

5.2 DoF Inner Bound

5.2.1 Channel Model and Preliminaries

The Gaussian vector broadcast channel (BC) is
Y1

...

YK

 =


H1

...

HK

X +


Z1

...

ZK

 , (5.1)

where X is the input of dimension t, the jth output Yj is of dimension rj , and the channel matrix

Hj between the two is of size rj × t. Each of the additive noises Zj are Gaussian with identity

covariance. Without loss of generality, we assume that rj ≤ t and that rank(Hj) = rj . When we

take the channel matrices to be generic, the resultant DoF region will rely only on the transmit

and collective receive dimensions, which we refer to with the notation t× (r1, r2, . . . , rK).

Our interest is in studying this channel where the transmitter has both private and common

messages to send. Again, E is a message index set, containing subsets S ⊆ [1 : K], which lists

the receivers at which the corresponding message source mS is desired. In the Gaussian setting,

the input must satisfy the power constraint E
[

1
n

∑n
t=1 ‖Xt‖2

]
≤ P , where the expectation is with

respect to a uniform distribution on the messages, is satisfied. A rate tuple (RS(P ) : S ∈ E) is said
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to be achievable if its reconstruction error, as a function of block length n, tends to zero for some

sequence of codes satisfying the power constraint with respect to the power budget P . The closure

of all such rate tuples is the capacity region C(P ).

The degrees of freedom (DoF) region is, informally, the capacity region in the high signal to

noise ratio regime, characterizing the number of complex symbols which may be allocated towards

the transmission of each message. Formally, it is the set of non-negative tuples (dS : S ∈ E)

satisfying ∑
S∈E

µSdS ≤ lim sup
P→∞

(
sup

R(P )∈C(P )

[∑
S∈E

µSRS(P )

]
1

log(P )

)
for all non-negative weight vectors (µS ≥ 0 : S ∈ E) [51]. By considering successively higher power

budgets, the signal-to-noise ratio can be made arbitrarily high so that the impact of the additive

noise is eliminated and the competition among the various signals to be transmitted is brought to

the forefront.

5.2.2 Two-user Case: Matrix Factorization

We start with a known result, the DoF region characterized by Ekrem and Ulukus [29], which

relies on a matrix factorization known as the generalized singular value decomposition (SVD). For

the purposes of the DoF region, a simpler matrix factorization suffices, which forgoes desirable

numerical attributes of the GSVD has for the purposes of a simpler analytical treatment. We

review the development of Ekrem and Ulukus [29] first, which is reliant on the GSVD first. The

generalized singular value decomposition (GSVD) is, for the pair of channel matrices H1,H2, given

by

Φ1H1Φ0 = Σ1[Ω−10]

Φ2H2Φ0 = Σ2[Ω−10]
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Figure 5.3: Two user DoF region for a generic 3× (2, 2) two-user MIMO BC with multicasting at
the physical layer.

where Φ1,Φ2,Φ0 are unitary, Ω is non-singular and of size k = rank(H), and

Σ1 =


Iφ1×φ1

D1,φ12×φ12

0

 ∈ Rr1×k Σ2 =


0

D1,φ12×φ12

Iφ2×φ2

 ∈ Rr2×k.

Here, φ12 is the dimension of the common subspace Null(H1)⊥∩Null(H2)⊥ 1 , while each dimension

φi are the dimensions available for private message broadcasting after those directions which lie in

the common subspace have been set aside; that is, φi = rank(Hi)− φ12. With this decomposition,

the two-user BC can be transformed into a set of parallel scalar BCs, for which a previously known

converse [32] provides that any achievable DoF tuple must satisfy

E2


d1

d2

d12

 ≤ E2


φ1

φ2

φ12

 where E2 =


1 0 1

0 1 1

1 1 1

 . (5.2)

Through dirty paper coding and a covariance choice dependent on the GSVD, these conditions can

be shown to be sufficient as well as necessary for achievability. An example of such a region, for a

3× (2, 2) BC with generic channel matrices (that is, H1,H2 are both of dimension 2× 3 assuring,

through genericity, that φ1 = φ2 = φ12 = 1), is depicted in Figure 5.3.

1 A⊥ denotes the orthogonal complement of A: A⊥ = {y : 〈y, x〉 = 0 ∀x ∈ A}, where 〈y, x〉 = y∗x is the standard
inner product.
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The prior formulation provides a relatively strong notion of capacity; capacity to within a

gap independent of the signal to noise ratio. If interested in directly obtaining the DoF region,

simpler arguments suffice. The converse, in fact, is immediate as (5.2) is simply

d12 + d1 ≤ rank(H1)

d12 + d2 ≤ rank(H2)

d12 + d1 + d2 ≤ rank(H),

(5.3)

which are recognizable as the standard cut-set bounds.

Achievability can also be shown more simply by concatenating two simple codes. The first

is a zero-forcing inner code which characterizes all those DoF tuples which are achievable by car-

rying each message-bearing symbol on at most one linear dimension within the transmit space.

The second is a rate-splitting code, which considers those common DoF points requiring that the

message-bearing symbol occupy more than one linear dimension in the transmit space. Overlaying

the outer code over the inner code achieves all points within the outer bound (5.3).

5.2.2.1 Inner code

The inner code parallels the development of the private message case, where the transmission

scheme assigns each message-bearing symbol to a different channel row vector so that all assigned

row vectors are linearly independent. As it suffices to have any linearly independent selection, pick

from each channel matrix Hj only rank(Hj) of its rows, and redefine the channel matrix to be this

subset of rows. In this way, we can assume that rj = rank(Hj), without affecting the row spaces

involved.

Another change to the selection of the transmission row vectors is relevant, by applying a

nonsingular receive filter Gj , the jth transmitter can change transmission rows that the transmitter

has available to an alternative basis than the one provided by Hj . Thus, we focus on the row spaces,

rather that the specific row vectors, where the following achievable scheme will provide a means to

select the appropriate receive filters. Preferring to work with column vectors over row vectors, we
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focus on the equivalent representation of the row space of Hj as the column space of H∗j ,

R1 = Range(H∗2) = Null(H2)⊥

R2 = Range(H∗1) = Null(H1)⊥,

along with their intersection

R12 = R1 ∩R2.

This common subspace R12, whose dimension is the previously defined φ12, plays a central role

for the transmission of common messages to both receivers: a common message-bearing symbol

intended to be received at both destinations and is along a single single transmit direction only if

that direction is within the common subspace R12.

For concreteness, choose matrices

H̃12 =


x12

1

...

x12
φ12

 H̃1 =


x1

1

...

x1
φ2

 H̃1 =


x1

2

...

x2
φ2

 .

where rows of H̃12 form a basis for the common subspace R12 and the rows of H̃1 contains rows

within R1 but linearly independent of those rows in H̃12. Similarly, the rows of H̃2 contains rows

within R2 but linearly independent of those rows in H̃12. Then there are a pair of non-singular

G1,G2 such that

G1H1 =

 H̃1

H̃12

 G2H2 =

H̃12

H̃2

 .
Now, consider the set of non-negative DoF tuples (d′1, d

′
2, d
′
12) satisfying2

d′12 ≤ dim(R12) = φ12

d′1 + d′12 ≤ dim(R1 ⊕R12) = φ1 + φ12

d′2 + d′12 ≤ dim(R2 ⊕R12) = φ2 + φ12

d′1 + d′2 + d′12 ≤ dim(R1 ⊕R2 ⊕R12) = φ1 + φ2 + φ12,

(5.4)

2 A⊕B = {a+ b : a ∈ A, b ∈ B} denotes the direct sum of two subspaces A and B.
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Figure 5.4: The polytope (5.4) for a generic 3 × (2, 2) two-user MIMO BC. Each of the three
verticies A,B,C can be achieved with zero-forcing and the remaining region can be achieved with
time sharing.

where dim(V ) is the dimension of the linear space V . As in the private message case, this polytope

has a special structure: it is a polymatroid, though it may not be apparent at first. To see this, let

FS be a matrix with Range(FS) = RS for S ∈ {1, 2, 12} = E. Then each of the bounds in (5.4)

may be reformulated as

∑
S∈B

dS ≤ f(B) for B ∈
{{

12
}
,
{

1, 12
}
,
{

2, 12
}
,
{

1, 2, 12
}}

(5.5)

where f(B) = dim(⊕S∈BRS) = rank(FB), and FB is the matrix formed by horizontally con-

catenating the matrices (FS : S ∈ B). Thus we recognize f(B) as a normalized, nonincreasing,

submodular function (c.f. (2.13)) over the subsets B ⊆ E. Further, as R12 ⊆ R1 and R12 ⊆ R2,

we observe that all of the defining inequalities of P(f), given by

∑
S∈B

dS ≤ f(B) for all B ⊆ E,

are implied by those in (5.5). Thus, we have an explicit description of each vertex of P(f). If we

can achieve each of these vertices, then through time-sharing we can achieve any point within P(f).

By the redundancy of the bounds, P(f) has three unique verticies:

A (d∗1, d
∗
2, d
∗
12) = (φ1, φ2, φ12)

B (d∗1, d
∗
2, d
∗
12) = (φ1 + φ12, φ2, 0)
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C (d∗1, d
∗
2, d
∗
12) = (φ1, φ2 + φ12, 0);

see Figure 5.4 for an example of such a polymatroid.

All of the corner points can be achieved in a similar manner; for illustrative purposes we

focus on point A. This corner point attains the maximum of any linear program

max.
∑

S∈E
µSdS s.t. d ∈ P(f)

with µ12 ≥ max{µ1, µ2} as the explicit formula for polymatroid vertices provides

d∗12 = dim(R12) = rank(H̃12) = φ12

d∗1 = dim(R1)− dim(R12) = rank(H̃1) = φ1

d∗2 = dim(R1 ⊕R2)− dim(R1) = rank(H̃2) = φ2.

To attain this DoF point, assigning transmit directions to message-bearing symbols as follows.

i = 1 Select d∗12 linearly independent row of H̃12 for the transmission of m12, and assemble those

rows into the d∗12 × t matrix F12.

i = 2 As

rank(F12) = rank(H̃12) rank(

[
F12 H̃1

]
) = rank(H1),

the augmentation property assures that we can select d∗1 rows from H̃1 and assemble them

into a d∗1 × t matrix F1 such that

[
F12 F1

]
has linearly independent rows

i = 3 As

rank(

[
F12 F1

]
) = rank(H1) rank(

[
F12 F1 H̃2

]
) = rank(H[1:2]),

the augmentation property assures that we can select d∗2 rows from H̃2 and assemble them

into a t× d∗2 matrix F2 such that H̃ =

[
F12 F1 F2

]
has linearly independent rows.
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By the linear independence of columns of F, we have

G1H1H̃
−1 =


φ1 φ12 φ2

φ1 I 0 0

φ12 0 I 0

 G2H2H̃
−1 =


φ1 φ12 φ2

φ12 0 I 0

φ2 0 0 I

.
Hence, by sending a message-bearing symbol along a direction in H̃12, we may recover it at both

receivers, and if we send a message-bearing symbol along a direction in H̃i, then we may recover it

only at the ith receiver. In an analogous fashion, we may attain the corner points B and C.

5.2.2.2 Outer code

To achieve that entire region (5.3), we enlarge the region (5.4) through a rate-splitting

operation. Let (d′1, d
′
2, d
′
12) be a DoF tuple within the region (5.4) and thus achievable. If both d′1

and d′2 are positive, we may set aside a portion 0 ≤ ∆12 ≤ min(d1, d2) of each DoF not for the

transmission of a private message, but for the transmission of a common message. Doing so yields

the achievability of the DoF tuple

d1 = d′1 −∆12 d2 = d′2 −∆12 d12 = d′12 + ∆12.

By projecting away this rate-split, any DoF tuple within (5.3) is achievable.

5.2.3 Towards a K-user extension

With the insight that in the two-user case, the DoF region follows straightforwardly form a

matrix factorization, we seek similarly useful matrix factorizations for the K-user case.

Define the individual, and shared row spaces as before, with

R{j} = Null(Hj)
⊥ RS =

⋂
j∈S

R{j} .

We call this the row-space intersection lattice, as these linear subspaces are partially ordered by

inclusion: RS ⊂ RS′ if S′ ⊂ S. Then a three-user matrix factorization analogous to the two-user
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case of K- users would have the first users’ matrix would factor as

G1H1 =



H̃1

H̃12

H̃13

H̃123


s.t.

Range([H̃∗1, H̃
∗
12, H̃

∗
13, H̃

∗
123]) = dim(R1)

Range([H̃∗12, H̃
∗
123]) = dim(R12)

Range([H̃∗13, H̃
∗
123]) = dim(R13)

Range([H̃∗123]) = dim(R123)

and H̃ =



H̃1

H̃2

H̃12

H̃3

H̃13

H̃23

H̃123



has a right-inverse.

5.2.3.1 Complications

This cannot be done in general, for example, consider a three-user channel where there are

three transmit antennas, the first two users have two transmit antennas and the last user has a

single antenna (succinctly, a 3× (2, 2, 1) BC). Suppose the channel matrices are

H1 =

0.54 −1.3 −1.3

1.8 −0.43 3

 H2 =

−2.3 0.34 0.73

0.86 3.6 −0.063

 H3 =

[
0.32 2.8 0.71

]

The row spaces of the first two users share a single two vector, so that R12 is the line parameterized

by this vector. The remaining shared subspaces contain only the zero vector. Re-parametrized row

spaces by applying a receive filter at the output of the first two users so that one receive direction

lies in R12 and the other direction does not. Doing so yields

G1H1 =

−0.59 0.77 0.23

1.8 −0.43 3

 G2H2 =

−0.59 0.77 0.23

0.055 1 0.04

 H3 =

[
0.11 0.96 0.25

]

In this case, there are too many row vectors to select; the matrix which aggregate all possible row

vector choices after the re-paramterization into the row-space intersection lattice gives

H̃ =



−0.59 0.77 0.23

1.8 −0.43 3

0.055 1 0.04

0.11 0.96 0.25


,
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which cannot have a right-inverse as it has fewer columns than rows.

5.2.4 Recursive Selection and Polymatroid Inner Boud

For the particular example just mentioned, a resolution is to turn off one of the available

transmit antennas, and to select rows recursively. Doing so yields a sub channel matrix H̃ which

is square and invertible. Doing so is implicitly prioritizing certain messages over other messages.

While the user whose antenna is turned off has access to fewer degrees-of-freedom the remaining

users may benefit by now being permitted access to more degrees-of-freedom.

Consider two prioritizations as listed in the following table,

1st 2nd 3rd 4th

{1, 2} {1} {3} {2}

{1} {2} {3} {1, 2}

For each prioritization, we greedily assign rows for the purpose of achieving a DoF point. We assign

as many rows as possible for the transmission of the message source with the highest priority, then

as many rows as are left and linearly independent of the prior selection for the transmission of the

source with the second highest priority, and so on.

In the first example above, the highest priority message source is that which corresponds to

the message source m12. There is only one option of a row vector suitable for transmission of a

common message DoF d12, the row vector corresponding to H̃12. Continuing as described, we then

select H̃1 for the transmission of the message source m1 and H̃3 for the message source 2. At this

point, we must stop: the aggregate sub-channel matrix

H̃ =


−0.59 0.77 0.23

1.8 −0.43 3

0.11 0.96 0.25


is full-rank, and adding more vectors will not lead to a matrix factorization. Using the inverse of

H̃ as pre-coding matrix, we achieve the DoF point (d1, d2, d12, d3, d13, d23, d123) = (1, 0, 1, 1, 0, 0, 0).
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For the second priority assignment, we place the priority of the private message source m1

over that of the message source m12 it shares knowledge of with the second user. There are two

vectors suitable for the transmission of m1: both H̃12 and H̃1: though the symbol that will be

sent along H̃12 will be receivable at the second recover, the second receiver will simply ignore that

output (effectively turning of the antenna there). The next priority assignment is to pick any vector

suitable for the transmission of m2. There is one left, and it is H̃2. At this point there are no more

row vectors that are linearly independent of the previously chosen vectors and we must stop. The

aggregate sub channel matrix is then

H̃ =


−0.59 0.77 0.23

1.8 −0.43 3

0.055 1 0.04


Using the inverse of H̃ as pre-coding matrix, we achieve the DoF point (d1, d2, d12, d3, d13, d23, d123) =

(2, 1, 0, 0, 0, 0, 0).

The K-user extension of this idea is to prioritize the elements of E in descending preference.

Enumerate the elements of E to reflect this, so that the the highest priority message is the one

corresponding to S1, the second highest priority message is the one corresponding to S2, and so on.

Then, at the ith step, greedily choose as many row vectors from RSi as possible that are linearly

independent from the already chosen vectors; i.e. they are linearly independent of the subspace

RS1 ⊕ · · · ⊕RSM . The number of rows selected at each step is then given by

dS1 = dim(dS1)

dS2 = dim(dS1 ⊕ dS2)− dim(dS1)

...

dSi = dim(dSi ⊕ · · · ⊕ dS1)− dim(dSi−1 ⊕ dSi · · · ⊕ dS1)

This algorithm is correct, by the notion of the augmentation property of matroid theory. Let

B1:i−1 be the previously selected rows, which has rank rank(B1:i−1) = dim(RSi−1 ⊕RSi · · · ⊕RS1).
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Now let, Ai have rows which are a basis for dSi so that

rank


B1:i−1

Ai


) = dim(RSi ⊕RSi · · · ⊕RS1)

Then, there are dSi rows in Ai, assembled in Ri, such that

rank


B1:i−1

Ri


 = rank


B1:i−1

Ai




By the development of the polymatroid theory, we recognize the convex hull of all such

achievable points as a polymatroid, given by

P(ρ) =

{
d ∈ RE+ :

∑
S∈B

dS ≤ ρ(B) = dim

(⊕
S∈B

dS

)
∀B ⊆ E

}
,

By the up-set lattice structure of the row-space intersection lattice, where RS ⊂ RS′ if S′ ⊂ S, only

those bounds corresponding to up-sets under the inclusion order are needed. Thus, we can state

the above more simply as follows

Lemma 5.2.1 (Polymatroid DoF Inner Bound). Any Dof tuple in

P(ρ) =

{
d ∈ RE+ :

∑
S∈B

dS ≤ ρ(B) ∀B ∈ F↑
}
. (5.6)

is achievable.

5.2.5 Linear Network Coding

The inner code limits attention to those achievable schemes which assign each unique message-

bearing symbol to at most one transmit direction. This, however is not optimal, as the simple

example of sending the global transmit message suggests: consider the K ×K (or, in our notation,

K × {1}K) MISO BC with linearly independent channel matrix rows. Then there is no common

message subspace R[1:K], but yet we may still achieve a single DoF for the common message m[1:K]

by replicating a single common message symbol K times, with one replication for each of the

channel vectors Hj . Another example is the three-user case 3× (2, 2, 2) MIMO BC, where there is
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no common message subspace available for all three receivers (R{1,2,3} = {0}) but there are three

pair-wise common message subspaces (RS with |S| = 2), each of dimension one, and each linearly

independent from the other two. Then by distributing two triple-wise common message-bearing

symbols x
{1,2,3}
1 , x

{1,2,3}
2 as 

w{1,2}

w{1,3}

w{2,3}

 =


1 0

0 1

1 1


x{1,2,3}1

x
{1,2,3}
2

 (5.7)

to produce three symbols w{1,2}, w{1,3}, w{2,3}, to be assigned (respectively) to the row vectors

h̃{1,2}, h̃{1,3}, h̃{2,3} which (again, respectively) define the subspaces R{1,2},R{1,3},R{2,3}, we can

achieve two DoF’s for the triple-wise common message m{1,2,3} by using three transmit dimensions.

With linear network coding, this idea of using more than one transmit direction per common

message DoF can be generalized. More precisely, the type of data mixing present in (5.7) can be

generalized through consideration of random matrices: any 3 × 2 matrix where each of its 2 × 2

sub matrices is full rank would suffice, and matrices with entries generated i.i.d. from a continuous

distribution satisfy this requirement with probability one. This is the analysis of [58] for a finite-field

setting, and mimicking their analysis provides the following.

Lemma 5.2.2. Any DoF tuple (dS : S ∈ E) satisfying the covering constraints

dS ≤
∑

S′:j∈S′
dS→S′ for all j ∈ S and S ∈ E, (5.8)

the packing constraints ∑
S′∈B

∑
S:S∩S′ 6=∅

dS→S′ ≤ ρ(B) ∀B ∈ F↑, (5.9)

and the non-negativity constraints

dS→S′ ≥ 0 for all S, S′ ∈ E,S ∩ S′ 6= ∅ (5.10)

is achievable.

Proof. Suppose we are given a set of non-negative rate-splits satsifying the covering and packing
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constraints (5.8),(5.9). Define

∑
S:S∩S′ 6=∅

dS→S′ = φS′ ∀S′ ∈ E (5.11)

and let {S1, . . . , SM} be an enumeration of the message index set E. Then by Lemma 5.2.1, we

can send the set of message-bearing symbols

{uS1
1 , . . . , uS1

nφS1
, . . . , uSM1 , . . . , uSMnφSM

}

over n channel uses such that each symbol uSi is recoverable at all receivers listed in S. To send a

different set of message-bearing symbols

{vS1
1 , . . . , vS1

ndS1
, . . . , vSM1 , . . . , vSMndSM

},

where vSi is intended to be recovered at each receiver listed in S, but where the tuple (dS : S ∈ E)

is outside of the polymatroid (5.6), we cannot directly apply Lemma 5.2.1. Rather we distribute

information via linear combinations among a new set of symbols which we can recover at the

receivers and which have sufficient information to resolve the original symbols.

For each ordered pair (S, S′) in the message index set E with non-empty intersection, ran-

domly select a set a matrix FS→S′ ∈ CndS×ndS→S′ by picking its entries independently. For each

pair (S, S′) ∈ E with nonempty intersection, linearly combine the set of symbols {vSi : i ∈ [1 : ndS ]}

into an intermediate set of symbols with
ũS→S

′
1

...

ũS→S
′

ndS→S′

 = FS→S′


vS1
...

vSndS

 .
Those new symbols contain some, but not necessarily all, information about the original symbols.

For each set S′ ∈ E, assemble these new symbols as

{ũS→S′i : i ∈ [1 : ndS→S′ ] , S ∩ S′ 6= ∅}.

Then, by the packing constraint (5.11) and Lemma 5.2.1, we can recover all the symbols {ũS→S′i i ∈

[1 : ndS→S′ ] , S∩S′ 6= ∅} at each receiver listed in S′. Focus on a single such receiver, j ∈ S′. While
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receiver j is aware of all symbols of the form uA→Bi for some pair (A,B) ∈ E having j ∈ A ∩ B,

focus on only those originating from the source S. This select set of symbols are related to the

original set of symbols vSi by the linear relation
uS→S′′1

...

uS→S′′m

 =


FS→S′′1

...

FS→S′′m


︸ ︷︷ ︸

F


vS1
...

vSndS

 uS→S′′ =


uS→S

′′
1

...

uS→S
′′

ndS→S′′

 ,

where {S′′1 , . . . , S′′m} is an enumeration of the elements in {S′′ : j ∈ S ∩ S′′}. By the packing

constraint, the n
∑m

i=1 dS→S′′i × ndS matrix F has more rows than columns. Moreover, as its

elements were drawn independently and identically, it is has full column rank. Thus each of the

ndS symbols {vSi : i ∈ [1 : ndS ]} are recoverable at this receiver. Repeating the argument for all

other message indices S ∈ E with j ∈ S, and all other receivers, yields the desired result.

5.2.6 Optimality

When the message sources are ordered in a non-increasing manner according to the inclusion

order, and when the recursive selection procedure eventually selects all vectors, the above inner

bound is optimal. In this case, the procedure yields a matrix factorization, the bound ρ(B) is

modular, so that it may be expressed as ρ(B) =
∑

S∈B φS . To prove the outer bound, we re-write

the original channel as degraded combination network. In this case, tools from the combination

network can be directly applied. In particular, the notion of generalized cut-set bounds are generally

needed. Doing so, yields the following results, the details of which we provide later. We refer to all

channels for which the recursive procedure picks the inverse of entire channel matrix, with its row

spaces re-parametrized according to the row-space intersection lattice, as bound-modular BCs.

Theorem 5.2.3 (Modular Matrix Dimensions - Three Users). Suppose the three-user BC is bound-
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modular. Then the three user DoF region is given by

E3



d{1}

d{2}

d{3}

d{1,2}

d{1,3}

d{2,3}

d{1,2,3}



≤ E3



φ{1}

φ{2}

φ{3}

φ{1,2}

φ{1,3}

φ{2,3}

φ{1,2,3}



E3 =



1 0 0 1 1 0 1

0 1 0 1 0 1 1

0 0 1 0 1 1 1

1 1 0 1 1 1 1

1 0 1 1 1 1 1

0 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 2 1 1 2

1 1 1 1 2 1 2

1 1 1 1 1 2 2

1 1 1 2 2 2 2

1 2 2 2 2 2 3

2 1 2 2 2 2 3

2 2 1 2 2 2 3

2 2 2 2 2 2 3



. (5.12)

Proof. Achievability follows by the inner bound given and the converse follows by Theorem 5.2.6

along with the extremal inequalities given in Proposition A.0.1.

Theorem 5.2.4 (Modular Matrix Dimensions - Symmetric K Users). Suppose that the K-user BC

is symmetric and so that φS = φ|S| for every S ∈ E. If we enforce that dS = d|S|, then the DoF

region is given by
K∑
r=1

βQ(r)
∑

S:|S|≥r
dS ≤

K∑
r=1

βQ(r)
∑

S:|S|≥r
φS (5.13)

for all subsets Q ⊆ [1 : K] \{1} where

β′Q(r) =
∏
q∈Q

(q − Jq < rK) βQ(r) =


β′Q(r) if r 6∈ Q

0 if r ∈ Q
(5.14)

for any r ∈ [1 : K] and the convention taken is that the product over an empty set is one.
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Proof. Achievability by the previous section, while the converse follows by Theorem 5.2.6 and the

extreme inequalities given in Proposition A.0.2.

Corollary 5.2.5 (Mostly too many receive antennas). Suppose that rj = K − 1 for all j ∈ [1 : K]

and t = K. Then the symmetric DoF, where the constraint that dS = d|S| is enforced, is given by

the region in Theorem 5.2.4 with φS = J|S| = K − 1K.

Proof. By assumption of genericity, each RS = ∩j∈SNull(Hj)
⊥ with |S| = K − 1 is a one-

dimensional line within the K-dimensional transmit space. Moreover, each of the K such lines

are linearly independent and at each receiver, Hj can be left multiplied so that each of its K − 1

rows corresponds to one of the K− 1 lines {RS : j ∈ S ∈ E}. Thus this situation leads to a unique

matrix factorization and a modular bound on the achievable rate region - precisely the setting

where the outer bound of Theorem 5.2.4 matches the inner bound developed in this paper.

5.2.6.1 Degraded Combination BC

Assume that the channel is bound-modular which implies that ρ(B) = dim
(⊕

S∈B RS
)

=∑
S∈B φS for some set of non-negative integers (φS : S ∈ E) and matrices H̃S , with φS linearly

independent rows within RS that are linearly independent of any elements in
⊕

S′:S⊂S′ RS′ . Spe-

cializing this to the the case where B indexes the elements of the intersection lattice of row spaces

available to the jth receiver gives

rank(Hj) = ρ({S : j ∈ S ⊆ [1 : K]}) =
∑

S:j∈S⊆[1:K]

φS .

Let Sj = {S : j ∈ S ⊆ [1 : L] , φS > 0}. As the recursive row selection procedure eventually selects

all row vectors, there is a re-parameterization of each of the receiver channel matrices into block

rows H̃S which contain rows only in RS . For this jth receiver, this is accomplished by applying a

non-singular rj × rj matrix Gj to the jth receiver’s output, such that

Gj =


Gj,S1

...

Gj,Sn

 Gj,S ∈ CφS×rj Gj,SHj = H̃S ,



114

where {S1, . . . , Sn} is an enumeration of the elements in Sj .

We will define a collection of independent enhanced channels {ỸS : S ∈ E}, such that the

channel outputs Yj are degraded versions of these enhanced channels, with a Markov structure as

in the combination network. A depiction of these enhanced channels and their Markov relation to

the actually channel outputs is depicted in Figure 5.5 for the three-uer BC.

X

Y1 Y2 Y3

Ỹ123Ỹ23Ỹ13Ỹ12Ỹ3Ỹ2Ỹ1

Figure 5.5: Combination Markov structure for Bound-Modular Broadcast Channels.

As Gj is non-singular, GjG
∗
j is positive definite, with minimum eigenvalue λj > 0. Let

λmin = minj λj so that GjG
∗
j � λminI � 0 for each j. Define outputs

Ỹj = GjHjX + Ñ, Ñ ∼ CN (0, λminI),

which we may write the original channel outputs Yj in terms of,

Yj = G−1
j (Ỹj + Z̃) Z̃ ∼ CN (0,GjG

∗
j − λminI).

Further decompose each Ỹj into components Ỹj,S indexed by those subsets S ⊆ [1 : K] with

φS > 0. For each j ∈ S, we have Ỹj,S = H̃SX + Nj,S where Nj,S ∼ CN (0, λminIφS×φS ). Then the

enhanced channel outputs of interest will be ỸS , which has as block rows (Ỹj,S : j ∈ S):

ỸS =


Ỹj1,S

...

ỸjS ,S

 {j1, . . . , jS} = S.

Define an intermediate set of channel outputs Vj , which have as block outputs (ỸS : j ∈ S, φS > 0).

Then as the original outputs Yj are degraded versions of Ỹj , and these are degraded versions of



115

Vj , which are combinations of the enhanced outputs YS , we have re-written the network as a

degraded combination network, with Markov structure as depicted in Figure 5.5.

To see that the prior framework leads to a matrix factorization, let H̃ be the matrix with block

rows {HS : S ∈ E}. This matrix contains all of the selected row vectors, and so by assumption,

it represents the entire channel matrix without any antennas turned off. Parse the inverse H̃−1 so

that the columns which correspond to the rows H̃S are denoted by the t × φS matrix TS . Then,

as H̃ is an inverse, we have that for each tuple (j, S, S′) with j ∈ S ⊆ [1 : K] and S′ ⊆ [1 : K],

Gj,SHjTS′ = δj,S,S′ ,


IφS×φS if S = S′

0φS×φS′ else

(5.15)

and the concatenated matrix F = [TS : S ⊆ [1 : K]] is a full rank t× t matrix. In this case,
G1

. . .

GK




H1

...

HK

F =


δ1,S1 · · · δ1,SM

...
. . .

...

δK,S1 · · · δK,SM


where δj,S is non-zero only if j ∈ S, in which case with the enumeration {Sj1, . . . , SjN} = {S : j ∈

S ∈ E},

δj,S =


δ
j,S,Sj1

...

δ
j,S,SjN

 .
By enumerating the non-empty subsets according to their “flipped” binary representation χ(S),

we have that the resultant matrix [δj , Si] has a block-triangular structure. For example, with the
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three-user case we have (5.16).



δ1,S1 · · · δ1,S7

δ2,S1 · · · δ2,S7

δ3,S1 · · · δ3,S7



=



φ000 φ100 φ010 φ110 φ001 φ101 φ011 φ111

φ100 I

φ110 I

φ101 I

φ111 I

φ010 I

φ110 I

φ011 I

φ111 I

φ001 I

φ101 I

φ011 I

φ111 I



, (5.16)

where the row and column labels indicated the dimensions. Assign T+
S to be the left inverse of TS

and R+
j,S to be the right inverse of Rj,S when j ∈ S, and otherwise the zero matrix of dimensions

rj × φS . Then by the above we have that
H1

...

HK

 =


R+

1,S1
... R+

1,SM

R+
K,S ... R+

K,SM




T+
S1

...

T+
SM

 ,

a matrix factorization of the joint channel matrix H.

5.2.7 Generalized DoF Cut-Set Bounds

To the degraded combination BC, we can apply converse arguments which were applied

to the noiseless combination networks. They involve extremal inequalities of general submodular

functions as in [91]. We borrow much of the framework of [91], and reproduce it below, modifying



117

their central theorem from a noiseless network coding setting to our DoF MIMO setting. The

inequalities which will govern our DoF regions will all be of the form

∑
i∈I

αi
∑

S∈Φi(↑{1},...,↑{K})
dS ≤

∑
i∈I

αi
∑

S∈Φi(↑{1},...,↑{K})
φS (5.17)

for some non-empty finite set I, a collection of nonnegative reals (αi : i ∈ I), and a collection of

set operators (Φi : i ∈ I). Each unique set operator will consist of a pre-defined sequence of unions

and intersections to take place on its arguments. These bounds are generalized cut-set bounds in

that the set operators Φi may include intersections, rather than only including unions, as per the

typical cut-set bounds of prior literature.

Consider a septuple

(αi : i ∈ I), (βj : j ∈ J ), (γl : l ∈ L), (Πj : j ∈ J ), (Γ+
l : l ∈ L), (Γ−l : l ∈ L) (5.18)

where the first three tuples are collections on nonnegative reals, and the latter three collections

are those of set operators. Borrowing the language of [91], this septuple identifies an extremal

inequality for submodular functions if

∑
i∈I

αif(Φi(S1, . . . , SK)) ≤
∑
j∈J

βjf(Πi(S1, . . . , SK))

+
∑
l∈L

γl

(
f(Γ+

i (S1, . . . , SK))− f(Γ−i (S1, . . . , SK))

)
(5.19)

holds for any K subsets (Sk : k ∈ [1 : K]) of E and any submodular function f over the subsets

of E, and holds with equality for any K subsets (Sk : k ∈ [1 : K]) of E and any modular function

f over subsets of E. For the outer bound, the following theorem mimics Theorem 1 of [91] to the

present Broadcast Channel DoF setting.

Theorem 5.2.6. Let I be a non-empty finite set, (αi : i ∈ I) be a collection of nonnegative reals,

and (Φi : i ∈ I) be a collection of set operators. Then the generalized cut-set bound (5.17) holds if

there exist

(1) two nonempty finite sets J and L;
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(2) nonnegative reals (βj : j ∈ J ) and (γl : l ∈ L);

(3) set operators (Πj : j ∈ J ), (Γ+
l : l ∈ L), and (Γ−l : l ∈ L);

(4) a set of numbers (φS : S ∈ E) and non-singular matrices (Gj : j ∈ [1 : K]);

such that:

(1) the septuple (5.18) identifies an external inequality for submodular functions;

(2) (Πj : j ∈ J ) and (Γ+
l : l ∈ L) are collections of subset unions; and

(3) for any l ∈ L and any K subsets (Sk : k ∈ [1 : K]) of E, Γ+
l (S1, . . . , Sk) ⊇ Γ+

l (S1, . . . , SK).

Proof. Provided in the Appendix.

5.3 General Bound

While the above bound works for special cases of the MIMO DoF setting, there are several

cases where it does not work. To for To guide the development of a more general DoF inner bound,

which overcomes the shortcomings of the prior inner bound, we propose a general inner bound for

the discrete memoryless channel.

This inner bound contains several key elements

• Superposition Coding

• Up-set Rate-splittting

• Binning

The bounded is given only implicitly, with extra variables which need be projected away to provide

the resultant achievable rate region. Using some of just the superposition coding and up-set rate-

splitting improves on the prior inner bound for the DoF region and reproduces know results for the

combination network.
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Recall that E refers to the message index set, containing subsets of the set of users, which

indicate which users desire the indexed message source. And, as in the MAC, let ≤ be a super-

position order; that is, S < S′ only if S ⊂ S′.

5.3.1 Superposition Coding

Let (RS : S ∈ E) be a non-negative rate-tuple and let (US : S ∈ E) be an auxiliary random

tuple that factors recursively according to

p(UE) =
∏
S∈E

p(US |U↑S\S).

Let the input X ← (US : S ∈ E) be a deterministic function of the auxiliary random tuple.

Consider recursively generating codewords as described in the discrete memoryless MAC Chapter.

Specifically, for each S ∈ E, and for each m↑S ∈
∏
S′∈↑S{1, . . . , 2nRS′}, pick a random codeword

unS(m↑S) =
N∏
t=1

pUS |U↑S\S (uSt|U↑S\S,t)

Define Sj = {S : j ∈ S ∈ E} as the set of desired messages for receiver j. By the same

argument as used for the DM MAC, joint decoding at each receiver is successful if∑
S∈B

RS ≤ I(UB;Yj |USj\B) (5.20)

for each down-set of Sj . As previously noted—each is of these is a polymatroid with support Sj .

The set of all such conditions, then, are an intersection of polymatroids with overlapping, but not

identical, supports.

5.3.2 Up-set rate-splitting

Define target rates (TS : S ∈ E) and reconstructed (RS : S ∈ E) as follows

Target Rates Reconstructed Rates

TS =
∑

S′∈↑S rS→S′ RS′ =
∑

S∈↓S′ rS→S′

If the reconstructed (RS) satisfy the conditions (5.20) at all receivers, then the target rates are

achievable. This enlarges the region s we may alway just choose rS→S′ non-zero only if S′ = S, in

which case we choose it to be RS : rS→S′ = JS′ = SKRS .
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5.3.3 Binning

A last element is to consider binning, which allows consideration of arbitrary input distri-

butions. The central idea is create an excessively large codebook, with rates R̃S ≥ RS where each

message has a list of codewords of exponential size 2n(R̃S−RS), rather than a single codeword. If the

rate excesses R̃S−RS are sufficiently large, then every message can jointly select a set of codewords

that appear as though they were jointly generated with respect to an arbitrary joint distribution,

rather than according to its recursive marginal distributions.

In particular, the excess rates will be R̃S , with the excess over the desire rate being rS =

R̃S −RS for each S ∈ E. The key result is a recursive version of the Mutual Covering of El Gamal

and Kim’s text[31].

Lemma 5.3.1 (Recursive Mutual Covering Lemma). Let (US : S ∈ E) have arbitrary joint distri-

bution p(uS : S ∈ E). Pick an order on E. With respect to this order, recursively generate length-n

vectors

unS(mS) ∼
n∏
t=1

p(uSt|uRt : R ∈↑ ′S)

for each mS ∈ [1 : 2nrS ] and each S ∈ E. Then the probability that (uS(mS) : S ∈ E) is jointly

ε-typical for some (mS : S ∈ E) tends to one as n → ∞ if the non-negative rates (rS : S ∈ E)

satisfy

r(G) ≥
∑
S∈G

H(US |U↑′S)−H(UG) , γ(G), (5.21)

for all up-sets G ⊆ E.

Proof. See Appendix D.3.

This unbounded polyhedron is a contra-polymatroid, defined only over the up-set lattice F↑.

This follows as

• γ(G) is supermodular: γ(F ∩G) + γ(F ∪G) ≥ γ(F ) + γ(G), a consequence of the submod-

ularity of entropy.
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• γ(G) is non-increasing, a consequence of the fact that condition reduces entropy: for F ⊆ G,

γ(G)− γ(F ) =

 ∑
S∈G\F

H(US |U↑′S)

−H(UG\F |UF )

≥
∑

S∈G\F

(
H(US |U↑′S)−H(US |UF )

)

≥
∑

S∈G\F

(
H(US |UF )−H(US |UF )

)

= 0

• γ(G) is normalized: γ(∅) = 0 as the sum is vacuous.

This new mutual covering lemma provides a basis for a Marton-type achievable scheme for

the K-user Broadcast Channel with common message.

Theorem 5.3.2 (Marton Extension). For a K-user DM-BC with general message sets, any non-

negative rate tuple satisfying the covering constraints

TS =
∑
S′∈↑S

rS→S′ ∀S ∈ E,

the packing constraints,

RS′ =
∑
S∈↓S′

rS→S′ ∀S′ ∈ E,

the joint decoding constraints ∑
S∈B

R̃S ≤ I(UB;Yj |USj\B) (5.22)

for every down-set within Sj and every j ∈ [1 : K], and the binning constraints

∑
S∈G

(R̃S −RS) ≤ ρR(G) (5.23)

for every up-set G ∈ F↑(E;⊆).

Proof. Follows by the previous subsections.
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5.4 Combination Network

The prior bound is optimal in select cases. To show one application, consider the three-user

combination network, where the input consists of |E| parts, where E = 2[1:K]\∅ indexes these parts.

Let VS be the Sth part; it can take values in an alphabet VS with cardinality CS . There are K

outputs, where the Kth output is the collection of the input parts (VS : j ∈ S ∈ E).

Apply Marton’s extension as described in Theorem 5.3.2 with a specific auxiliary choice, with

US ∼ Uniform(CS) chosen independently, and with the input VS set to US . As the auxiliary random

variables are independent, the binning constraints are vacuous and we may simply eliminate binning

from the description of the achievable rate region. The inner bound thus reduces to the set of rate

tuples (RS : S ∈ E) for which as set of non-negative rate-splits (rS→S′ : S ⊂ S′) exits such that

∑
S∈B

R̃S ≤
∑
S∈B

CS ∀B ∈ F↓(Sj ;≤) and

R̃S′ =
∑
S∈↓S′

rS→S′

RS =
∑
S′∈↑S

rS→S′

.

For small networks, we can project away the rate-splits through Fourier-Motzkin. This yields

that any non-negative rate within

E3



R{1}

R{2}

R{3}

R{1,2}

R{1,3}

R{2,3}

R{1,2,3}



≤ E3



C{1}

C{2}

C{3}

C{1,2}

C{1,3}

C{2,3}

C{1,2,3}



(5.24)

where E3 is as defined in (5.12), is achievable. Through the standard cut-set arguments as well

as generalized cut-set arguments, this inner bound is optimal [42, 91]. In contrast to the work

of Grokop and Tse [42], this inner bound was shown without linear network coding, but with

superposition encoding, joint decoding, and simple up-set rate-splitting.



Chapter 6

Semi-Deterministic Inteference Channel with Common Information

6.1 Introduction

Finding the capacity region of general multi-terminal networks is an elusive goal: even the

simplest of networks evade precise capacity characterizations. Recent developments, however, il-

lustrate that searching for capacity approximations is far more fruitful. Here, we extend an

approximate capacity result for the two-user IC from a setting with only private messages to a

setting with both private and common messages.

The canonical IC dates back to Shannon [96], and is an example of a simple network for

which the capacity region is yet to be found. The best known inner bound is the Han-Kobayashi

scheme (HK), which was originally described in 1981 [47] and more compactly described in 2008

by Chong et al. [17]. To date, attempts to strictly improve or to show optimality have fallen short

in the general DM setting. In some special cases, progress has been made. For ICs with strong

interference [18], for discrete additive degraded ICs [6], and for a class of deterministic ICs [30], the

HK scheme is known to be optimal. For a class of semi-deterministic ICs, the HK scheme is within

a quantifiable gap of optimality [103], of which a subclass are the Gaussian ICs, where a single HK

strategy suffices to achieve optimality to within a constant gap [33, 57].

Much less work has been done for the IC with common information (ICC). This model consists

of the same physical channel as the IC, but expands the set of possible sources to include those

that are correlated by a common part. While we do not study sources with arbitrary correlations,

which are more difficult to treat[19], sources with common messages can model scenarios with
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transmitter cooperation and/or cognition. For example, in the multiple access channel, the capacity

with common information [99] can be directly applied to determine the capacity with conferencing

encoders [10, 118, 119]. This connection, which suggests that the distinction between models with

an implicit encoder conference (i.e. sources with common information) and models with an explicit

encoder conference, is minimal, provides hope that models with common information may help

shed light on what benefits transmitter cooperation may provide in assisting communication over

more general multi terminal channels.

The first results for the ICC were by Tan [101] where both inner and outer bounds are

presented for the DM case. Recent results have tightened these bounds by carrying over insights

developed in the larger body of work on the IC with only private information. The best inner bound

was developed in Jiang-Xin-Garg [53], where a scheme motivated by the HK scheme is presented.

Noteworthy aspects of this scheme are that it reduces to the HK scheme when there is no common

information sent and that it is optimal for certain subclasses of ICs: a deterministic model [53] and

a semi-deterministic model subject to a multi-letter strong interference condition [16]. Focusing

on the scalar Gaussian setting, Vaze and Varanasi [109] find that a simple explicit representation

of this scheme is within one bit of the capacity region. Moreover, they demonstrate through the

generalized degrees of freedom metric that there is a potentially unbounded capacity gain to be

had over transmitting with only private information.

While Tan’s outer bound has not yet been tightened for all DM ICs, we show that it can be

tightened for any in a certain subclass. Specifically, we consider the same semi-deterministic model

of Telatar and Tse [103] (which differs from the “strong interference” semi-deterministic model

of [16]), but for the case that each transmitter can send both common and private information.

We show that this outer bound is within a quantifiable gap of the Jiang-Xin-Garg inner bound.

Moreover, this gap result reduces to the Telatar and Tse result when there is no common information

to send and predicts the constant gap to capacity region result for the Gaussian case.
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6.1.1 Setting

Before describing the details of our capacity characterization, we provide short formal defini-

tions of the channel models we consider. The general memoryless interference channel (IC) consists

of two users where each user k ∈ {1, 2} has an input Xk ∈ Xk and output Yk ∈ Yk pair. The key

complication is that the outputs depend on both inputs, not merely the paired input; that is, the

probability transition function is

p(yn1 , y
n
2 |xn1 , xn2 ) =

∏n

i=1
pY1,Y2|X1,X2

(y1i, y2i|x2i, x1i).

Such a channel is discrete if the alphabets Yk,Xk are finite.

Regarding how we use this channel, we consider the case where each user k has both

a both private and common messages to send; that is the interference channel with common

information (ICC). Formally, for k ∈ {1, 2}, transmitter k desires to send a private message

mk ∈ Wk = [1 : Wk] together with common message m0 ∈ W0 = [1 : W0] to receiver k. To do

so, each transmitter/receiver pair k may code over n transmissions (a block length of n) with an

encoder ek :W0 ×Wk 7→ X nk and a decoder dk : Ynk 7→ W0 ×Wk. Denoting M̂t,k as the estimate of

the message Mt at a receiver k, let P
(n)
e,k = P ((M̂0,k, M̂k,k) 6= (M0,Mk)) be the probability of error

at receiver k. Then we say that a rate triple (R0, R1, R2) is achievable if, for every ε > 0, there

exists a block length n and corresponding code such that Wt ≥ 2n(Rt−ε) for t = 0, 1, 2 and P
(n)
e,k < ε.

While we use theory for the general interference channel for our inner bound, for the outer

bound we focus on a structured subclass that offers both sufficient structure to be tractable and

sufficient generality to be useful. The subclass we consider is the “semi-deterministic” kind proposed

in [103], with an underlying deterministic structure originating in [30]. In a channel of this class,

if (k, l) ∈ {(1, 2), (2, 1)}, then the output Yk is a deterministic function of a perfect copy its paired

transmitter’s signal (Xk) and a noisy copy of the interfering transmitter’s signal (Sl ∈ Sl) obtained

by passing the the interfering transmitter’s signal Xl through a memoryless channel defined by

pSl|Xl . That is,

Y1 = f1(X1, S2) X2

pS2|X2−−−−→ S2
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Y2 = f2(X2, S1) X1

pS1|X1−−−−→ S1

where the f1 and f2 are both deterministic functions. Moreover, the maps fk(xk, sk) are invertible

in sk for each xk ∈ Xk. This model has two attractive features. The first, as we shall see,

is that the invertiblility condition provides enough structure to declare statements analogous to

H(Y1|X1) = H(S2|X1), which in turn allow the development of a “relatively tight” outer bound.

The second is that when the alphabets are continuous, this model encapsulates the The first, as we

shall see, is that the invertiblility condition allows for the development of a relatively tight outer

bound with the ability to declare statements analogous to H(Y1|X1) = H(S2|X1). The second is

that this model encapsulates the Gaussian interference channel, where the additive noise can be

confined to the interfering links and the functions fk are linear and invertible.

6.1.2 Background

For the general discrete memoryless interference channel without common information (i.e.

R0 = 0), the largest known region of achievable rate pairs (R1, R2) is the Han-Kobayashi region

[17, 47]. Recently, Jiang-Xin-Garg [53] extended this result to the discrete memoryless interference

channel with common information (i.e. R0 ≥ 0) and we reproduce their result here,

Theorem 6.1.1. Consider a discrete memoryless interference channel described by pY1,Y2|X1,X2

and a set of random variables U0, U1, U2, X1, X2 which satisfy the Markov condition

(U1, X1) (−− U0 (−− (U2, X2),

and where the Uk are defined over finite alphabets Uk. Then any non-negative rate triple (R0, R1, R2) ∈

RJXG(B) is achievable where

RJXG(B) = {(R0, R1, R2) :

R1 < B3

R2 < B′3 R0 +R1 +R2 < B1 +B′5

R0 +R1 < B5 R0 +R1 +R2 < B′1 +B5
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R0 +R2 < B′5 R1 + 2R2 < B′1 +B2 +B′4

R1 +R2 < B1 +B′4 2R1 +R2 < B1 +B′2 +B4

R1 +R2 < B′1 +B4 R0 +R1 + 2R2 < B′1 +B2 +B′5

R1 +R2 < B2 +B′2 R0 + 2R1 +R2 < B1 +B′2 +B5}. (6.1)

and the bounds B = (B1, . . . , B5, B
′
1, . . . , B

′
5) are

B1 = I(Y1;X1|U0, U1, U2) B′1 = I(Y2;X2|U0, U1, U2)

B2 = I(Y1;X1, U2|U0, U1) B′2 = I(Y2;X2, U1|U0, U2)

B3 = I(Y1;X1|U0, U2) B′3 = I(Y2;X2|U0, U1)

B4 = I(Y1;X1, U2|U0) B′4 = I(Y2;X2, U1|U0)

B5 = I(Y1;X1, U0, U2) B′5 = I(Y2;X2, U0, U1),

(6.2)

These results continue to hold when we allow the alphabets to be continuous and the channel

is well-behaved, as can be shown with a limiting argument on successively refined discretizations

(Chapter 3, pgs. 50-51[31]). In particular, a Gaussian channel is one such well-behaved channel

and the above theorem applies. For example, the scalar Gaussian ICC fits in the semi-deterministic

mold by setting

fk(Xk, Sl) =
√

SNRkXk + Sl

where Sl =
√

INRlXl +Zl (Zl ∼ CN (0, 1)) is a noisy copy of the interfering transmitter’s signal Xl

and the linear combinations fk(Xk, ·) are invertible for each Xk.

In [109], it is shown that for the scalar Gaussian ICC (with SNRk = Λk and INRl = Γl)

that the single region RJXG(B1, . . . , B5, B
′
1, . . . , B

′
5) described by the private message power xl =

min (1, 1/Γl) at transmitter l and bounds

B1 = log2(1 + Λ1x1 + Γ2x2) B′1 = log2(1 + Λ2x2 + Γ1x1)

B2 = log2(1 + Λ1x1 + Γ2) B′2 = log2(1 + Λ2x2 + Γ1)

B3 = log2(1 + Λ1 + Γ2x2) B′3 = log2(1 + Λ2 + Γ1x1)
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B4 = log2(1 + Λ1 + Γ2) B′4 = log2(1 + Λ2 + Γ1)

B5 = B4 B′5 = B′4

is within one bit of the capacity region irrespective of the signal-to-noise ratios Λk and interference-

to-noise ratios Γk.

6.2 Result

Consider a semi-deterministic interference channel, which is characterized by its transition

probabilities pSk|Xk , functions fk, and alphabets Yk,Xk,Sk. Append to the channel variables

(Y1, Y2, S1, S2) two auxiliary variables (U1, U2) ∈ S1 × S2 which are independently and identically

generated in the same manner as (S1, S2) are; that is, the following are four parallel memoryless

channels:

X1

pS1|X1−−−−→ S1 X2

pS2|X2−−−−→ S2

X1

pS1|X1−−−−→ U1 X2

pS2|X2−−−−→ U2.

If X1 (−− U0 (−− X2, then providing (X1, X2) as an input to the appended channel above induces

a distribution on (U0, U1, U2, X1, X2) for which U1 (−− X1 (−− U0 (−− X2 (−− U2 and is hence a

valid input distribution for the hypothesis of Theorem 6.1.1. If we restrict the alphabets Yk,Xk,Sk

to be finite, so that our discussion is limited to discrete channels, then Theorem 6.1.1 applies with

the mutual information bounds (6.2) simplifying to

I1 = H(Y1|U0, U1, U2)−H(S2|U0, U2) I ′1 = H(Y2|U0, U1, U2)−H(S1|U0, U1)

I2 = H(Y1|U0, U1)−H(S2|U0, U2) I ′2 = H(Y2|U0, U2)−H(S1|U0, U1)

I3 = H(Y1|U0, U2)−H(S2|U0, U2) I ′3 = H(Y2|U0, U1)−H(S1|U0, U1) (6.3)

I4 = H(Y1|U0)−H(S2|U0, U2) I ′4 = H(Y2|U0)−H(S1|U0, U1)

I5 = H(Y1)−H(S2|U0, U2) I ′5 = H(Y2)−H(S1|U0, U1).
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That is, any rate triple (R0, R1, R2) ∈ Ri(U0, X1, X2) = RJXG(I1, . . . , I5, I
′
1, . . . , I

′
5) (as in (6.1)) is

achievable and

Ri =
⋃

X1(−−U0(−−X2

Ri(U0, X1, X2)

serves as an inner bound to the capacity region of the semi-deterministic interference channel with

common information.

Define Ro(U0, X1, X2) = RJXG(O1, . . . , O5, O
′
1, . . . , O

′
5) where

O1 = H(Y1|U0, U1, X2)−H(S2|X2) O′1 = H(Y2|U0, X1, U2)−H(S1|X1)

O2 = H(Y1|U0, U1)−H(S2|X2) O′2 = H(Y2|U0, U2)−H(S1|X1)

O3 = H(Y1|U0, X2)−H(S2|X2) O′3 = H(Y2|U0, X1)−H(S1|X1)

O4 = H(Y1|U0)−H(S2|X2) O′4 = H(Y2|U0)−H(S1|X1)

O5 = H(Y1)−H(S2|X2) O′5 = H(Y2)−H(S1|X1).

(6.4)

Then the main result given here is

Theorem 6.2.1. If (R0, R1, R2) is achievable for the semi-deterministic interference channel with

common information, then (R0, R1, R2) ∈ Ro where

Ro =
⋃

X1(−−U0(−−X2

Ro(U0, X1, X2).

We relegate the proof of this outer bound to Section 6.4. The salient characteristic of this

outer bound is that it of the same form as the inner bound Ri and that the gap between the two

bounds is easily quantifiable.

Theorem 6.2.2. If (R0, R1, R2) ∈ Ro(U0, X1, X2) for some set of random variables (U0, X1, X2) ∈

P, then

(R0 −max(G1, G2), R1 −G2, R2 −G1) ∈ Ri(U0, X1, X2)

where Gk = I(Xk;Sk|U0, Uk).
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Proof. We can relax all the positive entropy terms in the outer bounds (6.4) by replacing the Xk

with Uk, e.g.,

H(Y1|U0, U1, U2) ≥ H(Y1|U0, U1, U2, X2)
(i)
=H(Y1|U0, U1, X2)

H(Y1|U0, U2) ≥ H(Y1|U0, U2, X2)
(ii)
= H(Y1|U0, X2)

where both (i) and (ii) follow as Y1 (−− (W,X2) (−− U2 for any W other than S2 (e.g., W =

U0 or W = (U0, U1)1 ). Define these new relaxed outer bounds as Orj , O
′r
j and let the region

defined by these bounds be Rr0. Because the channels Xk → Sk are memoryless, H(Sk|Xk) =

H(Sk|Xk, U0, Uk), and so subtracting the inner bounds (6.3) from these relaxed outer bounds

provides

Orj − Ij = I(X2;S2|U0, U2) = G2

O′rj − I ′j = I(X1;S1|U0, U1) = G1

for j = 1, 2, . . . , 5. In summary, if (R0, R1, R2) ∈ Ro ⊂ Rr0, then (R0−max(G1, G2), R1−G2, R2−

G1) ∈ Ri.

6.2.1 Relationship to previous results

The above result incorporates some previous results.

• If Sk = Xk, then the channel is the deterministic ICC and, as noted in [53], the region Ri

is optimal. Our result reproduces this: if Sk = Xk, then Uk = Sk and

Gk = I(Xk, Sk|Uk, U0) = 0 for k = 1, 2.

That is, Ro = Ri.
1 For (ii), we can factor p(y1|u0, u2, x2) as∑

x1,s2
p(u0)p(x1|u0)p(x2|u0)p(u2|x2)p(s2|x2)p(y1|x1, s2)

p(u0)p(x2|u0)p(u2|x2)
,

which is independent of u2 and thereby equal to p(y1|u0, x2). We can factor p(y1|u0, u1, u2, x2) analogously to obtain
(i).
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• We can apply our bounds to the semi-deterministic IC without common information. To

do this, set R0 = 0 and U0 = Q, a coded time-sharing variable revealed to both the senders

and receivers. Then all bounds that involve R0 become redundant, Ro reproduces the outer

bound of [103], and Ri reproduces the Han-Kobayashi region (as pointed out in [53]). The

gap between the bounds reproduces the gap in [103],

Gk = I(Xk, Sk|Uk, Q).

• Our outer bound is a subset of Tan’s outer bound in his initial study [101] of the ICC,

RHan(U,X1,X2) = {(R0, R1, R2 :

R1 ≤ H1 = I(X1;Y1|X2, U)

R2 ≤ H ′1 = I(X2;Y2|X1, U)

R1 +R2 ≤ H2 = I(X1, X2;Y1, Y2|U)

R0 +R1 +R2 ≤ H3 = I(X1, X2;Y1, Y2)}

whereX1 andX2 are independent given U . Specializing these bounds to the semi-deterministic

channel,

H1 = H(Y1|X2, U)−H(S2|X2)

H ′1 = H(Y2|X1, U)−H(S1|X1)

H2 = H(Y1|U) +H(Y2|U, Y1)−H(S2|X2)−H(S1|X1)

H3 = H(Y1) +H(Y2|Y1)−H(S2|X2)−H(S1|X1).

To see that Ro(U0, X1, X2) ⊂ RHan(U0, X1, X2), note that O3 = H1, O′3 = H ′1, and

H(Y2|U0, X1, U2) = H(Y2|U0, Y1, X1, S2) ≤ H(Y2|U0, Y1) ≤ H(Y2|Y1).

Hence, O′1 +O4 ≤ H2 and O′1 +O5 ≤ H3.
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6.3 Vector Gaussian ICC

In addition to subsuming previous results, these results provide novel bounds for the vector

(multi-input multi-output) Gaussian interference channel with common information. With (k, l) ∈

{(1, 2), (2, 1)}, transmitter k having tk dimensions, and receiver l having rl dimensions, the vector

Gaussian interference channel and corresponding auxiliary variables Uk are

Y1 = H11X1 + S2 S2 = H12X2 + Z1

U2 = H12X2 + Z′1

Y2 = H22X2 + S1 S1 = H21X1 + Z2

U1 = H21X1 + Z′2

where the Zl,Z
′
l have distribution CN (0, Irl×rl), independently of each other and all other random

variables. Practical power limitations require that every coding scheme respect a power constraint∑n
t=1 X∗ktXkt ≤ nPk at transmitter k.

6.3.1 Constant Gap

The capacity characterization developed for the discrete setting continues to hold in the

Gaussian setting, on which we further elaborate in Section 6.3.2. Particularly appealing is that the

gap to the capacity region can be crisply stated: for any (U0,X1,X2) (not necessarily Gaussian),

Gk = I(Xk; Sk|U0,Uk)

= h(Sk|U0,Uk)− h(Sk|Xk, U0,Uk)

≤ h(Zk − Z′k|Uk)− h(Zk)

(i)

≤ h(Zk − Z′k|HjkX
G
k + Zj)− h(Zk)

= log det(2I− (I + HlkCov[Xk,Xk]H
∗
lk)
−1)

(ii)
=
∑nk

i=1
log(2− 1/(1 + λi(k)))

≤ nk bits, (6.5)
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the rank of Hlk. Step (i) follows with HjkX
G
k + Zj as a Gaussian random variable with the

same mean and covariance as HjkXk + Zj and by the fact that Gaussian distributions maximize

conditional entropy subject to a joint covariance constraint [104]. Step (ii) follows with λ1(k) ≥

λ2(k) ≥ · · · as the eigenvalues of HlkCov[Xk]H
∗
lk. Moreover, these bounds can be further relaxed

to a constant gap irrespective of the channel parameters in each Hij : nk ≤ min{tk, rl}.

In summary, if (R0, R1, R2) is achievable for some coding scheme, then (R0−max(n1, n2), R1−

n2, R2 − n1) is achievable with the coding scheme described above. For the scalar case, this gap

is no more than one bit and in accordance with previous results [109]. For the vector case, where

results are more difficult to attain, this gap is clean and tighter relative to gaps provided in prior

literature (e.g.[57] for the case with only private information).

Remark: Our scheme achieves this tighter gap at the expense of complexity of description:

our region is a union over an infinite number of input distributions while both [109] and [57]

demonstrate their results with a single input distribution. In what follows, we reduce some of our

complexity of description by demonstrating that the restriction to Gaussian distributions is without

loss of generality.

6.3.2 Capacity characterization

The achievability and converse carry over in a straightforward manner from the discrete to

Gaussian setting, with both the inner and outer bounds characterized as a union over distributions

in the set

{(U0,X1,X2) : X1 (−− U0 (−− X2, E[X∗kXk] ≤ Pk}.

With a little bit of work one can show that in fact it suffices to restrict the union to the Gaussian

subset. The challenge lies in demonstrating that Gaussian distributions maximize certain mutual

information terms subject to a Markov condition.

Such subtleties were first observed for the two user scalar (single antenna) Gaussian multiple-

access channel with conferencing encoders in [10] and for its three-user vector (multiple antenna)

generalization in [118]. By mimicking these results, we can state the following.
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Theorem 6.3.1. For the Gaussian ICC, any achievable rate triple (R0, R1, R2) must be in

RGo =
⋃

XG
1 (−−UG0 (−−XG

2

E[(XG
k )∗XG

k ]≤Pk

Ro(U0,X1,X2).

Proof. A slight modification of the converse argument in Section 6.4 to account for the power

constraints provides that any achievable rate must be in

Ro =
⋃

X1(−−U0(−−X2
E[X∗kXk]≤Pk

Ro(U0,X1,X2).

Let (UG0 ,X
G
1 ,X

G
2 ) be the Gaussian random triple with the same mean and joint covariance as the

random triple (U0,X1,X2). Then, as Gaussian random variables maximize conditional entropy

subject to a joint covariance constraint [104], we know that Ro(U0,X1,X2) ⊂ Ro(UG0 ,XG
1 ,X

G
2 ).

However, there is no guarantee that XG
1 (−− UG0 (−− XG

2 forms a Markov Chain. To circumvent

this problem, introduce

V =

V01

V02

 =

E[X1|U0]

E[X2|U0]

 .
As V is a function of U0, we can relax the bounds Oj , O

′
j by substituting V in for U0 to get

Ro(U0,X1,X2) ⊂ Ro(V,X1,X2).

Define, for k ∈ {1, 2}, X̃k = Xk − V0k. By the orthogonality principle for MMSE estimation,

the estimation error X̃k is orthogonal to any function of U0 with finite second moment; hence,

Cov(X̃k,V) = 0 for both k ∈ {1, 2}. Essentially, X̃1 and X̃2 are also orthogonal:

Cov(X̃1, X̃2)
(i)
=EE[(X1 − E[X1|U0])(X2 − E[X2|U0])∗|U0]

(ii)
= E[(E[X1|U0]− E[X1|U0])(E[X2|U0]− E[X2|U0])∗] = 0,

where (i) follows by the tower property of expectation for random variables with finite second

moment[45] and (ii) follows as X1 (−− U0 (−− X2.

Let (VG,XG
1 ,X

G
2 ) be the Gaussian random triple with the same mean and joint covari-

ance as (V,X1,X2). As X̃G
1 , X̃

G
2 , and VG are orthogonal and jointly Gaussian, they are also all
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independent. Hence, by the decompositionXG
1

XG
2

 =

X̃G
1

X̃G
2

+ VG

we have XG
1 (−− VG (−− XG

2 . As we preserved covariances, E[(XG
k )∗XG

k ] ≤ Pk for both k as well.

Now we can state

Ro(U0,X1,X2) ⊂ Ro(V,X1,X2) ⊂ Ro(VG,XG
1 ,X

G
2 ),

with (VG,XG
1 ,X

G
2 ) in the desired set of input distributions. That is, Ro ⊂ RGo .

On the achievability side, successively refined discretizations (Chapter 3, pgs. 50-51[31]),

along with a restriction to Gaussian distributions that satisfy the power constraints to within a

vanishing ε, extend Theorem 6.1.1 to demonstrate that

RGi =
⋃

XG
1 (−−UG

0 (−−XG
2

E[(XG
k )∗XG

k ]≤Pk

Ri(U0,X1,X2)

is an inner bound to the Gaussian ICC.

Remark: The method of Theorem 6.3.1 may be applied to determine the capacity of the two

user vector (multiple antenna) Gaussian MAC with common information or conferencing encoders.

This is a more direct means of determining capacity than would be specializing the results for

the more general three user vector Gaussian MAC in [118], and as such we provide details in the

Appendix.

6.4 Proof of outer bound

Suppose that for the discrete semi-deterministic interference channel (where all alphabets are

finite) there exists a sequence of codes indexed by block length n which communicate at the rate

triple (R0, R1, R2) and which achieve a vanishing probability of error P
(n)
e as n tends to infinity.

Pick the code corresponding to block length n, and let M0,M1, and M2 be uniformly distributed

messages on
[
1 : 2nR0

]
,
[
1 : 2nR1

]
, and

[
1 : 2nR2

]
. Let Xn

1 , X
n
2 , Y

n
1 , and Y n

2 be the random variables
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be induced by the messages, the encoders, and the channel. As in our description of the achievable

scheme, augment this set of channel variables by a sequence of random variables (Un1 , U
n
2 ) obtained

by passing Xn
1 and Xn

2 through memoryless side channels defined by pS1|X1
and pS2|X2

.

6.4.1 Preliminaries

We make note of a few relationships that must be true for this set of random variables. Recall

our convention that (k, l) ∈ {(1, 2), (2, 1)}. Because the the maps fk(xk, ·) are one-to-one,

H(Y n
k |Xn

k ,M0, Ũk) = H(Snl |Xn
k ,M0, Ũk) = H(Snl |M0) (6.6)

for any random variable Ũk conditionally independent of Snl given M0 (e.g., Ũk = Mk). Similarly,

if W̃k is conditionally independent of Snl given Xn
l ,

H(Y n
k |Xn

k , X
n
l , W̃k) = H(Snl |Xn

k , X
n
l , W̃k) = H(Snl |Xn

l ). (6.7)

As Y1i = f1(X1i, S2i) is a function of S2i but not of S1i, (M0, X
n
2 , Y

n
1 ) (−− Xn

1 (−− Sn1 forms a

Markov chain with distribution, by construction, equivalent to the Markov Chain (M0, X
n
2 , Y

n
1 ) (−

− Xn
1 (−− Un1 . Swap the indices one and two to obtain an analogous result. By these two

distributional equivalences,

H(Y n
k |M0, S

n
k ) = H(Y n

k |M0, U
n
k ) (6.8)

H(Y n
k |M0, X

n
l , S

n
k ) = H(Y n

k |M0, X
n
l , U

n
k ). (6.9)

6.4.2 Bounds

By Fano’s inequality, we have that nRk ≤ I(Mk;Yk)+nεn and n(R0 +Rk) ≤ I(M0,Mk;Yk)+

nεn for k = 1, 2 and some sequence εn for which εn → 0 as n→∞. So,

n(R1 − εn) ≤ I(M1;Y n
1 ) ≤ I(M1;Y n

1 ,M0, X
n
2 )

(i)
= I(M1;Y n

1 |M0, X
n
2 )

≤ H(Y n
1 |M0, X

n
2 )−H(Y n

1 |M0,M1, X
n
1 , X

n
2 )
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(ii)
= H(Y n

1 |M0, X
n
2 )−H(Sn2 |Xn

2 )

(iii)

≤
∑

i
H(Y1i|M0, X

n
2 )−H(S2i|X2i) (6.10a)

where (i) follows by the independence of M1 and (M0,M2), (ii) follows by (6.7) with W̃1 =

(M0,M1), and (iii) follows as Xn
2 → Sn2 is a discrete memoryless channel. Similarly,

n(R0 +R1 − εn)

≤ I(M0,M1;Y n
1 ) ≤ I(Xn

1 , X
n
2 ;Y n

1 )

(iv)
= H(Y n

1 )−H(Sn2 |Xn
2 )

≤
∑

i
H(Y1i)−H(S2i|X2i) (6.10b)

n(R1 +R2 − 2εn)

≤ I(M1;Y n
1 ,M0) + I(M2;Y n

2 ,M0, S
n
2 , X

n
1 )

= I(M1;Y n
1 |M0) + I(M2;Y n

2 , S
n
2 |M0, X

n
1 )

≤ I(M1, X
n
1 ;Y n

1 |M0) + I(M2, X
n
2 ;Y n

2 , S
n
2 |M0, X

n
1 )

= I(M1, X
n
1 ;Y n

1 |M0) + I(M2, X
n
2 ;Sn2 |M0, X

n
1 ) + I(M2, X

n
2 ;Y n

2 |M0, X
n
1 , S

n
2 )

(v)
= H(Y n

1 |M0)−H(Sn2 |M0) +H(Sn2 |M0)−H(Sn2 |Xn
2 ) +H(Y n

2 |M0, X
n
1 , U

n
2 )−H(Sn1 |Xn

1 )

≤
∑

i

[
H(Y1i|M0) +H(Y2i|M0, X1i, U2i)−H(S2i|X2i)−H(S1i|X1i)

]
(6.10c)

where (iv) follows by (6.7) with W̃1 = ∅, (v) follows by applying (6.6) to the second and third

terms (with Ũ1 = M1 and Ũ1 = ∅ respectively), applying (6.7) to the fourth and sixth terms (with

W̃1 = (M0,M2) and W̃2 = (M0,M2, S
n
2 ) respectively), and applying (6.9) to the fifth term. The

following argument parallels precisely the argument preceding (6.10c) with the exception of the

first term at each step,

n(R0 +R1 +R2 − 2εn)

≤ I(M0,M1;Y n
1 ) + I(M2;Y n

2 ,M0, S
n
2 , X

n
1 )

≤ I(M0,M1, X
n
1 ;Y n

1 ) + I(M2;Y n
2 , S

n
2 |M0, X

n
1 )

≤
∑

i

[
H(Y1i) +H(Y2i|M0, X1i, U2i)−H(S2i|X2i)−H(S1i|X1i)

]
(6.10d)
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Again, in a similar manner as the above arguments,

n(2R1 +R2 − 3εn)

≤ I(M1;Y n
1 ,M0) + I(M1;Y n

1 ,M0, S
n
1 , X

n
2 ) + I(M2;Y n

2 , S
n
2 ,M0)

= I(M1;Y n
1 |M0) + I(M1;Y n

1 , S
n
1 |M0, X

n
2 ) + I(M2;Y n

2 , S
n
2 |M0)

≤ I(M1, X
n
1 ;Y n

1 |M0) + I(M1, X
n
1 ;Y n

1 , S
n
1 |M0, X

n
2 ) + I(M2, X

n
2 ;Y n

2 , S
n
2 |M0)

= I(M1, X
n
1 ;Y n

1 |M0) + I(M1, X
n
1 ;Sn1 |M0, X

n
2 ) + I(M1, X

n
1 ;Y n

1 |M0, X
n
2 , S

n
1 )

+ I(M2, X
n
2 ;Sn2 |M0) + I(M2, X

n
2 ;Y n

2 |M0, S
n
2 )

(vi)
= H(Y n

1 |M0)−H(Sn2 |M0) +H(Sn1 |M0)−H(Sn1 |Xn
1 ) +H(Y n

1 |M0, X
n
2 , U

n
1 )

−H(Sn2 |Xn
2 ) +H(Sn2 |M0)−H(Sn2 |Xn

2 ) +H(Y n
2 |M0, U

n
2 )−H(Sn1 |M0)

≤
∑

i

[
H(Y1i|M0) +H(Y1i|M0, X2i, U1i) +H(Y2i|M0, U2i)−H(S1i|X1i)− 2H(S2i|X2i)

]
(6.10e)

where (vi) follows by applying (6.6) to the second, third, and tenth terms (with Ũ1 = M1, Ũ2 = ∅,

and Ũ2 = (M2, S
n
2 ) respectively), applying (6.7) to the fourth, sixth, and eighth terms (with

W̃2 = (M0,M1), W̃1 = (M0,M1, S
n
1 ), and W̃1 = M2 respectively), applying (6.8) to the ninth term,

and applying (6.9) to the fourth term. If we parallel the argument preceding (6.10e) exactly except

for the first term at each step, we find,

n(R0 + 2R1 +R2 − 3εn)

≤ I(M0,M1;Y n
1 ) + I(M1;Y n

1 ,M0, S
n
1 , X

n
2 ) + I(M2;Y n

2 , S
n
2 ,M0)

≤
∑

i

[
H(Y1i) +H(Y1i|M0, X2i, U1i) +H(Y2i|M0, U2i)−H(S1i|X1i)− 2H(S2i|X2i)

]
.

(6.10f)

By symmetry, we can extend the above results to

n(R2 − εn) ≤
∑

i
H(Y2i|M0, X1i)−H(S1i|X1i) (6.11a)

n(R0 +R2 − εn) ≤
∑

i
H(Y2i)−H(S1i|X1i) (6.11b)

n(R1 +R2 − 2εn) ≤
∑

i

[
H(Y2i|M0) +H(Y1i|M0, X2i, U1i)

−H(S1i|X1i)−H(S2i|X2i)
]

(6.11c)
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n(R0 +R1 +R2 − 2εn) ≤
∑

i

[
H(Y2i) +H(Y1i|M0, X2i, U1i)−H(S1i|X1i)−H(S2i|X2i)

]
(6.11d)

n(R1 + 2R2 − 3εn) ≤
∑

i

[
H(Y2i|M0) +H(Y2i|M0, X1i, U2i) +H(Y1i|M0, U1i)

−H(S2i|X2i)− 2H(S1i|X1i)
]

(6.11e)

n(R0 +R1 + 2R2 − 3εn) ≤
∑

i

[
H(Y2i) +H(Y2i|M0, X1i, U2i) +H(Y1i|M0, U1i)

−H(S2i|X2i)− 2H(S1i|X1i)
]
. (6.11f)

Finally, we also have

n(R1 +R2 − 2εn)

≤ I(M1;Y n
1 , S

n
1 ,M0) + I(M2;Y n

2 , S
n
2 ,M0)

= I(M1;Y n
1 , S

n
1 |M0) + I(M2;Y n

2 , S
n
2 |M0)

≤ I(M1, X
n
1 ;Y n

1 , S
n
1 |M0) + I(M2, X

n
2 ;Y n

2 , S
n
2 |M0)

= I(M1, X
n
1 ;Sn1 |M0) + I(M1, X

n
1 ;Y n

1 |M0, S
n
1 ) + I(M2, X

n
2 ;Sn2 |M0) + I(M2, X

n
2 ;Y n

2 |M0, S
n
2 )

(vii)
= H(Sn1 |M0)−H(Sn1 |Xn

1 ) +H(Y n
1 |M0, U

n
1 )−H(Sn2 |M0) +H(Sn2 |M0)−H(Sn2 |Xn

2 )

+H(Y n
2 |M0, U

n
2 )−H(Sn1 |M0)

≤
∑

i

[
H(Y1i|M0, U1i) +H(Y2i|M0, U2i)−H(S2i|X2i)−H(S1i|X1i)

]
(6.12)

where (vii) follows by applying (6.6) to the fourth and eighth terms (with Ũ1 = (M1, S
n
1 ) and

Ũ2 = (M2, S
n
2 ) respectively), applying (6.7) to the second and sixth terms (with W̃2 = M1 and

W̃1 = M2 respectively), and applying (6.8) to the third and seventh terms. Setting Q,X1, X2 to be

random variables with Q uniformly distributed on [1, . . . , n], Xk = XkQ, U0 = (M0, Q), and noting

that

H(Yk|Q) ≤ H(Yk) H(Sk|Xk, Q) = H(Sk|Xk)

as the two side channels Xk → Sk are time-invariant; that is, p(ski|xki) = pSk|Xk(ski|xki) for each

i. Hence, the inequalities (6.10)-(6.12) imply

(R0 − εn, R1 − εn, R2 − εn) ∈ Ro(Uo, X1, X2) ⊂ Ro.
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As R0 is closed, we see that any achievable rate is in R0.

Remark: As mentioned in [103], the key to this type of bound is to choose receiver side

information such that the mutual information quantities that bound
∑

k ckRk will single-letterize.

Our choices of side information are analogous to the choices in [103] (we choose Snk over Unk , though

the proof works equally well with either choice), with the caveat that we provide the common

message M0 as additional side information whenever we are not bounding R0 + Rk. With our

choices of side information, the only multi-letter entropy terms that do not cancel and have a

negative coefficient are H(Snk |Xn
k ), which single-letterize by definition.

6.5 Conclusion

We have shown that for a certain class of interference channels with common information

the distance to optimality of the Jiang-Xin-Garg achievable region can be bounded. The most

notable aspect of this class of interference channels are the implications it carries for signaling over

Gaussian channels with correlated inputs. In particular, our results show that the Jiang-Xin-Garg

achievable scheme is within a constant gap of the capacity region for both scalar (single antenna)

and vector (multiple antenna) Gaussian channels.



Chapter 7

Summary and Future Directions

7.1 Summary

This thesis generalizes classical results on fundamental limits of network communication

from settings with specific message sets to settings with general message sets. Novel exact capacity

characterizations are provided for the MAC (many-to-one), as well as novel approximate capacity

characterizations for both the BC (one-to-many) and IC (two-to-two) networks. The established

fundamentals limits provided here could help inform the design of, and pave the way towards, the

development of a richer physical layer interface for next-generation wireless networks.

The central theme underlying all of these contributions is that order, and recursion, is fun-

damental to communication with general message sets. General message sets have a partial order

associated with them: some messages are strictly more fundamental, which can be equated with a

notion of order putting the more fundamental messages above those less fundamental, than others.

Revisiting the classical random coding technique of superposition coding through this lens of order

theory provides new insights:

• Dependencies in codebook design, and in input distribution factorizations, recurse up this

partial order while dually, decoding errors propagate down this partial order.

• The achievable rate region of recursive encoding (that is, superposition coding) is of a special

structure, that of a polymatroid. The defining bounds needn’t be the entire boolean lattice

of all subsets, but a sublattice, namely the down-set lattice, of that boolean lattice.
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For the MAC, the polymatroid observation allows one to conclude that a recursive decoding

procedure attains the capacity boundary. Order can be further elaborated upon without appeal to

recursive codebook generation, through rate-splitting and variable-splitting.

As the vertices of polymatroids have an explicit analytic expression, the boundary of the

achievable rate regions associated with superposition coding can be simply explored. In the Gaus-

sian MAC, where a sufficient set of optimal input distributions is a convex set, exploiting this

explicit characterization of the vertices enables efficient computation of the optimal power alloca-

tion allocation through a convex program.

In the BC, recursive encoding strategies can be formulated for both a degrees-of-freedom

analysis and for a discrete memoryless analysis. An inner bound for the degrees-of-freedom region

of the K-user BC is formulated, based on a recursive row vector selection procedure coupled with

a network coding strategy, which attains capacity in select cases. An inner bound is also formu-

lated for the discrete memoryless channel, which combines superposition coding, rate-splitting, and

binning.

7.2 Future Directions

This thesis indicates that poylmatroidal structure may be more pervasive—and useful—than

previously thought. Specializing the proposed inner bound for the discrete memoryless BC to the

MIMO Gaussian BC could plausibly yield the degrees-of-freedom region. An intriguing question

for the subject of further study is whether the set of covariance choices which attain this DoF

region can be made to be finite, and preferably small and finite. Moreover, it is of interest to know

whether the convex hull of the achievable DoF points thus enabled can be expressed simply.

Another direction of study, which may help direct focus towards types of outer bounds which

might be helpful for the BC, is to determine a closed-form expression for the general BC inner bound

proposed in Chapter 5 which combines superposition, rate-splitting, and binning. Here, both the

rate-splits rS→S′ and the excess rates R̃S are projected away. Focusing on the case without

binning is itself on interest: it may lead to a general inner bound for the general asymmetric K-
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user combination network, which at the moment is only known for the symmetric setting or for the

two- or three-user case.

Polymatroidal structure is known to exist in dual coding problems, such as the Multiple

Description and Source Coding problems. It would be of interest to see whether a formulation with

K sources, with an arbitrary collection of common parts, has relevance and could be developed to

the same degree as the MAC with general message sets. Similarly, if light is shed no the BC through

a polymatroid framework, perhaps light can be shed on the problem of multiple description coding

through a polymatroid framework.

Lastly, it remains an open question as to whether or not the polymatriod framework might

have anything meaningful to contribute to interference networks, or many-to-many communication.
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Appendix A

Submodular Inequalities

The following are reproduced verbatim from [91].

Proposition A.0.1. Let E be a finite ground set and i, j, k be three distinct integers from {1, 2, 3}.

Then the following inequalities hold for any three subsets Si, Sj , Sk of E for submodular functions.

If the function is modular, then all such inequalities hold with equality.

f(Si ∪ Sj ∪ Sk + f(Si ∩ Sj)

≤ f(Si) + f(Sj) + f(Sk) + (f(Sk)− f(Sk ∩ (Si ∪ Sj)),

f(Si ∪ Sj ∪ Sk) + f((Si ∩ Sj) ∪ (Sj ∩ Sk) ∪ (Si ∩ Sk))

≤ f(Si) + f(Sj) + f(Sk) + (f(Sk)− f(Si ∪ Sj ∩ Sk)

f(Si ∪ Sj ∪ Sk) + f(Si ∩ Sj ∩ Sk) + f(Si ∪ Sj),

≤ f(Si) + f(Sj) + f(Sk) + (f(Si)− f(Si ∩ (Sj ∩ Sk))) + (f(Sj)− f(Sj ∩ (Si ∩ Sk)) ,

and

2f(Si ∪ Sj ∪ Sk) + f(Si ∩ Sj ∩ Sk)

≤ f(Si) + f(Sj) + f(Sk) + (f(Si)− f(Si ∩ (Sj ∩ Sk)))

+ (f(Sj)− f(Sj ∩ (Si ∩ Sk)) + (f(Sk)− f(Sk ∩ (Si ∩ Sj)) .

Proposition A.0.2. Let E be a nonempty finite grounds set and Q be a subset of [1 : K] \{1}.
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Define γQ =
∏
q ∈ Q(q−1) and take βQ(r) and β′Q(r) to be as defined in (5.14). Then the inequality

K∑
r=1

βQ(r)f(S(r)) ≤ γQ
K∑
k=1

f(Sk) +
∑
r∈Q

r∑
k=1

β′Q(r)(f(Sk)− f(Sk ∩ S(r))),

is an extremal inequality for submodular functions over any K subsets (Sk : k ∈ [1 : K]) of E and

where

S(r) =
⋃

U⊆[1:K]:|U |=r

(⋂
k∈U

Sk

)

is the set of elements that belong to at least r-out-of-K subsets from the collection (Sk : k ∈ [1 : K]).



Appendix B

DM-MAC Achievability

B.1 Achievability

To demonstrate achievability of the capacity characterization in Theorem 3.3.1, we use ran-

dom coding and joint typicality decoding, where our notion of typicality is robust typicality.

B.1.1 Superposition Coding

B.1.1.1 Notion of Typicality

The notion of typicality we use is that of robust typicality [31]: with X ∼ p(x) as a discrete

random variable with finite support X and with δ ∈ (0, 1) as parameter that may be infinitesimal,

a n−sequence xn ∈ X n is δ-typical with respect to the probability mass function p(x) if∣∣∣∣ |{i : xi = x}|
n

− p(x)

∣∣∣∣ ≤ δp(x) ∀ x ∈ X .

Let T (n)
δ (X) be the set of all such δ-typical n-sequences. For a tuple of discrete, finite-support ran-

dom variables (X1, . . . , Xm) ∼ p(x1, . . . , xm), define the set of δ−typical n-sequences (xn1 , . . . , x
n
m)

to be T nδ (X1, . . . , Xm) = T nδ (X); that is, as the typical set for a single random variable X ≡

(X1, . . . , Xm).

B.1.1.2 Encoding

Fix a message index set E ⊆ 2[1:K]\∅ of cardinality M and assign to it some superposition

order. Fix a typicality parameter δ > 0, an auxiliary random tuple (US : S ∈ E) ∈ L(E;≤), and a
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set of K deterministic Shannon strategies

xj :
∏

S:j∈S∈E
US 7→ Xj j ∈ [1 : K] . (B.1)

B.1.1.3 Codebook Generation

Let S1, S2, . . . , SM be an exhaustive, never-increasing listing of the members of E so that

Si < Sj only if j < i. Let mB = (mS : S ∈ B) for each subset B ⊆ E. We generate the codebook

by successively considering the codewords for the message MS1 , then MS2 , and so on. First, for

each mS1 ∈
[
1 : 2nRS1

]
, generate an independent codeword with symbols drawn i.i.d. according

to p(uS1), i.e. unSi(m↑Si) ∼
∏n
t=1 p(uSi,t). Now, fix an i > 1 and suppose we’ve generated the

codewords for all prior messages Mj with j < i. Then, for each message tuple

m↑Si\Si ≡ (mSj : Si < Sj) ∈
∏

j:Si<Sj

[
1 : 2

nRSj
]
,

generate an independent codeword for each

mSi ∈
[
1 : 2nRSi

]
with symbols drawn i.i.d. as

unSi(m↑Si) ∼
n∏
t=1

p(uSi,t|u↑Si\Si,t(m↑Si\Si)). (B.2)

B.1.1.4 Encoding

To select which input symbol to send during the tth transmission, the jth transmitter uses

the Shannon strategies (B.1):

xj,t(mS : j ∈ S ∈ E) = xj

(
uS,t(m↑S) : j ∈ S ∈ E

)
for all t ∈ [1 : n].
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B.1.1.5 Joint typicality decoding

We decode by joint typicality with respect to the auxiliary codewords. With m ≡ (mS : S ∈

E), let T (m) be the event that

(unS1
(m↑S1), . . . , unSM (m↑SM ), Y n) (B.3)

is jointly typical (i.e., an element of T (n)
δ (US1 , . . . , USM , Y )). Declare m̂ to be the sent message if it

is the unique message tuple for which T (m) occurs. If no such message tuple exists or more than

one such message tuple exists, declare an error.

B.1.1.6 Analysis of Error

By the symmetry of the code construction, the average probability of error over all codebooks

and all codewords is equal to the average probability of error over all codebooks that just the

message tuple with mS = 1 for all S ∈ E was sent (which can succinctly denote with the shorthand

m ≡ (mS : S ∈ E) = 1).

Consider a candidate message tuple (m̂S : S ∈ E) with

m̂S 6= 1 for S ∈ B

m̂S = 1 for S 6∈ B
(B.4)

for someB ⊆ E. By the encoding dependency (B.2), the output Y n would be statistically dependent

on codewords unSk(m̂↑Sk) with ↑ Sk ⊆ E\B, but would not be statistically dependent on any

codeword unSk(m̂↑Sk) with ↑ Sk 6⊆ E\B. Hence, the distribution that the random tuple in (B.3)

obeys for any such candidate message tuple is(
n∏
t=1

p
(
Yt

∣∣∣(uSk,t(m̂↑Sk) : Sk ∈ ZcF↓(B)
))

p
(
uSk,t(m̂↑Sk) : Sk ∈ E

)
where

ZcF↓(B) =
⋃
{↑ Sk :↑ Sk ⊆ E\B)} = E\

⋃
{↓ Sk : Sk ∈ B} = E\ZF↓(B)
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is the largest element of the up-set lattice F↑ contained in B and ZF↓(B) as the smallest element

of the down-set lattice family F↓ containing B. Hence, by the joint typicality lemma [31], there is

an εδ (with εδ → 0 as δ → 0) for which

P (T (m̂)) ≤ 2
−n(I(UZF↓

(B);Y |UZcF↓ (B))−εδ)

By contrast, the law of large numbers assures that the codewords corresponding to the true message

will be jointly typical with high probability with the received vector; more precisely, P (T (1))→ 1

as n→∞. With the union bound,

P (Error ∩ T (1)) = P (∪m̂6=1T (m̂))

≤
∑
m̂6=1

P (T (m̂))

=
∑
B⊆E

∑
m̂:(B.4)

P (T (m̂))

≤
∑
B⊆E

∑
m̂:(B.4)

2
−n(I(UZF↓

(B);Y |UZcF↓ (B))−εδ)

≤
∑
B⊆E

2
−n(I(UZF↓

(B);Y |UZcF↓ (B))−
∑
S∈B RS−εδ)

Hence the described encoding scheme achieves a vanishing probability of error if

∑
S∈B

RS ≤ I(UZF↓ (B);Y |UZcF↓ (B)) for all B ⊆ E.

If B /∈ F↓, then B is a strict subset of B′ = ZF↓(B) and hence its corresponding inequality is

redundant (as RS ≥ 0 for all S ∈ E) given the corresponding inequality for B′, which is an element

of the down-set lattice family F↓. Hence there is still a vanishing probability of error if

∑
S∈B

RS ≤ I(UB;Y |UE\B) for all B ∈ F↓.

B.2 Achievability via Rate-Delegation

By Theorem 3.3.1, we know that for a fixed message index set E and superposition order ≤ on

E, coding recursively along the principal up-sets of F provides that any rate tuple in PF↓(E;≤)(ρx,U )
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is achievable for a fixed auxiliary tuple U ∈ L(E;≤) and set of K Shannon strategies x1, . . . , xK .

However, as indicated in the two-user case, it may be possible to achieve a larger polytope by

concatenating the achievability step of Theorem (3.3.1) with rate load delegation of “more common”

message rates onto “less common” message rates as in (3.23) and (3.24).

More precisely, by introducing the non-negative rate-splits

r ≡ (r(S′,S) : S′, S ∈ E and S′ ⊆ S), (B.5)

we may achieve any target rate

RS =
∑

S′∈E:S′⊆S
r(S′,S) S ∈ E, (B.6)

where common messages delegate part of their rate load to less common messages, if the recon-

structed rates

R̃S′ =
∑

S∈E:S′⊆S
r(S′,S) S′ ∈ E (B.7)

satisfy ∑
S′∈B

R̃S′ ≤ ρU (B) for B ∈ F↓(E :≤), (B.8)

as the resultant rates R̃S′ may then be achieved by coding recursively along the principal up-sets

elements of F↓(E :≤) per the results of Theorem 3.3.1.

To determine what target rates R ≡ (RS : S ∈ E) are achievable in this manner, we must

the project polytope constraint (B.8) defined in the high-dimensional space of the rate-splits r onto

the much lower-dimensional space in which the target rates lie. A general procedure for such a

projection is the iterative Fourier-Motkzin elimination procedure. However, such a procedure is

generally not scalable to arbitrary dimensions: each step of Fourier-Motkzin may exponentially

increase the number of resultant inequalities to keep track of. In our setting, where there are

combinatorially many rate splits to deal with, such an approach is unwieldy. Rather than attempt

to use Fourier-Motkzin, we instead find that an alternative approach leveraging polymatroidal

properties which is tractable and scalable to the general K-user case.
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Our approach relies on the dual description of convex sets (i.e. the characterization of a

convex set’s boundary) and the observation that the convex constraint (B.8) is polymatroidal not

only in the reconstructed rates, but also directly in the rate splits. With this framework, we

demonstrate the following

Lemma B.2.1. Let R ⊂ RE be the region consisting of all non-negative target rates for which

there exists a non-negative rate split as in (B.5) satisfying (B.6)-(B.8). Then R = PF↓(E;⊆)(ρU ),

the polymatroid defined over E and constrained by the down-sets of E under the inclusion order ⊆.

Proof. For the sake of brevity, let F = F↓(E;≤) and F↓ = F↓(E;⊆). As the constraints for R are

linear, it must be convex. Hence, by convexity, it is fully characterized by the maximal values of

the collection of linear programs

maximize µTR subject to R̃ ∈ PF (ρU ) (B.9)

corresponding to each choice of µ ∈ RE .

To solve each such linear program, we first express the optimization problem directly in terms

of the rate splits. To describe this, we first introduce convenient notation. Let

Er = {(S′, S) : S′, S ∈ E,S′ ⊆ S}

be the index set of all rate-splits (B.5). Enumerate the message index set as E = {S1, . . . , SM} so

that µS1 ≥ · · ·µSk > 0 ≥ µSk+1
≥ · · · ≥ µM and the rate-split message index set Er as

{(S′, S)1, . . . , (S
′, S)n1 , . . . , (S

′, S)nM−1+1, . . . , (S
′, S)nM }

where sequence of numbers 0 = n0 ≤ n1 ≤ . . . ≤ nM are defined implicitly so that

{(S′, S)ni−1+1, . . . , (S
′, S)ni} = {(S′, Si) : S′ ∈ ↓ Si}, (B.10)

for each i ∈ [1 : M ], where we remind the user of the down-set notation (see Table 2.4), taken

with respect to the message index set E with the inclusion order ⊆. Then the index j ∈ [1 : nM ]
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enumerates all of the rate-splits. For each j ∈ [1 : nM ], let νj = µi when ni < j ≤ ni+1 so that we

may write
M∑
i=1

µSiRSi =
M∑
i=1

µSi

ni+1−1∑
j=ni

R(S′,S)j

 =

nM∑
j=1

νjR(S′,S)j .

Define the one-to-one map Z : F 7→ Fr via

Z(B) = {(S, S′) : S′ ∈ ↑ S for some S ∈ B}

between subsets of the index set of rate splits Er and the index set of messages E. Notably, Z is a

lattice homomorphism (recall Definition 4) and hence its image Fr is also a lattice set family (but

over the rate-split index set Er rather than the message index set E). For each Br ∈ Fr, define the

map ρ′U : Fr 7→ R+ with

ρ′U (Br) = ρU ◦ Z−1(Br)

Z−1(Br) =
{
S′ : there is some S ∈ E with (S′, S) ∈ Z

}
.

In particular, as the inverse of a one-to-one lattice homomorphism is again a lattice homomorphism,

we know that ρ′U is again a polymatroid function (but over Fr rather than F).

Hence, when the polytope (B.8) is written in terms of the rate splits directly, we recognize it

as a polymatroid over the lattice set family Fr. So, the initial linear program (B.9) is equivalent to

maximize νT r subject to r ∈ PFr(ρ′U ). (B.11)

By polymatroidal properties, a maximizing rate point is, with S′j as the first index of the pair

(S′, S)j ,

r(S′,S)1 = ρ′U ◦ ZFr({(S′, S)1}) = ρU ({S′1})

r(S′,S)j = ρ′U ◦ ZFr({(S′, S)1, . . . , (S
′, S)j})− ρ′U ◦ ZFr({(S′, S)1, . . . , (S

′, S)j−1})

= ρU

(
j⋃

k=1

{S′k}
)
− ρU

(
j−1⋃
k=1

{S′k}
)

2 ≤ j ≤ nk

r(S′,S)j = 0 nk+1 ≤ j ≤ nM .
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where ZFr(Br) is the smallest element of lattice set family Fr containing Br ⊆ Er and ZF (B) is

the smallest element of F containing B ⊆ E. The simplifications above follow by the relation

Z−1 ◦ ZFr(Br) =
{
S′ : ∃S ∈ E with (S′, S) ∈ Br

}
.

Then by the rate delegation formula (B.6) and the enumeration (B.10) of the rate-split index set

Er, we have that for m > k, RSm = 0, while for m ≤ k

RS1 + · · ·+RSm =
∑nm

j=1
r(S′,S)j = ρU (∪mi=1 ↓ Si) = ρU ◦ ZF↓({S1, . . . , Sm}),

as
⋃m
i=1 ↓ Si ∈ F↓. Abbreviating ZF↓(B) to Z↓(B), the above is simply that

RS1 = ρU ◦ Z↓({S1})

RSm = ρU ◦ Z↓({S1, . . . , Sm})− ρU ◦ Z↓({S1, . . . , Sm−1}) 2 ≤ m ≤ k

RSm = 0 k + 1 ≤ m ≤M.

Hence the rate region attainable by first rate-delegating and then coding with respect to F has

exactly the same supporting hyperplanes as the polymatroid PF↓(ρU ). As two convex regions with

the same set of supporting hyperplanes are equal, we conclude that R = PF↓(ρU ).

Remark Notably, we may delegate common message rates to less common message rates

and subsequently code without superposition to achieve the same capacity region as would be

achieved had we simply coded with superposition. This equivalence has also been noted in other

contexts; for example, in the interference channel with the recent result of [82]. These results

suggest that in general, rate delegation followed by with coding without superposition achieves the

same rate region as coding with superposition.

B.3 Converse

Suppose that there exists a sequence of codes indexed by block length n which communicate

at a rate tuple (RS : S ∈ E) and which achieve a vanishing probability of error as n tends to

infinity. Pick the code corresponding to block length n and and let MS be uniformly distributed on
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1 : 2nRS

]
for each S ∈ E. Let Xn

1 , . . . , X
n
K , Y

n be the random variables induced by the messages,

the encoders, and the channel.

Let ≤ be any superposition order on E and let F↓ be the associated down-set lattice family.

By Fano’s inequality we may conclude that for any B ∈ F↓,

n

(∑
S∈B

RS

)
≤ I(MB;Y ) + nεn

for some non-negative vanishing sequence εn → 0. Hence,

n

(∑
S∈B

RS − εn
)
≤ I(MB;Y n|ME\B)

= H(Y n|ME\B)−H(Y n|ME)

=
n∑
t=1

H(Yt|ME\B, Y
t−1)−

n∑
t=1

H(Yt|X1t, . . . , XKt)

≤
n∑
t=1

H(Yt|ME\B)−
n∑
t=1

H(Yt|X1t, . . . , XKt)

= n
(
H(YQ|UE\B, Q)−H(YQ|X1Q, . . . , XKQ)

)
≤ n

(
H(YQ|UE\B)−H(YQ|X1Q, . . . , XKQ)

)
= nI(UB, Y |UE\B).

where US = MS for each S ⊆ [1 : K], Q ∼ Uniform([1 : n]), Y = YQ, and X = XQ. Hence,

(RS − εn)S∈E ∈ PF↓(ρU ). Moreover, by the joint independence of (US : S ∈ E), U ≡ (US : S ∈

E) ∈ L(E; =) ⊆ L(E;≤). By definition of the set of feasible encoders (see Table 2.2), there are K

deterministic functions xj(·) (one for each j ∈ [1 : K]) such that

Xj = xj((US : j ∈ S ∈ E)).
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Gaussian MAC

C.1 Successive Group Decoding Proof

Recall Lemma 3.4.2, and the discussion immediately following. Define, per collection of

KE = (KS : S ∈ E), ρ(KE ; ·) : 2E 7→ R+ with

ρ(KE ;B) = log det

(
I + H

(∑
S∈B

PSKSP∗S

)
H∗
)
, (C.1)

for each B ⊆ E, which is normalized, nondecreasing, and submodular as a result of Lemma 3.2.1.

It suffices to show the following for the converse.

Lemma C.1.1. The K-user MIMO MAC with message index set E is dominated by rate points

that satisfy

∑
S∈Bi

RS = ρ(KE ;Bi) for all i ∈ [1 : k] (C.2a)

∑
S∈B′

RS ≤ ρ(KE ;B′) for all B′ ∈ F↓(E;⊆) satisfying

Bi ⊆ B′ ⊆ Bi+1 for some i ∈ [1 : k − 1] . (C.2b)

for some admissible set of covariances and some Hierarchical Decoding chain {B1, . . . , Bk}.

Proof. By Theorem 4.3, a rate-tuple is achievable only if it is in a polymatroid{
R ∈ RE+ :

∑
S∈B

RS ≤ ρ(KE ;B) ∀ B ∈ F↓(E;≤)

}
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for some admissible set of covariance matrices Ke. By the greedy algorithm for maximizing the

weighted sum-rate over polymatroids, all rate points in the polymatroid above are dominated by

those that satisfy
∑

S∈E RS = ρ(KE ;E). Pick one such dominating rate tuple R′. We proceed by

induction.

Root Case By assumption, (C.2) is satisfied with respect to the length-2 chain ∅ = B1 ⊂ B2 = E

and the family of down-sets F↓(E;≤).

Inductive Step Assume that (C.2) holds with respect to a length-k chain ∅ = B1 ⊂ B2 ⊂ · · · ⊂

Bk = E of the down-set lattice F↓(E;≤) that is not a hierarchical decoding chain.

Fix i to be the smallest index where Gi = Bi+1\Bi violates (3.25). Then there is a pair

(S, S′) ∈ Gi with S ⊂ S′ and no S′′ ∈ Gi with S′′ ⊂ S. For this pair, set B′1 = Bi ∪ {S} ∈

F↓(E;≤) and let B′2, . . . , B
′
m be the list of any remaining subsets B ∈ F↓(E;≤) containing

S, but not containing S′, and satisfying Bi ⊂ B ⊂ Bi+1. There are two cases

(1) If R(B′l) = ρ(KE ;B′l) for some B′l, continue to the next inductive step with the chain

B1, . . . , Bi, B
′
l, Bi+1, . . . , Bk in place of {B1, . . . , Bk}.

(2) Suppose R(B′l) < ρ(KE ;B′l) for all l ∈ [1 : m]. For each εS,S′ ∈ [0, 1], consider the

covariance split

K′S = εS,S′KS

K′S′ = (1− εS,S′)PT
S′PSKSPT

SPS′ + KS′

K′S′′ = KS′′ ∀S′′ ∈ E\{S, S′}.

Observe that for each k ∈ [1 : m], each

ρ(K′E ;B′l) = log det

I + H

 ∑
S′′∈B′l

PS′′KS′′P
∗
S′′

H∗

 ,

= log det

I + H

εS,S′PSKSP∗S +
∑

S′′∈B′l\{S}
PS′′KS′′P

∗
S′′

H∗

 ,



166

is a continuous function of εS,S′ onto the interval [ρ(KE ;B′l\{S}), ρ(KE ;B′l)]. More-

over, as

RS =
∑
S∈B′1

RS −
∑
S∈Bi

RS

< ρ(K′E ;B′1)− ρ(K′E ;Bi)

= log det

(
I + εS,S′H

(
PSKSP∗S

)
H∗
(

I + H

( ∑
S′′∈Bi

PS′′KS′′P
∗
S′′

)
H∗
)−1

)

(C.3)

where the right hand side is a continuous function of εS,S′ onto the interval [0, ρ(KE ;Bi∪

{S}) − ρ(KE ;Bi)], we know by the intermediate value theorem that there exists a

εS,S′ > 0 such that for some l ∈ [1 : m],∑
S∈B′l

RS = ρ(K′E ;B′l)

∑
S∈B′j

RS ≤ ρ(K′E ;B′j) l 6= j ∈ [1 : m]

Continue to the next inductive step with K′E in place of KE and {B1, . . . , Bi, B
′
l, Bi+1, . . . , Bk}

in place of {B1, . . . , Bk}.

Corollary C.1.2. The K-user MIMO MAC with message index set E is dominated by rate points

that are contained in a polytope{
R ∈ RE+ :

∑
S∈B

RS ≤ ρ(K′E ;B) ∀ B ⊆ E
}
.

for some admissible set of covariance matrices.

Proof. Follows by the Lemmas 3.4.2 and C.1.1.

C.2 Fading MAC Converse

Let E ⊆ 2[1:K] be a family of subsets closed under intersection which index the message

sources to be transmitted by the K-users over the channel (4.18). In our converse, recall the
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following result from Section 4.3.3.1:

Lemma C.2.1 (Entropy Maximization subject to Markov and Covariance constraints). Suppose

(US : S ∈ E) is a tuple of independent random variables such that1 Xj ← (US : j ∈ S ∈ E),

where Xj ∈ Ctj×1, for each j ∈ [1 : K]. Suppose further that Y =
∑K

j=1 HjXj + Z ∈ Cr×1 with

conformable matrices {Hj} and with Z as a circularly symmetric Gaussian vector with identity

covariance.

Then there exists a set of independent, jointly Gaussian random vectors {VG
S }, {XG

j } satsi-

fying

• For each S ∈ E, VG
S ∈ C(

∑
j∈S)×1 with |S| partitions VG

S,j ∈ Ctj×1, indexed by j ∈ S.

• XG
j =

∑
j∈S∈E VG

S,j for each j ∈ [1 : K].

• Cov(Xj ,Xj) = Cov(XG
j ,X

G
j ) for each j ∈ [1 : K].

such that with YG =
∑K

j=1 HjX
G
j + Z,

h(Y|US : S ∈ E\B) ≤ h(YG|VG
S : S ∈ E\B) ≤ log(2π)r

∣∣∣∣∣I +
∑
S∈B

HSQSH∗S

∣∣∣∣∣
for each down-set B ∈ F↓. Here, for each S ∈ E, QS is the covariance of VG

S and HS is the

conformable concatenation of the channel matrices {Hj : j ∈ S} such that YG =
∑

S∈E HSVG
S +Z.

Suppose there exists a sequence of codes indexed by block length n which communicate at a

rate tuple (RS : S ∈ E) and which achieve a vanishing probability of error as n tends to infinity.

Fix the block length to be n and choose the code from this sequence corresponding to this block

length. Let MS uniformly distributed on
[
1 : 2nRS

]
, independently of the other messages M ′S for

each S ∈ E.

With Fano’s inequality, we know that for any B ∈ F↓,

∑
S∈B

RS ≤ H(MS : S ∈ E; Yn) ≤ nεn

1 Recall that A← B denotes that A is a deterministic function of B.
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for some vanishing sequence εn. Then, by standard manipulations we have that for each B ∈ F↓,

n

(∑
S∈B

RS − εn
)
≤ I((MS : S ∈ B); Yn)

≤ I((MS : S ∈ B); Yn, (MS : S ∈ E\B),Hn)

= I((MS : S ∈ B); Yn|(MS : S ∈ E\B),Hn)

=

n∑
t=1

I((MS : S ∈ B); Yt|(MS : S ∈ E\B),Yt−1,Hn)

≤
n∑
t=1

h(Yt|(MS : S ∈ E\B),Hn)− h(Zt)

=

n∑
t=1

∫
H
E
[
h(Yt|M{E\B},Hn,H(t) = H(ν))

]
dF (ν)− r log(2π). (C.4)

where the expectation is over all channel state sequences Hn such that H(t) = H(ν) and we adopted

the shorthand M{E\B} = (MS : S ∈ E\B). We now apply Lemma C.2.1 for each instantiation of

the channel sequence Hn, where we denote the corresponding covariance matrices by QS(t,Hn, ν).

Then for the tth channel use and each possible instantiation the possible channel state H(t) = H(ν),

E [h(Yt|(MS : S ∈ E\B),Hn,H(t) = H(ν))]− r log(2π)

≤ E
[

log det

(
I +

∑
S∈B

HS(ν)QS(t,Hn, ν)H∗S(ν)

)]
(i)

≤ log det

(
I +

∑
S∈B

HS(ν)E[QS(t,Hn, ν)]H∗S(ν)

)
(ii)

≤ log det

(
I +

∑
S∈B

HS(ν)QS(t, ν)H∗S(ν)

)

where (i) follows by the concavity of log det (I + X) over X � 0 and (ii) follows by defining

QS(t, ν) = E[QS(t,Hn, ν)]. Hence, continuing from (C.4), we have

n
(∑

S∈B
RS − εn

)
≤

n∑
t=1

∫
H

log det

(
I +

∑
S∈B

HS(ν)QS(t, ν)H∗S(ν)

)
dF (ν)

(iii)
=

∫
H

n∑
t=1

log det

(
I +

∑
S∈B

HS(ν)QS(t, ν)H∗S(ν)

)
dF (ν)

(iv)

≤
∫
H
n log det

(
I +

∑
S∈B

HS(ν)QS(ν)H∗S(ν)

)
dF (ν),
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where (iii) follows by the stationarity of the channel state sequence and (iv) follows by the concavity

of log det (I + X) and by the definition QS(ν) = 1
n

∑n
t=1E[QS(t,Hn, ν)].

By assumption, the achievable code respects the average power constraint and hence∫
H

∑
j∈S∈E

tr(QS,jj(ν)) ≤ Pj ∀j ∈ [1 : K] .

In summary, any achievable rate is no more than an εn outside of Cf ({Hk(ν)}, {QS(ν)}) for a

collection of covariance allocations {QS(ν)} which satisfy the power constraint (4.19). As this εn

can be taken to be arbitrarily small, we conclude that the region in Theorem 4.3 is an outer bound

to the capacity region of the fading three-user vector Gaussian MAC with common information.

C.3 Positivity Condition

We quote a result in [72].

Lemma C.3.1. Let Q =

A B

B∗ D

 . Then Q � 0 iff2

{A � 0, D � B∗A+B, Null(A) ⊆ Null(B∗)}.

Proof. • Let Q � 0. If x ∈ Null(A), thenx

0


∗

Q

x

0

 = x∗Ax = 0 =⇒ 0 = Q

x

0

 =

Ax

B∗x


and so x ∈ Null(B∗). Moreover

0 �

I

0


∗

Q

I

0

 = A

0 �

−A+B

I


∗

Q

−A+B

I

 = D−B∗A+B.

2 A+ is the Moore-Penrose pseudoinverse of A.
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• If Null(A) ⊆ Null(B∗), then I 0

B∗A+ I


A 0

0 D−B∗A+B


I A+B

0 I

 = Q.

If A � 0 and D � B∗A+B as well, then Q � 0.



Appendix D

DM Broadcast Cannel

D.1 Generalized cut-set Bound Framework

We only outline the proof, as the details left out mimic precisely the proof of Theorem 1 in

[91]. The adaptation to our Gaussian setting depends critically the properties (P1)-(P3), Notably,

the factorization can be thought of as providing a set of parallel channels Ỹj,S indexed by the

message index set E. By the rank condition that

rank(ỸS) = rank(Ỹj,S) ∀j ∈ S,

we may think of the channel provided by ỸS a corruption-free symbol-pipe that has the same

DoF-rate to all of the |S| receivers listed in S. In proving our outer bounds, we will provide not

only the receiver output

Ỹj = (Ỹj,S : S ∈ E with j ∈ S),

but also the side information

(Ỹi,S : i 6= j, S ∈ E, {i, j} ⊆ S).

Proof. Suppose that (RS : S ∈ E) is an achievable rate tuple. Then, necessarily, by Fano’s

inequality we may conclude that

H(M∪j∈A↑{j}|Ỹn
∪j∈A↑{j}) ≤ nεn
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for all subsets A ⊆ [1 : K]. For brevity, define the set functions

HM,Ỹn(A) = H(MA, Ỹ
n
A) HM (A) = H(MA)

HỸn(A) = H(Ỹn
A) C(A) =

∑
S∈A

νS .

It is well known that entropy, in general is submodular. Moreover, by the independence of the

messages, we know that HM (A)
∑

S∈AH(MS), thus providing that HM is not only submodular,

but is also modular. By definition, C(A) is modular. By the independence bound on the joint

entropy of random variables, we have that independence bound on the joint entropy of a collection

of random variables,

HỸn(A) ≤
∑
S∈A

H(Ỹn
S)

≤
∑
S∈A

n log det(π)(λmI + H̃SH̃∗SP )

≤
∑
S∈A

n(νS log(P ) + o(log(P ))), (D.1)

where the second inequality follows as the power constraint requires that the average codebook

covariance

K =
1

n

n∑
t=1

Cov(Xt,Xt)

must have trace less than or equal to P and hence all its eigenvalues are bounded above by P .

Thus, K � P I and the desired bound follows.

With this in mind, we may use the extremal inequalities (5.19) to write, with (↑ {1}, . . . , ↑

{K}) = A[1:K],∑
i∈I

αiHM (Φi(A[1:K]))

≤
∑
i∈I

αiHM,Ỹn(Φi(A[1:K]))

≤
∑
j∈J

βjHM,Ỹn(Πi(A[1:K])) +
∑
l∈L

γl
(
HM,Ỹn(Γ+

i (A[1:K]))−HM,Ỹn(Γ−i (A[1:K]))
)

(i)

≤
∑
j∈J

βjHM,Ỹn(Πi(A[1:K])) +
∑
l∈L

γl

(
HM,Ỹn(Γ+

i (A[1:K])\Γ−i (A[1:K]))
)
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(ii)

≤
∑
j∈J

βjnC(Φi(A[1:K])) log(P ) +
∑
l∈L

nγl
(
C(Γ+

i (A[1:K]))− C(Γ−i (A[1:K]))
)

log(P )

+ no(log(P )) + nεn

(iii)

≤ n
∑
i∈I

αi(C(Φi(A[1:K])) + o(log(P )) + εn),

where (i) follows as conditioning reduces entropy and (ii) follows by (D.1) and (iii) follows by the

fact that equality holds in the extremal inequality (5.19) for modular functions. Then the desired

result follows by taking P, n→∞ by noting that

n
∑
i∈I

αi
∑

S∈Φi(A[1:K])

RS =
∑
i∈I

αiHM (Φi(A[1:K]))

and similarly ∑
i∈I

αiC(Φi(A[1:K]) =
∑
i∈I

αi
∑

S∈Φi(A[1:K])

φS .

D.2 On Linear Subspaces

Proposition D.2.1. For any two linear subspaces A,B of Ct, (A ∩B⊥) ∩B = {0}.

Proof. If x ∈ (A ∩ B⊥) ∩ B then x ∈ B⊥ ∩ B. Thus 〈x, y〉 = 0 for any y ∈ B, including x itself.

Thus ‖x‖2 = 0 and necessarily x = 0.

Proposition D.2.2. Suppose that A,B are linear subspaces of Ct and B ⊆ A. Then {(A∩B⊥), B}

is a direct sum decomposition of A.

Proof. By Proposition D.2.1, (A ∩ B⊥) ∩ B = {0}. By Gram-Schmidt, there exists a matrix

QA =

[
QB QC

]
with orthogonal columns such that Range(QB) = B and Range(QA) = A. Take

any x ∈ A ∩B⊥, which must have a representation x = QByB + QCyC . As x ∈ B⊥, Q∗Bx = 0 and

x = QcyC . Thus Range(QC) = (A ∩B⊥), which implies that A = (A ∩B⊥)⊕B.

Proposition D.2.3. Let A1, . . . , AM be linear subspaces of Ct. Then(
M⊕
i=1

Ai

)⊥
=

M⋂
i=1

A⊥i .
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Proof. Let Ai be a matrix whose columns span Ai. As Null(X∗) = Range(X)⊥ for any matrix X,

when the superscript ∗ denotes the Hermitian transpose, we have

(
M⊕
i=1

Ai

)⊥
= Range([A1, . . . ,AM ])⊥ = Null




A∗1
...

A∗M



 =
M⋂
i=1

A⊥i .

D.3 Recursive Mutual Covering Lemma Proof

Let T (n)
ε (UE) be the set of jointly ε-typical length-n sequences (unS : S ∈ E) with respect to

the joint distribution of UE . Let

A = {(mS : S ∈ E) : (unS(mS) : S ∈ E) ∈ T (n)
ε (UE)}

be the the set of all independently randomly generated vectors which appear as though they were

jointly generated (by being jointly typical). As before, Chebyshev’s inequality supplies P (|A| =

0) ≤ Var(|A|)/E(|A|)2. The probability mass function governing the distribution of a codeword

tuple (unS(ms) : S ∈ E) is independent of the message tuple m ≡ (mS : S ∈ E). Thus each

codeword tuple has the same probability of being jointly typical, which we define to be

P (UnE(m) ∈ Tε(UE)) = P (UnE(1) ∈ Tε(UE)) , p.

By linearity of expectation, E[|A|] = 2nr(E)p. Introduce

B(m(E),m′(E)) = JUnE(mE) ∈ Tε(UE)KJUnE(m′E) ∈ Tε(UE)K .

As before,

Var[|A|] ≤
∑
D⊂S

2n(2r(D)+r(Dc))pD,

where pD = E[B(m(E),m′(E))] with (mS = 1 : S ∈ E) and (m′S = 1 : S 6∈ D) but (m′S = 2 : S ∈

D), more succinctly stated as m = 1 and m′ = 1 + 1(D) where 1(D) = (JS ∈ DK : S ∈ E) is the

indicator vector for a subset D of E. By the recursive generating procedure, if mS 6= mS′ for some
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S ∈ E, then all the vectors corresponding to R ∈↓ S appear as though they were independently

generated, even if the indices mR and m′R match. In other words,

p

(
Un(1) = un, Un(1 + 1(D)) = vn

)
=
∏
S∈↓D

p(uS |u↑′S)p(vS |v↑′S)×
∏

S∈E\↓D
p(uS |u↑′S)

for all potential sequences un, vn with uS = vS when S 6∈↓ D. If these potential sequences are in

addition also jointly ε-typical (denote the set of such sequences with T (ε,D)), then

p (Un(1) = un, Un(1 + 1(D)) = vn) ≤ 2−n(dD−δε/6)

where

dD = 2
∑
S∈↓D

H(US |U↑′S) +
∑

S∈E\↓D
H(US |U↑′S).

Consider the set of sequences vn that are jointly ε−typical with respect to the joint distribution on

UE and have components in E\D fixed to vS = uS for S ∈ E\D, which we denote by S(ε, uE\D).

Then by standard arguments, log |S(ε, uE\D)| ≤ nH(UD|UE\D). Combining the above observations

yields a bound on the probability that the pair of sequences Un(1) = un, Un(1 + 1(D)) = vn are

jointly typical:

pD =
∑

unD,v
n
D∈T (ε,D)

p

(
Un(1) = un, Un(1 + 1(D)) = vn

)

=
∑

unD,v
n
D∈T (ε,D)

2−ndD

=
∑

unD:un ε−typical

∑
vn∈S(ε,uE\D)

2−ndD

≤ 2nH(UE)+nH(UD|UE\D)−ndD+δε/2,

This bound, combined with the bound

1

n
log p ≥ H(UE)−

∑
S∈E

H(US |U↑′S) + δε/4

yields

Var(|A|)
E[|A|]2 ≤

∑
D⊂E

2−n4(D)
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where

4(D) = r(E\D)−

 ∑
S∈E\↓D

H(US |U↑′S)−H(UE\D)

− δε.
Thus the error tends to zero if the conditions

r(G) ≥
∑

S∈X↑(G)

H(US |U↑′S)−H(UG),

where X↑(G) is the largest up-set contained within G, hold for all subsets G ⊆ E. But not all of

these inequalities are necessary. Observe that as the rates are non-negative, and X↑(G) is a subset

of G,

r(G) ≥ r(X↑(G)) ≥
∑

S∈X↑(G)

H(US |U↑′S)−H(UX↑(G)) ≥
∑

S∈X↑(G)

H(US |U↑′S)−H(UG).

Thus, the inequality corresponding to X↑(G) implies the inequality corresponding to G. As such,

it suffices to only enforce those inequalities corresponding to the up-sets of E.


