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Bilinear programs and Phase Retrieval are two instances of nonconvex problems that arise in

engineering and physical applications, and both occur with their fundamental difficulties. In this

thesis, we consider various methods and algorithms for tackling these challenging problems and

discuss their effectiveness.

Bilinear programs (BLPs) are ubiquitous in engineering applications, economics, and oper-

ations research, and have a natural encoding to quadratic programs. They appear in the study

of Lyapunov functions used to deduce the stability of solutions to differential equations describing

dynamical systems. For multivariate dynamical systems, the problem formulation for computing

an appropriate Lyapunov function is a BLP. In electric power systems engineering, one of the most

practically important and well-researched subfields of constrained nonlinear optimization is Opti-

mal Power Flow wherein one attempts to optimize an electric power system subject to physical

constraints imposed by electrical laws and engineering limits, which can be naturally formulated

as a quadratic program. In a recent publication [GBSBS18], we studied the relationship between

data flow constraints for numerical domains such as polyhedra and bilinear constraints.

The problem of recovering an image from its Fourier modulus, or intensity, measurements

emerges in many physical and engineering applications. The problem is known as Fourier phase

retrieval wherein one attempts to recover the phase information of a signal in order to accurately

reconstruct it from estimated intensity measurements by applying the inverse Fourier transform.

The problem of recovering phase information from a set of measurements can be formulated as a

quadratic program. This problem is well-studied but still presents many challenges. The resolution

of an optical device is defined as the smallest distance between two objects such that the two objects



iv

can still be recognized as separate entities. Due to the physics of diffraction, and the way that light

bends around an obstacle, the resolving power of an optical system is limited. This limit, known

as the diffraction limit, was first introduced by Ernst Abbe in 1873. Obtaining the complete phase

information would enable one to perfectly reconstruct an image; however, the problem is severely ill-

posed and the leads to a specialized type of quadratic program, known as super-resolution imaging,

wherein one attempts to learn phase information beyond the limits of diffraction and the limitations

imposed by the imaging device.
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Chapter 1

Introduction

In this chapter, we give a brief overview of optimization utilizing Boyd and Vandenberge’s

Convex Optimization, and then discuss the outline of this thesis along with our contributions.

1.1 Preliminaries

There are many ways to categorize optimization problems based on their structure and

tractability. One of the most common classifications is convex versus nonconvex problems. Convex

functions have the property that all local optima are also global, making them tractable. Boyd and

Vandenberghe [BV04] give a thorough overview of convex functions and the algorithms employed

to solve them. In what follows, we explain some of the key features of convex optimization and its

role in making seemingly intractable problems more tractable.

Definition 1.1.1. A function f : Rn → R ∪ {+∞} is convex if its effective domain, S = {~x ∈

Rn|f(~x) <∞}, is a convex set and

f(λ~x+ (1− λ)~y) ≤ λf(~x) + (1− λ)f(~y)

for all ~x, ~y ∈ dom(f) and 0 ≤ λ ≤ 1.

Being a convex set means for all points ~x, ~y ∈ S and 0 ≤ λ ≤ 1 we have λ~x + (1 − λ)~y ∈ S;

that is, a set is convex if for any two points ~x, ~y ∈ S the line segment connecting ~x and ~y is

contained in S. From a geometric standpoint, the functional inequality means that any chord from

~x to ~y lies above the graph of f . A function is strictly convex if the inequality is strict whenever
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~x 6= ~y and 0 < λ < 1. There is a close connection between convex functions and convex sets: a

function f is convex if and only if the epigraph of f , which is a subset of Rn × R consisting of all

points (~x, t) with f(~x) ≤ t, is a convex set. Affine functions are convex since the above inequality

is always an equality. Furthermore, we can check whether a function is convex by restricting it to

any line bisecting the domain and verifying that that function is indeed convex. Convex functions

also benefit from the fact that they are continuous on the relative interior of their domain, with

the possibility of discontinuities on their relative boundary. Other convenient properties of convex

functions include:

• If f, g : Rn → R are two convex functions, then their sum f + g is also convex.

• If f : Rn → R is convex and λ ≥ 0, then λf is convex.

• If f and g are convex functions, then the function h(~x) := max{f(~x), g(~x)} is also convex.

In addition, a function h is called concave if and only if −h is convex. Therefore, any function that

is both convex and concave must be affine. There is no explicit concept of a concave set; however,

we say a set is concave if its complement is convex.

A variable ~x is a global minimum of f if

f(~x) ≤ f(~y)

holds for any ~y in the domain of f , and a local minimum if it holds for every ~y within some

neighborhood of ~x. While local optimality does not necessarily imply global optimality, global

optimality always implies local. However, for convex functions, the two coincide. From the geo-

metric interpretation, if a convex function had a local minimum that was not also global, then any

chord connecting the two values could not lie entirely above the graph of f , thus contradicting the

definition of a convex function. Let f : Rn → R be a differentiable function. Then f is convex if

and only if for every ~x, ~y ∈ Rn

f(~x) +∇f(~x)T (~y − ~x) ≤ f(~y)
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holds and dom(f) is a convex set.

Notice that f(~x) + ∇f(~x)T (~y − ~x) is an affine function of ~y. Thus, the first-order Taylor

approximation of f near ~x is a global underestimator of f . Furthermore, recall that ∇f(~x∗) = 0 is

a necessary condition for ~x∗ to be a local minimizer of f . If f is a convex function and ~x∗ satisfies

∇f(~x∗) = 0, then

f(~x∗) = f(~x∗) +∇f(~x∗)T (~y − ~x∗) ≤ f(~y), (1.1)

and so ~x∗ is in fact a global minimizer of f .

The following property of convex functions requires us to define an important property of

square matrices.

Definition 1.1.2. A symmetric n × n real matrix A is said to be positive definite if ~xTA~x > 0,

positive semidefinite if ~xTA~x ≥ 0, and negative definite if ~xTA~x < 0 for every non-zero vector

~x ∈ Rn.

Another way to characterize the definiteness of a matrix is to inspect its eigenvalues. If all

eigenvalues of A are positive, then the matrix A is said to be positive definite, and so forth. If some

of the eigenvalues of A are positive and some are negative, then A is called indefinite.

Let f : Rn → R be a twice-differentiable function. Then f is convex if and only if the Hessian

∇2f(~x) is positive definite for all ~x ∈ dom(f) and dom(f) is a convex set. The proof of this, and

the previous claim, can be found in [BV04]. Geometrically, the Hessian being positive definite for

all ~x in the domain of f means that the local curvature at ~x is positive, or upward.

Definition 1.1.3. The convex hull of a set S, denoted conv(S), is the smallest convex set containing

S, i.e., it is the intersection of all convex sets containing S.

Some elementary convex sets include:

• Hyperplanes: ~aT~x = b

• Half-spaces: ~aT~x ≤ b
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• Affine sets: A~x = ~b

• Polyhedra sets: A~x ≤ ~b

• All positive (semi)definite matrices form a convex cone X � 0 (X � 0)

The most general form of a continuous optimization problems is

min
~x

f0(~x)

subject to fi(~x) ≤ 0, i ∈ I

hi(~x) = 0, i ∈ E

(1.2)

where f0(~x) is typically referred to as the objective or cost function and ~x ∈ Rn are the program

variables. I and E are the inequality and equality index sets for the inequality, fi : Rn → R, and

equality, hi : Rn → R, constraints, respectively. If I = E = ∅, i.e., the empty set, then we say the

problem is unconstrained. A point ~x in the domain of the problem if called feasible if all constraints

fi(~x) and hi(~x) are satisfied at ~x. If at least one point is feasible, then the problem is called feasible;

otherwise, it is called infeasible. The set of all feasible points is called the feasible set, or constraint

set, of the problem. If all equality constraints are affine, i.e., hi(~x) = ~aTi ~x − bi for all i ∈ E , and

each of the functions f0(~x), fi(~x), for i ∈ I, is convex, then (1.2) is called a convex optimization

problem.

The optimal value, p∗, of (1.2) is

p∗ = inf{ f0(~x) | fi(~x) ≤ 0, i ∈ I, hi(~x) = 0, i ∈ E}.

If p∗ = −∞ we say the problem is unbounded, and we use the convention p∗ =∞ if the problem is

infeasible. Oftentimes, if it is unclear whether the given problem is feasible or not, one may solve

a feasibility problem wherein the objective function is identically zero

find ~x

subject to fi(~x) ≤ 0, i ∈ I

hi(~x) = 0, i ∈ E .

(1.3)
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In this case, p∗ = 0 if the constraints are consistent, else, p∗ =∞.

There are various transformations that allow us to rewrite the original problem as an equiv-

alent optimization problem. Two problems are called equivalent if we can obtain the solution of

one problem from the solution of the other. This may be accomplished by performing a one-to-one

change of variables or by composing the original function with new functions satisfying appropri-

ate conditions. We will see later that when there are inequality constraints, a useful strategy for

transforming the inequality constraints into equality constraints is to introduce slack variables si.

This transformation will be key when implementing optimization algorithms that naturally handle

equality constraints, such as penalty methods. Note that fi(~x) ≤ 0 if and only if fi(~x) + si = 0 for

some si ≥ 0. This way, we are able to transform the original problem (1.2) into the equivalent

min
~x,~s

f0(~x)

subject to fi(~x) + si = 0, i ∈ I

hi(~x) = 0, i ∈ E

si ≥ 0, i ∈ I

(1.4)

where ~x ∈ Rn and ~s ∈ R|I|, |I| is the cardinality of I. The new variables si are called slack

variables, and since the non-negative orthant is a convex set, if (1.2) is a convex program then so

is (1.4).

In optimization, there is an important concept known as duality. Duality provides us the

means to view an optimization problem from either of two perspectives: the primal problem and

the dual problem, and solving the dual problem can provide some insight on the primal problem.

For instance, if we are trying to minimize (maximize) some objective subject to a set of constraints,

then the optimal value of the dual program, say d∗, provides a lower (upper) bound for the optimal

value of the primal, p∗. Their difference, p∗ − d∗, is referred to as the duality gap, and for convex

programs, the duality gap is zero provided the relative interior of the feasible set is non-empty. Let

D =∩|I|i=0dom(fi)∩|E|i=1 dom(hi)
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denote the domain of (1.2). Given the optimization problem (1.2), with the domain D ⊂ Rn having

non-empty interior, the Lagrangian function L : Rn × R|I| × R|E| → R is defined as

L(~x,~λ, ν) = f0(~x) +

|I|∑
i=1

λifi(~x) +

|E|∑
i=1

νihi(~x). (1.5)

~λ and ~ν are called the dual variables, or Lagrange multipliers associated with the problem. The

Lagrangian dual function g : R|I| × R|E| → R is defined as

g(λ, ν) = inf
~x∈D
L(~x,~λ, ν)

= inf
~x∈D

f0(~x) +

|I|∑
i=1

λifi(~x) +

|E|∑
i=1

νihi(~x)

 .

The idea is similar to that of the Lagrangian function in multivariate calculus; however, now we

allow for inequality constraints. All constraints are taken into account by augmenting the objective

with a weighted combination of the constraints. Even when the original problem is not convex, the

dual function is always concave. If ~λ ≥ 0 component-wise, preserving the original inequality, then

g(~λ, ν) ≤ p∗. This is immediately apparent by considering any feasible point x and ~λ ≥ 0,

f0(x) ≥ L(x,~λ, ν) ≥ inf
~x∈D
L(~x,~λ, ν) = g(~λ, ν).

The Lagrangian dual problem associated with (1.2) is

max
~λ,ν

g(~λ, ν)

subject to λi ≥ 0, i ∈ I
(1.6)

In section 3.3 we introduce a novel penalty method approach to solving bilinear programs using

the augmented Lagrangian framework.

Strong duality implies d∗ = p∗ and, in general, does not hold. However, weak duality, d∗ ≤ p∗

always holds and can be used to find non-trivial lower bounds for difficult problems. In this context,

dual feasibility describes a pair (~λ, ν) such that ~λ � 0 where we use ~x � 0 to denote ~x is element-

wise non-negative, and g(~λ, ν) > −∞. A dual feasible point provides a certificate that p∗ ≥ g(~λ, ν).
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Without knowing the exact value of p∗, we can still quantify the suboptimality of a primal feasible

point using dual feasible points. For a primal feasible ~x

f0(~x)− p∗ ≤ f0(~x)− g(~λ, ν). (1.7)

Thus, ~x can be thought of as ε-suboptimal with ε = f0(~x)− g(~λ, ν). Furthermore, (1.6) is a convex

optimization problem since we are tasked with maximizing a concave function. Therefore, any

local optimum is necessarily a global one. In section 3.4 we introduce a semidefinite programming

relaxation using duality to solving quadratic programs that can be directly applied to solving BLPs,

and under certain conditions, we have strong duality.

Definition 1.1.4. (Complementary Slackness) Assume strong duality holds for (1.2). Let ~x∗ be

primal optimal and (~λ∗, ν∗) be dual optimal, then

f0(~x∗) = g(~λ∗, ν∗) = inf
~x∈D

f0(~x) +

|I|∑
i=1

λifi(~x) +

|E|∑
i=1

νihi(~x)


≤ f0(~x∗) +

|I|∑
i=1

λ∗i fi(~x
∗) +

|E|∑
i=1

ν∗i hi(~x
∗)

≤ f0(~x∗).

Consequently, the two inequalities must hold with equality and so λ∗i fi(~x
∗) = 0 for i ∈ I. Thus,

λ∗i > 0 =⇒ fi(~x
∗) = 0, fi(~x

∗) < 0 =⇒ λ∗i = 0, (1.8)

a property known as complementary slackness.

Moreover, we say that a constraint is active at a feasible point ~x∗ if fi(~x
∗) = 0, and inactive

if fi(~x
∗) < 0. This means the ith optimal Lagrange multiplier is zero unless the ith constraint is

active at the optimum.

The Karush-Kuhn-Tucker (KKT) conditions are first-order necessary conditions for a solution

of an optimization problem to be optimal. To compute the KKT conditions, we require that each

function f0(~x), fi(~x) for i ∈ I, and hi(~x) for i ∈ E be continuously differentiable at a point ~x∗.

They are a generalization of Lagrange multipliers, which specify conditions for equality constrained
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optimization problems, i.e., I = ∅ in (1.2). Let (~x∗, ~λ∗, ν∗) be any primal and dual optimal points

with zero duality gap. The Karush-Kuhn-Tucker conditions for optimality are

fi(~x
∗) ≤ 0, i ∈ I

hi(~x
∗) = 0, i ∈ E

λ∗i ≥ 0, i ∈ I

λ∗i fi(~x
∗) = 0, i ∈ I

∇f0(~x∗) +

|I|∑
i=1

λ∗i∇fi(~x∗) +

|E|∑
i=1

ν∗i∇hi(~x∗) = 0.

The first three conditions state that the point (~x∗, ~λ∗, ν∗) must be primal and dual feasible. The

fourth condition enforces complementary slackness between the dual variables λ∗i and the set of

inequality constraints, and the last statement describes stationarity at the optimal point. When

the primal problem is convex, these conditions are sufficient for deducing optimality.

Theorem 1.1.1. (Slater’s Condition) Let the primal problem (1.2) be convex and bounded from

below, i.e., f0(~x) > −∞ for ~x ∈ D. Assume there exists an ~x0 that is strictly feasible, or satisfies

the (non-affine) inequalities strictly, then a KKT vector (not-necessarily unique) exists.

For convex programs, Slater’s condition implies strong duality, and the dual optimum is at-

tained. The set of KKT conditions generalize the optimality condition for unconstrained problems.

In certain cases, it may be possible to solve the KKT conditions analytically. However, in general,

there is no closed-form solution for solving them directly. Many optimization algorithms can be

viewed as methods for solving the KKT system of equations and inequalities.

Definition 1.1.5. (Strong and Weak Alternatives) Two systems of inequalities (and equalities)

are called weak alternatives if at most one of the two is feasible. Strong alternatives describe a

system of inequalities (and equalities) in which exactly one of the two alternatives hold.

Lemma 1.1.2. (Farkas’ Lemma) Let A ∈ Rm×n and ~b ∈ Rm. Then exactly one of the two following

statements hold:
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(1) There exists an ~x ∈ Rn such that A~x = ~b and ~x ≥ 0.

(2) There exists a ~y ∈ Rm such that AT~y ≥ 0 and ~bT~y < 0.

Farkas’ lemma is an example of strong alternatives. Geometrically, the first statement states

that there exists a set of non-negative coefficients such that ~b is in the range of A (or more specifi-

cally, ~b lies in the convex cone generated by the columns of A), while the second statement implies

there exists a vector ~y such that ~aTi ~y ≥ 0 for i = 1, . . . , n and ~bT~y < 0, meaning the cone of A and

~b are separated by a hyperplane going through the origin. There are several variants of Farkas’

lemma, but the idea is always the same: if a set of axioms is inconsistent, then it can be refuted

using the derivation rules [MG07]. We use Farkas’ lemma in section 2.4 to derive a system of

equations corresponding to data flow equations for template domains. This allows us to define the

problem as a bilinear program and certify the existence of a solution.

1.2 Contributions and Organization of this Thesis

This thesis is organized into three chapters. Chapter 2 is the first part of a publication1 where

we studied the template polyhedral abstract domain using connections to bilinear optimization

techniques. Specifically, data flow constraints for numerical domains such as polyhedra can be

expressed in terms of bilinear constraints. In Chapter 3 we propose algorithms such as policy and

strategy iteration for solving the bilinear constraints that arise from template polyhedra, wherein

the desired invariants conform to a fixed template form. We empirically compare policy iteration

with a variety of other approaches for bilinear programming. These approaches adapt well-known

algorithms to the special case of bilinear programs as well as using off-the-shelf tools for nonlinear

programming. Part of this chapter has been published and corresponds to the experimental portion

of Chapter 2. Sections 3.4-3.6 describe results not included in the paper, but to the best of our

knowledge are new approaches to solving BLPs, and we introduce a novel approach in section 3.7.

The implementation details of these (and the previously considered) methods can be found in section

1 J. Gronski, M. Ben Sassi, S. Becker, and S. Sankaranarayanan, Template Polyhedra and Bilinear Optimization,
Formal Methods in System Design (2018).
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3.8. Furthermore, in section 3.9 we examine the efficacy of each solver on randomly generated

bilinear problems of varying degrees of complexity by comparing their results and runtime. These

comparisons were not included in the aforementioned publication.

In Chapter 4 we discuss the Phase Retrieval problem for reconstructing an image from its

intensity measurements. We give a brief overview of current approaches used to solve the problem,

some of which are close variants to the methods described in Chapter 3. Super-resolution imaging

is discussed in section 4.4 and we propose a novel approach to quantifying the effectiveness of super-

resolution techniques in section 4.5.3. In section 4.5.2 we describe current methods for estimating

the entropy and mutual information of a system that entail discretizing the parameter space.

However, these approaches underestimate the entropy by including a negative bias. We motivate

the necessity for a better means of judging current practices, and introduce the concept of using

Monte Carlo methods for facilitating this for future work.



Chapter 2

Template Polyhedra and Bilinear Optimization1

In this chapter, we exploit the connections between inferring post-fixed points (inductive

invariants) for numerical domains and the process of solving nonlinear constraints to provide a

template polyhedral domain that can modify the templates on-the-fly as the analysis progresses.

In a template abstract domain, we fix the left-hand side expressions of the invariant properties

of interest and use abstract interpretation to compute valid right-hand side constants so that

the resulting inequalities form an inductive invariant [SSM05]. Template domains generalize a

host of popular, “weakly domains” such as intervals [CC76], octagons [Min01a, Min01b], octahe-

dra [CC07], pentagons [LF08], linear templates [SSM05], and quadratic templates [AGG12]. These

domains have been well studied and proven to be effective for proving safety of runtime assertions

in software [GPBG08, BCC+05, BCC+03, DS07, Matb, VB04]. Template domains have given rise

to specialized approaches such as policy iteration [CGG+05, GGTZ07] for improving post-fixed

points, and strategy iteration for computing the least fixed point [GS11, GS07].

Policy iteration starts from a known post-fixed point, and alternates between finding a “pol-

icy” that certifies the current solution versus finding the best solution under the current “policy”.

This approach was originally proposed by Costan et al. for the interval domain [CGG+05] and

generalized to arbitrary templates subsequently [GGTZ07]. Extensions have been proposed for

quadratic templates [AGG12]. On the other hand, strategy iteration approach works in a bottom

1 This chapter has been published:
J. Gronski, M. Ben Sassi, S. Becker, and S. Sankaranarayanan, Template Polyhedra and Bilinear Optimization, For-
mal Methods in System Design (2018).
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up fashion starting from the bottom of the lattice and exploiting the “monotonicity” property in the

dataflow equations for the template domain [GS07]. Specifically, the system of data flow equations

are linearized around the current solution, and a fixed point of the linearized system is obtained as

the next solution.

This analysis is divided into two parts. In this chapter, we exploit the connection between

policy iteration approach and classic bilinear optimization problems to design approaches that

can vary the template on-the-fly. This is done by adapting policy iteration, which is a variant of

the popular alternating coordinate descent that has been used widely in the control systems and

optimization communities [GB94]. Using this connection, we notice that the alternation between

solutions and multipliers can be extended to update the templates on the fly, as the iteration

proceeds. Significantly, the update to the templates can be made property-directed in a simple

manner. By combining these observations, we arrive at a policy iteration approach that can start

from initial, user-defined templates and update them on the fly. An implementation of the approach

and evaluation over a set of small benchmarks shows that the approach of updating the policies

on the fly is an effective solution to inferring appropriate templates in a property directed manner.

However policy iteration is not guaranteed to converge to a globally optimal solution, which would

correspond to the least fixed point solution in the abstract domain. In practice, the technique gets

stuck in a local minimum, yielding a suboptimal solution.

In the following chapter, we empirically compare policy iteration approach against other re-

lated approaches to local and global optimization problems [BBC+08, coi16, Bel09, WB06, Sah17,

TS05]. A result by Helton and Merino on more general biconvex programs suggests that the alter-

nating minimization almost never converges to a local minimum (technically a solution satisfying

the KKT conditions) [HM97]. Adjé et al. demonstrate an approach that computes an optimal

solution for systems which are nonexpansive [AGG14]. However, the general applicability of this

result is unclear.

Thus, given evidence that policy iteration (or alternating minimization) may not be a good

method, we explore alternatives, and run numerical experiments in Section 3.10, even proposing
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our own new variant. In addition to the solvers mentioned in our paper [GBSBS18], we include

several other methods, including projected gradient descent and a novel graph-partition approach

to alternating minimization, and compare the efficacy of each solver on randomly generated bilinear

programs of varying structure. For these examples, we also compare the runtime of each approach.

Our results suggest that, at least on our benchmark problems, alternating minimization is in fact

by far the best method, even compared with global optimization solvers. Furthermore, our imple-

mentation uses floating point, not exact arithmetic, and still achieves acceptable accuracy. Finally,

although we do not focus on runtime for our benchmark problems, we do note that alternating

minimization, in floating point arithmetic, is also one of the fastest solvers. The conclusion is that

although alternating minimization can have difficulties with saddle points, because it exploits the

specific structure of the problem, it may still be the best choice in many practical cases.

2.1 Related Work

Colón et al. were the first to discover the connection between linear invariant synthesis prob-

lems and bilinear constraints through the use of Farkas lemma in linear programming [CSS03].

These constraints were solved using specialized quantifier elimination techniques, but restricted to

small problems [Wei97]. Sankaranarayanan et al. explored the use of heuristic approaches to solve

bilinear constraints [SSM04b]. These approaches were generalized by Cousot, as instances of La-

grangian relaxations [Cou05]. Additionally, Cousot’s work uses numerical optimization tools to

prove total correctness properties of programs. His approach relies on formulating the constraints

as Linear or Bilinear Matrix inequalities (LMI/BMI). However, the use of numerical solvers requires

rigorous symbolic verification of the results. Recent experiences reveal surprising pitfalls, including

erroneous invariants obtained, even when the error tolerances are quite low [RVS16, SSCÁ16]. In

fact, one of the advantages of policy iterations lies in the use of exact arithmetic LP solvers to

avoid floating point errors. Other approaches to solving the resulting constraints have restricted

the multiplier variables to finite domains, enabling linear arithmetic solvers [GSV08].

Template polyhedra and their generalization to support functions have proven useful for con-
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structing reachable sets of linear and nonlinear hybrid systems [SDI08b, GG10, FLD+11, CAS12].

The problem of inferring template directions has also been studied in this context. Many heuris-

tics were proposed by Sankaranarayanan et al. in their paper on linear templates, including the

use of expressions found in programs, “increasing”/ “decreasing” expressions, and preconditions of

already added template expressions [SSM05]. However, none of these are guaranteed to be relevant

to the property. Adjé et al. use the idea of Lyapunov-like functions to effectively infer templates

that are shown to be effective in proving bounds on variables [AG15b].

The idea of updating templates on the fly was previously proposed by Ben Sassi et al. for

analyzing the largest invariant region of a dynamical system [SGS14]. The approach searches for a

polytope whose facets are transverse to the flow, failing which, the facet directions are adjusted and

tested again. The approach to adjusting facets is based on a local sensitivity analysis to obtain the

invariant region around an equilibrium (which facilitates basin of attraction analysis for dynamical

systems). Compared to the present work, the differences include the treatment of multiple program

locations and transitions, the use of policy iteration, and a property-directed approach that seeks

to prove a property rather than find a largest invariant region.

Abraham et al. propose effective heuristics to guide the choice of directions for constructing

reachable sets of linear hybrid systems [CE12]. Recently, Bogomolov et al. propose a counter-

example guided approach for inferring facets of template polyhedra for hybrid systems reachability

analysis [BFGH17]. The key differences include: (a) we are interested in computing a single polyhe-

dron per location whereas flowpipe construction approaches use a disjunction of polytopes, and (b)

we seek to compute time-unbounded invariants, whereas flowpipes are typically time bounded. An-

other interesting approach by Amato et al. uses principal component analysis (PCA) over concrete

states reached by execution traces to design templates [APS10].
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2.2 Motivating Example

Consider a simple system over two real-valued variables (x1, x2) ∈ R2, initialized to (x1, x2) ∈

[−1, 1]× [−1, 1]. The system executes the following action

if (x1, x2) ∈ [−8, 8]2 then


 x1

x2

 := M

 x1

x2


 else


 x1

x2

 :=

 x1

x2




wherein M =

 0.92 0.18

0.18 0.92

. Our goal is to prove that the set U : {(x1, x2) | x2 − x1 ≥ 2.1}

is never reached by any execution of the system. In order to prove the property using a template

domain, the user specifies a template matrix [SSM05, GGTZ07]:

T :



1 0

−1 0

0 1

0 −1


,

(∗ 1x1 + 0x2 ∗)

(∗ − 1x1 + 0x2 ∗)

(∗ 0x1 + 1x2 ∗)

(∗ 0x1 − 1x2 ∗)

wherein the rows represent the expressions x1,−x1, x2,−x2, respectively. The template domain

analysis seeks to find an invariant of the form T~x ≤ ~c by discovering the unknown constants ~c that

represent the RHS of the template. For the example shown above, the best possible invariant is

obtained as ~c :

(
8.8 8.8 8.8 8.8

)T
, yielding the range [−8.8, 8.8] × [−8.8, 8.8] for (x1, x2). In

fact, given our instance on using the template T , this is the best invariant possible (see Fig. 2.1(a)

to verify this).

For this example, the policy iterative scheme presented in this chapter is successful in choosing

a new template:

T̂ :



−1 1

1 −0.1957

0.1957 −1

−1 1


,

(∗ − x1 + x2 ∗)

(∗ x1 − 0.1957x2 ∗)

(∗ 0.1957x1 − x2 ∗)

(∗ − x1 + x2 ∗)
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Figure 2.1: Invariants synthesized for the three steps of the policy iteration with property directed
template modification. The simulation traces are shown in red. Note: each figure is drawn to a
different scale.

(a) (b) (c)

Along with this policy, we compute a tighter invariant shown in Fig. 2.1(c), that establishes

the invariant x2−x1 ≤ 2, and thus proving U unreachable. We note that (a) the choice of templates

is directed by the property, and (b) unlike the original policy iteration approach proposed by

Gaubert et al. [GGTZ07], this approach does not guarantee that the iterates are strictly descending.

In fact, the iterates obtained are often incomparable.

2.3 Preliminaries

Let R denote the set of real numbers and R+ : R ∪ ±∞ denote the extended reals with

infinity. We first define the transition system model used throughout this chapter. Let X be a

set of real-valued variables and Π[X] represent a language of assertions over these variables, drawn

from a suitable fragment of the first order logic over the reals. For any assertion ϕ ∈ Π[X], we

denote its corresponding set of models by JϕK. For convenience, the set of variables X are arranged

as a column vector, written as ~x.

Definition 2.3.1 (Transition System). A (numerical) transition system is a tuple 〈X,L, T , `0,Θ〉,

wherein

(1) X : {x1, . . . , xn} represents a set of real-valued program variables,

(2) L : {`1, . . . , `m} represents a set of program locations,
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(3) T : {τ1, . . . , τk} represents a set of transitions, wherein each transition τi is a tuple

〈`i,mi, ψi, gi〉, wherein,

(a) `i,mi ∈ L are the pre and the post locations, respectively.

(b) ψi ∈ Π[X], an assertion over X, represents the guard of the transition.

(c) gi : Rn → Rn, an update function, represents the (simultaneous) assignment:

(x1, . . . , xn) := gi(x1, . . . , xn).

(4) `0 is the initial location, and Θ ∈ Π[X] is an assertion over X representing the initial

valuations of the program variables.

A state of the transition system is a tuple 〈`, ~x〉 wherein ` ∈ L is the control location and

~x ∈ Rn represents a set of valuations for the program variable. Given a transition system, its

executions are a finite/infinite sequence of states:

(`0, ~x0)
τ1−→ (`1, ~x1)

τ2−→ · · · τi−→ (`i, ~xi) · · · ,

such that: (a) `0 is the initial location and ~x0 ∈ JΘK; (b) `i−1, `i are the pre/post locations

(respectively) of the transition τi for all i ≥ 1; (c) ~xi−1 ∈ JψiK for all i ≥ 1 wherein ψi is the guard

corresponding to the transition τi; and (d) ~xi = gi(~xi−1) for all i ≥ 1, wherein gi is the update

function for τi.

Figure 2.2: Example of a transition system with two variables x1, x2, two locations `1, `2 and four
transitions shown as arrows.

`1 `2

τ1 :

[
x1 ≥ 0→
~x := A1~x

]
τ2 : x1 ≤ 0

τ3 : x1 ≥ 0

τ4 :

[
x1 ≤ 0 →
~x := A2~x

]

A1 =

[
1 −1

0.5 0

]
A2 =

[
0.5 0
−0.5 0.5

]

Example Figure 2.2 shows an example of a transition system with X : {x1, x2}, L : {`1, `2} and

T : {τ1, τ2, τ3, τ4}. The guards and updates of the transitions are as shown in Fig. 2.2. The identity
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update ~x := ~x is not shown, however. The initial location is `1 and the initial condition on ~x is

(x1, x2) ∈ [0.5, 1.5]× [0.5, 1].

A state (`, ~x) is reachable if there is an execution that reaches the state.

For this exposition, we study linear transition systems. A linear expression is of the form

e : ~aT~x for vector ~a ∈ Rn. A linear inequality is of the form ~aT~x ≤ b and a linear assertion is

a finite conjunction of linear inequalities (~aT1 ~x ≤ b1 ∧ · · · ∧ ~aTk ~x ≤ bk) conveniently written in

matrix form as A~x ≤ ~b.

Definition 2.3.2 (Linear Transition Systems). A linear transition system (LTS) is a transition

system with the following restrictions:

(1) The initial conditions and transition guards are all linear assertions over X

(2) The update function for each transition is an affine function: gi(~x) : Ui~x+ ~vi.

Throughout this chapter, we will tackle linear transition systems. An error specification is

written as 〈`, ψ〉 for a location ` and a linear assertion ψ. The goal is to prove that no reachable

state for location ` satisfies ψ. I.e, all reachable states ~x at location ` satisfy ~x 6∈ JψK. To prove a

given specification, we use an inductive invariant.

Definition 2.3.3 (Inductive Invariant Map). An inductive invariant map η : L → Π[X] maps each

location ` ∈ L to an assertion η(`) such that the following conditions hold:

• Initial Condition: At the initial location `0, the entailment Θ |= η(`0) holds.

• Consecution Condition: For each transition τ : 〈`1, `2, ψi, gi〉, the following consecution

condition holds:

η(`1) ∧ ψi ∧ ~x′ = gi(~x) |= η(`2)[~x′] .

The condition states that starting from any state ~x ∈ Jη(`1)K, a single step of the transition

τ , if enabled, yields a state ~x′ ∈ Jη(`2)K.

Let η be an inductive assertion map and 〈`, ψ〉 be an error specification.
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Theorem 2.3.1. If the conjunction η(`) ∧ ψ is unsatisfiable, then for every reachable state (`, ~x),

it follows that ~x 6∈ JψK.

Proof. The proof first establishes that for any reachable state 〈`, ~x〉 of the system, we have that

~x ∈ Jη(`)K. In other words, the inductive invariants characterize all reachable states. Therefore, if

η(`) ∧ ψ is unsatisfiable, then no state can be reachable and satisfy ψ.

The problem therefore consists of finding inductive assertion maps that can prove a given

error specification.

2.3.1 Abstract Interpretation

Abstract interpretation provides a framework for systematically computing inductive asser-

tions using a pre-specified lattice of assertions called an abstract domain [CC77, CC92]. The key

insight lies in characterizing inductive assertion maps as post-fixed points of a monotone operator

over sets of states.

In this section, we briefly sketch the basics of abstract interpretation, and the Kleene iteration

using widening to compute post-fixed points.

The concrete domain Σ is a lattice whose elements are first order assertions over X,

ordered by entailment |=. The logical disjunction ∨ is the join operator and conjunction ∧ is the

meet operator in this lattice. The bottom element is false and the top element is true. We define

the post condition operation over sets of states and a transition τ .

Definition 2.3.4 (Post-Condition). Given a set ψ ∈ Σ, its post condition with respect to a

transition τ : 〈`1, `2, ϕ, g〉 is the set of all states reachable from some state in JψK in one step by

executing the transition τ :

post(ψ, τ) : (∃ ~y) ψ(~y) ∧ ϕ(~y) ∧ ~x = g(~y) .

We consider assertion maps η : L → Σ and let N be the set of all such maps. We lift the |=

operator from assertions to maps: η1 |= η2 iff for all ` ∈ L, η1(`) |= η2(`). Thus, N forms a lattice
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with the lifted |= as the inclusion. Next, we define a monotone operator F : N → N as

F(η)(`) :


Θ ∨

∨
τ :〈m,`,ϕ,g〉 post(η(m), τ) ` = `0∨

τ :〈m,`,ϕ,g〉 post(η(m), τ) otherwise

An assertion map η is a post fixed point of F iff

F(η) |= η .

Theorem 2.3.2. An assertion map is inductive if and only if it is a post fixed point of F .

Proof. The proof is available in most textbooks on static analysis [NNH99]. A proof of this

statement using the same notation as this section is available in the PhD thesis of Sankara-

narayanan [San05] (Lemma 3.2).

To compute a post-fixed point, we start with the bottom element of N , an assertion map η⊥

such that η⊥(`) = false for all ` ∈ L. We define the Kleene iteration as the sequence obtained by

iterating F over η⊥.

η(i) :


F(ηi−1) i ≥ 1

η⊥ i = 0

.

The process is stopped whenever η(i+1) |= η(i), in which case, we can show that η(i+1) ≡ η(i) is

the least fixed point. However, the iteration may go on forever even for simple programs. To

make matters worse, each step potentially yields larger and more complex formulas, making the

computation of post , ∨ and |= prohibitively expensive.

To counter this, abstract interpretation defines an abstract domain which is a lattice

〈A,v,t,u,⊥,>〉 with inclusion v, join operator t, meet operator u, a bottom element ⊥ and top

element > wherein each element a ∈ A is linked to the concrete domain through the concretization

function γ(a) ∈ Σ. Likewise, each assertion ψ ∈ Σ is linked to A through the abstraction function

α(γ) ∈ A. Together, the pair α, γ form a Galois connection:

(∀a ∈ A, ϕ ∈ Σ) a v α(ϕ) iff γ(a) |= ϕ .
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The abstract post condition operation is defined as p̂ost(a, τ) with a soundness condition:

(∀a ∈ A) post(γ(a), τ) |= γ(p̂ost(a, τ)) .

Once again, we lift the domain A to a lattice over maps N : L → A. The abstract operator G is

now defined analogous to the concrete operator F .

G(η̂)(`) :


α(Θ) t

⊔
τ :〈m,`,ϕ,g〉 p̂ost(η̂(m), τ) ` = `0⊔

τ :〈m,`,ϕ,g〉 p̂ost(η̂(m), τ) otherwise

A map η̂ is an abstract fixed point iff G(η̂) v η̂. The following theorem summarizes the core

soundness property of abstract interpretation.

Theorem 2.3.3. η̂ is an abstract post fixed point iff γ ◦ η̂ is an inductive assertion map.

The proof is available from most expositions of abstract interpretation [NNH99, CC77]. For a

proof using the notation introduced in this section, we refer the reader to Theorem 3.1 of Sankara-

narayanan’s PhD thesis [San05].

Once again, the abstract Kleene iteration can be applied to compute a post fixed point in

the abstract domain.

η̂(i) :


G(η̂i−1) i ≥ 1

η̂⊥ i = 0

.

If the lattice A has the ascending chain condition property, then the process is guaranteed

to converge, yielding an inductive assertion map. Otherwise, the process can still continue for ever.

In this case, we use a widening operator to guarantee convergence. Formally, the widening operator

∇ : A×A→ A has the following properties:

(1) a t b v a∇b for all a, b ∈ A.

(2) For any non-decreasing sequence

a0 v a1 v · · ·
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the corresponding widened sequence

b0 : a0, b1 : b0∇a1, · · · bi+1 : bi∇ai+1 · · ·

always converges in finitely many steps to yield bi+1 v bi.

In practice, widening causes an unacceptable loss in precision that is improved using a narrowing

iteration. A narrowing operator ∆ is used to terminate a descending sequence of lattice elements:

b0 w b1 w b2 · · · .

It satisfies the key property that if a w b then a w (a∆b) w b, and furthermore, the narrowed

descending iteration

c0 : b0, c1 : (c0∆b1), c2 : (c1∆b2), · · · , cj+1 : (cj∆bj+1) · · · ,

terminates in finitely many steps.

2.3.2 Template Domains

The rest of this chapter will focus on the abstract domain of template polyhedra [SSM05].

Let S : 〈L, X, T , `0,Θ〉 be a linear transition system. Let ~x represent the system variables in X as

a vector and n = |X|.

A template associates each location ` ∈ L with a m` × n matrix T`. We drop the subscript `

from the template matrix if the location ` is clear from the context. A m× n template T defines a

lattice A(T ):

A(T ) : {~c ∈ Rm+}, wherein, γ(~c) : T~x ≤ ~c .

In other words, each element of the template abstract domain is a possible valuation ~c to the RHS

of inequalities T~x ≤ ~c. Note that the entries in ~c can include ±∞. Naturally, we define the linear

inequality e ≤ ∞ to be synonymous with true and e ≤ −∞ is synonymous with false.

Given an assertion ϕ over ~x, its abstraction ~c : α(ϕ) is computed as a vector whose ith entry

~ci is the solution to the optimization problem:

~ci : max Ti~x s.t. ϕ(~x) .
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Since the abstraction is often computed for linear assertions ϕ, this is a linear programming (LP)

problem.

For each template element, its canonical representative can(~c) is defined as the instanti-

ation ~d, whose ith entry ~di is the solution to the following LP:

~di : max Ti~x s.t. T~x ≤ ~c .

Note that the solution to an unbounded problem is taken to be +∞ and an infeasible problem

to be −∞. Note that the template polyhedron defined by T~x ≤ ~c is identical to the polyhedron

T~x ≤ can(~c). A template element ~c is canonical in A(T ) if and only ~c = can(~c).

The inclusion operator v in A(T ) is defined as

~c1 v ~c2 iff can(~c1) ≤ can(~c2) ,

wherein ≤ operation over vectors compares elements entrywise. The join operator ~c1 t ~c2 is sim-

ply the entrywise maximum max(~c1,~c2). Likewise, the meet operator is the canonical entrywise

minimum.

Let T` be the template associated with location ` and Tm with location m. The abstract post

with respect to a transition
〈
`,m, ϕ : A~x ≤ ~b, g : U~x+ ~v

〉
is an operator p̂ost : A(T`)×T → A(Tm).

Given ~c ∈ A(T`), the result ~d : p̂ost(~c, τ) is a vector wherein ~di is given as the solution to the

following LP:

~di :



max Tm,i~x

s.t. T`~y ≤ ~c

A~y ≤ ~b

~x = U~y + ~v


Widening and narrowing operators for the template domain are defined by extensions of the

standard interval widening operator [SSM05].

The template domain is a convenient numerical abstract domain that uses linear programming

solvers as a primitive for implementing the domain operations. However, a common critique of the

template approach is that it requires users to specify the template T . In practice, users default
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to popular choices such as intervals, octagons and pentagons which avoid repeated calls to LP

solvers by using special properties of the constraints in these templates. We proceed by assuming

that an initial template has been specified for each location using one of the schemes outlined above.

Our approach can change this template as part of the solution scheme.

2.4 Bilinear Constraints and Policy Iteration

In this section, we consider the data flow equations for template abstract domain, connect-

ing them to a class of nonconvex optimization problems called bilinear optimization problem

(BOP). We present the policy iteration approach, proposed by Gaubert et al. as a technique

for solving such bilinear inequalities that alternates between solving linear programs [GGTZ07].

Once again we fix a linear transition system S and assume for simplicity that each location ` is

labeled with the same m×n matrix T . The approach can be easily extended to the case where the

template matrices differ between locations.

We will make use of Farkas’ lemma, a standard result in linear programming. Let ϕ : A~x ≤ ~b

be a linear assertion with m × n matrix A and m × 1 vector ~b, ψ : ~cT~x ≤ d be a given linear

inequality.

Theorem 2.4.1 (Farkas Lemma). If ϕ is satisfiable, then ϕ |= ψ iff there exists nonnegative

multipliers ~λ ∈ Rm such that

AT~λ = ~c ∧ ~bT~λ ≤ d ∧ ~λ ≥ 0 . (2.1)

Furthermore, ϕ is unsatisfiable if and only if there exists multipliers ~λ ∈ Rm such that

AT~λ = ~0 ∧ ~bT~λ ≤ −1 ∧ ~λ ≥ 0 .

The constraints can be seen as encoding the entailment ϕ |= ~0T~x ≤ −1.

A proof can be found in most textbooks that deal with linear optimization [Chv83]. Given a

system of constraints ϕ : A~x ≤ ~b, the form in Eq. (2.1) is often referred to as the dual. Furthermore,

the multipliers ~λ are often referred to as as the dual variables or dual multipliers.
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Note that Farkas lemma handles the entailment of a single linear inequality. However, for

a polyhedron C~x ≤ ~d, we may encode the entailment A~x ≤ ~b |= C~x ≤ ~d as a series of single

inequality entailments: A~x ≤ ~b |= Cj~x ≤ ~dj for each row j of C, ~d. The resulting constraints can

be collectively written as:

ATΛ = C, ΛT~b ≤ ~d, Λ ≥ 0 .

All equalities and inequalities between matrices are interpreted entrywise. Here Λ is a matrix with

as many rows as A and as many columns as the number of rows in C. The jth column of Λ contains

the multipliers corresponding to the inequality Cj~x ≤ ~dj . This notation will be used throughout

the rest of the chapter.

Using Farkas’ lemma, we may now derive a system of constraints corresponding to the data

flow equations for the template domain. Let T be a m× n template matrix. We associate each

location ` with an unknown vector ~c(`) ∈ A(T ) such that the assertion map η(`) : T~x ≤ ~c(`) is

inductive.

We wish to encode the constraints for initiation:

Θ |= T~x ≤ ~c(`0) , (2.2)

and for each transition τ : 〈`,m, ϕ, g〉, we wish to model consecution:

T~x ≤ ~c(`) ∧ ϕ ∧ ~x′ = g(~x) |= T~x′ ≤ ~c(m) . (2.3)

Initiation: Let Θ : A0~x ≤ ~b0 be the assertion for the initial condition. Using Farkas’ lemma for

the entailment in Eq. (2.2), we obtain the condition:

AT0 Λ0 = T ∧ ΛT0
~b0 ≤ ~c(`0) ∧ Λ0 ≥ 0 . (2.4)

Here Λ0 is a k ×m matrix wherein k is the number of rows in A0 and m is the number of rows in

T . We write Λ0 ≥ 0 to indicate that all entries in Λ0 are non-negative.

Consecution: Let τ be a transition with guard Aτ~x ≤ ~bτ and update g(~x) : Uτ~x + ~vτ . The

consecution condition in Eq. (2.3) can be rewritten through substitution of ~x′ and arranged as
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follows:

Λτ → T~x ≤ ~c(`)

Γτ → Aτ~x ≤ ~bτ

|= TUτ~x ≤ ~c(m)− T~vτ

The notation above shows the constraints and the associated dual multipliers with each block of

constraints. Furthermore, we have substituted ~x′ = Uτ~x+~vτ . This is dualized using Farkas’ lemma

to yield the following constraints:

T TΛτ +ATτ Γτ = TUτ

ΛTτ ~c(`) + ΓTτ
~bτ ≤ ~c(m)− T~vτ

Λτ ,Γτ ≥ 0

(2.5)

Note that Eq. (2.4) for the initiation yields a system of linear constraints involving ~c(`0) and

unknown multipliers in Λ0. However, the consecution constraints in Eq. (2.5) for each transition τ

involve the product ΛTτ ~c(`) both of which are unknown. This makes the constraints for consecution

fall into a special class called bilinear constraints. I.e., for a fixed Λτ these constraints are linear

in the remaining variables ~c(`),Γτ . Similarly, for fixed values of ~c(`), these constraints are linear

in the variables Λτ ,Γτ . Figure 2.3 summarizes the constraints obtained at a glance. Note that the

multipliers Λτ are called bilinear multipliers since they are multiplied with the unknowns ~c(`)

to form the nonlinear terms in the constraints. On the other hand, note that Λ0,Γτ variables are

not multiplied with other unknowns.

Connection with Min-Policies: The original “min-policy” approach of Costan et al. [CGG+05]

considers data flow equations of the form:

~c ≥ min(~aTi,1~c, . . . ,~a
T
i,k~c) , i = 1, . . . ,M, k = 1, . . . , N . (2.6)

We will demonstrate that the equations shown in Figure 2.3 can be equivalently expressed in this

form. For simplicity, we consider the case for a single location ` with template T and unknown

template RHS variables ~c. All transitions are assumed to be self-loops around this location. From
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Figure 2.3: Bilinear system of constraints at a glance. The constraints are generalized to allow for
possibly different templates T` at each location.

TemplateVars : ~c(`), ` ∈ L
BilinearMults : Λτ , τ ∈ T

LinearMults : Λ0,Γτ , τ ∈ T

Constraints : AT0 Λ0 = T`0 (* Initiation *)

ΛT0
~b0 ≤ ~c(`0)

T Tl Λτ +ATτ Γτ = TmUτ (* Consecution τ : 〈l,m, ϕ, g〉 *)

ΛTτ ~c(`) + ΓTτ
~bτ ≤ ~c(m)− Tm~vτ

Λ0,Λτ ,Γτ ≥ 0 (* Nonnegative multipliers *)

eq. (2.5), a given solution ~c satisfies the consecution for transition τ iff there exist Λτ ,Γτ such that

~c ≥ ΛTτ ~c+ ΓTτ
~bτ + T~vτ (2.7)

T TΛτ +ATτ Γτ = TUτ (2.8)

Λτ ,Γτ ≥ 0 (2.9)

Let us define a polyhedron P (Λτ ,Γτ ) defined by collecting the constraints in lines (2.8), (2.9) above.

We may rewrite the constraints equivalently as:

~c ≥ min
(Λτ ,Γτ )∈P

(
ΛTτ ~c+ ΓTτ

~bτ + T~vτ

)
(2.10)

Note that P is a polyhedron. Let us assume that it is defined by N vertices:

(Λ1,Γ1) , . . . , (ΛN ,ΓN ) .

The min in eq. (2.10) can be equivalently written as a minimization over the finite set of vertices

of P :

~c ≥
N

min
j=1

(
ΛTj ~c+ ΓTj

~bτ + T~vτ

)
(2.11)

We note that this form arises from the specific structure of the data flow equations for the template

abstract domain. In particular, not all bilinear constraints satisfy this property.
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2.4.1 Policy Iteration

We now describe policy iteration as an alternation between solving for unknown ~c(`) for each

` ∈ L and solving for the unknown bilinear multipliers Λτ . Policy iteration starts from a known

sound solution ~c0(`) and successively improves the solution to obtain better solutions (smaller in

the lattice) until no further improvements can be obtained. The initial solution may be obtained by

using Kleene iteration with widening. For simplicity, we will assume that ~c0(`) 6= ⊥, for each ` ∈ L.

If this were the case, then the location ` is unreachable, and can be removed from the system.

The overall scheme alternates between (I) solving for the unknown multipliers Λτ ,Γτ ,Λ0

given a fixed value of ~c, and (II) solving for the unknown template RHS ~c(`) given Λτ ,Γτ and

Λ0. Since Γτ and Λ0 are not involved in any bilinear term, we do not fix them to specific values

when solving for ~c(`).

Solving for Multipliers: Given the values for the current solution ~c(i)(`) at each location, we

simply plug in these values and solve the system in Figure 2.3.

Lemma 2.4.2. The constraints shown in Fig. 2.3 become linear if we replace ~c(`) at each location

by fixed (constant) values.

Proof. Proof is by inspection. We run through each inequality and note that the constraints are

linear in the variables ~c(i)(`) and the multipliers Λ0,Λτ , and Γτ .

The remaining constraints are linear over Λ0,Λτ and Γτ for each transition τ , and can be

thus solved using a LP solver. The following lemma guarantees that the constraints will always

yield a feasible solution provided the values ~c(i) are a valid post-fixed point.

Lemma 2.4.3. If the solution ~c(i)(`) for each ` ∈ L is a post-fixed point, the constraints in the

Fig. 2.3 are feasible for the remaining multipliers, when ~c(`) is replaced by ~c(i)(`).

Proof. Let us assume that the solutions ~c(i)(`) yield a post-fixed point over the template polyhedra

domain. We now wish to show that the constraints in Fig. 2.3 are feasible when we replace each

~c(`) by ~c(i)(`).
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The proof is obtained by combining two facts: (a) because ~c(i)(`) form a post-fixed point, the

initiation condition (Eq. (2.2)) and consection conditions for each transition τ ∈ T ( Eq. (2.3) ) for

inductive invariance hold. (b) Because these entailments hold, we can apply Farkas’ lemma to each

of them and derive the existence of multipliers for Eq. (2.4) and Eq. (2.5). However, the constraints

in Figure 2.3 are just a conjunction of these constraints. Therefore, we conclude that there exist

values of the multipliers that satisfy these constraints when we substitute ~c(i)(`) for each ~c(`).

Let Λ
(i)
τ be the resulting values of the bilinear multipliers returned by the LP solver when we

replace ~c : ~c(i). These are also called policies [GGTZ07].

Solving for Template RHS: Next, let us assume that the variables Λτ for each transition are

set to constants Λ
(i)
τ .

Lemma 2.4.4. If we set Λτ for each τ to constants Λ
(i)
τ for the constraints in Figure 2.3, the

resulting problem is linear over ~c(`) for each ` ∈ L and the linear multipliers Γτ ,Λ0.

Proof. Proof is once again by inspection of each constraint in Figure 2.3.

Once we set Λτ to specific values, the resulting system is once again a linear program. Let

us call this problem Ci.

Lemma 2.4.5. The LP Ci is always feasible.

Proof. To see this, we note that ~c(`) = ~c(i) is already a solution to this LP due to how the values

of Λ
(i)
τ were obtained in the first place. We call the resulting values ~c(i+1)(`).

The overall policy iteration scheme alternates between solving for ~c(`) and solving for Λτ

variables. Gaubert et al. show that the number of policies needed is finite (but large), and thus

the process is guaranteed to yield a stable solution such that ~c(i+1)(`) = ~c(i)(`).
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2.5 Policies with Template Update

In this section, we extend policy iteration process to achieve two goals simultaneously: (a)

be goal-directed towards a specific property and (b) allow the template T at each location to be

updated.

Let (`, ψ) be a error specification at location ` that we wish to prove unreachable. Our goal

is to compute an inductive assertion map η such that at location `, the conjunction η(`) ∧ ψ is

unsatisfiable. Once again, we will first assume for the sake of exposition that the same template

matrix T is used at each location.

Using Farkas’ lemma, the invariant T~x ≤ ~c(`) proves the unreachability of the error specifi-

cation ψ : P~x ≤ ~q iff there exist multipliers ~λs, ~γs ≥ 0 s.t.

T ᵀ~λs + P T~γs = ~0, ~c(`)T~λs + ~qT~γs ≤ −1︸ ︷︷ ︸
I

, ~λs, ~γs ≥ 0 . (2.12)

However, if the invariant fails to prove the property, we will be unable to find suitable

multipliers ~λs, ~γs ≥ 0. Since, our procedure will involve intermediate solutions that do not satisfy

the property, we will consider the following optimization-based formulation by moving the inequality

labeled “I” in (2.12) to the objective, as follows:

min ~c(`)T~λs + ~qT~γs

s.t. T T~λs + P T~γs = ~0

~1T~λs = 1 (* normalization constraint *)

~λs, ~γs ≥ 0

(2.13)

Note that we have added a normalization constraint requiring that the sum of the multi-

pliers ~λs equal 1. Without such a constraint, the problem always has a trivial solution 0 by setting

all the multipliers (~λs, ~γs) to 0, which is undesirable for the policy iteration scheme to be discussed

subsequently.

Lemma 2.5.1. Suppose Ti = −Pj for row i of matrix T , row j of matrix P , and ~c(`)i < ∞ then

the optimization problem in Eq. (2.13) is feasible.
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Furthermore, its objective value is strictly negative iff T~x ≤ ~c(`) proves the specification

(`, ψ : P~x ≤ ~q).

Proof. Given that Ti = −Pj , we then choose ~λs(i) = 1 and the rest of entries to zero. Likewise,

~γs(j) = 1 and the remaining entries of ~γs are set to 0. We can now verify that this will satisfy the

constraints, thus providing a feasible solution.

Note that if we find a solution (~λs, ~γs) such that the objective value is ε < 0, then (
~λs
|ε| ,

~γs
|ε| )

satisfy the constraints in Eq. (2.12). The rest follows from Farkas’ lemma.

Thus, we will use the optimization formulation as an objective function that measures how

“far away” the current solution at ` is from proving the property of interest.

2.5.1 Updating Templates

Next, we allow the template T to change at each step to a new template T (i+1) : T (i) + ∆,

starting with the initial template T (0) = T , wherein ∆ is the unknown change in the template. As

a result, our analysis explores a series of templates:

T (0), T (1), . . . , T (N) .

In doing so, we update the constraints to introduce an unknown change ∆. However, allowing

arbitrary changes to the template will not work since choosing ∆ = −T (i) immediately makes the

template trivial, and not useful for our purposes. Therefore, we specify upper and lower limits to

the change in the template. These limits can be set using different strategies that we will explore

in the experimental evaluation section. Let L be the lower limit and U be the upper limit so that

L ≤ T (i) + ∆ ≤ U . As a technical condition, we require T (i) ∈ [L,U ], i.e., the option to keep the

current template T (i) unchanged is allowed at each step.

Figure 2.4 shows the bilinear optimization problem

B
(

(~c(`),∆`), (Λτ , ~λs)
)
,
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obtained when the change in the template variables is also considered. Here note that ` ranges

over all location, τ over all transitions and finally, ~λs pertains to the property to be checked which

is assumed to be relevant to a single location in the program. We note that the variables involved

in the bilinear terms are once again separated into two sets, represented in different colors for

convenience.

2.5.2 Template Updates and Policy Iteration

We now update the policy iteration process to consider the change in templates, as shown in

Fig. 2.4. Let ~c(0) be an initial value such that T
(0)
` ~x ≤ ~c(0)(`) is inductive. The initial template T

(0)
`

is specified by the user, and furthermore, the initial inductive invariant is assumed to be computed

by abstract interpretation. The initial update ∆
(0)
` = 0 for each location `.

Note: For convenience, we will assume that (~c(0(`))i 6= ±∞. Indeed, if any entry of ~c
(i)
` is −∞,

then the location ` is deemed unreachable and removed from the transition system. Also, if any

entry of ~c
(i)
` is +∞, we will simply remove the corresponding template row from our analysis.

Multiplier Update: At each iteration i, the multiplier update uses ~c(i),∆(i) to obtain values of

Λ
(i)
τ , ~λ

(i)
s . Formally, we consider the problem

Mi : B
(

(~c(i)(`),∆
(i)
` ), (Λτ , ~λs)

)
Lemma 2.5.2. The following are true:

(1) Mi is a linear program over unknown multipliers Λτ , ~λs,Γτ , ~γs,Λ0.

(2) It is feasible iff the map η(i) formed by the assertions (T
(i)
` + ∆

(i)
` )~x ≤ ~c(i)(`) for ` ∈ L, is

an inductive assertion map.

(3) The value of the objective function cannot increase, i.e., for i > 1,

~c(i)(`)T~λ(i)
s + ~qT~γ(i)

s ≤ ~c(i)(`)T~λ(i−1)
s + ~qT~γ(i−1)

s .

(4) The value of the objective is negative iff η(i) proves the specification (`, ψ).
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Proof. (1) First, to see thatMi is a linear program, we inspect the constraints in Figure 2.4. Each

constraint is linear in the unknowns (Λτ , ~λs).

(2) The proof is identical to that of Lemma 2.4.3. Suppose, the map η : ` → (T
(i)
` +∆

(i)
` )~x ≤ ~c(i)(`)

foreach ` ∈ L, forms an inductive assertion map. We note that η satisfies the conditions for

initiation (2.4) and consecution (2.5) with the template T
(i)
` replaced by T

(i+1)
` : T

(i)
` + ∆

(i)
` .

Dualizing the initiations and consecution conditions using Farkas lemma yields the constraints in

Fig. 2.4. As a result, we note that when we substitute values ∆
(i)
` for each ∆` and ~c(i)(`) for each

~c(`), the multipliers have a feasible solution provided by Farkas’ lemma.

(3) We note that ~λ
(i−1)
s , ~γ

(i−1)
s form (part of a ) feasible solution forMi and furthermore, ~λ

(i)
s and

~γ
(i)
s form part of the optimal solution for the same. Since, we are minimizing the objective, the

optimal objective must be less than or equal to any feasible solution.

(4) The value of the objective is negative iff η(i) proves the specification (`, ψ).

The result of multiplier update yields values for the variables (Λτ , ~λs) : (Λ
(i)
τ , ~λ

(i)
s ).

Template Update: Given the current values (Λ
(i)
τ , ~λ

(i)
s ) for the multipliers, we derive new values

~c(i+1)(`),∆
(i+1)
` for the template variables by solving the problem

Ci+1 : B
(

(~c(`),∆`), (Λ
(i)
τ ,

~λ(i)
s )
)
.

Lemma 2.5.3. The following facts hold:

(1) Ci+1 is a linear program over the unknown template variables ~c(`),∆` and unknown linear

multipliers Γτ , ~γs,Λ0.

(2) It is always feasible provided T (i) ∈ [L`, U`] at each location at each iteration.

(3) The assertion map η(i+1) formed by the solution

(T
(i)
` + ∆

(i+1)
` )~x ≤ ~c(i+1)(`) for ` ∈ L ,

is inductive.

(4) The value of the objective function cannot increase, i.e., for i ≥ 0,

~c(i+1)(`)T~λ(i)
s + ~qT~γ(i+1)

s ≤ ~c(i)(`)T~λ(i)
s + ~qT~γ(i)

s .
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(5) The value of the objective function ~c(i+1)(`)T~λ
(i)
s + ~qT~γ

(i+1)
s is negative iff the η(i+1) proves

the property.

Proof. Proof is entirely analogous to Lemma 2.5.2.

(1) We note that Ci is a linear program since each constraint in Figure 2.4 is linear in the unknowns

(~c(`),∆`).

(2) We note that setting ∆` = 0,~c(`) = ~c(i)(`) yields a feasible solution for Ci.

(3) We note that the assertion map η(i+1) formed by the solution

(T
(i)
` + ∆

(i+1)
` )~x ≤ ~c(i+1)(`) for ` ∈ L ,

satisfies the dual of the initiation and consecution constraints due to the existence of the multipliers,

and thus by Farkas lemma satisfies the conditions themselves.

(4) We note that ~c(i)(`),∆` = 0 is already feasible for Ci. Therefore, the objective value achieved

by the optimal solution must be less than or equal to that achieved by any feasible solution.

(5) This follows directly from Lemma 2.5.1.

The overall scheme alternates between updating the multipliers and the template variables,

until no more changes can occur. We also observe that starting from a valid inductive invariant,

the solutions obtained during the policy iteration continue to remain inductive or post-fixed points.

However, they are post-fixed points over the lattice A(T
(i)
` + ∆

(i)
` , ` ∈ L), which is different from

the original lattice. As observed already in the motivating example (section 2.2), these invariants

can be mutually incomparable. However, we show that at each step, the value of the objective

function measuring progress towards proving the specification cannot increase.

2.5.3 Discussion

We now focus on issues such as convergence and the complexity of each step.

Convergence: In general, the known results about the convergence of alternating minimization

schemes for bilinear optimization problems indicate that the process seldom converges to a global
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optimal value [HM97]. Often, these iterations get “stuck” in a local saddle point, from which no

further progress is possible. Nevertheless, our goal here is not to converge to a global optimum but

to a good enough solution whose objective function value is strictly negative, thus proving the

property of interest.

Example The following example taken from Adjé et al. [AGG14] demonstrates the fundamental

difficulties of using policy iteration to calculate a “good” invariant.

var x initially 0 <= x <= 1

while (x <= 100)

x := (1 - x)

end

The program can be written in the formalism of this chapter as a single location ` representing

the head of the while loop and a single transition τ with guard x ≤ 100 and update x′ = 1− x.

Since the program has a single variable, the “best” template possible using linear expressions

is equivalent to the interval domain.

Policy iteration does not converge to the best solution 0 ≤ x ∧ x ≤ 1, unless it is directly

initialized to this invariant. For example, starting from the initial solution 0 ≤ x ≤ 100, it converges

instead to −99 ≤ x ≤ 100. �.

By allowing template updates to the process, the problem is worsened in a sense. It is no

longer clear that the process will necessarily converge (even if it converges to a saddle point) in

finitely many steps. It is entirely possible that the value of the objective function remains unchanged

but the process produces a new template T
(i)
` + ∆

(i)
` at each step. Depending on how the limits to

the template change L`, U` are specified, this process may produce a fresh new template at each

step.
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Nevertheless, we note that the lack of convergence does not pose a serious hurdle to an

application of template update to policy iteration. It is possible to iterate while each step provides

at least ε > 0 decrease in the value of the objective function, and stop otherwise.

Complexity: At each step, we solve a linear programming problem. For a transition system with

n variables, |L| locations, |T | transitions, k template rows at each step, the size of each LP in terms

of number of variables + constraints is O
(
|L|kn+ |T |k2

)
. Although this is polynomial, the process

can be prohibitively expensive for large programs. In our future work, we wish to exploit the block

structure of these constraints in order to allow us to solve the LPs using standard approaches such

as Benders or Danzig-Wolfe decomposition techniques [Chv83]

Collecting Invariants: Finally, we note that each step yields an invariant map η(i) that is not

necessarily comparable to the invariant obtained in the next step η(i+1). However, we note that

the finite conjunction

η(0) ∧ · · · ∧ η(N) ,

over all the iterations of this process can be a stronger invariant than each of them. This is already

demonstrated by the motivating example in Section 2.2.
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Figure 2.4: Bilinear system of constraints with objective function and template update variables

∆l. The current template after the ith iteration at location m ∈ L is denoted T
(i)
m .

Vars : ~c(`), ` ∈ L (* Template RHS *)
∆`, ` ∈ L (* Template update *)
Λτ , τ ∈ T (* Bilinear mult.*)
~λs (* Error Spec.*)
Λ0,Γτ , τ ∈ T (* Linear Mults. *)
~γs (* Error Spec.*)

min : ~c(`)T~λs + ~qT~γs

s.t. AT0 Λ0 = T
(i)
`0

+ ∆`0 (* Initiation *)

ΛT0
~b0 ≤ ~c(`0)

(T
(i)
` + ∆`)

TΛτ +ATτ Γτ = (T
(i)
m + ∆m)Uτ (* Consecution τ : 〈`,m, ϕ, g〉 *)

Λτ
T~c(`) + ΓTτ

~bτ ≤ ~c(m)− (T
(i)
m + ∆m)~vτ

(T
(i)
` + ∆`)

T~λs + P T~γs = 0 (* Error spec. `, ψ : P~x ≤ ~q *)

1T~λs = 1

Λ0,Λτ , ~λs,Γτ , ~γs ≥ 0 (* Nonnegative multipliers *)

L` ≤ T
(i)
` ∆` ≤ U` (* Limits on template change *)
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2.6 Evaluating Policies with Template Updates

We present a preliminary experimental evaluation of the ideas presented thus far using a

prototype implementation.

Prototype Implementation: A prototype implementation was developed in Python, using the

exact arithmetic LP solver QSOptEx. The QSOptEx solver provides a fast and convenient interface

to an optimized Simplex implementation in exact arithmetic. Our implementation allows the spec-

ification of a transition system and supports a few additional features on top of those presented in

the chapter including location invariants. We also support the option to specify different templates

at various program locations. During the template update, our approach considers independent

updates to the template at each location.

Specifying Template Changes: We consider a simple approach to specifying the limits L`, U`

to the change in template at each location `. First, the option for ∆` = 0 must be allowed, secondly,

∆` = −T must be disallowed. For each T`(i, j) = 0, we specify corresponding limits L`(i, j) = −z

and U`(i, j) = z for a fixed constant z > 0 (taken as 1000 in our experiments). For T`(i, j) 6= 0, we

allow ∆ to range between 1
2T`(i, j) and 2T`(i, j) in our experiments.

Benchmark Examples: We consider a set of 9 benchmark examples that are illustrative of

applications that we encounter in the verification of discrete-time affine hybrid systems. Table 2.1

briefly describes each benchmark example.

Experimental Comparison: Table 2.2 shows the comparison between abstract interpreta-

tion using Kleene iteration and policy iteration with template update. Likewise, the perfor-

mance for policy iteration without template update is shown in Table 2.3. Finally, Table 2.4

shows a comparison with the polyhedral abstract domain using the Parma Polyhedron Library

(PPL) [BRZH02, BHZ06].

The table reports the objective value of the initial solution obtained after the Kleene iteration

(using widening/narrowing) terminates. A non-negative value of the objective function indicates

the failure to prove the property. Overall, we see that policy iteration with template update is
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Table 2.1: Description of the benchmarks used and the sizes in terms of (# variables, # locations,
# transitions)

ID Size Remark

1 (4,2,2) Switched linear system with 4 state variables.
2 (2,2,4) Example in Fig. 2.2.
3 (2,1,1) Linear System with 1 location and transition.
4 (2,1,1) Motivating example from Section 2.2.
5 (3,1,4) Adjé et al. [AG15b].
6 (2,35,169) Grid-based piecewise linearization of Van Der Pol oscillator.
7 (4,5,54) A piecewise linear dynamical system.
8 (5,1,12) Piecewise linear dynamical system.
9 (8,1,7) A platoon of two cars with controller maintaining distance.

effective in these benchmarks in proving properties in 5 out of the 9 cases, whereas without

template update we prove the property in just 2 out of 9. The polyhedral domain proves 3 out of

the 9.

Figure 2.5 shows the sequence of iterates at the two locations for the transition system shown

in Fig. 2.2 corresponding to benchmark number 2. The goal is to establish the unreachability of

x2 ≥ 0.8 at location `2. The final invariant for `2 is shown in green, proving the specification.

Thus, we provide preliminary evidence that the bilinear approach is effective in cases where

Kleene or policy iteration fail. At the same time, we notice that the size of the bilinear problem,

though polynomial in the original transition system and template size, is often large with thousands

of variables. However, the problems are sparse with each constraint involving just a tiny fraction

of these variables. This points out the need for simplification techniques and approaches to solving

bilinear problems that exploit this sparsity to make the approach more efficient.
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Figure 2.5: Sequence of iterates for benchmark id 2 culminating in the final invariants shown shaded
in blue and green. The property x2 ≥ 0.8 is shown unreachable at the green location by the final
iterate.

Table 2.2: Experimental results for policy iteration with template update. All experiments were
run on a Macbook Air laptop with 1.8 GHz Intel processor, 8GB RAM running OSX10.12. All
timings are in seconds. Legend: Succ.: whether the property was successfully proved, if not, the
objective value is reported, |BOP|: size of the bilinear problem (# bilinear template variables, #
bilinear mult. variables, # linear mult. variables), # I: # policy iterations - A (*) next to this
number indicates that the iteration was stopped due to 5 consecutive steps with same objective
value. TO indicates time out of 1 hour.

id Init. Templ. Kleene Policy Iteration
Type, |T | Time Succ. |BOP| Time # I Succ.

1 Interval, 8 0.12 N(0.2) (240, 1176, 1249) 0.55 5(*) N (0.2)
3 Octagon, 8 0.04 N(0.5) (24, 72, 161) 0.05 2 Y
4 Interval, 4 0.02 N(15.5) (12, 20, 33) 0.02 2 Y
5 Pentagon, 10 1.5 N(2.83) (40, 410, 681) 0.3 2 Y
6 Interval, 4 2.5 N(0.75) (168, 836, 2033) 2.9 5(*) N(0.75)
7 Pentagon, 22 3.1 N(0.2) (500, 10020, 8332) 2.4 3 Y
8 Pentagon, 22 2.6 N(43) (126, 5313, 6311) TO - N
9 Interval, 16 2.2 N(9500) (286,4758,9501) 2.4 2 Y
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Table 2.3: Experimental results for policy iteration without template update. See Table 2.2 for
the legend.

id Init. Templ. Kleene Policy Iteration
Type, |T | Time Succ. |BOP| Time # I Succ.

1 Interval, 8 0.12 N (0.2) (52,1176, 1249) 0.19 2 N(0.2)
2 Octagon, 8 0.15 N (0.2 ) (16, 264, 353) 0.1 2 N(0.2)
3 Octagon, 8 0.04 N(0.5) (8, 72, 161) 0.02 1 N(0.5)
4 Interval, 4 0.02 N(15.5) (4,20,33) 0.01 1 N(15.5)
5 Pentagon, 10 1.5 N(2.83) (10, 410, 681) 0.3 2 Y
6 Interval, 4 2.5 N(0.75) (140, 836, 2033) 1.5 5(*) N(0.75)
7 Pentagon, 22 3.1 N(0.2) (110, 10020, 8322) 15.3 5(*) N(0.2)
8 Pentagon, 22 2.6 N(43) (22, 5313, 6311) 16.9 5(*) N(38.8)
9 Interval, 16 2.2 N(9500) (16, 4758, 9501) 2.3 2 Y

Table 2.4: Experimental results using the polyhedral abstract domain and comparison of outcome
against policy iter with template change in column TC (recalled from Tab. 2.2).

id Time(s) Succ. TC

1 0.6 N N
2 0.03 Y Y
3 0.02 Y Y
4 0.02 Y Y
5 0.3 N Y
6 1.7 N N
7 2.7 N Y
8 TO > 1h N N
9 TO > 1h N Y



Chapter 3

Bilinear Programming Problems

Thus far, we have studied the problem of abstract interpretation of programs using the

template domain. As noted earlier, the data flow constraints characterizing the fixed points of the

problem correspond to a class of non-convex optimization problems known as bilinear programs

(BLPs). In this chapter, we study the basic structure of the bilinear programs, abstracting from the

structure of the optimization problem presented in Figure 2.4, and propose two novel approaches

to solving bilinear programs that naturally handle some of their inherent difficulties. We discuss

the connection between bilinear and quadratic programs (QPs) to motivate the use of QP solvers

on BLPs. We conclude by comparing our novel approaches against a suite of varying methods on

both real-world and synthetic data. We discuss the applicability of each method and compare their

ability to accurately solve bilinear programs.

Our problem of interest is the following generic Bilinear Program (BLP):

min
~x,~y,~z

~xTA0~y +~bT0 ~x+ ~cT0 ~y + ~dT0 ~z

subject to ~xTAi~y +~bTi x+ ~cTi y + ~dTi ~z ≤ ~ri i ∈ I

~xTAj~y +~bTj ~x+ ~cTj ~y + ~dTj ~z = ~rj j ∈ E

~lx ≤ ~x ≤ ~ux, ~ly ≤ ~y ≤ ~uy, ~lz ≤ ~z ≤ ~uy

(3.1)

where ~x ∈ Rn, ~y ∈ Rm, ~z ∈ Rk and ~lx, ~ux,~ly, ~uy,~lz, ~uz represent lower and upper bounds on ~x, ~y and

~z, respectively. I and E are the inequality and equality index sets for the constraints, respectively.

The bilinear program in (3.1) is separable. By fixing the variables ~x to definite values, we
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obtain a linear program over the remaining variables (~y, ~z), and likewise, fixing the variables ~y, we

obtain a LP over (~x, ~z).

Lemma 3.0.1. The dataflow constraints obtained in Figure 2.4 form a bilinear program (BLP)

with the variables ~x denoting the template variables ∆` and ~c(`) for ` ∈ L and the ~y denoting the

“bilinear multiplier variables” Λτ and ~z representing the “linear multiplier variables” ~λs,Λ0,Γτ .

It is easy to see that the feasible region for a BLP is nonconvex in general. Also, finding if a

BLP is feasible is NP-hard.

Theorem 3.0.2. Checking if there exists (~x, ~y, ~z) ∈ Rn+m+k that satisfy the constraints of a

BLP (3.1) is NP-hard.

Proof. We reduce from 3-CNF SAT problem that consists of n Boolean variables p1, . . . , pn and m

clauses, each clause Ai consisting of a subset of literals Ai ⊆ {p1, . . . , pn, p1, . . . , pn}.

We introduce variables xi, yi corresponding to each proposition pi, with the goal that xi =

1, yi = 0 will denote assigning pi to true and xi = 0, yi = 1 will denote assigning pi to false. To

ensure that these are the only possible values, we write the constraints

xiyi ≤ 0,

xi + yi = 1,

xi ∈ [0, 1]

yi ∈ [0, 1]

(3.2)

Note that the constraint xiyi ≤ 0 is a bilinear inequality. The remaining are linear inequalities.

Also, note that the only feasible solutions are (xi, yi) ∈ {(0, 1), (1, 0)}.

Next, for each clause Aj involving some literals, we add the constraint

∑
pi∈Aj

xi +
∑
pi∈Aj

yi ≥ 1 . (3.3)

Now consider the system of constraints obtained by collecting (3.2) for i ∈ {1, . . . , n} and (3.3)

for j ∈ {1, . . . ,m}. We can verify that the system forms the constraints for a BLP with ~x :

(x1, . . . , xn)T , ~y : (y1, . . . , yn)T and ~z as the empty vector.
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Next, we note that for any satisfying assignment to the original problem, the corresponding

assignment to (xi, yi) as described above will satisfy the constraints for the BLP. Similarly, we have

proven that if the BLP is satisfiable, then for each (xi, yi), we can set the corresponding proposition

pi = true if xi = 1 and false otherwise. Due to constraint (3.3), each clause has at least one literal

that will be true.

This completes the reduction and the proof of NP-hardness.

3.1 Policy Iteration: Alternating Minimization

We have already observed that if we could fix ~x to concrete values in the BLP (3.1), we obtain

an LP in terms of the remaining variables (~y, ~z) and likewise for ~y. A simple strategy is to perform

alternating minimization wherein, we find an initial feasible solution (~x0, ~y0, ~z0) and improve the

current solution (~xi, ~yi, ~zi) at each iteration by carrying out two steps: (a) Fixing ~x : ~xi, solve the

resulting LP to obtain (~yi+1, ~z); and (b) fixing ~y : ~yi+1, solve the resulting LP to obtain (~xi+1, ~zi+1).

Combining the two steps, we obtain the next solution (~xi+1, ~yi+1). We continue this process until

no more improvements are possible. There are two basic questions posed by this algorithm: (a)

does it terminate? and (b) if it terminates, then how does the result compare with the optimal

solution to the problem?

0 1 2 3 4
0

1

2

3

4

xy ≤ 2

xy ≥ 1

x

y

0 1 2 3 4
0

1

2

3

4

xy ≤ 2

xy − x
3
≥ 1

x

y

Figure 3.1: Examples showing nontermination of alternating minimization.
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First, it is easy to formulate an example that illustrates non-termination.

Nontermination of Alternating Minimization Consider the problem below illustrated in Fig-

ure 3.1 (left).

max x− y

xy ≥ 1

xy ≤ 2

x, y ≥ 0

(3.4)

Starting with the initial solution (x0 = 1, y0 = 1), we note that the sequence of iterates obtained

using alternating minimization are

(x1 = 2, y1 =
1

2
), (x2 = 4, y2 =

1

4
), · · · , (xj = 2j , yj = 2−j) · · ·

The process continues forever without termination with each LP producing a bounded result al-

though the original BLP is unbounded.

In fact, alternating minimization may fail to terminate even if the feasible region of the BLP

is bounded.

Nontermination of Alternating Minimization: Bounded Case Consider the problem be-

low illustrated in Figure 3.1 (right).

max x− y

xy ≤ 2

x(y − 1
3) ≥ 1

x, y ≥ 0

(3.5)

The reader may verify that starting with (x0 = 1, y0 = 1), the approach iterates to obtain

(xi+1 = 6xi
3+xi

, yi+1 = 3+xi
3xi

). As i → ∞, the process converges to x∗ = 3, y∗ = 2
3 , which can be

verified as the optimal solution to the problem by graphing the constraints.

Finally, we illustrate so-called saddle points, wherein the process converges (xi+1, yi+1) =

(xi, yi), but the solution is not a KKT point (a local optimum) of the original BLP.
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Figure 3.2: BLP with saddle point at (−1, 1). The red path shows how an interior point solver can
solve the problem whereas the simplex approach shown in blue can be stuck in a saddle point.

Saddle Points Consider the problem instance shown below illustrated in Figure 3.2.

min
x,y

x

subject to xy ≤ 1

xy ≥ −1

− 5 ≤ x ≤ 5

− 5 ≤ y ≤ 5

(3.6)

The point (−1, 1) is a saddle point of the problem. Fixing x = −1 yields the optimization

problem

min 0 s.t. − 1 ≤ y ≤ 1 , (3.7)

which can yield either y = −1 or y = 1 if a Simplex-based LP solver is used. Assuming that the

solver results in y = 1, we obtain no further change in the values (x, y). If y = −1 were chosen by

the solver, instead, the very next step yields the desired saddle point. The point (−1, 1) is not a

local optimum for the problem. For instance the descent direction (∆x,∆y) : (−1, 1) can maintain

feasibility while providing a step that decreases the objective value. Unfortunately, alternating

minimization is unable to find the descent direction since it is restricted to finding directions with

∆x = 0 or ∆y = 0. Unfortunately, such directions do not exist at the saddle point.



47

We also note that if a simplex solver were not used, it is theoretically possible that an “interior

point” solver can choose y = 0 as the solution to the LP (3.7). Subsequently, we can solve for x

and obtain a globally optimal solution.

In the context of saddle point, the key problem is that of moving the iteration past the saddle

point to continue improving the solution? This problem has remained mostly open thus far. We

summarize some of the difficulties encountered. First, we note that alternating minimization is

a form of coordinate descent wherein the solution improvement direction for the problem in

(3.1), wherein starting from a current solution (~x, ~y, ~z) that is feasible, we seek a new solution

(~x+ ∆x, ~y + ∆y, ~z + ∆z), such that (a) (~x+ ∆x, ~y + ∆y, ~z + ∆z) is feasible and

f(~x+ ∆x, ~y + ∆y, ~z + ∆z) < f(~x, ~y, ~z) ,

wherein f(~x, ~y, ~z) : ~xTC0~y+~aT0 ~x+~bT0 ~y+~cT0 ~z is the objective function shown for the problem (3.1).

However, it is immediate that the search for such feasible directions (∆x,∆y,∆z) requires solving

a bilinear problem with a similar structure as the original problem (3.1) in the first place. Thus,

linearity is forced through coordinate descent wherein either ∆x = 0 or ∆y = 0. Thus, the problem

of “escaping” from local saddle points is an open problem that limits alternating minimization

approaches.

3.2 Bilinear Problems and QCQPs

There exists a natural encoding of BLPs to Quadratically-Constrained Quadratic Programs

(QCQPs) of a higher dimensional space. That is, any BLP can be reformulated as the QCQP

and numerous approaches to solving QCQPs can be applied to BLPs, as well. Specifically, we can
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encode (3.1) as the QCQP

min
~̃x

~̃xT Ã0~̃x+ ~̃bT0 ~̃x

subject to ~̃xT Ãi~̃x+ ~̃bTi ~̃x ≤ ~ri i ∈ I

~̃xT Ãi~̃x+ ~̃bTi ~̃x = ~ri i ∈ E

~̃l ≤ ~̃x ≤ ~̃u

(3.8)

where ~̃x =


~x

~y

~z

 ∈ Rm+n, Ã0 =
1

2


0 A0 0

AT0 0 0

0 0 0

, ~̃b0 =


~b0

~c0

~d0

, ~̃l =


~lx

~ly

~lz

, ~̃u =


~ux

~uy

~uz

, and ∀i ∈ I ∪ E ,

Ãi =
1

2


0 Ai 0

ATi 0 0

0 0 0

, ~̃bi =


~bi

~ci

~di

. Note that in the QCQP, the matrices Ã0 and Ãi are symmetric,

whereas the matrices A0 and Ai in the BLP may not even be square.

Conversely, for any QCQP there exists an encoding into a BLP. We can see this by replacing

all terms of the form ~̃xT Ãi~̃x with ~̃xT Ãi~̃y and embedding the constraint ~̃x = ~̃y into the problem.

However, the resulting BLP has equality constraints ~̃x = ~̃y. Although it seemingly maintains the

“separability” property, it is immediately clear that solving it via policy iteration (also referred to

as “alternating minimization” in this section) is useless; that is, if we fix ~̃x and solve for ~̃y, the

constraint ~̃x = ~̃y means the method stagnates.

Rewriting the BLP as a QCQP in order to solve it numerically is not always a good idea, since

the new QCQP is much larger, but it motivates us to consider some particular QCQP methods and

their application to BLPs. Notice that there is no other requirement on Ãi other than symmetry.

If we further assume that each Ãi is positive semidefinite for i ∈ {0} ∪ I, and Ãi = 0 for

i ∈ E , then the problem is convex. This is generally not the case for problems arising from program

analysis, and therefore, we do not assume our QCQPs are convex.

Because neither the general QCQPs nor BLPs are convex, most nonlinear solvers can only

produce a stationary point, which may be either a local minimizer (and possibly a global minimizer)
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or a saddle point. While ideally one wants a global rather than local minimizer, a secondary goal

is to find a local minimizer rather than a saddle point. We focus on this second problem, and note

that it has been the subject of much recent attention in machine learning, where it is sometimes

argued that all local minimizers are “good enough” and thus one only needs to avoid saddle points

[DPG+14].

Various relaxations for solving nonconvex QPs have been proposed including lift-and-project

cutting plane algorithms, reformulation-linearization techniques (RLT), semi-definite program-

ming (SDP) relaxations, matrix-cut algorithms, and semi-infinite linear programs [AHJS00, Lin05,

QBM12, ZSL11, SF02, PB17].

Convex Relaxation Techniques: Relaxations for QCQPs based on SDPs or RLTs lift the

original problem into a higher dimension by implementing a nonlinear change of variables that puts

all the nonconvexity into a single constraint, and then drops the nonconvex constraint in order to

relax the original problem to a convex program. Both the SDP and RLT relaxations are invariant

to an invertible affine transformation of the original variables. One of the commonly used change

of variables is ~x→ ~x~xT = X, lifting the problem from ~x ∈ Rn to X ∈ Sn+, and replacing quadratic

terms with matrix inner products using the trace operator: ~xTA~x = Tr(~xTA~x) = Tr(A~x~xT ) = A·X.

min
~̃x,X

Ã0 ·X + ~̃bT0 ~̃x

subject to Ãi ·X + ~̃bTi ~̃x ≤ ~ri i ∈ I

Ci ·X + ~̃bTi ~̃x = ~ri i ∈ E

X = ~̃x~̃xT

~̃l ≤ ~̃x ≤ ~̃u

(3.9)

Along with the constraints X = ~̃x~̃xT , this reformulation does not change the problem, and

is still nonconvex, though all terms except the X = ~̃x~̃xT constraint are linear. To get a relaxation,

the equality constraint X = ~̃x~̃xT is relaxed to X � ~̃x~̃xT where � is the Loewner ordering where

Y � 0 means Y is a symmetric positive semi-definite matrix. This new inequality defines a convex

set, and the relaxation is a convex program and in particular a SDP.
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The reformulation-linearization technique follows the same procedure of employing auxiliary

variables in place of the product terms, ~̃xi~̃xj = Xij , but rather than imposing a positive semidefinite

constraint, RLTs add the product of bound-factors (~̃ui − ~̃xi)(~̃xj − ~̃lj) ≥ 0 for any or all pairs of

variables ~̃xi, i ∈ {1, . . . , n}, where ~̃ui and ~̃lj denote the finite upper and lower bounds on variables ~̃xi

and ~̃xj , respectively. Furthermore, RLT constraints can include the products of equality constraints

with monomials Πj~̃xj and inequality constraints with themselves as well as the bound-factors

mentioned above. While these extra constraints may be redundant, after a round of reformulation

and linearization they lead to a tighter convex relaxation.

Previous work on combining RLTs and SDP relaxations to remove a substantial portion of

the feasible region was explored in [Ans09] with provable results. Sherali et al. [SF02] investigated

the effects of enhancing the RLT formulations with semi-definite cuts on QPs without quadratic

constraints. They verify empirically that combining certain aspects from each formulation leads

to better results. Other convex relaxations for specific problem structures, including Second-Order

Conic Programs, have been proposed to speed up computation while preserving accuracy [KK01,

SDL12].

In addition to SDP and RLT relaxations, McCormick Envelopes provide a convex relaxation

for bilinear programs commonly used to solve Mixed Integer NonLinear Programs (MINLPs). They

are designed to guarantee convexity while keeping the bounds on the original problem sufficiently

tight. The method behind McCormick Envelopes is to replace distinct products of variables, i.e.

bilinear terms, with auxiliary variables and append bound constraints which form convex over-

and under-estimators of the bilinear terms. The essence of the method is similar to that of the

reformulation-linearization technique; however, the goal of McCormick Envelopes is to replace all

bilinear terms with appropriately bounded auxiliary variables whereas the goal of RLTs is to append

additional, potentially redundant, constraints in order to minimize the set of candidate solutions

to the relaxed problem.

In the context of proving program properties, relaxation-based approaches are less useful since

they focus on proving lower bounds for the optimal value of a minimization problem. Therefore,
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in the setting of this chapter, it is possible to use relaxation methods to establish that no linear

invariant involving a fixed number of conjunctions can prove a property. However, unless the

relaxation is exact, these methods do not directly find invariants to establish a property since the

solution obtained by the relaxation may not be feasible.

3.3 Augmented Lagrangian Approaches

Augmented Lagrangian methods are a promising approach to solving constrained optimiza-

tion problems through a series of related unconstrained problems [NW06]. The constraints are

incorporated into the objective function via a quadratic penalty plus a pseudo-Lagrangian term.

By increasing the effect of the penalty parameter, the sequence of iterates tend to a local solution

of the original constrained problem.

We now present our novel method to solve BLPs using the augmented Lagrangian framework.

Augmented Lagrangian methods naturally handle equality constraints. Since one of the intrinsic

difficulties in solving BLPs arises from the restrictive nature of their equality constraints, we take

advantage of the method’s ability to transform a constrained optimization problem into a sequence

of unconstrained problems and specialize it to exploit the structure of BLPs. To handle inequality

constraints, there are several variants, and we follow the variant that converts inequality constraints

into equality constraints via a slack variable s, but keeps all box constraints (including those on

the slack) explicit. We reformulate (3.1) as follows

min
~x,~y,~s

~xTA0~y +~bT0 ~x+ ~cT0 ~y︸ ︷︷ ︸
f(~x,~y)

subject to ~xTAi~y +~bTi ~x+ ~cTi ~y − ri︸ ︷︷ ︸
gi(~x,~y)

+si = 0 i ∈ I ∪ E

~lx ≤ ~x ≤ ~ux, ~ly ≤ ~y ≤ ~uy,

si ≥ 0 ∀i ∈ I, si = 0 ∀i ∈ E

(3.10)

For convenience, the ~z variables are assumed to be nonexistent in our exposition. However, the
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approach described can be readily extended to include linear ~z variables, as well. We will denote

the box constraints concisely as (~x, ~y,~s) ∈ X ×Y×S. Since gi(~x, ~y)+si = 0 for any feasibly points,

we can see that for any µ > 0, (3.10) is equivalent to

min
(~x,~y,~s)∈X×Y×S

f(~x, ~y, ~z) +
µ

2

∑
i∈E∪I

(gi(~x, ~y, ~z) + si)
2

subject to gi(~x, ~y, ~z) + si = 0 i ∈ I ∪ E

(3.11)

The augmented Lagrangian method then applies subgradient ascent with respect to the dual vari-

able ~λ on the Lagrangian of (3.11). Starting at some ~λ0 ∈ R|I∪E|, and defining the augmented

Lagrangian LA as

LA(~x, ~y,~s;~λ, µ)
def
= f(~x, ~y)−

∑
i∈E∪I

λi · (gi(~x, ~y) + si) +
µ

2

∑
i∈E∪I

(gi(~x, ~y) + si)
2

the method iterates for k = 1, 2, . . .,

(~xk, ~yk, ~sk)← argmin
(~x,~y,~s)∈X×Y×S

LA(~x, ~y,~s;~λk, µk) (3.12)

~λk+1
i ← ~λki − µk

(
gi(~x

k, ~yk) + ski

)
(3.13)

µk+1 ← ρµk (3.14)

where ρ > 1.

While the augmented Lagrangian method has been applied generically to non-convex non-

linear programs, as in the PENNON package [KS03], here we can specialize it to take advantage of

the structure of BLP problems. Note that (3.12) can be written as

min
~x∈X

(
min

(~y,~s)∈Y×S
LA(~x, ~y,~s;~λk, µk)

)
︸ ︷︷ ︸

ϕ(~x)

(3.15)

and evaluating ϕ(~x)—that is, finding the minimizing points (yx, sx)—requires solving a convex

quadratic program, which can be done efficiently (our implementation uses the MATLAB software

CVX and Gurobi). Furthermore, ∇ϕ can be calculated using the following lemma. This lemma

is similar to Danskin’s Theorem [BNO03] but the proof is distinct since we minimize rather than

maximize, and do not assume compact constraints.
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Lemma 3.3.1. Assume (~yx, ~sx) are the unique minimizers of LA(~x, ~y,~s;~λk, µk) over (~y,~s) ∈

Y × S and ~lx, ~ux,~ly, ~uy are real-valued (i.e, they do not have ±∞ entries) . Then ∇ϕ(~x) =

∇xLA(~x, ~yx, ~sx;~λk, µk).

Proof. The main tool is Thm. 10.58 in [RW09]. Let ϕ(~x) = min(~y,~s) LA(~x, ~y,~s;~λk, µk) and Φ(~x) =

argmin(~y,~s)LA(~x, ~y,~s;~λk, µk) denote the optimal value and the optimal solution set, respectively.

Since LA(~x, ~y,~s;~λk, µk) is continuous, proper, and level-set bounded in (~y,~s) uniformly locally

in ~x, ϕ(~x) is proper, and continuous and for each ~x ∈ dom(ϕ) the set of minimizers Φ(~x) =

{(~yx, ~sx)} is nonempty and compact. Moreover, there exists a compact neighborhood B of ~x such

that the image ~x under Φ is a compact set for all ~x ∈ B. For each (~y,~s) ∈ Φ(B) the function

LA(~y,~s) := LA(·, ~y, ~s) is continuously differentiable on the interior of B. Let O := int(B). Then

ϕ(~x) = min(~y,~s)∈Y×S LA(~y,~s)(~x) is continuously differentiable on O.

Level-set bounded in (~y,~s) uniformly locally in ~x means that for each ~x ∈ X and α ∈ R there is

a neighborhood V of ~x and bounded setB ⊂ Y×S such that the level-sets {(~y,~s)|LA(~x, ~y,~s;~λk, µk) ≤

α} ⊂ B for all ~x ∈ V , that is, the level-sets are bounded. The uniform level boundedness assumption

allows us to find a neighborhood V of ~x satisfying the criteria for ϕ(~x) to be lower semi-continuous

which is a weaker statement than continuity, but sufficient for the original proof of Thm. 10.58 in

[RW09].

Now that we have a means to calculate ∇ϕ(~x), we can minimize ϕ over ~x ∈ X using gradient-

based method such as L-BFGS-B [BLN95]. Our motivation for pursuing gradient-based approaches,

rather than alternating minimization approaches, is due to a very recent body of literature showing

that gradient descent is (under certain conditions) “unlikely” to be trapped at saddle points. In

particular, Jin et al [JGN+17] show that small infrequent random perturbations are sufficient to

prevent gradient descent from converging to a saddle point, while [LSJR16] shows that random ini-

tializations prevent convergence to a saddle point. This formulation allows for bilinear optimization

where ~x and ~y can be treated separately without the disjoint treatment of alternating minimization.
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3.4 Quadratic Optimization and the S-Lemma

Although we potentially risk encountering many local optima when solving non-convex pro-

grams, there exist special cases of these programs for which exact relaxations exist. Quadratic

programs involving a single constraint are one such example. Consider the problem

min
~x

~xTA0~x+ 2~bT0 ~x+ ~c0

subject to ~xTA1~x+ 2~bT1 ~x+ ~c1 ≤ 0

(3.16)

where ~x ∈ Rn, Ai ∈ Sn, ~bi ∈ Rn, and ~ci ∈ R. We do not require either quadratic to be convex, that

is, A0, A1 � 0 necessarily. This potentially non-convex program can still be solved efficiently using

a semidefinite programming relaxation. The following celebrated result, known as the S-lemma

[PT07], is crucial to solving the single constraint QCQP and allows us to certify the existence of a

solution.

Theorem 3.4.1. (S-Lemma, [Yak71]) Let f, g : Rn → R be quadratic functions such that g(~x) > 0

for some ~x ∈ Rn. If for every ~x, (g(~x) ≥ 0) =⇒ (f(~x) ≥ 0), i.e., f and g are copositive, then

there exists a λ such that f(~x) ≥ λg(~x) for all ~x.

Here, λ can be thought of as a certificate for the implication. Noting that

min
~x

~xTA0~x+ 2~bT0 ~x+ ~c0

subject to − (~xTA1~x+ 2~bT1 ~x+ ~c1) ≥ 0

(3.17)

is equivalent to

max
γ

γ

subject to (−(~xTA1~x+ 2~bT1 ~x+ ~c1) ≥ 0) =⇒ (~xTA0~x+ 2~bT0 ~x+ ~c0 − γ ≥ 0),

(3.18)

we can use the S-lemma to rewrite (3.16) as an SDP. That is, (3.18) can be rewritten as
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max
γ,λ

γ

subject to ~xTA0~x+ 2~bT0 ~x+ ~c0 − γ ≥ −λ(~xTA1~x+ 2~bT1 ~x+ ~c1), ∀~x

λ ≥ 0,

(3.19)

which is equivalent to

max
γ,λ

γ

subject to λ ≥ 0 A0 + λA1
~b0 + λ~b1

(~b0 + λ~b1)T ~c0 + λ~c1 − γ

 � 0,

(3.20)

an SDP in variables γ and λ.

We could have arrived at the same result using the Lagrangian dual function:

g(λ) = inf
~x
L(~x, λ)

= inf
~x
~xT (A0 + λA1)~x+ 2(~b0 + λ~b1)T~x+ ~c0 + λ~c1

=


~c0 + λ~c1 − (~b0 + λ~b1)T (A0 + λA1)†(~b0 + λ~b1), A0 + λA1 � 0, ~b0 + λ~b1 ∈ R(A0 + λA1)

−∞ otherwise

(3.21)

Using the Schur complement we derive the same SDP program as above

max
γ,λ

γ

subject to λ ≥ 0 A0 + λA1
~b0 + λ~b1

(~b0 + λ~b1)T ~c0 + λ~c1 − γ

 � 0.

(3.22)

If Slater’s condition is satisfied, meaning the interior of the feasible region is non-empty, we have

strong duality and the optimal values of the primal and dual problems are equivalent.
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Even when the primal problem is not convex, the dual function g is always a concave function

of λ. Furthermore, the dual of the dual function is always convex, and under certain conditions,

including convexity, is equal to the primal problem. When the primal problem is not convex, then

the dual of the dual program may serve as a convex relaxation to the original problem.

The dual of the SDP (3.22) is

min
~x

Tr(A0X) + 2~bT0 ~x+ ~c0

subject to Tr(A1X) + 2~bT1 ~x+ ~c1 ≤ 0X ~x

~xT 1

 � 0,

(3.23)

or

min
~x

Tr(A0X) + 2~bT0 ~x+ ~c0

subject to Tr(A1X) + 2~bT1 ~x+ ~c1 ≤ 0

X − ~x~xT � 0,

(3.24)

an SDP with X ∈ Sn and ~x ∈ Rn, where we again use the Schur complement. Moreover, by

replacing the convex term X − ~x~xT � 0 with X = ~x~xT , we arrive at the original program (3.16).

However, the objective is now a linear function in variables ~x and X and the non-convexity of

the original problem is captured in the constraint X = ~x~xT . Clearly, (3.24) is a relaxation of the

original problem since it allows for a larger feasible set of solutions by relaxing the rank-1 constraint

to a positive semidefinite one.

Since the constraint relaxation means we minimize the same objective over a larger set of

feasible solutions, the relaxation provides a lower bound for the original problem. By duality, if

Slater’s condition holds for (3.16) then strong duality holds between the original problem and its

convex relaxation. Thus, the relaxation (3.24) is exact provided the interior of the feasible region

is non-empty.

While this method is exact for problems of the form (3.8) with |I| = 1, E = {}, and unbounded

variable ~x, our space of feasible solutions may be unbounded; thus, we are not guaranteed a bounded
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objective value. However, its implementation still allows us to deduce a lower bound for the original

problem when the global optimal value is unknown. For this reason, we include it in our list of

solvers.

3.5 Projected Gradient Descent

Gradient descent is a popular optimization strategy that is both powerful and intuitive. It is

a first-order iterative method, meaning only gradient information is required, where one attempts

to find a local optima by taking steps in a direction proportional to the negative gradient. The

procedure is relatively simple: starting at some initial point ~x0 in the domain of the problem, we

update our current estimate of the solution ~xk via the following equation:

~xk+1 = ~xk − αk∇f(~xk). (3.25)

If f is convex and the gradient is Lipschitz-continuous, convergence to a local optimum can be

guaranteed. When f is convex, all local optima are global, and so gradient descent can converge

to the global solution.

When f is smooth and the gradient is relatively easy to compute, the crux of the problem

may be in choosing the step size αk at iteration k. For nice functions, the value of the step size

may be a predetermined quantity for each iteration; however, this is seldom the case in practice.

There exist various methods for computing an appropriate step size, most of which rely on some

type of line search that satisfies a particular set of conditions. The particular choice in step size

may significantly affect the rate of convergence, and in the non-convex case, the quality of the

solution obtained. A backtracking line search is the most common approach; this method is simple

and tends to work well in practice. In section 3.8.4 we describe the implementation details of the

backtracking line search. When feasible, we may be able to compute an exact line search at each

iteration, allowing us to maximize our efforts along the direction of the gradient,

α∗ = argmin
t≥0

f(~x− t∇f(~x)).
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However, this approach may be less computationally efficient and only nominally better in de-

creasing the objective value when compared to the backtracking line search. Therefore, in most

applications the backtracking line search is the preferred method.

Gradient descent algorithms can naturally handle simple constraints such as affine (A~x ≤ b)

and bound constraints (~x ∈ [l, u]). Projected gradient descent minimizes a function by moving in

the direction of the negative gradient, and then projecting onto the feasible set

min
~x

f(~x)

subject to ~x ∈ C
(3.26)

The final projected gradient algorithm is

~yk+1 = ~xk − αk∇f(~xk)

~xk+1 = argmin
~x∈C

||~yk+1 − ~x||

Thus, projected gradient descent can be readily applied to bilinear programs with affine constraints,

i.e., Ai equal to the zero matrix for i ∈ I ∪ E .

3.6 Quasi-Newton Methods for Solving QPs

Newton’s method is a popular second-order algorithm that benefits from more accuracy and

a higher convergence rate than first-order methods. The standard Newton’s method is an iterative

technique that attempts to find the root of a differentiable function f . However, it may also be

applied to optimization programs wherein one attempts to find the root of the derivative of a twice-

differentiable function, i.e., a local optimum. This process requires the computation of the inverse

Hessian matrix at each iteration to update the current estimate of the solution

~xk+1 = ~xk −H−1
k ∇f(~xk)

where H−1
k = ∇2f(~xk), the Hessian (second-derivative in univariate calculus) of the function f

at the current estimate. Oftentimes, Newton’s method is modified to include a small step size

0 < α < 1 to guarantee sufficient decrease at each iteration

~xk+1 = ~xk − αH−1
k ∇f(~xk).
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While Newton’s method is a second-order method that benefits from rapid convergence (the Hes-

sian greatly speeds up convergence as the algorithm gets closer to the true solution), it is more

computationally expensive and only applicable to unconstrained optimization problems. For posi-

tive definite quadratic functions, i.e., functions of the form f(~x) = ~xTA~x+ bT~x such that A � 0, it

is able to obtain the minimizer with just one iteration; however, if the initial point ~x0 is far from

the true solution, the Hessian may not be positive definite, and thus the update direction may not

be a descent direction.

Nevertheless, there exist a class of algorithms motivated by Newton’s method called quasi-

Newton methods that use secondary information about the function, in addition to the gradient,

without ever having to explicitly compute the Hessian. These methods are sometimes referred to as

“pseudo second-order” methods and can handle constraints similar to projected gradient descent,

making them applicable to our study. Such methods include the BFGS (Broyden-Fletcher-Goldfarb-

Shanno) method, its low-memory version the L-BFGS method, and the Barzilai-Borwein method

[Fle13, CQ15, BLNZ95, BB88].

Quasi-Newton algorithms approximate the Hessian by implementing a generalization of the

secant method using the gradient updates at each iteration. As in the derivation of Newton’s

method, we define the quadratic approximation of the function f at the current ~xk,

f(~xk + ~s) ≈ qk(~s) = f(~xk) +∇f(~xk)
T~s+

1

2
~sTHk~s, (3.27)

where ~s = ~x − ~xk. Minimizing the quadratic approximation yields the update ~xk+1 = ~xk −

H−1
k ∇f(~xk), with ~sk+1 = ~xk+1 − ~xk = −H−1

k ∇f(~xk), the Newton direction. Taking the derivative

of the quadratic model at ~xk+1 yields

∇f(~x) ≈ ∇f(~xk+1) +Hk+1(~x− ~xk+1). (3.28)

By replacing ~x = ~xk and letting ~sk = ~xk+1 − ~xk and ~yk = ∇f(~xk+1)− f(~xk), we have

~yk ≈ Hk+1~sk. (3.29)
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Thus, we can use the gradient information ~yk to update our current approximation of the

Hessian at each iteration. Methods such as BFGS and L-BFGS use symmetric rank-2 updates

based on ~sk and ~yk to update Hk; however, these methods do not scale well with the dimension of

the problem. For problem instances involving millions of variables, storing the matrix updates can

be cumbersome. Barzilai and Borwein [BB88] attempt to alleviate this issue by further simplifying

the approximate Hessian to a constant-diagonal matrix: Hk ≈ λkI, where I is the identity matrix

and λk > 0. This “matrix-free” approximation significantly reduces the computational and storage

complexity of the problem. Naturally, λk is chosen to satisfy the secant approximation of the

function at the current iterate

λk+1 =
~sTk ~yk
||~sk||2

, (3.30)

or

λk+1 =
||~yk||2

~sTk ~yk
. (3.31)

3.7 Bipartite Graphs and Bilinear Optimization

The problems we consider for bilinear and quadratic programming are often large with thou-

sands of variables. However, the problems are sparse with each constraint involving just a tiny

fraction of these variables. This points out the need for simplification techniques and approaches

to solving bilinear problems that exploit this sparsity to make current approaches more efficient.

Bipartite graphs offer one such approach by allowing us to divide the set of variables into two

disjoint and independent sets, X and Y, such that edges connecting a variable (or vertex) x ∈ X to

one in Y define a bilinear relationship. A bipartite graph that is not connected may have more than

one bipartition [CZ08]. Thus, we can choose which set of variables to update via some optimization

rule, while maintaining the integrity of the original BLP.

Next, we present an example to make clear the connection between bilinear functions and

bipartite graphs.
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Figure 3.3: Bipartite graph denoting node connectivity between two sets of disjoint nodes. (Left)
Nodes x1 and x2 belong to set 1 and nodes y1, y2, y3 and y4 belong to set 2. (Right) Nodes y1, y2,
and x2 belong to set 1 and nodes x1, y3, and y4 belong to set 2.

Example Define the bilinear function f(x, y) = ~xTB~y with (x1 x2)T ∈ R2, (y1 . . . y4)T ∈ R4 and

B =

1 1 0 0

0 0 1 1

 .

Clearly, the bilinearity arises from the product terms x1y1, x1y2, x2y3, and x2y4. In Figure 3.3

(left) we illustrate the example of an associated bipartite graph where we’ve indicated the disjoint

sets by color. However, we could have analogously defined the function as f̃(x̃, ỹ) = x̃T B̃ỹ where

x̃ = (y1, y2, x2)T ∈ R3 and ỹ = (x1, y3, y4)T ∈ R3 and

B̃ =


1 0 0

1 0 0

0 1 1

 ,

whose bipartite graph partition is illustrated in Figure 3.3 (right).

Figure 3.3 has two connected components; that is, two subgraphs in which any two vertices are

connected to each other by paths, and there exist no paths connecting vertices from one connected

component to the other.

Furthermore, a graph is bipartite if and only if it does not contain an odd cycle and a bipartite

graph with n connected components has 2n−1 possible configurations. The graphs above contain

two connected components and as such, there are two possible configurations for the disjoint sets.
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Definition 3.7.1. (Cycle) A cycle is a path of edges and vertices wherein a vertex is reachable

from itself. A cycle is called odd if the length of the cycle is odd, and even if the length is even.

We let G = (X ,Y, E) denote a bipartite graph whose vertex set has the partition V = X ]Y,

with E denoting the edges of the graph.

Claim 3.7.1. Let G be a bipartite graph, then all cycles in G have an even number of edges.

Proof. By contradiction, suppose that G has a cycle with (2n+ 1) nodes and edges

v1 v2 . . . v2n+1 (3.32)

Notice that v2n+1 must belong to the same partition as v1 and at the same time, must not belong

to the same partition. This yields a contradiction.

An important characterization of bipartite graphs is that a graph is bipartite if and only if

it is 2-colorable; that is, the smallest number of colors needed to color the graph G is less than

or equal to two. Thus, we can test whether a graph is bipartite using a coloring-algorithm. This

can be done in linear time using a depth-first search, where either a two-coloring or an odd cycle

is returned. In the spirit of block-coordinate descent, given a bilinear program whose variable

connections form more than one connected component, we can use the connection between BLPs

and bipartite graphs to exploit the problem sparsity and flexibility to potentially evade saddle

point solutions. The idea being, if a specified solution does not satisfy the necessary conditions to

be a local (or global) minimizer, can we gain progress by traversing along another direction, i.e.,

interchanging the variables over which we optimize? Furthermore, can we improve the algorithm’s

performance by balancing out the number of variables used for each LP solve?

3.8 Solvers Used for BLP Empirical Comparisons

In a recent publication [GBSBS18], we empirically tested several approaches to solving BLPs,

including alternating minimization. The approaches implemented adapt well-known algorithms to

the special case of bilinear programs, and use off-the-shelf tools for nonlinear programming. We



63

considered both local and global nonconvex solvers, and introduced a novel augmented Lagrangian

and a novel graph-theoretic approach to solving general BLPs. In this section, we review a set of

solvers beyond alternating minimization that are used as a basis of comparison for the problems

introduced in sections 3.9 and 3.10. A brief description of each tool is provided. We used our own

implementations of alternating minimization and augmented Lagrangian methods as described sub-

sequently. All the solvers are implemented using floating point arithmetic and thus the soundness

of the results obtained from these solvers in the context of our benchmark examples is an issue that

is not addressed here.

Table 3.1: Solvers used in the numerical experiments.

Solver Solver Type Method(s) Employed for Experimental Results

S-Procedure Local Semidefinite Programming
Alt Min - GUROBI Local Dual-Simplex
Alt Min - SeDuMi Local Primal-Dual IP

Bipartite Alt Min - SeDuMi Local Primal-Dual IP
Projected Gradient Descent Local Non-monotonic BB or CVX

Quasi-Newton Local Limited-Memory BFGS-Bd Cons
FMINCON Local Primal-Dual IP
BONMIN Global Hybrid OA/BnC

COUENNE Global RLT-based Spatial BnB
IPOPT Local Primal-Dual IP
BARON Global McCormick Envelope/SDP

Augmented Lagrangian Local Gradient-Based/Dual-Simplex

3.8.1 Semidefinite Programming Relaxation

In the case where the bilinear program (3.1) consists of a bilinear objective and a single

bilinear inequality constraint, we can transform the problem into a QP and apply the exact SDP

relaxation (provided Slater’s condition is satisfied). We first compare the effectiveness of this

method on a toy problem, for which the true solution is known, against all other methods and

solvers to establish the efficacy of each. In general, we are not guarantee boundedness of the

objective value over the feasible set. For subsequent examples, bound constraints are placed on

the variables to ensure a bounded solution; thus, the SDP formulation will only provide a convex
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relaxation for the original problem which will provide a lower bound for the globally optimal value.

3.8.2 Alternating Minimization

The implementation described in section 3.1 used an exact arithmetic LP solver. We examined

two efficient floating point LP solvers for alternating minimization. One approach used the dual

simplex solver implemented inside the Gurobi tool. Another approach used a floating point primal

dual interior point method using the Sedumi solver.

3.8.3 Bipartite Alternating Minimization

For this implementation we begin by solving the given problem using the standard AM rou-

tine. The goal of the bipartite reformulation is to improve on the current solution by obtaining a

lower objective value. We first build a graph corresponding to the bilinear connections by refor-

mulating the original BLP as a QP and averaging the matrices encoding the bilinear relationships.

We then use the MATLAB function conncomp (part of the graph library) to extract and store the

individual connected components into bins. The set is then roughly divided so that the dimension

of x̃ is approximately equal to the dimension of ỹ. We do this to balance out the effectiveness of

each LP solve. However, there may be more than one bipartition corresponding to the potentially

high-dimensional problem, thus, we repeat the process of redefining new x̃ and ỹ variables using a

random permutation of the connected subgraphs and resolve the problem using the AM procedure,

storing each optimal value. The minimum optimal value is compared against the other solvers, and

in particular against the standard alternating minimization approach.

3.8.4 Projected Gradient Descent

Since gradient descent can only be performed on a function of one vector variable, we first

reformulate each BLP as a QP. This method is used to compare against the other solvers whenever

the given problem has bound constraints or affine inequality constraints, but not bilinear. For

problems consisting of only bound constraints, projecting onto the set ~x ∈ [l, u] for finite upper and
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lower bounds is trivial. We use CVX to compute the new iterate ~xk+1 when given a constraint set

of affine inequalities. We follow the procedure described in section 3.5 and use a backtracking line

search to find a step size satisfying the Wolfe-conditions:

1: while f(~x− α∇f(~x)) > f(~x)− cα‖∇f(~x)‖2 do

2: α← ρα

3: end while

with c = 10−4 and ρ = 0.75 as fixed parameters at each iteration [NW06]. This procedure is used

for our randomly generated examples involving both affine inequality and bound constraints.

For the generated examples involving only bound constraints on the variable ~x we implement

a Nonmonotone Barzilai-Borwein Gradient Algorithm [XWQ14] that allows for more flexibility in

each gradient update. The algorithm uses the Barzilai-Borwein secant approximation to the Hessian

at the current iterate to infer the step size in the direction in the negative gradient. However, in

the projected gradient descent framework, this update may increase the value of the objective and

so a nonmonotone line search is used to control the amount of increase at each iteration. In this

case, the descent direction is ~dk = −λk∇f(~xk), in contrast to ~dk = −∇f(xk) in standard gradient

descent, and the nonmonotone line search is used to choose a step size satisfying

f(~xk − αkλk∇f(~xk)) ≤ max
0≤j≤m(k)

f(~xk−j)− cαkλk‖∇f(~xk)‖2,

where m(k) is the denotes the memory of the algorithm at the kth iteration. This line search is

nonmonotonic in the sense that the new iterate only needs to decrease the objective value by at

least the largest objective value for the past m(k) iterations. Clearly, m(0) = 0 since there is no

memory of previous objective values at the first iteration, and m(k) = min{m(k−1), m̃} where m̃ is

the max-memory specified by the user [XWQ14]. For our comparisons, we chose m̃ = 5. To ensure

a descent direction, λk is chosen to satisfy λk = min{λ(max),max{λk, λ(min)}} where λ(max) = 1020

and λ(min) = 10−20 in our experiments. Thus, if λk falls below λ(min), the algorithm stagnates

since the descent direction dk is approximately zero and does not change the current iterate.
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3.8.5 Quasi-Newton Method

It is important to note that when I = E = ∅, our augmented Lagrangian formulation is

an alternative to projected gradient descent. Of the methods mentioned in section 3.6, we chose

to employ the L-BFGS-B method, the limited-memory BFGS that allows for bound constraints

on the variables. To account for the bound constraints, the method first proceeds as a projected

gradient descent to infer which bound constraints are active, and then fixes these variables and

optimizes the quadratic program over the remaining free variables. Once the solution x̂k to the QP

is computed, a line search along the direction dk = x̂k − ~xk is performed to find the new iterate

~xk+1. The implementation we chose was written in MATLAB with a mex wrapper for C. When the

constraint set consists only of simple bound constraints on the variables, we use L-BFGS-B to solve

our bi-level formulation and project y onto ~ly ≤ ~y ≤ ~uy ourselves. Although this approach is an

alternative to projected gradient descent, the two implementations compared here are different.

The quasi-Newton approach still “marginalizes” out the y variable each time a new estimate for

x is considered. This differs from the projected gradient descent method of section 3.8.4 wherein

we first transform the BLP into a QP and then descend in the direction of the negative gradient

in the higher-dimensional space. When the constraint set includes more than just simple bound

constraints on the variables, we transform all inequality constraints into equality constraints by

introducing slack variables and use the augmented Lagrangian framework of section 3.3. In this

case, we use L-BFGS-B to solve the outer sub-problem of updating x, and use CVX to solve the

inner sub-problem of marginalizing out y and s.

3.8.6 FMINCON

fmincon is a built-in MATLAB nonlinear programming solver [Mata]. It attempts to return

feasible stationary points to problems of the form
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min
~x

f(~x)

subject to c(~x) ≤ 0

ceq(~x) = 0

Ai~x ≤ ~bi

Ae~x = ~be

~lx ≤ ~x ≤ ~ux

where both the objective and constraints can be nonlinear functions. The method makes no attempt

to find a global optimal point. In order to apply fmincon to (3.1), we reformulate the problem into

(3.8) as mentioned above. Since the problems we will be comparing are sparse, with a few examples

being large scale, we use the solver’s primal-dual interior-point algorithm and supply the gradient

function. Other supplied algorithms include Trust Region Reflective, Active Set, and Sequential

Quadratic Programming; however, Active Set and SQP are not large scale algorithms and the

problems considered do not meet the required conditions to apply the Trust Region Reflective

algorithm.

3.8.7 BONMIN

BONMIN (Basic Open-source Nonlinear Mixed INteger programming) is an open source soft-

ware for solving mixed-integer non-linear programs (MINLPs) of the form

min
~x

f(~x)

subject to gi(~x) ≤ 0 i = 1 . . .m

~lx ≤ ~x ≤ ~ux

xi ∈ Z, i ∈ I ⊆ {1, . . . , n}

xi ∈ R, i /∈ I

(3.33)
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where f and g are assumed to be twice continuously differentiable. The software is distributed

by the Computational Infrastructure for Operations Research (COIN-OR). BONMIN is equipped

with several nonlinear programming algorithms based on branch-and-bound, branch-and-cut, and

outer-approximation techniques. The branch-and-bound approach considers polyhedral subsets of

the state space and solves a continuous relaxation of the problem containing only a subset of the

variables in search for an improvement on the lower bound of the approximation. The branch-and-

cut technique uses the same approach to infer an optimal set of candidate solutions but further

refines the estimate of the lower bound by implementing nonlinear lift-and-project cutting plane

methods to tighten the corresponding relaxation. BONMIN uses COIN-ORs non-linear programming-

based interior-point solver IPOPT, which we introduce below, for its branch-and-bound algorithm.

The outer-approximation method is a technique for recasting the original MINLP into a relaxed

linear representation by removing any nonlinearities from the objective and adding their linearized

variants to the constraint set. It is an iterative procedure that appends newly computed bound

constraints found at each iteration to tighten the relaxation. It implements IPOPT to solve each

NLP and COIN-ORs branch-and-cut algorithm Cbc to solve each MILP. The final algorithm offered

by BONMIN is a hybrid outer-approximation based branch-and-cut algorithm. If either or both f

and g are nonconvex then the algorithms are only meant to be heuristics [BBC+08]. Thus there is

no guarantee of a global optimal point, but unlike fmincon which returns as soon as it has found

an approximate stationary point, the BONMIN solver attempts to find a global optimal point. For

all numerical comparisons in Section 9 we implemented each of BONMINs four solvers and achieved

similar results; therefore, the results reported are the results of the hybrid solver.

3.8.8 COUENNE

COUENNE (Convex Over and Under ENvelopes for Nonlinear Estimation) is an open source

software primarily developed by Pietro Belotti to solve MINLPs of the form (3.33), where f and

gi are possibly nonconvex [coi16]. The software is also distributed by COIN-OR. COUENNE is a

RLT-based spatial branch-and-bound algorithm, meaning that the nonconvex terms are replaced
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with their convex envelopes and branching can occur on either integer or continuous variables. It

ensures global optimal solutions of convex MINLPs and aims to find global optima of nonconvex

MINLPS. COUENNE is built on top of BONMIN and utilizes many of the same options and solvers.

More generally, it is a branch and cut algorithm that implements linearization, branching, MINLP

heuristics to find feasible solutions, and bound reduction techniques [Bel09]. We emphasize that

the software attempts to find a global solution, and thus is naturally slower than methods like

fmincon.

3.8.9 IPOPT

IPOPT (Interior Point Optimizer) is an open source software package for large-scale nonlinear

optimization that is distributed by COIN-OR. IPOPT supports the same general framework as

COUENNE; however, it further requires that f and all gi be sufficiently smooth (at least continuously

differentiable). Moreover, IPOPT aims to find local solutions to (3.33), like fmincon, as opposed

to global solutions like COUENNE. The IPOPT algorithm implements a primal-dual interior-point

method that uses line searches based on filter methods. Filter methods offer an alternative to merit

functions in that iterates are accepted if they either improve the objective function or improve the

constraint violation as opposed to a combination of the two [WB06].

3.8.10 BARON

BARON (Branch-And-Reduce Optimization Navigator ) is a global optimization software for

solving MINLPs that was developed by Nikolaos Sahinidis at the University of Illinois-Urbana

Champaign. It is a branch-and-bound algorithm that has the ability to employ other solvers to

solve appropriate subproblems. Given a BLP, BARON generates McCormick Envelopes to relax and

provide a lower bound for the original problem. Further measures are then taken to improve the

accuracy of the computed variables by transforming the relaxed problem into an SDP. BARON also

employs linear approximations, including outer-approximations, to speed up the computation of

the relaxed problem. While this is only a high-level description that is by no means complete, it
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provides a brief explanation of the general methods employed by BARON for solving BLPs. BARON

requires that all nonlinear variables and expressions be bounded from above and below to guarantee

global optimality. If bounds are not provided, it utilizes appropriate algorithms to infer bounds

[Sah17, TS05].

3.9 Experimental Results on Randomly Generated Problems

In this section, we apply the algorithms mentioned in the previous section to a series of

benchmark examples. All algorithms were implemented in MATLAB R2016b. The COIN-OR source

code and binaries provided for COUENNE and IPOPT have interfaces in AMPL, which can be in-

terfaced through MATLAB. For the alternating minimization procedure we used the MATLAB soft-

ware CVX [GB08, GBY08] with the simplex solver Gurobi [Opt17] and the interior-point solver

Sedumi [Stu99]. For each instance, we report the optimal objective reported by the solver.

Dominant Eigenvector: A Toy Problem.

As a toy example used to test the various approaches, we begin by computing the dominant

eigenvector of a positive semidefinite operator, C ∈ S4
+. Computing the dominant eigenvector of a

positive semidefinite operator can be phrased as the following optimization program:

max
~x

~xTC~x

subject to ‖~x‖2 ≤ 1,

(3.34)

or equivalently,

min
~x

− ~xTC~y

subject to ‖~y‖2 ≤ 1

~x = ~y

(3.35)

where ‖ · ‖2 is the `2-norm of a vector, ‖~x‖2 =
√∑

i x
2
i . By imposing the additional constraint

~x = ~y we can convert the quadratic objective of (3.34) to the bilinear one in (3.35). While this

form does not match the general form of a BLP we can still employ the solvers listed above to get
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Table 3.2: Results of the dominant eigenvector program (3.35). We denote step-size by SS.

Method Status Normalized Residual

SDP Solved 1.327e-14
Proj Grad (Wolfe SS) Solved 3.932e-08
Proj Grad (Fixed SS) Solved 1.592e-05

FMINCON Solved 9.750e-09
BONMIN Solved 4.999e-09

COUENNE Solved 4.000e-03
IPOPT Solved 3.156e-10
BARON Solved 2.270e-05
Aug Lag Solved 5.100e-05

an idea of the expected solver accuracy. For the augmented Lagrangian formulation we remove the

slack variable s and replace the LP solve via CVX with the closed-form projection

~yx =


x̂, for ‖x̂‖2 ≤ 1

x̂
‖x̂‖2 , otherwise

(3.36)

where x̂ = − 1
µ(C~xk +λk)+~xk. Table 3.2 summarizes the performance of various solvers in terms of

the final solution status and the normalized residuals. While this toy example gives us an idea for

each solver’s expected accuracy, it is also meant to test the implementation of each method. That

is, we see that all algorithms pass this basic sanity check. The table does not include alternating

minimization, since every feasible point is also a saddle point for this problem.

Bilinear Programs of Varying Complexity

We consider various cases of bilinear programs where we maintain the bilinear objective

function but vary the set of constraints. For each problem case, we vary the sparsity struc-

ture of the bilinear terms by increasing the density of non-zero entries using the percentages

0.05%, 0.5%, 1%, 30%, 60%, and 100% for comparison. In the first case we also approximate the

scalability of each solver by measuring the runtime for problem instances of increasing dimensions.

Each program is randomly generated using a seed to ensure reproducibility. The first example

considered contains only simple bound constraints (i.e., I = E = ∅); therefore, we do not use
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the full augmented Lagrangian expression, but the quasi-Newton algorithm L-BFGS-B to solve the

bi-level formulation. Furthermore, due to the algorithmic similarities between BARON and COUENNE,

and BARONs poor scalability, we do not include it in our set of solvers used to solve the randomized

examples. For compactness, we abbreviate the solvers used in the plots. Each abbreviation is

displayed in Table 3.3.

Table 3.3: List of solver abbreviations for subsequent figures.

Abbreviation Method

SDP Semidefinite Programming Relaxation (S-lemma)
PGD Projected Gradient Descent (Line search specified in subsections)

Alt Min (or AM) Alternating Minimization
BAM Bipartite-Graph Inspired Alternating Minimization
Q-N Quasi-Newton Method (L-BFGS-B)

Aug Lag Augmented Lagrangian
fmincon (or fmin) fmincon

IPOPT IPOPT

COUENNE COUENNE

3.9.1 Case 1: Simple Bound Constraints

We first consider the simplest case, where the constraint set is composed of bound constraints

on x and y.

min
~x,~y

~xTA0~y +~bT0 ~x+ ~cT0 ~y

subject to ~lx ≤ ~x ≤ ~ux, ~ly ≤ ~y ≤ ~uy

(3.37)

In order to guarantee a bounded objective value, we restrict both ~x and ~y to the compact

set S = {(~x, ~y) | 0 ≤ xi ≤ 1, 0 ≤ yi ≤ 1}. Generating a feasible initial point is trivial, as we can

just assign values to ~x0 and ~y0 by drawing from a uniform distribution over the interval [0, 1]. In

the first set of comparisons, we measure the median objective values over 30 different initializations

and display their variability in Figure 3.4. For comparing the efficacy of each solver as a function

of sparsity, we fix the dimension of each variable, in this case ~x ∈ R40 and ~y ∈ R200.

Since COUENNE is a global solver, its objective value represents the global minimum of our
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Figure 3.4: Experimental results displaying median objective value and variation over 30 different
initializations. The objective values are displayed on the x-axis and the solver on the y-axis. Red
circles denote outlier objective values. In order, the solvers displayed are: COUENNE, IPOPT, fmincon,
a Quasi-Newton approach (L-BFGS-B), Alternating Minimization, and a Projected Gradient Descent
approach with a nonmonotonic Barzilai-Borwein line search.
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problem instance, and it can be used as a certificate for each solver’s ability to obtain the global

minimum. For a fixed problem size, as the number of bilinear connections increase we notice that

the Quasi-Newton and projected gradient descent approaches become more sensitive to the starting

point ~x0. Their ability to reach the global optimum degrades as the complexity of the problem

increases. Furthermore, we note that alternating minimization is competitive with solvers such as
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Figure 3.5: Runtime comparison (in seconds) for bound-constrained bilinear programs (3.37) of
varying dimension. The plots are distinguished by the density of non-zero terms in A0.
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fmincon IPOPT COUENNE
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COUENNE and IPOPT in finding the global minimum. Although COUENNE is a global solver, it does

not scale well with the complexity of the problem as we show in the runtime experiments below.

In this case, the bipartite-graph formulation of alternating minimization discussed in section
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fmincon IPOPT COUENNE
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3.7 will behave similarly to the standard AM method. For a fixed ~x∗, (3.37) is a LP in ~y and be

can written as
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min
~y

c̃T~y

subject to 0 ≤ ~y ≤ 1

(3.38)

where c̃ = AT0 ~x∗ + ~c0. The solution to this program is

~y∗ =


1 if c̃i < 0

0 if c̃i ≥ 0,

(3.39)

independent of how we partition the variable set (~x, ~y). The same applies to holding ~y∗ fixed and

solving a LP over the variable ~x. The partitioning could, however, alter the sign of ~c, thus changing

objective value. However, since both methods force the values of x and y onto the boundary of

the feasible region, there is no reason to believe the bipartite formulation would offer us much of

a benefit over the standard procedure. After one iteration the program returns a solution on the

boundary of the compact set. If we aren’t restricted to the compact set S, then the program is

unbounded.

For runtime comparisons, we time each solver using MATLAB’s tic/toc function for bilinear

problems of increasing dimension and density. The results are displayed in Figure 3.5. Each solver

is timed out after ten minutes, and thus their point-values are absent from their respective plots.

IPOPT, alternating minimization, L-BFGS-B, and the projected gradient descent approach scale

remarkably well with the dimension of the problem, while fmincon and COUENNE do not. As can be

seen from the experimental results, as the complexity (size and density) of the problem increases,

the amount of time required to compute a global solution increases drastically for COUENNE. When

the bilinear objective term is fully dense, it can efficiently solve small problems; the runtime of

the solver is exponential in the number of variables that branching occurs on. In the following

section, we test a suite of solvers on the Template Abstract Domain benchmark problems and find

that COUENNE is unable to terminate within a fixed amount of time due to the complexity of the

examples. Furthermore, we note that fmincon’s runtime increases exponentially with the problem

size and density; however, it is able to handle a larger range of problems compared to COUENNE.
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3.9.2 Case 2: Affine Inequality Constraints

Next, we consider the case where the objective is a bilinear function and our constraint set

consists of a set of affine inequality and simple bound constraints on ~x and ~y

min
~x,~y

~xTA0~y +~bT0 ~x+ ~cT0 ~y

subject to A~x+B~y ≤ ~r,

~lx ≤ ~x ≤ ~ux, ~ly ≤ ~y ≤ ~uy

(3.40)

We again restrict ~x and ~y to the compact set S = {(~x, ~y) | 0 ≤ xi ≤ 1, 0 ≤ yi ≤ 1} to ensure a

bounded solution. The problem instances (3.40) are generated such that we know of at least one

feasible point that may not be globally optimal. In defining the affine inequality constraints, we

generate multiple feasible points (~xi, ~yi) ∈ S, compute the corresponding A~xi + B~xi = ~ri and set

~r = max0≤j≤|I| rij . We then choose one of the feasible points used to generate the problem as the

initial (~x0, ~y0) for each solver. The objective value for a fixed problem size of varying density is

displayed in Figure 3.6. Each problem instance is again restricted to ~x ∈ R40 and ~y ∈ R200. In

general, most solvers do relatively well, and are comparable for problem instances with a relatively

low number of bilinear connections. As the density of non-zero terms of A0 increases, we note

that the first solver to perform poorly is our novel augmented Lagrangian approach, followed by

alternating minimization and our novel bipartite-graph formulation of alternating minimization.

The projected gradient descent approach implemented for this case uses the standard Wolfe

conditions to deduce an appropriate step size (??). Its ability to obtain the optimal objective value

is competitive with the global solver, COUENNE, as well as the local solvers, IPOPT and fmincon,

for problem instances of increasing bilinear complexity. Recall the variable update for projected

gradient descent:

~yk+1 = ~xk − αk∇f(~xk)

~xk+1 = argmin
~x∈C

‖~yk+1 − ~x‖

The main crux of projected gradient descent in this case is the projection of the new point ~yk+1
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Figure 3.6: Objective value of (3.40) for various solvers. Each subplot corresponds to a different
density of non-zero terms of A0.
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onto the set C = {(~x, ~y) | A~x+B~y ≤ ~r, 0 ≤ xi ≤ 1, 0 ≤ yi ≤ 1}. For our implementation, we used

CVX interfaced through MATLAB to solve each projection.

3.9.3 Case 3: A Single Bilinear Inequality Constraint

In this subsection, we examine the case where our constraint set consists of a single bilinear

inequality constraint, as well as bound constraints on ~x and ~y

min
~x,~y

~xTA0~y +~bT0 ~x+ ~cT0 ~y

subject to ~xTA1~y +~bT1 ~x+ ~cT1 ~y ≤ r,

~lx ≤ ~x ≤ ~ux, ~ly ≤ ~y ≤ ~uy

(3.41)

We define the bilinear constraint by first generating several feasible points (~xi, ~yi) ∈ S and taking

~r = maxi{~xTi A1~yi + ~bT1 ~xi + ~cT1 ~yi}, thus guaranteeing a non-empty feasible region. For this com-
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parison, we include the semidefinite programming relaxation motivated by the S-lemma discussed

in section 3.4. However, by including the set of constraints ~x ∈ [~lx, ~ux] and ~y ∈ [~ly, ~uy], we are no

longer able to apply the S-lemma [Yak71] and guarantee an exact relaxation. Therefore, we expect

our SDP relaxation to yield a loose lower bound on the objective value. Figure 3.7 displays the

objective value obtained by each solver. Each subplot represents a different density of non-zero

terms in both A0 and A1, and the SDP relaxation is included to show the duality gap, p∗ − d∗,

between the optimal value and the lower bound provided by the relaxation.

Figure 3.7: Objective value obtained by various solvers in solving an instance of equation (3.41).
The SDP relaxation is included to show the duality gap for varying levels of bilinear connectivity.
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Figure 3.8 displays the same results, but excludes the SDP relaxation in order to better judge

the performance of the other solvers. Once more, we note that as the sparsity level of each bilinear

term decreases, the augmented Lagrangian method is more likely to stagnate at a non-optimal

solution. We observe the same issue with fmincon when the matrices A0 and A1 are fully dense.

Projected gradient descent is not included in the above experiments since it is unclear how
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Figure 3.8: Figure 3.7 without the SDP relaxation to show differences in the remaining solvers.
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3.10 Template Abstract Domain Experimental Results

In this section, we apply the algorithms mentioned in section 3.8 to a series of benchmarks

that include Example 2.5.3 discussed previously and benchmarks 2-5 in Table 2.1. Benchmarks 1

and 6-9 are not included in the numerical comparisons since the algorithms implemented do not

scale well with the size of the problems. For each instance, we report the optimal objective reported

by the solver along with the feasibility gaps that are given by the largest absolute violation of

equality constraints and largest inequality constraint violation to deduce feasibility of the resulting

solution.

Method Obj Value max{|ceq(x)|} max{cineq(x)} Status

Alt Min Gurobi 1.000e+00 0.000e+00 0.000e+00 Solved
Alt Min Sedumi 1.970e+02 0.000e+00 1.421e-14 Solved
FMINCON 1.000e+00 0.000e+00 -1.603e-08 Solved
BONMIN 1.000e+00 2.675e-08 1.020e-06 Solved
COUENNE 1.000e+00 8.963e-09 5.108e-07 Solved
IPOPT 1.000e+00 1.749e-08 1.011e-06 Solved
BARON 1.000e+00 5.845e-09 7.437e-09 Solved
Aug Lag 2.75e+02 9.925e-07 -8.074e-08 Timed Out

Table 3.4: Results on Example 2.5.3, m=2, n=6, NumCons=4.

Example Table 3.4 applies these approaches to the relatively small problem obtained from the

program shown in Example 2.5.3. The objective in this example is set to c1 − c2, wherein the

invariant that we seek has the form x1 ≤ c1 ∧ x1 ≥ c2. Starting with the initial solution

c1 = 100, c2 = 0, alternating minimization using an interior point solver and 5 other approaches

compute the best solution c1 − c2 = 1.

Tables 3.4, 3.5, 3.6, 3.7, and 3.8 compare the performance of various algorithms over bench-

mark IDs 2-5 from Table 2.1. In each table, the highlighted entries indicate “desirable results”

in terms of a negative solution and corresponding feasibility gaps of 10−7 or less. Due to the dif-

ferent types of solvers and the use of Matlab interfaces, we will not compare the time taken by

each approach. The key conclusion is that alternating minimization approach is by far the best
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in terms of solving these benchmarks with acceptable feasibility gaps. This is surprising given the

propensity of this approach to get “stuck” in a saddle point. Furthermore, floating point alternating

minimization approaches achieve acceptable feasibility gaps and the approach itself lends to exact

arithmetic implementation as shown in Section 2.6.

Method Obj Value max{|ceq(x)|} max{cineq(x)} Status

Alt Min Gurobi -3.175e-02 3.980e-11 4.818e-14 Solved
Alt Min Sedumi -9.344e-01 1.632e+01 7.915e-01 Infeasible
FMINCON -7.064e+06 7.502e-02 2.984e-01 Timed Out
BONMIN -1.022e+21 NA NA Failed
COUENNE NA NA NA Timed Out
IPOPT -3.265e+12 1.962e+08 5.258e+07 Timed Out
BARON -2.375e+07 4.475e+09 4.096e+13 Timed Out
Aug Lag 3.950e+02 1.140e-01 1.432e-01 Stagnant

Table 3.5: Benchmark # 2 from Table 2.1, m=48, n=264, p=353, NumCons=123.

Method Obj Value max{|ceq(x)|} max{cineq(x)} Status

Alt Min Gurobi -2.066e-01 1.137e-13 4.441e-16 Solved
Alt Min Sedumi -2.286e-01 2.220e-09 5.754e-09 Solved
FMINCON 8.386e+01 2.536e-11 -2.560e-05 Timed Out
BONMIN -6.298e+08 NA NA Failed
COUENNE NA NA NA Timed Out
IPOPT -3.805e+08 1.087e+08 1.547e+11 Timed Out
BARON -1.102e+13 3.148e+12 1.786e+11 Timed Out
Aug Lag 3.310e+00 1.029e-05 5.331e-06 Stagnant

Table 3.6: Benchmark # 3 from Table 2.1, m=24, n=72, p=161, NumCons=51.
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Method Obj Value max{|ceq(x)|} max{cineq(x)} Status

Alt Min Gurobi -1.000e-01 1.138e-14 1.213e-13 Solved
Alt Min Sedumi -1.000e-01 2.064e-13 -5.174e-14 Solved
FMINCON 1.208e+00 2.211e-02 7.211e-02 Infeasible
BONMIN -5.641e+09 NA NA Failed
COUENNE NA NA NA Timed Out
IPOPT 3.741e+10 2.799e+10 5.144e+12 Timed Out
BARON -7.834e+13 1.454e+11 7.509e+15 Infeasible
Aug Lag 2.000e+00 7.380e-07 5.306e-07 Solved

Table 3.7: Benchmark # 4 from Table 2.1, m=12, n=20, p=33, NumCons=27.

Method Obj Value max{|ceq(x)|} max{cineq(x)} Status

Alt Min Gurobi -2.417e-01 5.994e-13 1.742e-11 Solved
Alt Min Sedumi -2.417e-01 8.652e-10 2.261e-09 Solved
FMINCON 2.546e+02 3.553e-15 -9.184e-04 Infeasible
BONMIN -6.687e+17 NA NA Failed
COUENNE NA NA NA Timed Out
IPOPT -1.764e+13 5.408e+09 2.230e+10 Timed Out
BARON 1e+51 NA NA Failed
Aug Lag 1.847e+01 1.859e-05 1.198e-06 Stagnant

Table 3.8: Benchmark # 5 from Table 2.1, m=40, n=410, p=681, NumCons=204.

3.11 Discussion

To conclude this topic, we exploited the connection between template domains and bilinear

constraints. In doing so, we show that policy iteration (alternating minimization) allows the tem-

plate directions to be updated on the fly in a property directed fashion. We present preliminary

evidence that such an approach can be effective, though many challenges remain.

Furthermore, we introduced two novel approaches to solving bilinear programs: one utilizing

the augmented Lagrangian framework and the other adapting concepts from graph-theory to the

standard alternating minimization approach. We generated a set of test examples to better under-

stand the efficacy of some of the solvers described in section 3.8 on bilinear programs. While it is

more desirable to obtain a global solution, methods such as COUENNE and BARON do not scale well

with the dimension of the problem; therefore, their applicability may be limited as demonstrated
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with the template domain benchmark experiments. Since branch and bound methods search the

entire state space for a global solution, the number of operations required to solve the problem

is exponential in the number of variables. Many local solvers perform just as well and can solve

the problem much more quickly. Projected gradient descent and our novel augmented Lagrangian

method are efficient, but provide unsatisfactory solutions as the density of the bilinear connections

grow. We suspect that as the feasible region becomes more irregular by the increasing amount of

bilinear connections or addition of more complex constraints, these methods begin to suffer. All of

the solvers we considered performed well on our toy example (the eigenvalue problem); therefore, we

surmise that the constraint set significantly impacts the performance of the algorithm. All things

considered, alternating minimization appears to be the most beneficial approach to solving bilinear

programs. They scale very well with the size of the problem and produce competitive results, even

when the graph is fully connected.



Chapter 4

Information Theoretic Concepts and Applications to Super-Resolution Imaging

Techniques

In this chapter we examine how to establish claims of super-resolution; other than just judg-

ing by eye, there are not many formal tests. One such quantitative test is Fourier ring correlation,

a heuristic technique that compares the spectral information of two images to deduce their like-

ness, but this test can be easily fooled by algorithms that produce precise (but not accurate)

estimates. We propose an alternate method for quantifying super-resolution: we would like to

apply information-theoretic concepts to recovering statistics on the image-generation process, be-

fore reconstruction. That is, we would like to circumvent the algorithmic reconstruction process

altogether and avoid the inclusion of prior knowledge to aid in super-resolution reconstructions.

At their most fundamental levels, the quantities of information theory are defined as functionals of

probability distributions, and for certain distributions, the maximum amount of information that

can be acquired by a process is known in closed form. We introduce the concept of empirically com-

paring the relative information between two distributions that are relevant to the imaging problem

generated by super-resolution techniques for varying signal-to-noise ratios, and to compare those

values against the theoretical upper bound, the channel capacity. In what follows, we compare

the formulation of our proposed approach of estimating the mutual information between an object

and its raw measurements using Monte Carlo simulations and current discretization approaches

to estimating mutual information. We discuss some of the inherent difficulties in estimating the

entropy and mutual information functions. Ultimately, our aim is to introduce a novel approach
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for quantifying the effectiveness of certain super-resolution imaging techniques and disentangle

physical mechanisms for super-resolution from post-processing mechanisms. By isolating the phys-

ical measurement and the noise model, we can study the amount of information contained in raw

measurements, independent of post-processing.

4.1 Overview

A conventional microscope can only resolve image details with a line spacing larger than the

diffraction limit of the objective lens, d0. Equivalently, it can only detect the information contained

within a circular region of radius 1/d0 in Fourier space. Therefore, conventional methods to imaging

and phase retrieval can only accurately reconstruct a signal, or image, up to the diffraction limit.

In our investigation of phase retrieval algorithms, we found that current approaches rely heavily

on additional side information in conjunction with the estimated intensity measurements. This

information may be a priori knowledge from the application domain; however, there are instances

where additional information may be insufficient, or unavailable. Hence, an accurate reconstruction

of the original image may be infeasible. Super-resolution imaging is a class of techniques that aims

to reconstruct an image that appears to have a higher resolution than allowed by the simple use

of diffraction-limited optics. In essence, multiple snapshots of the same image are taken using a

structured pattern, or in a localized manner, in hopes of obtaining more information about the

imaged sample. While these approaches show promise, there is an associated limit on the amount

of information gained from each additional snapshot of the sample, and a limit on the total amount

of information gained by implementing various super-resolution techniques.

In what follows, we give a general overview of the phase retrieval (PR) problem and current

approaches to estimating the phase information of a sample given only its intensity measurements

before moving on to super-resolution imaging. We discuss the PR problem’s connection to quadratic

programs, along with several approaches (both convex and nonconvex) to solving the problem. In

section 4.3 we review a bellwether algorithm that performs remarkably well on the PR problem,

given its nonconvex formulation. Beginning with section 4.4, we review the topic of super-resolution
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imaging and provide a motivating example for requiring better standards for assessing the effec-

tiveness of a technique. We then discuss the concept of mutual information, and in section 4.5.2

we briefly review current discretization approaches to estimating these quantities before introduc-

ing our novel proposal of implementing Monte Carlo methods to estimate the mutual information

and use this quantity as a measure for the amount of information gained from a super-resolution

technique in section 4.5.3.

4.2 Phase Retrieval as a Specific Case of Quadratic Programming

Consider the complex signal F (u), with modulus |F (u)|, and phase φ(u). The objective of

phase retrieval is to algorithmically determine the phase information of a complex signal from its

modulus measurements and additional a priori information. We define

F (u) = |F (u)| exp(iφ(u)) =

∫ ∞
−∞

f(x) exp(−2πix · u)dx, (4.1)

where x is an M -dimensional spatial coordinate and u is an M -dimensional spatial frequency

coordinate. We are particularly interested in recovering a 2D image X when given its modulus

data, |F (X)|; that is, the case for which M = 2. Knowing the phase information allows us

to perfectly reconstruct an image from its Fourier modulus information by applying the inverse

Fourier transform.

Phase retrieval is well-known to be an ill-posed problem. At best, we may be able to recon-

struct an image up to some global phase ambiguity since

|F (cu)| = |cF (u)| = |F (u)| (4.2)

where c ∈ C has modulus 1. Therefore, it is not possible to distinguish u from cu and the aim is

to recover u up to multiplication by a unitary complex number. Furthermore, for an n× n image,

we have n2 degrees of freedom, without any a priori information. Thus, additional constraints, or

domain-specific knowledge must be provided for there to be any hope of reconstructing the original
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image.

In phase retrieval, we are interested in solving quadratic equations of the form

Y = |F (X)|2 (4.3)

where X ∈ Rn×m is a real, not necessarily square, image and Y are the intensity, or squared

modulus, measurements. Mathematically this can be stated as

find X

subject to Yi,j = |F (X)|2i,j for 1 ≤ i ≤ n, 1 ≤ j ≤ m
(4.4)

Let `(x, y) be a loss function measuring the misfit between both its scalar arguments. We

can consider the generalized phase retrieval problem

min
X

∑
i

∑
j

`(Yi,j , |F (X)|2i,j)

subject to X ∈ D

(4.5)

where D is the image domain, i ∈ {1, . . . , n}, and j ∈ {1, . . . ,m}. If we have information about the

statistics of our noise, we can use it in our optimization formulation via the maximum likelihood

estimation framework. If we assume that our measured images suffer only from white Gaussian

noise, then the probability of capturing the measured intensity Yi,j at pixel index (i, j), given the

estimate |F (X̂)|2i,j , can be expressed as

p(Yi,j | |F (X̂)|2i,j) =
1√

2πN
exp

(
−(Yi,j − Ŷi,j)2

2N

)
(4.6)

where N is the variance of the white Gaussian noise and Ŷi,j = |F (X̂)|2i,j . Assuming that each pixel

measurement is independent, the likelihood function can be calculated as
∏
i

∏
j p(Yi,j | |F (X̂)|2i,j).

The goal in maximum likelihood estimation is to maximize the likelihood function; however, due

to numerical instabilities and floating-point errors that arise from multiplying many very small

numbers together, it is easier to solve this problem by transforming the likelihood function into
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the negative log-likelihood and minimizing the resulting function. The monotonicity of the log

function preserves all optima, replaces products with summations, and makes the differences in

the measured versus estimated data more pronounced. If we assume that the noise-variance, N ,

is constant and independent of the pixel-intensity measurements, then we arrive at the familiar

least-squares optimization problem

min
X,Ŷ

∑
i

∑
j

(Yi,j − Ŷi,j)2

subject to Ŷi,j = |F (X)|2i,j , ∀i, j

X ∈ D

(4.7)

We specify D using known properties of the variable. In most imaging applications, one imposes

the constraint that each pixel value be real and non-negative, or D0 = {x | x ∈ R and x ≥ 0}, with

D = D0⊗D0⊗. . .⊗D0; in general, the specification of D is application-specific. The above problem

is nonconvex in its constraints, so there may be many stationary points associated with the problem.

Furthermore, convergence to a local minimum of a degree-four polynomial is known to be NP-hard

[MK87]. Several attempts have been made to solve the intensity-based optimization problem (4.7)

where Ŷi,j is replaced with |F (X)|2i,j , and the constraint Ŷi,j = |F (X)|2i,j is removed. Such methods

include the PhaseLift [CSV13] and Wirtinger Flow [CLS15] algorithms. In both instances, the

authors establish provable results and convergence guarantees when the sample measurements are

Gaussian, but not Fourier. Establishing provable results when the sampling measurements are

Fourier-based is still, to our knowledge, an open problem.

If we instead assume that our measured images suffer from Poisson shot noise, then the

probability of capturing the measured intensity Yi,j at pixel index (i, j), given the estimate |F (X̂)|2i,j ,

can be expressed as

p(Yi,j | |F (X)|2i,j) =
Ŷ
Yi,j
i,j exp(−Ŷi,j)

Yi,j !
≈ 1√

2πNi,j

exp

(
−(Yi,j − Ŷi,j)2

2Ni,j

)
. (4.8)

From the central limit theorem, when the expected value of the Poisson distribution is large, then
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this Poisson distribution will become more like a Gaussian distribution. Moreover, the resulting

standard deviation will be proportional to the square root of the intensity measurement, Ni,j ∝√
Yi,j . This means that a large measured intensity at a pixel will imply large noise at that pixel.

Under this assumption, which is only true in the limit of infinite photos, we can take the negative

log-likelihood of the maximum likelihood estimator, and this time arrive at the weighted least-

squares optimization problem

min
X

∑
i

∑
j

(Yi,j − Ŷi,j)2

2N2
i,j

.

subject to Ŷi,j = |F (X)|2i,j , ∀i, j

X ∈ D

(4.9)

Minimizing this objective, rather than the former, may help to combat any heterogeneity within

the data. Waller et al. [YDZ+15] provide an excellent comparison of this, and other variants to

solving the phase retrieval problem (4.4). However, their main application is to super-resolution

imaging, which is introduced and discussed in the next chapter.

Methods like the PhaseLift algorithm [CSV13] reformulate the phase retrieval problem into

a semidefinite program by lifting the problem into a higher-dimensional space, and solving the

corresponding convex relaxation exactly like the SDP relaxations we discussed in chapter 3. The

authors prove that under certain conditions, and in the presence of noise, that they are still able to

reconstruct the original image. The main assumption of their proof is Gaussian sampling vectors.

This approach follows in the same vein as bilinear optimization and quadratic programming, and

many techniques have been implemented to solve (4.4) without strong guarantees for Fourier-based

measurements, in general.

4.3 Alternating Projection Algorithms for Phase Retrieval

Somewhat surprisingly, there is a class of nonconvex, iterative algorithms that achieve re-

markable results for reconstructing an image up to some global phase ambiguity. In his 1982
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comparison of phase retrieval algorithms [Fie82], Fienup showed empirically that one can recon-

struct an image from Fourier measurements by applying a series of alternating projections between

the image domain and Fourier domain. In his analysis, defining D0 = {x|x ∈ R and x ≥ 0},

D = D0 ⊗ D0 ⊗ . . . ⊗ D0 is the image domain and F = {x | |F (x)| = y} is the Fourier domain,

where y is the measured Fourier modulus, or square root of the measured intensity. Let Xk denote

the estimated image at iteration k and X̂k its Fourier transform. Fienup compared two algorithms,

the Error-Reduction (ER), or Gerchberg-Saxton algorithm, and his novel Hybrid Input-Output

(HIO) algorithm.

The Error-Reduction algorithm consists of four basic steps as follows. At iteration k:

(1) Take the Fourier transform of Xk, F (Xk) = X̂k

(2) Replace |X̂k| with the true Fourier modulus data, Y

(3) Take the inverse Fourier transform to get the new image, X ′k

(4) Xk+1 =


X ′kij if X ′kij ∈ D

0 else

Defining the Fourier estimation error as

E2
Fk

=
1

N

∑
u

(|X̂k| − Y )2, (4.10)

and the image-domain estimation error as

E2
Dk

=
∑
x

(|X ′k| − Y )2 =
∑
x/∈D

(X ′k)
2, (4.11)

one can show that both error measurements are reduced at every iteration using Parseval’s theorem.

Fienup’s nonconvex Hybrid Input-Output algorithm is similar to the ER algorithm, differing

only in the final step where the image-domain constraint is enforced. Keeping the first three steps

intact, step 4 is replaced by
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Xk+1 =


X ′kij if X ′kij ∈ D

Xkij − βX ′kij else

(4.12)

where β is a positive constant. The first three steps ensure that the estimated Fourier measurements

are feasible; however, unlike the ER algorithm, the HIO algorithm sacrifices feasibility in the image-

domain and instead remodels the problem in order to provide negative feedback to the system. That

is, if X ′kij < 0 for more than one iteration, then the corresponding pixel continues to grow larger

and larger until it eventually becomes non-negative. Since the input, Xk, into the next iteration

does not satisfy the image-domain constraints, using E2
Fk

as an error measure is meaningless (it

isn’t a true estimate any longer). Therefore, E2
Dk

is used to determine convergence, or termination

of the algorithm. While we aren’t guaranteed a reduction of error at every iteration, HIO can be

shown to converge much more quickly than the ER algorithm and works very well in practice.

Bauschke et al. [BCL03] recently analyzed the HIO algorithm and showed that it was a non-

convex instance of the Douglas-Rachford projection algorithm. The convergence of this algorithm is

well understood, provided that all constraint sets are convex. However, the convergence results do

not carry over to the nonconvex setting of phase retrieval. These insights led to a novel projection-

based algorithm, termed the Hybrid Projection-Reflection (HPR) algorithm. The formulation by

Bauschke et al. also incorporates a relaxation parameter for added flexibility, and further modifies

the last step wherein we calculate the new image estimate.

While solving the Phase Retrieval problem is intrinsically difficult, the true and estimated

phase information is limited by the resolving power of the imaging device. Thus, the ability to

accurately reconstruct an image from its modulus data is hindered by both the ill-posedness of

the problem and the limitations of the imaging device. Without a priori information, we may not

be able to get past the ill-posedness of the problem; however, there is a class of methods called

super-resolution techniques that may allow us to obtain more information about the sampled object

than by simply using the imaging device.
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4.4 Super-Resolution Imaging

The resolution of an optical (or light) microscope is defined as the smallest distance between

two points such that the points can still be distinguished as separate entities. There are many factors

that can affect the resolving power of an optical system, including aberrations on the objective lens

or systematic setup errors. However, there is a fundamental limit to the resolution of any imaging

system, due to the physics of diffraction. The resolution of a microscope objective is determined

by the angle of light waves that are able to enter the front lens, thus, the instrument is said to be

diffraction-limited. This limit is purely theoretical, and it was first introduced by Ernst Abbe in

1873 [Abb73]. He found that light with wavelength λ, traveling in a medium with refractive index

n, and converging to a spot with half-angle θ will have a minimum resolvable distance of

d =
λ

2n sin(θ)
=

λ

2NA
, (4.13)

where NA = n sin(θ) is the numerical aperture. This distance is known as the effective resolution

of a microscope and in modern optics the numerical aperture can reach about 1.4-1.6.

Figure 4.1: Visualization of numerical aperture1, with n = 1.

In order to minimize the resolvable distance between two points one can increase the size of the

numerical aperture, decrease the wavelength of the light source, or both. Though these techniques

offer better resolution, increasing the NA or using a light source with a shorter wavelength is

1 Numerical Aperture and Resolution. Olympus Scientific Solutions, Retrieved from https://www.olympus-
lifescience.com/en/microscope-resource/primer/anatomy/numaperture/



95

expensive and can be impractical for the application. As an example, consider violet light which

has a wavelength λ = 400 nm and a NA of 1, the Abbe limit is roughly d = λ/2 = 200 nm (or

0.2 µm). This is small compared to most biological cells (1 µm to 100 µm), but large compared

to viruses (100 nm), proteins (10 nm) and less complex molecules (1 nm). For biological samples,

decreasing the wavelength of light to UV or X-ray may offer better resolution, but may damage

the sample. Therefore, even a theoretically ideal objective without any imaging errors has a finite

resolution.

4.4.1 Super-Resolution Techniques

There are techniques for reconstructing images that appear to have a higher resolution than

allowed by the simple use of diffraction-limited optics. Super-resolution microscopy describes a

class of techniques that can be categorized by two major groups: deterministic and stochastic.

Deterministic super-resolution involves ensemble imaging approaches that use patterned il-

lumination to spatially modulate the fluorescence behavior of molecules. Fluorophores are a flu-

orescent chemical compound that can re-emit light upon excitation. They are sometimes used as

a dye for staining certain structures. In biological microscopy, they show a nonlinear response

to excitation and this response can be controlled such that not all of them emit simultaneously,

thereby achieving subdiffraction limited resolution [HBZ10]. Methods in this group include the sim-

ulated emission depletion (STED) microscopy, ground state depletion (GSD) microscopy, reversible

saturable optical linear fluorescence transitions (RESOLFT), structured illumination microscopy

(SIM), and saturated structured illumination microscopy (SSIM) [HJC02, Gus05, HEJH05, KH99,

HW94, Gue95, Gus00].

Stochastic super-resolution takes advantage of single-molecule imaging, using photoswitch-

ing or other mechanisms to stochastically activate individual molecules [HBZ10]. The chemical

complexity of many molecular light sources can be used to make several close-by fluorophores emit

light at separate times, making them resolvable in time. The measured positions of individual

fluorophores are used to reconstruct the image with subdiffraction limited resolution. These meth-
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ods include super-resolution optical fluctuation imaging (SOFI) and all single-molecule localization

methods (SMLM) such as spectral precision distance microscopy (SPDM), SPDM with physi-

cally modifiable fluorophores (SPDMphymod), photo-activated localization microscopy (PALM or

FPALM), stochastic optical reconstruction microscopy (STORM), and stimulated emission deple-

tion (STED) microscopy, the winner of the Nobel Prize in Chemistry 2014 (along with single-

molecule microscopy) [HGM06, BPS+06, RBZ06, GER+09, RBG+08, HW94].

These methods are not restricted to biological applications. Even when the use of fluorophores

is not viable, there are techniques to circumvent the optical space-bandwidth limitations of an imag-

ing device to resolve images beyond theoretical diffraction limits. Such methods include structured

illumination microscopy and Fourier ptychography [YDZ+15, YBF+18, HCO+15, BMH+17]. All

super-resolution techniques share a common theme: multiple images of the same object are clev-

erly taken using a structured pattern or in a localized manner. The super-resolved image is then

reconstructed using the known pattern information, or in the case of localization methods, the

individual localized snapshots are stitched together in a coherent fashion, producing an image with

finer details than simply using the imaging device alone.

As an example, consider the very simple construction of sampling an object multiple times

without any band-limiting. We assume the output is only corrupted by additive white Gaussian

noise with constant variance, σ2,

Yi = X + Zi, Zi ∼ N(0, σ2). (4.14)

Since the noise has mean 0, an intuitive approach would be to sample the object multiple times

and average over all the outputs to generate a suitable estimate for the true object. Assuming we

have N samples,

X̂ =
1

N

N∑
i=1

Yi ≈ X. (4.15)

In Figure 4.2 we show an application of this example with a signal-to-noise ratio of 3.4. We

see the estimate of the true image improves as we average over more samples.

What if our sampled images were instead corrupted with both additive and multiplicative
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Figure 4.2: The top left subplot displays the original, uncorrupted image (pears.png from MATLAB’s
Image toolbox). The top right subplot shows a sample output Y with a signal-to-noise ratio of
3.4. The bottom two images display the reconstruction after averaging over the specified number
of samples taken.

noise? In that case, simply averaging over the outputs would not produce an adequate estimate.

Let the underlying system be described by

Y = X � U + Z, (4.16)

where U,Z ∼ N(0, σ2) and � represents element-wise multiplication. Figure 4.3 displays the results

produced by averaging sample images that are contaminated with both additive and multiplicative

noise. In this case, the effect of multiplicative white Gaussian noise renders the previous approach

useless since

X̂ = E[Y ] = E[X � U + Z] ≈ X � E[U ] = 0. (4.17)

However, since U ∼ N(0, σ2), we can instead compute the following quantity

X̂2 = E[Y 2] ≈ σ2X2, (4.18)

where (·)2 represents element-wise squaring. Notice that by squaring each pixel value, the expec-
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Figure 4.3: Comparing the results of averaging over sample images when we introduce both additive
and multiplicative white Gaussian noise.

tation of U2 is simply the variance. Therefore, we can estimate the image by averaging over the

element-wise squared pixel values and dividing by the variance of the multiplicative noise. The

reconstructed image is computed by taking the element-wise square root of the resulting estimate.

The results of this procedure are displayed in Figure 4.4.

Clearly, (4.18) provides a better estimate for the true image than (4.17). Knowing the

model describing the intrinsic system greatly improves the quality of the results since we may

construct an inverse problem to compute an appropriate estimate for the true solution. Typically,

the relationship between X and Y is more complex than that of the examples above. As such, we

rely on the diversity amongst samples to identify patterns that might not otherwise be apparent.

Ideally, our data would consist of a representative sample of the output space and our formulated

model would be consistent with the underlying processes driving the system. Even in the additive

noise case, the sample average is not the “best” thing to do: consider the James-Stein estimator.

For this reason, and because in complicated systems we may not even yet have a clear idea of
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Figure 4.4: Comparing the results of averaging over element-wise squared pixel values and dividing
by the multiplicative noise variance when we introduce both additive and multiplicative white
Gaussian noise. The reconstructed image is computed by taking the element-wise square root of
the resulting estimate. The results show the effect of considering 10 sample images versus 100.

the reconstruction, we’re motivated to investigate the information gathering capabilities without

having to actually form the estimate X̂.

To understand the quantitative capabilities of super-resolution techniques, it is useful to think

of sample structures as their Fourier representation. In this setting, low-frequency information is

contained near the origin, and high-frequency information radially further away. A conventional

microscope can only resolve images details with a line spacing larger than the diffraction limit

of the objective lens, say d0. Equivalently, it can only detect the information contained within

a circular region of radius 1/d0 in Fourier space. This circular region defines the set of patterns

(or observable frequencies) that the illumination light is able to generate. This observation is the

basis for super-resolution techniques like SIM, and offers another means by which to understand

the resolving power of an optical system.
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Figure 4.5: Examples of two images along with their Fourier transforms. The center of the Fourier
spectrum represents the DC offset.

4.4.2 Regularization to Improve Image Reconstruction

Figure 4.6: Airy disk with

grayscale intensities. It is

the point spread function of

a diffraction limited lens.

In optical systems, the pixel pitch is the distance (in mil-

limeters) from the center of a pixel to the center of the adjacent

pixel. Thus, digital imaging devices are limited by the pixel pitch

and pixel grid, as well as diffraction. The combined effect of the

different components of an imaging system is described by the con-

volution of their point spread functions (PSF). Due to the physics of

diffraction, and the way that light waves bend at a surface, the PSF

of a diffraction limited lens is the Airy disk. These effects further

limit the resolving power of an optical system and also limit the

effectiveness of super-resolution techniques. As such, the methods

mentioned above may not be sufficient as stand-alone techniques in reconstructing an image to a



101

desired resolution.

To obtain a high-resolution reconstruction, one can append one or more penalty terms (or reg-

ularizers) to the negative log-likelihood to construct a regularized MLE. The goal of regularization

is to ensure stability and accuracy in estimating the image. For instance, a recent paper [MHB+17]

investigated the use of spatially structured illumination in a wide-field fluorescence microscope to

illuminate a sample with a series of excitation light patterns to generate a super-resolved image of

two chromophores (the part of a molecule responsible for its color). The authors found that the

ill-conditioning of their problem required them to impose a group-sparsity regularizer, as well as a

quadratic penalty term known as the Tikhonov regularizer, to ensure resolution enhancement and

stability of the solution.

It is worth noting that even if the structured illumination pattern is known, the resolution

enhancement in structured illumination microscopy is limited to a factor of about two since the

maximum spatial frequency of the illumination pattern is constrained by the microscope’s optical

transfer function, or Fourier transform of the the microscope’s PSF [Gus00]. Therefore, there is

a limit to the amount of information that can be gained from using these types of structured-

illumination super-resolution techniques. Moreover, we pose the question: is the success of certain

reconstruction algorithms due to the addition of prior information (i.e., regularizers), or due to

the super-resolution imaging technique? We motivate this question with an example in the next

section.

4.5 Recovering Image Statistics

Revisiting the regularized blind structured illumination problem from before [MHB+17], Mur-

ray et al. were interested in reconstructing the distribution of the absorbed electromagnetic energy

inside a biological sample. Their problem setup was as follows: given a measured signal y(r) in

photoacoustic microscopy, a PSF for the ultrasound detector (the transducer) h(r), and local light

fluence (radiation incident on a surface) I(r), they model the measurements as
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y(r) = h(r)~ [I(r) · ρ(r)], (4.19)

where ~ represents the convolution operator, · denotes point-wise multiplication, and ρ(r) is the

local absorption coefficient and the quantity of interest. In blind structured illumination, we use a

series of unknown patterns satisfying some known statistical properties to down-shift some of the

high-frequency components of the sampled image into the region of observable frequencies. This

approach differs from the standard structured illumination technique wherein the sample is overlaid

with a set of known patterns that aim to extract higher frequency information. Knowing the set of

patterns allows us to solve a corresponding inverse problem for the estimated super-resolved image,

X̂.

In their blind structured illumination approach, light is focused on a small region, being

careful to excite and illuminate one chromophore sample at a time. Their approach uses multiple

unknown speckle illumination patterns that follow a statistical property that should allow them to

resolve the image beyond the diffraction limit of the measuring device [MBG+12, MJK+13]. For

M unknown speckled illuminations, the measured signals are defined as

ym = h~ [Im · ρ] + εm for m = 1, . . . ,M,

where εm is the noise, or error, in the data and Im are the unknown speckled patterns. Letting

pm := Im · ρ, and using a priori knowledge of the problem structure, their objective is to minimize

the following quantity:

F (p) =
1

2

M∑
m=1

N∑
i=1

|h~ pm(xi)− ym(xi)|2 + α1‖p‖2,1 +
α2

2
‖p‖22 → min

p
(4.20)

where α1 and α2 are tuning parameters for the group-sparsity and Tikhonov penalty terms, re-

spectively, and the xi is the ith grid point of x representing equidistant points in the imaging

domain.

While their approach is successful in estimating the original image, we are interested under-
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standing the amount of information gained from applying blind structured illumination. Since we

know in advance that the true image is sparse, it is appropriate to append a sparsity-promoting reg-

ularizer to the objective function being minimized. However, we are interested in disentangling the

effect of regularization from the effect of implementing this super-resolution technique of overlaying

a coordinate-wise multiplicative pattern on the sample to be estimated. Therefore, we consider

solving the following problem, without the unknown speckled patterns

min
ρ

1

2

M∑
m=1

N∑
i=1

|h~ ρ(xi)− ym(xi)|2 + α‖ρ‖1. (4.21)

In this case, we are assuming each measurement, ym, is expressed as

ym = h~ ρ+ εm, i = 1, . . . ,M.

In Figure 4.7 we compare the results of each technique [Mal]. For comparison, we include the result

obtained by naively applying the Richardson-Lucy deconvolution method without any regulariza-

tion, i.e., no addition of side information and speckled patterns. We see that with an appropriate

choice of α, α1, and α2, we are able to reconstruct the original image up to some small error. By

visual inspection, the two reconstructions appear very similar.

In this specific example, it seems as though regularization plays a significant role in estimating

the original image, not the super-resolution technique. This is not to say that the technique offers

us no advantage. Rather, we are interested in understanding the amount of information gained by

taking multiple measurements under the blind structured illumination framework (and other super-

resolution approaches) to quantify the benefit of implementing such a technique. We would like

to circumvent the recovery process and apply information-theoretic concepts to recover statistics

on the image generation process, before applying a reconstruction algorithm. In the next section

we provide a brief overview of information-theoretic concepts to quantifying the uncertainty of a

random variable, as well as the information contained between a pair of random variables. This

will set up the foundation for our proposed method for quantifying the efficacy of various super-

resolution techniques.
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Figure 4.7: Comparison of various approaches to solving the photoacoustic microscopy problem.
We display the original image to be estimated along with an example of a typical speckled pattern.
The result of simply averaging over all measurements without a speckled pattern, but with additive
noise is shown in the top right subplot. The middle right image shows the result of applying the
Richardson-Lucy deconvolution algorithm on the set of images obtained without using a speckled
pattern and without any type of regularization. The bottom two subplots display the results of
implementing (4.20) and (4.21).

4.5.1 Information Theory Preliminaries: Mutual Information and Channel Ca-

pacity

At their most fundamental levels, the quantities of information theory – entropy, relative

entropy, and mutual information – are defined as functionals of probability distributions [CT12].

Information theory studies the quantification, storage, and communication of information. We

begin by defining a few useful concepts.

Definition 4.5.1. The differential entropy h(X) of a continuous random variable X with density
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f(x) is defined as

h(X) = −
∫
S
f(x) log f(x)dx, (4.22)

where S is the support set of the random variable, if it exists.

The entropy of a random variable is a concave function that measures the amount of un-

certainty of the random variable; it is the amount of information required on average to describe

the RV. In the discrete case, f(x) is replaced with the probability mass function, p(x), and the

integral is replaced by a summation. In both cases, the entropy depends only on the probability

distribution of the random variable, and not the actual values of the RV.

Definition 4.5.2. If X, Y have a joint density function f(x, y), we can define the joint and

conditional differential entropies as

h(X,Y ) = −
∫∫

f(x, y) log f(x, y) dxdy

h(X|Y ) = −
∫∫

f(x, y) log f(x|y) dxdy

(4.23)

Since in general f(x|y) = f(x, y)/f(y), we can also write

h(X|Y ) = h(X,Y )− h(Y ). (4.24)

Thus, we can think of the entropy of a pair of RVs as the entropy of one plus the the

conditional entropy of the other.

Definition 4.5.3. The relative entropy (or Kullback-Leibler distance) D(f ||g) between two densi-

ties f and g is defined by

D(f ||g) =

∫
f log

f

g
. (4.25)

We note that D(f ||g) is finite if and only if the support set of f is contained in the support

set of g. In statistics, the relative entropy arises as the expected logarithm of the likelihood ratio;

it is a measure of the inefficiency of assuming that the distribution is q when the true distribution

is p.
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Definition 4.5.4. The mutual information I(X;Y ) between two random variables with joint den-

sity f(x, y) is defined as

I(X;Y ) =

∫
f(x, y) log

f(x, y)

f(x)f(y)
dxdy (4.26)

From the definition it is clear that

I(X;Y ) = h(X)− h(X|Y ) = h(Y )− h(Y |X) = h(X) + h(Y )− h(X,Y ) (4.27)

The mutual information is a measure of the amount of information that one random variable

contains about another random variable; it is the reduction in uncertainty of one RV due to the

knowledge of another. In terms of relative entropy, the mutual information I(X;Y ) is the rela-

tive entropy between the joint distribution and the product of marginal distributions, meaning, it

measures the deviation from independence.

Theorem 4.5.1. Let X,Y ∼ p(x, y) = p(x)p(y|x). The mutual information I(X;Y ) is a concave

function of p(x) for fixed p(y|x) and a convex function of p(y|x) for fixed p(x).

Definition 4.5.5. Random variables X, Y, Z are said to form a Markov chain in that order

(denoted byX → Y → Z) if the conditional distribution of Z depends only on Y and is conditionally

independent of X. Specifically, X,Y , and Z form a Markov chain X → Y → Z if the joint

probability mass function can be written as

p(x, y, z) = p(z|y)p(y|x)p(x). (4.28)

Theorem 4.5.2. (Data-Processing Inequality) If X → Y → Z, then I(X;Y ) ≥ I(X;Z).

Corollary 4.5.2.1. In particular, if Z = g(Y ), we have I(X;Y ) ≥ I(X; g(Y )).

This means that no processing on Y , deterministic or random, can increase the information

that Y contains about X.

Definition 4.5.6. We define the “information” channel capacity of a discrete memoryless (condi-

tionally independent of previous channel inputs or outputs) channel as

C = max
p(x)

I(X;Y ), (4.29)
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where the maximum is taken over all possible input distributions, p(x).

In practice, the channel capacity is the highest rate in bits per channel use at which infor-

mation can be sent with arbitrarily low probability of error. In the discrete setting, it is the log of

the number of distinguishable signals and it demonstrates that one can choose a “non-confusable”

subset of input sequences such that with high probability there is only one highly likely input that

could have caused the particular output. In general, there is no closed form for the solution of

channel capacity; however, for many simple channels it is possible to calculate.

Using the above concepts, and in particular the Data-Processing Inequality, we aim to quan-

tify the information gained from the raw measurements obtained by applying super-resolution

techniques, prior to implementing a reconstruction algorithm. By the Data-Processing Inequality,

post-processing of the raw measurements should not increase the amount of information that the

measured images Y contain about the sample X, on average. We include the remark “on average”

since these information-theoretic quantities are defined as functionals on probability distributions.

In particular, we propose using the mutual information to quantify the amount of information a

measurement Y contains about a sample X; or rather, the reduction in uncertainty of X given a

measurement Y obtained using some super-resolution technique.

Estimating the entropy, mutual information, and channel capacity for a pair of random

variables is, in general, a very challenging task. Under certain imaging and noise models, we may

be able to compute quantities such as the channel capacity in closed form. However, quantities such

as the mutual information require knowledge of the joint probability distribution p(X,Y ) and the

marginal distribution of the output space p(Y ), which are typically unknown. In what follows, we

describe two approaches to estimating the mutual information: a popular strategy that discretizes

the joint probability space and computes the appropriate statistics on the discretized space, and

our novel proposal of implementing Monte Carlo methods to estimate the underlying distributions.

We discuss the pros and cons of each approach and conclude with ideas for future work.
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4.5.2 Discretization Approaches to Estimating the Mutual Information

In most cases, the joint pdf between the input and the output, p(X,Y ), is unknown. This fact

leads to the intrinsic difficulty in calculating the mutual information. Given N i.i.d. samples from

p(X,Y ), {xi, yi}Ni=1, it is unclear whether the set of points are sufficient to model the underlying

relationship between X and Y , and thus some type of regularization is necessary. When both X

and Y are continuous random variables, our parameter space is the space of smooth probability

density functions. Given N realizations, the maximum likelihood estimator that best represents

the provided data is the sum of dirac-delta functions centered at each realization, which does not

exist in the parameter space. Therefore, we must be very careful in how we define and estimate

the necessary distributions.

Several discretization approaches have been proposed to estimate the mutual information

that rely on the relationship

I(X;Y ) = h(X) + h(Y )− h(X,Y ) (4.30)

and the Data-Processing Inequality. We introduce several of these techniques below, and refer

the reader to [Pan03] for a more comprehensive discussion. The general idea is as follows: pick a

sequence of functions SN and TN that preserve the nature of the underlying problem and use these

to estimate the mutual information I(SN , TN ) within some accuracy given N input-output pairs.

SN and TN can be thought of as parameterizations of p(X,Y ) that allow the model to increase in

complexity and provide tighter lower bounds for the true mutual information as more data becomes

available.

Method of Sieves Grenander’s Method of Sieves is an optimization approach to estimating

non-parametric problems when the parameter space is too large [GH82, CG85, Gre81]. Methods

such as maximum likelihood or least-squares can fail when applied to non-parametric problems, as

alluded to with the sum of dirac-delta functions example above. The objective of the approach is

to optimize over a subset of the parameter space, and choose increasingly dense subsets as more

data becomes available. This subset is thought of as a “sieve,” and the “mesh size” of the sieve is
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decreased until the underlying density is arbitrarily close to the true distribution, in the limiting

sense.

Since the Data-Processing Inequality is unconstrained by the transformation on the random

variable (no transformation on Y can give us more information about X), we can choose SN and

TN to discretize X and Y into a finite number of points mS,N and mT,N . That is, SN : X →

{1, . . . ,mS,N} and TN : Y → {1, . . . ,mT,N}. Thus, we are able to reduce our original infinite-

dimensional parameter space to the mS,NmT,N -simplex where the joint distribution of random

variables SN and TN is discrete on mS,NmT,N points.

Given N data points, the “empirical measure” of the ith bin is

pN,i =
1

N

N∑
j=1

δi(TN (yj)), i = 1, . . . ,mT,N (4.31)

where δi is the probability measure concentrated at i. We can think of TN (yj) as the operation

of “binning” yj into the ith bin of the discretized space. Using this measure as the empirical

probability density, we define three popular estimators used to estimate the entropy

h(p) = −
∑
i

p log p (4.32)

where the following logs are natural, unless otherwise stated. The first estimator is the maximum-

likelihood estimator (ML) [AK01, SKvSB98]

ĥMLE(pN ) = −
m∑
i=1

pN,i log pN,i. (4.33)

For a fixed discretization, the ML estimator is the best in a worst-case sense as N → ∞.

That is, it is asymptotically minimax in the `2-norm [Rao01]. However, it is important to note that

this, and the subsequent estimators, are biased. The effects of the bias and their implications on

the estimators are discussed below. The second estimator considered is a bias-corrected version of

the maximum-likelihood estimator, called the Miller-Madow estimator [Mil55]

ĥMM (pN ) = ĥMLE(pN ) +
m̂− 1

2N
, (4.34)
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where m̂ is the number of bins with non-zero pN -probability. Lastly, there is the jackknifed version

of the MLE [ES81]

ĥJK(pN ) = N · ĥMLE(pN )− N − 1

N

N∑
j=1

ĥMLE−j , (4.35)

where ĥMLE−j is the maximum-likelihood estimator on all but the jth sample. Each of these

estimators excel in different problem regimes. Assuming the number of data points N is much larger

than the number of bins m (N � m), if the variance dominates the mean-square error then all

three estimators are approximately equivalent because they all share the same asymptotic variance

rate. If the bias dominates, then the bias-corrected estimators ĥMM and ĥJK are more effective

for estimating the entropy. However, when N ∼ m, all three of these estimators begin to break

down; thus, we require a substantial amount of data to accurately estimate the joint probability

distribution, and in many instances the amount of data necessary to accurately estimate p(X,Y )

is unobtainable.

For a fixed measure p and discretization m, by the Central Limit Theorem, the empirical

measures pN become asymptotically normal as N → ∞. Furthermore, since ĥMLE is a smooth

function of pN , ĥMLE is asymptotically normal, and both the bias and variance decrease approx-

imately as 1
N in magnitude [Bas59]. It is important to note that asymptotic variances rates vary

smoothly across the space of joint distributions p(x, y) whereas the bias rate depends only on the

number of nonzero elements of p [Pan03]. Much work has been done to estimate the bias in order

to subtract it out of the entropy estimate directly [Mil55, Car69, TP95, Vic00]. In most cases,

the bias is estimated using some series expansion that is either not absolutely, or not everywhere

convergent. In [Pan03], Paninski proposes an alternate method for estimating the bias that leads

to a better approximation of the entropy of the empirical distribution pN which we discuss below.

For completeness, a well-known fact about estimating the entropy is the following

Ep(ĥMLE) ≤ h(p). (4.36)

That is, the conditional expectation of the ML estimator of h over p is always less than or equal

to the true entropy. Equality holds when h(p) = 0, or the underlying distribution is supported on
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a single point. Therefore, the bias of the ML estimator is negative everywhere, except for the case

h(p) = 0. The proof is an application of Jensen’s inequality and can be found in [AK01].

Using the fact that any smooth function of the empirical measures pN will act like an affine

function as N → ∞ with probability one [Ser80], we can expand the entropy function around the

true density p to deduce the expected bias. Let

ĥMLE(pN ) = h(pN )

= h(p) + dh(p; pN − p) + rN (h, p, pN )

= h(p) +

m∑
i=1

(pi − pN,i) log pi + rN (h, p, pN ).

where rN (h, p, pN ) is the remainder term and dh(p; pN − p) is the functional derivative of h in

the direction pN − p. It can be shown that rN (h, p, pN ) = −DKL(pN ; p), the Kullback-Leibler

divergence

DKL(pN ; p) = −
m∑
i=1

pN,i log

(
pi
pN,i

)
. (4.37)

Since

Ep

(
m∑
i=1

(pi − pN,i) log pi

)
= 0, (4.38)

we have

Ep(ĥMLE)− h = −Ep(DKL(pN ; p)). (4.39)

Since DKL(pN ; p) ≥ 0, this implies the bias of the MLE is negative. Miller [Mil55] used a similar

expansion to show that for a fixed p and m,

B(ĥMLE) = −m− 1

2N
+ o(N−1). (4.40)

Thus, the bias of the ML estimator, as well as the Miller-Madow and jackknifed estimators, decrease

at a rate 1
N as N →∞.

In his derivation of a new estimator ĥ [Pan03], Paninski expands on work done by Devore

and Lorentz [DL93] that relates the entropy function to a Bernstein polynomial approximation. If

the polynomial is close to h, in a suitable sense, the bias will be small. This can be achieved with



112

an appropriate choice of polynomial coefficients. The author empirically shows that their novel

estimator is comparable to the previously mentioned estimators when the amount of samples is

much larger than the number of bins, N � m. When N ∼ m, their estimator, which they call

the “Best Upper Bound” estimator ĥBUB, outperforms ĥMLE , ĥMM , and ĥJK , but still suffers

from bias and requires further investigation. Thus, their estimator is more applicable for a wider

range of problems. Nevertheless, estimating the mutual information is still a challenging on-going

research topic [GKOV17, KSG04, GVSG15].

The fact that these estimators are negatively biased means that they underestimate the

amount of uncertainty of the random variable; this does not mean that they overestimate the

mutual information between two variables. In order to estimate the true mutual information,

we estimate the mutual information over a discretized version of the joint pdf, yielding a lower

bound estimate for the true quantity. We can consider parameterizations with smaller bin sizes

to compute a more accurate estimate for the mutual information; however, these estimators are

negatively biased, and thus require access to an immense amount of data. In the next section we

propose a novel approach to estimating the mutual information that entails no gridding and may

reduce or avoid the biases discussed above.

4.5.3 Monte Carlo Methods to Measure Mutual Information

Monte Carlo methods are a numerical approach to solving problems that rely on randomness

to solve a problem. They are very useful in simulating systems, such as fluids and coupled biological

models. In essence, any problem involving a probabilistic interpretation can be approached using

Monte Carlo methods. While these methods vary in practice, the general procedure is as follows:

(1) Define the input domain

(2) Generate inputs randomly from a probability distribution over the domain

(3) Perform a deterministic computation on the inputs

(4) Collect the results
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That is, for a given distribution on the input variable, p(x), the idea is to draw samples

xi ∼ p(x) and generate their corresponding outputs yi ∼ p(y|xi) to simulate a sequence of N input-

output pairs {(xi, yi)}Ni=1 from their joint distribution p(x, y). For simplicity, we assume that the

associated model noise has constant variance, σ2. The PSF depends on the lens, and in particular

it depends on the numerical aperture of the optical system. Hence, for a high numerical aperture

we have a tight PSF and are, therefore, able to resolve an image with higher frequency information

and to finer detail.

The additive white Gaussian noise model is one of the simpler models used to describe an

imaged object. Let X denote the object projected onto the 2D object plane, i.e., X ∈ Rm×n, H

the 2D impulse response of an ideal bandpass filter with cut-off frequency W (i.e., the PSF whose

Fourier transform is 0 for all frequencies greater than W in magnitude), and Z ∼ N (0, σ2) the

white Gaussian noise. The output of this channel Y can be formulated as

Y = (X + Z)~H, (4.41)

For channels of a single Gaussian band-limited signal, we have a closed form equation for the

channel capacity

C = W log

(
1 +

P

N0W

)
, (4.42)

where P is the average energy or power constraint,

1

n ·m

n∑
i=1

m∑
j=1

X2
i,j ≤ P, (4.43)

and N0/2 watts/Hz is the noise spectral density. In order to arrive at this quantity, one must

assume that X is sampled according to the Shannon-Nyquist sampling theorem. That is, the band-

limited signal must be sampled at a rate 1
2W to sufficiently reconstruct the original image from its

samples [Nyq24, Sha49].

In principle, one could compute (or at least approximate) the marginal distribution of the

output space, p(y), by “marginalizing out” the x variable,
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p(y) =

∫
x
p(y|x)p(x)dx = EX [p(y|x)], (4.44)

provided the conditional distribution p(y|x) is either known in closed form or can be accurately

estimated. Thus, by examining the conditional probability of Y given a particular value of X

(p(y|X = xi)), we can average the conditional probability over the distribution of all values of X

to calculate the marginal probability of Y . We can then estimate the mutual information using the

following approximation

I(X;Y ) =

∫∫
p(x, y) log

(
p(x, y)

p(x)p(y)

)
dxdy ≈ 1

N

N∑
i=1

log

(
p(xi, yi)

p(xi)p(yi)

)
, (4.45)

where (xi, yi)
N
i=1 ∼ p(x, y). By sampling from the joint distribution and using these values ({(xi, yi)}Ni=1)

to estimate the integrand with respect to the probability measure, we can circumvent the issue

of knowing the joint distribution p(x, y). Furthermore, we can use the well-known relationship

p(x, y) = p(y|x)p(x) to rewrite the logarithm term as

log

(
p(x, y)

p(x)p(y)

)
= log

(
p(y|x)

p(y)

)
. (4.46)

Hence, we can approximate the mutual information between our sample X and its raw measure-

ments Y by computing

I(X;Y ) ≈ 1

N

N∑
i=1

log

(
p(y|x)

p(y)

)
. (4.47)

These concepts can be used to measure the effectiveness of super-resolution techniques by comparing

the information retained between the X and Y , as well as the information gained from taking

multiple measurements of the same sample, I(X;Y1, . . . , Yk).

While these quantities can provide us a quantitative measure for establishing claims of super-

resolution, there are several challenges to estimating the mutual information using Monte Carlo

simulations. If the underlying distribution is continuous, then directly attempting to compute the

mutual information may be infeasible due to numerical overflow and underflow resulting from the

number of, and the size of, the sampled images. Since in many applications it is reasonable to
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assume a discrete set of input images, we can replace the continuous probability distribution on X

with a discrete one. Thus, for a finite set of images X ∈ {x1, x2, . . . , xM}, we define the probability

of observing any one of these images as p(X = xi) = 1
M , i = 1, . . . ,M, dramatically reducing the

complexity of the problem.

Another difficulty in estimating the MI arises from estimating the marginal distribution of

the output space

p(y) =

∫
x∈X

p(x)p(y|x)dx

=

∫
x∈X

p(y|x)dp(x).

We may apply Monte Carlo simulations in the same fashion mentioned above; however, several key

questions arise: (a) For a continuous random variable X, how many samples NX are required to

estimate the marginal distribution within some error, and are we required to re-sample the space

each time we compute the value p(yi)? and (b) How do we evaluate the conditional probability

p(yi|xi)? Considering the additive white Gaussian noise model (4.41), the inherent difficulty in

estimating the quantity p(y|x) originates from the correlation that is introduced once the noise

is band-limited. By smoothing the noise information (discarding all frequency information larger

than the band-limit W in magnitude), we can think of each noise-pixel value being an average of

the surrounding pixel values. Therefore, we cannot rely on the original assumption of uncorrelated

noise measures to compute the conditional relationship between X and Y ; therefore, the correlation

structure must be estimated as well. By considering a discrete input distribution on X, we can

remedy the issue of introducing biases from inadequately sampling the input space. Ideally, the

NX -generated samples would provide a representative sample of the input space; however, this

is seldom the case. Depending on the amount and type of biases introduced by estimating the

marginal distribution p(y) using a fixed sampling of input space NX (for the continuous case),

we may be required to re-sample the input space each time we evaluate p(y), which significantly

increases the expected computational time needed to estimate the mutual information. We include

the dependence of NX on X since this set of input-samples should be different from the samples

used to estimate the mutual information, {(xi, yi)}Ni=1. Although there are several challenges to
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estimating the mutual information using Monte Carlo methods, we believe this approaches to

establishing claims of super-resolution can significantly impact the field of imaging and warrants

further investigation.

4.6 Discussion

In this chapter we reviewed a very important problem in engineering and physics. We dis-

cussed several methods employed to tackle the phase retrieval problem, including a nonconvex

approach that performs remarkably well in practice. In section 4.4 we introduced the topic of

super-resolution imaging wherein many researchers have proposed various methods for resolving an

image with a resolution exceeding the intrinsic limitations of the imaging device. However, we note

that there is a limit to the amount of information gained by applying such techniques, and there is

a need for better quantifying the effectiveness of these procedures. We propose applying informa-

tion theoretic concepts to establish claims of super-resolution. We are interested in measuring the

amount of information a raw measurement Y contains about a sample X, where Y is obtained us-

ing a super-resolution technique. Moreover, we propose using these concepts to calculate the total

amount of information gained by taking multiple measurements of the same sample in a structured

manner.

Our novel proposition of using Monte Carlo methods to estimating the mutual information

preserved by a system (analogous to a communication channel) was discussed in section 4.5.3. We

identified some of the inherent difficulties in directly computing the mutual information using a

set of input-output data pairs, and offer a strategy for remedying issues associated with estimating

these quantities for continuous distributions. By considering a discrete set of input images, we

can significantly reduce the complexity of estimating the mutual information. We examined a

discretization approach to estimating the entropy, and thus the MI, known as Grenander’s Method

of Sieves, and found that the empirical methods used to estimate the entropy function suffer from

negative bias. Thus, they underestimate the true uncertainty in a measurement, and the magnitude

of the bias decreases at a rate 1
N . When the number of data samples is on the order of the number
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of bins, these estimators perform poorly; therefore, in order to accurately estimate the desired

quantities, we require access to a massive amount of data, at times unreasonable. Though a

difficult problem, we believe that using the mutual information to quantify the efficacy of super-

resolution techniques could over an enlightening means for establishing claims of super-resolution,

and warrants further investigation.
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[KSG04] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger, Estimating mutual
information, Physical review E 69 (2004), no. 6, 066138.

[LF08] Francesco Logozzo and Manuel Fähndrich, Pentagons: A weakly relational abstract
domain for the efficient validation of array accesses, Symposium on Applied Computing
(New York, NY, USA), SAC ’08, ACM, 2008, pp. 184–188.

[Lib08] Leo Liberti, Introduction to global optimization, Ecole Polytechnique (2008).



125

[Lin05] Jeff Linderoth, A simplicial branch-and-bound algorithm for solving quadratically
constrained quadratic programs, Mathematical Programming 103 (2005), no. 2, 251–
282.

[LS10] Ricardo Lima and EWO Seminar, Ibm ilog cplex-what is inside of the box?, Proc. 2010
EWO Seminar, 2010.

[LSJR16] Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin Recht, Gradient
descent only converges to minimizers, Conference on Learning Theory, 2016, pp. 1246–
1257.

[Mal] Osman Malik, personal communication.

[Mata] Mathworks Inc., fmincon, Cf. https://www.mathworks.com/help/optim/ug/fmincon
viewed April 2017.

[Matb] , PolySpace design verifier, Cf. http://www.mathworks.com/products
/polyspace/ viewed April 2017.

[MBG+12] Emeric Mudry, Kamal Belkebir, J Girard, Julien Savatier, E Le Moal, C Nicoletti,
Marc Allain, and Anne Sentenac, Structured illumination microscopy using unknown
speckle patterns, Nature Photonics 6 (2012), no. 5, 312–315.
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