
Reduction of Multivariate Mixtures and Its Applications

by

Xinshuo Yang

B.S., Jilin University, 2011

M.S., University of Colorado at Boulder, 2015

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Applied Mathematics

2018



This thesis entitled:
Reduction of Multivariate Mixtures and Its Applications

written by Xinshuo Yang
has been approved for the Department of Applied Mathematics

Prof. Gregory Beylkin

Dr. Zydrunas Gimbutas

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.



iii

Yang, Xinshuo (Ph.D., Applied Mathematics)

Reduction of Multivariate Mixtures and Its Applications

Thesis directed by Prof. Gregory Beylkin

Abstract. We consider a fast deterministic algorithm to identify the "best" linearly indepen-

dent terms in multivariate mixtures and use them to compute an equivalent representation with

fewer terms, up to user-selected accuracy. Our algorithm employs the well-known pivoted Cholesky

decomposition of the Gram matrix constructed using terms of the mixture. Importantly, the mul-

tivariate mixtures do not have to be a separated representation of a function and complexity of the

algorithm is independent of the number of variables (dimensions). The algorithm requires O
(
r2N

)
operations, where N is the initial number of terms in a multivariate mixture and r is the number of

selected terms. Due to the condition number of the Gram matrix, the resulting accuracy is limited

to about 1/2 digits of the used floating point arithmetic. We also consider two additional reduction

algorithms for the same purpose. The first algorithm is based on orthogonalization of the multi-

variate mixture and have a similar performance as the approach based on Cholesky factorization.

The second algorithm yields a better accuracy, but currently in high dimensions is only applicable

to multivariate mixtures in a separated representation.

We use the reduction algorithm to develop a new adaptive numerical method for solving dif-

ferential and integral equations in quantum chemistry. We demonstrate the performance of this

approach by solving the Hartree-Fock equations in two cases of small molecules. We also describe

a number of initial applications of the reduction algorithm to solve partial differential and integral

equations and to address several problems in data sciences. For data science applications in high

dimensions we consider kernel density estimation (KDE) approach for constructing a probability

density function (PDF) of a cloud of points, a far-field kernel summation method and the construc-

tion of equivalent sources for non-oscillatory kernels (used in both, computational physics and data

science) and, finally, show how to use the reduction algorithm to produce seeds for subdividing a
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cloud of points into groups.
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Chapter 1

Introduction

In this thesis, we develop what we call reduction algorithms for computing with multivariate

mixtures in high dimensions. Using reduction algorithms, we develop a new adaptive method for

solving equations of quantum chemistry and demonstrate its performance by solving the Hartree-

Fock equations for two diatomic molecules. The reduction algorithm allows us to work with non-

separated multivariate mixtures that are a far reaching generalization of multivariate separated

representations [10, 11, 8] and can be used as a tool for solving multi-dimensional problems. These

algorithms allow us to obtain solutions of PDEs in high dimensions as well as to address several

problems in data science. The main contributions of this thesis are:

• We develop a fast algorithm for reducing the number of terms in a multivariate mixtures

for a given accuracy. This method is based on a pivoted Cholesky factorization of the

Gram matrix. We also consider two additional reduction algorithms for the same purpose.

The first algorithm is based on orthogonalization of the multivariate mixture and have a

similar performance as the approach based on Cholesky factorization. The second algorithm

yields a better accuracy, but currently in high dimensions is only applicable to multivariate

mixtures in a separated representation.

• We use reduction algorithm to develop a new adaptive numerical method for solving prob-

lems in quantum chemistry and demonstrate its performance by solving the Hartree-Fock

equations for two diatomic molecules.
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• We propose a new approach for solving multi-dimensional partial differential and integral

equations in a functional form using non-separated multivariate mixtures. We apply it to

two problems in high dimensions, the Poisson’s equation and a second order elliptic equation

with a variable coefficient.

• We present several examples of applying our reduction algorithm to kernel-type methods

in data science. These examples include fast far-field kernel summation, kernel density

estimation (KDE) for constructing a probability density function (PDF) and subdivision of

a cloud of points into groups.

1.1 Background and novelty

We develop a fast algorithm to reduce the number of terms of a multivariate mixture for

the purpose of solving differential and integral equations in multi-dimensions. A key example

of multivariate mixtures that we consider in this thesis is a linear combination of multivariate

Gaussians, which are also known as Radial Basis Functions (RBFs). While the multivariate mixtures

and multivariate atoms that we consider are somewhat more general than RBFs (since the only

requirement we impose is that their inner product can be computed efficiently), the novelty of this

thesis is a numerical method for solving PDEs using such mixtures.

RBFs have been initially developed for solving scattered data interpolation problem for ap-

plications in topography [38]. Notable contributions were later made by M. J. D. Powell (see e.g.

[58] and references therein). RBFs found applications in the numerical solution of PDEs (see e.g.

[33, 34, 32] and references therein) as well as computer graphics, statistical learning theory, neural

networks and signal and image processing (see e.g. references in [31]). While we do not address

the problem of scattered data interpolation, we can compare our approach to previously developed

methods that use RBFs for solving PDEs.

In [32] the authors use near-flat RBFs and formulate the problem for solving partial differential

equations by enforcing both, the equation and the boundary conditions, at all nodes. The nodes for
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RBFs are selected either as a structured grid or scattered nodes (see also [42, 24]). An alternative

strategy for selecting nodes for RBFs is to use the so-called greedy algorithms [60, 42, 26], i.e.

algorithmic strategy to optimize local performance (in terms of accuracy) with the expectation that

such strategy is globally efficient. At issue is how to select an appropriate collection of functions

so that the solution of a PDE (or that of an integral equation) can be well represented in such

basis. In particular, one seeks an algorithm to remove functions that can be expressed as linear

combinations of a subset of selected functions and to insert additional functions to improve accuracy

of the solution. The key approach of greedy algorithms uses the strategy suggested for scattered

data interpolation (see e.g. cross-validation in [31]). Namely, by excluding some nodes or inserting

some additional RBFs, a comparison can be made using the rest of the functions to examine if

a particular function can be removed or an additional function needs to be inserted. In its basic

form, such approach is very expensive and various modifications were developed (see e.g. [51] and

references therein).

Our approach to obtaining a basis for the solution differs substantially from the existing meth-

ods both conceptually and technically. We start by formulating an iteration for solving a PDE which

is generally obtained by recasting a PDE as an integral equation using Green’s functions. It is

desirable that such iteration is convergent (as in the case of the integral form of the Hartree-Fock

equations or the Kohn-Sham equations) but we also demonstrate that it is possible to work with

iterations that are convergent only for some choices of parameters. The key to our approach is

that we use such iterations to generate the necessary basis functions. It has been demonstrated (see

[48, 49, 40]) that in the important example of the Hartree-Fock equations (as well as the Kohn-Sham

equations of the Density Functional Theory), the corresponding PDEs can be converted into integral

equations and solved by a convergent iteration. It has been shown in [40, 15, 16] that all integral

operators in such formulation can be approximated within any user-selected finite accuracy via a

linear combination of Gaussians. Using reduction algorithm described in Section 2.1, we introduce a

new strategy for solving equations using multivariate atoms and, in particular, Gaussian atoms. We

seek solution as a linear combination of Gaussian atoms and observe that applying all operations
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required by the iteration (when solving the Hartree-Fock equations or the Kohn-Sham equations)

produces new Gaussian atoms, i.e. a linear combination of multivariate atoms of the same form. A

obvious problem is that the number of such Gaussian atoms grows rapidly unless there is a way to

remove the unnecessary (linear dependent) terms. For this purpose we use an algorithm that selects

the “best” linearly independent terms after each operation within the iteration and compute new

coefficients for the selected terms. Thus, we do not select any grid for Gaussian atoms beforehand

and do not use greedy algorithms to achieve an acceptable local performance. Instead, we use the

equation itself to provide a linear subspace in which we approximate the solution.

Our key example is finding solution of the Hartree-Fock equations (which are nonlinear) in two

cases of small molecules. Note that solutions of the Hartree-Fock equations (as well as the Kohn-

Sham equations and the Schrödinger equation) have cusps (that are not rotationally symmetric)

at locations of nuclear centers and resolving these cusps is critically important to obtain correct

energies.

While a transition to large molecules will require further work on accelerating the reduction

algorithm of Section 2.1, we already use the basic approach with such acceleration described in

Section 2.4 for solving the Hartree-Fock equations.

In Chapter 4 we show application of our approach to two additional PDEs in high dimensions,

the Poisson’s equation and a second order elliptic equation with a variable coefficient, both in the

free space. Our purpose is to consider equations whose solutions do not have an efficient separated

representation and demonstrate that our approach is capable of solving these problems.

We then turn to several additional applications of the reduction algorithm, including kernel

density estimation (KDE) for constructing a PDF of a cloud of points, a far-field kernel summation

method and the construction of equivalent sources for non- oscillatory kernels.
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1.2 Motivation

1.2.1 Curse of dimensionality and separated representations

Many high-dimensional problems are difficult to solve by usual numerical methods since the

cost increases exponentially with the dimension. When a typical algorithm in dimension one is

extended to dimension d, its computational cost is taken to the power d. This effect has been

dubbed “the curse of dimensionality”[5]. As an illustration, let us consider a spectral projection of

a function of interest onto the span of N orthonormal basis functions,

g (x) =

N∑
j=1

〈g, ψj〉ψj (x)

where 〈·, ·〉 denotes an appropriately defined inner product. An straightforward extension of the one-

dimensional spectral projection to d dimension is decomposing a multivariate function g (x1, x2, . . . , xd)

via a tensor product of orthonormal bases {ψjk (xk)}j=1,...N
k=1,...,d

:

g (x1, x2, . . . , xd) =

N∑
j1=1

N∑
j2=1

· · ·
N∑
jd=1

cj1,j2,··· ,jd

(
d∏

k=1

ψj1,k (xk)

)

where

cj1,j2,··· ,jd =

〈
g,

d∏
k=1

ψj1,k (xk)

〉
.

The cost of this operation is O
(
Nd
)
and is prohibitively expensive for large d.

A number of problems in high dimensional spaces have been addressed by using separated

representations [10, 15]. Recall that separated representation is a natural extension of the usual

separation of variables as seeking an approximation

f (x1, . . . , xd) =
r∑
l=1

slφ
(l)
1 (x1) · · ·φ(l)

d (xd) +O (ε) , (1.1)

where the functions φ(l)
j (xj) are normalized by the standard L2-norm, ‖φ(l)

j ‖2 = 1 and sl > 0

are referred to as s-values. The number of terms, r, is called the separation rank of f and is

assumed to be small. In this approximation the functions φ(l)
j (xj) are not fixed in advance but are

optimized as to achieve the accuracy goal with (ideally) a minimal separation rank r. It is well
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understood that when the separation rank r is independent of d, the computation costs and storage

requirements of standard algebraic operations in separated representations scale linearly in d [11].

For this reason, such representations are widely used for approximating high-dimensional functions

[10, 11, 27, 28, 44, 59]. Importantly, a separated representation is not a projection onto a subspace,

but rather a nonlinear method to track a function in a high-dimensional space while using a small

number of parameters.

When using separated representations, common operations such as summations and multi-

plications, lead to new separated representations with separation ranks that may be larger than

necessary. Therefore, a standard practice is to reduce the separation rank of a given separated

representation without sacrificing much accuracy, for which the workhorse algorithm is Alternating

Least Squares (ALS). This algorithm is one of the key tools in numerical multilinear algebra and

was introduced originally for data fitting as PARAFAC model (PARAllel FACtor analysis) [41] and

CANDECOMP (abbreviated in this thesis as CTD, canonical tensor decomposition) [23]. It has

been used extensively in data analysis of (mostly) three-way arrays (see e.g. the reviews [65, 22],

[50] and references therein). We note that any discretization of f in (1.1) leads to a d-dimensional

tensor U ∈ RM1×···×Md yielding a canonical tensor decomposition (CTD) of separation rank r,

Ui1,...,id =
r∑
l=1

σl

d∏
j=1

u
(l)
ij
, (1.2)

where the s-values σl are chosen so that each vector u
(l)
j =

{
u

(l)
ij

}Mj

ij=1
has unit Frobenius norm

‖u(l)
j ‖F = 1 for all j, l. However, ALS algorithm relies heavily on separated format in (1.1-1.2) and

is not available for general multivariate mixtures.

1.2.2 Multivariate atoms

In this thesis, we consider multivariate functions that can be approximated via a linear com-

bination of what we call multivariate atoms,

u (x) =
r∑
l=1

clgl (x) , x ∈ Rd, ‖gl‖2 = 1, (1.3)
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so that the inner product between the atoms,

〈gl, gl′〉 =

ˆ
Rd
gl (x) gl′ (x) dx, (1.4)

can be computed efficiently. Importantly, the representation (1.3) are far more general than (1.1)

since the multivariate atoms gl (x) do not necessarily admit a separated representation. When used

for approximation of a multivariate function, (1.3) can yield a more efficient representation. As an

illustration, let us consider the bivariate Gaussian mixture with two terms,

h (x1, x2) = exp

(
−x

2
1

2
− x2

2

2

)
+ exp

(
−x2

1 − x2
2 − x1x2

)
= exp

(
−1

2
xTΣ−1

1 x

)
+ exp

(
−1

2
xTΣ−1

2 x

)
,

where x = (x1, x2)T , and

Σ1 =

1 0

0 1

 , Σ2 =

 2
3 −1

3

−1
3

2
3

 .

A separated representation using one dimensional Gaussians, i.e.,

h (x1, x2) ≈
r∑
l=1

slφ
(l)
1 (x1)φ

(l)
2 (x2) +O (ε)

where

φ
(l)
1 (x1) = e−αlx

2
1 , φ

(l)
2 (x2) = e−βlx

2
2 ,

would require the separation rank r � 2 so that it can achieve a reasonable accuracy ε.

1.2.3 Gaussian atoms

A particularly important example are multivariate Gaussian atoms yielding a multivariate

Gaussian mixture. In this case the atoms are

g (x,µl,Σl) = (det (4πΣl))
1
4 N (x,µl,Σl) (1.5)

=
1

(det (πΣl))
1/4

exp

(
−1

2
(x− µl)

T Σ−1
l (x− µl)

)
,
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where N (x,µl,Σl) is the multivariate Gaussian distribution with the mean µl, the covariance

Σl ∈ Rd×d is a symmetric positive definite matrix and ‖gl‖2 = 1. The L2-inner product between

two multivariate Gaussian atoms is

ˆ
Rd
gl (x,µl,Σl) gl′

(
x,µl′ ,Σl′

)
dx

= 4
d
4

(
det (πΣl) det

(
πΣl′

))
det
(
π
(
Σl + Σl′

)) 1
2

1
4

exp

(
−1

2

(
µl − µl′

)T (
Σl + Σl′

)−1 (
µl − µl′

))
.

1.2.4 The use of Gaussians in numerical analysis

1.2.4.1 Gaussians in computational physics and quantum chemistry

The early use of Gaussian orbitals in electronic structure theory (instead of the more physical,

Slater-type orbitals) was first proposed by Boys [21] in 1950. The principal reason for the use of

Gaussian basis functions in molecular quantum chemical calculations is the explicit evaluation of

integrals. The foundational papers of computational quantum chemistry [20, 53, 64] use a linear

combination of Gaussians for exactly this reason showing that it is possible to reproduce both the

correct cusp-type behavior and long-range decay of the solutions of relevant PDEs. However, in the

process of solving equations, optimizing both coefficients and exponents of linear combinations of

Gaussians via Newton’s method (as was done in these papers) proved unsustainable as the number

of variables in quantum chemistry problems grow rapidly with complexity of the molecules. This

lead to replacing nonlinear approximations by Gaussian orbitals constructed off-line and used as

a fixed basis to represent a solution. A drawback of this approach is the appearance of the so-

called “basis error”, an error due to a possible mismatch between the true solution and the linear

subspace chosen to approximate it. As it was demonstrated in [9], it is possible to iteratively solve

equations of quantum chemistry using new nonlinear algorithms which reduce the number of terms

in intermediate representations without resorting to Newton’s method. The results in [9] are based

on using Slater-type orbitals, but it is clear that similar results can be obtained using representations

via Gaussians which is demonstrated in Section .3.1.
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1.2.4.2 Multiresolution analysis and MADNESS

Multiresolution analysis (MRA) based on multiwavelets has been a powerful numerical method

for solving PDEs to high accuracy [3, 40, 68, 47, 7]. Recall that a multiresolution analysis decom-

poses the Hilbert space L2
(
Rd
)
, d > 1 into a chain of closed subspaces

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ · · · .

The wavelet subspaces Wj are defined as an orthogonal complement of Vj in Vj−1, thus

Vn = V0 ⊕nj=0 Wj .

The MRA with multiwavelet bases [2] is capable of organizing functions and operators efficiently

in terms of their proximity on a given scale and between different scales, and it provides a simple

mechanism for truncation and adaptive refinement that can be used to maintain the desired accuracy.

The adaptivity associated with the decomposition and refinement is key to representing both, global

and local behavior via the the multiresolution hierarchy. On the other hand, the straightforward

transition from multiresolution algorithms in one spatial dimension to those in dimensions two,

three and higher yield algorithms that are too costly for practical applications. Besides using a

multiresolution approach, a critical step has been the development of separable representations for

the operators involved in the PDEs. Many key operators in mathematical physics depend only on

the distance between interacting entities and, therefore, have radial kernels. As was demonstrated

in [10, 11, 15, 16, 7], these operators (e.g. Poisson kernel and non-oscillatory Helmholtz kernel)

can be efficiently represented via Gaussians leading to their separated representations and, as a

consequence, to practical algorithms (see [40, 68, 69, 39]).

A successful application that incorporates the techniques of multiresolution analysis and sepa-

rated representations is MADNESS (Multiresolution Adaptive Numerical Environment for Scientific

Simulation), a high-level software environment for the solution of integral and differential equations

in many dimensions with guaranteed precision. While initially MADNESS was designed to solve

problems in computational chemistry [40, 68, 69], to date, it has been applied to solve problems
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in atomic and molecular physics, electrostatics, fluid dynamics, graph theory, materials science,

nanoscience, nuclear physics, and solvation models [30, 35, 46, 66].

1.2.4.3 Radial basis functions

We already mentioned many applications of RBFs for scattered data interpolation, solving

PDEs, computer graphics, statistical learning theory, neural networks and signal and image pro-

cessing. Gaussian atoms is one of the possible choices of such functions and we refer for further

examples to e.g. [34, 31] and references therein.

1.2.4.4 Gaussian Multiresolution Analysis

Multivariate Gaussian mixtures can achieve any finite accuracy when approximating functions

as demonstrated by the introduction of an approximate Gaussian multiresolution analysis (GMRA)

in [17]. The approximate GMRA is constructed by using the scaling functions{
φj,k (x) = 2j/2φ

(
2jx− k

)
= 2j/2

√
α

π
e−α(2jx−k)

2
}
j,k∈Z

, (1.6)

which are normalized so that the L2-norm of functions φj,k,

‖φj,k (x)‖2 =
( α

2π

) 1
4
,

does not depend on the scale j. The scaling function φ satisfies an approximate two-scale relation,∣∣∣∣∣φ (x)−
√

4α

3π

∑
k∈Z

e−
α
3
k2φ (2x− k)

∣∣∣∣∣ ≤ εφ (x) , (1.7)

where the parameter α is chosen to achieve the desired accuracy,

ε = ϑ3

(
0, e−

3π2

4α

)
− 1, (1.8)

and

ϑ3 (z, q) =
∑
n∈Z

qn
2
e2inz

is the Jacobi theta function. The approximate nature of the GMRA does not limit its applicability

since any finite accuracy can be selected. For example, choosing α = 1/5 yields ε ≈ 2.22 · 10−16
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thus achieving double precision accuracy. Alternatively, as shown in [17], an exact multiresolution

analysis can be constructed so that its scaling function is approximated by a Gaussian for any

user-selected accuracy on any finite number of scales.

By its nature, in principle, any MRA allows construction of adaptive algorithms. The choice

of an orthonormal basis makes adaptive algorithms numerically stable and, the particular choice

of multiwavelets, makes it easier and more efficient to implement the hierarchical structure of the

corresponding MRA. On the other hand, using Gaussians as basis functions presents an immediate

difficulty since these functions are far from being orthogonal. Thus, in order to construct adaptive

algorithms using these functions, an approach different from using the standard MRA decomposition

and reconstruction tools has to be developed. Moreover, in order to work with functions of many

variables, one has to avoid the usual spectral/pseudo-spectral approach of identifying beforehand

the linear subspace for the solution; it has to be constructed in the process of solving equations.

The reduction algorithms for multivariate mixtures developed in this thesis provide a numerical tool

towards this goal.

1.2.4.5 Approximate approximations

Another numerical approach involving Gaussians was suggested in [55] (see also references

therein). It involves constructing a quasi-interpolant, a linear combination of shifted Gaussians

with coefficients taken to be the function values on an equally spaced grid,

Mh,Ds (x) =
1√
πD

∞∑
m=−∞

s (mh) e−
(x−mh)2

Dh2

where h is the step size, and D is a parameter. The approximation error then consists of two

contributions: a contribution converging to zero as h→ 0 and a non-convergent part, the so-called

saturation error. When used, one can choose appropriate h and D such that the approximation

provides a prescribed error. While using function values is a desirable feature, it forces a significant

oversampling if high accuracy is desired. In our view using a multiresolution basis where the scaling

function is well approximated by Gaussians is a better alternative [17].
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1.2.5 Summary

When solving PDEs, it is desirable to use adaptive algorithms to achieve a user-selected

accuracy while minimize the computational cost. We introduce a new type of adaptive numerical

algorithms that use a Basis Generating Iteration (BGI) for this purpose. The basic idea of such

algorithms is simple: in the process of solving equations, we represent both operators and functions

via Gaussians (or other functional atoms) and then compute the required integrals explicitly. The

difficulty of this approach is then a rapid proliferation of terms in the resulting mixtures. For

example, if an integral involves three Gaussian mixtures with 100 terms each, the resulting Gaussian

mixture has 106 terms. However, in many practical applications most of these terms can be nearly

linearly dependent and, thus, in order to use the resulting Gaussian mixture (as the final result or

an intermediate result to be carried over for further computation), we need a fast algorithm to find

the “best” linearly independent subset of the terms. We subdivide the process of solving PDEs as:

(1) Recast the PDEs as integral equations and construct an iteration to solve them.

(2) Represent both operators and functions via multivariate mixtures.

(3) Perform an iteration step by computing the required integrals explicitly to obtain a new

multivariate mixture.

(4) Reduce the number of terms in the resulting mixture and repeat the above steps.

It is preferable that the iteration is convergent (as in the case of Hartree-Fock equations in Chap-

ter 3.1) but it is not absolutely necessary (see example in Chapter 4). In this approach, we do not fix

a representation of a solution in advance (i.e., choose the parameters of Gaussians in advance) since

the iteration is generating the basis. In particular, we develop algorithms that adaptively select

appropriate translations (shifts) and exponents of the Gaussian mixtures throughout the process of

iteratively solving PDEs. The excessive number of functions generated by the integral equation is

then “pruned” by our reduction algorithm.
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1.3 Outline of the thesis

In Chapter 2, we introduce fast deterministic algorithms to reduce the number of terms

of a linear combination of multivariate functions. We first describe a fast algorithm based on

a pivoted Cholesky decomposition of the Gram matrix of the initial multivariate mixture (it is

the main algorithm we use). While the accuracy of this approach is limited to about 1/2 of the

available significant digits, it is advantageous in high dimensions since its complexity is dimension

independent. We then introduce two additional reduction algorithms for the same purpose. We also

describe a technique to accelerate the reduction algorithms.

In Chapter 3, we present a new adaptive algorithm for electronic structure calculations based

on the reduction algorithm developed in Chapter 2. We demonstrate performance of the new

algorithm by solving the Hartree-Fock equation for two diatomic molecules.

In Chapter 4, we present several examples of using our main algorithm for solving differential

and integral equations. We represent solutions of the equations in a functional form and adaptively

solve these equations. We start with the free space Poisson’s equation with non-separable right

hand side and then present an example of solving an elliptic problem with variable coefficients; we

consider both examples in dimensions d = 3 through d = 7.

In Chapter 5, we first use our algorithm in dimension d = 1 to construct an efficient repre-

sentation of the PDF of a cloud of points via kernel density estimation and compare it with results

obtained via the standard approach. We then present an example of constructing PDFs in high

dimensions.

In Chapter 6, we turn to kernel summation methods in high dimensions, consider far-field

evaluation in such computations and explore the problem of constructing equivalent sources in a

similar setup. We also illustrate how a reduction algorithm can be used to partition points into

groups (in a hierarchical fashion if desired).

In Chapter 7, we conclude the thesis, present an outlook for expected applications and exten-

sions of the tools and methods described here.
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In Appendix A, we present some key identities for computing with multivariate Gaussians.



Chapter 2

Reduction Algorithms

In this chapter we describe fast deterministic algorithms to reduce the number of terms of a

linear combination of multivariate functions of d variables by selecting the “best” subset of these

functions that can, within a target accuracy, approximate the rest of them. We describe three types

of algorithms for this purpose. The first algorithm is based on a pivoted Cholesky decomposition of

the Gram matrix of the initial multivariate mixture; we assume that the entries of this matrix, i.e.

the inner product of these functions, can be computed efficiently. This algorithm was mentioned in

the discussion of tensor interpolative decomposition (tensor ID) of the canonical tensor representa-

tion in [18]. Due to the use of a Gram matrix, the accuracy of this approach is limited to about one

half of the available significant digits (e.g. 10−7 ∼ 10−8 when using double precision arithmetic).

Nevertheless, this algorithm appears advantageous in high dimensions since its complexity is dimen-

sion independent and, if desired, full accuracy can be restored by performing some evaluations in

higher precision. We obtain estimates of its accuracy and show that its computational complexity

is O
(
r2N

)
, where N is the original number of terms and r is the number of skeleton terms obtained

for a given accuracy.

We also consider an algorithm based on Gram-Schmidt orthogonalization of the multivariate

functions. The computational cost of this algorithm O
(
r3 + r2N

)
is also dimension independent.

We observe that since the ill-conditioned Gram matrix appears in this algorithm, the resulting

approximation loses 1/2 of available significant digits similar to the our main algorithm.

Finally, we describe an approach using frequency sampling that achieves full precision, but
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so far limited to low dimensions or mixtures in separated form. For this algorithm, we need access

to the Fourier transform of the functions in the mixture. Since the Fourier transform is readily

available for Gaussian atoms, we present this algorithm for the case of Gaussian mixtures and note

that it can be used for any functional form that allows a rapid computation of the integrals involved.

2.1 Cholesky reduction

2.1.1 Introduction

We start with a linear combination of atoms of the form

u (x) =
N∑
l=1

clgl (x) , x ∈ Rd (2.1)

and, within a user-selected accuracy ε, seek a representation of the same form but with fewer

terms. To be precise, we look for a partition of indices I =
[
Î , Ĩ
]
, where Î = [i1, i2, · · · ir] and

Ĩ = [ir+1, ir+2, · · · , iN ] , and new coefficients c̃im ,m = 1, · · · r, such that the function

ũ (x) =
r∑
j=1

c̃ijgij (x) , r � N, (2.2)

approximates u,

u (x) ≈ ũ (x) . (2.3)

We present an algorithm based on a partial, pivoted Cholesky decomposition of the Gram matrix

constructed using the atoms gl in (2.1) and provide an estimate for the error in (2.3).

By analogy with the matrix Interpolative Decomposition (matrix-ID) (see e.g. [37]), we call

the subset {gim}
r
m=1 the skeleton terms and {gim}

N
m=r+1 the residual terms. In order to identify

the “best” subset of linear independent terms, we compute a pivoted Cholesky decomposition of

the Gram matrix of the atoms of the multivariate mixture in (2.1). If the number of terms, N , is

large then the cost of the full Cholesky decomposition is prohibitive. However, we show that we

can terminate the Cholesky decomposition once the pivots are below a selected threshold. As a

result, the complexity of the algorithm is O
(
r2N

)
, where N is the initial number of terms and r

is the number of selected (skeleton) terms. In fact, the final result will be the same as if we were



17

to perform the full decomposition and then keep only the significant terms. This property is a

consequence of the following lemma that can be found in e.g. [43, p.434, problem 7.1.P1].

2.1.2 A property of a positive semi-definite matrix

Lemma 1. Let B ∈ Cn×n be positive semi-definite, i.e. B = B∗ and x∗Bx ≥ 0 for any x ∈ Cn.

Then its diagonal entries bii are non-negative and the entries bij of B satisfy

|bij | ≤
√
biibjj . (2.4)

In particular, assuming that the first i diagonal entries are in descending order and are greater or

equal than the rest of the diagonal entries,

b11 ≥ b22 ≥ · · · ≥ bii ≥ bi+1,i+1, bi+2,i+2, . . . bnn,

we have

|bij | ≤ bii, for all j ≥ i. (2.5)

Proof. Let {ei}1≤i≤n be the standard basis vectors, that is, (ei)j = δij . The diagonal entries are

non-negative since, for any index i, aii = ei
∗Bei ≥ 0. We now use the same approach to estimate

the size of an off-diagonal entry bij = |bij | eiθij . For the vector x = xiei + xjej we have

0 ≤ x∗Bx = biixixi + bijxixj + bijxixj + bjjxjxj . (2.6)

Setting

xi =

(
bjj
bii

)1/4

and xj = −eiθij
(
bii
bjj

)1/4

in (2.6), we obtain

0 ≤ bii
(
bjj
bii

)1/2

− |bij | − |bij |+ bjj

(
bii
bjj

)1/2

= 2
√
biibjj − 2 |bij | .

Thus, we arrive at

|bij | ≤
√
biibjj ≤

bii + bjj
2

. (2.7)

For the second part of the lemma, selecting i ≤ j implies that bii ≥ bjj and, thus, (2.5) follows from

the last inequality in (2.7).
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Lemma 1 implies

Corollary 1. Let G be a self-adjoint positive semi-definite matrix such that its Cholesky decom-

position has monotonically decaying diagonal pivots. If we write its Cholesky decomposition as

G =

 Lr 0

W Q


 L∗r W ∗

0 Q∗

 ,

where Lr is an r × r lower triangular matrix with the smallest diagonal entry ε > 0, then a partial

Cholesky decomposition is of the form

G =

 Lr 0

W 0


 L∗r W ∗

0 0

+

 0 0

0 QQ∗

 ,

where all entries of the matrix QQ∗ are less than ε.

Proof. After applying r steps of Cholesky decomposition, the matrix W does not change in the

consecutive steps. The remaining matrix QQ∗ is self-adjoint positive semi-definite and, due to the

decay of the pivots, all of its diagonal entries are less than ε. Using Lemma 1, we conclude that all

entries of QQ∗ are less than ε.

2.1.3 Error estimation

Let us organize the collection of atoms in (2.1) as

A = [g1 (x) , g2 (x) , . . . gN (x)] .

We can view A as a matrix with a gigantic number of rows resulting from a discretization of the

argument x ∈ Rd. If we replace operations that require row-wise summation by the inner product

between the atoms, we can use matrix notation in the sequel. Without loss of generality, to simplify

notation, we assume that the first r atoms in A form the skeleton, that is, A = (As | Ans), where

As denotes the r skeleton and Ans the N − r non-skeleton atoms.

Given the vector of coefficients c = [c1, c2, . . . cN ]T in (2.1), we want to find new coefficients

c̃ = [c̃1, c̃2, . . . , c̃r]
T to approximate u (x) by

ũ (x) =

r∑
l=1

c̃lgl (x) , r � N, (2.8)
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and estimate the error ‖u− ũ‖2 of the approximation. Note that we identify u = Ac and ũ = Asc̃.

We first seek an approximation of all atoms via the skeleton atoms,

gk (x) ≈
r∑
i=1

pikgi (x) , k = 1, . . . , N.

Selecting the coefficients pik as the solutions of the least squares problem, pik satisfy the normal

equations,
r∑
i=1

pik〈gi, gi′〉 = 〈gk, gi′〉, k = 1, . . . , N, i′ = 1, 2, . . . , r. (2.9)

Introducing the matrix P = {pik} i=1,...r
k=1,...N

, we write (2.9) as

A∗sAsP = A∗sA (2.10)

and observe that P = (Ir | S), where Ir is the r × r identity matrix and S, an (N − r)× r matrix,

which satisfies

A∗sAsS = A∗sAns. (2.11)

Setting

c̃i =
N∑
k=1

pikck,

or

c̃ = Pc,

we obtain from (2.10) that the coefficients c̃ solve the system of normal equations

A∗sAsc̃ = A∗sAc. (2.12)

Theorem 1. Let the Gram matrix G,

G =

 A∗sAs A∗sAns

A∗nsAs A∗nsAns

 ,

be such that its partial Cholesky decomposition has monotonically decaying pivots and is of the

form

G =

 Lr 0

W 0


 L∗r W ∗

0 0

+

 0 0

0 QQ∗
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where Lr is an r × r lower triangular matrix with the smallest diagonal entry ε > 0. If the

coefficients of the skeleton terms are computed via (2.12), then the difference between u in (2.1)

and its approximation (2.8) can be estimated as

‖u− ũ‖2 = ‖Asc̃−Ac‖2 ≤ ‖c‖2
√
N − r ε1/2. (2.13)

Proof. We have

‖Asc̃−Ac‖22 = ‖AsPc−Ac‖22 = 〈c, (P ∗A∗s −A∗) (AsP −A) c〉, (2.14)

where the coefficient matrix P solves the normal equations (2.10) and, therefore,

A∗s (AsP −A) = 0, (2.15)

as well as

A∗s (AsS −Ans) = 0. (2.16)

Using (2.15), we obtain

(P ∗A∗s −A∗) (AsP −A) = A∗A−A∗AsP (2.17)

and proceed to compute A∗AsP . We have A∗ =

 A∗s

A∗ns

 and AsP = (As | AsS), so that

A∗AsP =

 A∗sAs A∗sAsS

A∗nsAs A∗nsAsS

 .

Thus, we have

A∗A−A∗AsP =

 0 A∗s (Ans −AsS)

0 A∗ns (Ans −AsS)

 .

and, using (2.16), arrive at

A∗A−A∗AsP =

 0 0

0 A∗nsAns −A∗nsAsS

 . (2.18)
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Equating the two expressions of the Gram matrix in the statement of the Theorem,

G =

 A∗sAs A∗sAns

A∗nsAs A∗nsAns

 =

 Lr 0

W 0


 L∗r W ∗

0 0

+

 0 0

0 QQ∗

 ,

we obtain that

A∗sAs = LrL
∗
r , (2.19)

A∗nsAs = WL∗r , AsA
∗
ns = LrW

∗, (2.20)

and

A∗nsAns = WW ∗ +QQ∗. (2.21)

We observe that from (2.11) using (2.19) and (2.20), we arrive at

LrL
∗
rS = LrW

∗. (2.22)

Next we show that the non-zero block of the matrix in the right hand side of (2.18) coincides with

QQ∗. Using (2.20) and (2.22), we have

A∗nsAsS = WL∗rS

= W
(
L−1
r Lr

)
L∗rS

= WL−1
r (LrL

∗
rS)

= WL−1
r (LrW

∗) = WW ∗,

where we used that Lr is non-singular. Hence, combining the last identity with (2.21), we obtain

A∗nsAns −A∗nsAsS = WW ∗ +QQ∗ −WW ∗ = QQ∗. (2.23)

By (2.14), (2.17) , (2.18), and (2.23) we obtain

‖Asc̃−Ac‖22 ≤ ‖c‖22 ‖(P
∗A∗s −A∗) (AsP −A)‖2

= ‖c‖22 ‖A
∗
nsAns −A∗nsAsS‖2

= ‖c‖22 ‖QQ
∗‖2 .
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Using Corollary 1, we estimate ‖QQ∗‖2 by its Frobenius norm,

‖QQ∗‖2 ≤ ‖QQ
∗‖F ≤ (N − r) ε

which yields the desired estimate (2.13).

Remark 1. The estimate (2.13) is tighter than the one obtained in [18, Theorem 3.1] since the

dependence on the number of terms is O
(
N1/2

)
instead of O

(
N3/4

)
. Yet, the estimate is still

pessimistic since ‖QQ∗‖2 is usually significantly smaller than the Frobenius norm ‖QQ∗‖F . In

practice, for N in the range 105 − 106, we did not observe the reduction of accuracy suggested by

O
(
N1/2

)
.

2.1.4 Discussion

In Table 1 we present pseudo-code for the reduction Algorithm 1. Note that this algorithm

is dimension independent (except, possibly, for the cost of computing the inner product which

we always assume to be reasonable by the judicious choice of the functions in the mixture). As a

consequence of Theorem 1 and Lemma 1, it is sufficient to generate onlyN×r entries of the Cholesky

decomposition of the Gram matrix G implying that Algorithm 1 requires O
(
r2N

)
operations.

2.2 Rank-revealing QR algorithm for reduction

We start by describing a rank-revealing QR algorithm based on the modified Gram-Schmidt

approach for ordinary vectors. Given a set of N vectors vi of length M > N , the rank-revealing

QR algorithm can be used to identify the best subset of columns in the range of the matrix and, in

its simplest form, cast as a pivoted version of the modified Gram-Schmidt.
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Algorithm 1 Reduction algorithm using Gram matrix
Inputs: Coefficients cl in representation of function u (x) =

∑N
l=1 clgl (x) and error tolerance

10−14 ≤ ε < 1. We assume that a subroutine to compute the inner product 〈gl, gm〉 is available.
Outputs: A pivot vector I =

[
Î , Ĩ
]
, where Î = [i1, . . . , ir] contains indices of r skeleton terms

and Ĩ = [ir+1, . . . iN ] indices of terms being removed from the final representation and the
coefficients c̃im ,m = 1, · · · r, such that ‖u−

∑r
m=1 c̃imgim‖2 ≤ ‖c‖2

√
N − r ε1/2 due to Theorem 1.

Stage 1: Pivoted Cholesky decomposition of the Gram matrix.

Initialization.

We maintain the diagonal [d1, d2, . . . , dN ] of the Cholesky factor L separately and initialize it as[
1, 1, · · · , 1

]
(since all atoms have unit L2-norm).

Set r = 1 and initialize a pivot vector as I = [1, 2, . . . , N ].

for l = 1, N

(1) Find the largest element of the diagonal and its index ij =
{
ij : dij ≥ dik , k = l, . . . , N

}
if dij < ε goto Stage 2

(2) Swap indices ij and il

(3) Set the diagonal element of the matrix Lil,l = (dil)
1/2

for j = l + 1, N

Lij ,l =
(〈
gij , gil

〉
−
∑l−1

k=1 Lil,kLij ,k

)
/Lil,l

dij = dij − L2
ij ,l

end
update: r = r + 1

end

Stage 2: Find new coefficients c̃im ,m = 1, · · · , r

(1) Form a vector b such that its j-th element is the inner product of∑
im∈Ĩ cimgim =

∑N
m=r+1 cimgim and gij .

for j = 1, r

b (j) =
∑N

m=r+1 cim

(∑j
k=1 Lij ,kLim,k

)
end

(2) Solve the linear system Ĝc̃ = b, where Ĝjl =
〈
gij , gil

〉
=
∑N

k=1 LijkLilk and
c̃ = [c̃i1 , c̃i1 , · · · , c̃ir ]

T using forward and backward substitution.

(3) Add the original coefficients of the skeleton terms cim to c̃im to get the new coefficients
for m = 1, r

c̃im = c̃im + cim
end
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Algorithm 2 Rank-revealing QR algorithm
for k = 1, N

(1) Compute ṽj = vj − 〈vj , vk〉vk for j = k + 1, . . . N

(2) Select ṽj , j = k + 1, . . . N , with the largest norm and set as vk+1. Set qk+1 =
vk+1

‖vk+1‖ . Exit

if the norm of vk+1 is less than ε.

end

For a given accuracy ε, if the resulting number of chosen vectors is r then the computational

cost of this algorithm is at best O
(
r2N

)
.

When constructing an algorithm for reducing the number of terms of multivariate mixtures,

the difficulty is that the addition of two or more terms does not simplify and, thus, has to be

maintained as a linear combination. For simplicity of indexing, we assume that the first r terms are

the skeleton terms (we do not describe the swapping indices when pivoting). For a set of multivariate

atoms {gi (x)}Ni=1, the Gram-Schmidt process works as

ψ̃1 (x) = g1 (x) , ψ1 (x) =
ψ̃1 (x)∥∥∥ψ̃1

∥∥∥
ψ̃2 (x) = g2 (x)− p12ψ̃1 (x) , ψ2 (x) =

ψ̃2 (x)∥∥∥ψ̃2

∥∥∥
ψ̃3 (x) = g3 (x)− p13ψ̃1 (x)− p23ψ̃2 (x) , ψ3 (x) =

ψ̃3 (x)∥∥∥ψ̃3

∥∥∥ (2.24)

...
...

ψ̃N (x) = gN (x)−

(
N−1∑
i=1

piN ψ̃i (x)

)
, ψN (x) =

ψ̃N (x)∥∥∥ψ̃N∥∥∥
where

pij =

〈
ψ̃i, gj

〉
〈
ψ̃i, ψ̃i

〉 , 1 ≤ i < j,
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the functions ψ̃i are orthogonal and ψi are orthonormal. We can also rewrite (2) as

g1 (x) = p11ψ̃1 (x) ,

g2 (x) = p12ψ̃1 (x) + p22ψ̃2 (x) ,

g3 (x) = p13ψ̃1 (x) + p23ψ̃2 (x) + p33ψ̃3 (x) , (2.25)

...

gN (x) =
N∑
i=1

piN ψ̃i (x) ,

where pii = 1, i = 1, . . . , N . On the other hand, we can obtain a set of coefficients qij , 1 ≤ i < j ≤ N

such that

ψ̃1 (x) = q11g1 (x) ,

ψ̃2 (x) = q12g1 (x) + q22g2 (x) ,

ψ̃3 (x) = q13g1 (x) + q23g2 (x) + q33g3 (x) , (2.26)

...

ψ̃N (x) =
N∑
i=1

qiNgi (x) ,

where qii = 1 for i = 1, . . . , N .

Let us assume that the first k steps have been accomplished so that the coefficients pij ,

1 ≤ i ≤ k, i ≤ j ≤ N in (2.25), the coefficients qij ,1 ≤ i ≤ j ≤ k (2.26) and the norms of ψ̃i,

i = 1, . . . , k + 1 are already available. Then at the (k + 1)-th step, we first compute coefficients in

(2.26) as

qi,k+1 = −
i∑

j=1

pj,k+1qij , 1 ≤ i ≤ k, (2.27)

requiring O
(
k2
)
operations at this step. Next we compute for j = k + 2, . . . , N

pk+1,j =

〈
ψ̃k+1, gj

〉
〈
ψ̃k+1, ψ̃k+1

〉 ,
where 〈

ψ̃k+1, gj

〉
=

k+1∑
i=1

qi,k+1 〈gi, gj〉 . (2.28)
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Computing (2.28) is done for each index j so that it requires O (kN) operations at this step. Finally,

we need to compute norms of ψ̃j for j = k + 2, · · · , N . Since ψ̃j = gj −
∑k

i=1 pikψ̃i are updated by

subtracting pk+1,jψ̃k+1 , j = k + 2, · · · , N , we compute the norm via

∥∥∥ψ̃j − pk+1jψ̃k+1

∥∥∥2

=

∥∥∥∥∥gj −
k∑
i=1

pikψ̃i − pk+1jψ̃k+1

∥∥∥∥∥
2

=

∥∥∥∥∥gj −
k∑
i=1

pikψ̃i

∥∥∥∥∥
2

+ p2
k+1j

∥∥∥ψ̃k+1

∥∥∥2
− 2pk+1j

〈
gj −

k∑
i=1

pikψ̃i, ψ̃k+1

〉

=

∥∥∥∥∥gj −
k∑
i=1

pikψ̃i

∥∥∥∥∥
2

+ p2
k+1j

∥∥∥ψ̃k+1

∥∥∥2
− 2pk+1j

〈
gj , ψ̃k+1

〉
(2.29)

=
∥∥∥ψ̃j∥∥∥2

+ p2
k+1j

∥∥∥ψ̃k+1

∥∥∥2
− 2pk+1j

k+1∑
i=1

qil 〈gj , gi〉 . (2.30)

Note that at this stage functions ψ̃j , j = k+2, · · · , N , are not orthogonal to ψ̃k+1. In the last line of

(2.30),
∥∥∥ψ̃j∥∥∥2

and p2
k+1j

∥∥∥ψ̃k+1

∥∥∥2
have been already computed, and evaluating 2pk+1j

∑k+1
i=1 qil 〈gj , gi〉,

j = k + 2, · · · , N takes O (kN) operations.

In order to compute the coefficients of the new representation via skeleton terms, {c̃i}ri=1,

such that
N∑
i=1

cigi (x) ≈
r∑
j=1

c̃igi (x) ,

we use the fact that

gj (x) =

j∑
k=1

pkjψ̃k (x) , ψ̃j (x) =

j∑
k=1

qkjgk (x)

and compute

c̃i = ci +
N∑

j=r+1

cj

(
j∑

k=1

pkjqik

)
. (2.31)

Combining complexity estimates, if the number of skeleton terms is r, the resulting algorithm has

a complexity O
(
r3 + r2N

)
, where the actual cost of O

(
r3
)
part is not large if r is relatively small.

Observing that this algorithm is designed to be used when N � r, we conclude that the overall

cost is O
(
r2N

)
. We observe that since the ill-conditioned Gram matrix, 〈gi, gj〉, appears in this

algorithm and the computation of the norm is done via (2.30), the resulting approximation loses
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1/2 of available digits as is the case in Algorithm 1. Possible improvement of this algorithm requires

further investigation, and we plan to address it separately.

2.3 Reduction algorithm using frequency sampling

Due to the poor condition number of the Gram matrix, we lose half of the significant digits

using Algorithm 1 (see examples in [18] and [59]). In order to identify “best” linear independent

terms we can design a matrix with a better condition number if we use a family of “dual” functions

for computing inner products instead of functions of the mixture. In the case of Gaussians (which

are well localized), a natural set of such “dual” functions are exponentials with purely imaginary

exponents (which are global functions); computing the inner product with them reduces to com-

puting their Fourier transform. Therefore, as representatives of Gaussian atoms we can then use

frequency vectors, i.e. samples of their Fourier transforms. The sampling strategy should be suffi-

cient to differentiate between all Gaussian atoms; it is fairly straightforward to achieve this in low

dimensions or if the functions admit a separated representation. Currently, we do not know how

to do it efficiently in high dimensions. Naively it appears to require the construction of a sample

matrix with O (N ×Ndr) entries and additional work is required to understand how to lower this

number. Alternatively, in dimensions d = 1, 2, 3 it is sufficient to use O
(
N × rd

)
samples if we were

to use the straightforward generalization of the algorithm in dimension d = 1 described below. In

all cases, the last step in this approach is to compute the matrix ID of the sample matrix.

We present a deterministic algorithm in dimension d = 1 and note that its extension to

functions in separated form in high dimensions can follow the approach in [18]. We consider a

univariate Gaussian atom mixture

u (x) =

N∑
l=1

clgl (x) , x ∈ R, (2.32)

where

gl (x) =
1

π
1
4σ

1
2
l

e
− (x−µl)

2

2σ2
l , ‖gl‖2 = 1,
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Algorithm 3 Reduction algorithm using rank-revealing QR
Inputs: Coefficients cl in representation of function u (x) =

∑N
l=1 clgl (x) and error tolerance ε.

We assume that a subroutine to compute the inner product 〈gl, gm〉 is available.
Outputs: A set of skeleton terms gim (x) and their new coefficients c̃im ,m = 1, · · · r yielding an
approximation ũ (x) =

∑N
m=1 c̃imgim (x) such that |u (x)− ũ (x)| = O (

√
ε).

Stage 1: Orthogonalization of gl, l = 1, · · · , N.

Initialization. We initialize of
∥∥∥ψ̃i∥∥∥ = 1, for i = 1, . . . , N and pii = qii = 1 for i = 1, . . . , N .

for k = 1, N

(1) Compute qi,k for 1 ≤ i ≤ k via (2.27).

(2) Compute pk,j for j = k + 1, . . . N via (2.28) to update ψ̃j = gj − pkjgk

(3) Update norm of ψ̃j for j = k + 1, . . . N via (2.30).

(4) Select ψ̃j , j = k + 1, . . . N , with the largest norm and set as gk+1. Exit if the norm of gk+1

is less than ε.

end

Stage 2: Find new coefficients c̃im ,m = 1, · · · , r.
We compute new coefficients via (2.31).
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and seek the best linear independent subset as in (2.2). Defining the Fourier transform of f as

f̂ (ξ) =
1√
2π

ˆ ∞
−∞

f (x) e−ixξdx,

we obtain

ĝl (ξ) =
σ

1
2
l

π
1
4

e−
σ2l ξ

2

2 e−iµlξ.

In fact, for multivariate Gaussian atoms in any dimensions, the Fourier transform can be computed

explicitly (see Appendix).

We set the highest frequency ξhigh of {ĝl (ξ)}Nl=1 as

ξhigh =

√√√√−2 log π
1
4 10−16

σ
1
2

σ2
, σ = min

l=1,··· ,N
σl,

such that

|ĝl (ξ)| < 10−16 for ξ > ξhigh and l = 1, · · · , N.

We also set the lowest frequency ξlow = 10−2 ∼ 10−3, a positive value obtained experimentally.

We then sample the interval [ξlow, ξhigh] using frequencies ξk, k = 1, · · · rp, equally spaced on a

logarithmic scale,

ξk = e

(
log ξlow+k

ξhigh−ξlow
rp

)
,

where rp is the number of samples. We choose rp > r, where r is the expected final number of

terms. In our setup, the column 

ĝl (ξ1)

ĝl (ξ2)

...

ĝl
(
ξrp
)


serves as a representative of the Gaussian gl. In this way, we reduce the problem to that of using

the matrix ID. Specifically, given frequencies ξk, k = 1, · · · , rp, we construct a rp×N sample matrix
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Y ,

Y =



ĝ1 (ξ1) ĝ2 (ξ1) · · · ĝN (ξ1)

ĝ1 (ξ2) ĝ2 (ξ2) · · · ĝN (ξ2)

...
...

. . .
...

ĝ1

(
ξrp
)

ĝ2

(
ξrp
)
· · · ĝN

(
ξrp
)


,

and compute its matrix ID (see e.g. [37]). We obtain a partition of indices I =
[
Î , Ĩ
]
, where

Î = [i1, . . . , ir] and Ĩ = [ir+1, . . . iN ] denote the skeleton and residual terms respectively. We also

obtain a matrix X such that

Y = Y[:,Î]X,

where X is a r ×N matrix that satisfies X[:,Î] = Ir. We then compute the new coefficients as

c̃im = cim +
N∑

n=r+1

cinXmn, m = 1, 2, . . . , r,

and use them to approximate

u (x) ≈
r∑

m=1

c̃imgim (x) .

The accuracy of this approximation appears to be the same as the accuracy of matrix ID. Unfor-

tunately, for multivariate Gaussian atoms, the size of the matrix Y appears to grow too fast with

the dimension d (except in the case of separated representations where such dependence is linear).

While our approach via frequency vectors can be extended in a straightforward manner to dimen-

sions d = 2, 3, we note that the complexity of the Algorithm 1 via a Gram matrix is dimension

independent and it would be of interest to construct a dimension independent algorithm yielding

high accuracy approximations.

2.4 An acceleration technique for reduction algorithms

Recall that the complexity of Algorithm 1 is O
(
r2N

)
, where N is the initial number of terms

and r is the number of skeleton terms. This algorithm obviously slows down when the number

of skeleton terms, r, is large, since the computational cost grows quadratically in r. On the other
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Algorithm 4 Reduction using frequency sampling (dimension d = 1)

Inputs: a function u (x) =
∑N

l=1 clgl (x), number of frequencies samples rp and error tolerance
ε > 0. We assume that a subroutine to compute the Fourier transform ĝl (ξ) is available.
Outputs: an index set I =

[
Î , Ĩ
]
, where Î = [i1, . . . , ir] contains indices of r skeleton terms

and Ĩ = [ir+1, . . . iN ] contains indices of terms being removed from the final representation, and
coefficients c̃im ,m = 1, · · · r, such that u (x) ≈

∑r
m=1 c̃imgim (x) with accuracy of the matrix ID.

(1) set ξlow ∈
[
10−2, 10−3

]
and compute ξhigh =

√
−2 log π

1
4 10−16

σ
1
2

σ2 where σ = minl=1,··· ,N {σl}.

(2) initialize ξk = e

(
log ξlow+k

ξhigh−ξlow
rp

)
, k = 1, · · · , rp.

(3) construct matrix Y such that Ykl = ĝl (ξk).

(4) compute a matrix ID of Y to obtain a index partition
[
Î , Ĩ
]
and a matrix X such that

Y = Y[:,Î]X

(5) compute new coefficients via c̃im = cim +
∑N

n=r+1 cinXmn, for m = 1, . . . r .
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hand, if two sets of functions are known to be linearly independent in advance, attempting to reduce

their combination would be wasteful. In many practical applications it is expected that a function

that models a complicated system will have a multivariate mixture representation with a relatively

large number of terms. We note that usually such representation can be split into subgroups of

terms so that each group reflects local behavior of the function. For instance, in electronic structure

calculations, approximation of the electron orbitals require many terms to resolve the cusps near

the nuclei centers but Gaussians associated with these terms decay rapidly away from the nuclear

center. Thus, these terms will be nearly orthogonal to similar terms at other nuclear centers. This

suggests an acceleration technique for the reduction algorithm based on a hierarchical subdivision

of the terms of the initial mixture.

As an illustration, let us consider a multivariate mixture with N terms where the number of

linearly independent terms is r. Let us assume that we can subdivide these terms into m groups

(equally, for simplicity). The number of linearly independent terms in each group in at most r/k,

where k > 1. The cost of performing the reduction algorithm on one group is O
(
N
m

(
r
k

)2) and,

thus, the total cost to reduce all the groups is O
(
mN
m

(
r
k

)2)
= O

((
r
k

)2
N
)
. Clearly, an additional

reduction may be needed if we want to reduce to r terms. Depending on k, we get a significant

speed-up factor (in our examples of solving Hartree-Fock equations, k ≈ 7). We note that (while we

did not use it in our computations) that the reduction of independent groups of terms is trivially

parallel.

In the thesis we use this acceleration technique in the computations for solving the Hartree-

Fock equations in Chapter 3, as well as the Poisson’s equation in Chapter 4. We plan to do a careful

speed comparison and further develop applications of this technique. .

2.5 Numerical Example

In order to compare the performance of Algorithm 1, 3 and 4 in dimension d = 1, we consider

a univariate Gaussian mixture (2.32), choose N = 10000, and sample cl, σl and µl from uniform

distributions U (−1, 1), U (0, 20), and U (−5, 5), respectively. We apply Algorithms 1, 3 and 4 to
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reduce the number of terms in the Gaussian mixture and display the original function and the errors

of approximations in Figure 2.1.
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Figure 2.1: A function represented via a Gaussian mixture with 104 terms (top left). Relative
errors obtained by using Algorithm 1 yielding 121 terms (top right), Algorithm 3 yielding 122 terms
(bottom left) and Algorithm 4 yielding 273 terms (bottom right).



Chapter 3

Adaptive algorithm for electronic structure calculations

3.1 Hartree-Fock equation for diatomic molecules

In this Chapter, we present a new adaptive method for electronic structure calculations based

on algorithms for reduction of multiresolution multivariate mixtures described in Chapter 2. While

we represent solutions using a linear combination of Gaussians (which has a long history in quantum

chemistry), these Gaussians are not selected in advance as a basis but are generated in the process

of solving equations. Thus, we avoid the so-called “basis error” usually associated with methods

using Gaussians. Our approach can also be characterized as a “gridless” or “meshfree” method.

Using Gaussians to find solutions of quantum chemistry problems has its origins in seminal

papers [20, 53, 64] motivated by the fact that integrals involving these functions can be evaluated

efficiently. In these papers the authors proposed to use linear combinations of Gaussians whose

exponents and coefficients were found (or optimized) via Newton’s method in order to capture the

correct behavior near the nuclear cusps and the correct rate of decay. However, this approach

proved unsustainable as problems became larger. Instead, the construction of a basis for spatial

orbitals has been performed off-line and the resulting sets of functions were then used as a fixed

basis with unknown coefficients, leading to the so-called “basis error” if the actual solution is not

well approximated within the linear span of such basis.

Using bases of so constructed sets of Gaussians have revolutionized computational quantum

chemistry in spite of the absence of a systematic way for controlling accuracy (and not providing

guaranteed error bounds). As a result, selecting a basis set became an art form requiring insight
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into the underlying solution. However, once a basis set is selected, the accuracy of the solution

obtained using such basis is ultimately limited. The limitation on accuracy should be understood

in the context of approximate equations that are being solved, e.g. the Hartree-Fock equations or

the Kohn-Sham equations of density functional theory (DFT) (see e.g. [57]), making it difficult to

separate the impact of approximate equations vs. approximate methods of solving them. Thus,

adaptive methods are highly desirable in this field.

The advent of multiresolution analysis (see e.g. [25]) laid a conceptual foundation for adaptive

methods but it took some time before practical adaptive algorithms were developed using multi-

wavelets [2], see [40, 68, 69]. A central element of the success of the multiresolution algorithms can

be traced to the fact that physically significant (integral) operators arising in problems of quantum

chemistry are naturally represented by radial kernels which can be accurately approximated by a

linear combination of Gaussians. The key advantage of using approximations via Gaussians is that

they yield a representation in which operators are efficiently applied in each dimension separately.

Without such separated representations multiresolution operators would be too expensive to be

used in dimensions three and higher. Multiresolution methods systematically refine numerical grids

(or basis functions) in the vicinity of the cusp-type singularities while using a relatively few grid

points (or basis functions) elsewhere. These methods have proven successful in efficiently computing

highly accurate solutions, achieving guaranteed error bounds and eliminating the basis error. This

approach has been implemented at Oak Ridge National Laboratory as a software package MAD-

NESS (A Multiresolution, ADaptive Numerical Environment for Scientific Simulation), see [39], and

is now considered the most accurate approach in this field [45] (c.f. a mixed-basis method using

plane-waves and atom-centered radial polynomials [56], interlocking multi-center grids [62], etc.).

However, since multiwavelets are piecewise polynomials, they do not resemble the spatial or-

bitals and a large number of basis functions is needed to represent solutions, e.g. an individual

orbital may require ≈ 2 · 105 basis functions in 3D. Moreover, such local refinement schemes do

not take advantage of the essential simplicity of the spatial orbitals far from the nuclei and require

boundary conditions to limit the computational domain. While adaptive multiresolution methods
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are sufficiently fast to be used within one-particle theories of quantum chemistry, due to compu-

tational costs advancement towards two particle theories or solving Schrödinger’s equation had a

limited success (see e.g. [12, 13]).

Thus, constructing new adaptive schemes to compete with MADNESS is of interest. As it

was demonstrated in [9], it is possible to iteratively solve equations of Quantum Chemistry using

new nonlinear algorithms which reduce the number of terms in intermediate representations without

resorting to Newton’s method. The results in [9] are based on using Slater-type orbitals. In this

thesis, we present an adaptive method using linear combinations of Gaussians to represent the

solutions. We demonstrate the new approach by solving the Hartree-Fock equations for Helium

Hydride (HeH+) and Lithium Hydride (LiH) so that we can compare the resulting representations

of solutions with those in [40, 9]. As in [40, 9], we formulate the problem using integral equations and

use a convergent iteration to solve them. We use linear combinations of Gaussians to represent not

only operators and potentials but also the functions on which they operate. As a result, all integrals

can be computed explicitly and exactly by simply updating the parameters of the Gaussians. The

computational effort thus moves from that of approximating and computing integrals to that of

maintaining a reasonable number of terms in intermediate representations of solutions within the

iterative scheme. We use algorithm 1 to reduce the number of terms after each operation by finding

the “best” linearly independent terms to represents solutions thus maintaining a reasonably small

number of them. There is no underlying grid to maintain (thus, “gridless” or “meshfree” method)

and there is no need to impose boundary conditions as in [40].

3.2 Separated representations of the Green’s functions

In this section, we start by reviewing a key result developed in [15, 16]. It essentially says that

the power functions r−α, α > 0, can be well represented by a sum of Gaussians with near-optimal

numbers of parameters.

Theorem 2. (Beylkin and Monzón [16]) For any α > 0, δ < 0, and 1/e ≥ ε > 0, there exist a step
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size h and integers M and N such that

∣∣r−α −GF (r;M,N, h)
∣∣ ≤ r−αε, for all δ ≤ r ≤ 1,

where

GF (r;M,N, h) =
h

Γ (α/2)

N∑
n=M+1

eαhn/2e−e
hnr2 . (3.1)

The error estimates is based on discretizing the integral

1

rα
=

1

Γ
(
α
2

) ˆ ∞
−∞

e−r
2et+α

2
tdt

using trapezoidal rule as

1

Γ
(
α
2

) ˆ ∞
−∞

e−r
2et+α

2
tdt ≈ h

Γ
(
α
2

) ∑
n∈Z

eαhn/2e−e
hnr2 , (3.2)

where the step size h satisfies

h ≤ 2π

log 3 + α
2 log(cos 1)−1 + log ε−1

and ε is any user-selected accuracy. For a given accuracy ε, power α and a range of values r,

the infinite sum (3.2) is then truncated due to the exponential or super exponential decay of the

integrand at ±∞, to yield a finite sum approximation in that range. This approximation provides

an analytic construction of a multiresolution separated representation for the Poisson kernel in

any dimensions and the Coulomb potential. For example, setting α = 1 in (3.1), we obtain the

approximation of the Poisson kernel in R3 as a sum of Gaussians.

Another function of interest in this thesis is the Green’s function for the non-oscillatory

Helmholtz equations,

G (µ, r) =
(µ
r

)p
Kp (µr) ,

where Kp is the modified Bessel function of the second kind. Similar results can be obtained by

discretizing the integral representation

2p+1
(µ
r

)p
Kp (µr) =

ˆ ∞
−∞

e−r
2e−t/4−µ2e−t+ptdt.

Note that in this representation the variables µ and r are separated and the integrand has a super-

exponential decay at ±∞.
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3.3 The Helium Hydride Ion HeH+

As our first example, we solve the Hartree-Fock equation(
−1

2
∆ + V − 4π∆−1

(
|φ|2

))
φ = Eφ, (3.3)

with the potential

V (r) =
Z1

‖r−R1‖
+

Z2

‖r−R2‖
.

For the Helium Hydride Ion, HeH+, we have Z1 = −1, Z2 = −2 and R1 = (0, 0,−0.7) and

R2 = (0, 0, 0.7).

As in [40, 68, 69, 9], our basic approach involves recasting (3.3) as an integral equation which

we solve iteratively. The iteration (see below) is convergent and while the rate of convergence is not

quite quadratic, it is sufficiently fast so that only a few dozen iterations are required (see discussion

in [40] and reference therein). In contrast to [40, 68, 69, 9], instead of using multiwavelet bases,

or [9] where Slater-type orbitals are used, we represent φ (r) as a Gaussian mixture in (2.1) that

is constructed via Basis Generating Iteration. In each step of the iterative solution, the number of

terms in representing φ (r) grows and we use Algorithm 1 to control their number. To be precise,

we write (3.3) as (
−∆ + µ2

)
φ = −2Vφφ, (3.4)

where

µ2 = −2E

and

Vφ = V − 4π∆−1
(
|φ|2

)
.

We approximate both, the potential V (r) by discretizing the integral

V (r) =
Z1

‖r−R1‖
+

Z2

‖r−R2‖

=
Z1√
π

ˆ ∞
−∞

e−‖r−R1‖2et+ t
2dt+

Z2√
π

ˆ ∞
−∞

e−‖r−R2‖2et+ t
2dt
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as

V∞ (r, h) =
Z1h√
π

∑
l1∈Z

e
hl1
2 e−e

hl1‖r−R1‖
2

+
Z2h√
π

∑
l2∈Z

e
hl2
2 e−e

hl2‖r−R2‖
2

(3.5)

and the Green’s function G (µ, r) for bound state (non-oscillatory) Helmholtz equation

(
−∆ + µ2

)
φ = f

by discretizing the integral

G (µ, r) =
1

4π

e−µ‖r‖

‖r‖

= (4π)−
3
2

ˆ ∞
−∞

e−
‖r‖2et

4
−µ2e−t+ t

2dt

as

G∞ (µ, r, h) = (4π)−
3
2 h
∑
l∈Z

e−µ
2e−hl+hl

2 e−
‖r‖2ehl

4 , (3.6)

where the step size h is selected to achieve the desired accuracy ε. We then truncate the sums (3.5)

and (3.6) in the same manner as described in Section 3.2 and obtain

Ṽ (r) =
Z1h√
π

N1∑
l1=M1

e
hl1
2 e−e

hl1‖r−R1‖
2

+
Z2h√
π

N2∑
l2=M2

e
hl2
2 e−e

hl2‖r−R2‖
2

and

G̃µ (r) = (4π)−
3
2 h

N∑
l=M

e−µ
2e−hl+hl

2 e−
‖r‖2ehl

4 .

Note that G̃0 (r) approximates the Green’s function for the Poisson’s equation

−∆φ = f.

We solve (3.4) via the iteration,

V
(n+1)
φ ← V − 4πG̃0 ∗

(∣∣∣φ(n)
∣∣∣2) (3.7)

φ(n+1) ← −2G̃µ(n) ∗
(
V

(n+1)
φ φ(n)

)
,

E(n+1) ← E(n) −

〈
φ(n) − φ(n+1), V

(n+1)
φ φ(n)

〉
∥∥φ(n+1)

∥∥ ,

φ(n+1) ← φ(n+1)∥∥φ(n+1)
∥∥ ,

µ(n+1) ←
√
−2E(n+1), n = 0, 1, · · ·
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where ∗ denotes convolution. Since all operators and functions are approximated as Gaussian

mixtures, all operations such as multiplication and convolution are computed analytically.

For the initial guess of the solution, we use a single Gaussian centered at the origin with

the orbital energy E = −2. We verify that, for this choice of parameters, after 19 iterations, the

orbital energy E = −1.66054711273118 is computed with six significant digits, and with 3.4× 10−6

absolute error. The comparison is made using the MADNESS [29] software yielding the orbital

energy E = −1.6605437. The total number of term to represent the orbital φ (r) is 1738. The

number of terms is significantly smaller than ≈ 2 · 105 that required by multiresolution method

[40, 68, 69] and by a factor ≈ 3 larger than that in [9], where the number of Slater-type orbitals is

637. However, our approach is much simpler than that in [9] and, for this reason, is easier to extend

to work with large molecules.

In Figure 3.1, we display the spatial orbital φ (r) on the line r = (0, 0, x) connecting the two

nuclei locations R1 and R2. Note that both cusps are not symmetric (clearly visible for one of

them).
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Figure 3.1: Plot of the spatial orbital φ (r) for Helium Hydride, HeH+ on the line r = (0, 0, x)
connecting the two nuclear centers R1 = (0, 0,−0.7) and R2 = (0, 0, 0.7).
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3.4 Lithium Hydride Ion LiH

For our second example, we consider the Hartree-Fock equations for the Lithium Hydride,

LiH. The Hartree-Fock equations in this case are

Fφj (r) = Ejφ (r) , j = 1, 2,

where F = −1
2∆ + V + 2J −K,

Jφj = φj

(
−4π∆−1

(
|φ1|2 + |φ2|2

))
,

Kφj = φ1

(
−4π∆−1 (φ∗1φj)

)
+ φ2

(
−4π∆−1 (φ∗2φj)

)
,

and

V (r) =
Z1

‖r−R1‖
+

Z2

‖r−R2‖
.

For Lithium Hydride Ion LiH, we have Z1 = −3, Z2 = −1 and R1 = (−3.15/2, 0, 0) and R2 =

(3.15/2, 0, 0). We solve this equation using the same iteration as described in Section 3.3, with the

two modifications that are standard procedures for solving the Hartree-Fock equations with two or

more orbitals. First, the spatial orbitals are orthogonalized after each iteration. Second, the orbital

energies are obtained via solving the eigenvalues of the 2 × 2 matrix Hij = 〈Fφi, φj〉 after each

iteration.

To be precise, we choose an initial guess of the orbitals, φ(0)
j (r) , j = 1, 2, without specifying

the corresponding orbitals energies E(0)
j j = 1, 2. We orthonormalize φ(0)

j (r) and then compute

the initial energies E(0)
j as the eigenvalues of the 2 × 2 matrix H

(0)
ij =

〈
Fφ(0)

i , φ
(0)
j

〉
. Setting(

µ
(0)
j

)2
= −2E

(0)
j , j = 1, 2 , we then iterate the orbitals viaφ(n+1)

1

φ
(n+1)
2

 ←

−2G
µ
(n)
1

∗ (V + 2J −K)φ
(n)
1

−2G
µ
(n)
2

∗ (V + 2J −K)φ
(n)
2

 , n = 0, 1, · · · (3.8)

After each iteration, φ(n+1)
j (r) are orthogonalized, orbital energies E(n+1)

j are updated via solving

the eigenvalues of the 2 × 2 matrix H
(n+1)
ij =

〈
Fφ(n+1)

i , φ
(n+1)
j

〉
and µ

(n+1)
j are computed via(

µ
(n+1)
j

)2
= −2E

(n+1)
j .
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For the Hartree-Fock equations with n orbitals, the total electron energy is defined as

E =

n∑
j=1

(
Ej +

〈(
−1

2
∆ + V

)
φj , φj

〉)
,

and the total energy, Etot, is calculated by adding the nucleus–nucleus repulsion energies to the

total electron energy. For Lithium Hydride, LiH, we have

Etot =

2∑
j=1

(
Ej +

〈(
−1

2
∆ + V

)
φj , φj

〉)
+

Z1Z2

‖R1 −R2‖
.

For the initial guess of the spatial orbitals, we use Gaussian mixtures approximating

φ1 (r) ≈ 1√
π
e−‖r−R1‖ and φ2 (r) ≈ 1√

π
e−‖r−R2‖,

which are then orthogonalized. After 15 iterations, the computed orbital energies are E1 =

−2.45174443318099 and E2 = −0.297831582093949 and agree to five and four significant digits with

the values E1 = −2.451763 and E2 = −0.297823 computed by the MADNESS software, and have

absolute errors of 1.9×10−5 and 8.9×10−6. The computed total energy Etot = −7.98693757026112

agrees to five significant digits with the value Etot = −7.9869364 computed in MADNESS, and has

an absolute error of 1.2×10−6. The total number of term to represent the orbitals φ1 (r) and φ2 (r)

is 3126 and 3981. The number of terms is again much smaller (about 100 times smaller) than that

obtained using MADNESS software and by a factor ≈ 3 larger than that in [9], where the number

of terms to represent the Slater-type orbitals is 1282 and 1327.

In Figure 3.2 we display the spatial orbitals φ1 (r) and φ2 (r) on the line r = (x, 0, 0) connecting

the two nuclei locations R1 and R2.

3.5 Discussion

Our implementation of the examples in 3.3 and 3.4 are written in Fortran90 and compiled

with the Intel Fortran Compiler version 18.0.3. All computations are performed on a single core

(without parallelization) of an Intel i7-6700 CPU at 3.4 GHz on a 64-bit Linux workstation with
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Figure 3.2: Plot the spatial orbitals for Lithium Hydride, LiH, φ1 (r) (left) and φ2 (r) (right) on the
line r = (x, 0, 0) connecting the two nuclei locations R1 = (−3.15/2, 0, 0) and R2 = (3.15/2, 0, 0).

64 GB of RAM. Currently it takes about 6.4 minutes and 28.4 minutes to solve the Hartree-Fock

equation for HeH+ and LiH, respectively. We made no attempt to optimize our implementation.

The reduction algorithm with splitting Gaussian atoms into groups (see Section 2.4) is trivially

parallel but we did not take advantage of this in the current version of our code. Since there are

about hundred groups and the main cost is in reduction, this acceleration factor should bring the

timing to close to that of MADNESS (which is highly efficient code well optimized during more

than 10 years of its development). We plan to do a careful speed comparison with other existing

methods separately.



Chapter 4

Reduction algorithms for solving differential and integral equations

4.1 Poisson equation in free space in high dimensions

The Poisson’s equation

−∆u(x) = f (x) , x ∈ Rd, (4.1)

arises in numerous applications in nearly all field of physics and computational chemistry (see e.g.

[36]). Reduction Algorithm 1 allows us to solve this equation in dimensions d ≥ 3 assuming that

the charge distribution f (x) is given by, e.g. , a linear combination of multivariate Gaussian atoms.

We obtain the solution via

u(x) =

ˆ
Rd
G (x− y) f(y)dy, (4.2)

where the free-space Green’s function for (4.1) is given by the radial function

G(x) = Cd‖x‖2−d, Cd =
Γ
(
d
2 + 1

)
d (d− 2)π

d
2

, (4.3)

where ‖·‖ = ‖·‖2 is the standard l2-norm.

4.1.1 Approximation of the Green’s via Gaussians

In order to evaluate the integral (4.2), we approximate the Green’s function G via a linear

combination of Gaussians (see e.g. [40, 15, 16]). The error estimates in [16, Theorem 3] are based

on discretizing the integral
1

rd−2
=

1

Γ
(
d−2

2

) ˆ ∞
−∞

e−r
2et+ d−2

2
tdt
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as

G∞ (r, h) =
Cdh

Γ
(
d−2

2

)∑
l∈Z

ehl(d−2)/2e−e
hlr2 , (4.4)

where the step size h satisfies

h ≤ 2π

log 3 + d−2
2 log(cos 1)−1 + log ε−1

(4.5)

and ε is any user-selected accuracy. Then [16, Theorem 3] implies

|G (r)−G∞ (r, h)| ≤ εG (r) , for all r > 0. (4.6)

4.1.2 Solution method and error estimation

To estimate the error of approximating the solution u in (4.2) using the series (4.4) instead

of the Green’s function (4.3), we first prove the following lemma.

Lemma 2. For any d ≥ 3, e−1 ≥ ε > 0, and f nonnegative in (4.1), there exist a step size h such

that ∣∣∣∣u(x)−
ˆ
Rd
G∞ (‖x− y‖ , h) f(y)dy

∣∣∣∣ ≤ ε |u(x)| , for all x 6= 0. (4.7)

Proof. From (4.2) and (4.6), we have∣∣∣∣u(x)−
ˆ
Rd
G∞ (‖x− y‖ , h) f(y)dy

∣∣∣∣ =

∣∣∣∣ˆ
Rd

[G (x− y)−G∞ (‖x− y‖ , h)] f(y)dy

∣∣∣∣
≤
ˆ
Rd
|G (x− y)−G∞ (‖x− y‖ , h)| |f(y)| dy

≤ ε
ˆ
Rd
G (x− y) |f(y)| dy

= ε

ˆ
Rd
G (x− y) f(y)dy

= ε u(x)

= ε |u(x)| .
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In our examples, we always consider functions f represented in the form

f(x) =

N∑
l=1

clgl (x,µl,Σl) , (4.8)

for some Gaussian atoms as in (1.5). In particular,

u(x) =

N∑
l=1

cl

ˆ
Rd
G (x− y) gl (x,µl,Σl) dy

and

u+(x) =

N∑
l=1

|cl|
ˆ
Rd
G (x− y) gl (x,µl,Σl) dy

are both bounded. We assume that

∥∥u+
∥∥
L∞
≤ c ‖u‖L∞ (4.9)

for a moderate size constant c. This assumption prevents representations of u that involve large

coefficients cl of opposite signs. We then have

Lemma 3. Let d ≥ 3, e−1 ≥ ε > 0, and f as in (4.8). If (4.9) holds, then there exist a step size h

such that∣∣∣∣ˆ
Rd
G (x− y, h) f(y)dy −

ˆ
Rd
G∞ (‖x− y‖ , h) f(y)dy

∣∣∣∣ ≤ ε c |u(x)| , for all x 6= 0. (4.10)

Proof. It follows from Lemma 2 that

|u(x)− ũ(x)| ≤ εu+(x)

where

ũ(x) =

ˆ
Rd
G∞ (‖x− y‖ , h) f(y)dy.

Therefore, using (4.9) , we have

‖u(x)− ũ‖L∞ ≤ εu
+(x) ≤ ε c ‖u‖L∞ .
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In practice, when using (4.4), we truncate the sum

GM,N (r) =
Cdh

Γ
(
d−2

2

) N∑
l=M

ehl(d−2)/2e−e
hlr2 (4.11)

=
Cdh

Γ
(
d−2

2

) Nterms∑
l=1

eh(M+l−1)(d−2)/2e−e
h(M+l−1)r2

so that the removed terms contribute less than ε and we limit the range of r to some interval of the

form [δ,R]; the resulting approximation has Nterms = N −M + 1.

In our computations we select the accuracy range of GM,N to be
[
10−7, 1010

]
with ε = 10−14.

The number of terms in (4.11) depends on the dimension only weakly (see Table 4.1).
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Figure 4.1: Plot of the error log10

∣∣1− rβGM,N (r)
∣∣ . Shown on left: β = 1, GM,N (r) has 298 terms

and achieves relative accuracy = 10−14 in the interval
[
10−7, 1010

]
. Shown on right: β = 5, GM,N (r)

has 338 terms and achieves relative accuracy = 10−14 in the interval
[
10−7, 1010

]
.

As an illustration, we first demonstrate our approach for a single Gaussian,

f (x) = e−
1
2

(x−µ)TΣ−1(x−µ). (4.12)

Using (4.11), we approximate the solution u by

uε(x) =
Cdh

Γ
(
d−2

2

) Nterms∑
l=1

eh(M+l−1)(d−2)/2

ˆ
Rd
e−e

h(M+l−1)‖x−y‖2f(y)dy

=
Cdh

Γ
(
d−2

2

) Nterms∑
l=1

eh(M+l−1)(d−2)/2

ˆ
Rd
e−e

h(M+l−1)‖x−y‖2e−
1
2

(y−u)TΣ−1(y−µ)dy (4.13)
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Evaluating the integral explicitly (see Appendix A for details), we obtain

uε(x) =

Nterms∑
l=1

clgl (x,µl,Σl) (4.14)

where

cl =
Cdhπ

3d
4

Γ
(
d−2

2

)e−h(M+l−1)(d+2)/2 (det Σ)
1
2

(det Σl)
1
4

,

Σl = Σ +



1
2eh(M+l−1) 0

1
2eh(M+l−1)

. . .

0 1
2eh(M+l−1)


,

and

µl = µ.

The number of terms in the representation of uε is excessive and we apply Algorithm 1 to

reduce their number and obtain our final approximation as

ũ (x) =

Ñ∑
m=1

c̃imgim
(
x,µim ,Σim

)
, (4.15)

where c̃im are the new coefficients and im ∈ Î and (see Algorithm 1).

Remark 2. The representation of the kernel in (4.11) can be obtained for a large spatial range

since the number of terms Nterms is proportional to the logarithm of the range. For this reason our

approach can work where employing the Fast Fourier Transform is not an option due to the the size

of the domain, c.f. [67].

In order to demonstrate the performance of our approach, we choose the right hand side f to

be a Gaussian mixture with 100 terms,

f (x) =

100∑
i=1

cfie
− 1

2(x−µfi)
T

Σ−1
fi

(x−µfi).

In the Gaussian mixture f , the coefficients cfi and means µfi are sampled from a one and a d-

dimensional standard normal distributions respectively. The symmetric positive definite matrices
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Σfi are constructed as

Σfi = UTi Ui +
1

10
Id, (4.16)

where Ui is a d × d matrix of standard normally distributed numbers and Id is the d × d identity

matrix. We obtain uε in (4.14) and apply Algorithm 1 to reduce the number of terms to get ũ in

(4.15). The results are displayed in Table 4.2, where we show the dimension of the problem, d, the

number of terms, Nterms, in the approximation of the Green’s function, the number of terms, Ntot,

in the solution uε before reduction and its accuracy, the number of terms, Ñ , in the solution ũ after

reduction and its accuracy, and, finally, the relative error between uε and ũ.

4.1.3 Error verification

We use the following approach to estimate the accuracy of the solution ũ of (4.1). We define

the error

herror (x) = −∆ũ (x)− f (x) ,

and, to ascertain its size, compute the value of herror at a collection of points in all principle

directions of the right hand side f (x) . To be precise, we first solve the eigenvalue problem for all

matrices Σfi , i = 1, . . . , 100,

Σfi =

d∑
j=1

λ
(i)
j v

(i)
j

(
v

(i)
j

)T
.

Here the eigenvectors v
(i)
j identify principle directions for each Gaussian in f so that we can select an

appropriate set of samples along those directions. We note that the actual range of the eigenvalues

of matrices Σfi ,
{
λ

(i)
j

}
i=1,..,100
j=1,...,d

, is
[

1
10 , 40

]
. Next, for each pair of

{
λ

(i)
j ,v

(i)
j

}
, we find an interval[

−s(i)
j , s

(i)
j

]
by solving

∣∣∣∣e− 1
2

(
s
(i)
j v

(i)
j

)T
Σ−1
fi

(
s
(i)
j v

(i)
j

)∣∣∣∣ =

∣∣∣∣∣∣∣∣e
−

(
s
(i)
j

)2

2λ
(i)
j

∣∣∣∣∣∣∣∣ = 10−10 ⇔ s
(i)
j =

(
−2λ

(i)
j log 10−10

)1/2

and generate and equally-spaced grid in
[
−s(i)

j , s
(i)
j

]
as

s
(i)
jk = k

2s
(i)
j

N
s
(i)
j

, k = 0, . . . Ns.
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Finally, we select sample points

x
(i)
jk = s

(i)
jkv

(i)
j + µfi

and evaluate herror
(
x

(i)
jk

)
for i = 1, . . . , 100, j = 1, . . . , d and k = 1, . . . , Ns.

4.1.4 Numerical results

In our experiment, we select Ns = 1 and Ns = 100, and report the resulting errors in

Table 4.1 and 4.2. We also report the required CPU time, T , for reducing the number of terms

in uε in seconds for the examples when Ns = 100. For these two tables, we use the notation

‖f‖∞ = maxi,j,k

∣∣∣f (x
(i)
jk

)∣∣∣.
Our code are implemented in Fortran90 and compiled with the Intel Fortran Compiler version

18.0.3. The computations are performed on a single core (without parallelization) of an Intel i7-6700

CPU at 3.4 GHz on a 64-bit Linux workstation with 64 GB of RAM. Currently it takes minutes

(see Table 4.2) to solve the Poisson’s equation in multi-dimensions with no attempt of optimization

of the code. The reduction algorithm with splitting Gaussian atoms into groups (see Section 2.4)

is trivially parallel but we did not take advantage of this in the current version of our code. We

expect that the parallelization would speed up our initial implementation by a factor of between 10

and 100.

d Nterms Ntot
‖−∆uε−f‖∞
‖f‖∞

Ñ
‖−∆ũ−f‖∞
‖f‖∞

‖uε−ũ‖∞
‖uε‖∞

3 345 278 1.2e− 13 183 3.4e− 8 5.0e− 10

4 397 333 1.7e− 14 223 2.8e− 7 3.6e− 9

5 386 323 8.0e− 15 204 5.6e− 8 1.2e− 9

6 343 311 4.6e− 14 194 3.0e− 7 7.0e− 9

7 354 328 2.3e− 14 206 6.9e− 8 2.1e− 9

Table 4.1: Number of terms and relative errors of solving Poisson’s equation in dimensions d =
3, . . . , 7 where the forcing term is a single randomly generated multivariate Gaussian. The number
of Gaussians to represent the Green’s function in (4.11) is Nterms, the number of terms of uε in
(4.14) after truncation of coefficients to 10−10 is Ntot and, after applying Algorithm 1, the number
of terms of ũ in (4.15) is Ñ .
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d Nterms Ntot

‖−∆uε−f‖∞
‖f‖∞

Ñ
‖−∆ũ−f‖∞
‖f‖∞

‖uε−ũ‖∞
‖uε‖∞

T

3 345 27918 7.6e− 14 4407 7.4e− 5 4.2e− 7 8.6e1

4 397 32872 5.8e− 14 5156 5.5e− 5 9.3e− 7 1.8e2

5 386 31660 4.6e− 14 5773 1.6e− 5 1.3e− 7 2.4e2

6 343 31557 2.8e− 14 6772 1.1e− 6 2.2e− 8 2.8e2

7 354 32706 1.5e− 14 7623 8.1e− 7 2.4e− 8 3.8e2

Table 4.2: Number of terms, relative errors and CPU time (in seconds) of solving Poisson’s equation
in dimensions d = 3, . . . , 7 where the forcing term is a linear combination of 100 randomly generated
multivariate Gaussians. The information displayed in each column is described in Table 4.1.

4.2 Second order elliptic equation with a variable coefficient

We consider the second order linear elliptic equation with a variable coefficient,

−∇ · (a (x)∇u (x)) + k2u (x) = f (x) , x ∈ Rd (4.17)

where d ≥ 3 and k > 0. We assume that the variable coefficient a (x) is of the form

a (x) = 1 + e−
1
2

(x−µa)tΣ−1
a (x−µa), (4.18)

such that maxx |a (x)| /minx |a (x)| = 2, and choose the forcing function to be

f (x) = e−
1
2(x−µf)

t
Σ−1
f (x−µf), ‖f‖∞ = 1. (4.19)

4.2.1 Approximation of the Green’s function via Gaussians

The free space Green’s function for the problem with a constant coefficient

−∆u (x) + k2u (x) = f (x) , x ∈ Rd

is

G (x) = (2π)−
d
2

(
k

‖x‖

) d
2
−1

K d
2
−1 (k ‖x‖) , (4.20)

where K d
2
−1 is the modified Bessel function of the second kind of order d

2 − 1. We approximate the

Green’s function (4.20) by discretizing the integral

G (x) = (4π)−
d
2

ˆ ∞
−∞

e−
‖x‖2et

4
−k2e−t+( d2−1)tdt
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as

G∞ (r) = (4π)−
d
2 h
∑
l∈Z

e−
r2ehl

4
−k2e−hl+( d2−1)hl,

where the step size h is selected to achieve the desired accuracy ε. We then truncate the sum in the

same manner as described in Section (3.2) and obtain

GM,N (r) = (4π)−
d
2 h

N∑
l=M

e−
r2ehl

4
−k2e−hl+( d2−1)hl

= (4π)−
d
2 h

Nterms∑
l=1

e−
r2eh(l+M−1)

4
−k2e−h(l+M−1)+( d2−1)h(l+M−1),

where the number of terms Nterms = M − N + 1 in GM,N weakly depends on the dimension (see

Table 4.4). In our computation, k = 1 and we select the accuracy range of GM,N to be
[
10−7, 102

]
with ε = 10−10.
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Figure 4.2: Plot of the error log10

∣∣∣G(r)−GM,N (r)
G(r)

∣∣∣ . Shown on left: d = 3, GM,N (r) has 104 terms

and achieves relative accuracy = 10−10 in the interval
[
10−7, 102

]
. Shown on right: d = 7, GM,N (r)

has 127 terms and achieves relative accuracy = 10−10 in the interval
[
10−7, 102

]
.

4.2.2 Solution method

We rewrite (4.17) as an integral equation,

u (x)−
ˆ
Rd
G (x− y)∇ · ((a (y)− 1)∇u (y)) dy =

ˆ
Rd
G (x− y) f (y) dy. (4.21)
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To solve (4.21), our approach has two steps. First we look for a set of Gaussian atoms to be used as

a basis to approximate the solution (4.21). In this step we perform several iterations of the integral

equation (without computing the coefficients corresponding to each atom) followed by reduction.

Our approach is based on the following argument. It can be shown that, in a multiresolution basis,

for a finite accuracy ε > 0, the non-standard form (see [6]) of the Green’s function for (4.21) is

banded on all scales. This implies that the set of basis functions to represent the solution is fully

determined by the size of the bands of the Green’s function and the right hand side. This suggests

that if we try to solve the integral equation (4.21) iteratively, the functions that this iteration will

generate should be sufficient to approximate the solution due to the interaction between the essential

supports of the functions involved (even if the fixed-point iteration does not converge).

Once the necessary Gaussian atoms are identified, we look for the solution in the form

ũ (x) =

Ñ∑
l=1

clgl (x,µl,Σl) ,

for some coefficients cl, l = 1, · · · Ñ , to be determined; we then substitute this ansatz for ũ into either

the integral equation or the differential equation and derive a system of linear algebraic equations

for cl by computing appropriate inner products.

To demonstrate our approach, we rewrite (4.21) as

u (x) =

ˆ
Rd
G (x− y)∇ · ((a (y)− 1)∇u (y)) dy +

ˆ
Rd
G (x− y) f (y) dy

and setup the iteration,

un+1 (x) = un (x) +

ˆ
Rd
G (x− y)∇ · ((a (y)− 1)∇un (y)) dy (4.22)

u0 (x) =

ˆ
Rd
G (x− y) f (y) dy

We perform one (or several) iteration(s), without computing coefficients, producing a large number

of Gaussian atoms to represent the solution. Using Algorithm 1 after each iteration, we reduce the

number of atoms by removing linearly dependent terms. In this way we find a basis of Gaussian

atoms for the solution of the equation (4.17).
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Once the set of Gaussian atoms is selected, to find the coefficients cl, l = 1, · · · Ñ , we use the

weak formulation of (4.17). Substituting the selected Gaussian atoms with unknown coefficients

into (4.17), we solve the resulting linear system

Ñ∑
l=1

cl 〈−∇ · (a (x)∇gl (x,µl,Σl)) , gk (x,µk,Σk)〉 = 〈f (x) , gk (x,µk,Σk)〉 , k = 1, · · · , Ñ . (4.23)

The inner products 〈−∇ · (a (x)∇gl (x,µl,Σl)) , gk (x,µk,Σk)〉 are computed explicitly using inte-

gration by parts and the fact that

∇xe−
1
2

(x−µ)tΣ−1(x−µ) = −∇µe−
1
2

(x−µ)tΣ−1(x−µ),

leading to integrals involving only Gaussians (the result is then differentiated with respect to the

shift parameter µ).

We solve the linear system (4.23) using the SVD to obtain an approximate solution

ũ (x) =
Ñ∑
l=1

clgl (x,µl,Σl) .

4.2.3 Error verification

In order to verify that ũ is an approximate solution of (4.17), we note that

herror (x) = −∇ · (a (x)∇ũ (x)) + k2ũ (x)− f (x)

is a combination of Gaussians and products of Gaussians with low degree polynomials. We com-

pute inner products of herror with a collection of exponentials, i.e., explicitly compute the Fourier

transform of h,

ĥerror (ξ) =
1

(2π)
d
2

ˆ
Rd

(
−∇ · (a (x)∇ũ (x)) + k2ũ (x)− f (x)

)
e−iπx·ξdx. (4.24)

The Fourier transform, ĥerror is computed explicitly since all functions in (4.24) are represented

via Gaussians or products of Gaussians and low degree polynomials. We then evaluate ĥerror for

selected vector arguments ξ, which we call frequency vectors. To select these vectors, we use the
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principal directions of the matrices Σl of the Gaussian atoms in the representation of ĥerror. To

this end, we solve the eigenvalue problem

Σl =
d∑
j=1

λ
(l)
j v

(l)
j

(
v

(l)
j

)T
and select the frequency vectors along the principal directions of Σl. In our experiment, we choose

smin = 10−5 and

smax =
(
−2 log

(
10−10

)
/λmin

) 1
2 ,

where λmin = minl,j λ
(l)
j , such that

e
− 1

2

(
sv

(l)
j

)T
Σ
(
sv

(l)
j

)
= e−

λ
(l)
j
s2

2 ≤ 10−10

for s ∈ [smin, smax], l = 1, . . . n and j = 1, . . . d. We then sample si,i = 1, . . . , Ns, using a logarithmic

scale on the interval [smin, smax]

sk = e
log
(
smin+k

smax−smin
Ns−1

)
,

and select the frequency vectors ξ(l)
j with components(

ξ
(l)
j

)
k

= skv
(l)
j .

4.2.4 Numerical results

We notice that the number of terms in the solution ũ grows significantly with the dimension,

if the matrices Σa and Σf are not related (they are effectively random) and/or the range of their

eigenvalues is large. In our first experiment, we select matrices Σa and Σf in (4.18)-(4.19) to be

Σa = UDaU
T , and Σf = UDfU

T ,

where U is a d× d random unitary matrix and Da and Df are d× d diagonal matrices. We set the

first two diagonal entries of Da and Df to be 0.1 and 20, and sample the other diagonal entry/entries

from a uniform distribution U (0.1, 20). A random permutation is applied after all diagonal entries

are generated. In the second experiment, we construct matrices Σa and Σf to be

Σa = UaDaU
T
a , and Σf = UfDfU

T
f
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where Ua and Uf are d× d random unitary matrices, Da and Df are d× d diagonal matrices. We

set the first two diagonal entries of Da and Df to be 0.1 and 1, and sample the other diagonal

entry/entries from a uniform distribution U (0.1, 1). Again we randomly permute the diagonals of

Da and Df . We also notice that if the centers µa and µf are far away (no overlapping essential

supports), then solving (4.17) is effectively the same as solving the Poisson’s equation. In our tests,

we select µf = 0 and µa = (1, 0, . . . , 0)T so that ‖µa − µf‖2 = 1. The results are displayed in

Tables 4.3 and 4.4 where we show the dimension of the problem, d, the number of terms Nterms in

the approximation of the Green’s function, the number of terms Ntot obtained by performing one

iteration in (4.22), and the number of terms Ñ in the solution ũ after reduction and its accuracy.

dimension Nterms Ntot Ñ error
3 104 5985 1184 1.8e− 6

4 109 11624 2649 3.5e− 6

5 117 16014 3640 3.8e− 6

6 121 22466 4377 8.0e− 5

7 127 31522 5573 2.5e− 5

Table 4.3: Results of solving a second order elliptic equation with a variable coefficient where the
principle directions of matrices Σa and Σf in 4.18 and 4.19 are aligned and their eigenvalues are in
the range (0.1, 20).
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dimension Nterms Ntot Ñ error
3 104 15348 2586 8.1e− 7

4 109 32688 6883 1.9e− 6

5 117 40110 11793 2.4e− 6

6 121 64664 18205 6.7e− 5

7 127 75059 22966

Table 4.4: Results of solving a second order elliptic equation with a variable coefficient where the
principle directions of matrices Σa and Σf in 4.18 and 4.19 are not aligned and their eigenvalues are
in the range (0.1, 1). We note that the accuracy estimation in dimension d = 7 is computationally
expensive and we skipped it.



Chapter 5

Kernel Density Estimation

We describe a new approach to Kernel Density Estimation (KDE) based on Algorithm 1.

KDE is a non-parametric method for constructing the PDF of data points used in cluster analysis,

classification, and machine learning. Note that the standard KDE construction is practical only

in low dimensions, d = 1, 2, 3 as it requires a Fourier transform of the data points, the cost of

which grows exponentially with dimension. Our approach avoids using the Fourier transform and

is applicable in high dimensions. We note that a randomized approach that can be used for KDE

estimation was recently suggested in [54].

The essence of KDE is to associate a smooth PDF f with data points xj ∈ Rd, j = 1, . . . , N ,

f (x, h) =
1

N

N∑
j=1

Kh (x− xj) , (5.1)

where Kh (x) = K (x/h) /h and K is a nonnegative function with zero mean and
´
Rd K (x) dx = 1.

In what follows, we use a multivariate Gaussian as the kernel K. A naive implementation of (5.1)

would require N evaluations of the kernelKh for each point x so that the computational cost of using

this approach in a straightforward manner is prohibitive if N is large. We note that the selection

of the parameter h, the so-called bandwidth or scale parameter, is a well recognized delicate issue

and, in our one dimensional example, we use h computed within Mathematica TM implementation

of KDE.

In our approach, for a user selected target accuracy ε, we seek a subset of linear independent

terms in (5.1) and express the rest of the terms as their linear combinations. Thus, by removing
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redundant terms in the representation of f (x, h), we construct

F (x, h) =

r∑
`=1

a`Kh (x− xj`) , (5.2)

where r � N and

|f (x, h)− F (x, h)| ≤ ε.

In other words, with accuracy ε, we obtain an approximation of the function f by a function F with

a small number of terms. This reduction algorithm seeking a subset of linear independent terms in

(5.1) can be used for any kernel in Rd such that the cost of evaluating the multidimensional inner

product

gij =

ˆ
Rd
Kh (x− xi)Kh (x− xj) dx

is reasonable (e.g. does not depend on the dimension d or depends on it mildly). For multivariate

Gaussians, the values gij are available explicitly.

The computational cost of our algorithm is O
(
r2N

)
and is independent of the underlying

dimension d. Here N is the original number of data points and r is the final number of terms in the

chosen linearly independent subset.

5.1 A comparison in dimension d = 1

In low dimensions, the standard approach to KDE relies on using the Fast Fourier trans-

form to both, assist in estimating the bandwidth parameter h and in constructing a more efficient

representation of (5.1) on an equally spaced grid (see e.g. [63, Section 3.5]). Implementations of

this approach can be found in many packages in dimensions d = 1, 2, e.g. Matlab, Mathematica,

etc. While this approach is appropriate in low dimensions, an extension of this algorithm to high

dimensions is prevented by the “curse of dimensionality”. Thus, in high dimensions, only values at

selected points can be computed (see [19] and Matlab implementation of KDE in high dimensions).

In order to illustrate our approach we provide a simple example with a bimodal distribution in

dimension d = 1. Although this example is in one variable, it allows us to emphasize the differences
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between the existing KDE methods and our approach. We generate test data by using two normal

distributions with means µ1 = 0 and µ2 = 4. The exact PDF of this data is given by

g (x) =
1

2

(
1√
2π
e−

1
2
x2

σ2 +
1√
2π
e−

1
2

(x−4)2

σ2

)
, (5.3)

where σ = 1. We then use KDE implemented in Mathematica TM with the Gaussian kernel K.

Using N = 105 data samples drawn from (5.3) (so that the initial sum (5.1) has N terms), the

scaling parameter was set to h = 0.20121412622314902019. The true distribution (5.3) and the

approximation error obtained by Mathematica TM by reducing (5.1) from N = 105 terms to 241

Gaussian terms centered on an equally spaced grid are displayed in Figure 5.1. Using our algorithm

with the same parameter h, we reduce (5.1) from N = 105 terms to 102 terms centered at a selected

subset of the original data points. The error of the resulting approximation is displayed in Figure 5.1,

where we also show the difference between (5.1) and (5.2). The main point here is that while the

standard approach in high dimensions becomes impractical (as it requires a multidimensional grid),

our approach proceeds unchanged since the cost of the reduction algorithm is dimension independent.

Remark 3. We selected a much higher accuracy for reduction than the difference between the

original and estimated PDFs in order to illustrate the fact that the accuracy limit of Algorithm 1 of

about 7 to 8 digits is more than sufficient for this application. Note that to achieve a comparable

accuracy for estimation of a PDF via KDE one needs ≈ 1016 points since the accuracy improves as

O
(

1/
√
N
)
.

Remark 4. Using KDE in high dimensions requires an additional assumption that points are

located in a vicinity of a low dimensional manifold (see comments in e.g. [61, Section 1.5.3] and/or

Figure 5 in [54]).
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Figure 5.1: The distribution (5.3) (top left) and the error of its estimation with 241 term centered
at an equally spaced grid obtain using KDE in Mathematica TM (top right). The error of estimating
(5.3) using Algorithm 1 with 102 terms centered at a selected subset of the original data points
(bottom left). We also show the difference between the definition of the PDF in (5.1) and its reduced
version in (5.2) obtained using Algorithm 1 where accuracy was set to 10−7 (bottom right).
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5.2 An example in high dimensions

We generate N = 105 samples from a two dimensional Gaussian distributions with a PDF

g (y) =
1

2

(
1

2π
e−

1
2

(y−µ1)TΣ−1
1 (y−µ1) +

1

2π
e−

1
2

(y−µ2)TΣ−1
2 (y−µ2)

)
where µ1 = (0, 0), µ2 = (3, 3) and

Σ1 =

2 0

0 0.5

 , Σ2 =

1 0

0 1

 .

We pad these samples with zeros so that they belong to a d-dimensional space and denote them

by {yi}Ni=1. We then apply a random rotation matrix U to obtain the test data {xi}Ni=1. As the

bandwidth parameter, we set

h =

(
4

2d+ 1

) 1
d+4

N−
1
d+4 ,

a value that minimizes the mean integrated square error when the underlying distribution is standard

normal (see e.g. [63]). In our case, since the intrinsic dimension of the test data is 2, we set

h = 0.14142135623730950488. The initial kernel density estimator using all test data is

f (x) =
1

Nhd

N∑
i=1

1

(2π)
d
2

e−
1
2

(x−xi)
T (h2Id)

−1
(x−xi), (5.4)

where Id is the d-by-d identity matrix. We then reduce the number of terms in (5.4) using Algo-

rithm 1 and obtain a sum of Gaussians with fewer terms,

f̃ (x) =

Ñ∑
j=1

cj
1

(2π)
d
2

e−
1
2

(x−xj)
T (h2Id)

−1
(x−xj).

In our experiments, we choose dimension d = 2, . . . 16, and the error threshold ε = 10−1 in Al-

gorithm 1. The number of terms after reduction is about 2000 for all d = 2, . . . , 16, and the

approximation error is about 1.2× 10−3 (see Figure 5.2).

In order to compare our approximation with the true PDF g (x), we consider a point y =

(y1, y2, 0, . . . , 0) ∈ Rd such that, under the rotation U , we have x = Uy. Evaluating (5.4) at x, we
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obtain

f (x) = f (Uy)

=
1

Nhd

N∑
i=1

1

(2π)
d
2

e−
1
2

(U(y−yi))
T (h2Id)

−1
(U(y−yi))

=
1

Nhd

N∑
i=1

1

(2π)
d
2

e−
1
2

(y−yi)
T (h2Id)

−1
(y−yi)

= cd
1

Nh2

N∑
i=1

1

2π
e−

(
y1−y

(i)
1

)2
+

(
y2−y

(i)
2

)2

2h2 ,

where cd = h2−d (2π)
2−d
2 and y(i)

j denote the j-th component of yi. Notice that the kernel density

estimator for the PDF of the original distribution in two dimensions is

g (y) ≈ 1

Nh2

N∑
i=1

1

2π
e−

(
y1−y

(i)
1

)2
+

(
y2−y

(i)
2

)2

2h2 =
1

cd
f (x)

Therefore, to assure the size of the approximation error, a set of grid points yij , i, j = 1, . . . , 64, is

generated in [−8, 8]× [−8, 8]. We pad yij with zeros and apply the same rotation matrix U to get a

set of points xij . In Figure 5.2 (for dimension d = 16) we show the PDF g and the errors between

g and the KDE estimate f before reduction and f̃ after reduction as well as the difference between

f and f̃ .



65

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

-5

0.08

0.09

0.1

8
6

40
2

0
-25 -4

-6
-8

0

1

2

5

3

10
-3

4

5

5

0

6

0

7

-5
-5

0

1

2

5

3

10
-3

4

5

5

0

6

0

7

-5
-5

0

0.2

0.4

5

0.6

10
-3

5

0.8

0

1

0

1.2

-5
-5

Figure 5.2: The PDF g (yij) (top left) and the difference between g and f (with rescaling by 1/cd)∣∣∣g (yij)− 1
cd
f (xij)

∣∣∣ (top right) on the grid yij , i, j = 1, . . . 64. The difference between g and f̃ (with

rescaling by 1/cd), i.e.,
∣∣∣g (yij)− 1

cd
f̃ (xij)

∣∣∣ (bottom left) and the difference between f and f̃ (both

with rescaling by 1/cd) , i.e., 1
cd

∣∣∣f (xij)− f̃ (xij)
∣∣∣ (bottom right) on the grid yij , i, j = 1, . . . 64.



Chapter 6

Far-field summation in high dimensions

Given a large set of points in dimension d� 3 with pairwise interaction via a non-oscillatory

kernel, our approach provides a deterministic algorithm for fast summation in the far-field setup

(i.e. where two groups of points are separated). Recently a randomized algebraic approach in a

similar setup was suggested in [54]. Instead, we use Algorithm 1 as a tool to rapidly evaluate

gm =

N∑
n=1

fnK (xm,yn) , m = 1, . . . ,M,

where M and N are large and K (x,y) is a non-oscillatory kernel with a possible singularity at

x = y (recall that kernels of mathematical physics typically have this type of singularity).

Let us consider sources {(yn, fn)}Nn=1 and targets {(xm, gm)}Mm=1 occupying two distinct d-

dimensional balls. Specifically, we assume that ‖yn − yc‖ ≤ rs and ‖xm − xc‖ ≤ rt, where yc,

xc and rs, rt are the centers and the radii of the balls. We also assume that sources and targets

are separated, i.e., r ≤ ‖xm − yn‖ ≤ R. The separation of sources and targets implies that in the

evaluation of the kernel we are never close to a possible singularity of the kernel at x = y. Separation

of sources and targets allows us to use a non-singular approximation of the kernel and reduce the

problem to finding the best linearly independent subsets of sources (or targets) as defined by such

approximate kernel. We also assume that the sources are located on a low-dimensional manifold

embedded in high-dimensional space (see Remark 7 below).

In order to use Algorithm 1, we need to define an inner product and make sure that its

definition incorporates the assumption of separation of sources and targets. We illustrate this using
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the example of the Poisson kernel (4.3),

K (x,y) = ‖x− y‖−d+2

which we use without standard normalization. Approximating K (x,y) in the same manner as

shown in Section 4.1 (c.f. (4.4)), we obtain∣∣∣∣∣K (x,y)−
∑
l∈Z

wle
−τl‖x−y‖2

∣∣∣∣∣ ≤ εK (x,y) , (6.1)

Since sources and targets are separated, we can further reduce the number of terms in (6.1). In

particular, we drop terms with sufficiently large exponents that produce a negligible contribution in

the interval [r,R] as well as replace terms with small exponents using algorithm described in [16].

As a result, we define

K̃ (x,y) =

L1∑
l=L0

wle
−τl‖x−y‖2 ,

∣∣∣K (x,y)− K̃ (x,y)
∣∣∣ < ε̃, for r ≤ ‖x− y‖ ≤ R,

where ε̃ is slightly larger than ε. We obtain

|gm − g̃m| ≤ ε̃,

where

g̃m =
N∑
n=1

fnK̃ (xm,yn) , m = 1, . . . ,M.

Since ‖x− xc‖ ≤ rt implies r ≤ ‖x− yn‖ ≤ R, we define the inner product as an integral over the

ball ‖x− xc‖ ≤ rt,

〈K̃ (·,yn) , K̃ (·,yn′)〉d =

ˆ
‖x−xc‖≤rt

K̃ (x,yn) K̃ (x,yn′) dx. (6.2)
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The inner product (6.2) can be reduced to a one dimensional integral. In this case, we have

〈K̃ (·,yn) , K̃ (·,yn′)〉d

=

L1∑
l,l′=L0

wlwl′

ˆ
‖x−xc‖≤rt

e−τl‖x−yn‖2e−τl′‖x−yn′‖
2

dx

=

L1∑
l,l′=L0

wlwl′e
−

τlτl′
τl+τl′

‖yn−yn′‖
2
ˆ
‖x−xc‖≤rt

e
−(τl+τl′ )

∥∥∥∥x− τlyn+τl′yn′
τl+τl′

∥∥∥∥2
dx

=

L1∑
l,l′=L0

w̃nn
′

ll′ I
nn′
ll′ ,

where

w̃nn
′

ll′ = wlwl′e
−

τlτl′
τl+τl′

‖yn−yn′‖
2

, τ̃ll′ = τl + τl′ , ỹnn
′

ll′ =
τlyn + τl′yn′

τl + τl′
,

and

Inn
′

ll′ =

ˆ
‖x−xc‖≤rt

e
−τ̃ll′

∥∥∥x−ỹnn
′

ll′

∥∥∥2
dx.

Using spherical coordinates in dimensions d ≥ 3, we obtain

Inn
′

ll′ =

ˆ
‖x−xc‖≤rt

e
−τ̃ll′

∥∥∥x−ỹnn
′

ll′

∥∥∥2
dx

= e
−τ̃ll′

∥∥∥xc−ỹnn
′

ll′

∥∥∥2 ˆ
‖z‖≤rt

e−τ̃ll′‖z‖
2

e
−2τ̃ll′

〈
z,xc−ỹnn

′
ll′

〉
dz

= e
−τ̃ll′

∥∥∥xc−ỹnn
′

ll′

∥∥∥2
Ωd−2

ˆ rt

0

(ˆ π

0
e
−2τ̃ll′r

∥∥∥xc−ỹnn
′

ll′

∥∥∥ cos θ
sind−2 θdθ

)
e−τ̃ll′r

2
rd−1dr

= e
−τ̃ll′

∥∥∥xc−ỹnn
′

ll′

∥∥∥2 2π
d
2(

τ̃ll′
∥∥xc − ỹnn

′
ll′

∥∥) d−2
2

ˆ rt

0
I d−2

2

(
2τ̃ll′

∥∥∥xc − ỹnn
′

ll′

∥∥∥ r) e−τ̃ll′r2r d2 dr, (6.3)
where Ωd is the surface area of the d-dimensional sphere embedded in (d+ 1)-dimensional space,

i.e.,

Ωd =
2π

d+1
2

Γ
(
d+1

2

)
and Id is the d-th order modified Bessel function of the first kind (see [1, Eq. 9.6.18]). While in odd

dimensions d the integrand in (6.3) can be extended from [0, rt] to [−rt, rt] as a smooth function (in

order to use the trapezoidal rule), such extension is not available in even dimensions. Because of

this, we choose to use quadratures on [0, rt] developed in [14] for any d (alternatively, one can use

quadratures from [4]).
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Remark 5. It is an important observation that the selection of the inner product for finding

a linearly independent subset of functions is not limited to the standard one defined in (6.2).

Observing that (6.2) approaches to zero as d increases, in all of our experiments in dimensions

d = 3, . . . 128, we use (6.2) where we set d = 3. Thus, the inner product 〈·, ·〉3 no longer corresponds

to the integral between the functions K̃ (x,yn) and K̃ (x,yn′). However, since we use inner products

only to identify the best linearly independent subset of sources (skeleton sources) and compute the

coefficients to replace the rest of the terms as linear combinations of these skeleton sources, there

are many choices of inner products that will produce similar results.

Associating with sources functions {K (x,yn)}Nn=1, we use Algorithm 1 to find the skeleton

terms (i.e. the skeleton sources) with indices Î = {nk}rsk=1 which allows us to express the rest of the

source functions as ∣∣∣∣∣K̃ (x,yn)−
rs∑
k=1

f̃nkK̃ (x,ynk)

∣∣∣∣∣ ≤ ε1, n /∈ Î .

Remark 6. Using Algorithm 1 to find the skeleton sources requires O
(
r2
s N
)
operations and com-

puting interactions between skeleton sources and targets requires O (rsM) operations. Clearly, in-

stead of working with sources, we can work with targets. If targets are located on a low-dimensional

manifold, we can associate the functions {K (xm,y)}Mm=1 with targets and use Algorithm 1 to find

the skeleton targets. In such case, the computational cost becomes O
(
r2
tM + rtN

)
, where rt is the

number of skeleton targets.

Remark 7. If sources are chosen from a random distribution in Rd rather than located in a small

neighborhood of a low-dimensional manifold, the expected distance between two sources ‖yn − yn′‖

becomes increasingly large as the dimension d increases (see e.g. comments in [61, Section 1.5.3] and

examples in [54]). As a result, the functions of variable x, K̃ (x,yn) and K̃ (x,yn′), are effectively

linearly independent as d becomes large so that in order to have compressibility, the sources must

have a low intrinsic dimension. Therefore, the assumption that sources are located in a small

neighborhood of a low-dimensional manifold is not specific to our approach.
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6.1 Skeleton sources

We illustrate our approach using sources located on a two-dimensional manifold embedded in

a high-dimensional space. For our example, we generate points {yn}Nn=1 , yn ∈ Rd so that the first

two coordinates are random variables drawn from the two-dimensional standard normal distribution

and the remaining coordinates are set to zero. Next we apply a random rotation and rescale the

points so that ‖yn‖ ≤ 1 for all n = 1, . . . , N . For targets, we draw points {xm}Mm=1 from the

d-dimensional standard normal distribution and rescale them so that ‖xm‖ ≤ 1. We then shift

the first component of {yn}Nn=1 by 2 and that of {xm}Mm=1 by −2 so that sources and targets are

well separated. Finally, we select the coefficients of sources, {fn}Nn=1, from the uniform distribution

U (0, 1). In all tests we set N = 104 and M = 103. In Table 6.1 we report the actual minimal

and maximum distances between sources and targets (distnear and distfar), the number of skeleton

sources rs, and the relative error of the approximation,

err =
maxm=1,...,M |gm − g̃m|

maxm=1,...,M |gm|
, (6.4)

for selected dimensions 3 ≤ d ≤ 128. For dimensions d = 3, 4, 5, we use the Poisson kernel

‖x− y‖−d+2 while for d ≥ 8, we use the kernel ‖x− y‖−1 (the fast decay of ‖x− y‖−d+2 results in

a negligible interaction between sources and targets in our setup).

d distnear distfar rs error
3 2.5310 5.6317 22 2.6573e− 07

4 2.8922 5.3544 27 1.5657e− 07

5 3.2019 5.0864 29 3.0440e− 08

8 3.1261 5.1186 23 3.2212e− 08

16 3.1881 5.1049 25 2.5774e− 08

32 3.5261 5.0242 25 1.1001e− 08

64 3.6577 4.7520 24 1.4346e− 09

128 3.8410 4.4825 25 1.7492e− 09

Table 6.1: Skeleton sources selected using the inner product in (6.2) in dimension d. We report
the actual minimal and maximum distances between sources and targets (distnear and distfar), the
number of skeleton sources rs, and the relative error of the approximation.
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6.2 Equivalent sources

In this example, we consider a similar setting as in Example 6.1 for d = 2, 3. We want to

replace true sources {yn}Nn=1 located inside a ball by equivalent sources on its boundary so that

we reproduce their interaction with the targets within a selected accuracy. We expect the number

of equivalent sources on the boundary to be significantly smaller than the number of original true

sources so that pairwise interactions with targets can be computed rapidly. We note that such

strategy is used in many numerical algorithms (see e.g. [70]) and here we demonstrate that our

reduction algorithm can solve this problem.

We combine an initial set of candidate equivalent sources (note that their number will be

reduced by the procedure) with the true sources and compute the Cholesky decomposition of their

Gram matrix. We use Algorithm 1 with the inner product defined in (6.2) and modify the pivoting

strategy to first pivot only among the candidate equivalent sources until we run out of significant

pivots; only then we switch to pivot among the true sources. Finally, we compute new coefficients

in the usual way (see Algorithm 1) noting that, initially, the candidate equivalent sources had zero

coefficients. This approach allows us to (i) obtain the minimal number of equivalent sources and

(ii) remove as many of the true sources as possible (we do not preclude the possibility of some of

the true sources to remain).

To examine the performance of our approach, we draw source and target points from the

d-dimensional standard normal distribution (where d = 2, 3), rescale and translate these points so

that targets are located in a ball of radius 1 centered at xc and sources are located in a ball of

radius 0.9 centered at yc. We choose

xc = (−2, 0) ,yc = (2, 0) , for d = 2

and

xc = (−2, 0, 0) ,yc = (2, 0, 0) , for d = 3

to make sure sources and targets are well separated. Next we pick locations for the candidate
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equivalent sources on the surface of the ball of radius 1 centered at yc. In dimension d = 2, we pick

zk = yc + (cos θk, sin θk) , k = 1, . . . ,K,

where the angles θk are equally spaced on [0, 2π] with step size 2π
K . In dimension d = 3 we pick

zkl = yc + (cos θk sinφl, sin θk sinφl, cosφl) , k = 1, . . . ,K, l = 1, . . . , L,

where the angles θk are equally spaced on [0, 2π] with step size 2π
K and the angles φl are the Gauss-

Legendre nodes on [0, π]. In our experiments we choose a relatively small number of true sources

and targets (N,M = 1000) so that the result can be clearly visualized (see Figure 6.1 and 6.2).

Note that the number of sources can be significantly higher since the algorithm is linear in this

parameter. We demonstrate the results in Figure 6.1 and 6.2, where we display the original sources

and targets, indicate both, candidate equivalent sources and selected equivalent sources obtained

by Algorithm 1.

6.3 Partitioning of points into groups

Algorithm 1 can be used to subdivide scattered points into groups. Indeed, if a set of points

(seeds) are specified beforehand then, like in Voronoi decomposition, all points can be split into

groups by their proximity to the seeds, i.e. a point belongs to a group associated with a given seed

if it is the closest to it among all seeds. The question then becomes how to choose such seeds.

There are several algorithms, e.g. Lloyd’s algorithm [52], that select such seeds, usually by an

iterative procedure to optimize some properties of sought subdivision. We would like to point out

that Algorithm 1 can be used to generate initial seeds using linear dependence (which is a proxy

for distances between points).

Specifically, let us associate with a point a Gaussian centered at that point. The scale pa-

rameter of the Gaussians can be selected sufficiently large (so that the Gaussian is sufficiently flat)

to cover the whole set of points. We can then use Algorithm 1 to select the seeds. Since the first
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term that Algorithm 1 selects is arbitrary, we introduce an additional point as a mean of all points,

x =
1

N

N∑
i=1

xi,

and associate an additional Gaussian with this point to start Algorithm 1.

The seeds are the first significant pivots produced by the algorithm and our choice of their

number depends on the goals of the subdivision. By its nature, the reduction Algorithm 1 tends to

push these seeds far away from each other. We observe that groups with a small number of points

appear to contain outliers (see e.g. Figure 6.3), so that the resulting subdivision can be helpful in

identifying them. Since the computational cost of Algorithm 1 is O
(
r2N

)
, where N is the original

number of points and r is the number of seeds, as long as the number of groups we are seeking

is small, this algorithm is essentially linear. We note that we can subdivide the resulting groups

further and, in a hierarchical fashion, build a tree structure. In this paper we simply illustrate the

use of Algorithm 1 for subdivision of points into groups and plan to develop applications of this

approach elsewhere.

For the example in Figure 6.3 we use the two dimensional distribution of points described in

Section 5.2. We choose the bandwidth parameter h = 200 when selecting 4 seeds and h = 16 when

selecting 10 seeds in order to obtain the corresponding subdivisions of the set. Observe that outliers

tend to be associated with linearly independent terms and, thus, form a group with a small number

of points. Using Algorithm 1 to subdivide scattered points into groups requires further analysis and

we plan to address it elsewhere.



74

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 6.1: Example in dimension d = 2. We display M = 1000 targets (marked with a dot on the
left), N = 1000 sources (marked with an “x” on the right), and K = 30 candidate sources (marked
with a circle on the right). Algorithm 1 selects 10 equivalent sources from the 30 candidate sources
(marked with a +). The relative approximation error in (6.4) is 1.3e− 07.
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Figure 6.2: Example in dimension d = 3. We display M = 1000 targets (marked with a dot on
the left), N = 1000 sources (marked with an “x” on the right), and K × L = 10 × 10 candidate
sources (marked with a circle on the right). Algorithm 1 selects 35 equivalent sources from the 100
candidate sources (marked with a +). The relative approximation error in (6.4) is 8.7e− 08.
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Figure 6.3: Subdivision of 2, 000 points into groups using seeds (marked by “x”) produced by Al-
gorithm 1. Illustrated are subdivisions into four groups (top) and into ten groups (bottom). Note
that groups with a small number of points are likely to contain outliers.



Chapter 7

Conclusions and further work

In this thesis, we presented a fast algorithm for reducing the number of terms in non-separated

multivariate mixtures. The algorithm is based on a partial, pivoted Cholesky decomposition of

the Gram matrix. The resulting accuracy is limited to about one half of the available significant

digits due to ill-conditioning of the Gram matrix. However, this algorithm is advantageous in high

dimensions since it the requires O
(
r2N

)
operations, where N is the initial number of terms in

the multivariate mixture and r is the number of selected linearly independent terms. We also

consider two additional reduction algorithms for the same purpose. The first algorithm is based

on orthogonalization of the multivariate mixture and have a similar performance as the approach

based on Cholesky factorization. The second algorithm yields a better accuracy, but currently in

high dimensions is only applicable to multivariate mixtures in a separated representation.

We proposed a novel adaptive numerical algorithm for solving partial differential and integral

equations from quantum chemistry. The key features of this algorithm are: i) it uses a so-called

Basis Generating Iteration to generate necessary basis functions; ii) the excessive number of basis

functions are then reduced by the reduction algorithm. We demonstrated the performance of this

approach by solving the Hartree-Fock equations in two cases of small molecules. In both examples,

the cusp behaviors of the solutions are well resolved and energies are obtained with good accuracy.

The reduction algorithm also allows us to work with non-separated multivariate mixtures

that are a far reaching generalization of multivariate separated representations [10, 11, 8] and can

be used as a tool for solving multi-dimensional problems. In particular, we solve the Poisson’s
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equation and a linear second order elliptic equation with a variable coefficients. We also address

several problems in statistics and data science. We consider the kernel density estimation (KDE)

approach for constructing a PDF of a cloud of points, a far-field kernel summation method and the

construction of equivalent sources for non-oscillatory kernels (used in both, computational physics

and data science) and, finally, show how to use the new algorithm to produce seeds for subdividing

a cloud of points into groups. Further work is required to develop new numerical methods that

use non-separated multivariate mixtures in applications. We now discuss possible applications and

extensions of techniques illustrated in this thesis.

Reduction Algorithms

The accuracy of our reduction algorithm is limited to a half of the available significant digits,

while the algorithm using frequency sampling can achieve higher accuracy but its computational cost

is expensive in high dimensions. Future work on this algorithm should improve its computational

cost. In our implementation, the most costly computation is constructing the sample matrix of

the Fourier transform. Ideally, the number of frequency samples should be sufficient to differentiate

between all multivariate atoms while remain small in high dimensions. To speed-up the computation,

algorithms should use a more efficient (randomized) sample strategy which takes advantage of the

geometric structure of the multivariate atoms.

Differential and integral equations with boundary conditions

In Chapter 4, we proposed a new algorithm to solve differential and integral equations in

free space. A new Gaussian-type bases using the Jacobi theta functions can be constructed by

periodizing Gaussian atoms. Using a linear combination of these function, we can design bases that

satisfy periodic, Dirichlet or Neumann boundary conditions in simple domains. A possible future is

to solve similar equations in simple domains with boundary conditions.



79

Electronic structure calculations

In Chapter 3, we demonstrated that our reduction algorithm can be used as a tool for solving

Hartree-Fock equations diatomic molecules. There are many possibilities for future work on this

topic. Our approach can be competitive with adaptive methods using multiwavelet bases (see [39]).

One possible topic is to extend the new adaptive method for more complicated molecules, that use

either Gaussians and/or related functions (e.g. products of Gaussians and polynomials) rather than

multiwavelets since such representations are more efficient than those used in [39].

Fast kernel summation in general setup

In a general setup of fast kernel summation methods, sources and targets are not separated

as it is assumed in the far-field setup. In such case, all existing fast algorithms are based on a

hierarchical subdivision of sources and targets. As was demonstrated in Section 6.3, our algorithm

can be used to organize scattered points into groups in high dimensions. An future research topic

is to extend this approach to construct a fast algorithm in high dimensions that combines the

hierarchical subdivision and far-field compression. Another research topic of practical interest is

how to extend our approach to the problems with oscillatory kernels (e.g. the Helmholtz kernel).

Kernel density estimation

In practical construction of the KDE, the so-called bandwidth or scale parameter h is com-

monly chosen through cross-validation on some objective function of interest. This in turn requires

a search over many values of h. A possible improvement is to select the bandwidth adaptively so

that the construction of the KDE is done in a multiresolution fashion.
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Appendix A

Appendix

As mentioned in the paper, computing with multivariate Gaussian mixtures is particularly

convenient since all common operations result in explicit integrals. We present below the key

identities for multivariate Gaussians using the standard L1 normalization,

N (x,µ,Σ) =
1

det (2πΣ)1/2
exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
.

However, when computing integrals with Gaussians atoms, it is convenient to normalize them to

have unit L2-norm.

A.0.0.1 Convolution of two normal distributions

ˆ
Rd
N (x− y,µ1,Σ1)N (y,µ2,Σ2) dy = N (x,µ1 + µ2,Σ1 + Σ2) . (A.1)

A.0.0.2 Sum of two quadratic forms

Consider vectors x, a, and b and two symmetric positive definite matrices A and B. We have

(x− a)T A (x− a) + (x− b)T B (x− b) = (x− c)T (A + B) (x− c) + (a− b)T C (a− b) ,

where

c = (A + B)−1 (Aa + Bb)

and

C = A (A + B)−1 B =
(
A−1 + B−1

)−1
.
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A.0.0.3 Product of two normal distributions

We have

N (x,µ1,Σ1)N (x,µ2,Σ2) = N (µ1,µ2,Σ1 + Σ2) ·N
(
x,µc,

(
Σ−1

1 + Σ−1
2

)−1
)

(A.2)

where

µc =
(
Σ−1

1 + Σ−1
2

)−1 (
Σ−1

1 µ1 + Σ−1
2 µ2

)
.

A.0.0.4 Inner product of two normal distributions

It follows that

ˆ
Rd
N (x,µ1,Σ1)N (x,µ2,Σ2) dx = N (µ1,µ2,Σ1 + Σ2) . (A.3)

Indeed, from (A.1) we have

ˆ
Rd
N (x,µ1,Σ1)N (x,µ2,Σ2) dx =

ˆ
Rd
N (2µ1 − x,µ1,Σ1)N (x,µ2,Σ2) dx

= N (2µ1,µ1 + µ2,Σ1 + Σ2)

= N (µ1,µ2,Σ1 + Σ2) .

Alternatively, from (A.2) we have

ˆ
Rd
N (x,µ1,Σ1)N (x,µ2,Σ2) dx = N (µ1,µ2,Σ1 + Σ2)

ˆ
Rd
N
(
x,µc,

(
Σ−1

1 + Σ−1
2

)−1
)
dx

= N (µ1,µ2,Σ1 + Σ2) .


