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Nonlinear-Stokes Flow.

Thesis co-directed by Prof. Thomas Manteuffel and Prof. Harihar Rajaram

This research involves a few First-Order System Least Squares (FOSLS) formulations of

a nonlinear-Stokes flow model for ice sheets. In Glen’s flow law, a commonly used constitutive

equation for ice rheology, the viscosity becomes infinite as the velocity gradients approach zero.

This typically occurs near the ice surface or where there is basal sliding. The computational

difficulties associated with the infinite viscosity are often overcome by an arbitrary modification of

Glen’s law that bounds the maximum viscosity. The FOSLS formulations developed in this thesis

are designed to overcome this difficulty.

The first FOSLS formulation is just the first-order representation of the standard nonlinear,

full-Stokes and is known as the viscosity formulation and suffers from the problem above. To

overcome the problem of infinite viscosity, two new formulation exploit the fact that the deviatoric

stress, the product of viscosity and strain-rate, approaches zero as the viscosity goes to infinity.

Using the deviatoric stress as the basis for a first-order system results in the the basic fluidity system.

Augmenting the basic fluidity system with a curl-type equation results in the augmented fluidity

system, which is more amenable to the iterative solver, Algebraic MultiGrid (AMG). A Nested

Iteration (NI) Newton-FOSLS-AMG approach is used to solve the nonlinear-Stokes problems.

Several test problems from the ISMIP set of benchmarks is examined to test the effectiveness

of the various formulations. These test show that the viscosity based method is more expensive and

less accurate. The basic fluidity system shows optimal finite-element convergence. However, there

is not yet an efficient iterative solver for this type of system and this is the topic of future research.

Alternatively, AMG performs better on the augmented fluidity system when using specific scaling.

Unfortunately, this scaling results in reduced finite-element convergence.
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Chapter 1

Introduction

Since the dawn of time, mankind has known one thing: ice is cold. Now, with the looming

threat of global warming, that cold ice is beginning to melt. Sea level rise is one of the important

projected consequences of climate warming [37]. During the past decade, the rate of sea level rise

doubled, nearly half of which is due to increased mass loss from glaciers and ice sheets [43], while the

remainder is due to thermal expansion of the ocean. Mass loss rates from the Greenland ice sheet

more than doubled between 1996 and 2005, from 91 ± 31 to 224 ± 41 km3/a [41], while the rate

of mass loss from Antarctica and smaller glaciers combined have each increased by a factor of 1.5.

It should be noted that “a” stands for annus which is equal to 31556925.445 seconds and similar

to saying “per year”. Predicting future contributions of the Greenland ice sheet to century-scale

sea-level rise is one of the major challenges faced by the scientific community today. Greenland’s

mass loss appears to be equally split between surface mass balance (i.e. melt and runoff) and

ice dynamics [45]. Ice dynamics refer to how the ice flows internally. Factors such as moulins,

basal hydrology, stress heating, and the ice’s general temperature can increase the ice flow rate

leading to more discharge into the ocean. The need to improve predictions of the ice dynamics

contribution from Greenland and Antarctica has prompted the development of advanced ice-sheet

models. Historically, ice-sheet models have employed approximations to the momentum equation

such as the Shallow-Ice approximation or the Blatter-Pattyn approximation [22]. More recently,

however, several models that employ the full-Stokes equations have been developed [47, 30, 42].

One of the computational difficulties encountered in ice sheet modeling stems from the non-
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Newtonian rheology of ice. In particular, Glen’s flow law, the most commonly used constitutive

equation for ice flow, involves an apparent viscosity that becomes infinite as the effective strain rate

goes to zero, which occurs in regions where there is little deformation. This difficulty is sometimes

circumvented by adding a small constant to the effective strain rate in the constitutive law, thus

avoiding the “blow-up” of the viscosity [38]. Another method is to approximate the viscosity in

these regions with a large value [29]. Both of these methods affect the accuracy of the numerical

solution.

The reality is that this infinite viscosity results from a removable singularity. In Glen’s

law, the viscosity behaves as the effective strain rate taken to the −2/3 power when n = 3 (See

Section 2.3 (2.3.11)). The deviatoric stress involves the product of the viscosity times the strain

rate. In regions where the velocity becomes constant, the strain rate goes to zero, and the deviatoric

stress behaves like the the effective strain rate taken to the 1/3 power. That is, the deviatoric stress

goes to zero. In such regions, numerical approximation explicitly using the viscosity requires the

product of a nearly infinite viscosity multiplied by a nearly zero strain rate. This is the root cause

of numerical difficulties.

In this thesis, three First-Order System Least-Squares (FOSLS) formulations are developed

for the nonlinear, full-Stokes model. The first uses a velocity-gradient/velocity/pressure system

of unknowns and is denoted the viscosity form. It involves the viscosity explicitly and suffers

some of the same difficulties as mentioned above. The next two formulations involve the fluidity,

which is the inverse of viscosity. The system of unknowns for the second formulation are deviatoric-

stress/pressure/velocity and is not fully H1 elliptic, but rather closer to an H(div)-type system. It

will be referred to as the basic fluidity form. The final formulation takes the basic fluidity form

and adds a few consistent equation to get closer to an H1 elliptic system. It will be referred to as

the augmented fluidity form. The last two formulations are collectively known as the fluidity

forms and there is no need to modify the constitutive law for these formulations since viscosity

does not appear in either. Additionally, FOSLS formulations give rise to linear systems that are

symmetric positive definite (SPD).
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The nonlinear system is addressed numerically using a Nested Iteration (NI) approach [11]

with Newton iterations on each level. Nested Iteration involves solving the system on successively

finer grids and using the coarser grid solution as the initial guess. The number of Newton iterations

required decreases with grid refinement since the interpolated coarse grid solution is an increasingly

better initial guess. This results in most of the work done on the coarsest grids, where computation is

inexpensive [17]. For the augmented fluidity system, if continuity and coercivity can be established,

then the resulting linear systems are amenable using algebraic multigrid (AMG), yielding a very

efficient and accurate solution strategy. Taking advantage of the sharp, local error estimate provided

by FOSLS, an adaptive refinement method developed in [2, 7, 35], known as ACE, can be used to

maximize Accuracy per Computational cost (Efficiency). The ACE algorithm works by estimating

the increase of cost when an element is refined and compares that with another estimate of how

the error on that element will be reduced. These estimates come from the AMG performance and

FOSLS functional on the current level.

The consistent equations discussed above are similar to the curl constraint introduced in

[13, 14], and adding them results in a FOSLS functional for which linearization in a neighborhood

of the exact solution is, again loosely speaking, H1-coercive. This these equations are added in the

viscosity form and the augmented fluidity form. (The linearizations are Agmon-Douglis-Nirenberg

(ADN) H1-elliptic [4, 9].) Continuity is easily established, see Section 6.2. Coercivity for the

boundary conditions examined here remains an open question, see Section 6.3 for details.) Both of

these forms yield linearized systems that are amenable to AMG with proper scaling. The viscosity

form yields systems for which AMG performance deteriorates somewhat in the presence of near-

infinite viscosity, whereas the fluidity form yields systems that are more easily solved even as fluidity

approaches zero for simple domains.

As the domains become more complex, the scalings that allows for AMG to perform better

cause the finite element convergence to diminish. The basic fluidity formulation presents optimal

finite element converge in several cases. However, a fast iterative solver for this type of system

has yet to be implemented. The full-Stokes equations can be constructed so that linearization of
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the FOSLS functional in a neighborhood of the exact solution is, loosely speaking, H(Div) ×H1

coercive [34]. Linear system solvers specifically designed for H(div)-type systems may provide

scalable solvers for these systems [26, 27, 44]. This is a topic for future investigation.

A simple, two-dimensional test problem that exhibits infinite viscosity along the entire sur-

face is used to compare convergence of the finite element approximation and solver performance

for the viscosity-based and fluidity-based formulations. Both the viscosity and H1-type fluidity

formulations yield accurate solutions and are amenable to the NI-Newton-FOSLS-AMG strategy.

However, the augmented fluidity form is both more accurate and yields linearized systems that are

more easily solved by AMG.

Next, several experiments from the Ice Sheet Model Intercomparison Project (ISMIP) are

examined using the new fluidity formulations [39]. It is shown that the augmented fluidity formula-

tion essentially reproduces the results in [30], except in regions where the viscosity becomes nearly

infinite (fluidity approaches zero), where the augmented fluidity form is more faithful to Glen’s law.

The Galerkin, mixed-method form presented in [30] is used as a comparison for the ISMIP test

problems. In this formulation, the viscosity is explicitly expressed in the bilinear forms. While the

exact relationship is not explicitly stated in [30], in general, formulations explicitly using viscosity

modify the constitutive equations. However, in this thesis, no modification is used.

The Galerkin formulation yields a saddle-point problem. A standard approach to linear

systems of this form is to use a block Preconditioned Conjugate Gradient (PCG) iteration involving

an AMG solver for the velocity block [20]. This approach, used in [30], is complicated by near-

infinite viscosity. While [30] does not present solver performance, tests performed on similar systems

show that near-infinite viscosity causes AMG convergence factors to deteriorate. Even without this

extra difficulty, convergence of PCG requires many iterations where each iteration requires an

application of AMG. On the other hand, the FOSLS formulations achieve an accurate solution

with only a few application of AMG for each Newton step. In this thesis, the Galerkin formulation

is simply solved with a direct LU solver to avoid worrying about CG convergence.

The remainder of the thesis is organized as follows. Chapters 2 and 3 are background in-
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formation that discuss various ice-sheet models and some of the numerical methods involved in

this research. An interesting side project is discussed in Chapter 4 involving determining the basal

topography of a glacier using surface velocities. Chapter 5 describes the several full-Stokes for-

mulations used in this thesis. Specifically Section 5.2 develops the FOSLS viscosity formulation

while Section 5.4 develops the two FOSLS fluidity formulations. Chapter 6 examines linearization

of both the fluidity and viscosity forms, establishes H1-continuity, and discusses coercivity of the

FOSLS formulations. Chapters 7 through 11 provides numerical results for various test problems.

Chapter 7 presents a simple problem for which the exact solution is known, in order to establish

finite-element convergence and AMG performance of the viscosity and augmented fluidity formula-

tions. This test problem shows that the viscosity formulation is inferior and is no long used in the

following test problems. Chapters 8-9 describe the performance of both fluidity models on bench-

marks B and D from the Ice Sheet Model Intercomparison Project (ISMIP). Together, these two

test problems provide enough data to conclude that the augmented fluidity system, while providing

better AMG performance, is not reliable. For the remaining two benchmarks, E and an adapted

version of F in Chapters 10-11, only the basic fluidity system is used. All of the benchmark solutions

fluidity formulations are compared with the Taylor-Hood fomrulation presented in Section 5.1. The

fluidity model shows good agreement with the database of solutions for these experiments as well

as recovering larger viscosities. Finally, the results of this thesis are discussed in Chapter 12.



Chapter 2

Ice Sheet Models

Ice sheets are usually modeled as slowly-moving, viscous, incompressible fluids. As such, a

full-Stokes formulation is an obvious choice. However, since solving the full-Stokes equations can

be costly, several approximations to Stokes equations have been developed. This section will by

developing the full-Stokes system and then develop two models that approximate this system. The

first approximation is a “zeroth order” model known as the shallow ice approximation. Logically,

the second approximation will be the first-order Blatter-Pattyn model.

2.1 Derivation of the Balance Equations

One of the goals of this section is to derive the full-Stokes equations, which will be used later

to model glaciers and ice sheets, but first, a general balance equation will be derived. To start,

let Q(mv, t) be the physical quantity of interest inside the material volume, mv. The change of

this quantity with respect to time, t, is due to only two factors, which are outward flux across

the boundary and production within the volume. These factors, as well as the original physical

quantity, can be represented as integrals of corresponding densities such that:

Q(mv, t) =

∫
mv

q(x, t) dv, (Quanity of interest)

W(∂mv, t) =

∮
∂mv

w(x, t) · nda, (Flux across the boundary)

P(mv, t) =

∫
mv

p(x, t) dv, (Production within the volume)
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Then,

∂

∂t
Q(mv, t) = −W(∂mv, t) + P(mv, t),

or,

d

dt

∫
mv

q(x, t) dv = −
∮
∂mv

w(x, t) · nda+

∫
mv

p(x, t) dv.

Now, assuming each of the densities is sufficiently smooth, the time partial derivative can be brought

inside the integral using the Reynolds’ transport theorem [22], yielding:

∫
mv

∂q

∂t
dv +

∮
∂mv

qu · nda = −
∮
∂mv

w · nda+

∫
mv

p dv,

where u = [u1, u2, u3]T is the fluid velocity vector. Now, use the Divergence to convert the above

surface integrals into volume integrals resulting in:

∫
mv

∂q

∂t
dv +

∫
mv

∇ · (qu) dv = −
∫
mv

∇ · w dv +

∫
mv

p dv.

Finally, move everything to the same side and combine the integrals to get:

∫
mv

(
∂q

∂t
+∇ · (qu) +∇ · w − p

)
dv = 0.

Since, this relation must hold true for any arbitrary material volume, mv, the integrand must be

equal to zero as well, resulting in:

∂q

∂t
= −∇ · (qu+ w) + p (2.1.1)

Now, it is time to apply this general balance equation to conservation of momentum. If ρ is

the mass density, the total momentum of a material volume is P =
∫
mv

ρu dv. Newton’s Second Law

states that the change dP
dt must equal the sum of all forces acting on the material volume. These

forces are the external forces, f , such as gravity and the internal stresses acting on the boundary

of the material volume, σ. Applying Newton’s Second Law to the material volume yields:

d

dt

∫
mv

ρ(x, t)u(x, t) dv =

∮
∂mv

σ(x, t) · nda+

∫
mv

f(x, t) dv.
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This is similar to the general balance equation (2.1.1) with q = ρu, w = −σ, and p = f . Therefore,

Newton’s Second Law can be written:

∂(ρu)

∂t
+∇ · (ρu · u) = ∇ · σ + f. (2.1.2)

This thesis only deals with incompressible fluids where ρ is consider constant. Applying this

assumption and taking the product rule of the second term yields:

ρ
∂(u)

∂t
+ ρ(u · ∇) · u = ∇ · σ + f. (2.1.3)

Conservation of mass follows in a similar fashion. The total mass in a material volume is

represented by the integral
∫
mv

ρ dv. Since mass cannot be created or destroyed within a material

volume:

d

dt

∫
mv

ρ dv = 0.

Equating this to the general balance equation (2.1.1) with q = ρ, w = 0, and p = 0, the conservation

of mass is just:

∂ρ

∂t
+∇ · (ρu) = 0. (2.1.4)

Using the assumption of a incompressible fluid, the mass balance or continuity equation reduces

down to:

∇ · u = 0. (2.1.5)

Equations (2.1.3)-(2.1.5) describe the motion of a fluid, and, with a valid definition of σ,

these equations represent the incompressible Navier-Stokes equations. Additionally, there is an

energy balance equation, but this is neglected for now. To get to the equations of Stokes flow, the

acceleration terms are neglected.

2.2 Glen’s Flow Law

Glen’s flow law is central to this research and is essential to building the full-Stokes equations.

A quick derivation of it will be described in this section. To start off, a general strain-stress
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relationship for nonlinear viscous flow is

ε̇ =
1

2µ(T, p, se)
s, (2.2.1)

where ε̇ = 1
2

(
∇u+ (∇u)T

)
is the strain rate, s the traceless stress deviator, µ is shear viscosity

which depends on temperature, T , pressure, p, and the effective stress, se. For more information

on the derivation of this general relationship see [22]. The effective stress comes from the square

root of the second invariant of the stress deviator:

se =

√
1

2
tr(s2) =

1√
2
||s||F , (2.2.2)

where ||·||F is the Frobenius norm. The inverse of viscosity, also known as fluidity, can be represented

as

1

µ(T, p, se)
= 2A(T, p)f(se),

where A(T, p) is the flow rate factor, and f(se) is known as the creep function. For the purposes

of this dissertation, A(T, p) will be consider the constant with respect to temperature and pres-

sure. The creep function is usually express as a power law f(se) = sn−1
e . Combining these with

Equation (2.2.1) yields one version of what is commonly known as Glen’s flow law,

ε̇ = Asn−1
e s, (2.2.3)

which has the corresponding viscosity,

µ(se) =
1

2Asn−1
e

. (2.2.4)

Another useful version of Glen’s flow law is with stress as a function of strain. To find this

relationship first define the effective strain rate,

ε̇e =

√
1

2
tr(ε̇2) =

1√
2
||ε̇||F , (2.2.5)

which is similar to how effective stress (2.2.2) was defined. Plugging in Equation (2.2.3) into (2.2.5)

yields

ε̇e =

√
1

2
tr((Asn−1

e s)2) = Asn−1
e

√
1

2
tr(s2) = Asn−1

e se = Asne ⇔ se = A−1/nε̇1/n
e .
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Solving Equation (2.2.3) for the stress devator and plugging in the newly found expression for

effective stress in terms of effective strain rate will result in another version of Glen’s flow law.

s = A−1s−(n−1)
e ε̇

= A−1A(n−1)/nε̇−(n−1)/n
e ε̇

s = A−1/nε̇(1−n)/n
e ε̇. (2.2.6)

In this version, the viscosity is

µ(ε̇e) =
1

2
A−1/nε̇(1−n)/n

e . (2.2.7)

For ice sheets, it is generally accepted that n = 3 [22].

2.3 Full Stokes

In this section, the nonlinear Stokes model for ice-sheet flow is developed; for more details

see [22]. The model for glacier/ice-sheet flow is a modification of the Stokes equations. The first

assumption made is that ice is an incompressible fluid with constant density, which leads to the

continuity equation from 2.1.5, reproduced here:

∇ · u = 0. (2.3.1)

For quasi-steady-state Stokes flow (negligible acceleration), the momentum equation from 2.1.3

becomes:

∇ · σ − f = 0. (2.3.2)

In physical problems the forcing function, f , is the gravitational body force ρg, where ρ is density,

g is gravitational acceleration, and σ is the stress tensor. With an appropriate constitutive rela-

tionship between the pressure, stress tensor, and the strain rate (related to u), equations (2.3.1)

and (2.3.2) are suitable for modeling glaciers and ice sheets.

The stress tensor can be broken up into two parts: the deviatoric stress (s) and mean normal

stress (pressure, p),

σ = s− pI. (2.3.3)
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The deviatoric stress can be expressed as a function of viscosity, µ, and strain-rate tensor, ε̇:

s = 2µε̇, (2.3.4)

ε̇ =
1

2

(
∇u+ (∇u)T

)
, (2.3.5)

with the notation

∇u = [∇u1,∇u2,∇u3] . (2.3.6)

Glen’s flow law for the viscosity from Equation (2.2.7) is:

µ =
1

2
A−

1
n ε̇

1
n
−1

e , (2.3.7)

with,

ε̇e =

√
1

2

∑
i,j

|ε̇ij |2 =
1√
2

∣∣∣∣ε̇∣∣∣∣
F
, (2.3.8)

where n is the power-law exponent, ε̇e is the effective strain rate as defined in [15, 40, 30], || · ||F is

the Frobenius norm, and A is the flow law parameter.

Combining all the above PDEs and constitutive relationships, the system of equations for

modeling ice flow can be stated as:

∇ · u = 0, (Continuity) (2.3.9)

∇ ·
(
µ̂
(
∇u+ (∇u)T

))
−∇p̂ = f, (Momentum) (2.3.10)

µ̂ = ||ε̇||−
2
3

F , (Viscosity) (2.3.11)

with p̂ = p
cA

, ρ̂ = ρ
cA

, cA = 1
2

(
A
2

)− 1
3 . The difficulty with this formulation occurs in the viscosity

term. In regions of a glacier/ice-sheet where ice deformation rates are small, the strain-rate tensor,

ε̇, approaches zero. This occurs when the ice is moving as a solid block, as is often encountered

near the surface and in regions with significant basal sliding. When the strain-rate tensor goes to

zero, the viscosity defined by (2.3.11) becomes infinite.

One frequently employed modification to resolve this problem is to add a small constant to

the viscosity to prevent unconstrained growth. Viscosity is redefined as:

µc =
1

2
A−

1
3

(
1√
2
||ε̇||2F + c

)− 1
3

, (2.3.12)
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where c is a small constant [38].

However, the unconstrained growth of the viscosity may be viewed as a removable singularity.

The viscosity cannot be infinite unless the strain-rate tensor is zero. Assume the strain rate scales

as α, then the viscosity behaves like α−
2
3 . The momentum equation involves the product of the

strain-rate tensor and the viscosity (i.e. the deviatoric stress, s), which behaves like α
1
3 , and thus,

goes to zero as the strain rate becomes zero. This will be the motivation for combining the viscosity

and strain-rate tensor into one new variable and is the basis for this research.

2.4 Shallow Ice

The Shallow Ice Approximation (SIA) is one of the simplest way to model ice sheets. It relies

on the idea that ice sheets have a large aspect ratio (i.e. the thickness is negligible compared with

the length and width). In other words, if L represents the horizontal length scales, x and y, and H

represents the vertical length scale, z, then H/L � 1. This the basis of the approximation in the

SIA model, which involves ignoring several terms in the stress tensor. See [21] for more details.

From Equations (2.3.2) and (2.3.3), the momentum equation can be written as ∇·s−∇p = f ,

which expanded into component form yields:

∂s11

∂x
+
∂s12

∂y
+
∂s13

∂z
− ∂p

∂x
= 0, (2.4.1)

∂s12

∂y
+
∂s22

∂x
+
∂s23

∂z
− ∂p

∂y
= 0, (2.4.2)

∂s13

∂z
+
∂s23

∂x
+
∂s33

∂y
− ∂p

∂z
= ρg. (2.4.3)

The terms in red are the ones that are neglected by the approximations in the SIA model.

Removing these terms yields:

∂s13

∂z
− ∂p

∂x
= 0, (2.4.4)

∂s23

∂z
− ∂p

∂y
= 0, (2.4.5)

−∂p
∂z

= ρg. (2.4.6)
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To solve this system start with (2.4.6). Vertically integrating this equation results in the equation

for hydrostatic pressure,

p = ρg(zs − z). (2.4.7)

where zs is the function that describes the surface of the ice sheet. Hydrostatic pressure is essentially

generated by the weight of the ice above a certain point in the ice sheet.

Now with a solution for p, Equations (2.4.4) and (2.4.5) can be simplified as follows:

∂s13

∂z
− ∂p

∂x
= 0⇒ ∂s13

∂z
=

∂

∂x
(ρg(zs − z)) = ρg

∂zs
∂x

. (2.4.8)

∂s23

∂z
− ∂p

∂y
= 0⇒ ∂s23

∂z
=

∂

∂y
(ρg(zs − z)) = ρg

∂zs
∂y

. (2.4.9)

Before integrating (2.4.8) and (2.4.9), boundary conditions must be discussed. On the surface

of the ice sheet, a zero stress condition is enforced. This conditions amounts to σ · n = 0, in other

words the normal component of the stress tensor is zero. Another assumption of the SIA model is

that the the surface normal is approximated by [0, 0, 1]T . With that assumption, σ · n = 0 reduces

to s13 = 0 and s23 = 0 on the surface. Now, integrate equations (2.4.8) and (2.4.9) to get:

s13 = −ρg(zs − z)
∂zs
∂x

, (2.4.10)

s23 = −ρg(zs − z)
∂zs
∂y

. (2.4.11)

To solve these equations for velocity, recall Equation (2.3.4) as well as Equations (2.2.2) and

(2.2.4) from Glen’s Law, which are reproduced below:

s = 2µε̇, µ =
1

2Asn−1
e

, se =
1√
2
||s||F .

Under the assumption of the SIA model, ||s||F =
√

2s13
2 + 2s23

2. Therefore, with Equations

(2.4.10) and (2.4.11),

se =
√
s13

2 + s23
2 = ρg(zs − z)

(
∂zs
∂x

2

+
∂zs
∂y

2)1/2

= ρg(zs − z)||∇zs||.

Solving (2.3.4) for strain rate and using Equations (2.2.2) and (2.2.4) yields:

ε̇ = Asn−1
e s = A (ρg(zs − z)||∇zs||)n−1 s, (2.4.12)
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Next, extract the components that correspond to s13 and s23,

1

2

(
∂u1

∂z
+
∂u3

∂x

)
= A (ρg(zs − z)||∇zs||)n−1 s13 = A(ρg(zs − z))n||∇zs||n−1∂zs

∂x

1

2

(
∂u2

∂z
+
∂u3

∂y

)
= A (ρg(zs − z)||∇zs||)n−1 s23 = A(ρg(zs − z))n||∇zs||n−1∂zs

∂y

(2.4.13)

Again, under the assumption of the SIA model, the horizontal derivative of the vertical velocity is

negligible so these equation reduce to

∂u1

∂z
= 2A(ρg(zs − z))n||∇zs||n−1∂zs

∂x
∂u2

∂z
= 2A(ρg(zs − z))n||∇zs||n−1∂zs

∂y

or equivalently

∇u = 2A(ρg(zs − z))n||∇zs||n−1∇zs (2.4.14)

Now integrate from the bed to some arbitrary z value to get:

u = 2A(ρg)n||∇zs||n−1∇zs
∫ z

zb

(zs − z̃)n dz̃,

=
2A(ρg)n

n+ 1
||∇zs||n−1∇zs

(
Hn+1 − (zs − z)n+1

)
,

(2.4.15)

where H(x, y) = zs(x, y) − zb(x, y) is the ice thickness. Equations (2.4.7) and (2.4.15) represent

the steady-state velocity and pressure profile of an isothermal ice sheet under the shallow ice

approximation assumptions. Notice that when n = 3 is used, the velocities are proportional to the

depth to the fourth power meaning the velocities are approximated by quartic function under the

SIA model.

2.5 Blatter-Pattyn

Another commonly used approximation is the Blatter-Pattyn model, which is a first-order

model. Again, the starting point for this model is the momentum equations (2.4.1)-(2.4.3) repro-
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duced here.

∂s11

∂x
+
∂s12

∂y
+
∂s13

∂z
− ∂p

∂x
= 0, (2.5.1)

∂s12

∂x
+
∂s22

∂y
+
∂s23

∂z
− ∂p

∂y
= 0, (2.5.2)

∂s33

∂z
+
∂s13

∂x
+
∂s23

∂y
− ∂p

∂z
= ρg. (2.5.3)

Just like with the SIA model, the key simplification for this model is that the length scale is

significantly larger than the height. However, fewer stress terms are neglected in the Blatter-Pattyn

model leading to the assumption that only,

∂s13

∂x
=
∂s23

∂y
= 0,

which are the red term in the system above. This assumption leads to the vertical component of

the momentum balance to become:

∂s33

∂z
− ∂p

∂z
= ρg. (2.5.4)

Just like with the SIA model, the surface normal is approximated by n = [0, 0, 1]T , which leads

to the last surface boundary condition from σ · n to be s33 − p = 0. Vertically Integrating (2.5.4)

yields:

p = ρg(zs − z) + s33. (2.5.5)

Plugging Equation (2.5.5) into (2.5.1)-(2.5.2) reduces the system down to

∂s11

∂x
− ∂s33

∂x
+
∂s12

∂y
+
∂s13

∂z
= ρg

∂zs
∂x

, (2.5.6)

∂s22

∂y
− ∂s33

∂y
+
∂s12

∂x
+
∂s23

∂z
= ρg

∂zs
∂y

. (2.5.7)

This system can be further reduced by using the continuity equation, (2.3.1), to replace s33. Notice

that

s11 + s22 + s33 = 2µ

(
∂u1

∂x
+
∂u2

∂y
+
∂u3

∂z

)
= 0. (2.5.8)
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Using this equation to simplify (2.5.6)-(2.5.7) yields

2
∂s11

∂x
+
∂s22

∂x
+
∂s12

∂y
+
∂s13

∂z
= ρg

∂zs
∂x

, (2.5.9)

∂s11

∂y
+ 2

∂s22

∂y
+
∂s12

∂x
+
∂s23

∂z
= ρg

∂zs
∂y

. (2.5.10)

The final step is to use Equations (2.3.4) and (2.3.5) to convert the system into one that is

in terms of velocity. As an example, the steps of this simplification will be demonstrated on the

x-component of the momentum balance:

2
∂

∂x
(s11) +

∂

∂x
(s22) +

∂

∂y
(s12) +

∂

∂z
(s13) = ρg

∂zs
∂x

,

2
∂

∂x

(
2µ
∂u1

∂x

)
+

∂

∂x

(
2µ
∂u1

∂y

)
+

∂

∂y

(
µ

(
∂u1

∂y
+
∂u2

∂x

))
+

∂

∂z

(
µ

(
∂u1

∂z
+
∂u3

∂x

))
= ρg

∂zs
∂x

.

By the initial assumption, ∂u3
∂x is negligible and can be ignored:

4
∂

∂x

(
µ
∂u1

∂x

)
+ 2

∂

∂x

(
µ
∂u1

∂y

)
+

∂

∂y

(
µ

(
∂u1

∂y
+
∂u2

∂x

))
+

∂

∂z

(
µ
∂u1

∂z

)
= ρg

∂zs
∂x

.

Apply the same simplification to the y-component to get the Blatter-Pattyn model:

4
∂

∂x

(
µ
∂u1

∂x

)
+

∂

∂y

(
µ
∂u1

∂y

)
+

∂

∂z

(
µ
∂u1

∂z

)
= ρg

∂zs
∂x
− ∂

∂y

(
µ
∂u2

∂x

)
− 2

∂

∂x

(
µ
∂u2

∂y

)
, (2.5.11)

∂

∂x

(
µ
∂u2

∂x

)
+ 4

∂

∂y

(
µ
∂u2

∂y

)
+

∂

∂z

(
µ
∂u2

∂z

)
= ρg

∂zs
∂y
− 2

∂

∂y

(
µ
∂u1

∂x

)
− ∂

∂x

(
µ
∂u1

∂y

)
. (2.5.12)



Chapter 3

Numerical Methods

The following is a short description of the various numerical methods used in this disserta-

tion.

3.1 FOSLS

The main method of solving systems in this dissertation will involve a First-Order System

Least-Squares (FOSLS) approach. Essentially, this involves using a first-order system to generate

a functional for which the minimum is the desired solution. Then, the functional is restricted to

a finite element space and minimized using least squares, which yields a discrete nonlinear system

of equations. Originally, this method was applied to general convection-diffusion problems [12].

Since then, it has been applied to various other elliptic type problem such as Maxwell’s equations,

neutron transport, two-fluid plasma, and, as seen in this dissertation, various forms of Navier-Stokes

equations [3, 13, 32, 33, 28].

One of the current ways to solve the full-Stokes system for ice sheets is to set up a Galerkin

saddle point problem and solve on a mixed finite-element space with different elements in pressure

and velocity [30]. This mixed finite-element space needs to satisfy the discrete infsup condition

known as the Ladyz̆enskaja-Babus̆ka-Brezzi (LBB) condition. Converting the full-Stokes system

into a FOSLS formulation bypasses the need to satisfy this condition, allowing the choice of standard

finite element spaces. If linearization of the functional is H1 elliptic in a neighborhood of the exact

solution, the resulting linear systems of equations are often amenable to fast iterative solvers such as



18

algebraic multigrid (AMG). By the nature of the weak form coming from a minimization problem,

the linear system is naturally symmetric positive definite (SPD). Finally, a FOSLS formulation

provides a useful tool for adaptive mesh refinement (AMR), namely the FOSLS functional provides

a “locally sharp, globally reliable error estimator” basically for free.[19].

The full-Stokes system, (2.3.9)-(2.3.11), is a second-order system that is posed with respect

to velocity and pressure. However, it is important to note that it was derived from a naturally

first-order system, (2.3.1)-(2.3.2, which can be solved for velocity and pressure by adding a set

of equations that define σ in terms of u and p. One reason for using the second-order system is

that it reduces the number of unknowns by bypassing the need to solve for σ. This reveals one of

the downsides to a FOSLS approach: requiring the PDE be first order tends to result in solving

a larger system. In the case of the full-Stokes system, the second-order version has 3-4 unknowns

depending on the number of spatial dimensions. In its first-order form, the gradient of velocity

is used to define several new unknowns (4 for 2D and 9 for 3D), which describe the stresses of

the system. With this increase in unknowns, storing the matrices that result from discretizing the

system in memory can become an issue as the problem size increases.

Another criticism of FOSLS formulations are their reduced ability to maintain mass con-

servation. This is because the equations of a system are only minimized in an L2 sense. There

are special steps that can be taken to improve conservation if that is significantly more important

than the other equations. These steps are detailed in [25, 24]. Finally, manipulating the first-order

formulation into an H1 equivalent system, can be difficult. Although continuity tends to be pretty

easy to prove, coercivity requires particularly more attention and is discussed later in Section 6.3.

Let L(u) = f be the first-order system, where L : V → (L2)q is the nonlinear, first-order

operator, V is an appropriate Hilbert space, and q is the number of equations. The solution to this

system is found by finding u∗ such that

u∗ = argmin
u∈V

||L(u)− f ||L2 . (3.1.1)

The existance and uniquness of u∗ is discussed later. One solution strategy to dealing with the
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nonlinearity of L is Newton’s method, which requires linearization about an approximation to the

exact solution. For the formulations in this dissertation, the linearizion occurs at the PDE level,

and the resulting linear problems are approximated using a FOSLS approach. This method is

known as Newton-FOSLS.

To generate a Newton-FOSLS iteration, start by assuming uk is the kth iterate of the solution,

and expand the nonlinear operator around uk + δu using a Taylor series, where δu is an update to

the solution,

L(uk + δu) = L(uk) + L′(uk)[δu] +
1

2
L′′(ûk)[δu, δu], (3.1.2)

where L′(uk)[δu] is the first Fréchet derivative at uk in the direction of δu, L′′[δu, δu] is the second

Fréchet derivative at some point ûk = uk + αδu for some α ∈ [0, 1]. The Newton iteration is

generated by dropping the second-order term and finding the update, δuk, such that:

δuk = argmin
δu∈V

||Lkδu−Rk||L2 , (3.1.3)

where Lk = L′(uk), Rk = f − L(uk). The modification known as damped Newton is achieved by

setting:

uk+1 = uk + αδuk,

where α is a line search parameter between [0,1] that will help ensure that the functional is always

decreasing. An illustration of this process is found in Figure 3.1.

Solving the linearized system on each Newton step amounts to minimizing a quadratic func-

tional, which has the equivalent weak variational form to find δuk ∈ V such that

〈Lkδuk,Lkv〉 = 〈Rk,Lkv〉 , (3.1.4)

for all ∀v ∈ V and 〈·, ·〉 is the L2 inner product. Using this weak variational form, define the bilinear

form:

Bk(u,v) = 〈Lkδu,Lkv〉 . (3.1.5)

It is useful to show that Bk is V-elliptic, which means it is coercive and continuous in the V-norm
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u0 u1 u2 u3u4 u5

Figure 3.1: The solid black line is a representation of the least-squares functional. Each dotted
gray line represents the quadratic functional resulting from a linearizion.
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or, in other words, there exists constants c0, c1 > 0 Dependant only on uk such that:

Bk(u,v) ≤ c1‖u‖V‖v‖V , (continuity) (3.1.6)

Bk(u,u) ≥ c0‖u‖2V . (coercivity) (3.1.7)

If the bilinear form is V-elliptic, then Bk is a inner product on V and, by the Riesz represen-

tation theorem, there exists a unique solution, δuk ∈ V, that satisfies (3.1.4). For the full-Stokes,

ice-sheet system, continuity is straight forward to show and is found in Section 6.2. Coercivity on

the other hand is more complected. If viscosity is bounded, coercivity can be established within a

neighborhood of the solution. However, if viscosity is not bounded, determining if there is a space

in which full-Stokes system is coercive remains an open question. This is discussed in Section 6.3.

In order to be useful, this method needs to be discretized. This is accomplished by first

restricting the minimization in (3.1.1) to a discrete subspace, Vh ⊂ V. This, now discrete, nonlinear

system is solved by restricting (3.1.3) and (3.1.4) to Vh. This results in the discrete weak form:

find δuhk ∈ Vh given a discrete approximation uhk such that ∀vh ∈ Vh

〈
Lhkδuhk ,Lhkvh

〉
=
〈
Rhk ,Lhkvh

〉
, (3.1.8)

where Lhk = L′(uhk), Rhk = f −L(uhk), and uhk is the kth approximation to the true discrete solution.

If φi is a set of basis vectors for Vh, then (3.1.8) can be written as the linear system Ahxh = bh

where (Ah)i,j =
〈
Lhkφi,Lhkφj

〉
, (bh)i =

〈
Rhk ,Lhkφi

〉
, and xh = δuhk . If the bounds (3.1.6)-(3.1.7) hold

for the discrete system, then there exists a unique solution to the discrete system, and additionally,

the matrix Ah is symmetric positive definite.

3.2 Nested Iteration

To help speed up the nonlinear, Newton-FOSLS iteration, a strategy known as Nested Iter-

ation (NI) is employed. The basic idea behind NI is to minimize the nonlinear functional using a

finite element space of small dimension and then use this as a starting guess for minimization on a

finite element space of larger dimension. A common way of increasing the dimension of the finite
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element space is by refining the mesh on which the system is approximated and then defining a

new finite element space on the refined mesh. For convenience, a mesh with a corresponding finite

element space is refereed to as a level or grid.

The goal is that when the coarse grid solution is interpolated to the fine grid as an initial

guess, the initial guess is close enough to the true solution on the fine grid that only a couple of

Newton steps is required before the mesh is refined again [16, 18]. This process is repeated until

either a certain tolerance is met or a desired fine mesh is achieved. The main benefit of an NI

scheme is that most of the computation is done on coarse grids, which can be significantly cheaper

than computation on the finest grid.

For a more rigorous definition of the NI method, let Ωh be a mesh with spacing h and with

corresponding finite element space defined on that mesh, Vh. Let uhi and uhf be the initial and

final solutions from the Newton-FOSLS solver on the mesh Ωh. Starting out on a coarse grid, say

(ΩH , VH), with the initial guess uHi , Newton-FOSLS iterates until its stopping criteria is reached

and yields the approximate solution, uHf . At this point a finer mesh, Ω
H
2 , and corresponding finite

element space, V
H
2 , is generated through some process such adaptive refinement. The initial guess

for Newton-FOSLS on this finer grid is generated by interpolating the coarse grid solution as follows

P
H
2
H uHf = u

H
2
i , where P

H
2
H is the interpolation operator from the coarse grid (ΩH , VH) to the fine

grid (Ω
H
2 , V

H
2 ). The mesh and solution are repeatedly refined until the NI process reaches its

stopping criteria. This method is known as NI-Newton-FOSLS and is illustrated in Figure 3.2.

Deciding not to perform another Newton-FOSLS iteration and, instead, refine the grid, is one

of the more important decisions in making NI as efficient as possible. Let uH∗ be the true discrete

solution on (ΩH , VH) and u∗ be the true continuous solution. This means best approximation to u∗

on (ΩH , VH) is uH∗ . One way to improve this approximation is to refine the mesh. Since iteration

of Newton-FOSLS on (ΩH , VH) only move the current solution closer to uH∗ , there there will come

a point when refining the mesh reduces the error to the true continuous solution more than taking

another Newton iteration. This point is when the coarse grid solution, uHk , is within discretization

error of uH∗ [46]. There are basically two factors that make optimizing NI tricky. On one side,



23

L = 1

L = 2

L = 3

P
H
/
2

H
u
H f
→
u
H
/
2

i

P
H
/
4

H
/
2
u
H
/
2

f
→
u
H
/
4

i

(1) Newton Iteration

Discretize Linearized PDE

Ax = b

Solved using pCG w/ AMG

(2) Refinement (ACE/Uniform) V-Cycle

(3)
Repeat Steps 1-3

Repeat Steps 1-3

NI Solver Scheme

Figure 3.2: The Nested Iteration process involves solving a problem on a coarse grid, interpolating
the solution to a finer grid and repeating. This depicts a linear solver involving multigrid, which is
discussed in 3.3
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Newton-FOSLS iterations on (ΩH , VH) are computationally inexpensive. On the other side, these

iteration can only converge to an approximation of the desired solution and refining the grid can

improve this approximation. This is illustrated in Figure 3.3.

u∗

u
H/2
∗

uH∗

uH
k+1 → û H/2

0

uH
k → u H/2

0

· · ·

û
H/2
1

u
H/2
1

u
H/2
2

Figure 3.3: The black line represents the Hilbert space on the mesh ΩH with the true discrete solu-

tion, uH∗ and the plane represents ΩH/2 with the true discrete solution, u
H/2
∗ . The true continuous

solution is u∗ and in reality should be much closer to uH/2 since this figure is not to scale.

3.3 AMG

At the core of the Newton-FOSLS method is the linear solver that actually solves the FOSLS

problem on each Newton iteration. Although many times a direct solver such as LU is used for

debugging purposes, one of the goals of this dissertation is to apply an iterative solver to the

full-Stokes, ice-sheet problem. Assuming the FOSLS system yields an H1 elliptic operator, a

multigrid method is an ideal choice of solver. Specifically, the main solver used in this dissertation

is a Conjugate Gradient (CG) method preconditioned with Algebraic Multigrid (AMG). Before

discussing AMG, the basics of multigrid in general will be discussed. For more detail on multigrid
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and AMG see [11]

There are three main parts to a multigrid process: relaxation/smoothing, restriction, and

interpolation. The first two parts help to reduce different components of the error. Relaxation

works well at reducing the high frequency modes of the error. The performance of Relaxation

starts to degrade as the smooth modes begin to dominate the high frequency modes. Restriction

takes smooth modes on the fine grid and approximates them on a coarse grid where problem is

solved using less work than on the fine grid. Interpolation is use to transfer a coarse grid correction

to a finer grid.

The general idea is to relax on a grid until error reduction has stalled. Then, restrict the

error down to a courser grid and relax on the residual equation until relaxation stall again. Repeat

this process recursively until the grid is course enough to do a direct solve. Apply coarse grid

corrections back up through the finer grids using interpolation. Repeat this entire process until a

satisfactory solution is reached.

In more depth, multigrid starts off by posing the problem:

Ax = b,

where A is an nf × nf fine grid matrix and x, b are vectors of length nf . The f in this case refers

to the size of the fine grid. The residual is defined as:

r = b−Ax.

If x is the current approximate solution and x∗ is the true solution, then the residual equation is:

Ae = r,

where e = x∗−x. Applying an approximation to the inverse of A to the residual equation, gives an

approximation to the error, which can be used to update the solution. This approximate inverse

will be the multigrid process and the update to the solution is:

x← x+ ê,
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where ê is the approximation of the error, e.

The first step is to apply ν sweeps of a smoother such as Jacobi or Gauss-Seidel, Sν . This

creates the approximate error, êν = Sνr. The smoothing process eliminates the high frequency

modes rapidly, leaving only smooth error. Unfortunately, this causes the smoothing process to slow

down considerably, so simply smoothing is not enough. When this happens, it is time to restrict

down to a coarser grid, where computation is cheaper.

Let R be an nc×nf operator representing restriction and P be an nf×nc operator representing

interpolation, where c refers to the size of the coarse grid. The residual is restricted down to the

course grid by rcν = RAêν , and the coarse grid error is computed by approximately solving,

Acêcν = rcν ,

where Ac is the nc × nc coarse grid operator. This coarse error is brought back up to the fine grid

by êf = P êcν , since it is assumed that the fine grid error is easily approximated by interpolation of

the coarse grid error. To mitigate any mistake introduced by the interpolation, µ smoother sweeps

are preform to get the final approximation of the error,

ê = SµAê
f .

Putting all of these steps together yields a scheme for a single coarse grid correction with ν pre-

smoothings and µ post-smoothings:

x← x+
[
SνAP (Ac)−1RASν

]
r. (3.3.1)

A useful part of this coarse-grid correction is that it can be applied recursively to the system,

Acêcν = rcν . This is repeated until the coarse grid system is small enough to be easily solve by a

direct solver. Recursively applying coarse grid corrections in this manner is known as a V-Cycle

and is illustrated in Figure 3.4. To indicated the number of pre- and post-smoothings, the cycle

is often referred to as a V(ν, µ)-Cycle. Another common cycle is the W-Cycle, where multiple

V-Cycles are taken on each level. This is also illustrated in Figure 3.4.
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Figure 3.4: This graphic depicts showing V-Cycles and W-Cycles.

There are still three parts of the algorithm that have yet to be explained, that is the construc-

tion of Ac, R, and P . One way to construct Ac is by simply using the restriction and interpolation

operators such that:

Ac = RAP,

where R = P T . This way, all that remains to define a coarse grid correction is to define interpola-

tion, P .

There are numerous ways to do this and each definition of P produces a different flavor of

multigrid. The method used in this dissertation is AMG. The interpolation operator in AMG is

built with the goal of accurately representing algebraically smooth error, es, where S−1Aes ≈ 0,

where S−1 is some smoother that is approximating A−1. In other words, algebraically smooth error

is the error that cannot be resolved with smoothing. With this in mind, the interpolation operator

takes the coarse grid error to the fine grid via:

efi = (Pec)i =

{
eci i ∈ C∑

j∈Ci wije
c
j i ∈ F

, (3.3.2)

where C is the collection of coarse grid points, F is the collection of fine grid points, wij is the

interpolation weight between coarse point j to fine point i, and Ci is the collection of strongly

connected coarse point that influence the fine point i. The choice of C, F , Ci, and wij is determined

by examining the entries of A and is further explained in [11].
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3.4 AMS

Another potential preconditioner for the FOSLS formulation of the full-Stokes, ice-sheet

model is know as the auxiliary space Maxwell solver (AMS). AMS is a general algebraic solver

that is based on HX decompositions and uses AMG to solve second-order definite/semi-definite

equations of the form

acurl(u,v) = (α∇× u,∇× v) + (βu,v) ,

with α > 0 and β ≥ 0 [27].

Another interesting and related system is ∇ · β∇u− αu = f This is often referred to as the

“grad-div” system and has the following variational form:

adiv(u,v) = (β∇ · u,∇ · v) + (αu,v) .

This operator has the near-null space of curl fields. If u = ∇×Φ and v = ∇×Ψ, then

adiv(u,v) = (α∇×Φ,∇×Ψ) ≈ acurl(Φ,Ψ).

AMS was designed to solve problems of this type given an appropriate finite element discretization

such as Raviart-Thomas elements [44].

It can be shown that a full-stress formulation for the full-Stokes model has a formal-normal

with two grad-div systems followed by a Laplace operator along the block diagonal. One method

of solving a system like this, is to construct a block preconditioner comprised of two AMS and one

AMG solves. The advantage solving Stokes via this method is that an H(div) space can be used

as opposed to the H1 space that AMG requires. The H(div) space requires the less regularity out

of the solution than an H1 space, which may prove beneficial in places where viscosity becomes

infinite.



Chapter 4

Inverse Problem

This chapter describes a side project that involves using surface velocity data and Stoke

equations to predict the basal topography of a glacier. The Kennicott glacier is a temperate glacier

located in southeast Alaska. Using elevation and velocity data acquired from high resolution satellite

imagery, the basal topography of a cross section of the Kennicott is approximated. The normal

method for determining ice thickness is to use ice penetrating radar. However, since the Kennicott

glacier is a temperate glacier, its higher water content causes these readings to be unreliable.

A different method is to use Stokes-equations as a forward model and attempt to approximate

the basal topography by comparing recorded data to modeled surface velocities from various test

domains.

A simplification of Equation (2.3.2) comes from making two assumptions. First, assume

that u1 is the only non-negligible velocity component. Essentially, u = [u1, 0, 0]T , where u1 is the

down-glacier velocity. Second, stress and strain rate tensors do not vary with x. In this case the

x-direction is down glacier, the y-direction is cross glacier, and the z-direction is depth. In this

reference frame, gravity is g = [|g| sin(θ), 0,−|g| cos(θ)]T where θ is the slope of the glacier.

With these assumptions, the strain rate tensor becomes

ε̇ =
1

2

(
∇u+ (∇u)T

)
=

1

2


2∂u1∂x

∂u1
∂y + ∂u2

∂x
∂u1
∂z + ∂u3

∂x
∂u1
∂y + ∂u2

∂x 2∂u2∂y
∂u2
∂z + ∂u3

∂y
∂u1
∂z + ∂u3

∂x
∂u2
∂z + ∂u3

∂y 2∂u3∂z

 =
1

2


0 ∂u1

∂y
∂u1
∂z

∂u1
∂y 0 0
∂u1
∂z 0 0

 . (4.0.1)

This corresponds to neglecting the s11, s22, s33, s23 components in the deviatoric stress, Equation

(2.3.4). The continuity equation (2.3.1) is automatically satisfied under these assumptions. In the



30

momentum equation, velocity and pressure become completely decoupled allowing us to solve for

just velocity using:

∂

∂y

(
µ
∂u1

∂y

)
+

∂

∂z

(
µ
∂u1

∂z

)
= ∇ · (µ∇u1) = −|g| sin(θ). (4.0.2)

This is simply a nonlinear Poisson equation. The boundary conditions for this problem are no-slip

where the glacier meets the bed and no-stress on the surface of the glacier. This simplified model

is the basis for the forward model used to approximate the basal topography and estimate summer

sliding.

The velocity field calculated from the imagery acquired by the WorldView and SPOT satellites

can be found in Figure 4.1 [8]. The line indicated on this figure is where the inversion was attempted.

← Cross Section Location

Figure 4.1: Left: a) The Kennicott glacier, b) Location of the Kennicott glacier in Alaska. Right:
The spring velocity map of the Kennicott glacier with a pink line indicating the location of the
cross section used in the inverse problem.

To solve for the basal geometry, a test domain is used in conjunction with the forward problem

in Equation (4.0.2) to produce a surface velocity profile. The L2 error of the calculated velocities

and those observed by the satellite imagery is then calculated. Due to the relatively small nature

of the domains, a simple LU Solver on Galerkin discretization using Taylor-Hood elements is used

solve the forward problem [31]. The optimal domain is found by minimizing this L2 error within

the parameter space from which the domain was chosen, which is depicted in Figure 4.2.

The test domains are generated by two power law functions. Both function are uniquely
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Figure 4.2: A depiction of the parameter space.

determined by eleven parameters: four points, two power parameters, and a thickness value. All

but four of these parameters are fixed by the elevation data from the satellite imagery. Those four

parameters are a break point, xb, ice thickness at the break point, Tb, and the left/right powers,

γl, γr. The equations that define the basal topography are:

Bl(x) = (yl − yb)
(
xb − x
xb − xl

)γl
+ yb,

Br(x) = (yr − yb)
(
xb − x
xb − xr

)γr
+ yb,

where yb = ys − Tb.

This parameter space was chosen for its smooth nature, small dimension, and its general

shape, which is similar to what would be expected from a valley glacier [36]. Since the domain is

broken up into two power functions, this parameter space has the added benefit of being able to

capture the non-symmetric velocity profile given by the observed data. An near-optimal domain

and corresponding velocity profiles can be found in Figure 4.3. This domain was used to evaluate

how various basal sliding models explain summer speed up.

The WorldView data was also used to collect velocity profiles for the summer. The summer

data showed a significant increase in speed throughout the length of the cross section. This was

due to ice melt as well as basal sliding. Assuming that the spring velocity data accounted for the

glacial melt, subtracting the spring data from the summer data, provided an estimate of the basal

sliding in the summer. The next part of this research was to attempt to use the domain generated
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by the spring data and various models for basal sliding to match the summer velocities.

Three different basal sliding models were used. All of these models involved directly enforcing

a basal velocity profile as a boundary condition on the bed. The first profile, the blue lines in

Figure 4.3, was a large, uniform slippery patch with a velocity 0.18 m d−1. The second profile, the

green lines in Figure 4.3, had two smaller but faster slippery patches, which attempted to recover

the asymmetry in the summer velocity profile. The left patch’s velocity was 0.37 m d−1 and the

right patch’s velocity was 0.30 m d−1. The final profile, the red lines in Figure 4.3, was created by

subtracting the spring velocity from the summer velocity and then directly enforcing the result as

the boundary condition on the bed. This was known as the speedup profile and is common practice

for estimating basal sliding.

It should be noted that the methods with slippery patches involved enforcing a discontinuous

boundary condition. This would create singularities at these discontinuities. Since solver perfor-

mance was not a concern for this project, these singularities were dealt with by simply having a

fine enough mesh that their effect on the solution was minimal.

Of the three basal sliding models, the two slippery patches performed the best with an RMSE

of 0.0229 m d−1. The model that performed the worst was the uniform patch with an RMSE of

0.0299 m d−1. The speedup profile had an RMSE of 0.0244 m d−1. As a point of comparison, the

RMSE between the observed spring velocities and the spring velocities modeled by (4.0.2) using

the best basal topography from the parameter space in Figure 4.2 was 0.0155 m d−1.

It is important to notice that all three basal sliding models produced summer velocity profiles

that were comparable accurate. This implies that the exact basal sliding is not necessary in these

types of glacier models. Choosing to use the difference between summer and spring velocities as

the basal velocity is an adequate and easily implemented method. See [6], submitted to the Journal

of Glaciology, for further details.



Chapter 5

Stokes Formulations

This chapter describes the various formulations of the full-Stokes equations used in this

dissertation.

5.1 Taylor-Hood Galerikin Model

This section will discuss the Taylor-Hood Galerkin model as described in [30]. The solutions

from this model will be compared to the solutions from various FOSLS formulations below. First,

define Ω as the domain of the ice-sheet with Γ = Γs + Γb + Γp as the surface, bed and periodic

portions of the boundary. Additionally, let (H1(Ω))d be a vector Hilbert space of d functions where

each function and its first derivatives are square integrable.

This method starts off by taking the momentum, (2.3.2), and continuity, (2.3.9), combined

with equation for the full stress, (2.3.3), to get the system:

∇ · s−∇p̂ = f, (5.1.1)

∇ · u = 0, (5.1.2)

Multiplying first equation by the test functions, v ∈ (H1(Ω))d, and preforming the proper integra-

tion by parts yields: ∫
Ω
s : ∇v dx−

∫
Ω
p∇ · v dx−

∫
Γ
n · σ · v ds =

∫
Ω
f · v dx. (5.1.3)

It can be shown that from the symmetry of s and Equation 2.3.4 that,∫
Ω
s : ∇v dx =

∫
Ω

2µuε̇u : ε̇
v
, dx,
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where µu is the viscosity dependent on u and ε̇
u

is the symmetric gradient of u.

The boundary functional is eliminated by using the proper boundary conditions. On the

surface, Γs, n ·σ = 0 is enforced, which results in
∫

Γs
n ·σ ·v ds = 0. Periodic boundaries are enforce

on Γp if it is present. In the case of a no-slip basal boundary condition, u = 0 is enforced on Γb.

These boundary conditions are built into the trial space by defining:

(H1
0 (Ω))d =

{
u ∈ (H1(Ω))d

∣∣∣u (Γb) = 0, u is periodic on Γp

}
(5.1.4)

This results in
∫

Γp
n · σ · v ds = 0 and

∫
Γb
n · σ · v ds = 0, and the boundary functional is completely

eliminated. The case where there is a basal slip boundary condition is discussed in Section 9.1.

The weak variational form becomes: find u ∈ (H1
0 (Ω))d and p ∈ L2(Ω) such that∫

Ω
2µuε̇u : ε̇

v
dx−

∫
Ω
p∇ · v dx =

∫
Ω
f · v dx,

−
∫

Ω
q∇ · u dx = 0

(5.1.5)

for all v ∈ (H1
0 (Ω))d and q ∈ L2(Ω).

The weak form is satisfied uniquely by the solution of the equations (5.1.1) and (5.1.2).

An approximation is produced by restricting the weak form to finite element spaces. In order

to guarantee stability of the discrete equations, the finite element spaces must satisfy the LLB

conditions discussed in 3.1. Toward that end, the velocity functions, u and v, are choose from a

quadratic finite element space and the pressure functions, p and q, are chosen from a linear finite

element space [23]. This pair is usually P2-P1, where P2 is the set of piecewise quadratic Lagrange

polynomials and P1 is the set of piecewise linear Lagrange polynomials on a discretization of Ω.

This element pair is also known as the Taylor-Hood elements.
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5.2 Velocity-Gradient Viscosity Formulation

In the FOSLS approach, the first step is to revert equations (2.3.9 - 2.3.10) back to a conve-

nient first-order system. One way to initiate this process is by defining

U = ∇u =


∂u1
∂x

∂u2
∂x

∂u3
∂x

∂u1
∂y

∂u2
∂y

∂u3
∂y

∂u1
∂z

∂u2
∂z

∂u3
∂z

 =


U11 U21 U31

U12 U22 U32

U13 U23 U33

 .
Since this new set of unknowns is based on the velocity gradient and the curl of a gradient is zero,

the system can be augmented with an additional equation, ∇ × U = 0. The continuity equation

written in terms of the new variable is Trace(U) = 0. Therefore, the solution of (2.3.9-(2.3.10)

satisfies the following first-order system, which we will refer to as the viscosity formulation:

∇ · u = 0, (Continuity), (5.2.1)

U = ∇u, (Definition), (5.2.2)

∇ · µ̂
(
U + UT

)
−∇p̂ = f, (Momentum), (5.2.3)

∇× U = 0, (Curl of a gradient), (5.2.4)

∇Trace(U) = 0, (Derived fron (5.2.1), (5.2.2)). (5.2.5)

A solution that satisfies equations (5.2.1) - (5.2.3) clearly must also solve equations (5.2.4) and

(5.2.5). These equations are added to modify the norm in which the solution is approximated.

This system can be solved in two stages. Equations (5.2.3) - (5.2.5) are used to calculate the

velocity gradient, U , and pressure, p. Then, Equations (5.2.1) - (5.2.2) retrieve the velocities, u,

from the velocity gradient. For 2-D problems in the xz-plane, the trace condition is readily enforced

by explicitly setting U33 = −U11. With µ = 1 this system is H1 equivalent with velocity boundary

conditions as shown in [14]. The proof therein can be modified to establish H1 equivalence when

µ is a given function for which both ‖µ‖∞ and ‖∇µ‖∞ are bounded.
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5.3 Velocity-Gradient Fluidity Formulation

In this section, an alternative, 2-D FOSLS formulation is developed in which the viscosity is

absorbed into the velocity gradient. The effective strain rate can be written as

ε̇e =
1√
2

∣∣∣∣ε̇∣∣∣∣
F

=

(
1

2

〈
E U,E U

〉) 1
2

,

where

E =
1

2


2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 2

 , and U =


U11

U21

U12

U22

 .
To make this calculation simpler, U is just U written as a vector. Unlike the 3-D system in (5.2.1)-

(5.2.5) where the subscripts 1, 2, and 3 corresponded with x, y, and z, this 2-D system just uses 1

and 2 which refers to x and z. Using these definitions, viscosity can be written as:

µ̂ =
〈
E U,E U

〉− 1
3 .

Now, Consider the new set of variables,

Û =
〈
E U,E U

〉− 1
3 U,

where,

Û =


Û11

Û12

Û21

Û22

 , or Û =

[
Û11 Û21

Û12 Û22

]
.

Additionally, define

φ =
〈
E Û,E Û

〉
.

Notice that

φ =
〈
E Û,E Û

〉
=
〈
E U,E U

〉− 2
3
〈
E U,E U

〉
=
〈
E U,E U

〉 1
3 .

With these definitions, φ can be easily written in terms of either set of variables, which will allow

the system of equations to be written entirely in the new set of variables. To transform back to the
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original set of variables, multiply by φ, that is, φÛ = U. Writing φ explicitly in terms of the new

variables yields,

φ =
1

2
Û11

2

+
1

4
Û2

12 +
1

2
Û21Û21 +

1

4
Û2

21 +
1

2
Û2

22.

The trace condition of U implies a trace condition on Û , which yields Û22 = −Û11. Thus, φ

simplifies further to:

φ = Û2
11 +

1

4
Û2

12 +
1

2
Û21Û21 +

1

4
Û2

21.

Thus, the velocity-gradient fluidity formulation is expressed as:

∇ · u = 0, (5.3.1)

φÛ = ∇u, (5.3.2)

∇ ·
(
Û + Û

T
)
−∇p̂ = f, (5.3.3)

∇× φÛ = 0. (5.3.4)

However, this introduces a new problem occurring in Equation (5.3.4). The balance between

the divergence Equation (5.3.3) and the curl Equation (5.3.4) is not maintained when φ goes to

zero. It is well known that having these two equations of the same scale will produce better AMG

performance. This is resolved by multiplying Equation 5.3.4 by 1/φ. However, to avoid yet another

singularity, a small constant is added to this scaling, 1
φ+c . Since the entire equation is scaled by

this factor, the actual solutions remains unchanged, as opposed to the the method of fixing the

singularity found in Equation 2.3.12, which actually changes the overall solution. In regions where

φ << c the div and curl equations are once again unbalanced. However, these will be the regions

where the solution, Û , is essentially zero and u is constant, so the solvers should not have much

difficulty.

The last modification made to Equation (5.3.4) is to use the product rule. Doing this yields:

φ

φ+ c
∇× Û − 1

φ+ c

(
∇⊥φ

)T
· Û = 0, (5.3.5)
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where

∇⊥ =

[
∂z

−∂x

]
or

[
∂z −∂x 0 0

0 0 ∂z −∂x

]
,

depending on the situation. This form is helps the linear solver converge faster since it has an

nearly unscaled curl term with some lower order terms.

Another problem with this fluidity formulation is that it does not allow the solution to have

pure rotations in some local region. Consider the simple velocity profile is some local region:

u1 = c1z + c2,

u2 = −c1x+ c3,

(5.3.6)

where c1 is some nonzero constant and c2, c3 are just any constant. Then in that region,

∇ · u = 0,

U = ∇u =

[
0 c1

−c1 0

]
,

ε̇ =
1

2

(
U + UT

)
= 0,

φ =
〈
E U,E U

〉 1
3 = 0. (5.3.7)

This means that equation (5.3.2) becomes,[
0 0

0 0

]
=

[
0 c1

−c1 0

]
,

which is clearly not possible. This is why the stress-vorticity fluidity formulation is developed in

Section 5.4.

5.4 Stress-Vorticity Fluidity Formulations

In this section another 2-D FOSLS formulation is developed in which the deviatoric stress is

used as the new set up unknowns. The 2-D models are framed in (x, z) space with the x-direction

being downstream and the z-direction being height.
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Another way to convert equations (2.3.9) - (2.3.9) into a first-order system is to break up the

tensor s = 2µ̂ε̇ into four variables.

s = 2µ̂ε̇

= µ̂
(
∇u+ (∇u)T

)
=

[
2µ̂∂xu1 µ̂(∂zu1 + ∂xu2)

µ̂(∂zu1 + ∂xu2) 2µ̂∂zu2

]

Using equation (2.3.1), 2∂xu1 can be written as ∂xu1 − ∂zu2. Thus,

s =

[
µ̂(∂xu1 − ∂zu2) µ̂(∂zu1 + ∂xu2)

µ̂(∂zu1 + ∂xu2) µ̂(∂zu2 − ∂xu1)

]

=

[
s11 s12

s12 −s11

]
.

Next, define the fluidity as φ = µ̂−1. Then,

φs11 = ∂xu1 − ∂zu2,

φs12 = ∂zu1 + ∂xu2.

To determine what φ is in terms of s11 and s12, start with the definition of µ̂ from equation (2.3.11),

µ̂−1 = ||ε̇||
2
3
F = ||ε̇||−

4
3

F ||ε̇||
2
F = µ̂2||ε̇||2F = ||µ̂ε̇||2F =

∣∣∣∣∣∣s
2

∣∣∣∣∣∣2
F

=
s11

2 + s12
2

2
= φ. (5.4.1)

The system can now be rewritten in terms of s11 and s12 to get the deviatoric-stress/pressure/velocity

form,

φs11 − (∂xu1 − ∂zu2) = 0, (5.4.2)

φs12 − (∂zu1 + ∂xu2) = 0, (5.4.3)

∂xu1 + ∂zu2 = 0, (5.4.4)

−∂xs11 − ∂zs12 + ∂xp̂− f1 = 0, (5.4.5)

∂zs11 − ∂xs12 + ∂z p̂− f2 = 0, (5.4.6)
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where f = [f1, f2]. This system is known as the basic fluidity formulation throughout the rest

of this paper since fluidity is the quantity associated with the inverse of viscosity. Here, equations

(5.4.2) - (5.4.3) are analogous to equation (5.2.2) in the viscosity formulation, equation (5.4.4) is

just continuity again, and equations (5.4.5) - (5.4.6) are conservation of momentum.

Another neat trick is to break up pressure into two components. Pressure can be expressed

as p̂ = p̂d + p̂h where p̂h is the hydrostatic pressure. Since, hydrostatic pressure is usually the

dominate term, solving just for p̂d allows for a scaling that produces unknowns (u1, u2, s11, s11, p̂d)

that are approximately O(1). This scaling can be achieved by setting f2 = max(u1)−1/3f2, where

u1 is the physical solution in m s−1. Then the new forcing function needs to be f = [f1, f2]T −∇p̂h.

One of the other goals of this thesis is to create a formulation that can be quickly and

efficiently solved. In this case, that solver is AMG. To make the fluidity formulation more amenable

to AMG, the system (5.4.2)-(5.4.6) is augmented with an equation that represents the curl of the

velocity gradient. Unfortunately, the velocity gradient is obscured by the creation of s11 and s12.

To recover the velocity gradient, a definition that involves the vorticity is added. To follow the

same form as the other definitions, (5.4.2)-(5.4.3), this vorticity-based equation is

ψω = (−∂zu1 + ∂xu2). (5.4.7)

The definition of ψ is discussed later. Now, gradient of u is reconstructed using (5.4.2)-(5.4.4) and

(5.4.7),

∇u =

[
∂xu1 ∂zu1

∂xu2 ∂zu2

]
=

1

2

[
φs11 φs12 − ψω

φs12 + ψω −φs11

]
. (5.4.8)

Finally, ∇×∇u = 0 is added to the fluidity formulation resulting in the
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deviatoric-stress/vorticity/pressure/velocity form,

φs11 − (∂xu1 − ∂zu2) = 0, (5.4.9)

φs12 − (∂zu1 + ∂xu2) = 0, (5.4.10)

ψω − (−∂zu1 + ∂xu2) = 0, (5.4.11)

∂xu1 + ∂zu2 = 0, (5.4.12)

−∂xs11 − ∂zs12 + ∂xp̂− f1 = 0, (5.4.13)

∂zs11 − ∂xs12 + ∂z p̂− f2 = 0, (5.4.14)

−∂z(φs11) + ∂x(φs12)− ∂x(ψω) = 0, (5.4.15)

−∂x(φs11)− ∂z(φs12)− ∂z(ψω) = 0. (5.4.16)

This is known as the augmented fluidity formulation. Notice that the two new equations are

consistent with the fluidity formulation such that, if a solution satisfies (5.4.2)-(5.4.4), then it must

also satisfy (5.4.15)-(5.4.16). Furthermore, that solution must also satisfy (2.3.9)-(2.3.10).

It is important to note that for better AMG performance, the curl equations, (5.4.15)-(5.4.16),

and the div equations, (5.4.13)-(5.4.14), need to be balanced in terms of magnitude. In places

where φ goes to zero, the curl equations are deemphasized and the balance with the div equations

is disrupted. To maintain this balance, the curl equations may need to be scaled by a function that

emphasizes the locations where φ is small.

The last modification is to use the product rule on the terms in the curl equations. Expanding
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the 6 terms from equations (5.4.15) and (5.4.16) using the product rule yields:

∂x(φs11) =
1

2
∂x
(
s11

3 + s12
2s11

)
=

1

2

(
3s11

2∂x(s11) + s12
2∂x(s11) + 2s12s11∂x(s12)

)
,

∂x(φs12) =
1

2
∂x
(
s11

2s12 + s12
3
)

=
1

2

(
2s11s12∂x(s11) + s11

2∂x(s12) + 3s12
2∂x(s12)

)
,

∂x(ψω) =
1

2
∂x
(
s11

2ω + s12
2ω + ω3

)
=

1

2

(
s11ω∂x(s11) + s11

2∂x(ω) + s12ω∂x(s12) + s12
2∂x(ω) + 3ω2∂x(ω)

)
,

∂z(φs11) =
1

2
∂z
(
s11

3 + s12
2s11

)
=

1

2

(
3s11

2∂z(s11) + s12
2∂z(s11) + 2s12s11∂z(s12)

)
,

∂z(φs12) =
1

2
∂z
(
s11

2s12 + s12
3
)

=
1

2

(
2s11s12∂z(s11) + s11

2∂z(s12) + 3s12
2∂z(s12)

)
,

∂z(ψω) =
1

2
∂z
(
s11

2ω + s12
2ω + ω3

)
=

1

2

(
s11ω∂z(s11) + s11

2∂z(ω) + s12ω∂z(s12) + s12
2∂z(ω) + 3ω2∂z(ω)

)
.

(5.4.17)

Plugging in the expanded forms from (5.4.17) into (5.4.15) and (5.4.16) and sorting based on the

derivative terms yields:

ψ−1

(
A

[
∂xs11

∂zs11

]
+B

[
∂xs12

∂zs12

]
+ C

[
∂xω

∂zω

])
= 0, (5.4.18)

where A =

[
a11 a12

a12 a22

]
, B =

[
b11 b12

b12 b22

]
, C =

[
c11 0

0 c11

]
are matrices containing the curl coefficient
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equations and are defined as:

a11 = 1/2 (2s11s12 − s11ω) ,

a12 = −1/2
(
3s11

2 + s12
2
)
,

a22 = −1/2 (2s11s12 + s11ω) ,

b11 = 1/2
(
s11

2 + 3s12
2 − s12ω

)
,

b12 = −1/2 (2s11s12) ,

b22 = −1/2
(
s11

2 + 3s12
2 + s12ω

)
,

c11 = −1/2
(
s11

2 + s12
2 + 3ω2

)
.

(5.4.19)

Another, possibly cleaner, way to look at this system is in tableau form,

φ 0 0 0 −∂x ∂z

0 φ 0 0 −∂z −∂x
0 0 ψ 0 ∂z −∂x
0 0 0 0 ∂x ∂z

−∂x −∂z 0 ∂x 0 0

∂z −∂x 0 ∂z 0 0

a11
ϕ ∂x + a12

ϕ ∂z
b11
ϕ ∂x + b12

ϕ ∂z
c11
ϕ ∂x 0 0 0

a12
ϕ ∂x + a22

ϕ ∂z
b12
ϕ ∂x + b22

ϕ ∂z
c11
ϕ ∂z 0 0 0





s11

s12

ω

p̂

u1

u2


=



0

0

0

0

f1

f2

0

0



, (5.4.20)

where ϕ is the scaling designed to balance the curl and div equations.

From (5.4.19) it is clear that the coefficients are quadratic functions of the dependent vari-

ables, s11, s12, ω. Further, it can be established that, when scaled by ϕ = ψ, the coefficients stay

bounded. Take, for example, the function

a11

ψ
=

2s11s12 − s11ω

s11
2 + s12

2 + ω2
(5.4.21)

Taking the partial derivatives with respect to s11, s12, and ω of (5.4.21) yields:

∂

∂s11

(
a11

ψ

)
=

(2s12 − ω)(−s11
2 + s12

2 + ω2)

(s11
2 + s12

2 + ω2)2

∂

∂s12

(
a11

ψ

)
=

2s11(s11
2 − s12

2 + s12ω + ω2)

(s11
2 + s12

2 + ω2)2

∂

∂ω

(
a11

ψ

)
= −s11(s11

2 + s12
2 + 4s12ω − ω2)

(s11
2 + s12

2 + ω2)2

(5.4.22)
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Setting all of these derivatives for zero and solving for s11, s12, and ω results in three critical points:

(s11 = 0, ω = 2s12), (s11 = −
√

5s12/2, ω = −s12/2), and (s11 =
√

5s12/2, ω = −s12/2). Plugging

these into (5.4.21) results into the values of 0, −
√

5/2, and
√

5/2 respectively.

Next, consider what happens when s11 → ±∞, s12 → ±∞, and/or ω → ±∞. Notice that

the degree of the relevant variable(s) is always less than or equal to the degree in the denominator.

When the degree is less than, the limit will be 0. When the degrees are equal, the limit will be the

coefficient or sum of coefficients associated with the relevant variable(s). In the case of (5.4.21), all

three of these limits are zero. Table 5.1 summarizes the critical points, limits, and ranges of the

curl coefficient functions.

Table 5.1: This table shows the ranges of the various coefficients from equations (5.4.19) when
they are divided by ψ. The critical values are the values of the relevant coefficient evaluated at the
critical points. The max/min limit comes from examining the coefficient equation and determine
the extrema of the various limits where a variable goes to infinity

Coefficient Critical Values Min, Max Limit Range

a11 0, −
√

5
2 ,

√
5

2 −3, 3 (−3, 3)
a12 0, −1, −3 −4, −1 (−4, 0]

a22 0,
√

5
2 , −

√
5

2 −3, 3 (−3, 3)

b11 1, 3
2 +

√
5
2 , 3

2 −
√

5
2 −1, 5 (−1, 5)

b12 0, 1, −1 −2, 2 (−2, 2)

b22 −1, −3
2 +

√
5
2 , −3

2 −
√

5
2 −5, 1 (−5, 1)

c11 −1, −3 −5, −1 (−5,−1]

The augmented fluidity formulation was used in [5], with ψ = 1
2(s11

2 + s12
2 + ω2) and the

curl equations were scaled by ψ−1. This resulted in a system that produced accurate solutions and

AMG performed very well on a simple domain. However, this scaling caused reduced finite-element

convergence when the domain was more complected as in ISMIP benchmark B. Experimenting

with various scalings led to the discovery that the basic fluidity formulation exhibits optimal finite-

element convergence for the domain in benchmark B. However, AMG did not perform well on the

basic fluidity formulation since it was not H1 elliptic. Despite the performance issues, both the

basic and augmented fluidity formulations produced solutions that were accurate when compared
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with ISMIP’s database of solutions and the Taylor-Hood method from [30]. This work is discussed

in Chapters 7-8.

This leads to a few questions that need to be answered. Which FOSLS formulation performs

better? How should ψ be defined? How should the curl equations be scaled? the numerical results

from Chapters 8-9 are used to examine these questions, but first, they are discussed below to present

possible answers.

The first question is easy to address since there are only two possible formulations, basic

and augmented. The basic system avoids the difficulties introduced by the curl equation such as

additional nonlinearity and choosing a scaling. The major problem with this system, is that there

is not a readily available iterative linear solver for a system of this form. Right now, it is solved

using a direct solver, which is not a useful choice when solving significantly larger problems. On the

other hand, The advantage to the augmented system, with proper scaling, is that it is amenable to

an AMG solver, which is a fast and efficient iterative solver.

The next question involves the definition of ψ. One possible definition is ψ = 1
2(s11

2 + s12
2 +

ω2), which follows the format of φ and leads to a scaling that results in the various terms of the

curl equations to remain bounded in places where φ→ 0. The problem is it can lead to cube root

type behavior in ω. Looking at (5.4.7),

ψω = (−∂zu1 + ∂xu2),

1

2
(s11

2ω + s12
2ω + ω3) = (−∂zu1 + ∂xu2).

Solving for ω yields the only real root of:

ω =
3
√
R

3 3
√

2
−

3
√

2
(
s11

2 + s12
2
)

R
,

where

R =

√
(54∂xu2 − 54∂zu1)2 + 108 (s11

2 + s12
2)3 − 54∂zu1 + 54∂xu2.

Therefore, ω will have cube root type behavior unless R is exactly a cubic, which is unlikely.
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An alternative definition for ψ is simply ψ = 1. This avoids unnecessarily adding cube root

behavior to ω. The downside to this definition is that, when the curl equation is scaled, the ω term

of the curl equation will potentially be left out of balance with the other terms.

The last question is how to scale the curl equations, (5.4.15)-(5.4.16)? The work in [5] led to

the discovery that strengthening the curl equations results in reduced finite-element convergence.

However, AMG performed better on the strongly scaled systems. It seemed that there could be a

balance between finite-element convergence and AMG performance.

Here are several scalings tested in hopes of finding this balance. As mentioned above, when

using an appropriate definition for ψ, the scaling ψ−1/2 keeps the curl equations nicely bounded.

The reason for using this scaling is to keep the curl and div (momentum) equations balanced when

φ→ 0 leading to improved AMG performance. A possible problem with this scaling is that it may

not compensate well enough for when φ → 0, since ψ 6→ 0 in the same places as φ because ω 6→ 0

in these places.

The next logical scaling is φ−1/2. This will definitely emphasize the places where φ → 0.

However, it also has the obvious problem of being unbounded in these same places. This can be

resolved by instead scaling by (φ+ c)−1/2, where c is a small constant dependent on the size of the

mesh. Additionally, this might scale the curl equations too strongly. As discussed in Chapters 8-9,

the augmented fluidity formulation experiences reduced finite-element convergence when strongly

scaled.

To get around the reduced finite-element convergence problem, a scaling of φ will intentionally

unweight the areas where φ → 0. Unfortunately, this can lead to poorer solution accuracy near

these regions. Also, since this will lead to a drastic unbalance between the curl and div equations,

AMG performance will suffer. This scaling closely resembles the basic fluidity formulation.

Finally, the curl equation can be left unweighted altogether. This will just be useful as a

baseline for comparing the other scalings and will have poorer AMG performance.

It should be noted that since the approximate solutions are obtained by using a least squares

method, scaling an equation in the system by ϕ results in the corresponding term in the functional
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to be scaled by ϕ2. The four scalings mentioned above act like scaling the curl portion of the

functional by ψ−1, φ−1, φ2, or 1.



Chapter 6

Well Posedness

This chapter will discuss the linearizations of the FOSLS formulations. Additionally, the

continuity and coercivity of the augmented fluidity formulation will be discussed.

6.1 Linearization

In this section, linearization of both the fluidity and viscosity forms is developed and conti-

nuity of the linearized forms is addressed. Coercivity is discussed in the following section. Consider

the general functional,

F(U ,F) = ||L(U)− F||2,

where

L(U) = LU +N (U),

LU is the linear part and N (U) contains the nonlinear terms. Linearization is accomplished by

expanding L(U) about a current approximation, which is denote by U0. This yields

L(U0 + δU) = L(U0) + L′(U0)[δU ] +
1

2
L′′(Û)[δU , δU ]

where L′ and L′′ are the first and second Frechet derivatives of L centered at U0 and Û = (1 −

α)U0 + αδU for some α ∈ [0, 1]. Note that

L′(U0)[V] = LV +N ′(U0)[V].
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6.1.1 Fluidity Formulations

The linearization of the augmented fluidity form is considered first, which will lead directly

to the linearization of the basic fluidity form by simply removing a few equations. To derive

L′F (U0F )[δUF ], where UF = (u, s, ω, p), the nonlinear terms in (5.4.20) are examined separately.

Let

s =

[
s11

s12

]
and E =

[
−∂x ∂z

−∂z −∂x

]
.

Then, equations (5.4.9) - (5.4.10) can be written as

φs+ Eu = 0, (6.1.1)

and the first nonlinear term is φs. To linearize this term, let R(s) = φ[s]s and φ[s0] = φ0. Then,

∂

∂θ
R(s0 + θδs)

∣∣∣∣
θ=0

=
∂

∂θ
(φ[s0 + θδs] (s0 + θδs))

∣∣∣∣
θ=0

= φ′[s0 + θδs] (s0 + θδs) + φ[s0 + θδs]δs
∣∣
θ=0

= φ′[s0 + θδs]
∣∣
θ=0

s0 + φ0θδs.

Now, calculate φ′ (Note that φ = 1
2〈s, s〉):

φ′[s0 + θδs]
∣∣
θ=0

=
∂

∂θ

[
1

2
〈s0 + θδs, s0 + θδs〉

]∣∣∣∣
θ=0

= 〈s0, δs〉 = φ′(s0)[δs].

Thus,

∂

∂θ
R(s0 + θδs)

∣∣∣∣
θ=0

= 〈s0, δs〉 s0 + φ0δs.

This can be rewritten as

〈s0, δs〉 s0 + φ0δs = (φ0I + s0 s0
T )δs.

Therefore, the linearized form of the nonlinearity in Equation (6.1.1) is:

(φs)′ = φ0s0 + φ′s0 + φ0δs

= φ0s0 + (φ0I + s0 s0
T )δs. (6.1.2)
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Using the same method, the nonlinear term in equation (5.4.11), ψω, becomes:

(ψω)′ = ψ0ω0 + ψ′ω0 + ψ0δω,

which can also be rewritten as:

(ψω)′ = ψ0ω0 + (ψ0e
T
3 + ω0 ŝ0

T )δŝ, (6.1.3)

with e3 = [0, 0, 1]T and ŝ = [s11, s12, ω]T . Finally, to linearize the last two equations in (5.4.20),

define M = [A|B|C] as a 2× 6 matrix containing the curl coefficient functions and

∇ =


∇ 0 0

0 ∇ 0

0 0 ∇


as a 6 × 3 matrix containing column gradient operators. Then, the curl equations (5.4.18) can be

written simply as:

M∇ ŝ = 0.

Using the same linearization method,

(
M∇ ŝ

)′
= M0∇ ŝ0 +M0∇δŝ+M ′(ŝ0)[δŝ]∇ ŝ0.

As stated above, the elements of M are quadratics in the dependent variables. Linearization

of each element of M is tedious and is left out. The curl equation is scaled by ϕ0
−1, as discussed in

Section 5.4, which is simply lagged using the previous Newton step’s solution. To avoid yet another

singularity, a small constant, c, can be added to this scaling, 1
ϕ0+c . This yields linear elements of

M ′ divided by a function that is bounded away from zero. Thus, 1
ϕ0+cM

′(ŝ0)[δŝ]∇ ŝ0 is a bounded

linear operator on δŝ that yields a 2× 6 matrix of functions. However, in practice, when ϕ = ψ1/2

the small constant has not been needed and is omitted from the rest of the analysis. This is because

ψ tends to be greater than 0 as shown in Section 8.2. One heuristic for why ψ > 0 involves the fact

that the only time φ = 0 is when the ice sheet is experiencing solid-body rotations/translations as

seen in Equation (5.3.6). The translation are removed from the system by having a velocity based
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Dirichlet boundary condition. For rotation, Equation (5.3.7) shows that s11, s12 = 0. Next, from

Equation (5.4.7),

ψω = (−∂zu1 + ∂xu2),

ψω = −2c1,

1

2

(
s11

2ω + s12
2ω + ω3

)
= −2c1,

1

2
ω3 = −2c1,

ω = (−4c1)
1
3 .

Therefore, ω 6= 0, which implies that ψ 6= 0.

The full linearized system is:

φ′s0 + φ0δs+ Eδu = −φ0s0, (6.1.4)

ψ′ω0 + ψ0δω −∇× δu = −ψ0ω0, (6.1.5)

∇ · δu = −∇ · u0, (6.1.6)

−∇ · δs+∇δp̂ = f −
(
−∇ · s

0
+∇δp̂0

)
, (6.1.7)

1

ψ0
M0∇δŝ+

1

ψ0
M ′(ŝ0)[δŝ]∇ ŝ0 = − 1

ψ0
M0∇ ŝ0. (6.1.8)

If Equations (6.1.5) and (6.1.8) are removed from the system above, then the result is the linearized

form of the basic fluidity formulation.

Later in the continuity proof, it will be useful to have bounds on the nonlinear portion of these

equations. For equation (6.1.4), consider the form found in equation (6.1.2). The only eigenvalue

of the rank one operator s0 s0
T is 2φ0 since 2φ0 = s0

T s0 and

s0 s0
T s0 = 2φ0s0.

This implies that |s0 s0
T | ≤ 2φ0I point wise and more importantly,

(|φ0 + s0 s0
T |)|δs| ≤ 3φ0|δs|. (6.1.9)

This is a local bound and can be turned into a global bound by assuming ||φ0||∞ is bounded. The

next step is to establish bounds for equation (6.1.5) and equation (6.1.8). Expanding the terms in
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these equations component wise would reveal that they is just a series of products of the terms in

∇ŝ0, ŝ0, ∇δŝ, and δŝ in various combinations. With the aid of a significant quantity of algebra, it

can be shown that,

||ψ′ω0 + ψ0δω|| ≤ C1||δŝ||1, (6.1.10)

and

∥∥∥∥ 1

ϕ0
M0∇δŝ+

1

ϕ0
M ′(ŝ0)∇ ŝ0

∥∥∥∥ ≤ C2||δŝ||1, (6.1.11)

where C1, C2 are functions of ||ŝ0||∞ and ||∇ŝ0||∞. This assumes that ϕ−1 is chosen to be ψ−1/2,

φ−1/2, φ, or 1.

6.1.2 Viscosity Formulation

Linearization of the the FOSLS viscosity form is developed in a similar fashion. To produce

L′V (U0V )[δUV ], where UV =
(
u, U, p

)
, the only nonlinear term in this formulation is in (5.2.3),

µ̂
(
U + UT

)
.

To simplify this use the definition of strain rate (2.3.5) to get

2µ̂ε̇.

Using the same method used to find (6.1.2),

(2µ̂ε̇)′ = 2
(
µ0ε̇0

+ µ′ε̇
0

+ µ0δε̇
)
,

which can be written as,

(2µ̂ε̇)′ = 2

(
µ0ε̇0

− 2

3
〈ε̇

0
: ε̇

0
〉−4/3〈ε̇

0
: δε̇〉ε̇

0
+ µ0δε̇

)
.

Treating ε̇ as a column vector yields:

(2µ̂ε̇)′ = 2µ0ε̇0 + 2

(
µ0I −

2

3
µ̂−4

0 ε̇0ε̇0
T

)
δε̇. (6.1.12)
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Therefore, the linearization of the velocity-gradient viscosity formulation is:

δU −∇δu = −U
0

+∇u0, (6.1.13)

∇ · δu = −∇ · u0, (6.1.14)

∇ · 2
(
µ′ε̇

0
+ µ0δε̇

)
+∇δp̂ = f −

(
∇ · 2µ̂0ε̇0

−∇p̂0

)
, (6.1.15)

∇× δU = −∇× U
0
. (6.1.16)

As with the stress-vorticity fluidity formulation, it will useful to bound the nonlinear portion

of the viscosity fluidity. The only nonlinear term is (5.2.3), the momentum equation. Using the

definition of strain rate (2.3.5), the nonlinearlity can be written

2∇ · µ̂ε̇. (6.1.17)

Recall that µ̂ is defined in (2.3.11), where it is shown to be a function of ε̇,

µ̂(ε̇) =
〈
ε̇, ε̇
〉−1/3

.

This yields

∇µ̂ = −1

3

〈
ε̇, ε̇
〉−4/3∇

〈
ε̇, ε̇
〉
.

Using the product rule, (6.1.17) can be written

2µ̂∇ ·
(
ε̇
)

+ 2∇µ̂ · ε̇.

Putting this together yields

‖2∇ · µ̂ε̇‖ ≤ C4‖ε̇‖−2/3
∞ ‖∇ε̇‖ ≤ C5‖ε̇‖−2/3

∞ ‖∇U‖, (6.1.18)

where C4, C5 are functions of ||u0||∞ and ||∇u0||∞.

6.2 Continuity

In this section a continuity bound is derived for the linearized systems above. The important

issue is to bound

||L′(U0)[δU ]|| ≤ C||δU||1,
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where C involves ||U0||∞ and ||∇U0||∞, || · || is the L2 norm and || · ||1 is the H1 norm. First, use

the triangle inequality to get

||L′(U0)[δU ]|| ≤ ||LδU||+ ||N ′(U0)[δU ]||. (6.2.1)

6.2.1 Fluidity Formulations

The first term in (6.2.1) is just the collection of all the linear terms so,

||LF δUF ||2 = ||Eδu||2 + ||∇ × δu||2 + ||∇ · δu||2 +
∣∣∣∣−∇ · δs+∇δp̂

∣∣∣∣2
≤ ||Eδu||2 + ||∇ × δu||2 + ||∇ · δu||2 +

∣∣∣∣∇ · δs∣∣∣∣2 + ||∇δp̂||2

≤ ||Eδu||2 + ||∇ × δu||2 + ||∇ · δu||2 + 2||δu||2

+
∣∣∣∣∇ · δs∣∣∣∣2 +

∣∣∣∣∇× δs∣∣∣∣2 + 2||δs||2

+ ||∇δp̂||2 + ||δp̂||2

≤ 2||δu||21 + 2||δs||21 + ||δp̂||21 = 2||δUF ||21.

Therefore,

||LF δUF || ≤
√

2||δUF ||1 (6.2.2)

Now a bound is found for the nonlinear terms.

||N ′F (U0F )δUF ||2 = ||φ′σ′0 + φ0δσ
′||2 + ||ψ′ω0 + ψ0δω||2 +

∥∥∥∥ 1

ψ0
M0∇δŝ+

1

ψ0
M ′(ŝ0)∇ ŝ0

∥∥∥∥2

≤ ||(φ0I + σ′0 σ
′
0
T )δσ′||2 + ||ψ′ω0 + ψ0δω||2 +

∥∥∥∥ 1

ψ0
M0∇δŝ+

1

ψ0
M ′(ŝ0)∇ ŝ0

∥∥∥∥2

Using the bounds established in (6.1.9), (6.1.10), (6.1.11),

≤ 9φ0||δσ′||2 + C1
2||δσ̂′||2 + C2

2||δσ̂′||21

≤ C3||δσ̂′||21. (6.2.3)

where C3 = 3Max(9, C1
2, C2

2). Consider the linearized functional:

FL(δUF ; U0F , f) := ||L′F (U0F )δUF − (f − LF (U0F ))||2

Now, the continuity of FL in H1 will be proven using the discussion above.
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Lemma 6.2.1. (Continuity of the Augmented Fluidity Linearized Functional) Let L′F (U0F )[δUF ]

represent the linearization of the fluidity form about the approximation U0F . Then, there exists a

constant, C, depending on ‖U0F ‖∞ and ‖∇ ŝ0‖∞, such that

‖L′F (U0F )[δUF ]‖ ≤ C‖δUF ‖1. (6.2.4)

Proof. We have

||L′F (U0F )δUF ||2 ≤ ||LF δUF ||2 + ||N ′F (U0F )δUF ||2

From bounds (6.2.2) and (6.2.3)

≤ 2||δUF ||21 + C3
2||δŝ||21

Therefore, C =
√

2Max(2, C3
2) and FL is continuous in H1.

Showing continuity for the basic fluidity formulation is exactly the same as for the augmented

continuity with Equations (6.1.5) and (6.1.8) removed. This would result in a smaller C.

6.2.2 Viscosity Formulation

The proof of continuity for the velocity-gradient viscosity formulation follows the same format

as for the augmented fluidity formulation. Start by bounding the linear portion of L′V (U0V )[δUV ].

||LV δUV ||2 = ||δU −∇δu||2 + ||∇ · δu||2 + ||∇δp̂||2 + ||∇ × δU ||2

≤ ||δU ||2 + ||∇δu||2 + ||∇ · δu||2 + ||∇δp̂||2 + ||∇ × δU ||2

≤ ||∇δu||2 + ||∇ · δu||2 + 2||δu||2

+ ||δU ||2 + ||∇ × δU ||2 + 2||∇δU ||2

+ ||∇δp̂||2 + ||δp̂||2

≤ 2||δu||21 + 2||δU ||21 + ||δp̂||21 = 2||δUV ||21.

Therefore,

||LV δUV || ≤
√

2||δUV ||1 (6.2.5)
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Now a bound is found for the nonlinear term.

||N ′V (U0V )δUV ||2 =
∥∥∇ · µ (U + UT

)∥∥2

=
∥∥2∇ · µε̇

∥∥2

Using the bound established in (6.1.18),

≤ C5
2‖ε̇‖−4/3

∞ ‖∇U‖2

≤ C5
2‖ε̇

0
‖−4/3
∞ ‖∇δU‖2. (6.2.6)

Now, Consider the linearized functional:

FV (δUV ; U0V , f) := ||L′V (U0V )δUV − (f − LV (U0V ))||2

Now, the continuity of FV in H1 will be proven using the discussion above.

Lemma 6.2.2. (Continuity of the Viscosity Linearized Functional) Let L′V (U0V )[δUV ]

represent the linearization of the viscosity form about the approximation U0V . Then, there exists a

constant, C, dependent on ‖U0V ‖∞, ‖µ0‖∞, and ‖∇µ0‖∞, such that

‖L′V (U0V )[δUV ]‖ ≤ C‖δUV ‖1. (6.2.7)

Proof. We have

||L′V (U0V )δUV ||2 ≤ ||LV δUV ||2 + ||N ′V (U0V )δUV ||2

From bounds (6.2.5) and (6.2.6)

≤ 2||δUV ||21 + C5
2||δσ̂′||21

Therefore, C =
√

2Max(2, C2
5 ) and FV is continuous in H1.
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6.3 Coercivity

In this section, the coercivity of the FOSLS functionals is discussed. In general, the coercivity

of Fréchet linearizations of all forms is an open question. This is primarily due to boundary

conditions. In this section, the question is set in the context of known results.

First, consider the viscosity form. The full Fréchet linearization is quite complex and has

not been thoroughly analyzed to date. However, consider a Picard-type linearization in which the

viscosity, µ, is evaluated at the current approximation. Then, the momentum equation, the only

nonlinear term, takes on the form

∇ · µ̂0(δU + (δU)T )−∇p. (6.3.1)

It was shown in [34] that, with normal stress boundary conditions, if 0 < c0 ≤ µ̂0 ≤ c1 < ∞,

then the linearized functional is coercive with U + UT ∈ H(div) and u ∈ H1. With the boundary

conditions considered here, or if µ̂0 is not bounded above and below, the result is an open question.

Now, consider the full viscosity functional with the addition of the curl and trace equations,

(5.2.1)-(5.2.5), again using the Picard-type linearization in (6.3.1) and normal stress boundary

conditions. It is straight forward to establish that, when the trace constraint is enforced, the

linearized viscosity functional is then coercive with U ∈ H(div) ∩H(curl) and u ∈ H1. For simple

domains this yields U ∈ H1. However, the result remains open for the boundary conditions used

here.

Consider the basic fluidity formulation found in (5.4.2)-(5.4.6), equations. The proofs in [13]

and [34] can be modified to show that, with either full velocity boundary conditions or full normal

stress boundary conditions, the linearized basic fluidity functional presented in (6.1.4), (6.1.6),

(6.1.7) is coercive with s ∈ H(div) and u, p ∈ H1. This result holds even if φ = ψ = 0. With

the periodic domain and mixed velocity and normal stress boundary conditions, as studied in this

paper, the same result appears to be obtainable, but has not yet been established.

If the augmented fluidity functional is formed using the full set of equations, (5.4.20), and

either full velocity or full normal stress boundary conditions, in a simple domain, and φ, ψ > 0, then
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the linearized from presented in (6.1.2)-(6.1.8) can be shown to be coercive with s, ω, p, u ∈ H1.

This can be established by two approaches. The first is to use the result in the previous paragraph

and show that the last two equations of (5.4.20) enforce a curl constraint. The second is by

applying the theory of Agmon, Douglis, and Nirenberg [4, 9] to the differential blocks in (5.4.20).

It is straightforward to confirm that the system involving the last four equations in (5.4.20) is H1-

elliptic in the sense of ADN. (See [9], page 594.) This involves demonstrating that the determinant

of a scaled form of the symbol has the correct properties. Again, with the boundary conditions

presented here, or if φ, ψ are not bounded away from zero, coercivity is an open question.



Chapter 7

Rectangular Glacier

This chapter describes a simple test problem designed to test the performances of the viscosity

and augmented fluidity formulations.

7.1 Problem Setup

To compare the viscosity and augmented fluidity formulations, a simple test is performed

involving an infinitely long glacier sliding down an infinitely long hill. A periodic glacier is used to

approximate the infinitely long glacier. To make computation easier, the physical domain is rotated

so that the computational domain is simply a rectangle. This computational domain has rotated

gravity so that g = [|g| sin(θ),−|g| cos(θ)]T as seen in Figure 7.1. The parameters used in this test

are listed in Table 7.1.

g

θ

z′

x′

LH

g

θ

z′ z
x′

x

L̂

Ĥ

Figure 7.1: A cross section of the rectangular glacier, with the physical domain on the left and the
computational domain on the right.

The boundary conditions used in this test problem mimic those found in the benchmark prob-

lems in the Ice Sheet Model Intercomparison Project for Higher-Order Ice Sheet Models (ISMIP-
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Table 7.1: Parameters used in the test problem

Parameter Value Units

A 4× 10−24 Pa−3s−1

|g| 9.81 m/s2

ρ 900 kg/m3

H, Ĥ 1000, 1 m, km
L, L̂ 10000, 10 m, km
θ 0.05 radians
n 3

HOM) [39]. Stress-free and no-slip boundary conditions are imposed on the top and bottom,

respectively. Periodic boundary conditions are imposed on the left and right sides.

The stress-free boundary conditions for the viscosity formulation are enforced by setting:

σ · n = 0,

where σ · n is the stress vector acting on the plane whose normal is n. In the test problem, this

becomes

σ · n =
(
µ̂
(
U + UT

)
− p̂I

)
· n

=

[
2µ̂U11 − p̂ µ̂U12 + µ̂U21

µ̂U21 + µ̂U12 2µ̂U22 − p̂

][
0

1

]

=

[
U12 + U21

2µ̂U22 − p̂

]
= 0.

Using the fact that the trace condition is enforced by setting Û22 = −Û11, the conditions for the

top of the domain are U12 + U21 = 0 and 2µ̂U11 + p̂ = 0.

The same boundary condition for the augmented fluidity formulation is:

σ · n =
(
s− p̂I

)
· n

=

[
s11 − p̂ s12

s12 −s11 − p̂

][
0

1

]

=

[
s12

s11 + p̂

]
= 0.
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The no-slip condition means that the bottom of the glacier is frozen to the bed, or

u(x, 0) = 0.

This yields the additional condition that the derivative of velocity in the x direction is also zero,

that is,

∂u(x, 0)

∂x
= 0.

For the viscosity formulation, this translates into U11 = 0 and U21 = 0 at the bed of the glacier.

The boundary conditions for the augmented fluidity formulation are more complicated since the

gradient of velocity needs to be reconstructed. The resulting boundary conditions are:

∇u · t =
1

2

[
φs11 φs12 − ψω

φs12 + ψω −φs11

]
·

[
1

0

]
= 0

[
φs11

φs12 + ψω

]
= 0.

This implies s11 = 0 and φs12 + ψω = 0 on the bottom. The complete boundary conditions are

found in Table 7.2.

Table 7.2: Boundary conditions for the Rectangular test problem

Viscosity Formulation Fluidity Formulation
Bottom Top Sides Bottom Top Sides

u1 = 0 U12 + U21 = 0 Periodic u1 = 0 s12 = 0 Periodic
u2 = 0 2µ̂U11 + p̂ = 0 u2 = 0 s11 + p̂ = 0
U11 = 0 s11 = 0
U21 = 0 φs12 + ψω = 0

Since the domain with its boundary conditions is constant along the x direction, the velocity

profile is of the form u = [u1, u2]T = [f(z), 0]T . Using a gravity based forcing function, f =
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[f1, f2]T = ρ̂g, as the right hand side yields an exact solution:

s12(x, z) = f1(Ĥ − z),

ω(x, z) = −cωf1(Ĥ − z),

p̂(x, z) = −f2(Ĥ − z),

u1(x, z) =
1

8
f1

3(Ĥ4 − (Ĥ − z)4),

u2(x, z), s11(x, z) = 0,

where cω ≈ −0.682328 is the real root of cω
3 + cω − 1 = 0. When using quadratic finite elements,

this solution is nearly within the finite element space. This results in solving to machine precision

on the coarsest grid, which obscures the numerical analysis. To get out of the finite element space

while remaining similar to the physics-based, exact solution, the forcing function is modified to:

f =

[
1

2
π sin

(πz
2

)
, −1

2
π sin

(πz
2

)]T
. (7.1.1)

This results in the exact solution seen in Table 7.3.

Table 7.3: Exact solution to the viscosity and augmented fluidity formulations on the rectangular
domain using the forcing function in equation (7.1.1)

Viscosity Formulation Fluidity Formulation

U11 = 0 s11 = 0
U12 = 1

2 cos3
(
πz
2

)
s12 = cos

(
πz
2

)
U21 = 0 ω = cω cos

(
πz
2

)
p = cos

(
πz
2

)
p = cos

(
πz
2

)
u1 =

sin(πz2 )(cos(πy)+5)

6π u1 =
sin(πz2 )(cos(πy)+5)

6π
u2 = 0 u2 = 0

Looking at the velocity profile for the solution in Table 7.3, notice that velocity gradients go

to zero at the surface. The glacier moves like a solid chunk and the viscosity becomes infinite at

the surface. Figure 7.2 displays the velocity profile and the profile of ε̇
− 2

3
e as a function of height.

Looking at ε̇
− 2

3
e as a function of thickness confirms that the viscosity becomes infinite at the surface.
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Figure 7.2: The velocity profile (left) shows the flattening near the surface of the glacier. The
problematic portions of the viscosity shows the rapid growth of viscosity as z → Ĥ = 1 km.
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7.2 Numerical Results

For comparison, both the viscosity and augmented fluidity formulations were run on the

rectangular glacier problem under the same conditions. Both systems were solved in FEniCS using

CG preconditioned with BoomerAMG from hypre [1, 31]. The scaling in the augmented formulation

is ϕ = ψ. In order to get the viscosity formulation to converge, the constant, c, in the viscosity

definition from equation (2.3.12) was chosen to be 1 × 10−4. This value was selected by varying

c from 1 × 10−1 to 1 × 10−16 by powers of 10 and looking for which c gave the best balance

between performance accuracy. It should be noted that smaller values of c produce approximate

solutions that are more accurate. However, the smaller constants decrease AMG performance to

the point that comparison becomes difficult. Since the viscosity form uses a regularization constant

in equation (2.3.12), the right-hand side is properly calculated to include this constant so that both

formulations converge to the solution in Table 7.3.

Computations were performed using biquadratic finite elements on a uniform mesh with mesh

spacing h. Figure 7.3 shows how the FOSLS functional is reduced with refinement. Since refinement

is uniform with quadratic elements on a uniform grid, the FOSLS functional is expected to reduce

with O(h2) [10]. It can be clearly seen in Figure 7.3 that both formulations are working as theory

predicts.

The next step is to look at how each formulation converges to the exact solution in the L2

norm. If the FOSLS functional has full H1 regularity and quadratic elements are used, the L2 error

is expected to decrease with O(h3) [10]. Figure 7.4 shows that this is true for both formulations, but

the augmented fluidity formulation yields a smaller L2 error. In this test, the viscosity formulation

had approximately 54 times the L2 error of the augmented fluidity formulation on the same grid.

Not only does the augmented fluidity formulation require less work, as explained in the following

paragraph, it is also more accurate.

Next, we compare the work each formulation required to achieve convergence. Figure 7.5

shows how AMG performed on the two formulations. The AMG convergence factor is the factor



66

●

●

●

●

●

●

●

■

■

■

■

■

■

■

● Fluidity

■ Viscosity

O(h)

Oh2

1200 4320 16320 63360 249600 990720 3947520

10-1

10-2

10-3

10-4

10-5

Degrees of Freedom

L
u

h
-

f


Functional Convergence

Figure 7.3: The FOSLS functional for the two formulations as a function of the number of degrees
of freedom using an uniform grid with uniform refinement.
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by which the residual is reduced in one V(1,1)-cycle. Notice the that maximum AMG convergence

factor for the viscosity formulation is CFv = 0.984, while the maximum for the augmented fluidity

formulation is only CFf = 0.591. A quick calculation shows that about 33 V-cycles with conver-

gence factor CFv are required to achieve a reduction equal to one step with convergence factor CFf .

It takes the viscosity formulation 33 times the work to reduce the residual to the same level as with

the augmented fluidity formulation. This is examined further by looking at the total number of

work units (WU) required by each formulation to reach the solution (Tables 7.4-7.5). A work unit

is the amount of work required to calculate a residual on the fine grid.

One of the nice features of Newton-FOSLS-NI methodology is that most of the work is done

on the coarse grid. Starting with a uniform 20 × 2 grid, the grid is refined 6 times to get a final,

fine grid. On the coarsest grid, the Newton iteration is initialized with a reasonable initial guess.

On subsequent levels, the solution from the previous level is used as the initial guess.
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Figure 7.6: This graph show the number of Newton iterations required to solve the nonlinear
problem on each level of refinement with 0 denoting the coarsest grid and 6 the finest.
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Figure 7.6 shows the number of Newton iterations required to solve the nonlinear problem.

Notice that most of the iterations occur on the coarse grid for the augmented fluidity formulation.

For problems with sufficient regularity, it can be shown that as the mesh is refined, only one Newton

step and a fixed number of AMG cycles are required to resolve the solution [17, 18].

Table 7.4: Summary of the viscosity formulation’s numerical performance. E is the number of
elements. N is the number of Newton steps. Comp lists the cycle complexity for each Newton step.
WU is the total number of work units for that level. Functional refers to the nonlinear functional
norm.

Level E Nonzeros N Comp V-Cycles WU Functional

1 80 72000 22 1.57 60.82 1.49 8.52× 10−2

2 320 276480 4 1.78 55.25 1.07 2.85× 10−2

3 1280 1082880 6 1.94 96.67 11.94 1.05× 10−2

4 5120 4285440 10 1.97 112.90 93.57 2.40× 10−3

5 20480 17049600 8 2.01 129.00 346.70 5.98× 10−4

6 81920 68014080 6 2.03 130.30 1061.00 1.49× 10−4

7 327680 271687680 3 2.04 124.30 2033.00 3.76× 10−5

Total 3550.00

Table 7.5: Summary of the augmented formulation’s numerical performance.

Level E Nonzeros N Comp V-Cycles WU Functional

1 80 72000 4 1.34 13.50 0.05 1.36× 10−1

2 320 276480 3 1.62 14.67 0.19 3.25× 10−2

3 1280 1082880 3 1.78 16.67 0.94 8.21× 10−3

4 5120 4285440 3 1.86 17.67 4.15 2.06× 10−3

5 20480 17049600 2 1.91 18.00 11.49 5.15× 10−4

6 81920 68014080 1 1.95 17.00 22.11 1.29× 10−4

7 327680 271687680 1 1.96 19.00 99.34 3.22× 10−5

Total 138.30

To calculate the cost of both formulations, a test was run with an initial guess of the exact

solution injected to a coarse grid corresponding with Level 0. This simulates solving the nonlinear

problem on the coarse grid (Level 0) by some means and interpolating that solution to Level 1.

The idea is that since the coarse grid is very sparse, the full spectrum of nonlinear solvers could

be employed at minimal cost. The summary of these runs can be found in Tables 7.4-7.5. A single

work unit is equal to the work required to perform one relaxation on the fine grid, in this case Level
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6. Then, the proportional number of work units for each level is the product of nonzeros, cycle

complexity, and the number of V-Cycles for that level, divided by the number of nonzeros on the

fine grid. Since V(1,1) cycles were used, this number is multiplied by 8/3. V(1,1) cycles perform

one relaxation before and one after the coarse grid correction. For the augmented fluidity run,

the total number of work units was 138.30, which is approximately the work required to perform

139 relaxations on the fine grid. In comparison, the viscosity formulation took 3550.0 work units

to solve, which is just over 25 time more expensive than the augmented fluidity formulation for a

significantly less accurate in the L2 norm.

This test problem shows that clearly, a fluidity-based FOSLS formulation performs better

than a viscosity-based formulation. The next couple of test problems look into how to properly

optimize a fluidity-based FOSLS formulation, and compare said formulation to a commonly used

Taylor-Hood Galerkin method described in 5.1.



Chapter 8

ISMIP: Benchmark B

This chapter explores benchmark Experiment B from the Ice Sheet Model Intercomparison

Project (ISMIP). The performance of the fluidity formulations is compared with the Taylor-Hood

Galerkin method along with results from a database of solutions from other models solving this

problem. Additionally the difference between the basic and augmented fluidity formulations is

examined.

8.1 Problem Setup

The next test comes from the Ice Sheet Model Intercomparison Project (ISMIP), specifically

Experiment B [39]. The shape of the ISMIP-HOM-B benchmark domain is schematically shown in

Figure 8.1 with an exaggerated surface slope.

g

zb(x)

zs(x)

θ

z

x

H

L

Figure 8.1: A cross section of the benchmark Experiment B.



72

The surface of the glacier is prescribed by

zs(x) = − tan(θ)x,

and the basal topography is prescribed by

zb(x) = zs(x)−H + βH sin(wx).

Unlike the rectangular glacier in Chapter 7, this domain is not rotated. The parameters used in

Experiment B are listed in Table 8.1.

Table 8.1: Parameters used in the benchmark Experiment B

Parameter Value Units

A 10−16 Pa−3 a−1

|g| 9.81 m/s2

ρ 910 kg/m3

H 1 km
L 10 km
θ 0.5◦

w 2π/L
β 0.5
n 3

Seconds per year 31,556,926 s/a

The boundary conditions used in Experiment B are similar to those found in the rectangular

glacier problem. A no-slip condition is enforced at the bed. This also implies that the directional

derivative in the direction of the tangent of the bed is equal to zero. A no-stress condition is

enforced on the surface. Periodic boundary conditions are imposed on the left and right sides,

which simulate an infinitely long glacier. The boundary conditions are summarized in Table 8.2.

Table 8.2: Boundary Conditions for benchmark B

Bottom Top Sides

u1 = 0 σ̂ · n = 0 Periodic
u2 = 0

∇u · t = 0
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8.2 Numerical Solution Results

This section discusses the solution to benchmark B using the augmented fluidity formulation

with ψ = 1/2
(
s11

2 + s12
2 + ω2

)
and ϕ = 1. The solution to benchmark B is approximated using

the NI-Newton-FOSLS method implemented in the FEniCS Project using CG preconditioned with

BoomerAMG from hypre [31, 1]. The problem is solved by initially using the basic fluidity formu-

lation, (5.4.2)-(5.4.6), on the first two grids with an LU solver, to get a good initial guess. After

that, the remaining grids are solved using the augmented fluidity formulations from Section 5.4.

Uniform refinement is used for the first two grids and adaptive mesh refinement is used for the

remaining grids. The solution from the augmented fluidity formulation is then compared with a

compilation of various solutions from other Stokes and higher order methods models obtained from

The Cryosphere at http://www.the-cryosphere.net/2/95/2008/.

Figure 8.2 shows the horizontal and vertical surface velocities as well as basal shear stress and

the difference between basal pressure and hydrostatic pressure, (ρ|g|H−p(x, zb(x))). The database

for this benchmark has several collected solutions from different models [39]. For comparison,

these models are categorized as either a full-Stokes model or a higher-order model. Looking at

Figure 8.2, it is easy to see that the fluidity formulation produces a solution that agrees with the

average full-Stokes model and the Taylor-Hood method.

Another interesting aspect is how the viscosity is resolved with the augmented fluidity for-

mulation. Since the augmented fluidity model does not impose any regularization on viscosity, it

should be allowed to become as large as necessary. Another way of looking at this is that fluidity,

the inverse of viscosity, can be as small as necessary. Figure 8.3 shows the log fluidity at the surface

for the augmented fluidity formulation as well as the Taylor-Hood method. As expected, the aug-

mented fluidity method produces smaller values corresponding to larger viscosities. Unfortunately,

without an exact solution, it is unknown which value of fluidity is more physically correct.

Simply having smaller fluidities is not the full story. The fluidities calculated from the Taylor-

Hood method have an add source of error. Since, s11 and s12 are not naturally calculated in the

http://www.the-cryosphere.net/2/95/2008/
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Figure 8.2: Various graphs of the augmented fluidity solution to benchmark Experiment B compared
with other Stokes and higher order models. The light gray and gray bands represent one standard
deviation of the higher order methods and full-Stokes models, respectively, with the average of the
Stokes models represented as the gray line. The solid blue line is the solution calculated using the
augmented fluidity model. The dashed red line is a solution obtained by using a viscosity based
Galerkin method with Taylor-Hood elements as described in [30].



75

Fluidity

Taylor-Hood

0 2 4 6 8 10
-11

-10

-9

-8

-7

-6

Distance (km)

Lo
g 1
0
(ϕ

)

Fluidity

Figure 8.3: Fluidity at the surface as calculated by the augmented fluidity formulation (dashed
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Taylor-Hood method, they must be approximated from u1 and u2 using numerical derivatives.

This will reduced the the order of accuracy by a power of h. However, in the FOSLS formulation

s11 and s12 are primary dependent variables and are approximated in a discrete subspace of H1.

The difference between the two different approximation can clearly be seen in Figure 8.4. Clearly,

the Taylor-Hood method is going to have a difficult time recovering accurate fluidities with the

numerical noise around the zeros of s11 and s12.
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Figure 8.4: The two components of the deviatoric stress, s11 and s12, evaluated at the surface
as calculated using the augmented fluidity formulation (blue line) and a Galerkin method using
Taylor-Hood elements (dashed red line).

Figure 8.5 shows contour plots for φ, log(φ), ψ, log(φ). The plots involving φ show that over

the majority of the domain, φ is almost constant. The only places where the fluidity goes to zero

are the two points near the surface above the peak and trough of the basal topography. This is

made clearer in the log(φ), and further shows how small the region where φ starts to diminish.

Equation (5.3.6) show that φ = 0 where there are solid-body rotation locally. Examining the

velocity streamlines around the point where φ is small, shows a rounded behavior, which could

indicate where the ice is rotating.

The plots involving ψ just show that ψ is well bounded above zero. In fact, the minimum is
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greater than 0.24. The range of ψ is only an order of magnitude. This shows why scaling by ψ−1/2

is not as effective as φ−1/2 for improving AMG performance.

Finally, the results of Adaptive Mesh Refinement on the benchmark B glacier for the aug-

mented fluidity formulation are examined. Another useful aspect of solving a system using FOSLS

is that the functional provides a locally sharp and globally reliable a posteriori error measure [7].

The adaptive refinement strategy known as ACE, described in [19, 35], was employed. The goal of

ACE is to provide the best accuracy per computational cost. A side product of the ACE algorithm

is that it constructs a nearly optimal grid and nearly equally distributed functional error.

After four levels of uniform refinement, the FOSLS functional is reduced to 1.02× 10−3 with

69504 degrees of freedom, whereas with four levels of ACE refinement, the FOSLS functional is

reduced to 2.90 × 10−3 with 28806 degrees of freedom. For less than half the number of degrees

of freedom, ACE results in a functional that is the same magnitude when compared with uniform

refinement.

The grid produced by ACE, displayed in Figure 8.6, is refined near locations were fluidity is

nearly zero (viscosity is large) and around the line where φ/ψ = 1 or, equivalently, where ω = 0.

The ACE algorithm promises to provide a greater advantage in problems for which the solution is

more complex.

8.3 Comparing Fluidity Formulations

This section compares the performance of both the basic and augmented fluidity formulations.

Currently, the augmented fluidity method (5.4.9)-(5.4.16) does not produce the optimal finite-

element convergence rate of O(h2) for the benchmark Experiment B domain. The addition of the

curl equations, (5.4.15)-(5.4.16), reduce the finite-element convergence. The convergence of the

least-squares functional norm for various test is found in Figure 8.7.

These test involve scaling the curl equation by functions that either weaken/deemphasize

(φ) or strengthen/emphasize (ψ−1/2 or φ−1/2) the locations where φ is small. Adding the scaling

produces the an additional nonlinearity, which is dealt with by a Picard-type linearizion that
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Figure 8.5: Contour plots of φ, log(φ), ψ, log(ψ). The final plot show the streamlines for Experiment
benchmark B.
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(a)

(b)

(c)

(d)

Figure 8.6: (a) The coarse grid, with 384 degrees of freedom, reduced the functional to 1.22. (b)
After four uniform refinements resulting in 69504 degrees of freedom, the functional is reduced to
1.02× 10−3. (c) Starting on the coarse grid and refining four times with ACE results in 28806 and
reduced the functional to 2.90× 10−3. (d) An additional three ACE refinement to 210954 degrees
of freedom reduced the functional to 2.14× 10−4.
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generates the scaling function based on the previous Newton step. The tests performed with the

strong scalings started with two NI steps of the unscaled system to guarantee that the solution is

in the basin of attraction. All of the test are performed on quadratic Lagrange elements for all

unknowns. The “basic” case refers to solving the basic fluidity formulation, (5.4.2)-(5.4.6), and was

still solved on quadratic Lagrange elements.

It should be noted that Figure 8.7 should not be used to compare the relative size of the

least-squares functional, since the functional for each test depend on the scaling. This means that,

since φ−1/2 is greater than one a majority of the domain, the functional associated with that scaling

will be necessarily larger than the unscaled test. Figure 8.7 should just be used to compare the

relative convergence rates.
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Figure 8.7: The functional norm convergence for ψ = 1/2
(
s11

2 + s12
2 + ω2

)
(left) and ψ = 1 (right)

with various scalings of the curl equations. For the case ψ = 1, the scaling ψ−1/2 still uses the
1/2

(
s11

2 + s12
2 + ω2

)
definition only for the scaling. The “basic” case is solving the system in

(5.4.2)-(5.4.6).

One possible explanation for this diminished behavior is due to the reduced regularity of the

solution in a neighborhood around locations where φ ≈ 0. However, the basic fluidity form without

the additional curl equations does converge optimally. The optimal O(h2) convergence rate can be

recovered by scaling the curl equations by φ. This process “unweights” the problematic regions, and

essentially ignores the locations of reduced regularity. Unfortunately, this modification produces

degraded AMG performance, which can be seen in Figure 8.8. For these reasons, an iterative solver

for basic fluidity system would be very useful for this type of problem.
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Figure 8.8: The CG preconditioned with AMG convergence factor (top) for ψ =
1/2

(
s11

2 + s12
2 + ω2

)
(left) and ψ = 1 (right) with various scalings of the curl equations. The

bottom graphs indicate how many iterations are required to reduce the functional by 0.1 at the
given convergence factor. Each one of these points was found by taking the linear system from the
final newton step and solving it with a zero right hand side and random initial guess. The points
that were not plotted, were removed because they did not converge within 1000 iterations. For the
case ψ = 1, the scaling ψ−1/2 still uses the 1/2

(
s11

2 + s12
2 + ω2

)
definition only for the scaling.
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Of the tests listed in Figures 8.7, Solving the basic fluidity formulation produces the more

accurate solutions as seen in Figure 8.9. Notice that all of the test experience reduced convergence

as the mesh gets refined. This is because the reference solution is from a data set provided in [30].

It is possible that the solution from that paper is only accurate to 1 × 10−4, or it is possible that

the first-order systems are converging to a close but slightly different solution.

The solution from the test where ψ = 1/2
(
s11

2 + s12
2 + ω2

)
with unscaled curl equations,

was used to produce the graphs in Figures 8.2-8.5 because it produced accurate and interesting

solutions.
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Figure 8.9: The L2 convergence of the horizontal surface velocity, u1, for ψ = 1/2
(
s11

2 + s12
2 + ω2

)
(left) and ψ = 1 (right) with various scalings of the curl equations. The solution provided in [30] is
used as the reference, ur. For the case ψ = 1, the scaling ψ−1/2 still uses the 1/2

(
s11

2 + s12
2 + ω2

)
definition only for the scaling. The “basic” case is solving the system in (5.4.2)-(5.4.6).

One such direction forward in recovering good AMG convergence factors while still main-

taining optimal finite-element convergence would be to remove the curl equations all together and

leverage an auxiliary space multigrid solvers that target H(div)-elliptic systems, such as ADS [44].

Without the curl equations the augmented fluidity formulation can no longer be H1-elliptic. In-

stead, the system becomes closer to an H(div)-type elliptic system in s11, and s12, opening up the

possibility of using an AMS/ADS solver applied as a block preconditioner to these variables.



Chapter 9

ISMIP: Benchmark D

This chapter discusses a test problem that involves basal sliding, which can cause large

viscosities and is a good test case for a fluidity-based formulation.

9.1 Problem Setup

The next test problem also comes from the ISMIP series of benchmarks, specifically bench-

mark D. The domain used in benchmark D, like the rectangular problem from Chapter 7, is an

infinitely long rectangular ice sheet flowing down an infinitely long hill. The resulting domain

is a rectangle with periodic boundary conditions. The interesting feature of this problem is the

bed experiences variable basal sliding, which is enforced by using the Rayleigh friction boundary

conditions:

u · n = 0, n · σ · t = β2u · t, (9.1.1)

where n and t are the boundary normal and tangent, and β2 is the friction coefficient in Pa a m−1

[30]. In the case of benchmark D [39],

β2 = 1000 + 1000 sin(wx).

This is depicted as the red function in Figure 9.1, where the peak indicates where β2 = 2000 Pa a

m−1 and the trough is where β2 = 0 Pa a m−1. It is also important to note that glacier slope is

θ = 0.1◦, but the computational domain is rotated to create a perfect rectangle. Table 9.1 list the

various parameters in this benchmark.
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Ĥ

Figure 9.1: The domain for benchmark D. The red function is a depiction of the size of β2.

Table 9.1: Parameters used in the benchmark D

Parameter Value Units

A 10−16 Pa−3 a−1

|g| 9.81 m/s2

ρ 910 kg/m3

Ĥ 1 km
L̂ 10 km
θ 0.1◦

w 2π/L
n 3

Seconds per year 31,556,926 s/a
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The first boundary condition in (9.1.1) is the no-penetration condition enforcing that ice

not go through the boundary. The second condition is the expression for basal sliding. If β2 is

infinite, then u · t = 0 and (9.1.1) reduces to simple no-slip boundary conditions as in an ice sheet

with a frozen bed. On the other hand, when β2 is very small, the ice is allowed to slip freely

down the bed, which is a place where high viscosities are bound to show up. In this case, fluidity-

based formulations are a better approach, which will be demonstrated in Section 9.2. Table 9.2

summarizes the boundary conditions for this problem.

In the Taylor-Hood Galerkin formulation from Section 5.1, (9.1.1) prevents the term,
∫

Γ n ·

σ · v ds = 0, from completely vanishing. Instead∫
Γ
n · σ · v ds =

∫
Γs

n · σ · v ds = −
∫

Γs

β2u · v ds = 0

In the FOSLS formulations, (9.1.1) is enforces via explicitly adding them as boundary functionals.

Table 9.2: Boundary conditions for benchmark D

Bottom Top Sides

u · n = 0 σ̂ · n = 0 Periodic
n · σ̂ · t = β2u · t

9.2 Numerical Solution Results

This section discusses the solution to benchmark D using the augmented fluidity formulation

with ψ = 1/2
(
s11

2 + s12
2 + ω2

)
and ϕ = 1. Just like with benchmark B in Chapter 8, this

problem is solved with the NI-Newton-FOSLS method by solving equations (5.4.2)-(5.4.6) on the

first two grids with just the basic fluidity formulation to ensure the solution is in the basin of

attraction for Newton. This is because the curl equations in the augmented formulation can derail

Newton if not properly treated. After that, the approximation on each grid is obtained using the

augmented fluidity formulation. This method is implemented in the FEniCS and Dolfin finite-

element packages for python [31]. The resulting solution is then compared with a compilation of
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results from other Stokes and higher order methods models obtained from The Cryosphere at

http://www.the-cryosphere.net/2/95/2008/. This comparison is found in Figure 9.2.
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Figure 9.2: Various graphs of the augmented fluidity solution to benchmark D compared with
other Stokes and higher order models. The light gray and gray bands represent one standard
deviation of the higher order methods and full-Stokes models, respectively, with the average of the
Stokes models represented as the black line. The solid blue line is the solution calculated using the
augmented fluidity model. The dashed red line is a solution obtained by using a viscosity based
Galerkin method with Taylor-Hood elements similar to [30].

One of the main points of interest from Figure 9.2 is that the augmented fluidity formulation

http://www.the-cryosphere.net/2/95/2008/
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matches almost identically with the Galerkin method. Considering the wide spread of solutions,

especially with regards to the horizontal surface velocity, the fact that the fluidity and Galerkin

methods agree is good evidence that fluidity method is solving the problem accurately.

Another interesting feature shows up in the pressure deviation plot. Notice that the oscillating

feature in the right side of that plot is not present in the higher-order models. This is probably

due to the fact that these higher-order models reduce the complexity of the full-Stokes system by

neglecting various strain rates. Apparently, these neglected strain rates are important in capturing

the full behavior of the ice.

Next, log(φ) on the surface is computed for both the augmented fluidity and Galerkin meth-

ods. This can be seen in Figure 9.3. Note that multiplying this plot by -1 results in a plot of log(µ)

to measure viscosity. Notice that the augmented fluidity method produces significantly smaller

fluidities, which correspond to larger viscosities. The left peak is about 18 orders of magnitude

smaller, and the right peak is about 17 order of magnitude smaller. What is more interesting is

that the left peak of the Galerkin method appears to be capped at just under ×10−8. This spot

corresponds to where β2 is largest, which closely simulates a place where the bed is frozen.

As discussed in Section 8.2, s11 and s12 must be examined on the surface to get the full story

as to why the fluidity-based formulation produces smaller fluidities. Recall that, in the fluidity-

based formulation, s11 and s12 are primary dependent variables and are approximated in a discrete

subspace of H1. However, the only primary dependent variables of the Galerkin method are u1,

u2, and p. This means, to calculate s11 or s12, which is required to calculate fluidity, numerical

derivatives of u1, u2 are taken. This will affect the accuracy of s11 or s12. The FOSLS formulation

will not have this problem.

Another useful feature of using a FOSLS formulation in which s11 and s12 are primary

dependent variables is that they can be used directly in boundary conditions. For this problem,

the no-stress boundary condition is σ̂ · n = 0. In the Galerkin method, this boundary condition

is implicitly enforced [30]. However, when the domain is rotated so the top is horizontal as in

Figure 9.1, this condition becomes s11 + p = 0 and s12 = 0. This means the FOSLS formulation
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Figure 9.3: Fluidity at the surface as calculated using the augmented fluidity formulation (blue
line) and a Galerkin method using Taylor-Hood elements (dashed red line).

can explicitly enforce s12 = 0 by building it into the finite element space.

Figure 9.4 show the values for s11 and s12 at the surface for both the fluidity-based and

Galerkin methods. Now it is easier to see why the left peak of fluidity is stunted for the Galerkin

method. Although both s11 and s12 cross zero for the Galerkin method, they are never both zero

at the same location since s12 = 0 cannot be explicitly enforced. However, for the fluidity-based

formulation s11 = s12 = 0 at two point in the domain since s12 = 0 is strictly enforced.

The last set of figures that examine the solution to this benchmark problem are the contour

plots in Figure 9.5, which help to show where φ, ψ are small. Comparing with the benchmark B

results in Figure 8.5, φ and ψ are generally a couple orders of magnitude smaller in benchmark D.

This is most likely due to the fact that the ice is moving at an almost constant speed down the hill,

which can be seen in the streamlines plot also in Figure 9.5. Like before, φ has two minima on the
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Figure 9.4: The two components of the deviatoric stress, s11 and s12, evaluated at the surface
as calculated using the augmented fluidity formulation (blue line) and a Galerkin method using
Taylor-Hood elements (dashed red line).

surface, which now correspond to the maximum and minimum of β2. Although it is hard to see in

the streamline plot, the velocity is very slightly rotating around these points.

Another interesting feature of these contour plots is that both φ and ψ become very small

near the bed where β2 = 0. When β2 = 0, the basal sliding boundary condition becomes n ·σ ·t = 0,

which is equivalent to s12 = 0 since n = [0,−1] and t = [1, 0]. Additionally, in the locations were β2

is small, the glacier is almost experiencing pure translation. This can be seen in the streamlines plot.

Pure translation will result in small stresses small as well as ω because these are all dependent on the

rates of change of velocity. This type of situation is one reason why the fluidity-based formulations

were developed.

9.3 Comparing Fluidity Formulations

This section compares the performance of both the basic and augmented fluidity formulations.

In order to answer the questions posed at the end of Section 5.4, the next task is to examine how

well the two FOSLS formulations perform given the various parameters for ψ and the scaling of
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Figure 9.5: Contour plots of φ, log(φ), ψ, log(ψ). The final plot show the streamlines for benchmark
D.
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the curl equation. Each of the following figures is organized in the following way. The figures

are split into two plots based on the definition of ψ, where the left plot corresponds to using

ψ = 1/2
(
s11

2 + s12
2 + ω2

)
in Equations (5.4.15) and (5.4.16) and the right corresponds to ψ = 1.

Each of these curves displays the effectiveness of a different scaling on the curl equations. Four

different possible scalings are used, which, in order from strongest to weakest, are φ−1/2, ψ−1/2,

1, and φ. Finally, there is one line that corresponds to solving the basic fluidity formulation in

(5.4.2)-(5.4.6), which is independent of ψ and curl scaling.

The first set of plots examines the functional convergence, which is calculated by evaluating

||L(U) − f || on each gird level, where L represents the formulation applied to the unknowns, U .

Because quadratics are used for the finite-element space, the functional should reduce at a rate of

O(h2). These results can be seen in Figure 9.6.
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Figure 9.6: The functional norm convergence for ψ = 1/2
(
s11

2 + s12
2 + ω2

)
(left) and ψ = 1 (right)

with various scalings of the curl equations. For the case ψ = 1, the scaling ψ−1/2 still uses the
1/2

(
s11

2 + s12
2 + ω2

)
definition for the scaling. The basic case refers to solving the system in

(5.4.2)-(5.4.6).

It should be noted that Figure 9.6 should not be used to compare the relative size of the

least-squares functional, since the functional for each test depend on the scaling. If, for instance,

φ−1/2 is greater than one on a majority of the domain, the functional associated with that scaling

will be necessarily larger than the unscaled test. Figure 9.6 should just be used to compare the

relative convergence rates.

Notice that deemphasizing the locations where φ is small by scaling the curl equation by φ
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lead to improved finite-element convergence. Additionally, the basic fluidity formulation, which is

similar to scaling the curl equations by 0, performs similar to the φ scaling, both of which achieve

O(h2) convergence. However, as the scaling on the curl equation increases, the finite-element

convergence suffers. The idea behind scaling the curl equation is to improve AMG performance,

which is discussed in the next set of plots.

The next set of plots, Figure 9.7, examines the performance of Conjugate Gradient (CG)

preconditions with AMG on the various tests. Each one of these data points are found by taking

the linear system from the final newton step on a grid level and solving it with a zero right hand

side and random initial guess. The missing points are removed because they did not converge to a

relative residual of 10× 10−10 within 1000 iterations.
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Figure 9.7: The CG preconditioned with AMG convergence factor (top) for ψ =
1/2

(
s11

2 + s12
2 + ω2

)
(left) and ψ = 1 (right) with various scalings of the curl equations. The

bottom graphs indicate how many iterations are required to reduce the functional by 0.1 at the
given convergence factor. For the case ψ = 1, the scaling ψ−1/2 still uses the 1/2

(
s11

2 + s12
2 + ω2

)
definition. Levels where AMG did not converge to a relative residual of 10 × 10−10 within 1000
iterations are removed.
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When the curl equations are strongly scaled (i.e by ψ−1/2 or φ−1/2), the AMG performance

increased as seen in Figure 9.7. AMG performance is optimized by scaling the curl equations by

φ−1/2. The performance is further increased by defining ψ = 1 leading to both of the strong scalings

having bounded AMG convergence factors. Clearly, there is a trade off between AMG performance

and finite-element convergence.

The final set of plots examines the accuracy of the solution by calculating ||uf1 − ur1|| on the

surface of the ice sheet, where uf1 is from the appropriate fluidity formulation and ur1 is the reference

solution from [30]. Most of the scaling test achieved a level of accuracy that is least as good as the

solution from [30]. This can be seen in Figure 9.8. When the curl equations has a stronger scaling,

the convergence rate of the L2 approximation decreases.

The solutions for the unscaled system with ψ = 1/2
(
s11

2 + s12
2 + ω2

)
was used to generate

the graphs in Figures 9.2-9.5 because it produced accurate and interesting solutions.
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Figure 9.8: The L2 convergence of the horizontal surface velocity, u1, for ψ = 1/2
(
s11

2 + s12
2 + ω2

)
(left) and ψ = 1 (right) with various scalings of the curl equations. The solution provided in [30] is
used as the reference, ur. For the case ψ = 1, the scaling ψ−1/2 still uses the 1/2

(
s11

2 + s12
2 + ω2

)
definition only for the scaling. The basic case refers to solving the system in (5.4.2)-(5.4.6).

Based on the performance of both formulations on benchmarks B and D, as seen in Fig-

ures 8.7-8.9 as well as Figures 9.6-9.8, it can be concluded that the augmented fluidity formulation

is not optimized for these problems. It is possible that there is a scaling on the curl equations thats

optimizes the trade off between finite-element and AMG performance. However, a possibly better

avenue of research is to find a efficient iterative solver for the basic fluidity formulation. This is
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the topic of future work. The following test problems will only be solved using the basic fluidity

formulation.



Chapter 10

ISMIP: Benchmark E

The chapter discusses another benchmark problem. This time the domain for the problem

is taken from an real-world glacier. Additionally, this benchmark is slit into two experiments: one

with pure no-slip basal boundary conditions and one with a small patch with basal sliding.

10.1 Problem Setup

The next ISMIP benchmark problem considered by this paper is benchmark E. In benchmark

E, a central flow-line from the Haut Glacier d’Arolla in the European Alps is used as the domain

and is depicted in Figure 10.1. The data used to generate this domain is archived on http:

//homepages.ulb.ac.be/~fpattyn/ismip/. Benchmark E consists of two experiments that have

different boundary conditions on the bed of the ice sheet.

For this benchmark, the domain is generated by using quartic spline that exactly interpolates

the data points. Also, the domain is first scaled from meters to kilometers and then the x coordinate

is scaled by an additional 5 to make it so that x ∈ [0, 1]. A new derivative, 1
5
∂
∂x , is used to

compensate for the second scaling. A full list of parameters is found in Table 10.1.

The boundary conditions for this problem are a bit special since there are two test cases. In

both cases, the surface boundary conditions is the usual no-stress condition. However, the basal

boundary conditions are different for each experiment. The first experiment has a no-slip basal

boundary condition. The second experiment has a slippery patch where β2 from Equation 9.1.1

equal zero when 2200 ≤ x ≤ 2500 m. The summary of the boundary conditions for both experiments

http://homepages.ulb.ac.be/~fpattyn/ismip/
http://homepages.ulb.ac.be/~fpattyn/ismip/
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Figure 10.1: A cross section domain of the Haut Glacier d’Arolla used in benchmark E. The blue
patch on the bed indicates where the basal sliding condition is applied in the second experiment.

Table 10.1: Parameters used in the benchmark E

Parameter Value Units

A 10−16 Pa−3 a−1

|g| 9.81 m/s2

ρ 910 kg/m3

w 2π/L
n 3

Seconds per year 31,556,926 s/a
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is found in Table 10.2.

Table 10.2: Boundary conditions for benchmark E

Bed Surface

Experiment 1 u = 0 x ∈ [0, 5000] σ̂ · n = 0

u · n = 0
x ∈ [2200, 2500]Experiment 2 n · σ̂ · t = 0 σ̂ · n = 0

u = 0 Otherwise

10.2 Numerical Solution Results

Sections 8.2 and 9.2 showed that the basic fluidity formulation, represented by equations

(5.4.2)-(5.4.6), is more reliable in terms of finite element convergence and convergence to an approx-

imate solution. For this reason, it is the formulation used to solve the experiments in benchmark E.

The resulting solution is compared with the database of other models and the Taylor-Hood model

from from Section 5.1. From Figures 10.2 and 10.3, it is clear to see that the basic fluidity solution

agrees well with the other compiled solutions for both experiments.

The largest discrepancy between the database and the basic fluidity formulation solution

occurred in the basal shear stress and pressure deviation plots for experiment 2 seen in Figure 10.3.

Recall that Experiment two involves a sharp transition from a no-slip boundary condition to a no-

stress boundary condition. This sudden change cause a singularity in the derivative of the solutions

resulting in poorer convergence. The effects of this singularity are seen throughout the entirety of

experiment 2.

Once again, Figure 10.4 shows that a fluidity-based formulation recovers larger viscosity

(smaller fluidities) than the Taylor-Hood method. Additionally, the fluidity formulation recovers

several peaks that are not resolved by the Taylor-Hood method. This is particularly true around 1

km, between 2 km and 3 km, and 4.5 km. Unfortunately, without an exact solution, it is impossible

to know which fluidity profile is more physically correct.
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Figure 10.2: Surface velocity plots from the basic fluidity solution to benchmark E compared with
other Stokes and higher order models. The light gray and gray bands represent one standard
deviation of the higher order methods and full-Stokes models, respectively, with the average of the
Stokes models represented as the gray line. The solid blue line is the solution calculated using
the basic fluidity model. The dashed red line is a solution obtained by using a viscosity based
Galerkin method with Taylor-Hood elements as described in [30]. Experiment 1 is on the left and
experiment 2 is on the right.
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Figure 10.3: Basal sheer stress and pressure deviation from the basic fluidity solution to benchmark
E compared with other Stokes and higher order models. The light gray and gray bands represent
one standard deviation of the higher order methods and full-Stokes models, respectively, with the
average of the Stokes models represented as the gray line. The solid blue line is the solution
calculated using the fluidity model. The dashed red line is a solution obtained by using a viscosity
based Galerkin method with Taylor-Hood elements as described in [30]. Experiment 1 is on the
left and experiment 2 is on the right.
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Figure 10.4: Fluidity at the surface as calculated by the fluidity formulation (blue line) and a
Galerkin method using Taylor-Hood elements (dashed line). Experiment 1 is on the left and
experiment 2 is on the right.
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As in Sections 8.2 and 9.2, the surface stresses are examined to glean more information about

the smaller fluidities. Figure 10.5 shows s11 and s12 evaluated at the surface of the domain for

both experiments approximated using either the basic fluidity formulation or the Galerkin method.

Unlike benchmark D, s12 = 0 is not explicitly enforced in the basic fluidity formulation since the

surface is not a horizontal line. This means the fluidity peaks do not result from simply when s11

changes signs. Now both s11 and s12 need to be near zero at the same locations. From Figure 10.5

it is easy to see that this occurs more frequently with the basic fluidity method than the Galerkin

method. Once again, this is due to the fact that s11 and s12 are primary dependent variables and

are, therefore, approximated more accurately. This is just another benefit of a FOSLS formulation.

The next set of plots, found in Figure 10.6, describe the velocities through the entire glacier.

The main point of interest from these graphs is in the horizontal velocity plot for experiment 2.

Near the basal sliding boundary conditions, the ice rapidly accelerates to an almost uniform speed.

This results in a “pile up” of ice just after the basal sliding boundary and an “absence” of ice just

before this section. This is supported by the large negative vertical velocities of the ice filling in

the void just before the basal sliding boundary. Additionally, the positive vertical velocities just

after the sliding boundary indicate that the faster ice is traveling up and over the slower ice. This

entire story can be seen in the stream line plots.

The experiment 1 velocity are pretty tame, when compared with experiment 2. The ice simply

travels from top to bottom while following the shape of the basal boundary, more or less. Without

the existence of any accumulation of snow fall on the upper half, this glacier would eventually just

mostly drain out the right side.

Since only the basic fluidity system was solved, ψ could not be calculated for this experiment.

The contour plots of φ and log(φ) can be found in Figure 10.7. One interesting aspect of these plots

was that the fluidity in experiment 1, is relatively large, when compared with the other benchmarks,

near the bed at about the 3 km mark. This means that the stress in the region are larger, which

would cause the ice to warm up. Since, this place is relatively flat/concave up, it is possible that

liquid water would collect in this region from the warmer ice. This explain why placing the slippery
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Figure 10.5: The two components of the deviatoric stress, s11 and s12, evaluated at the surface
as calculated using the augmented fluidity formulation (blue line) and a Galerkin method using
Taylor-Hood elements (dashed red line). Experiment 1 is on the left and experiment 2 is on the
right.
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Experiment 1: Contour Plot of Horizontal Velocity, u1
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Figure 10.6: Contour plots of u1, u2, for both experiment 1 (left) and 2 (right). The final plot show
the streamlines for experiment benchmark E
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patch between 2.2-2.5 km makes sense.

Experiment 1: Contour Plot of ϕ
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Figure 10.7: Contour plots of φ, log(φ), for both experiment 1 (left) and 2 (right).

10.3 Performance Comparison

This benchmark is solved with two different types of refinement. The first is a simple global

uniform refinement, and the second is local adaptive refinement using a threshold strategy [2],

in which the element containing the largest error are refined first, until 50% of the total error is

contained in the refined region. The local error is estimated by the FOSLS functional. The last level

of refinement for the threshold method is a global uniform refinement. This is done to save time

while still resulting in solutions that have approximately the same number of degrees of freedom.

The finite element converges of these two refinement methods is found in Figure 10.8. In the
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case of experiment 1, the uniform refinement has a convergence rate of less than O(h) with the

final rate being about O(h
1
2 ). Refining with the threshold method increases this to about O(h1.3).

Experiment 2 has more interesting behavior. Uniform refinement results in an abysmal rate,

∼ O(h0.25), for the finite-element convergence. This is due to the singularity caused by the instant

switch between no-slip and no-stress boundary conditions on the bed. There are a few ways to

deal with this type of singularity. The most obvious solution is to make the switch between the

two boundary conditions smoother. This can be achieved by rewriting the basal sliding boundary

condition as follows:

n · σ = β2u⇒ α2n · σ = u,

where α2 = β−2. Then smoothly transitioning α from 0 for a no-slip boundary to very large for

the sliding boundary.

If the problem needs to be solved with the sharp transition between boundary conditions,

there are a few ways to deal with this. One way would be to unweighted the functional around the

singularities at 2.2 km and 2.5 km. This would result in increased finite element convergence, but

reduced accuracy near those points. Another method would be to build the singularity into the

finite element space, but this is outside the scope of this thesis. However, neither of these solutions

are employed in this paper. Instead, the threshold refinement method is used to create a graded

mesh around the singularity.

From Figure 10.8, it is easy to see that the threshold method for experiment 2 produced opti-

mal finite element convergence of O(h2). However, immediately returning to a uniform refinement

step in the last iteration reduces the convergence rate down to O(h0.5). It is clear that a graded

mesh must constantly be used to resolve the singularities introduced by the abrupt change between

no-slip and basal sliding boundary conditions. This is another reason why a smoother transition

between boundary conditions is the preferred way to avoid the singularities.

The next set of graphs in Figure 10.9 shows the convergence to the approximate solution found

by solving the Taylor-Hood method with approximately one million degrees of freedom. These
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Figure 10.8: The functional norm convergence for experiment 1 (left) and and experiment 2 (right)
with either uniform or threshold based mesh refinement. All tests use the basic fluidity formulation,
(5.4.2)-(5.4.6), with quadratic elements.
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convergence rates represent the minimum convergence rate between the basic fluidity formulation

and the Taylor-Hood method to the true solution. Let u∗ be the true solution and uf , um be the

approximate solutions from the fluidity and mixed methods that are converging to u∗. If um → u∗

faster than uf → u∗, then um converges to u∗ first and the convergence rate as uf → um will be

no larger than uf → u∗.

It is clear that the threshold refinement helps increase the rate of convergence resulting

in almost an order of magnitude difference in the approximate error between the threshold and

uniform solutions for experiment 1 and almost two orders of magnitude for experiment two. In the

L2 convergence plot, Figure 10.9, for experiment 2, the approximate error starts to increase. This

is probably due to the fact that this comparison is between two approximate solutions and not a

true solution.
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Figure 10.9: The L2 convergence of the horizontal surface velocity, u1, for experiment 1 (left)
and experiment 2 (right) with either uniform or threshold mesh refinement. These error were
found by comparing with the Taylor-Hood method. All test solved the basic fluidity formulation,
(5.4.2)-(5.4.6), with quadratic elements.

Finally, Figure 10.10 shows a progression of adaptively refined meshes for experiments 1 and

2. In experiment 1, most of the refinement occurs near the border. Less refinement occurs where

φ is smaller. This is probably due to the fact that the refinement is based on where the functional

is large. Since a smaller φ results in a smaller functional, the threshold method might artificially

ignore these locations.

In experiment 2, most of the refinement occurs near the two singularities. This is completely
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expected since this will be where the largest errors occur. However, after enough levels of refinement,

refinement starts to occur near the surface around the same places as seen in experiment 1.

Experiment 2Experiment 1

Level 0Level 0

Level 9Level 4

Level 15Level 7

Level 20Level 9

Figure 10.10: A few meshes from experiment 1 (left) and experiment 2 (right). The experiment 1
meshes are from levels 0, 4, 7, 9 with 4,810, 31,895, 119,240, and 288,380 degrees of freedom,
respectively. The experiment 2 meshes are from levels 0, 9, 15, 20 with 1,355, 34,290, 119,055,
274,195 degrees of freedom, respectively.



Chapter 11

Time Dependant Domain

The chapter discusses the final test problem. This problem involve a mostly rectangular

domain with a Gaussian bump on the bed. The free surface is allowed to evolve over time until the

system reaches steady state.

11.1 Problem Setup

The last test problem is a variation on ISMIP benchmark F. Benchmark F is a rectangular

glacier where the bed is perturbed by a Gaussian bump. Additionally, the free surface of the ice

sheet is allowed to evolve over time. There are two main differences between benchmark F and

the test problem presented here. First, the test problem in this paper is adapted for 2-D methods.

Second, viscosity is nonlinear with n = 3 in Glen’s flow law, (2.2.7) as opposed to the linear viscosity

in benchmark F. The domain is defined by

zs = − tan(θ)x

for the surface and

zb = zs −H + a0e
−x2
σ0

2

for the bed. The domain for this problem is found in Figure 11.1. Notice the bump a the bottom

near the middle of the domain.

The other parameters in this test problem are chosen to match the spirit of benchmark F. For

instance, benchmark F is designed so that the surface velocity of the rectangular glacier without
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Figure 11.1: The domain for the time dependent test problem.

the Gaussian bump would be 100 m a−1. The modified problem uses a flow law parameter, A, and

average bed slope, θ such this surface velocity constraint is met. The full list of parameters is found

in Table 11.1.

Table 11.1: Parameters used in the time dependent test problem

Parameter Value Units

A 10−16 Pa−3 a−1

|g| 9.81 m/s2

ρ 910 kg/m3

Ĥ 1 km
L̂ 100 km
a0 100 m
σ0 10000 m
θ 0.809◦

n 3
Seconds per year 31,556,926 s/a

The boundary conditions for this problem are very simple. On the surface a no-stress condi-

tion is used. The bed has a no-slip condition. Finally, the left and right sides are periodic. These

are the same boundary conditions for the rectangular test problem in Section 7.1 summarized in

Table 7.2.

The free surface is evolved using the kinematic relationship for ice sheets in 2-D,

∂zs
∂t

+ u1
∂zs
∂x
− u2 = b, (11.1.1)

where b is the surface mass balance [22]. For this test problem, the surface mass balance is zero.
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11.2 Numerical Solution Results

As with benchmark E, this test problem is solved with a NI-Newton-FOSLS approach using

the basic fluidity formulation. Forward Euler is used to update the surface with a time step of 0.5

years. At each time step, the maximum change in the surface between the previous and current

time step is recorded. This value is simply referred to as surface change and is used as a stopping

criteria for the simulation. Since the surface mass balance is zero, the free surface should slowly

reach a steady state solution and the surface change should always decrease. The simulation runs

for 250 years or until the surface change start to grow, indicating an instability in the time stepping

method. Figure 11.2 shows the value of the surface change over time for both the basic fluidity

formulation and the Taylor-Hood method. Notice that both methods decrease at the same rate for

almost 100 years. After that, the Taylor-Hood method becomes unstable.
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Figure 11.2: A plot of how the free surface changes over time. Let zks be the free surface at time
iteration k.

The surface elevation, horizontal velocity, and vertical velocity are found in Figure 11.3. Each

plot shows its respective quantity of interest at various time snapshots. This way it is easier to

see how the solution evolved over time as it approaches steady state. The surface elevation plot is

rotated to remove the rather large linear component due to the slope of the ice sheet.
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Figure 11.3: Plots of surface elevation, horizontal velocity, and vertical velocity. The blue line is
the solution from the basic fluidity formulation and the dashed red line is from the Taylor-Hood
method. The opacity of the lines, corresponding legend on the right, refers to what year the solution
is from, where the darker gray corresponds to a more opaque line.
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Most of the interesting dynamics happen in the surface fluidity plots found in Figure 11.4.

Initially there are only two peaks in the fluidity. One of them is directly above the Gaussian bump,

and the other occurs at the periodic boundary. To simplify referring to these peaks, name them the

g-peak and p-peak, respectively as seen in subplot (a). Over time, the g-peak splits into a triplet,

three peaks, and the left peak travels upstream and the right peak travels downstream, which is

represented in subplot (b). The p-peak briefly travels downstream, and then travels upstream to

eventually coalesce with the right peak from the triplet and finally diminishes, depicted in subplot

(c). Finally, the system reaches steady state in subplot (d).

For the most part, the fluidity formulation captures smaller fluidities around the peaks. The

Taylor-Hood method does not resolve the fluidity well when the coalescence mentioned above occurs.

It should be noted that the grid remained constant throughout time. This lead to an interesting

observation. As the peaks moved, they eventually cross a grid point. When the peak and the grid

point are perfectly aligned, the fluidity is minimized, but the fluidity formation always has smaller

values than the Taylor-Hood method. Since, both the fluidity and Taylor-Hood methods use the

same number of surface grid points, it can be concluded that the discrepancy between the two

methods is not due to the influence of the grid.

Figure 11.5 contains contour plots for the horizontal and vertical velocities as well as stream-

lines for the beginning of the simulation, t = 0 years, and the end of the simulation, t = 250

year. Notice the shape of the stream lines before and after the simulation. Near the surface, the

stream lines exit and reenter the domain. The coincides with the fact that the vertical velocities

are positive to the left and negative to the right of the bump. This is what leads to the build up of

ice before the bump and the thinning of the ice just after the bump at the end of the simulation.

After the simulation is complete, the streamlines are parallel to the surface, which is why this is

the steady-state solution.
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Figure 11.4: A series of plots that shows the fluidity at the surface at different times in the
simulation. The blue line is the solution from the basic fluidity formulation and the dashed red line
is from the Taylor-Hood method. The black arrows indicate how the direction the peak will travel.
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Figure 11.5: Contour plots of u1, u2, at year 0 (left) and at year 250 (right). The final plot show
the streamlines.
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The last set of plots, found in Figure 11.6, presents the contour plots for φ and log(φ) before

and after the simulation. Regardless of the simulated year, the majority of the ice sheet experiences

nearly the same fluidity resulting in a rather smooth fluidity profile throughout the whole domain.

The only places where the fluidity goes to zero is near the surface as discussed in Figure 11.4.

Contour Plot of ϕ at t = 0 yrs
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Contour Plot of ϕ at t = 250 yrs

0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Contour Plot of log10(ϕ) at t = 0 yrs
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Figure 11.6: Contour plots of φ, log(φ), at year 0 (left) and at year 250 (right).



Chapter 12

Discussion

The point of this dissertation was to develop a new full-Stokes formulation that attempts

to over come the problems of infinite viscosity introduced by Glens Law. These infinite viscosities

occurred in ice sheets where the ice sheet experienced very little stresses or deformation. Essentially,

this was where the ice sheet was moving as a solid chunk. The development of this formulation

started by returning the full-Stokes system back to a first-order system by creating a new set

of variables from the velocity gradient. This led to the velocity-gradient viscosity formulation.

Another first-order system was generated by setting the deviatoric stress as a new set of variables.

This new method involved absorbing the viscosity into the new variables thereby viscosity, µ, was

removed from the system and replaced by the fluidity, φ. Thus the basic and augmented fluidity

formulation were created. One benifit of this fluidity-based formulation was that viscosity could

become as large as necessary. However, a downside was that this leads to φ → 0, which affects

coercivity as discussed in Section 6.3.

Once these formulations were developed, they were used to solve a variety of test problems.

The first test problem was a simple infinity long, rectangular glacier flowing down an infinity long

hill. This test problem showed that both the viscosity and fluidity formulations exhibited optimal

finite element convergence. However, the augmented fluidity formulation was more accurate. More-

over, the fluidity formulation involved linear systems that were much more amenable to solution

by AMG. As seen in Figure 7.6, nested iteration allowed for most of the nonlinear iterations to be

performed on the coarse grid. The overall computational cost of the algorithm using the augmented
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fluidity formulation was significantly less than with the viscosity formulation. With the addition

of the adaptive refinement via ACE, even better accuracy per computational cost was achieved.

The next step was to move on to a more complicated test problem. The ISMIP-HOM [39]

contained a series of benchmarks that feature several experiments to test ice-sheet models and

also supplied a database of solutions from other methods for comparison. The first experiment,

benchmark B, involved another infinitely long glacier with a spatially varying basal topography.

The interesting aspect of this test solution was that the fluidity tended towards zero at several point

along the surface of the glacier. When compared with a formulation developed in [30], the fluidity

formulation produced fluidity/viscosity that were significantly smaller/larger than the Galerkin

Taylor-Hood method. One factor for why this happened had to do with the fact that the FOSLS

formulation approximated the stresses, s11 and s12 in a discrete subspace of H1. Whereas, the

Taylor-Hood method had to take numerical derivatives of the velocities to produce these stresses,

which resulted in additional errors.

It was shown that the fluidity based method achieved optimal finite element convergence

when the curl equations are omitted, as in the basic fluidity system, or when scaled by φ. However,

increasing the scaling on the curl equations by using a scaling of either ψ−1/2 or φ−1/2 resulted in

reduced finite element convergence but improved AMG performance. This trend continued on in

benchmark D.

Benchmark D was another ISMIP experiment that was solved using both fluidity formula-

tions. Benchmark D involves an glacier that had a basal sliding boundary condition. Basal sliding

occurred when a water systems developed between a glacier or ice sheet and the bed. With large

basal sliding, the velocity variation across the bed became more uniform, which resulted in very

large viscosities. This type of a problem was the reason a fluidity-based formulation was developed.

As expected, the solutions found using the augmented fluidity formulation better resolved the fluid-

ity/viscosity than the Galerkin method as seen between Figure 9.3. Additionally, this test showed

that, although augmenting the fluidity formulation with a curl-based equation yields better AMG

performance, the basic fluidity formulation consistently had optimal finite-element convergence.
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This resulted in the basic fluidity formulation being the method used for solving the remaining two

test problems.

The next benchmark, E, used real glacier geometry from the Haut Glacier d’Arolla in the

European Alps. There were two variations on this benchmark. Experiment 1 involved a pure no-

slip, basal boundary condition and experiment 2 had a small slippery patch. The solutions to both

experiments were accurately resolve using the basic fluidity formulation and once again, yielded

smaller fluidities the viscosity-based Taylor-Hood method. Additionally, the fluidity formulation

also recovered several fluidity peaks that were absent in the Taylor-Hood method. The boundary

conditions in experiment 2 result in singularities, which was resolved using a threshold adaptive

mesh refinement method. Using the FOSLS functional as an error estimator resulted in optimal

finite element convergence.

The last test problem was a 2-D adaptation of benchmark F with nonlinear viscosity and

a time dependent free surface. Keeping with the trend, the fluidity formulation produced smaller

fluidities than a viscosity-based method. This is especially true when two fluidity peaks coalesced.

The fluidity formulation also remained stable longer than the Taylor-Hood method when using the

notoriously unstable forward Euler method.

The future of this research is to continue to show the efficacy of the fluidity formulations

at dealing with infinite viscosities. One possible application of this formulation is a ice shelf or

grounding-line determination problem. Ice shelfs have an interesting set of basal boundary con-

ditions. Most times, the boundary conditions start with a frozen bed, u = 0, transition to basal

sliding, n · σ = β2u, and end with a floating free surface, n · σ = 0. The grounding line is the

transition point between the grounded section and the floating free surface. It is expect that the

floating part of the ice shelf experiences mostly translational velocities, which means large viscosi-

ties. Combining that with the basal sliding section, and this problem is the perfect application of

a fluidity-based formulation.

Another future avenue of research involves optimizing the solver. The intent of the augmented

fluidity formulation was to make a system that is amenable to AMG. However, the reality is AMG
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requires some sense of a curl-type equation. In the case of a fluidity formulation, this curl equation

involve a factor of φ, which can go to zero hurting the coercivity. An H(div)–type system based on

a full-stress formulation can be solve using AMS or ADS [26, 27]. This would avoid the difficulties

with the curl equation.
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